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Abstract

A Novel Approach to Transmission Power, Lifetime and Connectivity

Optimization in Asymmetric Networks

Milad Esmaeilpour

This thesis deals with the problem of proper power management over asymmetric

networks represented by weighted directed graphs (digraphs) in the presence of various

constraints. Three different problems are investigated in this study. First, the problem

of total transmission power optimization and connectivity control over the network is

examined. The notion of generalized algebraic connectivity (GAC), used as a network

connectivity measure, is formulated as an implicit function of the nodes’ transmission

powers. An optimization problem is then presented to minimize the total transmission

power of the network while considering constraints on the values of the GAC and the

individual transmission power levels. The problem of network lifetime maximization

and connectivity control is investigated afterwards. Each node is assumed to deplete its

battery linearly with respect to the transmission powers used for communication, and

the network lifetime is defined as the minimum lifetime over all nodes. Finally, it is

desired to maximize the connectivity level of the network with constraints on the total

transmission power of the network and the individual transmission powers. The interior

point and the mixed interior point-exterior point methods are utilized to transform
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these constrained optimization problems into sequential optimization problems. Given

the new formulation, each subproblem is then solved numerically via the subgradient

method with backtracking line search. A distributed version of the algorithm, taking into

account the estimation of global quantities, is provided. The asymptotic convergence of

the proposed centralized and distributed algorithms is demonstrated analytically, and

their effectiveness is verified by simulations.
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Chapter 1

Introduction

1.1 Motivation

Sensor networks consist of spatially distributed fixed or mobile sensors capable of sensing,

processing and exchanging data without the need for a pre-existing framework. The

challenges involved in deploying good-performing networks and the recent advances in

computation, communication, and sensing have stimulated substantial research in this

domain [1, 4, 26, 43, 44]. These networks have a multitude of applications in various

fields, e.g., environmental, health care or machine health monitoring, target detection

and localization, surveillance, disaster control, smart farming, etc. [15, 18,20,25,26,43].

In deploying sensor networks, several issues need to be addressed, and in particu-

lar, the connectivity of the network and its lifetime are two of the most important issues.
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Sensor networks typically utilize distributed and cooperative algorithms in order to de-

termine specific, often-global quantities using only local information [28]. The higher

the connectivity level of a network is, the more efficiently it will diffuse the information,

resulting in faster convergence of the distributed algorithms [2, 4]. The prerequisite to

having higher connectivity is stronger communication links between the sensors, which in

a noise-limited environment, results from higher transmission powers used by the nodes

for communication with their neighbors [28]. Even though having a highly connected

network is desirable, it will be at the expense of higher total transmission power in the

network. On the other hand, the network lifetime and its power consumption have an

inverse relationship [21], meaning that the higher transmission powers required to have

higher connectivity in the network will lead to decreased network lifetime. Incapaci-

tation of some nodes due to premature battery depletion can result in a disconnected

network, which in turn will prevent the network from completing its mission. Given

the importance of the connectivity and the lifetime of the network, the objective of this

work is to determine an appropriate balance between the two.

1.2 Literature Review

Recent years have witnessed immense interest in sensor networks. The communication

links of these networks can be represented by a graph, which may either be undirected

(symmetric) or directed (asymmetric). In undirected graphs, the communication links
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between the nodes are bi-directional, whereas they may be uni-directional in directed

graphs. An example of a symmetric network is the typical terrestrial wireless sensor

networks (WSN), and an example of an asymmetric network, where the communica-

tion link between two distinct nodes are often uni-directional, is underwater acoustic

sensor networks (UWASN) [15, 28, 55]. In the latter example, some sources of noise

and uncertainty include multipath propagation, temperature fluctuations, sound speed

profile variations, and nearby shipping activity [15, 36, 55]. Another difference between

the terrestrial and underwater sensor networks is that contrary to the WSNs which may

consist of hundreds of nodes for a speific application, the number of deployed nodes in

UWASNs is much smaller. For instance, the experimental network of [15] consists of

only four nodes.

