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Abstract 

High-precision micro-machining of glass for mass-

personalization 

 

Lucas Abia Hof, Ph.D. 

Concordia University, 2018 

 

 

With the fourth industrial revolution manufacturing industry faces new challenges. Small 

batches of personalized parts, where the geometry changes per part, must be produced in an 

economically viable manner. In such cases of mass personalization new manufacturing 

technologies are required which can keep manufacturing overhead related to change of part 

geometries low. These processes need to address the issues of extensive calibration and tooling 

costs, must be able to handle complex parts and reduce production steps. According to recent 

studies hybrid technologies, including electrochemical technologies, are promising to address 

these manufacturing challenges.  

At the same time, glass has fascinated and attracted much interest from both the academic and 

industrial world, mainly because it is optically and radio frequency transparent, chemically inert, 

environmentally friendly and it has excellent mechanical and thermal properties, allowing tailoring 

of new and dedicated applications. However, glass is a hard to machine material, due to its 
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hardness and brittleness. Machining smooth, high-aspect ratio structures is still challenging due to 

long machining times, high machining costs and poor surface quality. Hybrid methods like Spark 

Assisted Chemical Engraving (SACE) perform well to address these issues.  

Nevertheless, SACE cannot be deployed for high-precision glass mass-personalization by 

industry and academia, due to 1) lack of process models for glass cutting and milling, relating 

SACE input parameters to a desired output, 2) extensive calibration needed for tool-workpiece 

alignment and tool run-out elimination, 3) part specific tooling required for proper clamping of the 

glass workpiece to attain high precision. 

In this study, SACE technology was progressively developed from a mass-fabrication 

technology towards a process for mass-personalization of high-precision glass parts by addressing 

these issues. Key was the development of 1) an (empirically validated) model for SACE cutting 

and milling process operations allowing direct relation of the machining input to the desired 

machining outcome, enabling a dramatical increase of automation across the manufacturing 

process workflow from desired design to establishing of machinable code containing all necessary 

manufacturing execution information, 2) in-situ fabrication of the needed tooling and 3) the use of 

low-cost rapid prototyping, eliminating high indirect machining costs and long lead times. 

To show the viability of this approach two novel applications in the microtechnology field 

were proposed and developed using glass as substrate material and SACE technology for rapid 

prototyping: a) fabrication of glass imprint templates for microfabricating devices by hot 

embossing and b) manufacturing of glass dies for micro-forming of metal micro parts. 
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Chapter 1 

Introduction 

1.1.  Manufacturing 

The presented research study evolves around the following emerging engineering question:  

how can we mass-manufacture batch-size-1, i.e. mass-personalized, high-precision products 

(made of hard-to-machine materials) economically on-demand? 

To put it differently: what kind of manufacturing processes are needed to meet the demand of 

mass-personalized high-precision products (of hard-to-machine materials) at economical cost? In 

the framework of this study we focus on the specific case of manufacturing high-precision devices 

flexibly made of hard-to-machine materials such as glass. As this material is challenging to 

machine, the results of this study can be used as reference for other materials afterwards. 

Before addressing the research question, we first need to analyze each key element of it and 

understand how they relate to each other, which will be done progressively throughout this chapter.  

Let us start with defining ‘manufacturing’ as denoted by the Oxford English Dictionary [1]: 

Manufacture, v.        

Compare Middle French, French manufacturer (c1576; 1538 as participial adjective), post-classical Latin manifacturare (a1567 

in a document from Genoa), Italian manifatturare (Florio, 1598). 

1. trans. a. To make (a product, goods, etc.) from, of, or out of raw material; to produce (goods) 

by physical labour, machinery, etc., now esp. on a large scale.  
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2. a. trans. To make up or bring (raw material, ingredients, etc.) into a form suitable for use; to 

work up as or convert into a specified product.  

This conversion into complete functional products per design specification is achieved by 

using a wide array of processes that apply energy to produce controlled changes in the 

configuration properties of materials. The nature of this energy can be mechanical, thermal, 

electrical, chemical or a combination of these components (referred to as hybrid technologies). 

Contrary of the past, modern manufacturing requires involvement of different engineering 

disciplines, ranging from design and materials engineering to mechanical, electrical and computer 

networking engineering to fulfill the constant need for smaller lot size manufacturing, more 

diversity, better quality and lower cost [2-4]. Coined in Germany in 2011, Industry 4.0 [5] appeared 

as answer to address these challenges.  

The response of manufacturing industry across history on needs from the markets and the 

evolution of (precision) manufacturing in general is detailed in section 1.2 of the introduction.  

Section 1.3 gives a more comprehensive overview of Industry 4.0 and Smart Manufacturing 

initiatives and its requirements for industrial implementation.  

General criteria for precision manufacturing providing guidelines for precision machine 

design and setting requirements for new high-precision fabrication processes to be designed are 

outlined in section 1.4. In addition, it aims to relate the needs from precision manufacturing 

perspective to the new ‘Industry 4.0’ fabrication approaches for mass-personalized products. 

Section 1.5 compromises a brief review on glass as building element and conducted research 

work on customized high-precision glass parts with different techniques. 

The final sections 1.6 and 1.7 of the introduction present respectively the scope and structure 

of this thesis. 

1.2. Manufacturing historical background 

Manufacturing industry has been a key element in the prosperity of regions and countries 

around the world for long time [6]. Actually, the development of mass manufacturing ranks among 

the most important contributions to human living conditions ever – of the same magnitude as 

agriculture and modern medicine [7]. Across manufacturing history, a common theme is the 
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evolution of manufacturing from an art to a science [8, 9]. This shift from art to science parallels 

to changes in both knowledge about and process control of the physical technology [7].  

Historically, manufacturing processes date back to some 4000 BC where hammering of metals 

for jewelry or simple tools were practiced [10]. Progressively, over the first five or six millenia, 

more sophisticated tools were used often part of distinct unit processes (individual manufacturing 

steps) such as the casting process or tube rolling as part of deformation-based processes. According 

to Boothroyd [11] the progress in development of these manufacturing methods originates from 

improvement of the following elements necessary in any unit process: 1) source of energy or 

relative motion, 2) means to secure the work, 3) means to secure and orient the tool, 4) control of 

the source of energy and means above [9]. Examples of crucial historical advancements of 

technologies for improved manufacturing ability are the introduction of machine tools such as the 

turning lead screw carrying the tool in a lathe developed by Maudslay around 1800 [7, 9] which 

improved drastically the controllability of the manufacturing process and eventually resulted in 

the first manufacturing system based on interchangeable parts and the invention of the horizontal-

boring machine by Wilkinson [11] enabling James Watt [12] to overcome the difficulties of boring 

a steamtight cylinder casting in order to produce a successful steam engine [13, 14].  

More importantly, these developments were the onset of the first industrial revolution [14], in 

the late nineteenth century, enabling mechanization of manufacturing processes to produce goods 

on much larger scale at higher quality. Moreover, the persistent growing technology push and the 

constant increasing demand for new and better products at economical cost were among the driving 

forces of the successive second and third industrial revolutions, each one enabled by new 

inventions (resp. electricity leading to mass-fabrication and computers resulting in automation of 

production processes) and introducing new engineering domains (resp. electrical engineering and 

computer engineering) [15]. A more refined and differentiated overview of the past industrial 

revolutions is described by Jaikumar [7] stating that there have been six revolutionary 

transformations in manufacturing, each involving a shift in hard technology, the nature of human 

work, and the nature of process control. Incrementally the control of the manufacturing processes 

improved permitting simultaneous increase in both force and precision.  

Introduction of the Japanese system by Toyota [16] (also referred to as the ‘Toyota Production 

System (TPS)’ [17]) is another milestone that significantly improved the quality and efficiency of 

manufacturing mass-fabricated goods. This system consists essentially of two types of procedures 
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and techniques, productivity and quality. Its most important principles are just-in-time (JIT) and 

total quality control (TQC), where productivity is improved through avoidance of waste in its 

broadest sense and low stock of materials and products used [16]. Derived from these principles, 

the terminology lean manufacturing [18] was introduced early nineties, which transformed 

significantly the way of manufacturing.  

The increased technical complexity of manufactured products and the consumer demand for 

high quality at affordable cost are the main driving forces behind the search of ever more 

demanding levels of manufacturing accuracy capability and ever smaller feature creation [9, 19, 

20]. These drivers include demands from defence, automotive and aerospace industries, 

microelectronics, telecoms, medical technologies and science programs [20] and the need for high-

precision manufacturing emerged (Figure 1.1 A).  

Classic measures of engineering relative size-scales and of progress in precision 

manufacturing over time are given by respectively McKneown [19] and Taniguchi [21] (Figure 

1.1 B). According to their definitions precision machining defines processes having a precision of 

around one micron, whereas ultra-precision machining is defined by technologies obtaining 

precision in the order of one nanometer. Taniguchi emphasized the need of machine systems for 

processing together with appropriate measurement and control techniques for production 

technologies required for nanotechnology [20, 21].  This recognition of the fundamental need for 

measurement can be traced back to Lord Kelvin [22] and the maxim attributed to Galileo stating 

that ‘to measure is to know’.  

 

Figure 1.1. A. Drivers of achievable accuracy capability in precision machining (adapted from [20]). B. An 

interpretation of the Taniguchi curves [20, 21], depicting the general improvement of machine accuracy capability 

with time during much of the twentieth century. 
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Throughout the presented thesis work we will focus on precision machining (creating features 

with precision ~1 µm) with some applications in the field of nanotechnology (ultra-precision). 

As precision manufacturing is basically the process of acting on a workpiece it can be closely 

related to precision machining or material removal, i.e. creation of the artifact on the part. Parallel 

to the progress in manufacturing ability across history can be viewed the development of machines 

over time. Shirley and Jaikumar [23] refer to a classification of seventeen levels over time of 

mechanization of ‘machines’ related to their power and control sources [9]. At the last level they 

envisioned machines able to make decisions ‘for themselves’ based on sensor inputs and 

‘intelligence’ containing an objective function and means for optimization. This evolution of 

machines over time is presented by Moriwaki [24, 25] as depicted in Figure 1.2. It can be noted 

that this ‘intelligent machine’, proposed already in 1994 [24], is nowadays in use in state-of-the-

art factories based on techniques such as machine learning, artificial intelligence and precise 

automatized system communication (see section 1.3 Mass personalization - Industry 4.0).  

 

Figure 1.2. History of machine tool development. Adapted from Moriwaki [24, 25]. 
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Other visions on manufacturing and machine tools dating back to decades ago were described 

by Jaikumar, Csiszár and Shirley [7, 23] wondering if “the Computer Integrated Manufacturing / 

Flexible Manufacturing System epoch, is still the last word, or we can distinguish a new epoch, 

one based on computer networking? How should we think about process control extending across 

entire supply chains?”, which is exactly the case in the Industry 4.0 philosophy as we will see in 

the next session. Dornfeld and Lee [2, 26] mentioned in their work on precision manufacturing in 

2008 the concept and advantages of the ‘digital factory’ using a digitalized ‘manufacturing 

pipeline’ to built on competent process models and extensive data bases to increase precision and 

reduce cycle times. They stressed out as well the importance of the environmental impact of the 

production and use of products and proposed a methodology for sustainable design and 

manufacturing by establishing a sustainable budget including all sources and their possible impact 

on the environmental performance of a machine. 

1.3. Mass-personalization – Industry 4.0 

Having past three industrial revolutions over the past centuries, current manufacturing is at 

the dawn of a new revolution: the fourth industrial revolution [27] (Figure 1.3).  

 

Figure 1.3. Chronology of the past three industrial revolutions 

and the emerging fourth industrial revolution. 

Increasing global competition [28] and complex market dynamics due to unpredictable 

forecasts and short innovation and product cycles [29, 30] are causing a paradigm shift towards 
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more flexibility to respond quickly and efficiently to constant changing customer needs, increasing 

product variety and new technologies. An increasingly high degree of individualization is 

demanded by the market [31] resulting in a first step in the need of mass-customized products [32-

34]. In fact, this is a first step towards the even more demanding and challenging concept of mass-

personalization which is discussed in more depth later in this section. Mass-customization is the 

assembly of individual parts to custom products such as done today in several industries (e.g. 

automotive or consumer electronics industry since the late 80’s [32]). Flexible manufacturing 

systems are required to economical produce such small batch sizes as this is incompatible with 

established manufacturing systems designed to produce large quantities of identical parts.  

Manufacturing flexibility to achieve mass-customization, as a strategic perspective, 

introduced with a developed framework by Gerwin [35] almost thirty years ago, has been discussed 

in engineering and management literature for several decades [28]. Flexible manufacturing 

systems (FMS) were developed, usually consisting of computer numeric control (CNC) machine 

tools, fed by industrial robots, which are connected by automated material handling and storage 

systems controlled by an integrated computer system [36]. It was recognized that differentiation 

and identification of the different parts, agile operating instruction configuration and fast exchange 

of the machining setup were key requirements for these FMS. Manufacturing flexibility ranges 

from product and mix flexibility to volume, and delivery flexibility [37], defining respectively the 

capability of a manufacturing system to fabricate a variety of components with the same equipment 

(machine), the ability to change the range of products within a defined period, the capacity to 

change the level of output and the ability to change planned or expected delivery dates. The new 

manufacturing paradigm demands integration and flexibility of these four classified types to a high 

level, setting firm requirements to manufacturing processes to be used. It is important to note that 

the manufacturing process itself is often the main limiting factor in FMS to reach the desired level 

of flexibility in a timely manner as shown by a recent study [36].  

Due to complexity of managing operations in an FMS and its high investment costs, focused 

flexible manufacturing systems (FFMS) [31] are introduced by machine tool builders to serve 

manufacturing companies that don`t need the full FMS. This alternative (FFMS) represents a 

relatively new concept, based on system configuration to meet exactly the companies` flexibility 

requirements without any unnecessary, expensive, features.   
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It is highlighted by a recent product flexibility assessment study [30] that adaptable interfaces 

between the product and resources, such as setting and gripping interfaces or tooling interfaces, 

are key actors for building cost-effective and flexible production lines. Part specific interfaces may 

require more setup time and higher setup costs. An example of adaptive gripping interfaces for the 

automotive industry is presented in this study [30] as a first attempt to contribute in solving this 

tooling issue. 

All these ongoing efforts by academia and industry on developing flexible manufacturing 

systems contribute to address the challenges for mass-customization. In these cases, the shape of 

the sub-parts is essentially always the same and the final product is built out of individual modules. 

However, manufacturing industry will progressively have to deal with situations where shapes 

of parts change as well. The customer will not only choose from existing options (modules) but 

actively be involved in the full product design to manufacturing cycle (e.g. co-design [38]). This 

next step beyond mass-customization is referred to as mass-personalization [39], demanding an 

even higher level of flexibility of manufacturing systems. 

Industry 4.0 [5], coined in 2011 in Germany, is one of the key initiatives aiming to address 

these challenges for producing increasingly individualized goods economically [40-42]. It is based 

on introduction of the Internet-of-things (IoT) into manufacturing industries leading to vertically 

and horizontally integrated production systems across the entire supply chain [43] creating smart 

factories [44] (Figure 1.4).  

 

Figure 1.4. Schematic of Industry 4.0 with its key components. 
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Similar initiatives emerged in other industrial nations such as Japan and Korea and North-

American countries where the term `Smart Manufacturing` was introduced. Main objective is the 

development of smart factories consisting of cyber-physical systems (CPS), which are physical 

entities (machines, vehicles, workpieces) equipped with advanced technologies such as radio-

frequency identification (RFID) sensors, microprocessors, telematics or complete embedded 

systems to let the physical and virtual world grow together (digital twins [45]) enabling 

considerable flexibility in the design and operation of machines or entire plants. As these initiatives 

might have practically similar implications on the manufacturing industry, its origin is different. 

While the Smart Manufacturing concept, coined in the United States, can be described as ‘a data 

intensive application of information technology at the shop floor level and above to enable 

intelligent, efficient, and responsive operations’ [46], Industry 4.0 covers a paradigm shift from 

automated to intelligent manufacturing with the main objective of producing highly personalized 

(individualized) products at low batch size (most extreme case: batch-size 1) economically. The 

focus on human ingenuity is an important aspect differentiating these two initiatives from many 

others [43], i.e. humans are not simply replaced by artificial intelligence and automation, but their 

capabilities are enhanced by smart design of customized solutions for a specific area. This implies 

as well the use of collaborative robots (cobots [47]) interacting directly with human workers.  

It is pointed out by recent case studies that new manufacturing processes needing low fixed 

cost and short setup time, such as additive manufacturing (AM) [48], are required to address the 

manufacturing challenges for these highly personalized products [30]. In fact, highly flexible and 

agile fabrication methods are needed. It is generally thought that agile manufacturing needs to be 

adopted where demand is volatile (as the case for personalized products) and lean manufacturing 

adopted where there is a stable demand (in the case of mass-fabricated goods) [18]. These new 

manufacturing technologies need to keep manufacturing overhead related to change of part shapes 

low by eliminating the drivers of manufacturing costs related to specific part design. In summary 

(see Figure 1.5) they have to be able to address the issues of tooling costs (avoid any part specific 

tooling [30]), able to handle complex parts and to reduce production steps (as in each new step 

parts will have to be transferred from one manufacturing system to another resulting in new 

overhead and error introduction due for example to alignment or tooling) and must abandon long 

calibration runs (in-process automated calibration strategies are recommended). 
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Figure 1.5. Drivers of manufacturing costs related to part design 

Additive manufacturing (AM), initially developed for rapid prototyping, appears to be one of 

such new technologies and is cited in literature as the solution to mass personalization for diverse 

applications [49, 50]. Tooling costs are small as the machine builds the needed tooling during 

manufacturing and very complex shapes can be produced. General Electric (GE) [51] recently 

demonstrated that AM can produce assembled parts in one step reducing subsequent assembly 

steps (GE produces injector nozzles by AM which before had to be made out of over 20 subparts). 

As such, AM appears as one of the corner stones of Industry 4.0. However, besides presenting its 

own challenges, AM will likely not be the sole manufacturing technology on which industry will 

rely. Current limitations of AM processes are the limited variety of available feedstock materials, 

limited resolution for metal AM parts (features are build with a focused laser or electron beam, 

with spot sizes around 100 µm, from metal powder with typical particle sizes around 25 µm to 75 

µm limiting lateral feature sizes to around 250 µm) and the difficulty of printing high quality parts 

with non-traditional materials such as glass and ceramics.  

Other technologies able to work together with or independently from AM (e.g. for materials 

that cannot be printed well such as glass) will be needed. Academia and industry just started to 

develop such technologies [52]. For example, for mass customization of curvilinear panels (a novel 

approach of tooling was developed) [53] or office scissors (a combination of AM and injection 

molding was integrated into a smart factory) [54]. An example of material not well suited for AM 

but where mass personalization starts to become reality is fabric. The European project FASHION-

ABLE aims to develop strategies for it [55].  

However, the main efforts in academia remain in AM and surprisingly little research is 

conducted on alternate technologies. According to a recent case study made by the Universities of 

Michigan and Cincinnati for the World Economic Forum, hybrid technologies, in particular 

including electrochemical technologies, would have a great potential towards this aim [56].  
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Industrial efforts on development of such hybrid manufacturing approaches are mainly 

focused on the integration of metal AM processes and conventional CNC milling for enhanced 

efficiency of part repair and obtaining better surface finish by milling the surface of the part during 

the AM fabrication cycles [57]. Furthermore, the smart factory (or digital factory) concept is 

gaining increasingly interest by manufacturing companies and an emerging effort on digitalization 

for increased process control and flexibility is observed nowadays. A recent example in the field 

of AM is the integrated process-flow modular industrial AM system by Additive Industries [58] 

automatizing part handling, heat treatment and storage of metallic additively manufactured parts.  

Besides AM process and CNC machining techniques, laser machining is commonly identified 

as flexible process for manufacturing personalized products in the Industry 4.0 paradigm. For 

example, laser technology is the core manufacturing process in the recently realized smart factory 

of Trumpf [59] - machine tool and laser systems manufacturer – where a high degree of 

digitalization and communication across the full supply chain and processes is implemented. 

These few currently available technologies for use as Industry 4.0 manufacturing processes 

are summarized in Figure 1.6 together with their main features on achievable structures, surface 

finish, range of materials to be used, and workpiece handling. 

 

Figure 1.6. Available manufacturing technologies as Industry 4.0 compatible process 

In this research we explore the possibilities of electrochemical technologies as suitable hybrid 

process for manufacturing of mass-personalized high-precision parts of challenging to machine 

materials (e.g. glass). In this study, an electrochemical discharge machining process, spark assisted 
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chemical engraving (SACE), is developed to an industrial level machine tool [60] and the process 

is further optimized as flexible manufacturing technology for realizing high-precision products on 

glass, which is detailed throughout this thesis. 

Before proceeding to the subsequent section on precision manufacturing it is interesting to 

make a parallel with the emerging need for efficiently produced personalized high-precision 

products and the concept of microfactories introduced in 1990 by the Mechanical Engineer 

Laboratory (MEL) in Japan [61-63]. This concept represents an approach to design and 

manufacture which aims to minituarize production systems to match the size of the (micro-) parts 

they produce. Its objective is to address the issue of energy consumption by reducing occupied 

space of the factory, to reduce investment and operational costs and to reduce emissions and 

workload of the operators. Essentially, it provides a versatile system with dynamic 

reconfigurability, aiming at a light and agile automated manufacturing system optimized for 

fabrication of customized parts [4, 62]. In fact, this concept, introduced decades ago, can be 

regarded as the ‘embryo’ of Industry 4.0 for small components.  

As this work focuses on personalized high-precision parts of glass, the definitions of precision 

together with its criteria and implications on manufacturing are discussed in section 1.4. Section 

1.5 discusses the details of glass material for manufacturing and its relation to be used as material 

for mass-personalized parts. 

1.4. Precision manufacturing 

Critical elements of precision manufacturing are denoted by McKeown [19] as 1) elimination 

of fitting and promotion of assembly (automatic assembly), 2) improving interchangeability of 

manufactured components, 3) improving quality control through higher machining accuracy 

capabilities, hence reducing scrap, rework and conventional inspection, 4) achieving longer wear 

and fatigue life of components, 5) achieving greater ‘miniaturization and packing densities, 6) 

achieving further advances in science and technology [9]. These elements address the primary 

objective of the role of precision manufacturing – to reduce uncertainty at the interfaces between 

processes and products. 

Precision manufacturing processes rely, primarily, on mechanical devices and structures as 

the basis of their operation. Several major sub-systems which directly contribute to its performance 
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can be identified in a typical precision machine [64]: 1) the mechanical structure, 2) the spindle 

and drive system, 3) the tooling and fixture system, 4) the control and sensor system and 5) the 

measurement and inspection system. In order to fulfill the requirements as set above (minimizing 

machining errors) the position loop, defined as the relative position between the workpiece and 

the tool, the stiffness loop, which includes the tool, tool-holder, positioner stages, collet/chuck, 

fixtures, and internal vibrations and which defines deformations introduced by compliance, and 

the thermal dynamic loop, which is similar to the stiffness loop with the difference that temperature 

and heat flux are transmitted in the loop, needs to be properly designed to reduce errors caused by 

these loops. In general, high static and dynamic stiffness of the machine structure are desired to 

reduce errors. Error sources are identified with respect to part and machine contributions to 

systematic and random/dynamic errors [7, 21, 23].  

Systematic errors can be compensated by applying an appropriate off-set, while random errors 

are extremely challenging to be compensated as they vary highly non-linearly over the used 

process parameters. Upon producing large batch-size precision products, systematic errors can be 

easily eliminated after some trial runs, however this is not an effective strategy for batch-size 1 

production (mass-personalization) as it will dramatically increase setup times before processing 

the final part. This demands the use of machines and processes with high accuracy (i.e. low bias) 

and high precision (i.e. repeatability), which will be discussed later in more depth. 

Another key aspect for successfully manufacture a high-precision part (i.e. maintaining 

tolerances and surface finish) is the integration of the requirements of each process step with the 

limitations of precision [65]. High level of integration, between the tasks of design, process 

planning and manufacturing [66], with subsequent digitalization in the design to fabrication cycle 

of (precision) mechanical components is one of the pillars of Industry 4.0 [40, 41]. For mass-

produced identical parts, this process flow can be highly optimized over product runs. However, 

this is a high challenge for batch-size 1 production, where the design of the product changes for 

each production cycle. A possible solution could be the implementation of to be developed 

machine learning algorithms fed by real-time process and production data, which needs further 

research and is beyond the scope of the presented work. 

From Nakazawa [67] it becomes clear that a proper designed precision machine is required to 

perform well with respect to the following elements: 1) Dimensional precision; 2) Angular 

precision; 3) Form precision; 4) Surface roughness; 5) Kinematic precision; 6) Surface layer 
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alterations. In the scope of the presented study it is important to note that these are both elements 

required to be designed in to the machine (i.e. in to the manufacturing process) and also be 

measured to evaluate the machine performance [64, 68]. This asks for machines specifically 

designed for high-precision purposes, rather than trying to transform conventional machining 

approaches (less precise) into high-precision processes. 

Because realized characteristics of components produced by a manufacturing process are not 

perfectly identical to the target specification their behaviour is commonly described by frequency 

distributions [7, 68] (Figure 1.7).  

 

Figure 1.7. A. Distribution of dimensions of a part machined to a specific ‘mean value’, illustrating accuracy and 

precision. B. Bulls eye representation of precision versus accuracy. 

It is important to distinguish accuracy from precision or repeatability of a manufacturing 

process, where the reciprocal of precision is variance and defines to what degree the process can 

attain the desired performance. Accuracy can be defined as the difference between the achieved 

mean and the desired dimension. Process precision measures the ability of a machine to execute 

identical performances and the ability of people and procedures to direct this machine [7, 64, 68], 

which is measured by the dispersion around the process mean. A measure for process performance 

to reliably manufacture a product or component that is generally used is the process capability Cp 

described by [65]: 

𝐶𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿
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where σ is the standard deviation, USL is the upper specification limit and LSL is the lower 

specification limit. The higher this Cp value, the better the manufacturing technology performs. 

Usually, a Cp value of 1.33 or higher is considered adequate. A process can be out of the 

specification, even when the recommended Cp value is met, if it is biased (bias defined as the 

difference of the nominal and mean dimension of the actual targeted dimension distribution), i.e. 

the process is off-centre from the nominal [69]. In this case, a more appropriate measure to use is 

Cpk defined as [65]: 

𝐶𝑝𝑘 =
𝑚𝑖𝑛 [(

𝑈𝑆𝐿 − �̅�
𝜎 ) − (

𝐿𝑆𝐿 − �̅�
𝜎 )]

3
 

(1.2) 

where �̅� is the process mean. Process Cpk values  1.00 are acceptable for a suitable process. It 

becomes clear that the latter measure (Cpk) is of better use for defining relevant manufacturing 

technologies for mass-personalization, since both high precision (repeatability) and high accuracy 

(low bias) is crucial here. In processes for producing large quantities of the same product, only 

stability (measuring the shift of bias over time) and precision are key as inaccuracies can be 

compensated by adjusting components of the machine (offsets).  

Parallels can be observed of the transition from current manufacturing to mass-personalization 

for precision manufacturing, with the transition around 1800 from the English to the American 

system of manufacturing (respectively focused on accuracy against interchangeability, 

consequently repeatability/precision) [7, 13, 14]. This works well for large batch sizes, but less 

good for low batch sizes as it is costly (i.e. time consuming) to find out the bias (offset) of the 

manufacturing system. On the contrary, a system with high accuracy doesn’t need to be adjusted, 

so it can readily be used for manufacturing unique components. 

However, in a constantly changing manufacturing environment, which is the case for mass-

personalization of high-precision products where continuously new parts are being introduced with 

tight tolerances, error avoidance alone is not likely to prevent all defects [7]. Sources of mechanical 

and thermal disturbance need to be located, their magnitudes be determined, and their mechanisms 

be identified, requiring detailed examination of the machine tools. In this case, enhanced 

knowledge and analytical skills are becoming the dominant driver in manufacturing competence 

needed by industry to create new products and processes [7].  
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For precision manufacturing, one must make sure to be sufficiently precise in all the process 

steps required for the manufacturing of a certain feature [66], consequently it is evident that 

diminishing the number of process steps will facilitate the realization of a certain feature with 

precision. Manufacturing processes for both mass-fabricated and mas-personalized high-precision 

products benefit from this reduction, although for mass-personalized products, this requirement 

becomes key to choose a suitable manufacturing technology. 

The relation of critical requirements from precision machining point of view for 

manufacturing processes able to fabricate high-precision personalized products and its comparison 

to conventional mass-fabrication of identical products are summarized in Table 1.1. 

Table 1.1. Critical requirements for precision manufacturing.  

Precision manufacturing 

requirements/characteristics 
Mass-fabrication parts Mass-personalization parts 

Quality demands high accuracy 

i.e. small bias (difference between 

nominal and machined 

dimension) [7, 9] 

Less important as a bias/offset can 

be corrected over a production run 

(i.e. calibration) 

Highly important to 

prevent/minimize calibration 

(reducing time/costs), bias needs to 

be measured and adjusted every 

production cycle (not effective)  

High level of interchangeability 

(for assembly) asks for high 

repeatability (precision) [7, 9] 

Highly important since a lot of 

parts need to be produced within a 

specific tolerance 

Important to reduce setup time and 

making the component within 

specification 

Precision (dimensional, angular, 

from, kinematic) designed into the 

machine [64, 68] 

Important as mass-fabrication 

processes are highly repetitive: 

process repeatability is key 

Important to prevent mean 

deviation errors of machined 

features (increased process 

prediction) 

High precision for all process 

steps (error of process is 

accumulation of individual 

process errors) [9, 19, 66] 

Trial runs are needed to 

compensate errors introduced by 

accumulated process errors (i.e. 

calibration required) 

Number of process steps need to be 

reduced to a minimum as each step 

introduces machining errors 

Structural stiffness (static and 

dynamic) [9] 

Important to reduce position 

errors over time 

Important to reduce position errors 

over time 

Levels of integration in the design 

to fabrication cycle (ability of 

software tools to influence & 

optimize process metrics) [40, 41] 

Beneficial but not a crucial 

element (large volume product 

runs demands less setup changes) 

Essential requirement as the 

overhead costs need to be reduced 

as much as possible 
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Evaluating carefully Table 1.1 reveals that the precision manufacturing requirements as 

established by literature [7, 9, 19, 40, 41, 64, 66, 68] are appropriate and valid for mass-fabrication 

assessment as commonly used. However, most requirements do not distinguish strongly between 

mass-fabrication and mass-personalization. Incremental differences can be remarked as presented 

in Table 1.1. However, to better assess a given technology on performance as manufacturing 

process for mass-personalization other criteria are needed. These were proposed and discussed in 

section 1.3 (Figure 1.5) and are summarized briefly in Table 1.2.  