An important aspect of deploying sensor networks is their connectivity as discussed

in the previous section. Different connectivity measures are proposed in the literature

to capture different operational characteristics of a network. For instance, the vertex

(or edge) connectivity of a network is the minimum number of nodes (or communica-

tion links) whose deletion disconnects the network [45]. These two measures show the

network robustness to node and link failure, respectively, and have been investigated in

detail in the literature, e.g., see [46]- [49]. The edge connectivity has been extended to

asymmetric networks represented by weighted directed graphs (digraphs) in [1], taking

3



into account the joint effects of path reliability and the network robustness to link fail-

ure. The topic of interest in this study is the algebraic connectivity of a network. As

mentioned in the previous section, sensor networks need to use distributed algorithms

to determine certain global values. It is well-known that the convergence rate of these

algorithms is directly related to the algebraic connectivity of the network. In general,

a highly connected network diffuses information more efficiently [2, 4, 28]. Additionally,

having an algebraic connectivity measure allows one to apply mathematical tools such

as differential operators on the considered measure. Algebraic connectivity is introduced

in [27] as the second smallest eigenvalue of the Laplacian matrix of the undirected graph

representing the network, and has been used as a measure of connectivity in symmetric

networks. There are numerous studies investigating algebraic connectivity in symmet-

ric networks. For example, a distributed algorithm is presented in [3] to estimate and

control the algebraic connectivity of undirected graphs using a stochastic power iter-

ation method. In [37], a distributed method, relying on the distributed computation

of the powers of the adjacency matrix, is proposed to obtain upper and lower bounds

at each iteration for the algebraic connectivity of a symmetric network. As the algo-

rithm proceeds, these bounds converge to the true value of the algebraic connectivity.

In addition, a supergradient algorithm is used along with a decentralized eigenvector

estimation strategy in [5] to maximize the algebraic connectivity of a symmetric net-

work. In [50], centralized and distributed algorithms are proposed to maintain, increase
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and control connectivity in mobile robot networks, where mobility is used to control

the topology of the underlying communication network. The authors of [51] consider a

particular event-triggered consensus scenario, and show that show that the availability

of an estimate of the algebraic connectivity could be used for adapting the behavior of

the average consensus algorithm. A novel distributed algorithm is also presented for

estimating the algebraic connectivity which requires the distributed computation of the

powers of matrices.

The counterpart of algebraic connectivity in asymmetric networks has not been

investigated as much. A simple extension of algebraic connectivity to directed graphs is

proposed in [38], where the magnitude of the smallest nonzero eigenvalue of the Lapla-

cian matrix is presented as a measure of connectivity. However, this notion fails to

capture any operational characteristic of the network. To address this shortcoming, the

notion of the generalized algebraic connectivity (GAC) introduced in [39] as the real

part of the smallest nonzero eigenvalue of the Laplacian matrix of the weighted digraph

representing the network, and is shown to be directly related to the asymptotic conver-

gence of consensus algorithms running over the network. Note that since the Laplacian

matrix of an asymmetric network is also asymmetric, it can have complex eigenvalues.

A distributed algorithm based on the subspace consensus approach is proposed in [4] for

computation of the GAC values using only local information. Furthermore, in [2], the

5



GAC is formulated as an implicit function of the transmission powers nodes use for com-

municating with their neighbors, and then is maximized via a distributed supergradient

algorithm.

Another fundamental aspect of a sensor network is the power consumption of its

nodes, which directly affects the network lifetime. Power consumption in sensor net-

works is either communication-related or non-communication-related, where the former

contributes the most to power consumption [17]. Sensor nodes are typically battery-

powered, and recharging or replacing their batteries is not always a viable option. Inca-

pacitation of some nodes due to battery depletion can result in a disconnected network,

which in turn can prevent the network from completing its mission [20, 23, 28]. As a

result, an appropriate power management scheme is crucial for the efficient operation

of any sensor network. The network lifetime is typically defined as the time it takes for

the first node to completely deplete its energy [17, 19, 21, 22]. Numerous studies in the

literature consider the network lifetime as an explicit performance index. The authors

of [21] consider a routing problem in static wireless ad hoc networks, where the objective

is to maximize the network lifetime. They propose a shortest path routing algorithm

using link weights that reflect both the communication energy consumption rates and

the residual energy levels at the two end nodes of the path. In [19], an optimal control

approach is used to solve the problem of routing in sensor networks with the goal of
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maximizing the network’s lifetime. The authors consider a dynamic energy consump-

tion model for the batteries, capturing their nonlinear behavior. In a fixed topology,

they show that there exists an optimal policy consisting of time-invariant routing prob-

abilities. The authors extend these results further in [17] where they consider a more

general state space battery model. They also consider a joint routing and initial energy

allocation problem over the network and prove that the optimal policy depletes the en-

ergy reserves of all nodes simultaneously. In [23], base station mobility is proposed as

a remedy for countering inefficient routing and topology in WSNs. The authors build

a framework to characterize the impact of various mobility patterns on the network

lifetime and conclude that optimal Gaussian and spiral patterns result in the highest

lifetime values. A mobile sensor network for monitoring a moving target is investigated

in [22], where an algorithm is developed to find a near-optimal relocation strategy for

the sensors as well as an energy-efficient route for transferring information from the tar-

get to destination. The author of [40] propose an optimal distance-based transmission

strategy based on ant colony optimization to maximize the lifetime of WSNs and show

the effectiveness of their findings by simulations. In [41], the joint optimal design of

the physical, medium access control, and network layers is considered to maximize the

lifetime of WSNs with limited available energy. The optimization problem is formulated

by taking into account several network variables such as the routing flow, transmission

rate, etc. The Gauss-Seidel algorithm, in conjunction with the gradient method, is used
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to update the considered network variables. The authors of [24] provide a mathematical

model for network lifetime maximization integrating WSN design decisions on sensor

places, activity schedules, data routes and trajectory of the mobile sink(s). They then

present two heuristic approaches for the solution of the model and show its efficacy

via numerical experiments. For further studies on network lifetime maximization, the

interested reader is referred to recent survey studies such as [25] and [26].

1.3 Thesis Contributions

Given the motivation behind this study as discussed in Section 1.1, three optimization

problems are investigated in this thesis. In the first problem, it is desired to minimize

the total transmission power of the network while ensuring that connectivity level is

maintained above a certain level, and that the transmission power values are bounded

within prescribed limits. The objective of the second optimization problem is to maxi-

mize the lifetime of the network subject to constraints on the values of the GAC and the

transmission powers used for communication. The last problem investigates the maxi-

mization of the network connectivity, i.e., the GAC, while satisfying constraints on the

total transmission power of the network and the individual transmission power values.

First contribution of the current work is the formulation of the considered opti-

mization problems. More specifically, the use of the GAC as the measure of network

connectivity in conjunction with the total transmission power of the network and its
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lifetime can be mentioned. A problem similar to the first optimization problem is con-

sidered in [1], where the total transmission power of the network is minimized and is

subject to a constraint on the weighted edge connectivity. The considered metric is non-

algebraic, whereas in this study, the GAC is considered as the measure of connectivity.

In [2], a problem similar to the third optimization problem is considered, where it is

desired to maximize the GAC of the network. Unlike this work, [2] does not consider

any constraints on the total transmission power of the network. Additionally, the ap-

proach of this study and those of [1, 2] in solving the considered optimization problems

are different. Notably, in [2], a projection map is used to keep the transmission powers

bounded to a pre-defined range, whereas in this study, the constraints are incorporated

directly into the cost function to be optimized.

To solve the considered optimization problems, the interior point and the mixed

interior point-exterior point methods of [13] are utilized to transform the constrained

optimization problems into sequential unconstrained problems. Afterwards, the subgra-

dient method and the backtracking line search are utilized to solve the subproblems.

Unlike the gradient method, the subgradient approach does not necessarily generate

descent directions at each iteration of the optimization algorithm [42]. Addressing this

issue is another contribution of this study. Due to the property of the subgradient

method not always being a descent direction, the step-sizes to move along the search

directions are typically fixed ahead of time, e.g., see the approach of [2] for determining
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the step-sizes. In this study on the other hand, since it is ensured that one has a descent

search direction at each iteration, the backtracking line search is utilized which allows

the calculation of the step-sizes online. Furthermore, in proposing the distributed opti-

mization algorithm, due to the existence of global values such as the GAC which need

to be estimated using only local information, an approximate backtracking line search

is proposed which does not require the estimation of new GAC values, hence making

the proposed algorithm more computationally friendly. This can also be considered as

another contribution of the current work.