In chapter 2 (Table 2.2), micro-machining technologies are assessed against these criteria to 

evaluate their performances to be adopted as manufacturing processes for mass-personalization. 

Table 1.2. Key drivers of manufacturing costs related to part design for mass-personalization manufacturing 

processes. 

Part related manufacturing cost drivers 

hampering mass-personalization 
Description 

Calibration 

Calibration runs increase dramatically the setup times for each 

different workpiece jeopardizing effective manufacturing 

process work flow as needed for mass-personalization 

Tooling 
Part specific tooling add significantly to machining overhead 

increasing drastically the cost per product 

Complexity 

As mass-personalization demands manufacturing of a wide 

variety of geometries, compatible processes need to be able to 

handle complex shapes. 

Multiple processing steps 

Each new manufacturing step demands transfer of parts from 

one manufacturing system to another resulting in new overhead 

and error introduction due for example to alignment or tooling 

 

1.5. Glass precision manufacturing 

Glass, existing for millions of years in its natural form, has fascinated and attracted much 

interest from both the academic and industrial world. For long, glass was considered a ‘fourth state 

of matter’ before the realization of its ‘liquid-like’ structure [70]. Glass appears on cooling down 

a liquid continuously until its viscosity becomes so high that it freezes to a glassy state. This 
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happens at some range of temperatures that depends on thermal history, letting glass be a 

mysterious material, since the way it is prepared may change its properties.  

The application of glass science to the improvement of industrial tools occurred only in the 

past century, with a few exceptions. Glass has been employed in many forms to fabricate glazing 

and containers for centuries while it is now entering new applications that are appearing in micro 

and even nanotechnology like fibers, displays and Micro-Electro-Mechanical-Systems (MEMS) 

devices. Many qualities make glass attractive since it is transparent, chemically inert, 

environmentally friendly and because of its mechanical strength and thermal properties (e.g. its 

allowance for adapting its thermal expansion coefficients to those of other materials [71]). Glass 

can be electrically insulating, but it can also be a good ion conductor or even a semiconductor. The 

amorphous character of glasses implies that all its properties are isotropic and that the ability of 

micro-structuring is therefore independent on predefined directions of crystal lattices [71] 

eliminating limitations on achievable machined shapes, which is of high interest for personalized 

products.    

In fact, no other materials being mass-produced have shown such qualities over so many 

centuries. Nowadays glass offers recycling opportunities and allows for tailoring new and 

dedicated applications. Moreover, glass is RF transparent, making it an excellent material for 

sensor and energy transmission devices. Another advantage of using glass in microfluidic MEMS 

devices [72-74] is its relatively high heat resistance, which makes these devices suitable for high 

temperature microfluidic systems [75] and sterilization by autoclaving. 

Key in the new manufacturing paradigm Industry 4.0 is the fabrication of personalized parts. 

Therefore, it seems promising to consider glass as fabrication material. Glass can be transformed 

into very complex, unique shapes on demand by for example glassblowing techniques as used 

since long time by industry for producing high precision glass products (e.g. SCP Science [76]). 

In this way, manufacturing of customized parts can be achieved. Nevertheless, glassblowing 

techniques are very labor intensive and difficult to control by high degree of automation. An 

interesting new paradigm for increased automation of glass blowing is presented for design and 

batch fabrication of isotropic 3-D spherical shell resonators by the Micro Systems Laboratory [77]. 

This approach uses pressure and surface tension driven plastic deformation (glassblowing) on a 

wafer scale as a mechanism for creating inherently smooth and symmetric 3-D resonant structures. 
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However, scaling down to the sub-millimeter and micron domain for glass features enabling 

personalized high-precision devices (e.g. MEMS) of glass, other versatile technologies are needed.  

Recently, AM techniques to produce customized glass parts are extensively researched to 

contribute in addressing this issue. Lawrence Livermore National Laboratory created an ink from 

concentrated suspensions of silica particles with well controlled flow properties for printing at 

room temperature. A thermal heat treatment of the printed structures makes them denser and 

remove print lines to achieve optical quality [78]. A different approach is developed by the Institute 

of Microstructure Technology using a photocurable silica nanocomposite that is 3D printed by an 

adapted stereolithography 3D printer and converted to high-quality fused silica glass via heat 

treatment [79]. Nevertheless, these technologies are very premature and still need multiple process 

steps and (expensive) equipment with relatively long setup times which is undesired for 

economically fabrication of personalized high-precision parts as discussed in section 1.2 and 

section 1.3. 

Conventional CNC micro-milling is an excellent cost-effective choice for rapid prototyping 

of micro-sized customized plastic devices. It outperforms, in many cases, other technologies such 

as embossing, stereolithography and injection molding [80] with regard of costs and ability for 

producing customized parts with precision. These excellent manufacturing characteristics are valid 

for easy-to-machine materials like plastics, but these are not valid for glass.  

Unfortunately, glass is a hard to machine material, due to its hardness and brittleness. In 

particular, machining high-aspect ratio structures is still challenging due to long machining times, 

high machining costs and poor surface quality [81, 82]. High surface quality (smooth surface) is 

key to enhance the strength of glass products [71], as this depends on the number and length of 

flaws appearing on the glass surface (crack initiation sites). Micro-structured glass takes advantage 

of this characteristic, since the probability of flaws to occur is limited for small dimensions, hence 

they exhibit higher strength. 

Hybrid electrochemical methods like Spark Assisted Chemical Engraving (SACE) [81, 83] 

(Figure 1.8) perform well to machine high aspect ratio and relatively smooth surface structures on 

glass. These assets of SACE technology combined with its relative high machining speeds 

compared to chemical methods and low-cost compared to femto-laser technologies make SACE 

suitable for rapid prototyping of micro-scale glass devices. 
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SACE process was first presented in the sixties of the last century in Japan and has remained 

an academic process for decades [81], mainly because of the lack of process control and 

repeatability. It is only recently that the technology was developed to industrial level by Posalux 

SA, Switzerland together with the Electrochemical Green Engineering Group, Concordia 

University, Canada. The work performed throughout this thesis study contributed to the latest 

phase of the SACE technology knowledge transfer (in particular by providing a predictive model 

for selecting cutting parameters, identifying optimal tool sizes, presenting an approach for time-

efficient elimination of tool runout and misalignment, and demonstrating its use for applications 

needing glass-to-glass bonding). 

In SACE process, a voltage is applied between tool and counter electrode dipped in an alkaline 

solution (Figure 1.8.A.). At sufficiently high voltages (critical voltage Ucrit of around 30V), the 

bubbles evolving around the tool electrode coalesce into a gas film (Figure 1.8.B.). Discharges 

occur from the tool to the electrolyte through this gas film. Glass machining is possible due to 

thermally promoted etching (breaking of the Si-O-Si bond) [81, 221].   

 

Figure 1.8. A. Principle of SACE machining: the workpiece (glass) is dipped in an alkaline electrolyte 

(typically sodium or potassium hydroxide) and B. a voltage above a critical voltage Ucrit is applied 

between a tool- and counter-electrode. Sparking occurs around the tool and local thermally promoted 

etching of the workpiece takes place. 

Material removal is accomplished in two steps [81]: 1) the workpiece is locally heated up by 

the electrochemical discharges (sparks). The water in the aqueous electrolyte is locally evaporated, 

which leaves only molten salt in the vicinity of the tool-electrode; 2) high temperature etching of 

the softened workpiece takes place. This process needs the presence of OH radicals. During this 

process, the hydrodynamics around the tool-electrode, which is highly influenced by the discharge 
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activity, the gas film, and the geometry of the machined shape, will affect the etching kinetics. The 

influence of the key parameters on MRR increase during SACE machining can be summarized as; 

increasing electrolyte concentration, increasing electrolyte temperature, increasing machining 

voltage, decreasing machining depth. 

The temperature in the machining zone around the tool-electrode tip (controllable from ~200 

to 600°C by using pulsed input voltage) is high enough to achieve high etch rates (few 100 µm/s 

in drilling) but low enough to avoid the formation of heat affected zones (HAZ) or micro-cracks 

[221]. This machining temperature is not a well-defined value, but depends on the used machining 

strategy, used electrolyte and tool material [81]. A forced electrolyte flow is needed to insure 

adequate flushing of the machining zone to avoid drop in material removal rate (MRR) and 

formation of HAZ. Local supply of fresh electrolyte around the tool is recommended. Typically 

used alkaline electrolytes are potassium hydroxide (KOH) and sodium hydroxide (NaOH), where 

KOH is less viscous than NaOH at a specific weight concentration and therefore often preferred 

for increased flushing performance. In addition, mixed solutions were studied to obtain a eutectic 

NaOH-KOH melt in the machining zone, which showed a slightly improved machining 

performance. Tungsten carbides are found to perform well as tool-electrode material. Its high 

stiffness compared to other metals such as stainless steel and copper limits tool-bending and -

vibrations which is important for precision glass machining. Another key property is its 

significantly lower specific heat capacity compared to other standard metals, resulting in increased 

tool-electrode temperature and so a higher discharge activity.   

Although the performance of SACE process depends on several parameters including the tool 

shape and motion, voltage, electrolyte, and machining gap, the machining voltage proved to have 

the most significant effect on the MRR [83, 181, 182].  

As several models are established for SACE drilling operations relating machining voltage to 

MRR, no such model exists for SACE cutting and milling, whereas these last operations are 

required for most applications (glass micro devices). Chapter 3 presents the development of a 

practical model (empirically validated) relating the three main SACE machining input parameters: 

• machining voltage; 

• tool feedrate; 

• depth of cut. 
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During SACE milling and cutting operations, flushing happens easily around the tool in the 

machining zone. In this case, machining is limited by heat propagation inside the workpiece. This, 

in contrary of cases when flushing does not happen easily (as in high-depth drilling) and machining 

is limited by availability of electrolyte in the machining zone and the difficulty in removing the 

machined material from it. It needs to be noted that the developed model (chapter 3) aims to 

provide a practical guide for proper SACE machining taking into account the three key machining 

input parameters and it is not trying to represent all exact physical phenomena of SACE process 

as most are still largely poorly described and explored.  

Main requirement for fabrication of personalized parts (batch-size 1) in any material, here 

glass, is the use of versatile machining methods which are cost-effective and precise. One has to 

keep in mind that not only the machining technology itself must be versatile, but in fact the 

complete process from the drawing of the part until the fabrication of the finished product. If one 

considers for example conventional CNC- milling technology, one can right away see a problem: 

the tooling. Since high forces are exerted on the work-piece to be machined, the required tooling 

has to be adequately engineered with sufficient precision, stiffness and mechanical strength, 

making it an expensive approach for batch-size 1 production of parts. 

Even worse are technologies requiring highly specialized tooling such as injection molding 

[82] or chemical processes needing masks (e.g. cleanroom technologies such as DRIE [84] or wet 

etching [85]). Such processes are excellent and unbeatable when it comes to mass production, but 

not suited for batch-size one production (e.g. mass-personalization). 

Considering both the machining requirements for glass micro-machining and the necessity for 

low-cost tooling, SACE appears a promising candidate among the available micromachining and 

manufacturing approaches. The ability to make use of low-cost tooling is due to its low forces 

exerted on the work-piece to be machined (typical in the sub-Newton range) [60]. 

1.6. Scope of the thesis   

The presented research work aims to contribute in developing new hybrid manufacturing 

technologies for high-precision mass-personalized parts meeting the demand of Industry 4.0. 

Hence, a novel approach for flexible micro-machining of glass devices by SACE technology was 

developed and the SACE process was optimized to industrial level (resulting in a patent of the 
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developed machine tool head with controllable stiffness [60]) to satisfy requirements for industrial 

high-precision manufacturing.  

Research objective of this study is to answer the emerging engineering question:  

How can we mass-manufacture batch-size-1, i.e. mass-personalized, high-precision products 

made of hard-to-machine materials such as glass economically on-demand? 

Manufacturing technologies for mass-personalization need to keep manufacturing overhead 

related to change of part shapes low by eliminating the drivers of manufacturing costs related to 

specific part design. It is proposed and proven that they must have the capability to 1) address the 

issues of tooling costs (avoid any part specific tooling), 2) handle complex parts and 3) reduce 

production steps (as in each new step parts will have to be transferred from one manufacturing 

system to another resulting in new overhead and error introduction due for example to alignment 

or tooling) and 4) must abandon long calibration runs (in-process automated calibration strategies 

are needed). 

Throughout this thesis, SACE technology is progressively developed from mass-fabrication 

technology towards a process for mass-personalization of high-precision glass parts by addressing 

the challenges of the four drivers of part related manufacturing costs.  

The rationale behind the use of this material is that glass being a hard-to-machine material, 

methodologies developed in this study can potentially be expanded to machining of other materials 

for personalized product manufacturing requiring high-precision.  

SACE technology is chosen as it seems to be a good candidate for machining process in the 

era of Industry 4.0 [86] because it has the potential of fulfilling some key requirements towards 

this new paradigm: 

1. Precision and accuracy can be built in the manufacturing process (e.g. in-situ tool 

fabrication) to eliminate calibration and expensive tools and to reduce setup time;   

2. Real time data acquisition can be performed easily as it has many sensors integrated 

in the process (tool-workpiece force, current signal, applied (pulsed)voltage, toolpath, 

tool rotation, variable axial stiffness [60]);  

3. Implemented control loop to measure force on tool during process real-time to adjust 

tool-workpiece gap if needed to enhance machining performance; 

4. Digital controlled machining process (CAD drawing processed in machinable code by 

CAM software). 
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In addition, novel high-precision applications for glass in the field of MEMS and microfluidics 

(hot embossing template fabrication) and micro-forming (die fabrication) are presented using this 

approach.  

1.7. Thesis structure 

This thesis is divided into seven chapters and supplementary data on feature characteristics 

for drilling micro-holes in glass (supporting chapter 2) is provided in the Appendix.  

Progressively a hybrid electrochemical technology (SACE process) is proposed and 

developed for use as manufacturing method for mass-personalized high-precision parts of glass 

(devices and tools). Since glass is challenging to machine, the results of this study can be used as 

reference for development of mass-personalized manufacturing processes of other materials in 

future research work. 

Chapter one introduces manufacturing and its paradigm shifts across history ultimately 

leading to the fourth industrial revolution and concurrently resulting in the emergence of the 

Industry 4.0 concept for manufacturing of mass-personalized (batch size 1) products. The 

increasing need for high-precision parts is discussed together with the interesting properties of 

glass as substrate material for small scale (< 1 mm) devices.  Challenges and requirements for 

flexible high precision machining are detailed for glass as workpiece material. 

Chapter two – Micro-Hole Drilling on Glass Substrates—A Review – comprises a detailed 

review on prevalent and non-traditional technologies, used by industry and academia, for a basic 

and frequently needed high-precision machining operation on glass substrates: micro-hole drilling. 

These technologies are assessed on critical characteristics for batch size 1 manufacturing such as 

flexibility of machining and achievability of machined structures (e.g. aspect ratio, surface finish). 

It is concluded that SACE technology is, among others, a promising candidate for flexible micro-

drilling in glass and this technology has the potential to fulfill the requirements for high-precision 

manufacturing of mass-personalized parts of hard-to-machine materials such as glass.  

Chapter three – Glass micro-cutting by Spark Assisted Chemical Engraving (SACE) – presents 

the derivation and development of a basic model, based on numerical solving the transient two-

dimensional heat equation with the heat generated by the sparks around the tool-electrode taken as 

input in the model, for glass cutting and milling. The proposed model, which correlates the 
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machining input parameters to a desired outcome, was empirically verified and validated, allowing 

further optimization of industrial implementation of SACE technology as no predictive model for 

cutting existed before. This model contributes in addressing the requirement of a high level of 

integration in the design to fabrication cycle for precision product manufacturing, which is 

essential for mass-personalization fabrication processes to reduce the machining overhead (here: 

dramatic reduction of setup time by eliminating trial and error runs for process optimizing). 

Chapter four – Industry 4.0–Towards fabrication of mass-personalized parts on glass by Spark 

Assisted Chemical Engraving (SACE) – introduces SACE technology as suitable manufacturing 

process for industry 4.0. This chapter entails the essence of the thesis research study by providing 

an overview of the process cycles by SACE technology for manufacturing of mass-personalized 

parts. The developed fabrication process addresses possible solutions to eliminate or reduce the 

key manufacturing cost drivers related to part design – 1) reduction of tooling costs, 2) elimination 

of time-consuming calibration procedures, 3) ability to fabricate complex structures with high 

precision, 4) reduction of process steps in the overall manufacturing cycle. Examples are given for 

complex machined structures on glass, which are flexible machined by SACE, for various fields 

of application. 

Chapter five – Rapid prototyping of packaged glass devices: eliminating a process step in the 

manufacturing workflow from micromachining to die singularizing – details the study on using 

SACE technology as machining step in the fabrication of packaged glass devices (glass-to-glass 

bonded). It is shown by fabrication of a simple microfluidic Y-mixer that deploying SACE 

machining eliminates a post-processing step after machining of the desired structure on a glass 

substrate for subsequent glass-to-glass bonding. This method provides a solution to reduce one of 

the manufacturing cost drivers – reduction of manufacturing process steps. Quality of the achieved 

glass-to-glass bonding is assessed both qualitatively and quantitatively by the razorblade insertion 

test, acoustic imaging (Sonoscan®), electron microscopy (SEM) and leakage testing by 

microfluidic mixing at high pressure.  

Chapter six includes several research studies on novel (non-traditional) high-precision 

applications using glass exploiting its excellent thermomechanical properties. SACE process is 

used as flexible manufacturing (i.e. rapid prototyping) technology for fabrication of consequently 

glass templates for microfabricated devices by hot embossing (section 6.1 – Glass imprint 

templates by spark assisted chemical engraving for microfabrication by hot embossing) and glass 
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dies for micro-forming of metal micro parts (section 6.2 – Towards high precision manufacturing 

of glass tools by Spark Assisted Chemical Engraving (SACE) for micro forming techniques). This 

part of the study gives detailed examples of fabricated tooling of glass providing interesting novel 

solutions to reduce indirectly the manufacturing cost drivers related to part design – 1) reduction 

of tooling costs and rapid prototyping of tooling, 2) reduction of calibration procedures by high-

precision machining, 3) ability to create complex parts (e.g. 2.5D or 3D features on tooling), 4) 

reduction of process steps in tooling fabrication. 

Chapter seven – Conclusions, contributions and outlook – summarizes the conclusions and 

contributions of the presented research work. An outlook is provided as well for future research. 

Appendix - Table A.1 - List of different drilling techniques with their main feature 

characteristics for drilling micro-holes in glass – provides supporting values on technologies for 

micro-hole drilling on glass as presented in chapter two. 
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Chapter 2 

Glass, being one of the oldest materials known to mankind, is among the most important high-

performance materials used for scientific research, in industry and in society, mainly because of 

its unrivalled optical transparency, outstanding mechanical, chemical and thermal resistance as 

well as its thermal and electrical insulating properties [79, 87]. However, its hardness and 

brittleness are hindering machining, especially when aiming for high-precision applications such 

as recent emerged ultra-thin glass (< 100 µm) for tactile screens with digital fingerprint sensors to 

allow future secure use of smart phones as wallets with fingerprints as PIN, smartphone enclosures 

entirely made out of glass (e.g. iPhone8 [88]) and usage of glass as interposer layer of printed 

circuit boards (here, straight vertical micro-holes/vias are strongly preferred over tapered vias to 

minimize signal losses) [89, 90]. 

This chapter covers a detailed review on prevalent and on non-traditional technologies, used 

by industry and academia, for a basic and frequently needed high-precision machining operation 

on glass substrates: micro-hole drilling. As this work aims to study high-precision machining 

technologies, available drilling technologies such as water jet cutting with relative low resolutions 

(~ 250 µm [91]) were omitted in this review study.  

The reviewed micro-technologies are assessed on critical characteristics for batch size-1 

manufacturing such as flexibility of machining and achievability of machined structures 

(respectively feed-rate and surface finish against aspect ratio). It is concluded that SACE 

technology is a promising candidate for flexible micro-drilling in glass and this technology has the 

potential to fulfill the requirements for high-precision manufacturing of mass-personalized parts 

made of hard-to-machine materials such as glass.  
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However, SACE technology is so far never used for mass-personalization as machining 

overhead of this process is still very high jeopardizing its use for this batch size-1 production.  

New approaches are needed to eliminate extensive setup calibration (e.g. for tool run-out 

reduction) and workpiece clamping devices commissioning to make this electrochemical discharge 

machining process suitable for batch size 1 production. Chapter 4 will present a novel strategy and 

realized setup to achieve this objective.  A predictive model, for several machining operations, 

providing guidelines for a quick setup of SACE process parameters, reducing dramatically the time 

in several fabrication cycles, is presented in chapter 3. 
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Abstract  

Glass micromachining is currently becoming essential for the fabrication of micro-devices, 

including micro-optical-electro-mechanical-systems (MOEMS), miniaturized total analysis 

systems (μTAS) and microfluidic devices for biosensing. Moreover, glass is radio frequency (RF) 

transparent, making it an excellent material for sensor and energy transmission devices. 

Advancements are constantly being made in this field, yet machining smooth through-glass vias 

(TGVs) with high aspect ratio remains challenging due to poor glass machinability. As TGVs are 

required for several micro-devices, intensive research is being carried out on numerous glass 
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micromachining technologies. This paper reviews established and emerging technologies for glass 

micro-hole drilling, describing their principles of operation and characteristics, and their 

advantages and disadvantages. These technologies are sorted into four machining categories: 

mechanical, thermal, chemical, and hybrid machining (which combines several machining 

methods). Achieved features by these methods are summarized in a table and presented in two 

graphs. We believe that this paper will be a valuable resource for researchers working in the field 

of glass micromachining as it provides a comprehensive review of the different glass 

micromachining technologies. It will be a useful guide for advancing these techniques and 

establishing new hybrid ones, especially since this is the first broad review in this field.  

 

Keywords: micro-drilling techniques; glass; micro-devices; micro-fluidics; MEMS 

2.1. Introduction 

Micromachining is one of the most important aspects among state-of-the-art manufacturing 

technologies. In the constantly emerging field of micro-electro-mechanical-systems (MEMS) and 

miniaturized total analysis systems (μTAS), silicon and glass are the primarily used materials.  

Many applications need glass because of its unique properties [75, 84, 92-99]. The micro-

optical-electro-mechanical-system (MOEMS) uses glass due to its optical properties, and radio 

frequency (RF)-MEMS applications take advantage of its good isolation properties [94, 95]. 

Dimensions of the structures to be machined vary from sub-micron to sub-mm and aspect ratios 

of 0.1 up to 10 or higher. In the packaging process, glass is common as a die for thermal 

compensation for two of the most commercialized MEMS devices—piezoresistive pressure 

sensors and accelerometers [94]—and glass can be used as a core material for interposer substrates 

for laminated semiconductors [95, 96]. Typical feature sizes of 50 μm with a depth of 100 μm are 

required. Glass in this case is chosen due to its good ability to bond to silicon, its similar coefficient 

of expansion compared to silicon, and its low electrical conductivity [84, 95, 96]. Bio-MEMS 

devices are fabricated on glass substrates due to its optical transparency, hydrophilicity, chemical 

stability and bio-compatibility [94]. The emerging field of Lab-on-a-chip devices for energy (e.g., 

oil and gas) applications demand high temperatures (subsurface temperatures increase at 30 

°C·km−1), high pressures (pressure increase at 10 MPa·km−1) and volatile fluids, requiring the 
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mechanical strength and chemical properties of glass [75]. Other examples where micromachined 

glass is used due to its optical transparency and mechanical properties are optical data storage 

devices and spacers for cellphone cameras. 

An important challenge is connecting the micro-components of a microfluidic device to the 

macro-environment of the world. This is often referred to as the macro-to-micro interface, 

interconnect, or world-to-chip interface. For commercial success of any microfluidic device, 

especially for high throughput applications where manual manipulation is not economical, the 

macro-to-micro interface must be developed [100, 101]. Machining of high-aspect ratio micro-

holes in glass is the first requirement to manufacture these interconnects. Recently, drilling high 

density through glass vias (TGVs) became more important for the development of thin (~100 μm) 

glass interposers in new 2.5D and 3D chip package strategies, due to the demand for higher 

functionality in small consumer electronics [95, 96]. These, often metalized, TGVs (diameters: 10 

to 50 μm, depths: up to 100 μm) are used to connect traces and pads on the top and bottom surfaces 

of the glass interposers [95, 96, 102, 103]. 

Nowadays, there is a wide variety of methods for glass machining of micro-holes which 

includes conventional mechanical drilling and non-conventional drilling methods. These methods 

can be categorized as: (1) mechanical, such as ultrasonic drilling, powder blasting or abrasive jet 

micromachining (AJM), abrasive slurry jet machining (ASJM) and abrasive water jet machining 

(AWJM); (2) thermal, such as laser machining; (3) chemical, including wet etching, deep reactive 

ion etching (DRIE) or plasma etching; and (4) hybrid technologies (which combine two or more 

methods of the aforementioned for better machining outcomes), such as spark-assisted chemical 

engraving (SACE), vibration-assisted micromachining, laser-induced plasma micromachining 

(LIPMM) and water-assisted micromachining. Each method has its advantages and limiting factors 

on the achievable machined features, including the range of hole diameters, aspect ratios, surface 

roughness, and machining speed, as well as its associated costs of investment and operation. While 

review papers exist about machining micro-holes on glass substrates, each review is specific to 

certain technologies, such as the quantitative comparison of various hole-drilling methods on glass 

using different laser-machining techniques [104] and review papers on hybrid processes [105-108] 

and tool-based micromachining processes [109].  

A comprehensive overview of commonly used technologies for machining micro-holes on 

glass is presented and discussed in this work. Important characteristics of each technique, e.g., 
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achievable aspect ratio, machining speed and machined dimensions, are listed in Table A.1 of the 

Appendix based on the academic and industrial literature. Final conclusions of the different 

technique capabilities (surface roughness, aspect ratio and machining speed) are presented in a 

graph, thereby delineating the best-suited machining technique for each application.  

2.2. Common Glass Micro-Drilling Techniques 

Glass is, by definition, a mixture of oxides, whereby their composition and concentration 

determine the main properties of the glass. Contrary to fused silica, which is formed of pure SiO2, 

a wide range of other glasses contain different kinds of network modifiers, like boron in the widely 

used Borosilicate glass. As a result, there are a large number of glass types available on the global 

market, each with different characteristics and applications.  

A glass microfabrication technology is chosen for a certain device depending on the glass type 

(as each type has a different micro-structure [94, 110]) and on the required device properties. The 

main common challenge for glass micromachining technologies, though, is to deal with the 

relatively large glass hardness and brittleness. Since conventional techniques such as mechanical 

drilling have their limitations, a wide range of different non-conventional techniques are used for 

glass micro-hole drilling. In this review, these methods are discussed by being grouped into 

mechanical, thermal, chemical, and hybrid drilling processes. Throughout the text, the surface 

roughness will be described by the arithmetical mean deviation, Ra. 

2.2.1. Mechanical Methods 

2.2.1.1. Mechanical Drilling 

Mechanical drilling is the most conventional and relatively low-cost method to drill micro-

holes in glass. Most often, peck drilling (depth of cut is sub-divided into small drilling cycles 

[111]) is applied to evacuate chips created inside the holes during drilling [112].  

Reported aspect ratios vary from 0.33 to 3.96 with corresponding depths of respectively 130 

μm to 4 mm. Typical drilling feed rates are around 5 μm/s [113], which can be increased up to 125 

μm/s under special conditions [114]. 
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Mechanical drilling is simple, cost effective and potentially suited for rapid prototyping as it 

is a mask-less process. However, it may easily result in cracks due to deformation of glass by the 

thrust force of the drill acting at the bottom surface of the workpiece [112-114]. Cracks are more 

pronounced at the exit of holes than their entrance. Exit cracks on glass plates are mainly cone 

cracks of relatively large diameter. It is reported in [114] that crack size (typically 50 μm) can be 

reduced to 15 μm by decreasing thrust forces (from typical values of 2.5 N reduced to 0.8 N), but 

drilling at low thrust forces makes the process long and impractical. Moreover, using sacrificial 

pads to support the glass sample to be machined reduces chipping and crack formation [112-114]. 

Changing the cutting conditions may also reduce cracks (down to 29 μm), as shown in [112], when 

drilling with 0.3 mm cemented carbide micro-drills at a spindle speed of 35,000 rpm and a feed 

rate of 3 mm/min. Diamond-abrasive drills result in large cone cracks (390 μm), hence radial and 

median cracks rarely occur [112]. Tool wear is typically much higher for cemented carbide tools 

compared to diamond tools (>40%). Another approach is to integrate force-feedback (typical 

forces are around 8 N) in the drilling setup to ensure an optimal feed rate (5–7 μm/s) with minimal 

chipping [113]. Chipping (typical 70 μm) can be reduced by more than 50% on optical-grade glass.  

Research has shown that also exit cracks could be reduced (from 50 μm down to 10 μm) upon 

attaching a supporting backplate with liquids, including alcohol, water and oil [113, 114]. 

Although several methods to reduce cracks during mechanical drilling are reported [112-114], 

machined surfaces are normally rough. This limits the mechanical drilling applicability to 

precision micro-device fabrication. In addition, diameters of holes that can be machined are limited 

to 100 μm [114], and costly high-strength tooling is required to keep the samples in place during 

machining. 

2.2.1.2. Powder Blasting 

Powder blasting—also referred to as abrasive jet machining (AJM), impact abrasive 

machining or sand blasting—is a technique where a particle jet is directed towards a workpiece 

for mechanical material removal [98, 115-118, 119]. Fine abrasive particles (< 100 μm) are 

propelled by compressed air at the workpiece where material is mechanically removed due to small 

chipping. Alumina (Al2O3) particles are commonly used as abrasives [117, 119]. To localize 

material removal, an elastic, particle-resistant foil is placed as mask material. For applications 

requiring bonding the workpiece to another sample, this mask is added around the hole during 
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blasting to protect the surface from damages caused by the backscattered particles which may 

jeopardize the bonding process [118]. When using specially designed photoresists as a mask, 

precise structures (tolerance < 25 μm) can be machined, like in photolithography, in any sort of 

glass. Adjustment of the angle between nozzle and sample and using multiple nozzles are some 

options to control and/or decrease the dependence of width and depth of machined features with 

this technique. Resist-foil masks are typically removed in 10% KOH solution at room temperature 

followed by ultrasonic cleaning to ensure particle removal from inside the etched structures [119].  

Powder blasting is a fast drilling process on brittle materials with no resulting burrs, surface 

micro-cracks, or heat-affected zone (HAZ) around the machined holes. However, the resulting 

machined surface is rough (Ra is several microns). This technique is cost effective for relatively 

large batch sizes as it operates outside a cleanroom environment [119] and can, as it is mask-based, 

machine holes in parallel. However, this process is not very suitable for rapid prototyping of 

structures in glass. 