1.4 Thesis Layout

The structure of the thesis is as follows:

• Chapter 1 includes the motivation behind this study, the literature review on the

connectivity and lifetime of sensor networks, and finally, the contributions of the

current work.

• Chapter 2 investigates the problem of total transmission power optimization

and algebraic connectivity control in asymmetric networks using a centralized ap-

proach. An optimization algorithm is proposed to numerically solve the considered

problem, and its asymptotic convergence is analytically demonstrated. The simu-

lation results show the effectiveness of the proposed algorithm.
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• Chapter 3 investigates the problem of network lifetime optimization and algebraic

connectivity control in asymmetric networks using a centralized approach. To

numerically solve the considered problem, an optimization algorithm is proposed.

The asymptotic convergence of the algorithm is demonstrated analytically, and its

effectiveness is verified by simulations.

• Chapter 4, in addition to both of the problems of Chapters 2 and 3, investigates

the problem of algebraic connectivity optimization and transmission power control

in asymmetric networks using a distributed approach. A distributed optimization

algorithm is proposed to numerically solve all three optimization problems, taking

into account the distributed estimation of global variables. The asymptotic con-

vergence of the proposed algorithm is shown analytically, and its effectiveness is

evaluated via numerical simulations.

• Chapter 5 presents the conclusion as well as the possible directions for future

work.

11



Chapter 2

Joint Transmission Power

Optimization and Connectivity

Control in Asymmetric Networks

This chapter investigates the problem of transmission power optimization and algebraic

connectivity control over asymmetric networks represented by weighted directed graphs

(digraphs) using a centralized approach. The notion of generalized algebraic connectivity

(GAC), introduced in the literature as a measure of connectivity in weighted digraphs,

is formulated as an implicit function of the network’s transmission power vector. An

optimization problem is then presented to minimize the total transmission power of the

network while satisfying constraints on the values of the GAC and the transmission
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powers. The interior point method is utilized to transform the constrained optimiza-

tion problem into a sequential unconstrained optimization problem. Each subproblem is

solved via the subgradient method with backtracking line search used for step-size calcu-

lation. Even though the GAC is a nonconvex and non-differentiable continuous function

of the network’s transmission power vector, using the aforementioned approach, the op-

timization problem gradually becomes convex as the algorithm proceeds. Asymptotic

convergence of the proposed algorithm is demonstrated analytically, and its effectiveness

is verified by simulations.

This chapter is based on the following publication:

M. Esmaeilpour, A. G. Aghdam, and S. Blouin, “Joint transmission power optimiza-

tion and connectivity control in asymmetric networks,” in Proceedings of the 2018 Amer-

ican Control Conference, June 2018, to appear.

The above-mentioned manuscript is presented with minimal cosmetic changes in the

sequel. The proof for Theorem 2.1, omitted in the conference paper due to space limita-

tions (but presented in detail in the journal paper), is similar to the proof of Theorem 4.1.

Additionally, unlike Chapters 3 and 4 where it is assumed that each node uses a different

transmission power level to communicate with a subset of its neighbors, in this chapter,

it is assumed that the same transmission power level is used for communication with

neighbors; hence, the concatenation of all transmission powers is a vector in this chapter,

in contrast to a matrix in Chapters 3 and 4.
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2.1 Introduction

Sensor networks consist of spatially distributed fixed or mobile sensor nodes, and are

used for target localization, parameter estimation, etc. To determine a specific (often-

global) quantity from local measurements, sensors need to utilize cooperative algorithms

over the network [1]. The convergence rate of such algorithms is directly related to the

connectivity level of the network. A network with higher connectivity diffuses the in-

formation more efficiently, in general [2]. For symmetric networks represented by undi-

rected graphs, algebraic connectivity is defined as the smallest non-zero eigenvalue of the

graph’s Laplacian matrix [3]. The counterpart of this measure for asymmetric networks,

represented by weighted directed graphs (digraphs), is referred to as the generalized

algebraic connectivity (GAC), and is defined as the real part of the smallest non-zero

eigenvalue of the Laplacian matrix of the digraph [4]. This measure is shown to be closely

related to the convergence rate of the distributed algorithms running on an asymmet-

ric network [4]. Underwater acoustic sensor networks are an example of an asymmetric

network with applications in environmental monitoring, underwater exploration, etc. [1].