Feature sizes down to 30 μm can generally be obtained with aspect ratios up to 2.5. Drilling 

speeds vary from 0.1 μm/s to 32 μm/s. According to the physics of powder blasting, a taper angle 

(~15° [93]) is produced for through holes resulting in a narrow hole exit compared to its entrance. 

This limits the aspect ratio to a maximum of 2.5 [117, 118], which can be improved if blasting is 

performed from both sides of the workpiece; however, this requires precise alignment of the 

workpiece. Masks and small abrasive particles (< 30 μm [117]) are needed for blasting, making 

the lower limit of the hole diameter around 50 μm. Actual research shows that the mask material 

affects the hole size. The utilization of higher-resistant mask material, like electroplated copper, 

can reduce feature sizes from 75 μm down to 50 μm [117]. Moreover, working with smaller 

ablation particles (~9 μm) further enhances the aspect ratio. During the machining process, 

particles stick usually to the workpiece surface which leads to difficulties in further fabrication 

steps like bonding substrates. Post-processing of the powder-blasted workpiece by, for example, 

wet etching, is a possible solution. Although powder blasting is not clean, it is particularly 

interesting to different companies (e.g. early recognized by Philips) as it can machine thousands 

of through holes simultaneously at high accuracy which makes it a well-established technology in 

micro-manufacturing.  

Techniques similar to abrasive jet machining have been reported [120-122]. These methods 

include abrasive slurry jet micromachining (ASJM) and abrasive water jet micromachining 
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(AWJM) which make use of abrasive slurries or water to machine blind and through holes in glass. 

Reported values for machined diameters vary from 390 μm to 2 mm with aspect ratios of 

respectively 0.9 and 1.5 machined at corresponding feed rates of 4.4 μm/s and 0.6 μm/s. 

These techniques are discussed below:  

(A) Abrasive slurry jet micromachining (ASJM) 

In ASJM, a slurry with abrasive particles (typically 1 wt % 10 μm Al2O3 particles [122]) is 

pumped through a small orifice (~180 μm) and the derived jet is directed to the workpiece causing 

material removal. ASJM operates normally at pressures of 1 MPa to 14 MPa [121]. Although this 

technique does not require mask materials, research investigations show the possibility to reduce 

frosted areas around the holes when using sacrificial polymeric or glass surfaces [122].  

Features of this technology are its machining flexibility, absence of HAZ around the holes and 

the non-pronounced tool wear. However, the resulting holes have frosted areas at the entrance and 

the inner walls are not flat. Additional process steps can be applied to overcome frosted areas such 

as using different slurry additives, e.g., polyethylene oxide (PEO) [122].  

(B) Abrasive water jet micromachining (AWJM) 

Although the machining mechanism in AWJM shows many similarities with the ASJM 

technology, the main difference is the high-pressure operation of AWJM (up to 345 MPa [122]) 

compared to low-pressure ASJM (typically around 1 to 14 MPa, although up to 70 MPa is reported 

[121]). Similar to ASJM, tool wear is not measurable and no HAZ are present. However, chipping 

occurs at the exit of the through holes, which is most likely due to the high operating pressure 

[122]. 

2.2.1.3. Ultrasonic Drilling 

This abrasive process comprises a vibrated tool, a slurry supply unit, and a movable machine 

body to which the workpiece is mounted. During ultrasonic machining (USM), the tool (called 

sonotrode) oscillates at high ultrasonic frequencies, usually 20 to 40 kHz with an oscillating 

amplitude of several microns, and hammers abrasive particles (e.g., boron carbide (B4C) grits with 

a size of 5 μm) into the hard-brittle workpiece [123]. This causes indentation, micro-cracks and 

finally material removal. When reducing tool diameter, abrasive grain size and vibration amplitude 

to the micro-scale, this technology is referred to as micro ultrasonic-assisted lapping [124]. For 
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this technique, several innovative strategies are applied to the machine, such as helical tool rotation  

(50 rpm), on-machine tool preparation by electrical discharge machining (EDM) to avoid 

alignment issues, workpiece vibration, and force feedback control loops [124-128]. Micro-

ultrasonic-assisted lapping can produce very small diameter holes (down to 10 μm) with straight 

sidewalls [124, 129] and high aspect ratios (up to 10). The tool wear is high, however, making 

redressing operations necessary for every 25 to 50 machined holes to avoid feature degradation. 

USM requires rather large capital investment and operates at relatively low feed rates. Moreover, 

the machined surface presents sometimes chipping and cracks in the subsurface. Average surface 

roughness is typically >10 μm, while it can be improved down to 1 μm Ra when using micro-pins 

for grinding operation [130, 131].  

Minimum hole diameters obtained by ultrasonic machining are typically around 150 μm with 

aspect ratio 4 and drilled at feed rate 0.15 μm/s; however, the lowest USM diameter on glass is 

reported as 10 μm [130]. Here, EDM-machined cemented tungsten carbide micro pins were 

deployed. As well, feed rates of 16.67 μm/s can be achieved when using diamond core drills and 

machining relatively large holes (~950 μm).  

2.2.2.  Thermal Methods 

2.2.2.1. Laser Machining 

Material removal by thermal shock or ablation can be achieved by laser-based processes. This 

may be used to drill micro-holes in glass. Transferring photon energy of the laser light to glass is 

challenging, however, as the last is transparent to a wide range of wavelengths [132,  133], which 

requires generation of high peak intensities to trigger a nonlinear absorption effect. Carbon dioxide 

(CO2) lasers are among the most frequently used lasers for industrial applications over long 

periods, since its equipment is relatively simple and requires low capital investment [134]. At 

present, different laser processes resulting in innovative hybrid technologies, are being developed 

by many research groups and industries like Femtoprint [135] and Fraunhofer ILT [136]. These 

two use ultra-short pulse (USP) laser as a preprocessing ‘flexible masking method’ and wet etching 

as a second step to obtain the desired structure. (The laser-treated areas have enhanced etch rates 

(20 to 50 times higher than untreated surfaces) and therefore etching is favored in these areas (i.e., 

acting like a mask to define the structure geometry)).  
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Despite all extensive research and development, laser systems still suffer from HAZ, ranging 

from sub-micron (USP-laser) dimensions to tens of microns (CO2-laser), and bulges around the 

rims of the machined holes (typical height: 15 μm) caused by recast (debris). This causes difficulty 

to bond the glass substrate after machining. Hole diameters, machined with liquid-assisted 

femtosecond lasers down to 5 μm, with aspect ratios as high as 70, have been reported [137]. There 

is no upper limit in achievable hole sizes and a typical roughness value, Ra, is around 1 μm. 

Machining speed per hole differs from 30 μm/s [137] up to 2000 μm/s [102] depending on laser 

type and desired quality. 

Novel strategies like PDMS masking [138] and using ultra-short pulse lasers (femtosecond 

pulses) [137, 139-146], already succeeded in reducing the unwanted side effects of laser 

machining. Bulge heights around the hole entrances can be reduced by factor 13 to 1.2 μm using 

150 μm-thick PDMS masks and a 10 to 15 W CO2 laser [138]. Furthermore, preheating the 

workpiece proved to reduce thermal stresses by reducing the temperature gradient [138, 140, 143, 

147]. Improved aspect ratios of micro-holes can be achieved using two laser beams on opposite 

glass surfaces [134, 148]. 

Another option besides CO2 lasers and ultra-short pulse lasers is the nanosecond-pulse, Q-

switched diode-pumped solid state (DPSS) laser, which is a good trade-off in terms of 

technological complexity, costs and quality [134, 149]. Pulse energies around 200 μJ and 100 kHz 

repetition rates were reported for machining 5 mm holes in Gorilla glass® [150] with DPSS lasers.  

In general, laser systems are flexible. Most do not need masking layers as they are direct-

write technologies, but they are still expensive. The high throughput of laser machining of glass 

makes it a good option for the MEMS industry, wherein large amounts of holes have to be 

produced. The most popular laser-drilling types are summarized in the following:  

(A) Carbon dioxide (CO2) laser  

The CO2 laser technique is a serial thermal laser process which removes material through 

ablation by relatively long pulses. This causes a thermal impact on the glass and generates 

mechanical stress, which leads to crack formation during cooling. Many solutions are investigated 

to reduce this phenomenon, like local preheating of the workpiece, heating of the entire workpiece 

during drilling and thermal post-treatment of the drilled substrate using an oven [102, 114, 140, 

151]. In fact, smooth surfaces (Ra ~ several microns) are possible to achieve due to the generated 
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heat [152]. Hole diameters on glass down to 25 μm with aspect ratio 4 and machined at 20,000 

μm/s per hole are claimed [153]. Although the reliability of CO2 laser drilling of glass is low, its 

fast drilling speed and low equipment costs make it a good option for industry. Some examples of 

CO2-laser-machined micro-holes in 500 μm-thick glass (Schott D263Teco, SCHOTT AG, Mainz, 

Germany) are illustrated in [152]. These holes have relatively high aspect ratio and high conicity.  

(B) Excimer laser 

The excimer lasers are gas-type lasers that offer access to the ultraviolet (UV) or deep UV 

region with short pulse rates and durations (respectively 1 to 100 Hz and 5 to 50 ns). This results 

in high pulse intensity and high resolution, making excimer lasers suitable for machining glass 

materials where high precision and good surface quality are required. While CO2 and solid-state 

Nd:YAG lasers are generally employed in direct writing (serial mode) during machining, excimer 

lasers are normally used for projection printing (parallel mode), which has higher throughput [97]. 

Some typical excimer-laser-drilled micro-holes machined at 500 Hz repetition rate and energy 

levels 4 to 5 J/cm2 show bulges around the rims on the hole entrance (bulge heights around 10 μm) 

[148]. However, when using lower laser fluence, reduced cracks and material break-off results. 

Drilling from both sides can also eliminate these problems while enlarging the diameter at the rear 

side of the workpiece, which lowers the taper angle [148, 154]. Reported hole diameters range 

from 30 μm to 200 μm [148] with aspect ratios of 2.2 [142] up to 16.7 [154]. 

(C) Liquid-assisted laser processing (LALP) 

Liquid-assisted laser processing (LALP) was developed to reduce the formation of bulges on 

the rims of machined holes and residual stress reduction [151]. Machining is done while the 

substrate is immersed in water to reduce the temperature gradient, bulges and HAZ region. Chung 

et al. [151] deployed a 6 W CO2 laser and they quantified as well the reduction in efficient laser 

power in LALP machining, e.g., at four passes and constant initial laser power (6 W), the machined 

depth decreased by 100 μm upon 0.5 mm water depth. The residual stress is reduced by 136 MPa 

when the sample is immersed in 1 mm water and a 100 μm hole is machined.  

The bulges are mainly caused from re-solidification of evaporated debris. LALP reduces the 

bulge height by the stronger natural convection in water, due to the laser heating, which carries the 

debris away [140, 151].  
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This technology is attractive for improved CO2 laser machining, saving the costs of moving 

to technologically complex and expensive methods (e.g., USP laser). Machined holes of 280 μm 

are reported with aspect ratio ~2 μm at a speed of 11,400 μm/s. 

(D) Polydimethylsiloxane (PDMS) protection mask 

Upon, protecting the glass workpiece with a polydimethylsiloxane (PDMS) layer, the 

temperature gradient in laser machining is reduced. This decreases HAZ formation and can result 

in crack-free machining of Pyrex glass [138]. The PDMS protection layer also eliminates common 

defects and diminishes the bulge height around the hole entrance by a factor of 13 compared to the 

process in air (without PDMS cover layer) to 1.2 μm. Moreover, the feature sizes that can be 

machined are reduced by 10%. CO2 laser machining in combination with 150 μm-thick PDMS 

masks are used by Chung et al. [138] reporting hole diameters of 120 μm with aspect ratio 4. 

(E) Ultra-short pulse (pico/femtosecond) laser 

Ultra-short laser pulses do not produce a large HAZ due to the smaller amount of heat 

penetration into the glass sample [141, 142]. These lasers can induce strong absorption even in 

materials that are transparent to the laser wavelength. This method can produce smooth holes with 

small diameters (7 to 10 μm) and depths of 30 μm in fused silica, without forming micro-cracks 

or surface welling [141]. However, this high quality can only be obtained at reduced process speed 

(~30 μm/s [137]). For example, excimer lasers with nanosecond pulse width are still much faster 

(typically 10 times faster) [142, 148]. As for the equipment costs, they are relatively high compared 

to other laser techniques such as CO2 lasers.  

(F) Laser-induced plasma 

To machine small-sized shallow features with very smooth surface finish (Ra = 50 nm), laser-

induced plasma can be used. The key to this method is the production of charged particles by 

targeting the focused laser beam on a metal surface [139]. 

Spherical crater-like blind holes with a typical diameter of 15 μm and a depth of 4.5 μm are 

formed. This technique cannot machine high aspect ratio through holes.  

(G) UV laser with absorbent powder 

To machine high aspect ratio micro-holes with reduced micro-cracks, research is conducted 
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with a nanosecond pulsed laser and absorbent powder. This powder is deposited on the glass 

surface and on the bottom of the machined holes. The deposition is repeated during machining. 

Although fewer cracks are formed in this case, several micro-cracks are present, as witnessed by 

the non-transparency of the hole [147]. Aspect ratios of 12 and higher and hole diameters of 200 

μm at 100 μm/s are achieved by Kono et al. [147]. 

2.2.2.2. Focused Electrical Discharge Method  

Recently, a through-glass via (TGV) formation method by electrical discharging was 

introduced: focused electrical discharge method [95, 96]. This technology, where the targeted glass 

is kept in a space between two axial aligned electrodes, consists mainly of two steps. First, the 

electrical discharging is focused and controlled to generate heat, which decreases the glass 

viscosity locally. Second, dielectric breakdown and internal high pressure occurs due to Joule 

heating. This results in the ejection of glass. This process can produce small diameter holes (down 

to 20 μm [95]) precisely in thin glass workpieces (100 μm to 500 μm) during a relatively short 

time (200 ms to 500 ms). Aspect ratios of 5 up to 7.6 and machining speeds of 200 to 500 μm/s 

are achieved by Takahashi et al. [95]. Annealing is needed in order to remove the residual stresses. 

High aspect ratio and smooth-machined surfaces are obtained. Fabricating ultra-thin glass 

interposers in laminated semiconductors is the main targeted application of this method [96]. 

2.2.3.  Chemical Methods 

2.2.3.1. Wet Etching 

Glass machining by wet etching is due to dissolving glass by immersing the workpiece in an 

etchant, most commonly hydrofluoric acid (HF). Mask material, which must be etchant resistant, 

is used to define the pattern to be removed [85, 92, 155]. When applying intermediate masks, 

multiple levels can be machined using this process. Due to the amorphous nature of glass, the 

process is isotropic, resulting in rounded sidewalls and undercutting and low aspect ratio 

machining (<1). Pinholes and notching defects on the edges of etched structures are other 

limitations of this process. These defects are mainly due to the residual stress in the mask, the 

compressive or tensile stress, the stress gradients (for multilayer mask), and the hydrophobicity of 

the masking surface [85]. Partial improvements can be achieved when optimizing the mask 
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material, i.e., enhancing etchant resistance, and annealing of the workpiece. Although this results 

in higher etch rates, it causes higher surface roughness. Small, highly detailed features (hole 

diameters greater than 1 μm [156]) with smooth surfaces (30 nm to 60 nm Ra [115]) and aspect 

ratio <1 can be created with wet etching by using accurate lithography-fabricated masks. 

Roughness and etching rate are strongly influenced by the glass composition. The presence of 

some oxides (such as CaO, MgO, Al2O3) in the glass composition give insoluble products in HF 

solution [157]. A large number of holes can be machined at the same time, as the technique is a 

batch process. Typical etching speeds vary from 0.07 μm/s to 0.24 μm/s. No micro-cracks and no 

HAZ are formed around the features [85, 94]. Wet etching with highly concentrated HF (around 

50%) is, however, hazardous to the environment and humans as it uses an acid etchant—even low 

concentrations (>2%) are already seriously toxic. 

Recently, a novel wet-etching technology, electrochemical local acidification of fluoride-

containing solution, was introduced [158]. The central idea is to produce the highly toxic 

hydrofluoric acid (HF) locally near a tool electrode where this causes local etching of the glass 

substrate around the tool tip. Using this method, holes can be machined at a slightly higher speed 

(0.45 μm/s) than standard HF etching, and no masks are required [158]. Systematic study will be 

necessary to optimize this technology for specific applications. 

2.2.3.2. Deep Reactive Ion Etching (DRIE) 

Deep reactive ion etching (DRIE), or deep plasma etching, relies on sulfur hexafluoride [159, 

160], perfluorocyclobutane [161] or trifluoromethane [162] gases as the main etch precursors 

(dissociated into radicals and ions) for both chemical and physical etching, as in plasma etching. 

Although the gas chemistry is geared more towards silicon etching, glass can be processed as well 

[93]. In glass, the fluorine radicals carry away the silicate, and carbon difluoride radicals carry 

away the oxygen as volatile compounds. To direct the ions and create the desired features, metal 

masks can be used such as nickel with a gold-chromium seed layer. Other studies investigated the 

use of silicon wafers, a-silicon, and SU-8 as mask material [159, 161, 163, 164]. DRIE can compete 

with other glass deep-etching technologies in terms of aspect ratio, wall verticality, feature depth 

and throughput. Very small, accurate features (diameters down to 1 μm) with smooth surfaces (Ra 

= 2 nm [165]) and high aspect ratio (up to 40 [165]) can be achieved in this highly anisotropic 

process. 
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The major disadvantages of DRIE are the amount of process steps needed (e.g., different 

masks), and the extremely low etch rate (around 0.009 μm/s), although the number of holes that 

can be produced simultaneously is greater than 200,000 [84]. Moreover, the process is limited by 

the relatively low heat transfer of glass (typical thermal conductivity of glass is 100 times lower 

than silicon) making it challenging to achieve deep-etching and high etch rates. 

2.2.4.  Hybrid Methods 

In order to overcome the limitations encountered while using the above-listed technologies, 

researchers worked on combining different machining processes, leading to what is called hybrid 

machining. Many definitions were proposed for hybrid machining, the most common being that 

hybrid machining is a method by which two or more machining processes are applied 

independently or simultaneously on a single machine. Recently, hybrid machining was defined by 

the College International Pour la Recherche en Productique (CIRP) as a process that uses 

simultaneous and controlled interaction of several machining mechanisms, tools and energy 

sources to enhance the machining performance [108]. Based on this definition, Chavoshi et al. 

[105] classified hybrid micromachining processes into two groups: assisted and combined hybrid  

micromachining processes. 

In assisted hybrid micromachining, the major machining process is applied while input from 

other types of energy is added [166, 167]. In combined hybrid micromachining, all the combined 

micromachining processes simultaneously contribute to the material removal and machining 

properties. In this category, research is focused on electrochemical processes for machining 

nonconductive materials while improving the material removal rate and the machined surface 

quality and reducing the machining time.  

The major assisted hybrid glass micromachining techniques and combined hybrid 

micromachining processes are discussed below. 

2.2.4.1. Assisted Hybrid Micromachining Techniques 

(A) Vibration-assisted micromachining 

In this process, mainly tool vibration (also sometimes workpiece or machining fluid 

vibrations) is added to the main machining process. This has been applied to several processes 
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including micro-milling and micro-electrochemical discharge machining (ECDM) [105]. For 

appropriate combinations of cutting velocity, and vibration amplitude and frequency, the tool 

periodically loses contact with the chip, resulting in reducing the machining forces and enhancing 

the tool life and surface finish [107]. Furthermore, higher depth of cut, smoother surfaces, and 

near-zero burr are achieved compared to conventional machining [168-170]. On the other hand, 

this technique may result in surface cracks due to the hammering of the tool [166]. 

(B) Laser-assisted micro-cutting/milling  

This technique enhances machining of especially hard brittle materials as the laser beam 

softens the materials to be machined. It is used to machine ceramics and glass where the local 

softening of the material during the process enables geometrically defined cutting edge, uniform 

surfaces and reduced surface roughness [108]. For further improvement of surface quality and 

machining accuracy, these processes can be combined with other ones.  

(C) Laser-induced plasma micromachining (LIPMM)  

In this method, plasma is induced in a liquid at the focal point of the laser beam which allows 

micromachining of shiny materials and transparent materials with high reflectivity like glass [171]. 

The shape of the plasma can be optically or magnetically manipulated to obtain specific micro-

patterns while reducing machining time.  

(D) Water-assisted micromachining 

Machining by laser produces debris which reduces the machined surface quality. To remove 

this debris while machining, water is added on top of the substrate, resulting in a better machined 

surface (less taper and heat affected zones) and in an accelerated ablation rate (twice as fast as the 

case of laser machining in air) [105]. With this technique, high aspect ratio holes could be ablated 

in silicon, LCD glass and alumina by water-assisted femtosecond and CO2 laser pulse ablation. 

However, due to the rapid solidification of the molten material, rough surfaces result [172]. 

(E) Chemical-assisted micromachining 

In this technique, methanol is added on the substrate surface that is to be machined with laser. 

Methanol has better wettability and lower boiling temperature than water which enhances cooling 
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and cleaning of ablated particles produced during laser machining. The result is cleaner and 

smoother surfaces [105].  

(F) Chemical-assisted ultrasonic machining (CUSM) 

In order to improve the efficiency of ultrasonic machining of glass, hydrofluoric (HF) acid is 

added to the abrasive slurry but in low concentrations, normally less than 5% HF solution [173]. 

This leads to increasing the material removal rate for micro-drilling by up to 40% and enhancing 

the surface quality as HF acid weakens the Si bonds. However, the hole gets enlarged. 

(G) Electrorheological (ER) fluid-assisted ultrasonic machining  

In micro-ultrasonic machining of hard and brittle materials like glass, chipping and low 

machining accuracy are generally the result. To reduce these problems, electrorheological (ER) 

fluid-assisted ultrasonic machining is used. In this method, ER fluid is mixed with the abrasive 

particles and added into the machining zone. This fluid has dielectric particles where increased 

electric field intensity results in increasing viscosity.  

As a voltage is applied between the cathode located on the workpiece surface and the vibrating 

micro-tool which is the anode, machining results. The resulting electric field in the machining zone 

in the vicinity of the tool tip increases the ER fluid viscosity and thus traps the abrasive particles 

(in the ER fluid) beside the tool tip. This results in enhanced machining accuracy and efficiency 

[174-176]. 

(H) Electrical discharge machining (EDM) with an assisted electrode 

Another machining method for glass, which can be used for micro-hole drilling, is micro-

electrical discharge machining (EDM) with an assisted electrode [177, 178]. The EDM process is 

based on ablation of material through melting and evaporation, by electrical discharges. These 

discharges take place upon applying a voltage between the tool electrode and the electrical 

conductive workpiece, which are separated by a dielectric medium. To achieve machinability of 

non-conductive materials such as glass with micro EDM, the process has to be initially started by 

a conductive starting layer on top of the workpiece [177, 178]. While machining the starting layer, 

the dielectric (typically a hydrocarbon oil) is cracked, providing conductive carbon that settles onto 

the glass surface, generating a new conductive layer that enables the next discharges to take place. 

This sequence of removing the layer including the underlying targeted material and creating new 
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thin conductive layers can be repeated by controlling the process environment. Non-conductive 

ceramics could be machined with aspect ratios >5 as reported by Schubert et al. [177]. This process 

can be used both for serial prototyping using a single tool and it can be used for batch-based 

manufacturing when using multi-tool heads to produce many holes at the same time. However, 

preprocessing is needed for deposition of the conductive starting layer, and sophisticated process 

control is required for stable operation. 

(I) Hot embossing 

Micro-structuring of glass can also be done by forming processes such as hot embossing which 

is based on viscous flow of glass at high temperatures. This technology makes use of a micro-

patterned mould and a heated glass workpiece and it is mostly used for large batch size fabrication 

of optical lenses [179]. Almost any possible shape that can be patterned on the metal mould can 

be transferred to the glass workpiece. A critical parameter is the process temperature. If the 

temperature is high, this will reduce the glass viscosity, resulting in adherence of the glass to the 

mould surface. However, if the process is carried out at lower temperatures, glass would have 

relatively higher viscosity, and will require higher mechanical forces to pattern it. To overcome 

these issues, the mould surface or glass substrate can be coated to prevent the glass from sticking 

to the mould [179]. This technology is most suited for large batch size production of features in 

glass, due to the need of mould fabrication and the setup required for this process, e.g., 

sophisticated heat control.  

2.2.4.2. Combined Hybrid Micromachining Processes 

Micro-electrochemical discharge machining (ECDM) or spark-assisted chemical engraving 

(SACE). 

In this process, used to machine non-conductive materials, a voltage is applied between the 

tool-electrode (positioned above the substrate) and counter electrode which are both dipped in an 

alkaline solution. At voltages higher than the critical voltage (around 30 V), bubbles around the 

tool coalesce into a gas film and discharges are generated through it. Glass machining is possible 

due to thermally promoted etching and bombardment of discharges [99, 180]. Although the 

performance of this process depends on several parameters including the tool shape and motion, 

voltage, electrolyte, and machining gap, the machining voltage proved to have a more significant 

effect on the material removal rate [181, 182]. 
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SACE allows manufacturing of small and large holes (up to 2000 μm in diameter) and can 

produce high aspect ratios (>10), while achieving relatively transparent and smooth machined 

surfaces (Ra = 0.13 μm) on glass [180, 183-185]. Compared to laser processes, HAZ are less 

apparent in SACE, due to the reduced machining temperature (typically ~500 °C compared to 

~2000 °C for laser). Also, compared to ultrasonic drilling, wet- and dry-etching of the machining 

speed per hole is high. However, the surface roughness is higher than that in most conventional 

wet and dry etch techniques.  

Significant research work has been carried out to reduce HAZ and surface roughness by 

machining at the lowest possible temperature though reducing the critical voltage [186, 187], or 

using pulsed voltage [183, 188, 189]. Further improvement was achieved by post-processing of 

machined holes with electrophoretic deposition grinding (EPDG) which results in reduced HAZ, 

smooth surface and excellent taper angles (as low as 0.2 degrees) [180], while increasing the 

machining time (by 5 times).  

A major problem encountered with SACE is the limited flushing of the machined material at 

high machined depths which reduces both the machining speed and quality. Several methods were 

proposed to allow more localized flushing of the machining zone, including: 

- Adjusting the tool shape: different tool shapes including tools with side insulation, flat 

sidewalls, and spherical ends proved to reduce the taper and overcut [190], enhance 

machining accuracy [191-193], and reduce the hole entrance diameter by up to 65% and 

the machining time by up to 83% for a 500 mm deep hole [194]. 

- Tool rotation: results in smooth sidewalls (Ra down to 0.13 μm [183]) and reduced taper 

[184]. 

- Tool, electrolyte or workpiece vibrations: low frequency vibrations (0–30 Hz) of a 

cylindrical 400 μm tool increase the material removal rate (MRR) by factor of two [195] 

where square waveform showed better improved compared to sinusoidal tool vibration 

[196, 197]. Electrolyte ultrasonic vibration (1.7 MHz) shows improvements in machining 

depth (320 μm to 550 μm), and reduction in taper and overcut when applying ultrasonic 

vibrations to the electrolyte [198]. 

- Pulsed voltage: results in better machining and surface finish [199]. 
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- Inducing a local magnetic field: locally stirs the electrolyte which enhances the surface 

quality and machining depth while reducing machining time (by around 57.4%) and the 

overcut (by 23.8%) and at low electrolyte concentration [200]. 

- Using force feedback control algorithms for drilling: algorithms applied to control the tool 

motion during drilling are promising for improving the machining quality and speed [81, 

201-203]. 

2.3. Discussion  

According to [92, 100, 101], high aspect ratio (>5) and low surface roughness (<1 μm), i.e., 

smooth surface morphology, of drilled micro-holes are the main requirements to achieve novel 

glass micro-devices, such as those in MEMS, MOEMS and bio-MEMS. Another important issue, 

especially for industry, is the machining speed, or more generally the cycle time, since this 

determines the process throughput and therefore its costs. Targeted hole diameters depend entirely 

on the application, varying from sub-micron (e.g., many MEMS applications) to sub-millimeter 

(e.g., smartphone cover glass). A comparison of these outcomes for all described technologies is 

shown in Figure 2.1, Figure 2.2, and Figure 2.3, constructed based on the values reported in Table 

A.1 (Appendix). Most of these values were given by the literature as discussed before; however, 

to have a sufficiently large sample number, more data was added in Table A.1 from additional 

literature [204-218]. Each area in the figures represents a different drilling technique. Figure 2.3 

presents the minimum feature size of micro-holes to be machined on glass by the different 

technologies. 
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Figure 2.1. Feed rate (μm/s) vs. aspect ratio (µm/µm) for different glass drilling methods, grouped into 

four categories (mechanical, thermal, chemical and hybrid). Values in graph based on Table A.1. 

 

 

 

Figure 2.2. Surface roughness, Ra (nm) vs. aspect ratio (µm/µm) for different glass drilling methods, 

grouped into four categories (mechanical, thermal, chemical and hybrid). Values in graph based on Table 

A.1. 
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Figure 2.3. Machined diameters (μm) vs. aspect ratio (µm/µm) for different glass drilling methods, grouped 

into four categories (mechanical, thermal, chemical and hybrid). Values in graph based on Table A.1. 

To produce high aspect ratio holes (up to 40) with low surface roughness (Ra ~ 1 μm), a 

chemical drilling technology like DRIE (Figure 2) can be used. DRIE has further the important 

ability to machine in parallel a large amount of holes (>200,000) with high accuracy. However, 

this batch process is slow (etching rates ~ 0.01 μm/s), complex (e.g., masks, operating conditions) 

and expensive. It has extremely low etch rate (per etched hole), uses sophisticated metal masks, 

and the equipment is rather expensive and complicated thus limiting its usage in industry. 

Furthermore, problems may occur when dry etching glasses containing lead or sodium (such as 

the most commercial standard soda-lime glasses) since this produces non-volatile halogen 

compounds as reaction products. Exclusively fused silica (formed mainly of silica) can be etched 

by this process, which restricts its use for a wide range of applications.  

Thermal-based technologies, especially laser drilling, also produce high aspect ratio micro-

holes (typical ~ 10–50) but with much higher speeds (up to 2000–20,000 μm/s) and less complexity 

compared to chemical machining (Figure 2.1). However, a good surface finish is not achievable in 

this case (Ra > 500 nm) and bulges form around the rims of the hole entrance for glass substrates, 

which prevent bonding. Similar to chemical processes, thermal processes are also expensive. 
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Regarding the ease of handling the machining process, mechanical drilling (Figure 2.1 and 

Figure 2.2) is in general the most favorable as it is well-established (e.g., powder blasting). 