The connectivity control problem in symmetric networks has been investigated

thoroughly in the literature. For instance, in [5], a supergradient algorithm is employed

in conjunction with a decentralized strategy for eigenvector computation to maximize

algebraic connectivity of a symmetric network. For a network of mobile robots, the au-

thors in [6] propose algorithms for algebraic connectivity maximization using subgradient
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descent methods as well as network topology control via potential fields. Furthermore,

in the case of a random topology, a distributed stochastic power iteration method is first

introduced in [3] to estimate the value of algebraic connectivity locally. The resultant

estimate is then maximized in the presence of medium access control (MAC) protocols.

The authors in [2] investigate the maximization of the GAC for asymmetric networks,

where a discrete-time supergradient algorithm is proposed to compute a local maximum

of the GAC of the weighted digraph representing the network.

Even though it is normally desirable to have a highly connected sensor network,

it would be at the expense of higher total transmission power. In general, this would

impose a limit on the lifetime of networks (which are typically battery-powered) [7].

As a result, an appropriate balance between the total transmission power of the net-

work and its connectivity level is of utmost importance. To this end, the optimization

problem considered in this chapter aims to minimize the total transmission power of

an asymmetric network, while satisfying certain constraints on the values of the GAC

and transmission power vector. For symmetric networks, there are several papers in

the literature addressing similar optimization problems, e.g. see [8]- [12]. In [8], the

authors find the critical power that each node needs to transmit in order to maintain

network connectivity. In the presence of node mobility in wireless ad hoc networks, it

is shown in [9] that there exists an optimum transmission range maximizing network

capacity. The authors of [10] consider the problem of adjusting the transmission powers
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of a multi-hop wireless sensor network to create a desired topology. They propose two

centralized algorithms for use in static networks and two distributed heuristics for mo-

bile networks. In the context of asymmetric networks, only [1] considers the problem of

minimizing transmission power subject to a constraint on connectivity. Nonetheless, [1]

considers weighted edge connectivity as the measure of network connectivity, which is

not algebraic.

In this chapter, the GAC is used as a measure of asymmetric network connec-

tivity in the constrained optimization problem. The interior point method is utilized

to convert the resultant nonlinear constrained optimization problem into a sequential

unconstrained optimization problem. Due to its simplicity and ability to handle non-

differentiability of the GAC, the subgradient method with backtracking line search is

employed afterwards to solve each subproblem. Since the subgradient approach may

not result in a descent direction in every optimization iteration, a novel technique is

also proposed in the present work to address this issue. Asymptotic convergence of the

proposed algorithm to the global minimum of the original problem is proved accordingly,

and its effectiveness is shown by numerical simulations, where an experimental under-

water acoustic sensor network is considered as an example of an asymmetric network.

The remainder of the chapter is organized as follows. In Section 2.2, first, notations

and preliminary graph theory concepts used throughout the chapter are given, followed

by the optimization problem and its numerical solution. In Section 2.3, convergence

16



analysis of the proposed algorithm is presented. The simulation results are subsequently

provided in Section 2.4, and finally, Section 2.5 contains the concluding remarks.

2.2 Preliminaries

Notation: Throughout this chapter, the set of real numbers greater than r is denoted by

R>r, and the finite set of natural numbers {1, 2, ..., n} is denoted by Nn. The superscript

T is used to indicate the transpose of a real vector. Moreover, the inner product of two

real vectors v,w ∈ Rn is represented by 〈v,w〉. The real part of a complex number c ∈ C

is denoted by <(c). ‖.‖ and d.e denote the Euclidean norm and the ceiling function,

respectively. Additionally, for a real vector v ∈ Rn, Bσ(v) is a closed ball of radius

σ ∈ R>0 centered at v, i.e., Bσ(v) = {w ∈ Rn | ‖w− v‖ ≤ σ}. Moreover, 1n is an all-one

vector of length n, and ei ∈ Rn is a column vector whose elements are all zero, except

for its ith element which is equal to one.