Moreover, it is significantly cheaper than thermal and chemical processes. However, mechanical 

drilling cannot machine high aspect ratio micro-holes (typical ~ 4) and the resulting surfaces are 

rough  

(chipping > 10 μm), requiring costly and time-intensive post-processes (polishing). As shown in 

Figure 2.1, Figure 2.2, and Figure 2.3, hybrid technologies like SACE provide a trade-off between 

acceptable machining speed and surface roughness with reasonably high aspect ratio (up to 11) 

and workable minimum dimensions for most glass applications. 

While the above-mentioned comparison presents average ranges and values of hole 

specifications established in the four machining categories (mechanical, thermal, chemical and 

hybrid), in all manufacturing cases, specific requirements are needed and trade-offs are always 

necessary. Figure 2.1, Figure 2.2, and Figure 2.3 allow choosing the machining process based on 

trade-offs between the aspect ratio and machining quality and speed depending on the fabrication 

requirements.  

For example, for an aspect ratio of 1, chemical (wet etching, ASJ) mechanical (powder 

blasting, mechanical drilling), thermal (laser drilling) and hybrid (SACE) machining can be used. 

Wet-etching (chemical) provides the best quality (10 nm Ra) but is the slowest (speed around 0.3 

μm/s). A similar speed (0.25 μm/s) can be achieved with powder blasting (mechanical), but the 

surface roughness can increase from 2500 nm to 10,000 nm Ra. For fastest drilling, laser (thermal) 

can be used (speed can reach 20,000 μm/s) but quality is not the best (2000 nm Ra). For acceptable 

speed and quality, SACE drilling (hybrid) can be applied as speed reaches 120 μm/s, which is 

faster than chemical and mechanical techniques, and the resulting surface is smooth (<200 nm), 

which has lower roughness than achieved surface roughness by thermal and mechanical processes.  

For a high aspect ratio of 10, DRIE etching (chemical) provides the best quality (4 nm Ra) but 

is very slow (0.01 μm/s speed). Laser machining (thermal) is the fastest (120 μm/s), but roughness 

is in average around 1000 nm. SACE (hybrid) provides a trade-off between good quality (200 nm 

Ra) and acceptable speed (reaches 10 μm/s in this case). 

In summary, based on these comparisons, wet etching is relatively expensive due to the need 

of a cleanroom and multiple process steps (e.g., masking), although it is still a good option for 

mass production of low aspect ratio structures requiring high surface quality. Laser drilling is also 
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relatively expensive, due to the need of sophisticated setups and laser sources, but it is a good 

option for fast and flexible drilling requiring good surface quality. Mechanical drilling and hybrid 

technologies such as SACE/ECDM may be the most suitable for prototyping as they are the 

cheapest processes; unfortunately, they either do not result in good surface quality or are relatively 

slow. 

We constructed Table 2.1 based on the information presented in this review. Table 2.1 

summarizes the qualitative comparison of the different technologies based on the achievable aspect 

ratios, machining speed and surface roughness. Low aspect ratios are defined as below 10, low 

machining speeds refer to speeds below 100 μm/s and low surface roughness (high quality) refers 

to roughness lower than 100 nm (Ra < 100 nm). 

Table 2.1. Features of the four main groups of drilling technologies for glass. 

Process Mechanical Thermal Chemical Hybrid 

Mechanical Drilling Powder Blasting ASJ USM Laser Drilling FEDM Wet Etching DRIE SACE 

Aspect Ratio 1 − −− −− − ++ − −− ++ + 

Machining Speed  
(Serial) 1 

+ − −− −− ++ + −− −− + 

Surface Roughness 2 (Ra)
  − −−   − − + + ++ + 

Minimum Dimensions  
(μm) 

150 50 300 200  
(10) 

5 20 1 0.5 100 

Rapid Prototyping  

(Serial Mode) 3 

++ −− + + ++ − −− −− ++ 

Mass Fabrication  

(Parallel Mode) 3 

−− ++ − − − + ++ ++ −− 

Tooling  
Complexity/Costs 4 

−− −− − − ++ + −− −− ++ 

Applicable to Wide  
Range of Glass Types 3 

++ ++ ++ ++ + −− − −− ++ 

Equipment  

Costs/Complexity 5 

++ + +/− − − − − −− + 

On a scale of 1 to 4, the above symbols indicate: (−−) Level 1; (−) Level 2; (+) Level 3; (++) Level 4. Level 1 and 

Level 4 are indicated for each column on the table. 1 low −−, high ++; 2 high −−, low ++; 3 non-applicable −−, 

applicable ++; 4 complex −−, simple ++; 5 expensive −−, cheap ++. 
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2.4.  Conclusions 

2.4.1. Evaluation of glass micro-hole drilling technologies  

An overview of commonly used technologies for micro-hole drilling in glass is presented. The 

technologies are divided into four categories: mechanical, thermal, chemical and hybrid drilling 

technologies. Based on the review, graphs are constructed for aspect ratio versus machining speed 

and aspect ratio versus surface roughness to get a comprehensive comparison of the different 

technologies. Furthermore, a qualitative comparison of the main characteristics of the technologies 

is summarized in a table. This paper helps in identifying the glass micromachining technology that 

is currently most suitable for a certain application based on machining requirements. 

Each of the drilling technologies has certain limitations. While thermal processes such as laser 

drilling are fast and flexible, they lack high surface quality. Chemical processes such as wet etching 

establish smooth surfaces; however, masks are required, resulting in more complexity, low 

flexibility and higher cost of the process. Mechanical methods such as conventional drilling are 

relatively slow and exhibit poor surface roughness. To overcome the burdens of certain 

technologies while taking advantage of the good process outcomes, research is ongoing on 

developing and implementing hybrid micro-technologies which combine two or more machining 

technologies to reach an outcome that satisfies most requirements for the desired micro-holes in 

glass.  

2.4.2. Assessment on mass-personalization requirements 

As we have now compared and evaluated the different glass micro-drilling technologies 

quantitatively (Figure 2.1, Figure 2.2, Figure 2.3, Table A.1) and qualitatively (Table 2.1), it is 

interesting to assess these technologies on the key requirements for mass-personalization. These 

requirements were proposed in Chapter 1 (Figure 1.5, Table 1.2) by identifying the main 

manufacturing cost drivers related to specific part design:  

1) abandon lengthy calibration runs; 

2) avoid any part specific tooling (reduce tooling costs and complexity); 

3) be able to handle complex parts;   

4) reduce production steps (each step increases overhead and introduces machining errors); 

which is detailed in Table 2.2. 
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Table 2.2. Assessment of glass micro-drilling technologies to the four key part related manufacturing cost drivers to 

be eliminated for mass-personalization. 

Glass drilling technology 
Part related manufacturing cost drivers  

Calibration 1 Tooling 2 Complexity 3 Number of processing steps 4 

Mechanical 

Mechanical 

drilling  
-- -- + - 

Powder 

blasting 
-- -- - -- 

ASJ -- -- - -- 

USM -- - + - 

Thermal 
Laser drilling + + - + 

FEDM + + -- - 

Chemical 
Wet etching -- -- + -- 

DRIE -- -- + -- 

Hybrid SACE - + + + 

On a scale of 1 to 4, the above symbols indicate: (−−) Level 1; (−) Level 2; (+) Level 3; (++) Level 4. Level 1 and 

Level 4 are indicated for each column on the table. 1 intricate/lengthy −−, simple/quick ++; 2 complex −−, simple 

++; 3 no-capability −−, capability ++; 4 high −−, low ++. 

Evaluating Table 2.2, it can be concluded that hybrid technologies such as SACE process or 

thermal processes such as laser drilling are promising candidates for flexible micro-drilling in glass 

and they have the most potential to fulfill the requirements for high-precision manufacturing of 

mass-personalized parts made of hard-to-machine materials such as glass. Considering the 

evaluation presented in Table 2.1 it is determined that SACE technology outperforms laser drilling 

on achievable surface roughness, its almost unlimited range of machinable glass types and its 

relatively simple setup and low investment cost compared to ultrashort (femtosecond) laser 

equipment. Therefore, it is chosen to further study this (hybrid) SACE technology on mass-

personalization for high-precision glass parts. 

However, SACE technology is so far never used for mass-personalization as machining 

overhead of this process is still very high. New approaches are needed to eliminate extensive setup 

calibration (e.g. for tool run-out reduction) and workpiece clamping devices commissioning to 

make this electrochemical discharge machining process suitable for batch size 1 production. 

Chapter 4 will present a novel strategy and realized setup to achieve this objective.  A predictive 

model, for several machining operations, providing guidelines for a quick setup of SACE process 

parameters, reducing dramatically the time in several fabrication cycles, is presented in chapter 3. 
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Chapter 3 

Glass cutting, and milling are essential machining operations, which are required for most 

glass parts to be machined. Contrary to micro-hole drilling on glass substrates, which is well 

researched by academia [83, 199] resulting in defined drilling strategies [195, 219] showing the 

need for force feedback-controlled tool-electrodes [203, 220], no models are available for glass 

cutting and milling, relating SACE process input parameters to MRR (feed-rate together with 

depth-of-cut per machining pass). Such a model is a key requirement for setting up efficiently (i.e. 

low setup time) manufacturing systems with a high degree of automation. Currently, it takes a 

significant number of time-consuming trial and error runs before the process parameters 

(machining voltage, feed-rate, depth-of-cut) for cutting and milling operation settings are found.  

This chapter presents the derivation and development of a predictive model for glass cutting 

and milling by SACE process. It is based on solving numerically the transient two-dimensional 

heat equation with the heat generated by the sparks around the tool-electrode taken as input in the 

model. The proposed model, which correlates the machining input parameters to a desired 

outcome, was empirically verified and validated, allowing further optimization of industrial 

implementation of SACE technology as no predictive model for SACE glass cutting existed 

before. This model contributes in addressing the requirement of a high level of integration in the 

design to fabrication cycle for precision product manufacturing, which is essential for mass-

personalization fabrication processes to reduce the machining overhead. A dramatic reduction of 

setup time by eliminating trial and error runs for process optimizing is realized by use of the 

developed model for glass cutting by SACE technology. Furthermore, a strategy is developed to 

reduce the surface roughness of cut by introducing Spark Assisted Chemical Polishing (SACP). 
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Glass micro-cutting and -milling by Spark Assisted 

Chemical Engraving 

3.1. Introduction 

3.1.1. Glass machining and applications 

The application of glass science to the improvement of industrial tools occurred only in the 

past century, with a few exceptions. Glass has been employed in many forms to fabricate glazing 

and containers for centuries while it is now entering new applications that are appearing in micro 

and even nanotechnology like fibers, displays and Micro-Electro-Mechanical-System (MEMS) 

devices [70, 71]. Many qualities make glass attractive since it is transparent, chemically inert, 

environmentally friendly and its mechanical strength and thermal properties. In fact, no other 

materials being mass-produced have shown such qualities over so many centuries. Nowadays glass 

offers recycling opportunities and allows for tailoring new and dedicated applications. Moreover, 

glass is radio frequency (RF) transparent, making it an excellent material for sensor and energy 

transmission devices. Another advantage of using glass in microfluidic MEMS devices [72] is its 

relatively high heat resistance, which makes these devices suitable for high temperature 

microfluidic systems [75] and sterilization by autoclaving. 

However, glass remains a difficult to machine material. Its brittleness, chemical resistance and 

relatively high thermal conductivity challenges available technologies. An interesting approach is 

the use of hybrid technologies such as Spark Assisted Chemical Engraving (SACE) [81] which is 

a thermochemical process (Figure 3.1). 

In SACE process, a voltage is applied between tool- and counter-electrode dipped in an 

alkaline solution - typically Sodium Hydroxide (NaOH) or Potassium Hydroxide (KOH) (Figure 

3.1). At high voltages (around 30 V), the bubbles evolving around the tool electrode coalesce into 

a gas film and discharges occur from the tool to the electrolyte through it. Glass machining 

becomes possible due to thermally promoted etching (breaking of the Si-O-Si bond) [81, 221]. 
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Figure 3.1. A. Overview of targeted applications/markets for SACE glass machining. B. SACE principles. C. SACE 

machined micro-hinge (scale bar = 500 µm - width of ‘hinge’ = 30 µm - thickness glass = 100 µm). 

Developed since the sixties in last century in academia [222, 223], SACE found recently its 

entrance in the industrial world [224]. Micro-drilling was intensively characterised and developed. 

The introduction of pulsed voltage machining did make a further significant step forward in terms 

of quality of machining [192, 225]. High precision micro-holes with good quality can be obtained 

as shown in Figure 3.2. 

 

Figure 3.2. High quality micro-holes in glass machined by SACE technology. Roundness 

errors smaller than 2 µm can be achieved (machined on the Microfor SACE developed 

together with Posalux SA [224]). 

1mm deep
Aspect ratio = 1:5

∅ 380µmRoundness error: < 2µm

50mm

Micro-drilling



 

56 

SACE can however as well be used to micro-cut glass. This aspect was so far never discussed 

in the literature and no systematic data about its performance are available. Glass micro-milling 

by SACE process is reported in literature [199], but machining guidelines to choose input process 

parameters for a desired outcome are lacking, leading to time-consuming trial runs before 

machining can be performed. This limits its use as agile manufacturing process as needed for 

fabrication of mass-personalized products.  

3.1.2. Requirements for high-precision glass machining of mass-personalized parts 

High level of integration in the design to fabrication cycle, by digitalization, is required for 

efficient manufacturing of products (parts) in both large and small batch size production (see table 

1.1). Particularly for batch size 1 production, e.g. mass-personalization, it is indispensable to have 

a time- and cost-efficient workflow from part design (model) to the manufacturing process. First 

step is generally generating the desired model in a Computer Aided Design (CAD) environment 

or another software. Subsequently, a specific machine code, most often G-code (based on ISO 

6983) [226] or a more associative communication protocol such as STEP-NC (based on ISO 

14649) [227], is created from the digital model for proceeding to the manufacturing step (e.g. 

define the toolpath for glass machining, which is fed into the machine). This translational digital 

coding step is a critical tool for batch size 1 manufacturing to enable agile handling of constantly 

changing part manufacturing requests. Such a tool allows quick loading of new part designs into 

the machine and automated conversion into important machine process instructions like toolpath 

definition, feed-rate, and other process related input parameters. 

Fundamental knowledge of the machining process and the machine itself, based on both 

experience and predictive models, is essential to enable this step [228]. In the case of established 

conventional Computer Numerical Control (CNC) machining techniques, such as mechanical 

milling and turning, machine codes can relatively easily be derived as these processes are well-

known and a wide range of models exists for these operations. For instance, surface roughness 

prediction models for CNC machining of polypropylene [229], predictive models for the cutting 

force in wood machining [230], and finite element models (FEM) to relate feed-rates and surface 

roughness for face milling of titanium alloys [231], advanced predictive models (based on artificial 

neural networks or fuzzy logic models) for machining parameter optimization for metal alloys 

[232-235], models for performance prediction in multi-axis machining [236], material removal 
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rate (MRR) predictive models for CNC turning of steel alloys [237] and predictive models for 

feed-rate control of milling machines [228] are well-established in literature.  

However, as these mechanical methods are suitable for machining relatively soft materials 

such as wood [230] or polymer material [229] and standard engineering materials such as metals, 

it is challenging to machine glass, because of its hardness and brittleness, with high quality and 

precision (refer to chapter 1 and 2 for comparative studies on micro machining technologies).  

Furthermore, the high forces exerted on machining tool and workpiece by these conventional 

high precision machining techniques [238, 239] demand rigid and sophisticated clamping (i.e. 

complex tooling), making these methods non-compatible as flexible machining processes required 

for batch size 1 fabrication [30] of glass components.  

Intermittent contact technologies like ultrasonic machining [240] can be deployed for glass 

micro machining, nevertheless besides having its own process limitations, these approaches still 

need rigid and high precision clamping tools disfavouring its utility as mass-personalization 

fabrication technology. 

Non-contact glass micro machining processes like wet etching [85] and DRIE etching [82, 

160] eliminate the need of rigid clamping tools, but they require sophisticated and time-consuming 

masking techniques in clean-room environment and are limited to producing 2D structures, making 

them highly inappropriate for flexible machining of low batch sizes. 

SACE technology, being a hybrid thermochemical process, provides high precision glass 

micro-drilling, micro-milling, micro-cutting and micro 3D machining operations in one setup. The 

implementation of a force-sensitive machining head enables the usage of the machining tool to be 

used as an accurate profilometer to measure machined features within the same setup to an 

accuracy of 1 µm, enabling continuous three-dimensional control of the machined features. These 

characteristics and its ability to execute different machining operations on the same setup makes 

SACE an interesting potential candidate for flexible, high precision glass machining meeting the 

demand of batch size 1 production (i.e. mass-personalization).  

As of today, SACE process was never deployed for glass mass-personalization by industry 

and academia. In fact, we can identify three main issues of the current SACE method preventing 

its use for this highly flexible manufacturing approach: 

1. Contrary to micro-hole drilling on glass substrates, which is well researched by 

academia [83, 199] resulting in defined drilling strategies [195, 219] showing the need 
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for force feedback-controlled tool-electrodes [203, 220], no models are available for 

glass cutting and milling, relating SACE process input parameters to MRR (feed-rate 

together with depth-of-cut per machining pass). Such a model is a key requirement for 

setting up efficiently (i.e. low setup time) manufacturing systems with a high degree 

of automation. Currently, it takes a significant number of trial and error runs before 

the process parameters (machining voltage, feed-rate, depth-of-cut) for appropriate 

cutting and milling operation settings are found; 

2. Extensive calibration is needed for tool-workpiece alignment and tool run-out 

elimination to achieve the desired high-precision (~ 1 µm); 

3. Part specific tooling is required for proper clamping of the glass workpiece (almost 

each production cycle demands changing dimensions in the case of mass-

personalization) to attain high precision. 

As issues 2 and 3 will be addressed by the subsequent chapter 4, this chapter aims to develop 

SACE cutting and milling strategies to overcome the issue of lacking fundamental knowledge and 

models to efficiently execute these machining operations (addressing issue 1). As a first step, basic 

parameters such as depth of cut and tool feed rate must be determined. In fact, key input parameters 

for operating SACE process are 1) machining voltage, 2) depth of cut, and 3) machining speed 

(feedrate). Objective of chapter 3 is to find a basic, valid model for SACE machining (milling, 

cutting) to avoid time-consuming trial runs before part machining. It needs to be stressed out that 

the aim of the model is not to describe precisely the process’ physics, but the goal is to develop a 

practical model, which can be used to increase the SACE operating efficiency.  

Systematic experiments are reported on micro-cutting glass by SACE and it is demonstrated 

how using available data from SACE micro-drilling maximal depth-of-cut and tool feed can be 

determined. 

3.2. Theory 

Material removal rate in SACE machining is limited, in case flushing of the machining zone 

happens easily, by heat propagation in the glass workpiece [81, 221]. In the case of micro-cutting 

and -milling, electrolyte can access freely to the machining zone by appropriate flushing, using 

side tubes for electrolyte supply in the machining cell (Figure 3.1). Further machined material is 
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removed readily from it through the cut. Consequently, as a first approximation, one can discuss 

the relation between the axial depth of cut p and horizontal feed rate F (see Figure 3.3 for a 

schematic) in terms of time needed for the heat to propagate inside the workpiece: one has to give 

enough time to the workpiece to heat up while one moves the tool.  

 

Figure 3.3. Schematic representation of micro-cutting by SACE process 

with a rotating tool-electrode (radius r) moving horizontally with feed-rate 

F at an axial depth of cut p. 

Consider a tool of radius r. In the time interval 

F

r
tF

2
=  (3.1) 

the tool will move over its own size. If heat propagates at the rate rh inside the workpiece, then 

the time th needed to heat a distance p is given by 

r

h
h

p
t =  (3.2) 

If heat propagation is the rate limiting process, the tool is not allowed to move faster than the 

feed rate F at an axial depth of cut p such that (tF and th must be of the same order of magnitude): 

rhrpF = 2  (3.3) 

Equation (3.3) shows that, under the stated hypothesis that machining is only limited by heat 

propagation, the maximal value of the product F∙p is, for a given tool and workpiece, a constant 

value. Note that, as the time t needed to cut a path of length L and depth d is given by 

pF
dLt


=

1
 (3.4) 

and consequently, the time needed to perform a given cut is essentially constant for a given product 

pF   as chosen. 
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The heat propagation rate hr is function of the geometry of the problem and the energy put 

into the system (i.e. energy produced by the spark activity around the tool electrode).  

As a first step, the model developed in the frame of SACE drilling is attempted to be used 

[81]. The heat brought to the substrate by the electrochemical discharges is approximated by a heat 

source (cylindrical tool-electrode of radius b) of power Po inside a homogenous material of density 

ρ, specific heat capacity c and thermal conductivity λ (Figure 3.4). At infinity, the temperature is 

assumed to be constant and equal to To. Further we assume that machining occurs when the 

temperature of the work piece reaches the machining temperature noted as TM. For a more detailed 

discussion on the different machining mechanisms and physical meaning of this machining 

temperature the reader is referred to [81]. 

The heat power Po can be estimated as a fraction of the mean heat power PE of the 

electrochemical discharges as this will only be partially be transferred to the machined substrate. 

Here, PE is a function of the machining voltage, water decomposition potential, mean current and 

inter-electrode resistance of the electrolyte [81].  

 

Figure 3.4. Model of the temperature distribution for SACE machining. A cylindrical 

homogeneous disc heat source with radius b provides the heat power needed to locally 

heat up the workpiece. 
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In the space outside the heat source, the temperature distribution T satisfies [241, 242]: 

.2T=
t

T

λ

ρc





 (3.5) 

It is convenient to use dimensionless variables, so the results of this study can be applied to 

any specific situation and geometry. Here, we use the same normalization as used in previous 

models in the case of SACE machining and define the normalised length z  = z/b and the 

normalized time t  = t/τ with the characteristic time 𝜏 = 𝑏2 4𝑎⁄  [81]. Here, a is the thermal 

diffusity of the workpiece 𝑎 = 𝜆 𝜌𝑐⁄ . For the temperature we define [81]: 

( )
,

bP
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o

o

/

−
 (3.6) 

Using this normalization, equation (3.5) writes 

4 ∙
𝜕�̅�

𝜕𝑡̅
= ∇2�̅� (3.7) 

In SACE theory, it is common to introduce the normalized heat power – к [81]: 

.
)Tλπb(T

P
=κ

M

o

−
 (3.8) 

As will be seen below, this parameter is convenient for normalizing the heat power oP  of the 

heat source. 

So far in the literature, Equation (3.5) was solved considering a disk heat source, which 

assumes that the heat is essentially uniformly distributed over the entire tool:  
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The aim in solving Equation (3.5), is to determine at which rate rh the isotherm of the 

machining temperature TM is propagating inside the workpiece. In order to do this, it is needed to 

compute  

dt

tdz
h o

r

)(
=  (3.10) 
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where ot is the time needed for the temperature at the workpiece surface to reach the machining 

temperature (i.e. Mo TtT =),0( ) and )(tz  is the z-coordinate on the symmetry axis at which the 

isotherm MT  is located. In normalized form, )(tz is determined by solving  

�̅�(𝑧̅, 𝑡̅) =
1

𝜅
 . (3.11) 

Solution of equation (3.5) with boundary condition (3.6) allows to compute the rate at which 

this isotherm propagates in the workpiece in the z direction [81]:  

.
1

2

1)(
/1

o

t

o
r

t

e

td

tzd
h

o−
−

==


 (3.12) 

A relevant case for SACE in the case of glass machining is when one considers low heat power 

(к ≈ 1, ot  ≫ 1) [81]. This relates to machining scenarios when voltages in the range of 20 V < U 

< 50 V are applied. In this case one obtains for the heat propagation rate [81]: 
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κ

)π(κκ
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 (3.13) 

If one assumes now that hr is a typical order of magnitude for the heat propagation, one can 

estimate the product pF  , using equation (3.3), as: 

 

(3.14) 

Consequently, under the hypothesis of a disc heat source, cutting time in SACE is independent 

of the tool radius. This is a very important result, not only from theoretical point of view, but from 

practical too. It shows that if the hypothesis to consider the heat source as a uniform disc source is 

acceptable, then cutting time becomes independent of the choice of the tool radius. 

Relations between the dimensionless normalized heat power - κ and applied machining 

voltage U are empirically derived in section 5.2 of [81] in case of drilling with cylindrical tools: 

κ = 0.018 ∙ U + 0.615 (3.15) 

Equation (3.14) and (3.15) allow to establish a direct relationship between the machining 

voltage U and the product F ∙ p which can be used to define the material removal rate (MRR), for 
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glass machining by SACE technology (a ~ 6∙10-7 m2/s for Pyrex® glass [243]), when multiplying 

with the tool diameter (2∙b).  

Equation (3.14), holds for the case of small tools (tool radii < 100 µm as will be shown by the 

experimental results in the results and discussion section). However, for larger tools cutting 

happens at significantly smaller feed rates, respectively lower depth of cuts than the one predicted 

by equation (3.14). As a first attempt to enhance this simplified model, a more realistic heat source 

model is proposed using a ring heat source of radius b and ring thickness e (Figure 3.5): 

𝜆
𝜕𝑇

𝜕𝑧
(𝑟, 𝑧 = 0, 𝑡) = {

0, 𝑟 > 𝑏

−
𝑃0

𝜋[𝑏2 − (𝑏 − 𝑒)2]
, 𝑟 ≤ 𝑏

 (3.16) 

Equation (3.16) allows to model the reduced efficiency of the center of the tool compared to 

the tool edge in terms of heat source. To solve equation (3.5) with boundary condition (3.16) a 

numerical model was implemented in the Matlab® PDE Toolbox [244].  

 

 

Figure 3.5. Model of the temperature distribution for SACE machining. A cylindrical 

homogeneous heat source (ring heat source for 0 < e < b and a disc heat source for e = 

b) provides the heat power needed to locally heat up the workpiece. 
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To facilitate general use of the model after calculations, the normalized heat equation (3.7) 

was used and equation (3.16) was written in normalized form. The boundary condition (3.16) in 

normalized form writes: 

𝜕�̅�

𝜕𝑧̅
(�̅�, 𝑧̅ = 0, 𝑡̅) =

{
 

 
0, �̅� > 1

− [
1

1 − (1 −
𝑒
𝑏
)
2] , �̅� ≤ 1 

(3.17) 

Since model (3.5) is axisymmetric (Figure 3.5), it is convenient for the numerical analysis to 

write this equation in cylindrical coordinates [241, 242]. Noting that 𝜕𝑇 𝜕𝜃⁄ = 0 and after 

multiplying by r equation (3.5) becomes:  

𝑟𝜌𝑐
𝜕𝑇

𝜕𝑡
−

𝜕

𝜕𝑟
(𝜆𝑟

𝜕𝑇

𝜕𝑟
) −

𝜕

𝜕𝑧
(𝜆𝑟

𝜕𝑇

𝜕𝑧
) = 0 (3.18) 

This equation is converted to the form supported by the PDE Toolbox [244] if r is defined as 

y and z is defined as x (Figure 3.6, left above). Rewriting equation (3.18) gives: 

𝜌𝑐𝑦
𝜕𝑇

𝜕𝑡
− ∇ ∙ (𝜆𝑦∇𝑇) = 0 (3.19) 

Equation (3.19) can be written in normalized form (equation (3.7) multiplied with �̅�): 

4 ∙ �̅� ∙
𝜕�̅�

𝜕𝑡̅
= �̅� ∙ ∇2�̅� (3.20) 

Figure 3.6 presents the used cylindrical coordinate system in the PDE Toolbox and the 

solutions of the numerically solved equation (3.20) with boundary condition (3.17) for various 

values of normalized ring thickness �̅� = 𝑒 𝑏⁄  (ranging from �̅� = 1.0 to �̅� = 0.6). Boundary 

conditions of the second kind (Neumann [241]) are applied along the r axis as defined by equation 

(3.17) multiplied with y, and along the z axis as this is the centerline of the cylindrical tool-

electrode (heat source). Boundary conditions of the first kind (Dirichlet [241], here �̅� = 0) are 

applied at the borders of the modeled workpiece, parallel to the �̅� axis at 𝑧̅ = 10 and parallel to the 

𝑧̅ axis at �̅� = 10.  

It can be noted from the simulation results that heat propagation in axial (z) direction is of the 

same order of magnitude (only slightly slower) as heat propagation in radial (r) direction for all 
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cases of 0 < �̅�  1. This justifies the use of axial heat propagation (dz/dt) in the modelization of 

the cutting operations.  

 

Figure 3.6. Solutions (isotherms – 1/κ) of the numerically solved (Matlab® PDE Toolbox) equation (3.20) with 

boundary condition (3.17) for various values of ring thickness �̅� = 1.0 down to �̅� = 0.6 at 𝑡̅ = 2000. 

Employing condition (3.11), graphs were constructed for 𝑧̅ versus 𝑡̅ at different values of the 

normalized heat power κ (ranging incrementally from κ = 1 to κ = 1.5 as typical working range for 

SACE machining). Through differentiating the polynomial fits (varying from order 2 to 4) of these 

graphs around the time 𝑡0̅ (normalized time needed for the temperature at the workpiece surface 

to reach the machining temperature), the rate of normalized heat propagation  𝑑𝑧̅(𝑡0̅) 𝑑𝑡̅⁄  could be 

derived, which is plotted for different ring thickness (�̅� = 1.0 to �̅� = 0.6) at different values for 

normalized heat power (κ = 1.1 to κ = 1.5) in Figure 3.7.  
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Figure 3.7. Rate of normalized heat propagation - 𝑑𝑧̅(𝑡0̅)/𝑑𝑡 ̅versus normalized heat power κ for different values of 

ring thickness �̅� = 1.0 down to 𝑒̅ = 0.6. 

3.3. Materials and Methods 

Micro-cutting and -milling of Pyrex® glass (microscope slides, 25 mm x 75 mm, Corning) 

were performed on an in-house built laboratory setup (Figure 3.8.A.) and on a Posalux Microfor 

SACE machine (Figure 3.8.E.). The machine incorporates a force sensor in the machining head 

that allows online measurement of the axial force (down to 1 mN) exerted on the tool-electrode. 

Section 3.4 discusses in more depth why such force-sensitive machining tool-head is essential for 

efficient SACE machining. The developed industrial machining head, which is patented [60], is 

discussed in more detail in section 3.5.  

Control of the developed industrial Microfor SACE machine is performed by G-code [226] 

and a LabVIEW [245] interface, processed by a Siemens IPC 477D Win AC RTX controller [246]. 

The machining head is mounted on precision (~1 µm) xyz-translational axes and consists of a 

spindle rotating in air bearings to deliver high degree of stiffness control. The machine enclosure 

is connected to a ventilation system with air filter reducing machine placement requirements and 

environmental issues. An electrolyte circulation system consisting of a pulse-damped rotary pump 

connected to tube outlets around the tool-electrode enables control of a uniform and smooth, bulk 
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and local, electrolyte flow in the working cell. This is important for SACE process repeatability as 

found empirically and confirmed by [247]. 