For any k ∈ N, let G(k) = (V,E(k),W(k)) denote a weighted directed graph

(digraph) in the time interval [tk, tk+1), characterized by a set of vertices V = Nn, a

set of edges E(k), and a weight matrix W(k) ∈ Rn×n. Note that ~ij ∈ E(k) if node j

receives information from node i in the time interval [tk, tk+1) for any pair of distinct

nodes i, j ∈ Nn and any k ∈ N. The (i, j) element of the weight matrix W(k), denoted

by wij(k), is the weight associated with the link ~ji ∈ E(k) for any pair of distinct nodes

i, j ∈ Nn and any k ∈ N. Furthermore, in the time interval [tk, tk+1), the out-neighbor set

17



associated with node i, the Laplacian of the weighted digraph G(k), and the spectrum of

the Laplacian matrix are denoted by N out
i (k), L(k) ∈ Rn×n, and Λ(L(k)), respectively.

The generalized algebraic connectivity (GAC) of a weighted digraph G(k) with

Laplacian matrix L(k) is defined as the smallest real part of the nonzero eigenvalues of

L(k), i.e.,

λ̃(L(k)) = min
λi(L(k))6=0, λi(L(k))∈Λ(L(k))

<(λi(L(k))), (2.1)

for any k ∈ N [4]. It is to be noted that λ̃(L(k)) is a nonconvex and non-differentiable

continuous function of the elements of the Laplacian matrix. In contrast to the notion

of algebraic connectivity for undirected graphs [3], it is shown in [16] that an increase

in the elements of the weight matrix W(k) of the digraph does not necessarily lead to

an increase in the value of the GAC.

2.2.1 Problem Formulation

Consider a time-varying asymmetric network with n stationary nodes, whose informa-

tion exchange topology is represented by the weighted digraph G(k) for all k ∈ N, as

noted earlier. The transmission power vector of the network is denoted by P(k) =

[P1(k), . . . , Pn(k)]T ∈ Rn, where Pi(k) ∈ [P low
i , P up

i ] is the transmission power of the

ith node for any i ∈ Nn and k ∈ N. Furthermore, P(k) ∈ P for any k ∈ N, where

P =
∏n

i=1[P low
i , P up

i ] ⊂ Rn is a compact and convex set [2]. The relation between the

ith node’s transmission power Pi(k) and the link weight wij(k) can be described by a
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function of the following form

wij(k) = h(Pi(k); ξij), (2.2)

for any i ∈ Nn, j ∈ N out
i (k), and k ∈ N, where ξij represents a set of real constant

parameters characterizing the communication channel ~ji, and h(.; .) is an increasing

continuous function [1]. The value of the transmission power of any node directly impacts

the weights of its outgoing links. Note that with the above formulation, the GAC of

the network can now be expressed as λ̃(P(k)), an implicit function of the transmission

power vector, for any k ∈ N.

In general, a higher weight wij(k) implies a stronger communication link ~ji at the

cost of a higher power consumption by node i in the time interval [tk, tk+1). Given that

an appropriate balance between the total transmission power of the network and its

connectivity level is imperative, the following optimization problem is considered for the

network

minimize
P

n∑
i=1

Pi

subject to λ̃(P(k)) ≥ λ,

P low
i ≤ Pi(k) ≤ P up

i ,

(2.3)

for all i ∈ Nn and k ∈ N, where λ is a prespecified constant, reflecting the smallest

acceptable connectivity level, and P low
i and P up

i are, respectively, the fixed lower bound

and upper bound of the permissible transmission power for the ith node, which are
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known a priori. Since λ̃(P(k)) is a nonlinear function of the transmission power vector,

and also the number of constraints m = 1 + 2n increases linearly with the size of the

network, finding an analytical solution to the optimization problem given above may not

be feasible. Hence, a particular interior point algorithm, called the logarithmic barrier

method, is used in the sequel to numerically tackle the problem.

From (2.3), for any i ∈ Nn and k ∈ N, define

f(P(k)) =
n∑
i=1

Pi(k)

as the main cost function, and

h1(P(k)) = λ− λ̃(P(k)),

h2
i (Pi(k)) = Pi(k)− P up

i ,

h3
i (Pi(k)) = P low

i − Pi(k),

as the constraint functions. For any i ∈ Nn and k ∈ N, functions f(P(k)), h2
i (Pi(k))

and h3
i (Pi(k)) are continuous and differentiable, whereas h1(P(k)) is a non-differentiable

continuous function, and is also nonconvex. The objective now is to transform the

constrained optimization problem (2.3) into a sequential unconstrained optimization

problem using the logarithmic barrier method. To this end, it is noted that problem
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(2.3) has the same minimizer as the following problem

minimize
P

f̃(P,Γ), (2.4)

where

f̃(P(k),Γ) = f(P(k)) + Γ−1I(P(k)), (2.5)

and

I(P(k)) = − log
(
−h1(P(k))