The developed home-built setup comprises a high-precision (~1 µm) Newport cartesian robot 

[248] (xy-stage – M-ILS150CC, z-stage – M-ILS50CC), where the working electrochemical cell 

was mounted on the xy-stage and the machining head on the z-stage. Rotation of the spindle, 

mounted in two ball-bearings on a flexible structure [249], was performed by a brushless DC motor 

(Maxon, EC 32 flat, 15 Watt) via a flexible round belt (SDP/SI, neoprene, 1/16” diameter). Axial 

displacement was real-time measured by an optical sensor (SFH9201, OSRAM Opto 

Semiconductors) and the axial force was measured and controlled using a voice coil actuator (LA-

08-10-100, BEI Kimco Magnetics), which was used as well for fine axial displacement of the tool. 

Force feedback control (PID) implementation, xyz-stage motion, voice coil and spindle servo 

drives were controlled on a dSPACE and a Newport XPS controller [250]. Tool Command 

Language (Tcl) [251] was deployed as dynamic programming language for programming the 

motion and servo drive systems. 

As electrolyte, 30 wt% Potassium Hydroxide (KOH) [252], prepared from de-ionized water, 

was used. Low viscous electrolyte is chosen to reduce the chance that flushing with fresh 

electrolyte at the machining zone becomes the limiting factor for machining (cutting, milling).  

Cylindrical tool electrodes, made of tungsten carbide, 100 µm and 200 µm diameter with a 

bevel of 45° where used (machined by external grinding). Use of beveled tools were empirically 

found to perform better than flat tools, most probably due to improved electrolyte flushing in the 

machining zone. The spindle was rotated at 1000 rpm. Cuts were performed over an equivalent 

length of at least two minutes of micro-cutting, adapted at the operating cutting speed. 

After cutting, images were acquired with an optical microscope (Keyence VHX 5000) and a 

Scanning Electron Microscope (SEM) (Hitachi S-3400N - variable pressure) to evaluate precisely 

the realized depth-of-cut and to evaluate the cut qualitatively.  
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Figure 3.8. A. Developed laboratory setup for SACE machining with its key elements - electrolytic cell, spindle with 

tool-electrode integrated in a flexible structure (B.) with low axial stiffness and high lateral stiffness, optical sensor, 

and a voice coil actuator / force sensor. C. SACE drilling in operation. D. Observed sparking during glass drilling. E. 

Posalux FP1-SACE machine (modular system with four independent machining heads).  

3.4. Results and Discussion 

3.4.1. Model analysis and validation 

The derived normalized model was validated by SACE cutting/milling experiments with small 

and large tool diameters were deployed (100 µm and 200 µm diameter tools). To determine 

experimentally the maximal depth-of-cut p at a given tool feed rate F a series of cuttings of 0.4 

mm thick glass slides (Pyrex®) were performed. The cut was considered to be successful if 

a) The tool didn’t break, and 

b) The measured depth of the cut was equal or higher than the imposed depth of cut during 

machining. 

From a practical point of view, thanks to the force sensor inside the tool-electrode holder, it 

was possible to detect none successful cuts due to an increased force acting on the tool (a few mN). 

Pulsed voltage with 2.5ms pulse high (thigh) and 0.1ms pulse low time (tlow) was used. In such 

conditions the gas film shows high stability and very few bubbles are observed around the tool-

electrode as found empirically (Figure 3.9), which was also confirmed by [247]. Deploying short 

pulse off times (0.1 ms) reduces dramatically the hydrodynamic region (bubble evolution). This 
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region doesn’t contribute to glass machining (no heat generated by sparks) and should therefore 

be kept as short as possible for most effective process performance.  

 

Figure 3.9. A. Typical voltage and current signals during SACE machining (Uapplied > Ucritical) upon applying pulsed 

voltage with relatively large pulse off time (1.5ms). Note the relative long bubble evolution region. B. Typical voltage 

and current signals upon applying pulsed voltage with short pulse off time (0.1 ms). Note the significantly reduced 

bubble evolution region. 

Cutting experiments were performed at three pulsed machining voltages (high, intermediate 

and low) as denoted in Table 3.1.  

The average input voltage Uavg was calculated according: 

Uavg = ΔUpulse · (thigh – tlow) / (thigh + tlow) + Ulowlevel        (3.21) 

Table 3.1. SACE machining settings 

Pulsed Voltage Input 

 High Level Low Level Period Duty Cycle 

Low 30 V 17.5 V 2.6 ms 96.15 % 

Intermediate 33 V 17.5 V 2.6 ms 96.15 % 

High 35 V 17.5 V 2.6 ms 96.15 % 

 

Using these machining voltages (Table 3.1 to calculate the average voltage (equation (3.21)) 

as input in equation (3.14) and equation (3.15) and taking for the thermal diffusity a ~ 6∙10-7 m2/s 

for Pyrex® glass [243], we estimate the values for F ∙ p as outlined in Table 3.2. 
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Table 3.2. Heat propagation in glass workpiece 

Machining Voltage 

       High Level                                  Average 
F∙p 

30 V 29.0 V 1.0 mm2/min 

33 V 31.8 V 1.6 mm2/min 

35 V 33.7 V 2.2 mm2/min 

 

Figure 3.10 presents the empirical values for maximal depth of cut p versus tool feed-rate F 

for SACE glass cutting with two different tool diameters, respectively 100 µm (non-filled markers) 

and 200 µm (filled markers). The products F p = constant (equation (3.3)) are plotted on this graph 

(dashed lines) such that it matches best the empirical values. It can be evidently observed that the 

values of these constants (F p) are accurately predicted by equation (3.14), where the tool was 

modeled as a disc heat source (heat is applied homogeneously over the entire tool diameter onto 

 

Figure 3.10. Empirical values for maximal depth-of-cut p [mm] versus tool feed-rate F [mm/min] – non-filled markers 

represent values for tungsten carbide 100 µm diameter tools – filled markers represents values for tungsten carbide 

200 µm diameter tools. Dashed lines: Equation (3.3) - F p = constant (upper three lines based on Table 3.2). 
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the workpiece), for 100 µm diameter tools (see Table 3.2). However, these constants are not 

correctly predicted by equation (3.14) for larger, 200 µm diameter tools. 

Hence, the assumption that the tool can be modeled as disc heat source and is independent of 

tool size (as stated by equation (3.14)) is not valid for tool diameters > 100 µm. A more realistic 

heat source model is needed, therefore the ring heat source model (defining radius b and ring 

thickness e) as proposed and developed in the theory section (3.2) will be investigated.  

To compute the value of the product F p from this heat model with the ring heat source 

boundary condition (3.16) we use the following equation (making use of (3.3) and (3.10) in 

normalized form): 

𝐹 ∙ 𝑝 = 8𝑎 ∙ ℎ̅𝑟 = 8𝑎 ∙
𝑑𝑧̅(𝑡0̅)

𝑑𝑡̅
 (3.22) 

Graphs can now be constructed for pF  , using equation (3.22), at different values of 

normalized heat power κ and using a ~ 6∙10-7 m2/s as thermal diffusity for Pyrex® glass [243] (see 

Figure 3.11 and Figure 3.12). 

 

Figure 3.11. Product of tool feed and maximal cut of depth - pF  [mm2/min] versus normalized heat power κ for 

different values of ring thickness �̅� = 1.0 down to �̅� = 0.6. 
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Figure 3.12. Zoom (lower values of the product F p) of product of tool feed and maximal cut of depth - pF  [mm2/min] 

versus normalized heat power κ for different values of ring thickness �̅� = 1.0 down to �̅� = 0.6. 

Numerical solutions were validated using the case of �̅� = 1 where the problem reduces to the 

situation of a disc heat source, which is analytically solved [81], presented by equation (3.12). 

Comparing the constructed graph of pF   versus κ when numerically solved with the graph when 

using the exact solution (3.12), it can be concluded that the error by the numerical analysis is 

lowest for small values of κ (error < 2.5 %). 

The empirical results of micro cutting with 200 µm diameter tools (Figure 3.10) fit well with 

the constructed graph in Figure 3.12 for �̅� = 0.9. Consequently, this shows that for these larger tool 

diameters (200 µm) the heat source is less efficient at the center of the tool compared to the tool 

edge (as hypothesized by equation 3.16). This heat source efficiency decreases even further when 

using tools larger than 200 µm. Progressively higher normalized heat power κ is needed for 

increasing tool diameters for SACE process input to achieve similar performances compared to 

100 µm diameter tools. This is represented by decreasing values of ring thickness e in the boundary 

condition (3.16). On the other hand, the heat source becomes not more efficient for tools smaller 

than 100 µm (disc heat source model (�̅� = 1) is valid for all tool diameters  100 µm).  

Hence, for glass micro-cutting by SACE technology it is optimal to use tools of 100 µm 

diameter. Using larger tool diameters will rapidly decrease the heat source efficiency (as then �̅� < 

1) and subsequently reduce dramatically the machining speed (by a factor ~ 5 upon using a tool 

diameter of 200 µm, see Figure 3.10). Using smaller tools than 100 µm diameter will not contribute 
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to increased efficiency as for tools with 100 µm we reach already �̅� = 1.0 and as shown by Equation 

(3.14) cutting time becomes independent of the tool diameter (i.e. can not become shorter by using 

smaller tools). 

An important consequence from the practical point of view is that the usage of a force sensitive 

machining head is an essential requirement for SACE machining. Indeed, without such a head, 

tools of 100 µm could not be used without bending and/or breaking them. This confirms the 

relevance of prior studies investigating and developing force-feedback strategies for SACE [203, 

220], which, together with the results of the presented study, has led to the development of a force 

sensitive machining head with controlled stiffness (low stiffness is preferred for high performance 

SACE process) together with our industrial partner Posalux SA [224]. The presented thesis work 

contributed in development of this patented machining head [60] for the industrial Microfor SACE 

machine, which is briefly discussed in section 3.5. 

The findings of the developed model and analysis for glass micro-cutting and -milling can be 

used to investigate the possible routes for increasing MRR for SACE micro-cutting and -milling. 

Essentially three solutions can now be proposed to increase this removal rate: 

a) Using small tool diameters to reach the optimal value of �̅� = 1. This is the case for tool-

electrodes with diameter of 100 µm (representing a disc heat source) as for ring thickness 

�̅� = 1.0 the normalized heat propagation ℎ̅𝑟 through the glass workpiece is independent of 

the tool radius. Using lower diameters does not longer increase efficiency as for �̅� = 1, 

cutting time is independent of tool diameter; 

b) Increase the normalized heat power κ. However, this results in poor machining quality 

(large roughness, indents > 50 µm). This can be partially addressed by applying the 

developed SACP technique, where a first (rough) cut is made at relatively high tool feed, 

subsequently followed by a low machining input voltage cut at lower tool feed (SACP will 

be discussed in section 3.6). Figure 3.7 together with relation (3.22) can be deployed to 

determine the tool feed and depth of cut for a given normalized heat power κ. 

c) Solutions a) and b) are good strategies for fabrication of mass-personalized glass parts. An 

alternative to increase MRR of SACE process is the use of a multiple tool machining head 

as illustrated in Figure 3.13. This strategy to parallelize machining is not suitable as mass-

personalized manufacturing method, but it works well for low to medium batch size 

production. When using the developed model, Figure 3.7 together with relation (3.22), 
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conservative tool feed and depth of cut can be chosen to prevent damage of the tools, 

leading to effective parallel SACE machining. It should be noted that the required tool 

rotation, for creating a more uniform machining zone around the tool, does not come here 

from a tool spindle, but the circular motion is applied on the two translational axes holding 

the tool. In fact, this implies that ‘drilling’ operations become ‘cutting’ operations, allowing 

use of the developed model to find the best process parameters. 

 

Figure 3.13. Schematics of the multi-tool machining head (25 tools) for parallel SACE machining, developed at 

Posalux SA [224]. A. 3D model of the developed multi-tool to be mounted on the machining head. B. SACE machining 

(here micro-hole drilling) using a prototype of the multi-tool machining head. 

Another key result from this study is the showed significance of heat propagation through the 

glass workpiece as main limiting factor to determine the maximal machining speed in the case 

electrolyte flushing around the tool happens easily (as in micro-cutting and -milling operations). 

This confirms statements made in our previous studies on the machining temperature in SACE 

machining [221].      

Efficient setup (i.e. low setup time) of manufacturing systems with a high degree of 

automation is crucial for batch size 1 compatible machining processes. Process models such as 

developed in this chapter for micro-cutting and -milling are key and a first step to achieve this 

requirement. As of today, it takes a significant number of trial and error runs before the process 

parameters (machining voltage, feed-rate, depth-of-cut) for appropriate cutting and milling 

operation settings are found resulting in time consuming machining setup. Using the here 

developed models enables direct (i.e. fast) transfer of the desired drawing to be machined into 

machinable code with the appropriate process parameters eliminating long test runs. 
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3.4.2. Glass micro-cutting experimental results 

The quality of the cut is assessed by optical microscopy for the different machining voltages 

(low – intermediate – high voltage) and at varying feed rate and depth-of-cut (Figure 3.14) using 

100 µm diameter tungsten carbide tools with a 45° bevel. Machining quality deploying 200 µm 

diameter tools leads to similar typical machining roughness results and this analysis is therefore 

omitted here. 

 

Figure 3.14. Microscopy (Keyence VHX 5000) analysis of cut quality, using 100 µm diameter tungsten carbide tools, 

at different machining voltage, feed-rate F and depth-of-cut p. A. Schematic of SACE micro-milling and -cutting. B. 

Cut surface at high pulsed voltage (35 V). C. Cut surface at intermediate pulsed voltage (33 V). D. Cut surface at low 

pulsed voltage (30 V). 

It can be observed that quality of the glass cut generally increases when the machining voltage 

reduces (indents of ~ 75 µm – 60 µm – 50 µm for respectively 35 V – 33 V – 30 V at maximum 

cutting depth for each voltage and feed-rate F = 5 mm/min.)). Decreasing the depth of cut results 

generally also in higher machining quality. In the extremes, when machining at same feed-rate F 

= 40 mm/min - and low depth of cut, the machining quality is around the same for all applied 

machining voltages.  

Reasonable quality of cut in glass by SACE technology can be obtained using the derived tool 

feed versus depth of cut relations (Figure 3.14). Further increase of the quality of cut surface can 
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be achieved deploying other strategies, such as ‘SACE polishing’ by approaching the surface with 

small lateral increments of the tool-electrode at very low voltage. This SACE polishing method 

was developed to achieve smooth cut surfaces (roughness < 1 µm), which is discussed in more 

detail in section 3.6.  

3.5. Force-sensitive machining head with actively controlled stiffness 

 Following the glass micro-cutting experimental and modeling results (sections 3.2 and 3.4), 

efficient SACE machining is achieved deploying 100 µm diameter tools (larger tools, starting at 

200 µm diameter, have decreased efficiency in terms of heat source and tools smaller than 100 µm 

diameter will not further improve machining efficiency, so are unnecessary complicated). In order 

to prevent bending and breaking of such small tools, the development of a force-sensitive 

machining head for SACE machining is an essential requirement. In addition, it is empirically 

found that low axial tool stiffness is preferred for high quality machining which can be controlled 

by such force-sensitive machining head. This guarantees that no mechanical contact (i.e. very low 

(~ 1 mN) to zero force) occurs between tool and workpiece during machining, and the tool is not 

mechanically pressed onto the glass workpiece. 

This force-sensitive machining head with actively controlled stiffness was developed and 

patented [60] during this thesis research work together with industrial partner Posalux SA [224] 

resulting in an industrial grade SACE machining head system, which is briefly described in this 

section. For a more detailed description is referred to the patent WO 2017/064583 A1 (2017) [60].   

The arrangement [60] results in a machining head with a controlled stiffness. The stiffness k 

is defined as the resistance offered by the machining head to deformation δ when a machining 

force Fmachining is applied 

𝑘 =
𝐹𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔

𝛿
 (3.23) 

where Fmachining is the machining force applied to the tool and δ is the deformation of the machining 

head, i.e., its variation of length between the distal extremity of the tool and a fixed point of the 

machine that is caused by Fmachining. 

The control module is programmed so as to adapt the stiffness k of the machining head during 

machining. In particular, the machining head according to the present invention has a low stiffness. 
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The low stiffness of the machine head is provided by a reactive motor that reacts rapidly to actuate 

the tool electrode, here a voice coil motor is implemented. The low stiffness allows high quality 

machining by minimizing the constraints on the tool and on the glass during machining.   

Summarizing, the invention relates to a SACE machine for machining a glass workpiece, the 

machine comprising [60]: 

• A support for fastening the workpiece during machining, said support being dipped into 

an electrolytic; 

• A machining head operated by a feed motor for translating said machining head along 

a feed axis extending along said machining head; 

• A tool electrode protruding from the machining head toward the support to dip at least 

partially into the electrolytic; 

• Guiding means for guiding the translation of the machining head with respect to the 

support along said feed axis; 

• A counter electrode dipped into the electrolytic; 

• A sensor for measuring the axial machining force exerted on the tool electrode during 

machining; 

• A control module arranged for progressively adapting the translation speed of the tool 

electrode depending on said machining force. 

 

Figure 3.15 presents the three-dimensional model and the cross-section of the invented 

machining head and its components. The reference numbers used in Figure 3.15 are detailed 

below: 

 

1. Machine 2. Headstock 3. Rotation element 

4. Translational element 5. First translational motor 6. Second translational motor 

7. Support 8. Rotation motor 9. Belt 

10. Coupling element 11. Tool electrode 12. Tool portion 

13. Motor portion 14. Tool holder 15. Tilting element 

16. Tool guide 17. First air bearing 18. Ball bearing 

19. Motor guide 20. Second air bearing 21. Voice coil 

22. Sensor   
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Figure 3.15. Developed force-sensitive machining head with actively controlled stiffness for the industrial SACE 

machine to achieve high quality glass machining of SACE process, detailed in patent WO 2017/064583 A1 (20 April 

2017) [60]. A. Three-dimensional model of the machining head and its components. B. Cross section of the machining 

head and its components. Reference numbers used in this figure are detailed in the text below. 

The developed industrial SACE machine offers high precision glass micro-drilling, micro-

milling, micro-cutting and micro 3D machining operations (Figure 3.16) while leaving the glass 

surface intact to allow subsequent processing steps for device manufacturing. It will be shown 

further in this thesis that this is an essential requirement for efficient (i.e. flexibly) glass-to-glass 

bonding for device packaging, which is detailed in chapter 5 and crucial both for efficient glass-

to-polymer templating as proposed and discussed in chapter 6 and for using glass as dies for metal 

micro-forming, which is also presented and discussed in chapter 6. The implementation of the 

A. B. 

1 1 
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force-sensitive machining head with force-feedback algorithms allows detection and maintaining 

forces down to 1 mN. This enables the usage of the small machining tool (100 µm diameter 

tungsten carbide cylindrical tool) to be used as an accurate profilometer to measure machined 

features within the same setup to an accuracy of 1 µm, enabling continuous three-dimensional 

control of the machined features. 

Drilling    Milling (2.5D)                     Cutting 

 

Figure 3.16. Versatile glass machining by SACE technology: drilling, milling and 

cutting by the same technology on the same setup. 

3.6. Spark Assisted Chemical Polishing (SACP) 

Reasonable quality of cut in glass by SACE technology can be achieved using the derived tool 

feed versus depth of cut model presented in sections 3.3 and 3.4. It was shown that highest quality 

machining could be obtained at low depth of cut. For instance, for a specific feed-rate (e.g. F = 40 

mm/min) and low depth of cut (p = 10 to 25 µm), the machining quality was similar for all applied 

machining voltages (30 V – 33 V – 35 V). In this case, cut surface roughness (Rz – peak-to-valley) 

of Rz ~ 25 to 50 µm could be obtained. In order to achieve higher quality of cut as required for 

high-precision glass applications a novel strategy - Spark Assisted Chemical Polishing (SACP) – 

was developed and is presented in this section.  

In SACP, the surface to be machined is approached with small increments (typically few 

microns) of the tool-electrode at very low voltage, achieving surface qualities (size of indents) in 

the order of a few microns. The resulting smooth surfaces are required for many applications and 

will dramatically increase the mechanical resistance of the machined glass against fracture by 

reducing the number of potential fracture sites on a smooth glass surface compared to a rough one. 
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Experiments were carried out to investigate the effect of a dual pass machining process 

whereby critical processing parameters were changed between an initial rough cut and a second 

polishing step (process parameters established by use of the derived model, Figure 3.10, in sections 

3.2 and 3.4). Parameters included applied potential to the tool-electrode U, feed-rate F, tool-

rotation ω, and distance between the tool and wall Δx and the displacement of the tool between the 

two passes. Figure 3.17 shows a schematic of this dual step process.  

 
                           A.                                                          B. 

Figure 3.17. Polishing approach by SACE to reduce the roughness of machined features in glass. 

Schematic showing SACE machining for an initial rough cut (A.) with applied voltage 

(Ur,high/Ur,low), feed-rate (Fr) and tool rotation (ωr). A subsequent polishing step (B.) entails 

displacement of the tool closer to the glass surface by distance Δx and processing parameters are 

changed for applied voltage (Up,high/Up,low), feedrate (Fp) and tool rotation (ωp). The relationship 

between processing parameters is as follows: Ur,high > Up,high, Ur,low = Up,low, Fr > Fp and ωr  ωp.  

The idea behind SACE polishing is to use low applied voltages in order to reduce the effective 

machining (etching) zone around the tool and to avoid thermal stresses and, in combination with 

a higher tool rotational speed ω, to produce a more uniform machining zone around the tool-tip, 

resulting in a smoother electrolyte flow to the glass surface. As seen in Figure 3.17, the machining 

zone around the tool is significantly smaller, so the tool position is adjusted by a distance Δx closer 

to the surface. As the etching zone is less energetic, the etching rate is slower, and the feed rate of 

the instrument had to be reduced by about half (feed-rate and machining voltage for a specific 

depth of cut were easily found by applying the models established in section 3.2). Specific details 

of the relation between the SACE parameters are given in the Figure 3.17 caption.  

Experiments were conducted with SACP method for varying pulsed polishing voltage 

amplitudes (high level), keeping the low level, period and duty cycle constant (respectively 17. V, 

ωr

Fr

Rough machining Polishing

ωp

Fp

Glass Glass

Δx

High energy 
input

Low energy 
input
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2.6 ms and 96.15 %) and for varying polishing gap Δx. The derived model (section 3.2) was used 

to relate a chosen tool feed-rate to a suitable depth of cut.  

Glass milling (Fp = 5 mm/min) with pulsed polishing voltage with high levels, ranging from 

22 V – 23 V – 24 V – 25 V – 26 V – 27 V – 29 V were carried out after a first rough cut (Fr = 15 

mm/min, Uhigh = 38 V), revealing that good polishing results are obtained by using Uhigh = 23 V 

(see Table 3.3). 

Table 3.3. SACP machining settings 

SACP - Pulsed Voltage Input 

 High Level Low Level Period Duty Cycle 

First (rough) step 38 V 17.5 V 2.6 ms 96.15 % 

Polishing step 23 V 17.5 V 2.6 ms 96.15 % 

 

Deploying this polishing voltage and according to the described procedure in Figure 3.17, a 

series of channels was machined adding for each new channel a distance Δx to the polishing steps 

after rough machining. Results of this SACP experiment are presented in Figure 3.18. It can be 

clearly observed that the channel sides are best polished when using Δx = 20 µm with intermediate 

polishing steps of 2 µm increments. Polishing for larger Δx causes slight over etching of the glass 

surface and does not contribute anymore to reducing surface roughness.  

Optical microscopic images for an overview of the glass polishing experiment is shown in 

Figure 3.19. The transition from rough machining (Rz ~ 20 µm) via intermediate polishing to final 

polishing of glass (Rz < 1 µm) is clearly observed. 

Scanning electron microscopy (SEM) images reveal smooth glass surfaces after SACP process 

in greater detail as shown in Figure 3.0 where a 300 µm thick glass slide was machined as micro-

hinge example. Note that the part magnified in the insert is the part of the work-piece which was 

polished. The outer rectangular shape was not polished, and one can clearly observe the change in 

surface roughness. As well, the detailed SEM image illustrates tiny (< 5 µm) stream (or flow) lines 

caused by the electrolyte flow around the glass cut during machining. 

It is interesting to evaluate as well the effect on machining time when using SACP process. 

The time to create a channel feature on a glass substrate can be estimated as:  
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𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 = 𝐿
𝑃

𝐹𝑟
+ 2𝑛𝐿

𝑃

𝐹𝑝
  (3.23) 

where L is the length of the feature, P is the number of passes required to achieve the set depth, Fr 

is the rough-cut feed-rate and Fp is the polishing feed-rate. Since the polishing steps have to be 

done multiple – n – times (approaching the side wall in small increments of 2 µm) and they have 

to be done on each side of a channel feature, it is multiplied respectively by n and 2 in (3.23). 

 

Figure 3.18. Experimental results of SACP process after rough SACE glass cutting (first image, machining conditions: 

Uhigh = 38 V, Ulow = 17.5 V, Fr = 200 µm·s-1 and ωr = 500 rpm) for increasing values of Δx. The polishing steps after 

rough cutting were performed at Uhigh = 23 V, Ulow = 17.5 V, Fp = 80 µm·s-1 and ωp = 1,000 rpm. Period and duty 

cycle between the Uhigh and Ulow were the same for both rough cut and polishing steps, 2.6 ms and 96.15 %, 

respectively. Scale bar in the image is 40 µm. 

This relation together with the previous developed cutting model (section 3.2) are valuable 

tools to quickly estimate the most time effective strategy for glass milling and cutting with high 

quality (low surface roughness). There are two different possible routes: 

Δx = 0µm       Δx = 2µm     Δx = 4µm       Δx = 6µm       Δx = 8µm       Δx = 10µm      Δx = 12µm

Δx = 14µm      Δx = 16µm    Δx = 18µm     Δx = 20µm     Δx = 22µm      Δx = 24µm     Δx = 26µm

40 µm
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1. carry out the glass machining only at low machining voltage and low depth of cut 

(determined by the F p model), resulting in reasonable qualities (Figure 3.) and requiring 

multiple passes depending on the feature depth to be achieved; 

2. use SACP strategy after a first quick and rough cut (high values of normalized heat power 

κ imply high values of F p) to obtain very smooth (Rz < 1 µm is possible) channel feature 

side walls. 

Trade-offs should be made, and best strategy depend on the feature geometry (e.g. depth) and 

required surface roughness that must be achieved.        

The capability to machine and polish the machined glass surface on the same machine, opens 

up new applications for SACE. For example, the mechanical strength of machined glass part is 

greatly enhanced as less flaws appear on the surface. As shown in Figure 3.0 it becomes possible 

to machine high precision, thin structures without damaging. Note as well the straightness of the 

machined surfaces where no taper angle can be observed. 

  

 

 

Figure 3.19. Microscopic images showing the transition from rough machining (Rz ~ 20 µm) via intermediate 

polishing to final polishing of glass (Rz < 1 µm) when deploying the developed SACP strategy.  

Rough cutting PolishedIntermediate polishing

20µm <1µm
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Figure 3.20. Scanning electron microscope (SEM) image of a SACE machined micro-hinge out of a 300 µm thick 

glass slide (A.Overview of machined hinge, B. Magnification of the polished curved cut). The curved cut (shown on 

inset and image B.) is polished by SACP after rough cutting following process parameters as presented in Table 3.3. 

Scalebar on the inset is 100 µm. 

3.7. Conclusions 

The developed model allows to predict the maximum depth of cut for a given tool feedrate, 

which eliminates time-consuming ‘trial runs’ before machining to determine the best cutting 

parameters, as no model relating these process parameters was available until now. Hence, this 

study significantly contributes to enabling use of SACE technology as an Industry 4.0 compatible 

process, e.g. for fabrication of mass-personalized glass parts. The model for cutting and milling 

process operations allows direct relation of the machining input parameters (e.g. voltage, feed-

rate) and the desired machining outcome (e.g. feature depth), enabling a higher degree of 

automation in the SACE process flow from client model to finished glass product in one 

setup/machine. 

• Cutting (and milling) parameters for tungsten carbide cylindrical tools (with 45° bevel) 

with respectively 100 µm and 200 µm diameter were determined for SACE process; 

• A model was presented relating the lateral tool feed-rate F to the maximum depth of cut p 

for a given machining voltage based on the assumption that machining is only limited by 

heat transfer in the workpiece and matches well the measured process data; 

• The proposed model, which correlates the machining input parameters to a desired 

outcome, was empirically validated, allowing further optimization of industrial 

100 µm

A. B. 
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implementation of SACE technology as no predictive model for SACE glass cutting 

existed before; 

• This model contributes in addressing the requirement of a high level of integration in the 

design to fabrication cycle for precision product manufacturing, which is essential for 

mass-personalization fabrication processes to reduce the machining overhead. A dramatic 

reduction of setup time by eliminating trial and error runs for process optimizing is realized 

by use of the developed model for glass cutting by SACE technology; 

• It is found, empirically and confirmed by a numerical transient heat model, that tools of 

100 µm diameter are optimal for glass micro-cutting by SACE technology: 

o Using larger tool diameters will rapidly decrease the heat source efficiency and 

subsequently reduce dramatically the machining speed (by factor 5 using a 200 µm 

diameter tool); 

o Deploying smaller tools (< 100 µm) will not contribute to increased efficiency as 

for 100 µm diameter tools cutting time becomes independent of the tool diameter; 

• It is shown that the usage of a force sensitive machining head is essential to prevent bending 

and/or breaking of such small (100 µm diameter) tools; 

• The significance of heat propagation through the glass workpiece as main limiting factor 

to determine the maximal machining speed was confirmed 

• The findings of the developed model and analysis for glass micro-cutting and -milling was 

used to investigate the possible routes for increasing MRR for SACE micro-cutting and -

milling: 

o Using small tool diameters are most efficient. This is the case for 100 µm diameter 

tool-electrodes (representing a disc heat source), lower diameters do not longer 

increase efficiency as then cutting time is independent of tool diameter; 

o Increase the normalized heat power κ. However, this result in poor machining 

quality (Rz > 50 µm), applying the developed SACP technology can partially solve 

this roughness issue. 

o For small and medium batch sizes (lots > 1) a multi-tool head can be deployed as 

effective strategy. 

• Cut quality was evaluated by optical and electronic micro-graphs for different machining 

voltages (high, medium and low voltage); 
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• An industrial grade force-sensitive SACE machining head (sensitivity ~ 1 mN) was 

developed (resulting in patent WO 2017/064583 A1 (2017) [60]. 

• A strategy was developed to reduce the surface roughness of cut (down to Rz ~ 1 µm) by 

introducing Spark Assisted Chemical Polishing (SACP). 

 

It can be concluded that issue – the lack of a model relating SACE process input parameters 

to MRR – of the current SACE method preventing its use as manufacturing process for mass-

personalization of high precision glass parts (section 3.1.2), is addressed by the contributions 

described in this chapter.  

The proceeding chapter 4 aims to address the remaining two essential issues  

– need of extensive calibration (alignment and run-out reduction)  

– need of part specific tooling 

of current SACE technology hampering its ability for mass-personalized manufacturing. 
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Chapter 4 

SACE technology offers high-precision micro-machining of glass. As SACE technology was 

developed to industrial maturity [224], it is still not well-suited for fabrication of batch size 1 

production of glass parts. Section 3.1.2 of chapter 3 discussed three main issues of current SACE 

technique hampering its use for such mass-personalization. Development of a model, based on 

heat propagation through the glass workpiece, relating input process parameters to desired 

machining results addressed the issue of lengthy trial runs before high machining quality could be 

achieved. This permits a drastically increase of automation across the manufacturing process 

workflow from desired (customer) design to establishing of machinable code containing all 

necessary manufacturing execution information (e.g. toolpath definition, machining voltage 

settings, feed-rate, depth of cut, machining time, achievable quality), which is key for suitable 

manufacturing processes for mass-personalization.  

However, two main issues remain in current (academic and industrial) SACE process 

restricting its ability for batch size 1 production: 

• Extensive calibration is needed for alignment between tool and workpiece and to 

reduce tool-electrode run-out (currently effected manually on the industrial machine); 

• Part specific tooling is required for precise clamping of the workpiece to obtain the 

required high precision and allowing a consistent, smooth electrolyte flow across the 

glass workpiece.  

This chapter introduces new strategies and developments, which can serve as solutions to 

overcome these issues. It aims to make SACE technology a suitable manufacturing process for 
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Industry 4.0. This chapter entails an essential part of the thesis research study by providing an 

overview of the process cycles by SACE technology for manufacturing of mass-personalized parts.  

The developed fabrication process addresses possible solutions to eliminate or reduce the key 

manufacturing cost drivers related to part design – 1) reduction of tooling costs, 2) elimination of 

time-consuming calibration procedures, 3) ability to fabricate complex structures with high 

precision, 4) reduction of process steps in the overall manufacturing cycle. Examples are given for 

complex machined structures on glass, which are flexible machined by SACE, for various fields 

of application. 

Note that technical details specifically on the developed in-situ fabrication method for tool-

electrodes can be found in [253]. 
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Abstract  

With the fourth industrial revolution manufacturing industry faces new challenges. Small 

batches of personalized parts must be produced in an economically viable manner. In this study, 
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we show the feasibility of an approach using Spark Assisted Chemical Engraving to achieve 

personalized parts of hard-to-machine materials like glass with a low-cost setup. Key is the use of 

low-cost rapid prototyping and in-situ fabrication of the needed tooling, eliminating high indirect 

costs and long lead times. This approach can be used for on-demand manufacturing of personalized 

high precision applications of glass such as smartphone covers, advanced medical devices or fiber 

optic telecommunications.  

 

Keywords: Industry 4.0; mass-personalization; glass micro-machining; Spark Assisted Chemical 

Engraving (SACE); rapid prototyping 

4.1. Introduction 

Manufacturing industry faces a new trend: mass customization, a term introduced in academia 

in 1970 [34], but only recently the market pull driven by shorter life-time cycles, increased 

complexity and the demand for individualized products attracted industry to this concept. Mass 

customization [33] presents new challenges: economical production of small batch sizes is 

incompatible with established manufacturing systems designed to produce large quantities of 

identical parts. Recently a new paradigm appeared as answer and was termed in Germany in 2011 

as Industry 4.0 [40, 254]. The key idea is a new type of manufacturing systems, smart factories, in 

which manufacturing entities communicate via the Internet of Things allowing higher flexibility, 

quicker adaption to new designs, technology options, and regulations and increased productivity 

[44, 255]. 

A first step towards mass customization is the assembly of individual parts to custom products 

such as done in several industries (e.g. automotive or consumer electronics industry [256]). In 

these cases, the shape of the sub-parts remains essentially the same and the final product is built 

out of individual modules. However, as the industry 4.0 paradigm will be implemented 

progressively across global companies, manufacturing industry must deal with situations where 

geometry of the sub-parts change as well. In this case the customer will not only choose from 

existing options but will be actively involved in the design. In such cases of mass personalization 

[39] new manufacturing technologies are required which can keep manufacturing overhead related 

to change of part geometries low. They need to address the issues of tooling costs (avoid part 
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specific tooling) able to handle complex parts and reduce production steps (eliminate overhead 

due for example to alignment or tool change). 

Additive manufacturing (AM) appears to be one of such technologies and is cited in literature 

as a solution to mass personalization [49]. Tooling costs are small as the machine builds them 

during manufacturing and very complex shapes can be produced. As such, AM appears as one of 

the corner stones of Industry 4.0. However, besides presenting its own challenges, AM will likely 

not be the sole manufacturing technology on which industry will rely. Other technologies able to 

work together or independently from AM (e.g. for materials that cannot be printed well such as 

glass) will be needed. Academia and industry just started to develop such technologies [52-54].  

Glass is entering new applications appearing in micro and nanotechnology like fibers, tactile 

screens and MEMS devices because of its transparency, chemically inertness, environmentally 

friendliness and its mechanical strength and thermal properties. In fact, no other materials being 

mass-produced have shown such qualities over so many centuries [70]. Further, glass is RF 

transparent, making it an excellent material for sensor and energy transmission devices. Another 

advantage of using glass in microfluidic devices [72] is its relatively high heat resistance, which 

makes these devices suitable for high temperature microfluidic systems [75] and sterilization by 

autoclaving. 

Unfortunately, due to its hardness and brittleness, glass is hard to machine and needs 

expensive tooling such as molds, masks (e.g. in wet etching), or specialized fixtures in the case of 

mechanical machining and polishing. Further, machining high-aspect ratio structures is still 

challenging due to long machining times, high machining costs and poor surface quality [81, 83].  

In this study, a novel approach for manufacturing of personalized parts in glass using Spark 

Assisted Chemical Engraving (SACE) is presented. This method allows on demand fabrication of 

high precision applications such as glass components for smart phones, advanced medical devices, 

green energy devices or fiber optic telecommunications. 
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4.2. Manufacturing principles and approach  

4.2.1.  SACE principles 

In SACE process (Figure 4.1.A), a voltage is applied between tool- and counter-electrode 

dipped in an alkaline solution [81]. At high voltages (around 30 V), the bubbles evolving around 

the tool electrode coalesce into a gas film and discharges occur from the tool to the electrolyte 

through it. Glass machining becomes possible due to thermally promoted etching (breaking of the 

Si-O-Si bond) [221].  

SACE has recently reached industrial maturity for mass-fabrication (Figure 4.1.B) [224]. 

Breakthrough was the implementation of a force-sensitive machining head allowing the use of 

ultra-thin machining tools (diameter down to 30 µm), applying force-feedback algorithms 

(detecting forces down to 1 mN) and usage of the head as profilometer to measure machined 

features within the same setup [60]. Nevertheless, it is not yet equipped for flexible manufacturing 

as required for mass-personalized products. Research and optimization is needed. For example, 

tooling (both electrode and sample holder/bath) and tool-substrate alignment are still cumbersome 

processes resulting in relatively long setup times. 

 

Figure 4.1. A. SACE process principle B. Developed industrial SACE machine [224]. 
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4.2.2.  Fabrication process cycle 

 

 

Figure 4.2. A. Process steps for fabrication of a client-specific workpiece in glass by SACE technology. B. 

Comparison of average process times for personalized glass parts fabricated by SACE using the conventional and new 

proposed method. 

In the presented study, an integrated approach is developed for fabrication of personalized 

glass devices by SACE (Figure 4.2.A).  The tooling, micro-sized cylindrical tool-electrodes and 

adequate sample holders, is manufactured on demand by flexible processes to meet requirements 

of low-cost personalization. One of the advantages to use SACE is the absence of high forces 

exerted on the tool and consequently the work-piece. Therefore, the tool-electrode can be 
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fabricated on the same setup as used for machining the workpiece and the sample holder can be 

manufactured by low-cost additive manufacturing, like Fused Deposition Modeling (FDM) [257]. 

The same digital design file is used for programming the machining trajectory and for designing a 

3D model of the sample holder. As discussed in section 4.3.2, the proposed tool fabrication 

method, calibrates the tool-electrode as well, i.e. the tool is aligned relatively to the workpiece and 

run-out is reduced, eliminating the need of a costly high precision spindle or subsequent alignment 

after each tool change. This methodology allows significant reduction of setup times (about 60% 

compared to the conventional approach). Figure 4.2.B compares the process time of the involved 

steps until the machine is ready to start with a first machining (i.e. converting client design file to 

machine code, design and fabrication of the needed tooling and subsequent machine calibration 

allowing the usage of the produced and mounted tools). Note that in the presented numbers it is 

assumed that all facilities to produce the tooling are in-house. This is usually not the case for the 

conventional approach where tooling fabrication is often outsourced, adding significantly more 

time. With the proposed approach, considering the low investment costs for tooling fabrication, 

this can now be done on demand in-house. 

4.3. Manufacturing process for custom glass parts 

Contrary to conventional manufacturing processes, like numerical control milling and turning, 

SACE makes use of heat promoted chemical etching of hard-to-machine materials as glass. 

Therefore, the process is characterized by low forces and consequently the only focus for tooling 

is its precision. Required mechanical strength and stiffness is small compared to tooling for 

conventional mechanical methods. 

4.3.1. Sample holder design and fabrication 

FDM is used for on-demand sample holder fabrication from acrylonitrile butadiene styrene 

(resistant to the corrosive machining environment). The holder can be straightforwardly designed 

using the geometrical data from the targeted workpiece to be machined (Figure 4.2.A). Here, the 

holder was printed by an Ultimaker 2+ and the layer thickness was set to 80 µm. 
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4.3.2. In-situ tool fabrication method 

Stainless steel tool-electrodes are demonstrated to be suitable for use in SACE technology 

[258]. For high precision fabrication of these tools and to eliminate misalignment of the tool 

bottom with respect to the substrate, an in-situ setup is developed on the same setup as used for 

micro-machining (Figure 4.3.A). The tool fabrication process, to reduce tool diameter and 

eliminate run-out, starts with mechanical grinding by a high-speed spindle (25,000 rpm) with an 

aluminum oxide abrasive wheel. The tool, mounted on the SACE machining head spindle, is 

rotated at low speed (500 rpm). Grinding takes place by moving the abrasive wheel slowly (10 

µm/s) towards the tool until the desired tool diameter is reached. Thereafter (while spindle still 

rotates) the tool is moved upwards at 100 µm/s. Monitoring of the grinding process is done by an 

USB microscope. Tool bottom-substrate alignment is done by mechanical polishing on the same 

setup. Fine grit size abrasive paper (1200 grit) is mounted on the same position as the workpiece 

and moved laterally when pressing the tool on it [221], therefore eliminating misalignment of the 

tool bottom.   

After grinding, the tool is subsequently electro-polished in an ethylene glycol + 0.9 molar 

sodium chloride solution at an anodic voltage of 20 V for a short time (40 s). Note that during the 

entire process the tool is never disassembled from the machining head avoiding alignment 

problems during the machining of the actual workpiece.  

Typical results of a mechanically grinded tool-electrode, achieving tool diameters down to 60 

µm, are outlined in Figure 4.3.B. The arithmetic average roughness Ra of the tool can be reduced 

to 70 nm by electro-polishing. This surface roughness reduction is important to obtain high 

resolution machined glass parts with good surface finish. Characteristic tool-electrode 

manufacturing time (including all steps) is ten minutes. 
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Figure 4.3. A. In situ microtool fabrication setup for glass micro-machining by SACE: tool fabrication starts with 

grinding followed by electro-polishing. B. 1) Misalignment correction of tool – substrate 2) Tool diameter reduction 

and run-out elimination. 

4.3.3.  Glass micro-machining examples 

Integration of all process steps results in manufacturing of personalized glass products. SACE 

machining of different features in glass like holes, channels, microfluidic mixers, though-glass-

vias, contour cutting and engraving of hardened smartphone cover glasses is achieved with high 

machining accuracy (typically with geometrical errors below 10 µm compared to the design of the 

customer). Results of this variety of glass applications, machined by SACE technology on demand, 

are presented in Figure 4.4.  

The typical machining voltage applied across tool- and counter electrode was pulsed voltage 

between a high voltage (32 V) and a low voltage 17.5 V) with period = 2.6 ms, and duty cycle = 
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96.15 %. During machining, the tool was rotated at 500 rpm and a feedrate of 200 µm/s was used. 

As electrolyte, 20 wt.% KOH was used in most cases. 

 

Figure 4.4. Examples of personalized micro-machining structures in glass by SACE process. 

4.4. Conclusions  

The results of this study show the feasibility of an approach using SACE to achieve 

personalized parts of hard-to-machine materials such as glass with a low-cost machining setup 

adding to novel manufacturing approaches fitting Industry 4.0. Key is the use of low-cost rapid 

prototyping technology and an in-situ fabrication method for the needed tooling, reducing costs 

and lead times compared to conventional SACE machining approaches. Traditional manufacturing 

techniques are typically optimized for one or few different operations, while hybrid technologies 

as SACE have a great potential to support manufacturing in the Industry 4.0 approach as they are 

flexible and can reduce the overhead associated with each specific manufacturing technique to 

allow mass personalization at reasonable cost. The presented manufacturing methodology is a 
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good example of process adaptation to satisfy changing requirements such as geometries or volume 

to achieve mass personalized goods. 

Besides these assets, the proposed method has some other significant advantages compared to 

traditional glass machining technologies, such as wet etching or abrasive jet machining: 

• The product design files can be used straight forward in the manufacturing process without 

the need of additional steps as e.g. layered masks in wet etching techniques; 

• Almost no restrictions for the desired geometry to be machined e.g. no taper restrictions as 

in abrasive jet machining; 

• 2.5 D structures in glass can easily be machined. 

This approach can be used for fabrication of high precision applications made of glass such 

as smart phones, advanced medical devices like Lab-on-Chip, green energy devices and fiber optic 

telecommunications. 
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Chapter 5 

Bonding, being the last and most critical step in most glass micro-device manufacturing (e.g. 

microfluidic chips) can be a main factor of failure of glass chip manufacturing. Especially, direct 

glass-to-glass bonding after micro-structuring features in glass remains a challenging task at batch 

size 1. Most often necessary intermediate steps between machining and bonding jeopardize one of 

the key requirements for batch size 1 manufacturing – reduction of processing steps in the 

manufacturing workflow. Large batch processes such as wet etching do not require extensive post-

processing steps before proceeding to bonding, however these batch processes are not appropriate 

for batch size 1 production by its parallel nature and complexity (e.g. requiring use of cleanroom, 

masking and extensive alignment operations). On the other hand, flexible technologies (e.g. Laser, 

mechanical machining) need extensive post-processing steps before bonding can be performed. 

Hybrid technologies as SACE are interesting to explore on its performance as machining step 

before glass-to-glass bonding. 

This chapter details the study on deploying SACE technology as machining step in the 

fabrication of packaged glass devices (glass-to-glass bonded). It is shown by fabrication of a 

simple microfluidic Y-mixer that using SACE machining eliminates a post-processing step after 

machining of the desired structure on a glass substrate for subsequent glass-to-glass bonding. This 

method provides a solution to reduce one of the manufacturing cost drivers – reduction of 

manufacturing process steps. Quality of the achieved glass-to-glass bonding is assessed both 

qualitatively and quantitatively by the razorblade insertion test, acoustic imaging (Sonoscan®), 

electron microscopy (SEM) and leakage testing by microfluidic mixing at high pressure. 
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Abstract  

Direct glass-to-glass bonding after micro-patterning in glass is often challenging, especially 

in the frame of rapid prototyping, as several special cleaning or other post-processing steps are 

needed before bonding is possible. In this study, we demonstrate that glass-to-glass bonding is 

possible directly after Spark Assisted Chemical Engraving (SACE) micromachining without any 

special post-treatments. This approach enables flexible prototyping of glass devices at relatively 

low cost, which is illustrated by fabrication of functional microfluidic devices. The machined and 

bonded glass device is evaluated both qualitatively and quantitatively on performance and shows 

good results.  

 

Keywords: glass-to-glass bonding; microfabrication; rapid prototyping; Spark Assisted Chemical 

Engraving (SACE); microfluidics 

5.1. Introduction 

Lab-on-a-chip (LOC) and other microfluidic devices are widely used in various research fields 

including life science and diagnostics [72, 92, 101, 110]. While there is a clear trend to use low-
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cost materials like PDMS for disposable devices, there is still a wide range of applications which 

demands glass as substrate material [75]. This is mainly because of its unique properties, like 

optical transparency, chemically inertness, well known surface chemistry, biocompatibility, 

thermal properties and mechanical strength.  

There is as well a need for rapid prototyping of such devices. Key challenges for fabrication 

of glass devices, particularly in low batch sizes, are machining, due to the hardness and brittleness 

of glass [83, 138] and subsequent bonding [259, 260] to seal the device. 

Bonding is the last and most critical step in microfluidic chip manufacturing, which can be 

one of the main factors resulting in failure of glass chip manufacturing [101, 259, 261]. Common 

methods for glass bonding include anodic [262], thermal fusion [262], and adhesion bonding [263], 

where each category represents a wide variety of techniques for specific applications. Successful 

glass bonding requires properly polished and clean surfaces (root mean square surface roughness 

< 0.6 nm [264]) without any irregularities [261, 265-267]. Intermediate steps are usually necessary 

after machining, jeopardizing the desired low-cost rapid prototyping approach. 

Parallel batch processes, such as wet etching [94], for machining relatively low aspect-ratio 

structures in glass are well established and do not present excessive difficulties for glass-to-glass 

bonding. However, when using flexible technologies for low-cost rapid prototyping of glass 

devices the bonding step becomes a major challenge [268]. Thermal processes like LASER are 

fast and flexible but form bulges near the machining zone in glass, which leads to bonding 

difficulties, making post process steps necessary [138, 267, 269, 270]. Mechanical methods, such 

as diamond tool drilling or powder blasting, have to deal with the issue that small glass debris or 

abrasive particles can easily stick to the glass substrate leading to bonding defects [118, 271]. 

Hybrid technologies like spark assisted chemical engraving (SACE) [81, 186] are interesting 

as they attempt to combine the advantages of each process to satisfy most requirements for low-

cost rapid prototyping of micro-structures in glass, which have to be subsequently bonded for 

device fabrication. In SACE technology, a voltage is applied between tool and counter electrode 

dipped in an alkaline solution. At high voltages (around 30V), the bubbles evolving around the 

tool electrode coalesce into a gas film. Discharges occur from the tool to the electrolyte through 

this gas film [186]. Glass machining happens by thermally promoted etching (breaking of Si-O-Si 

bonds) [221].  
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Bonding a glass cover on the top of a device micro-machined by SACE was not yet 

investigated and it is an open question if major intermediate steps are necessary before being able 

to successfully proceed to bonding. 

In this study, the bonding of two glass wafers directly after micromachining by a low-cost 

prototyping micromachining method (SACE technology) is investigated and it is shown that no 

major intermediate steps are necessary for successful subsequent glass-to-glass bonding. 

5.2. Materials and methods 

5.2.1. Rapid prototyping on glass: micromachining & bonding 

Four-inch square glass wafers Borofloat 33 from Schott® (thickness of 1.1 mm) with chemical 

composition 81% SiO2 | 13% B2O3 | 4% Na2O/K2O | 2% Al2O3 [272], a common material in 

academia and industry as substrate for microfluidic glass devices, were used.  

Micromachining of a simple microfluidic Y-mixer in glass is done by SACE technology [81] 

on a Microfor SACE from Posalux SA, Switzerland [224]. This versatile machine offers high 

precision glass micro-drilling, micro-milling, micro-cutting and micro 2.5D machining operations 

for rapid prototyping of glass devices (Figure 5.1.A).  The implementation of a force-sensitive 

machining head allows the use of ultra-thin machining tools (diameters down to 30 µm), applying 

force-feedback algorithms (detecting forces down to 1 mN) and usage of the head as profilometer 

to measure machined features within the same setup. 

SACE machining was done applying pulsed voltage (Uhigh = 35.00 V, Ulow = 17.50 V, thigh : 

tlow = 2.5 : 0.1 ms) and 30 wt.% sodium hydroxide was deployed as electrolyte. The tungsten 

carbide tool-electrode (Ø = 100 µm) was rotated at 1000 rpm. A feed-rate of 30 mm/min is applied 

for machining of the channels in two steps (depth-of-cut = 50 µm, final channel depth = 100 µm). 

The input and output holes for the mixer are drilled by SACE process in force-feedback mode on 

the same machine avoiding alignment issues and long lead (calibration) time. 

After machining, the wafers were rinsed with water to remove the electrolyte and then 

packaged and shipped to Micronit BV [273] for fusion bonding at high annealing temperature 

bonding. No additional steps (except water rinsing before bonding) were performed by Micronit 

BV. 
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Figure 5.1. A. Versatile glass machining by SACE technology: drilling, milling and cutting by the same technology 

on the same setup. B. Comparison of process-flow (number of process steps) from glass micromachining to die 

singularizing for single device fabrication between established flexible glass machining approaches such as thermal 

(e.g. LASER) and mechanical methods (e.g. powder blasting) and SACE technology. 

5.2.2. Bonding quality evaluation 

To evaluate the quality of the direct glass-to-glass bonding after machining, the fabricated 

device is assessed both qualitatively and quantitatively. Characterization is done for mechanical 

properties and uniformity across the total bonded surface.  

The bonding energy, as measure for the bonding strength of the bonded substrates, can be 

determined using a crack-opening method such as the razor blade insertion test [274, 275]. 

Therefore, a razor blade is inserted into the bonding interfaces and the crack propagation length is 

measured, which is used to calculate the bonding energy [275]. 

Presence of defects in the bonding such as delamination, voids and cracks are detected by 

Acoustic Microscopy [276] using Sonoscan® - Gen6™ C-Mode Scanning Acoustic Microscope 
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equipment. This non-destructive characterization method makes use of ultrasound to find hidden 

defects within materials. The high frequency (> 20 kHz) ultrasound signal propagates through 

solid and liquid materials, but will be fully reflected by air (i.e. pores) and largely deflected away 

by cracks or non-planar interfaces.  

Cross-sections of the channel are prepared by diamond saw dicing (MTI corporation, model 

SYJ-40-LD) and successive mechanical polishing on a Buehler grinder-polisher (MetaServ 250) 

with fine grit polishing paper (BuehlerMet II abrasive paper, grit sizes 800 - 1200) and diamond 

particle polishing fluid (Buehler MetaDi Polycrystalline Diamond Suspension - 1 µm). Results are 

investigated by electronic microscopy (variable pressure S-3400N Hitachi SEM) to examine the 

bonding qualitatively. 

Overall verification of proper functioning of the device without any leakage is performed by 

microscopic imaging (DLand 200x magnification USB microscope) of the device operating with 

DI water and coloured food dyes. Standard tube connectors are glued (2-component epoxy glue) 

on the inlets and outlet of the mixer, which are attached to two micropumps (NE-500 Syringe 

pump - New Era Pump Systems Inc.) for coloured solution supply. 

5.3. Results and discussion 

Comparison of the process-flow, with respect to the number of major process steps, from glass 

micromachining to die singularizing for single device fabrication between established flexible 

glass machining approaches such as thermal (e.g. LASER) and mechanical methods (e.g. powder 

blasting) and SACE technology are presented in Figure 5.1.B. The proposed glass device 

fabrication process using SACE technology eliminates the cumbersome and time consuming 

postprocessing step which is needed for the alternative flexible machining approaches.  

Assessment of the glass bonding strength was performed by the crack opening method. The 

bonded glass sheets (layer thickness = 1 mm) could not be separated by the razor blade (Wilkinson 

Sword Classic, thickness = 80 µm) insertion. Typical bonding energy values for weak hydrophilic 

SiO2 - SiO2 bonding are around 0.2 to 0.4 J/m2, while values around 1.2 J/m2 can be obtained 

upon subsequent annealing at T = 600 °C [264]. It can be concluded that the applied bonding 

exceeds both these bonding energy values as no separation was observed. 



 

104 

Acoustic microscopy imagining (Figure 5.2) confirms that no defects, such as voids, 

microcracks and delamination are present (they would appear as white structures on the image). 

Consequently, SACE process does not leave any particles or redeposited debris (forming bulges) 

on the substrate after machining, resulting in high quality direct (fusion) bonding without any 

required postprocessing (e.g. polishing) step after micromachining. 

 

Figure 5.2. Acoustic image (Gen6™ C-Mode Scanning Acoustic Microscope, Sonoscan) of the bonded glass mixer. 

The inset presents a detail at higher magnification of the bonded channels. 

Imagining of the cross section of the glass-to-glass bonded sample (Figure 5.3) by scanning 

electron microscope (SEM) reveals the good bonding quality of the cover glass onto the machined 

glass and confirms that no defects, such as bulges or debris near the entrances of the machined 

channel in glass, are present.  

10 mm

500 µm
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Figure 5.3. SEM micrograph (variable pressure S-3400N Hitachi SEM) of the cross-section of a direct glass-to-glass 

bonded SACE machined channel entrance. The inset shows one bonded channel entrance at higher magnification 

(scale bar = 50 µm).    

Finally, practical operation and functioning of the micro-mixer is tested by supplying coloured 

dyes to the inlet ports by syringe pumps. Figure 5.4.A depicts the microscopic image of coloured 

dye mixing along the channel.  No leakage was observed over the full range of syringe pump 

feedrates (0 – 2050 µL/s) corresponding to applied pressure drops of approximately 0 – 2.3kPa 

(based on channel dimensions - width = 320 µm - depth = 130 µm -  and applying Navier-Stokes 

equation [73]).  

A further example of a functional microdevice made out of glass by SACE technology is 

illustrated in Figure 5.4.B (design file) and Figure 5.4.C (fabricated glass device). This 

multilayered device consists of three glass layers (upper and lower layer thickness = 0.7 mm and 

middle layer thickness = 3.3 mm) with micromachined structures packaged together with fusion 

bonding by Micronit Microtechnologies BV [273]. All glass machining operations, including die 

singularizing (here: cutting) after bonding of the wafers, were performed by one single technology 

(SACE process) on an industrial Microfor SACE machine [224]. 

Cover glass

SACE machined glass

Glass-to-glass bonding
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Figure 5.4. A. Microscopic image of leakage-free coloured dye mixing (supplied by syringe pumps NE-5000, New 

Era Pump Systems Inc.) in the bonded glass channel. B. Design file for a multilayered microdevice. C. Fabricated 

functional multilayer microdevice of glass machined by SACE technology.   

5.4. Conclusion 

In this study, it is demonstrated that Spark Assisted Chemical Engraving (SACE) process is a 

promising method as rapid prototyping technology for glass device fabrication eliminating a 

process step in the manufacturing workflow from micromachining to die singularizing for single 

device fabrication out of a glass wafer. SACE process can do micromachining while leaving the 

glass surface intact such to allow subsequent direct glass-to-glass bonding. The glass surface 

remains defect-free after micromachining, leaving no bulges or redeposited material (debris) 

around the machined structure for successful subsequent direct glass bonding without any 

intermediate (post-processing) steps. This approach enables flexible prototyping of glass devices 

at relatively low cost, which is illustrated by fabrication of a functional microdevice. The machined 

and bonded glass device is evaluated both qualitatively and quantitatively on performance and 

shows good results for use in microfluidic applications. 
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Chapter 6 

With the great technological advancement in the micro-technology field, micromachining of 

various materials has become a key task. New demands are being placed on microfabrication of 

complex architectures in robust materials. Iterative design optimization in a timely manner – rapid 

prototyping – places challenges on fabrication technologies. As mechanical components of 

microsystems plastic parts or metallic micro components are often used [277, 278]. The role of 

glass in Micro-Electro-Mechanical-Systems (MEMS) and Micro-Optical-Electro-Mechanical-

Systems (MOEMS) has typically been limited to its integration into the final device-level product 

[110]. However, glass has several unique properties which can be exploited further for novel 

indirect applications in the micro-technology field, such as templates for hot embossing or tools 

(dies) for metal micro-forming techniques. Glass is interesting in these applications respectively 

mainly owing its low thermal expansion coefficient (3.25 µm∙(m∙k)−1 for standard Borofloat 33, 

SCHOTT)  and high hardness (433 HB for Borofloat 33 and 567 HB for Xensation, SCHOTT) and 

sufficiently high mechanical strength. These properties are important to limit deformations and 

meet the high precision (e.g. repeatability) demanded by these embossing and micro-forming 

processes. Sufficiently high fracture resistance of materials used in these applications is required. 

This depends largely on potential fracture sites [71], e.g. surface flaws, resulting in a demand of 

flaw-free, smooth surfaces of machined glass surfaces.  

Nevertheless, glass remains a hard to machine material and especially flexible manufacturing 

methods are challenging to deploy on glass, which is the main reason that glass has not yet been 

considered a viable candidate for the discussed applications.  
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This chapter provides detailed examples of fabricated tooling of glass providing interesting 

novel solutions to reduce indirectly the manufacturing cost drivers related to part design – 1) 

reduction of tooling costs and rapid prototyping of tooling, 2) reduction of calibration procedures 

by high-precision machining, 3) ability to create complex parts (e.g. 2.5D or 3D features on 

tooling), 4) reduction of process steps in tooling fabrication. 

SACE process is used as flexible manufacturing (i.e. rapid prototyping) technology for 

fabrication of consequently glass templates for microfabricated devices by hot embossing (section 

6.1 - Glass imprint templates by spark assisted chemical engraving for microfabrication by hot 

embossing), and for manufacturing of glass tools (dies) for micro-forming of metal micro parts 

(section 6.2 - Towards high precision manufacturing of glass tools by Spark Assisted Chemical 

Engraving (SACE) for micro forming techniques).  

In these sections, the use of SACE patterned glass templates for embossing of microstructures 

in thermoplastics and for micro deep drawing of metal sheets (thickness 25 µm) is demonstrated. 

This technique has the advantage of rapidly and accurately introducing features into glass 

substrates, with good control over all three dimensions. Optimization of the technique for 

generating the required smooth surfaces was demonstrated upon applying the developed SACP 

technology as detailed in chapter 3.  

Section 6.1. 

New rapid prototyping methods are needed for fast and error-free micropatterning in plastics 

[279], which are among the fastest growing materials for industrial and clinical MEMS 

components [280]. Established fabrication techniques such as milling, printing, ablation 

(sequential methods) and casting, injection moulding, hot embossing (template-based processes) 

have each their advantages and disadvantages defining its use for specific applications. Hot 

embossing has proven to be a market relevant technology (reduced energy consumption and 

residual thermal stress) for creating plastic micro-devices.  

However, commercially available imprint templates are expensive and time-consuming to 

make, limiting its use for rapid prototyping applications. The fabrication of imprint templates in 

new materials can open the door for rapid prototyping by hot embossing and a seamless transition 

to production-level runs for developed designs. Glass is an interesting option as imprint template 
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material, due to its good thermomechanical properties, but it is lacking machining technologies to 

flexible fabricate such templates with the required smooth surface and high-precision. In section 

6.2, the use of SACE machined glass templates for the embossing of microstructures in 

thermoplastics was demonstrated. This technique had the advantage of rapidly and accurately 

introducing features into glass substrates, with good control over all three dimensions. 

The presented approach provides a solution for fabrication of low batch-size polymer based 

micro-systems as of today the mold fabrication process is very expensive (cleanroom processes 

using complex masking and etching processes) for small batch-sizes. 
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Abstract  

As the field of microelectromechanical systems (MEMS) matures, new demands are being placed 

on the microfabrication of complex architectures in robust materials, such as hard plastics. Iterative 

design optimization in a timely manner—rapid prototyping—places challenges on template 
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fabrication, for methods such as injection moulding and hot embossing. In this paper, we 

demonstrate the possibility of using spark assisted chemical engraving (SACE) to produce micro 

patterned glass templates. The direct, write-based approach enabled the facile fabrication of 

smooth microfeatures with variations in all three-dimensions, which could be replicated by hot 

embossing different thermoplastics. As a proof of principle, we demonstrated the technique for a 

high glass transition temperature polycarbonate. Good fidelity over more than 10 cycles provides 

evidence that the approach is viable for rapid prototyping and has the potential to satisfy 

commercial-grade production at medium-level output volumes. Glass imprint templates showed 

no degradation after use, but care must be taken due to brittleness. The technique has the potential 

to advance microfabrication needs in academia and could be used by MEMS product developers  

 

Keywords: micro-fabrication; hot embossing; micro-machining; microfluidics; glass; 

thermoplastics; MEMS; spark assisted chemical engraving 

6.1.1. Introduction 

Micro electromechanical and micro optical electromechanical systems (MEMS and MOEMS) 

are poised to become a mainstream technology. One of the main developmental hurdles to 

overcome is devising new methods for fast and error-free micropatterning in plastics [279], which 

are among the fastest growing materials for industrial and clinical MEMS components [280]. 

Generally, fabrication techniques are either (i) sequential, such as milling, printing and ablation or 

(ii) template-based, such as casting, injection moulding and hot embossing, which create all 

features at the same time. Sequential methods can provide certain advantages, such as the straight-

forward formation of three-dimensional features and a seamless design to prototyping workflow. 

However, they are not suitable for either high-volume requirements or even low-volume outputs, 

if the designs are too complex or high-density. On the other hand, moulding approaches that use a 

template, can be fast and accurate and are, therefore, more likely to be suitable for market-relevant 

volume demands. In hot embossing, a polymer is heated to its glass transition temperature (Tg) and 

then formed into shapes based on contact with a microstructured template surface. It is similar to 

injection moulding, but differs in that complete melting is not required, which reduces energy 

consumption and residual thermal stress [281-285]. The replication process is straight forward, 
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whereas the challenge lies in the fabrication of the imprint template. Typically, commercially 

available imprint templates are fabricated in metals such as nickel, using one or a combination of 

the following techniques: mechanical machining [286], laser ablation [287] and/or electroforming 

[286-288]. Such templates are advantageous in terms of their durability and thermal properties, 

but they are expensive and time-consuming to make. To date, the growth of hard plastics in final 

MEMS devices has only been possible due to the economies of scale that are realized in high-

volume outputs, which can spread the cost of template development over many units. However, 

prototyping by hot embossing is still prohibitively expensive for complex designs requiring many 

iterations. Prototyping with lower cost techniques, such as casting polydimethylsiloxane (PDMS), 

is an option, but this will introduce new problems when switching fabrication modalities. 

Approaches for reducing the fabrication time and cost of the imprint templates by photolithography 

or by electroplating nickel through adhesive masks have been demonstrated, but both techniques 

have some limitations when considering the design aspect ratio and operating temperatures or 

feature resolution, respectively [282-289]. Furthermore, most of these approaches impose 

restrictions on the complexity of the design in the third dimension. So-called 2.5D templates can 

be achieved in multi-step fabrication processes, but this is time consuming, and requires 

specialized procedures. Recently, a new approach for producing 3D microfeatures in microfluidic 

channels has been shown, based on the control of embossing parameters to achieve controlled 

“partial” embossing, but the technique is still new and requires optimization [290]. The fabrication 

of imprint templates in new materials can open the door for rapid prototyping by hot embossing 

and a seamless transition to production-level runs for developed designs. 

Literature reports on glass as an imprint template for polymer embossing are quite limited 

[291, 292]. One of the main reasons that glass has not been considered a viable candidate for 

microembossing is due to the difficultly in its microscale patterning. Thermal etching based on 

femto-second laser processing can create features with a sub-micron resolution, but the equipment 

required is expensive and involves extensive set-up optimization. The preferred method for 

micropatterning glass is wet or dry chemical etching techniques. However, etching rates are slow 

and realizing 3D structures is not straightforward [110]. Mechanical machining is complicated due 

to the hardness and brittleness of glass. It is also difficult to achieve high-aspect ratio structures 

and is slow, costly and results in poor surface quality [81]. Alternative machining approaches, such 

as glass moulding techniques (e.g., glass reflow), make use of a high temperature step to reflow 
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the glass into a micro-patterned silicon mould. However, multiple fabrication steps are needed 

(heating, lithography, patterning, vacuum cavities), processing times are very long and narrow 

patterns are complicated to achieve [82, 293, 294]. 

Recently, spark assisted chemical engraving (SACE) has been demonstrated as a promising 

approach for rapidly generating smooth, high aspect ratio 3D micro-structures in glass [81]. In this 

approach, a voltage is applied between a tool microelectrode and counter electrode, which are 

immersed in an electrolyte solution [81, 99]. The electrolysis of water under an electrical potential 

(DC or pulsed voltage), causes bubble formation around the tool electrode. An electrical discharge 

passes through the gas, and is largely localized to its tip, where the electric field is highest. Thus, 

the machining of nearby glass surfaces becomes possible due to thermally promoted hydroxide 

ions, which cause the localized breaking of Si–O–Si bonds [81, 221]: 

2NaOH + SiO2 → Na2SiO3 + H2O    (6.1) 

More detailed information on the etching of silica glass in the presence of OH-containing 

electrolytes, can be found in the literature [70, 295, 296]. 

With the proper choice of processing parameters (temperature [221], voltage [192], electrolyte 

type, and its concentration [81, 99]), SACE can be optimized to rapidly produce smooth micro-

structured glass features with shape control in three-dimensions. Relative to other techniques, it 

has high machining speeds (cm·s−1), a range of target materials (glasses [297], ceramics [298], 

and composite materials [299]) and is low-cost [81]. Thus, for the purpose of this work, SACE 

was selected as a method for producing imprint templates in glass for the testing and development 

of a new method for microfabrication applications requiring rapid prototyping in thermoplastics 

by hot embossing. The utility of glass templates was tested through the replication of micro 

features, including drill holes and channels with different depths and surface finishes. 

6.1.2. Materials and Methods 

Consumables included polycarbonate (PC) (Lexan 9034-112, Sabic Polymershapes, 

Brampton, ON, Canada), polypropylene (PP) (PolyPrime, Coquitlam, BC, Canada), cycloolifin 

polymer (COP) (Zeon, Zeonex, Louisville, KY, USA), polymethyl methacrylate (PMMA) 

(Plaskolite, Optix, Columbus, OH, USA), polystyrene (PS) (McMaster Carr, Elmhurst, IL, USA), 
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polydimethyl siloxane (PDMS) (Sylgard184, Dow Corning, Midland, MI, USA), glass 

(borosilicate, square 50.8 mm, thickness = 3.175 mm, Corning Inc., Corning, NY, USA), 

potassium hydroxide (KOH Cas 1310-58-3, Cayman Chemical Company, Ann Arbor, MI, USA), 

tool-electrodes (tungsten carbide cylinders, diameter=100 µm, Posalux SA, Biel/Bienne, 

Switzerland), and Trichloro (1H,1H,2H,2H-perfluorooctyl) silane (Sigma-Aldrich, Oakville, ON, 

Canada). 

Milling designs were created using computer-aided design software (AutoCAD 2015, 

AutoDesk San Rafael, CA, USA). Glass machining was conducted using an industrial SACE 

system (Microfor SACE, Posalux SA, Biel/Bienne, Switzerland) and a home-build lab SACE set-

up (SACE1, Electrochemical Green Engineering Group, Concordia University, Montreal, QC, 

Canada). A universal motion controller (XPS-C4, Newport, Irvine, CA, USA) was used to program 

the x,y,z axes. z-Direction control was achieved by a proportional–integral–derivative (PID) 

control loop using an optical sensor and voicecoil actuator on the machining head. 

Embossing was accomplished using a converted hydraulic press (Model 3851-C Carver Inc., 

Wabash, IN, USA) with ±1 °C temperature control, compressed gas cooling was applied to the top 

and bottom platens, and ±0.05 MPa pressure control was applied between the platens. Embossing 

was conducted inside a custom compression chamber that was placed between the top and bottom 

platens, with leads for gas exchange and vacuum control. The temperatures inside the embossing 

chamber were determined to be 4–6 °C lower than the platen set values. No determination of the 

real pressures applied to the embossing tool and plastic substrate was made, but it was estimated 

to be between 0.2 and 0.4 MPa lower than the value determined by the external pressure gauge. 

Evaluation of the microfeatures on the embossing template and embossed polymer substrate 

was conducted using optical profilometry (Veeco NT 1100, Veeco, Plainview, NY, USA) and 

optical microscopy (Olympus BX41, Olympus, Center Valley, PA, USA) was combined with the 

application of a charge-coupled device (CCD) camera (EvolutionTM VF, Media Cybernetics Inc., 

Silver Spring, MD, USA) using ImagePro software. Root mean square (RMS) roughness was 

conducted on optical profile images using the plugin “Analyse Stripes” in the open source software 

ImageJ (software developed by contributors worldwide). 
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6.1.3. Results and Discussion 

6.1.3.1. Mould Fabrication Using SACE 

6.1.3.1.1. System Operation 

The electrochemical cell, containing the electrolyte (typical NaOH or KOH), counter electrode 

(stainless steel 316L, Advent Research Materials, Oxford, UK), and the target glass substrate, was 

mounted on an x,y stage (resolution, 1 µm), whereas the axial movement of the electrode tool 

(tungsten carbide) was performed on a high precision z-stage (resolution, 1 µm). High accuracy 

tool tips, with diameters of 100 µm, were used to enhance machining accuracy and resolution. In 

addition, tool rotation was implemented by a dc brushless motor, added to the z-axis stage to 

improve the uniformity of electrolyte flow around the tool, thus increasing the quality of the 

machined features. When high voltages (around 30 V) were applied between the counter electrode 

and the tool, the bubbles evolving around the tool electrode coalesced into a gas film, and electrical 

discharge was emitted from the tool and passed through the film to the electrolyte, as illustrated in 

Figure 6.. Usually, the voltage is pulsed between a high voltage (between 28 and 40 V) and a lower 

voltage (typically 17.5 V), with a period = 2.6 ms, and a duty cycle = 96.15%, in order to limit 

temperature buildup. The machining conditions for the SACE process of glass mould fabrication 

are denoted in Table 6.1. 

 

 

2NaOH + SiO₂ → Na₂SiO₃ + H₂O

• High temperature etching
• Temperature in machining zone: 200  C –600  C

A. B. 
SACE machining 
head (on z-stage) 
• Force sensor 

• Electrode (−) 

• Spindle (rpm) 

Electrochemical cell + glass 
substrate 

(mounted on xy-stage) 

Electrolyte 
(NaOH/KOH) 

Function generator + power 

Control Electronics (Dspace) 

(+) 

(−) 
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Figure 6.1. A. Laboratory spark assisted chemical engraving (SACE) versatile glass micromachining 

setup. B. Chemical mechanism responsible for the localized degradation of the SiO2 network at the 

SACE tool tip (blue). C. Image of the industrial Microfor SACE machine (Posalux SA) used in this 

work with inset showing a close-up of the machining zone. 

Table 6.1. SACE machining conditions. 

Feature Machining 

Mode 

Electrolyte Pulsed Voltage Input 

High Level Low Level Period Duty Cycle 

Channels/lines 

Constant 

depth-of-cut 
(50 µm) × n 

20 wt % KOH 36 V 17.5 V 2.6 ms 96.15% 

Holes 
Gravity feed 

drilling 
20 wt % KOH 36 V 17.5 V 2.6 ms 96.15% 

6.1.3.1.2. Control over 3D Structure 

The developed industrial SACE machine offered high precision glass micro-drilling, micro-

milling, micro-cutting and micro 3D machining operations (Figure 6.2), while leaving the glass 

surface intact to allow subsequent glass-to-polymer templating. The implementation of a force-

sensitive machining head with force-feedback algorithms could detect and maintain forces as low 

as 1 mN. This enabled the usage of narrow machining tools without bending or breaking, and 

secured its usage as an accurate profilometer for measuring machined features within the same set-

up to an accuracy of 1 µm, enabling continuous three dimensional control. 

Machining head
(profilometer)
mounted on 
XYZ-stage

Cell
(electrolyte –
typical 30%wt. NaOH)

Tool electrode
(rotating)

Glass sample

C. 
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Figure 6.2. A graphic highlighting 3D drilling, milling, and cutting machining operations performed on the same glass 

substrate. 

6.1.3.1.3. Surface Smoothness for Hot Embossing Applications 

The SACE milling technique can be optimized to improve the surface uniformity of the etched 

features. This enhanced surface quality was achieved on the industrial Microfor SACE machine 

(Figure 6..C). It is proposed that a smoothed edge will have two positive effects for the present 

application of hot embossing. First, reduced surface area on the smoothed feature side walls, will 

reduce the friction between the template and plastic substrate during de-embossing, thereby 

lowering the force required to separate them. Second, there will be a reduction in the number of 

potential fracture sites on a smooth glass surface, in comparison to a rough one. Together, these 

factors should strongly improve the quality of the embossed features and the longevity of the 

imprint template, by reducing the chance of damage during de-embossing. 

For the purpose of this study, SACE process parameters were chosen in order to reduce the 

surface roughness of the cut side walls. It should be noted that surface smoothness optimization 

experiments are ongoing, and the results presented in this paper are based on preliminary results 

produced when using the Microfor SACE machine (Posalux SA). To evaluate the smoothness of 

the machined side wall, a measurement was made for the surface distance index (SDI), which is 

defined as:  

SDI = ds/d sl     (6.2) 

where ds is the total path length, including wall roughness, between two points along the 

machined edge and dsl is the distance of the straight line between the end points. 

Drilling 3D Milling Cutting
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SACE optimization reveals a SDI improvement of 0.089 (i.e., about 9%), based on a measured 

SDI of 1.098 for the fast rough cut (Figure 6.3.A.), and an SDI of 1.009 for the optimized cut 

(Figure 6.3.B.). These correspond to a RMS surface roughness of 3.77 and 1.13 µm, respectively. 

  
A. B. 

Figure 6.3. Top-view microscope images of example surfaces 

after SACE milling: a cut made with the lab set-up (A.). and a cut 

made on the industrial Microfor SACE machine (Posalux SA) (B.). 

Scale bars are in 50 µm. 

6.1.3.1.4. Fabrication and Evaluation of a Glass Imprint Template 

To demonstrate the approach for hot embossing, glass imprint template moulds were 

fabricated, containing features for analysis, including drilled holes and channels (Figure 6.4). 

Additionally, other features were added to subsequent glass templates, including spiral patterns, 

rings, and crosses. Due to the flexibility in prototyping, the features had a range of depths, ranging 

from 50 to 750 µm on the same glass substrate, leading to aspect ratios of between 0.2 and 3.0. 

While the technique has been used to create aspect ratios of 10 or higher [81], we chose to work 

with smaller values in order to demonstrate the technique without complications related to de-

embossing high aspect ratio features. For a comparison of the feature quality after a polishing step, 

a series of channels were fabricated using the same protocol as above. 

Features were analysed using a combination of optical profilometry and cross-sections in 

replicates of the glass mould, which were easier to cut and examine. To achieve the latter, a double 

replication process was undertaken, resulting in a positive PDMS part which could be cross-

sectioned with a blade and viewed with a regular transmission light microscope. The replication 

process started by casting PDMS against the glass mould. This formed a negative of the glass 
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mould. Then, a second replica was formed by casting PDMS against the first, to create a positive 

replica. In each replication stage, the casting surface was silonized to enable separation of the parts. 

   
A B C 

Figure 6.4. A schematic from the CAD file (A.). that was used to produce the glass template by SACE 

milling for this work (B.). Highlighted regions include drill arrays (red box 1–4) and trenches (“a”– “f”, 

“A”, “B”). A schematic showing a double replication procedure of the original template (black) for 

producing positive replicates in PDMS (white) (C.). 

6.1.3.1.5. Time to Create a Stamp 

The time required to create a channel feature on the glass substrate was not a key optimization 

parameter in this study. Instead, focus was placed on achieving features with low surface 

roughness (< several microns). Nevertheless, it is instructive to evaluate this parameter as a 

benchmark for future optimization. As an example, the features a, d, and f, shown in Figure 6.4.B., 

required 21 min, 23 min, and 25 min, respectively, based on their length (L = 5 mm), number of 

passes (depth-of-cut per pass = 50 µm) required (Pa = 2, Pd = 8, Pf = 12) and additional 

optimization steps. Therefore, it is reasonable to conclude that a complete new master, with 

significantly higher complexity, could be fabricated in under a day. This is nearly an order of 

magnitude faster than current methods, before having considered the arbitrary SACE ability to 

make 3D features at the same time. Chemical methods, such as deep reactive ion etching (DRIE) 

etching and wet etching, have very low etching rates, with average rates of 0.01 and 0.1 µm·s−1, 

respectively. Moreover, they need cleanroom facilities and require additional sophisticated 

masking steps. In addition, wet etching (standard masking procedures) limits the achievable aspect 

ratio to one. Mechanical methods, such as drilling and milling (feed rates around 100 µm·s−1), and 

powder blasting (feed rates around 1 µm·s−1), have feed rates which are similar to, or faster than, 

SACE technology. However, machined surfaces suffer from high surface roughness and 

10 mm 
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microcracks. It is uncertain whether such glass surfaces could work for repetitive cycling through 

hot embossing steps. Thermal processes, such as ultra-short laser technologies (e.g., Femto-second 

laser), have increased feed rates (around 10–10,000 µm·s−1), however, these technologies need 

extensive set-up optimization and are expensive. The use of a hybrid technology such as SACE 

seems to be an appropriate choice for the rapid prototyping of glass moulds. 

6.1.3.2. Use of Glass Moulds as Imprint Templates for Microfabrication 

6.1.3.2.1. Glass Properties 

Table 6.2 compares relevant glass properties with other materials used for hot embossing 

templates. The most widely used material is Ni, which has a low thermal expansion, high thermal 

conductivity, and good mechanical properties. However, the cost and time required to produce Ni 

imprint templates is substantial, rendering it ineffective for prototyping. In searching for 

alternative materials for embossing templates, researchers have looked to polymeric materials, 

such as PDMS, photoresists and epoxy resins. The major drawback of these materials includes 

poor thermal conductivity and high linear expansion coefficients. Their hardness is also generally 

much lower than that of Ni, even with process optimizations [300]. Low hardness can lead to 

blemishes in the template from microscopic dust and debris, thereby limiting their practical life-

times. In addition, fabricating 3D structures is challenging. 

Glass is an interesting option, due to its good thermomechanical properties. First, glass is 

superior to all other options in terms of its low thermal expansion. Hardness prevents degradation 

of the template [301]. Glass and polymer-based template materials all suffer from low thermal 

conductivity. This means that overall embossing times can be longer than those of metal stamps. 

However, the difference is in terms of minutes, which is not significant for low and medium 

production levels. Fracture toughness is related to material brittleness and is a measure of a 

material’s ability to resist cracking. It is one of the most relevant mechanical properties for hot 

embossing. In glass, this is affected by ion type and concentration [302, 303]. The low fracture 

toughness of glass is its greatest drawback for hot embossing applications. However, as discussed 

later, this problem can be overcome by following certain fabrication protocol. 

  



 

120 

Table 6.2. Comparison of relevant properties for different hot embossing template materials. 

Material Linear Temp. 

Expansion 

Coefficient  

(µm∙(m∙k)−1) 

Thermal 

Conductivity  

(W∙(m∙k)−1) 

Hardness  

(GPa) 

Fracture 

Toughness  

(MPa∙m1/2) 

Tensile 

Strength  

(MPa) 

Compressive 

Strength  

(MPa) 

Glass borosilicate 

(toughened) [304] 

4.0 1.05 6.2 [305], 

[306] 

0.7 [307] / 2 

[308] 

30/200 1000 

PDMS  
(Stylgard 184) [309] 

310 0.15 [310]  N/A 1 - 7 [311] 2–50 

Photoresist  

(SU-8 series) [312] 

52 0.2 0.3 [313] - 73 - 

Epoxy resins [314] - - N/A2 [314], 

[315] 

400 70 [316] - 

Ni 13.0 91 6.3–11.8 100–150 - - 

1 The elastomer PDMS has a measured hardness of 50 in the Shore A scale, a scale ranging from 1 to 100 for 

the softest polymer materials; 2 the resin elastomer Conapoxy has a measured hardness of 90 in the Shore D 

scale, a scale ranging from 1 to 100 for the hardest polymer-based materials. 

6.1.3.2.2. Embossing Protocol 

Due to the non-zero water absorption by most thermoplastics used here, films (0.5 mm) were 

first dehydrated before embossing, by pre-heating in an oven at roughly 80 °C for td = 40–80 min. 

The glass imprint template was then loaded with its features facing up, onto the bottom side of the 

custom embossing chamber, which was itself on the bottom platen of the hot press. The 

thermoplastic material was placed on top of the glass template (Figure 6.5.A). Following this, the 

chamber was closed and a vacuum was applied, while the system heated to an embossing 

temperature Te. An embossing pressure (pe) was then applied, which forced the heated polymer 

into the machined cavities in the glass template (Figure 6.5.B). After two minutes, the system 

temperature was reduced to the de-embossing temperature (Td), followed by the breaking of the 

vacuum and the separation of the moulded plastic from the template (Figure 6.5.C). Relevant 

thermal properties, as well as the embossing parameters for different thermoplastic materials, are 

given in Table 6.3. 

Table 6.3. Material properties and embossing conditions for materials used in this study. 

Material Material Properties Embossing Conditions 

Tg 1  

(°C) 

Tm 1  

(°C) 

td 2  

(min) 

Te/Td 3  

(°C) 

Pe 4  

(PSI) 

te 5  

(min) 

COP 138 210 50–100 150/130 70 5 

PMMA 113 160 75–90 145/80 130 5 

PC 149 155 40–80 175/145 150 5 

PS 101 240 70–80 115–125/100 120–130 5 

PP −6 164 N/A 145/100 150 5 
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1 Tg and Tm are the glass transition temperature and melting point, respectively; 2 td is the material 

dehydration time as recommended by the manufacturer; 3 Te and Td are the embossing and de-

embossing temperatures, respectively; 4 p is the embossing pressure which is held for 2 min; 5 te is 

the temperature stabilization time at the embossing temperature before pressure is applied. 

To demonstrate the robustness of the technique, we carried out replication on PC, which had 

the highest Tg of the test materials used in this study. Figure 6.5.D,E. show the images of certain 

features on the glass template and the results from the embossed PC. The glass template features 

included (i) drill holes, (ii) channels and (iii) curved shapes (Figure 6.5.D.). All template features 

(i) and (iii) were fabricated with a home-build instrument, whereas (ii) was produced on the 

commercial SACE instrument to achieve low surface roughness. 

 

Figure 6.5. The process of embossing includes (A) putting a polymer sheet in light contact with the glass 

template while the system temperature is elevated to Te. (B) After stabilization of temperature, embossing 

pressure is applied and the heated polymer conforms to the template bas-relief features. (C) After cooling to 

Td, the master is separated from the patterned polymer. Optical profilometry of (D) features on the glass 

template and (E) the embossed PC substrate for vertical drill holes (i), straight trenches (ii), and spiral pattern 

(iii). Red and blue colours show raised and recessed surfaces, respectively. Inset figures for straight trenches 

in glass and the corresponding embossed PC were acquired from microscopy of cross-sections. Scale bars for 

template images (D) are each 1 mm and common for the corresponding image in (E). 
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6.1.3.3. Repetitive Embossing Using a SACE Imprint Template 

Lastly, we determined the fidelity of the technique under repeated use. Generally, the number 

of fabrication cycles during prototyping is three [317]. In order to demonstrate that glass moulds 

can exceed the durability required for prototyping purposes, 11 embossing cycles were undertaken 

on PC, for three designs (from Figure 6.4), each with different dimensions. After each embossing 

cycle, the feature height (h), width (w) and root mean surface roughness (Rq), were measured, 

from optical profilometry results. Table 6.4 shows the summarized results for the embossed 

substrates after cycles one, five and eleven. These are compared to the same parameters in the 

glass imprint template. Reproducibility was good for smaller features but became less certain for 

larger structures. While optimization is required, we note that lower tolerances may be acceptable 

for larger features. 

6.1.3.4. Discussion 

The role of glass in MEMS and MOEMS has typically been limited to its integration into the 

final device-level product [110]. Until now, the idea of using glass as a template surface for high 

energy fabrication processes like hot embossing, has been presented as little more than a curiosity. 

Of the two major challenges in accomplishing this, brittleness and difficultly in surface patterning, 

it is our opinion that it is the latter which was the true road block. With new glass microfabrication 

methods like SACE, this can be overcome. The question then turns to proper utilization of the 

glass template, to ensure suitable longevity for MEMS prototyping output levels, at least. Here, 

we discuss some guidelines that were developed for achieving this goal, followed by suggested 

avenues for further development. 

First, the concern of brittle glass templates that can crack during use, is both justified and 

avoidable. Contrary to our initial direction, however, thick glass templates can actually cause more 

problems than they solve. Apart from the practical problems of incorporating a thicker-than-usual 

template into embossing apparatus, the low thermal conductivity of thick glass samples 

necessitates longer warm-up times. Failure to do so can result in improper embossing, due to 

lower-than-expected temperatures. Worse, the application of pressure before the temperature has 

been stabilized can result in template failure due to temperature gradients. Furthermore, the 

common application of a flexible pad, used to redistribute pressure gradients from misaligned 
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platens, should be avoided with glass templates. In fact, pressure gradients are acceptable as long 

as the template is held fast and supported at all points. Thus, placing the template against a solid, 

smooth surface, such as the embossing chamber floor, is ideal. In this case, dust and other small 

particles must be carefully removed. 

In order to complete a rapid transition to the volume-level production after prototyping, the 

two phases should mirror each other as much as possible. Using hot embossing during prototyping 

is an asset in this case, but the imprint templates should also be similar. For example, taking 

advantage of the 3D writing capabilities of SACE for prototypes, will not translate well to volume 

production phases, if a more robust template material is required, necessitating its redevelopment 

of the fabrication protocol with new methods. Here, we look forward to new opportunities for 

using a SACE-produced glass template as a master from which to directly produce more robust 

templates, such as the casting of epoxies. Lastly, the technique demonstrated here is well-suited 

for the accurate removal of small amounts of glass material. As the replication process produces 

inverse geometries, protrusions are easily fabricated by embossing, whereas depressions are more 

difficult. Identifying and overcoming these and other limitations should be contemplated in order 

for glass imprint templates to find their place amongst the new wave of emerging microfabrication 

techniques. 

6.1.4. Conclusions 

In this work, the use of SACE milled glass templates for the embossing of microstructures in 

thermoplastics was demonstrated. This technique had the advantage of rapidly and accurately 

introducing features into glass substrates, with good control over all three dimensions. 

Optimization of the technique for generating smooth surfaces was demonstrated using a new 

commercially available SACE machine. With proper care during embossing, the use of glass 

templates provides a viable alternative to expensive and time-consuming template fabrication 

methods. Here, it is demonstrated that repeated embossing cycles (n > 10) generate samples with 

minimal variation in their features from run-to-run, especially for small features. This preliminary 

work opens the door to further developments that can significantly reduce the time and cost 

required for the production of microfabricated plastic parts. 
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Table 6.4. Embossing results for substrates after embossing process cycles one, five and eleven. 

Feature Glass Template 1st  

Embossing 

5th  

Embossing 

11th  

Embossing 

Feature Statistics  

Line a, d, f 

Name d Image d w Rq d w Rq d w Rq d w Rq Average d, w, Rq 

Line a 50 

 

42 251 6.9 42 237 5.3 42 239 3.5 41 239 3.1 

 

Line d 350 

 

361 318 8.8 362 316 8.8 358 313 5.0 359 312 8.4 

 

Line f 550 

 

565 457 11.6 556 471 18.5 560 491 9.4 554 451 6.2 

 

All dimensions (d, w, Rq) are in micrometers. Image resolution in the z-direction was ±4 µm. 
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Section 6.2. 

Metal forming processes are often used for producing metal parts especially for large volume 

production runs. Micro-forming techniques are used in the case of high-precision submillimeter-

sized parts. Challenges in metal-forming processes are development of robust, adaptable and 

intelligent forming processes, which are able to react to unforeseen disturbances and as such could 

be added to the list of flexible high-precision manufacturing processes for mass-personalization. 

Research studies aiming to address this challenge by development of self-correcting forming 

processes are reported by [86]. Another challenge to address is the fabrication of molds in hardened 

metals as limited technologies are currently available. Mostly because of the strict requirements 

on uniformly machined feature entrances required for high quality forming process performance. 

The presented work aims to add possibilities of real-time measurement of the micro forming 

process for enhanced process control by fabricating optical transparent molds of (hardened) glass, 

offering in-situ monitoring of the metal micro-forming process, which provides more insights in 

this deep-drawing process for its further understanding and optimization. In addition, this study 

contributes to address the issue of fabricating uniform and smooth feature (here submillimeter 

holes) entrances on hard materials (here glass) for forming dies.  

The presented study shows the feasibility of this approach of using glass dies, machined by 

SACE technology, for metal micro-forming and further research is ongoing to conduct 

experiments on optical visualization of metal micro forming behaviour using the fabricated 

transparent glass molds. 
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Abstract  

Micro deep drawing is well suited for the production of small metal parts in high quantities. Due 

to size effects the down scaling of the process leads to higher geometry deviations of the forming 

tools and a change in tribology resulting in a smaller process window compared to the macro scale. 

Spark assisted chemical engraving (SACE) of silicate glass provides an efficient way for rapid 

prototyping glass tools with smooth surfaces (Rz < 1µm), high aspect ratio (<10) and high accuracy 

(~1µm). In SACE technology, an electrochemical process heats a tool-electrode which promotes 

local etching of the glass substrate.  

In this study the potential of such tools for micro deep drawing is investigated. Dies with a diameter 

of 1 mm are produced by SACE technology and characterized by microscopy and micro deep 

drawing experiments. It is shown that these tools can be used for deep drawing of blanks made of 

steel 1.4301 with an initial thickness of 25 µm. Due to the optical transparency of the material 

these glass tools provide great potential for an in-process observation during the forming step and 
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a better understanding of the micro deep drawing process. In addition, high precision dies can be 

achieved with high process flexibility and with uniform, smooth hole entrances increasing the deep 

micro deep drawing process performance. This results in repeatable metal part manufacturing by 

micro forming.  

Keywords: Micro deep drawing, advanced manufacturing, micro forming, spark assisted chemical 

engraving (SACE), glass micro-machining, in-process characterization 

6.2.1. Introduction 

With the great technological advancement in the micro-technology field, micromachining of 

various materials has become a key task. As mechanical components of microsystems plastic parts 

are often used and their manufacturing in the micro range is already well studied [277]. Metallic 

micro components offer an interesting alternative due to considerably different material properties. 

These components can be produced in high quantities at relatively low cost per part by forming 

processes such as micro deep drawing. However, the downscaling of conventional forming 

processes to the micro scale leads to new challenges [278]. Therefore, improvement and research 

of the micro deep drawing process is needed [318-320]. In conventional deep drawing a change of 

tooling geometry in micrometer range normally does not influence the drawability because of a 

sufficient formability of the work piece material. But due to changed tribology [321] and material 

behaviour [322] in micro range only smaller process windows can be achieved [323]. Furthermore, 

the relative deviation from the nominal tooling geometry, caused in its manufacturing process, is 

increasing with decreasing size in the micro range because the accuracy of manufacturing reaches 

its limits [318, 319, 324]. For repeatable and successful micro deep drawing process, uniform die 

radius is key [318, 319] and still challenging to achieve. 

Besides plastic and metal as material for microsystems, glass is essential for the fabrication of 

micro-devices including micro electro mechanical systems (MEMS), optical MEMS (MOEMS), 

miniaturized total analysis systems (µTAS) and microfluidic devices [75, 92]. This is mainly 

because of its unique properties, such as mechanical strength, thermal properties, transparency, 

chemical inertness and bio-compatibility. Moreover, glass is RF transparent, making it an excellent 

material for sensor and energy transmission devices.  
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Using glass dies for micro deep drawing processes is still a largely unexploited area of 

research and application. This optical transparent material for the tooling (dies) has great potential 

for in-process observation during the forming step leading to a better understanding of the micro 

deep drawing process. 

However, the hardness and brittleness of glass complicates its micro-fabrication. In particular 

machining crack and burr-free high-aspect ratio structures is still challenging due to long 

machining times, high machining costs and poor surface quality [81, 83, 113].  

Table 6.5. Features of the four main groups drilling technologies for glass. 

 

Methods to micro-machine glass can be divided into four groups (see Table 6.5) [83]: thermal, 

chemical, mechanical and hybrid. Thermal processes, e.g. laser, are fast and flexible but usually 

form bulges around the rims of the micro-hole entrances complicating the micro deep drawing 

process when using the machined glass part as die. Chemical processes produce smooth surfaces 

but require expensive masks while mechanical methods are relatively slow and exhibit poor 

surface roughness. Hybrid technologies, like Spark Assisted Chemical Engraving (SACE), are 

favourable as they attempt to combine the good outcomes of each process to satisfy most 

requirements for the desired micro-structures in glass [81, 83, 185, 221]. In SACE technology an 

electrochemical process heats a tool-electrode which promotes local etching of the glass substrate 

[81, 185, 221].  

In this study the potential of SACE machined glass tools for micro deep drawing is 

investigated. SACE process is optimized for the micro forming process and a deep drawing 

feasibility study is conducted. Research is ongoing to characterize the deep drawing in-process to 

develop a better understanding of its mechanisms. 

  

Process 
Aspect 

ratio  

Machining 

speed 

(serial) 

Surface 

roughness 

(Ra)  

Minimum 

dimensions 

Rapid 

prototyping 

(serial mode) 

Mass fabrication 

(parallel mode) 

Tooling 

complexity / 

costs 

Applicable to wide 

range of glass 

types 

Equipment 

costs / 

complexity 

 
low -- 

high ++ 

low -- 

high ++ 

high --  

low ++ 
[µm] 

non-applicable -- 

applicable ++ 

non-applicable -- 

applicable ++ 

complex -- 

simple ++ 

non-applicable -- 

applicable ++ 

expensive -- 

cheap ++ 

Mechanical Mechanical 

drilling 
- + - 150 + + - - - - + + + + 

 Powder blasting - - - - - 50 - - + + - - + + + 

 ASJ - - - -  300 + - - + + + / - 

 USM - - - - 200 (10) + - - + + - 

Thermal Laser drilling + + + + - 5 + + - + + + - 

 FEDM - + + 20 - + + - - - 

Chemical Wet etching - - - - + 1 - - + + - - - - 

 DRIE + + - - + + 0.5 - - + + - - - - - - 

Hybrid SACE + + + 100 + + - - + + + + + 
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6.2.2.    Glass micromachining 

Main requirements to achieve high surface quality glass dies in a flexible way (rapid 

prototyping) are surface roughness, feed-rate and minimum possible dimensions. Table 6.5 

summarizes the qualitative comparison of the different glass micromachining technologies based 

on the achievable aspect ratios, machining speed and surface roughness. Low aspect ratios are 

defined to be below 10, low machining speeds refer to speeds below 100 µm/s and low surface 

roughness (high quality) refers to roughness lower than 100 nm (Ra < 100 nm). 

Hybrid methods such as SACE perform well in drilling high aspect ratio and smooth surface 

micro-holes. These assets of SACE technology combined with its relative high machining speeds 

compared to chemical methods and low-cost compared to femto-laser technologies make SACE 

perfectly suitable for rapid prototyping of micro-scale glass devices. 

6.2.3.    Principles & experimental setup 

6.2.3.1. Glass tooling manufacturing equipment 

In SACE technology, a voltage is applied between tool and counter electrode dipped in an 

alkaline solution, typically NaOH or KOH (see Figure 6.6). At high voltages (around 30 V), the 

bubbles evolving around the tool electrode coalesce into a gas film and discharges occur from the 

tool to the electrolyte. Glass machining becomes possible due to thermally promoted etching 

(breaking of the Si-O-Si bond) [81]. 

      

Figure 6.6. Developed laboratory setup for SACE machining. The machining 

head is mounted on a high precision z-stage, and the electrochemical cell is 

mounted on high precision x,y stages (x,y,z stages: positioning accuracy = 1 µm). 

SACE machining 
head 
- Force sensor 
- Electrode (-) 
- Spindle (rpm) 
 

Electrolyte: 
NaOH 

Function generator + power 

supply 

Electronics (Dspace) 

(+) 

(-) 
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The glass dies were fabricated on a versatile industrial SACE-machine (see Figure 6.7) as 

developed together by EGE Group, Concordia University and Posalux SA [224] which offers high 

precision glass micro-drilling, micro-milling, micro-cutting and micro 2.5D machining operations 

(see Figure 6.8) while leaving the glass surface micro-crack, debris and bulge free. Implementation 

of a force-sensitive machining head allows the use of ultra-thin machining tools (diameter down 

to 30 μm), applying force-feedback algorithms (detecting forces down to 1 mN) and usage of the 

head as profilometer to measure machined features within the same setup. 

 

Figure 6.7. Industrial machine Microfor SACE developed by Posalux SA and 

EGE Group, Concordia University, consisting of a versatile force-sensitive head 

for SACE machining and use as profilometer [224]. 

 

 

Figure 6.8. Versatile glass machining by SACE: drilling, milling and cutting by 

the same technology on the same setup. 
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Typically, drilling of through and blind holes of diameters from 100 µm to several millimetres 

can be achieved with low circularity error (typically < 1 µm) and depths as deep as 3 mm. Drilling 

is relatively fast (a 700 µm deep hole is drilled in typically 2 seconds). 

6.2.3.2. Micro deep drawing setup and principles 

In micro deep drawing a circular blank is clamped between a blank holder and die and then 

deep-drawn into the die with a cylindrical punch until a cup is formed (see Figure 6.9). A key 

parameter to characterize the drawing process is the drawing ratio β. It is defined as the ratio 

between the initial blank diameter D0 and the punch diameter Dp (equation 6.3). 

 

       β = Do/Dp      (6.3) 

 

 

Figure 6.9. Micro deep drawing process 

The blanks are made of stainless austenitic nickel-chromium steel 1.4301 (X5CrNi18-10). In 

order to cut out the blanks an ultra-short pulsed laser with a wave length of 1030 nm was used to 

prevent burr formation at the edge of the blank. Punch and blank holder are made of ledeburitic 

powder-metallurgical steel 1.2379 (X153CrMoV12). For the drawing die, the glass tool insert is 

used, which is positioned in a tool holder (see Figure 6.10). The relevant geometrical parameters 

used in the experiment can be found in Table 6.6. The drawing process is carried out on a home-

built single axis micro forming press developed by [318] with a maximum punch force of 540 N. 

The punch is driven and controlled by a NI 9514 servo drive interface. The punch velocity was set 

to 10 mm/s and HBO 947/11 was used as lubricant. The initial blank holder pressure is pnh = 5 
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MPa. The blank holder acts passively and is supported by two springs with adjustable spring 

tension in order to set the desired blank holder pressure. 

Table 6.6. Process parameters for deep drawing experiments 

Punch diameter Dp (mm) 1.000 

Punch radius rp (mm) 0.100 

Die diameter Dz (mm) 1.160 

Die radius rz (mm) 0.100 

Blank diameter D0 (mm) 1.700 

Sheet thickness s0 (mm) 0.025 

 

 

Figure 6.10. Designed tooling (die) for this deep drawing process 

6.2.4.    Results and discussion 

Tooling with constant die radius is preferred for good deep drawing results (radius rz in Figure 

6.9 and for tooling see Figure 6.10). Preliminary tests were conducted by SACE machining for the 

glass dies. These results are presented in Figure 6.11.  

The glass die was machined by SACE process in cutting mode in 10 steps with depth-of-cut 

= 200 µm. The pulsed voltage was programmed at:  UHighLevel = 38 V, ULowLevel = 17.5 V, period 

(T) = 2.6 ms, duty cycle (defined as: pulse width/T) = 96.15 %. A tungsten carbide tool-electrode 

(diameter = 100 µm) was deployed as tool and 20 wt.% potassium hydroxide (KOH) was used as 

electrolyte in the machining cell. 
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Figure 6.11. A. Glass tooling manufactured by SACE technology. B. Detail of the machined glass tool (die). 

Ten cups with a drawing ratio of β = 1.7 were formed using the glass drawing die and the 

conventional metal punch and blank holder. All the produced cups are without cracks. However, 

wrinkles can be found at the sides of the cup (see Figure 6.12). This indicates that the process 

parameters such as blank holder pressure were not chosen ideally. Figure 6.13 shows the glass 

drawing die before and after one and ten cups were deep-drawn. No cracks are observed at the 

radius or the surface of the tool. 

 

 

Figure 6.12. Micro cup deep-drawn with glass tool. 

A. B. 

500 µm 1000 µm 

6462 µm 

1346 µm 

1157 

µm 
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Figure 6.13. Top view of glass tool before forming and after one and ten cups were drawn. 

6.2.5.    Conclusion 

In this study, the potential of glass tools for micro deep drawing was investigated. Dies with 

a diameter of 1 mm were produced on a Microfor SACE machine and characterized by microscopy 

and micro deep drawing experiments. It was shown that these tools can be used for deep drawing 

of blanks made of steel 1.4301 with an initial thickness of 25 µm. However, the process parameters 

of the drawing process have to be further investigated in order to achieve a better drawing result. 

In a next step, due to the optical transparency of the used material, these glass tools provide 

great potential for an in-process observation during the forming step and a better understanding of 

the micro deep drawing process. In addition, high precision dies can be achieved with high process 

flexibility and with uniform, smooth hole entrances increasing the deep micro deep drawing 

process performance. This will lead to better repeatability for metal part manufacturing by micro 

forming. 
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Chapter 7 

 

7.1. Conclusions 

Throughout the presented research study, an electrochemical discharge machining process, 

spark assisted chemical engraving (SACE), was developed to an industrial level machine tool 

together with industrial partner Posalux SA [60] and more importantly, a methodology was 

developed and validated to adapt SACE from mass-fabrication process to a flexible manufacturing 

technology for high-precision glass mass-personalization. Solutions were proposed to address the 

research question: 

How can we mass-manufacture batch-size-1, i.e. mass-personalized, high-precision products 

made of hard-to-machine materials such as glass economically on-demand? 

New manufacturing process criteria were proposed and proven to be necessary for evaluating 

manufacturing processes on suitability for mass-personalization. They must have the capability to 

1) address the issues of tooling costs (avoid any part specific tooling), 2) handle complex parts and 

3) reduce production steps (as in each new step parts will have to be transferred from one 

manufacturing system to another resulting in new overhead and error introduction due for example 

to alignment or tooling) and 4) must abandon long calibration runs (in-process automated 

calibration strategies are needed). Throughout this thesis, SACE technology was progressively 

developed from mass-fabrication technology towards a process for mass-personalization of high-
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precision glass parts by addressing the challenges of these four drivers of part related 

manufacturing costs (Figure 7.1).  

   

Figure 7.1 A. Manufacturing process flow in SACE machining from client design to finalized product in current 

SACE technology situation (mass-fabrication). B. Manufacturing process flow in SACE machining from client 

design to finalized product in the developed SACE approach for mass-personalization. 

More detailed and specific conclusions of each part of the research study are outlined in the 

different chapters 1 to 6. The most significant conclusions are briefly summarized below: 

• A comprehensive review of micro-hole drilling technologies in glass with high precision 

is presented, grouped in mechanical, chemical, thermal and hybrid technologies, and 

assessed to the four proposed manufacturing design criteria for mass-personalization: 

1. Abandon lengthy calibration runs; 

2. Avoid any part specific tooling (reduce tooling costs and complexity); 

3. Be able to handle complex parts;   

4. Reduce production steps (each step increases overhead and introduces machining 

errors); 

• Hybrid technologies, for example SACE process, show potential for use as high-precision 

mass-personalization manufacturing technology, however SACE technology can currently 

only be used effectively for mass-fabrication as machining overhead of this process is still 

very high jeopardizing its use for this batch size-1 production. Three main issues are 

identified: 
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− Contrary to micro-hole drilling on glass substrates, no models are available for 

glass cutting and milling to define process parameters without the need of time-

consuming trial and error runs; 

− Extensive calibration is needed for tool-workpiece alignment and tool run-out 

elimination to achieve the desired high-precision (~ 1 µm); 

− Part specific tooling is required for proper clamping of the glass workpiece (almost 

each production cycle demands changing dimensions in the case of mass-

personalization) to attain high precision. 

• A model for SACE cutting and milling process operations was developed and empirically 

validated allowing direct relation of the machining input parameters (e.g. voltage, feed-

rate) to the desired machining outcome (e.g. feature depth), enabling a drastical increase 

of automation across the manufacturing process workflow from desired design to 

establishing of machinable code containing all necessary manufacturing execution 

information (e.g. toolpath definition, machining voltage settings, feed-rate, depth of cut, 

machining time, achievable quality), which is key for suitable manufacturing processes 

for mass-personalization; 

• It is empirically found and confirmed by a numerical transient heat model, that tools of 

100 µm diameter are optimal for glass micro-cutting by SACE technology in terms of 

machining time: 

− Using larger tool diameters will rapidly decrease the heat source efficiency and 

subsequently reduce dramatically the machining speed (by factor 5 using a 200 µm 

diameter tool); 

− Deploying smaller tools (< 100 µm) will not contribute to increased efficiency as 

for 100 µm (and smaller) diameter tools cutting time becomes independent of the 

tool diameter; 

• It is shown that the usage of a force sensitive machining head is essential to prevent bending 

and/or breaking of such small (100 µm diameter) tools. Therefore, an industrial grade 

force-sensitive SACE machining head (sensitivity ~ 1 mN) was developed with our 

industrial partner (resulting in patent WO 2017 / 064583 A1 (2017) [60]. 

• The significance of heat propagation through the glass workpiece as main limiting factor 

to determine the maximal machining speed was confirmed; 
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• A strategy was developed to reduce the surface roughness of cut (down to Rz ~ 1 µm) by 

introducing Spark Assisted Chemical Polishing (SACP); 

• Possible routes for increasing MRR for SACE micro-cutting and -milling were proposed: 

− Using small tool diameters are most efficient. This is the case for 100 µm diameter 

tool-electrodes; 

− Increase the normalized heat power κ. However, this result in poor machining 

quality (Rz > 50 µm), applying the developed SACP technology can partially solve 

this roughness issue; 

− For small and medium batch sizes (lots > 1) a multi-tool head can be deployed as 

effective strategy; 

• An in-situ fabrication method for the needed tool-electrodes is developed, eliminating the 

need of cumbersome and lengthy calibration procedures, reducing costs and lead times 

compared to conventional SACE machining approaches; 

• Low-cost rapid prototyping technology is deployed for part specific tooling fabrication for 

precise clamping of the workpiece to obtain the required high precision and allowing a 

consistent, smooth electrolyte flow across the glass workpiece; 

• It was demonstrated that SACE process is promising as rapid prototyping technology for 

glass device fabrication eliminating a process step in the manufacturing workflow from 

micromachining to die singularizing for single device fabrication out of a glass wafer. This 

approach enables flexible prototyping of glass devices at relatively low cost, which was 

illustrated by fabrication of a functional microdevice; 

• Novel applications were proposed and fabricated using glass as substrate material and 

SACE technology for rapid prototyping of templates to process polymers and metals with 

high-precision in the microtechnology field: 

− Fabrication of glass templates for microfabricating devices by hot embossing. This 

technique had the advantage of rapidly and accurately introducing features into 

glass substrates, with good control over all three dimensions. 

− Manufacturing of glass tools (dies) for micro-forming of metal micro parts. Micro 

deep drawing of thin metal sheets (thickness 25 µm) was successfully performed 

without showing significant tool wear of the fabricated glass dies. 
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7.2. Contributions 

Current manufacturing technologies are very well optimized for mass production; however, 

they face many issues to produce mass-personalized products. Guidelines were proposed and 

evaluated, in the presented research study, as requirement for manufacturing processes allowing 

mass-personalization. It was shown throughout this thesis work, by a case study for high-precision 

glass parts, how the micro-machining process SACE can be developed towards a manufacturing 

process for high-precision glass mass-personalization, respecting these guidelines i.e., reducing 

manufacturing overhead introduced by the four key drivers of manufacturing costs related to a 

specific part design (calibration, tooling, processing steps, complexity). 

Thus far SACE process was never deployed for high-precision glass mass-personalization by 

industry and academia. Three main issues of current SACE technology are preventing its use for 

this highly flexible manufacturing approach: 

1. No models are available for glass cutting and milling, relating SACE process input 

parameters to a desired output such as MRR (feed-rate together with depth-of-cut per 

machining pass). Such a model is a key requirement for setting up efficiently (i.e. low 

setup time) manufacturing systems with a high degree of automation. Currently, it takes a 

significant number of trial and error runs before the process parameters (machining 

voltage, feed-rate, depth-of-cut) for appropriate cutting and milling operation settings are 

found; 

2. Extensive calibration is needed for tool-workpiece alignment and tool run-out elimination 

to achieve the desired high-precision (~ 1 µm); 

3. Part specific tooling is required for proper clamping of the glass workpiece (almost each 

production cycle demands changing dimensions in the case of mass-personalization) to 

attain high precision. 

These issues are progressively addressed throughout the outlined research study, resulting in 

the main contributions of this work: 

▪ Glass mass-personalization by SACE technology 

SACE technology was progressively developed from mass-fabrication technology towards a 

process for mass-personalization of high-precision glass parts by addressing the challenges of 
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the four key drivers of part related manufacturing costs (calibration, tooling, complexity, 

processing steps); 

In order to achieve this transition of SACE technique towards an Industry 4.0 manufacturing 

process, the following milestones were accomplished; 

− Development of a process model for SACE cutting and milling 

A model for SACE cutting and milling process operations was developed and 

empirically validated allowing direct relation of the machining input parameters (e.g. 

voltage, feed-rate) to the desired machining outcome (e.g. feature depth), enabling a 

considerable increase of automation across the manufacturing process workflow from 

desired design to establishing of machinable code containing all necessary 

manufacturing execution information (e.g. toolpath definition, machining voltage 

settings, feed-rate, depth of cut, machining time, achievable quality), which is key for 

suitable manufacturing processes for mass-personalization. Application of this 

established normalized model could be extended to other heat-driven processes as well; 

− In-situ fabrication methods and low-cost rapid prototyping for tooling were 

developed 

An in-process fabrication method for the needed tool-electrodes is developed, 

eliminating the need of cumbersome and lengthy calibration procedures, reducing costs 

and lead times compared to conventional SACE machining approaches.  

Low-cost rapid prototyping technology is deployed for part specific tooling fabrication 

for precise clamping of the workpiece to obtain the required high precision and 

allowing a consistent, smooth electrolyte flow across the glass workpiece; 

− Spark Assisted Chemical Polishing (SACP) was introduced 

A strategy was developed to reduce the surface roughness of cut (down to Rz ~ 1 µm) 

by introducing Spark Assisted Chemical Polishing (SACP), which is carried out on the 

same setup as machining, avoiding alignment and tool calibration issues; 

 

To show the viability of the developed mass-personalization approach some case-studies 

towards industrial applications were performed using glass in a non-traditional, indirect way.  

Novel applications were proposed and fabricated using glass as substrate material and SACE 
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technology for rapid prototyping of templates to process polymers and metals with high-precision 

in the microtechnology field: 

▪ Fabrication of glass imprint templates for microfabricating devices by hot embossing. This 

technique had the advantage of rapidly and accurately introducing features into glass 

substrates, with good control over all three dimensions. 

▪ Manufacturing of glass tools (dies) for micro-forming of metal micro parts. Micro deep 

drawing of thin metal sheets (thickness 25 µm) was successfully performed without showing 

significant tool wear of the fabricated glass dies. 

 

The proposed manufacturing process criteria as presented throughout this research work can 

be used as a first step to assess a given technology on suitability for mass-personalization. It was 

shown that addressing the proposed four part related manufacturing cost drivers 1) calibration, 2) 

tooling, 3) complexity, 4) multiple process steps is essential: 

1. Calibration runs increase dramatically the setup times for each different workpiece 

jeopardizing effective manufacturing process work flow as needed for mass-

personalization; 

2. Part specific tooling add significantly to machining overhead increasing drastically the cost 

per product; 

3. As mass-personalization demands manufacturing of a wide variety of geometries, 

compatible processes need to be able to handle complex shapes; 

4. Each new manufacturing step demands transfer of parts from one manufacturing system to 

another resulting in new overhead and error introduction due for example to alignment or 

tooling. 
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7.3. Outlook 

• Guidelines were proposed as requirement for manufacturing processes allowing mass-

personalization. It was shown throughout the presented thesis work how the micro-

machining process SACE can be developed towards a manufacturing process for high-

precision glass mass-personalization, respecting these guidelines. Although the presented 

work serves as good case-study for high-precision glass micro-machining, more work has 

to be done to establish practically proven design guidelines for more general use (e.g. to 

find additional criteria). In order to address the more universal research question - how can 

we mass-manufacture batch-size-1, i.e. mass-personalized, high-precision products 

economically on-demand? - further studies need to be carried out for different materials 

and applications. 

• Hybrid manufacturing technologies seem to be good candidates to fulfill the criteria for 

mass-personalization manufacturing processes. Continuing research in the field of 

electrochemical manufacturing technologies seem promising. For example, post-

processing of additively manufactured complex metal parts could be performed by 

electrochemical polishing and personalized thin-walled metallic structures could be 

realized using electroforming and low-cost 3D printing. Industry starts to adopt hybrid 

processes for mass-personalized metal part fabrication, for example by laser machining 

followed by an automated bending step (adaptable fixtures), which in fact is similar as the 

process of 4D printing. 
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Appendix 

This appendix contains a list of different drilling techniques with their main feature characteristics for drilling micro-holes in glass. 

It provides supporting values on the technologies for micro-hole drilling on glass as presented and discussed in chapter twoannex. 

Table A.1. List of different drilling techniques with their main feature characteristics for drilling micro-holes in glass.   

Mechanical Methods Material 
Diameter  

(μm) 

Aspect 

Ratio 

Taper 

Angle *  

(°) 

Speed  

(μm/s) 

Depth  

(μm) 

Surface 

Roughness  

(nm) 

References 

Grinding-drilling 
optical grade glass 

and quartz 
1011–1323 3.96–3.02 - 5 4000 - [113] 

Micro-drilling soda-lime glass 100–400 1.3–0.33 - 125 130 - [114] 

Mechanical drilling glass >150 4–14 - slow - - [204] 

Powder blasting (30 μm particles) glass 150–1000 0.07–0.24 - 
0.083–

0.133 
10–240 - [205] 

Powder blasting glass <50 2.5 - 0.4 - 2500 [117] 

AJM (abrasive jet micromachining) borosilicate glass 800 <0.06 - 32 50 high [98]  

ASJ (Abrasive slurry jet) - 390 0.9 - 4.38 350 - [121]  

ASJM (Abrasive slurry jet—Al2O3 10 μm  

particle slurry flowrate:1.67 mL/s) 

Borosilicate glass 800 1.13 - 1.88 900 frosting [122]  

- 2000 1.5 34 0.56 3000 - [122]  

Micro-ultra-sonic (abrasive grains) pyrex 7740 420 >10 0.6 - 5000 1000 [131]  

Ultrasonic (combined with EDM) glass 150 3–4 - 0.13–0.15 - - [206] 
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Ultrasonic vibration drilling - 10 2 - 0.05 20 no cracks [40]  

Ultrasonic vibration drilling  

(combining ultrasonic and  

low-frequency/diamond core drill) 

glass 964 - - 16.67 - - [126]  

Ultrasonic grinding  

(cemented tungsten carbide micro pins) 
crown glass 10–30 - - 0.25–0.27 - - [130]  

Chemical Methods Material 
Diameter  

(μm) 

Aspect 

Ratio 

Taper 

Angle *  

(°) 

Speed  

(μm/s) 

Depth  

(μm) 

Surface 

Roughness  

(nm) 

References 

wet etching  

(HF + mask Cr/Au/Cr/Au + SPR220-7) 
glass - 0.78 - 0.24–0.07 300 - [207] 

wet etching  

(HF 49% + mask Si/Si-carbide/photo-resist) 
glass 3000 0.33 - 0.13 1000 - [85]  

HF etching  

(mask Cr/Au (50 nm/1 μm) + photoresist 

AZ7220) 

Pyrex 7740 ±1600 ±0.3 44 0.238 500 - [94]  

HF etching (49% HF) Pyrex 7740 240 0.58 - 0.14 140 - [208] 

HF etching (HFPR-mask) fused silica - 0.70 - 0.01 600 10 [209] 

DRIE etching  

(Ni/a-Si/SU-8 masks deep plasma etching) 
glass 200 1.25 - >0.035 250 - [84]  

DRIE (SF6 plasma) Pyrex glass 40–80 >10 10 0.01 200 - [164] 

DRIE (C4F8/O2—Ni mask 8 μm) glass 3 40 4–14 0.017 120 2–10  [165] 

DRIE (SF6/Ar—Ni 5 μm) glass - - - 0.0089 20 1.97 [210]  

DRIE (SF6—Cr) glass - - 4 0.02 <20 very high [211]  

DRIE (C4F8/He/O2—Si wafer 400 μm) glass 83.33 3 8–20 0.0083 250 - [212]  

DRIE (C4F8/He/O2—Si wafer 400 μm) glass 100 3 - 0.0058 300 -  [212] 

DRIE (C4F8/O2—Ni mask 5 μm) glass 22.86 3.5 8–20 0.012 80 - [84]  

DRIE (SF6—Ni mask) glass 20 10 4 0.01 200 4 [164]  

DRIE (SF6—Ni mask) glass - - >4 0.0125 40 -  [160]  

DRIE (SF6/Ar—Ni mask) glass - - 4 0.009 27 -  [160] 

DRIE (C4F8/O2—Ni mask 6 μm) glass 20 6 4–14 0.013 120 2 [213]  

DRIE glass >1 30 - 0.0055 - - [214]  

Deep anisotropic dry etching - 50 - 0.4 0.0001 - - [215] 

Thermal Methods Material 
Diameter  

(μm) 

Aspect 

Ratio 

Taper 

Angle *  

(°) 

Speed  

(μm/s) 

Depth  

(μm) 

Surface 

Roughness  

(nm) 

References 

Femtosecond laser (liquid assisted) - 5–70 40–50 - 30 - - [137]  

Laser drilling (femtosecond pulses) fused silica 7–10 3 - - 30 
<HAZ, no cracks, 

smooth 
[141]  
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Laser drilling (femtosecond pulses) Foturan glass 56 7.05 - 100–1000 395 - [144]  

Laser drilling femtosecond fiber laser soda-lime glass 400 2.5 10 - 1000 
no cracks, HAZ, 

rough 
[146]  

TiSa laser (fs pulse width) D263T glass foil 
208  

99 

2.4  

5.1 

15  

10 
- 

500 

505 
<HAZ, no debris [142] 

Laser (absorbent powder) glass 200 >12 - 100 2500 - [147]  

Laser drilling  

(short pulse solid state laser) 
Nippon sheet glass 15 0,017 - - 0.25 

no cracks, 

smooth 
[139]  

CO2 laser D263T glass foil <100 >5 3 2000 500 smooth [102]  

CO2 laser glass 71 7,04 3 <2000 500 - [152]  

CO2 laser glass 122 4,10 10 <2000 500 - [152]  

CO2 laser (pulsed) alkali free glass 25 4 - 20,000 100 - [153]  

Laser (CO2 infrared laser/Ni grid mask) - 9.2 0.00043 - - 0.004 irregular [132]  

LALP  

(CO2 laser, 6W—workpiece immersed in water) 
Pyrex 7740 280 1.79 24 11,400 500 no cracks [151]  

Laser (selective etching) glass 25 40 - 10 - - [216] 

Focused EDM 
Alkali-free EN-A1  20 5 - 500–200 100 - [95]  

- 65.5 7.6 2 - 500 smooth [95]  

Hybrid Methods Material 
Diameter 

(μm) 

Aspect 

Ratio 

Taper 

Angle * (°) 

Speed 

(μm/s) 

Depth 

(μm) 

Surface 

Roughness (nm) 
References 

ECDM glass 180–40 11 - 1 1200 250–350 [185] 

ECDM (pulsed voltage + offset) glass 455 0.99 - 7.5 450 - [188]  

ECDM (EPDG polishing) - 210 2.38 0.4° - 500 5 [180]  

SACE (gravity feed) glass 540 0.37 - - 200 smooth [217] 

SACE (gravity feed) glass 600 0.55 - - 330 HAZ [217] 
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