)
−

n∑
i=1

log
(
−h2

i (Pi(k))
)
−

n∑
i=1

log
(
−h3

i (Pi(k))
)

(2.6)

for any k ∈ N and Γ ∈ R>0 [13, 14]. Define the set R ⊂ P as the domain of function

f̃(P(k),Γ), called hereafter the joint cost function. The procedure to numerically solve

the optimization problem (2.4) is given in Algorithm 2.1, where the initial transmission

power vector of the algorithm needs to be strictly feasible, i.e. P0 needs to be strictly

inside the feasible set R and not on its boundaries. There are three parameters ε, µ

and Γ0 in the algorithm that need to be chosen appropriately. The choice of ε involves

a trade-off between the accuracy of the method and its execution speed. The parameter

µ, on the other hand, determines the rate of increase of Γ at each iteration, and will be

discussed later. The parameter Γ0 determines the initial weight given to the logarithmic

penalty function I(P(k)). If the solution to problem (2.4) lies on the boundaries of the

set R, we will have limk→∞ I(P(k)) = ∞, whereas limk→∞ f(P(k)) ∈ R. To ensure
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Algorithm 2.1. Interior point method
1: Given strictly feasible P = P0 ∈ Rn, initialize

Γ = Γ0 ∈ R>0.
2: Choose arbitrary constants µ ∈ R>1 and ε ∈ R>0.
3: while mΓ−1 > ε

4: Compute P∗ ∈ argmin
P∈R

f̃(P,Γ).

5: P = P∗

6: Γ = µΓ
7: end while

that the solution of the optimization problem (2.4), as k → ∞, is not swayed towards

mainly minimizing I(P(k)), rather than f(P(k)), finding proper values for µ and Γ0 is

imperative.

Since (2.4) is a sequential optimization problem, in order to solve each subprob-

lem (line 4 of Algorithm 2.1), the subgradient method is utilized. The definition of a

function’s subgradient is given next.

Definition 2.1. Vector g is said to be the subgradient of the nonconvex and non-

differentiable function f : Rn → R at x ∈ dom(f) if there exists a real scalar σ ∈ R>0

such that

f(y) ≥ f(x) + 〈y− x, g(x)〉, (2.7)

for any y ∈ Bσ(x), where dom(f) denotes the domain of function f . The set of all

subgradients of function f at x ∈ dom(f) is called the subdifferential set ∂f(x) [2] .

The subgradient method moves the current iteration of the optimization loop in

the opposite direction of a subgradient of the function to be optimized (f̃(P(k),Γ) in
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this case). This is described by

P(k + 1) = P(k) + α(k) · v(k), (2.8)

where for any k ∈ N, v(k) = −g(k) is the search direction in the time interval [tk, tk+1),

and g(k) = [g1(k), g2(k), ..., gn(k)] ∈ ∂f̃(P(k),Γ) is an arbitrary subgradient of the joint

cost function f̃ . Also, for any k ∈ N, α(k) is the step-size, determining how much to

move the current iteration along the search direction. For any i ∈ Nn and k ∈ N, the ith

element of g(k) is given by

gi(k) = 1 + Γ−1(− ∇λ̃i(P(k))

λ̃(P(k))− λ
+

1

P up
i − Pi(k)

− 1

Pi(k)− P low
i

), (2.9)

where ∇λ̃i(P(k)) is the ith element of the supergradient vector of the GAC, and can be

chosen arbitrarily from the superdifferential set [2]

∂λ̃i(P(k)) :=
1

β
{∂λ̃+

i (P(k)), ∂λ̃−i (P(k))},

with

∂λ̃+
i (P(k)) = λ̃(P(k) + βei)− λ̃(P(k)), (2.10a)

∂λ̃−i (P(k)) = λ̃(P(k))− λ̃(P(k)− βei), (2.10b)

for some constant β ∈ R>0. Let g+(k) and g−(k), respectively, correspond to the cases

where ∇λ̃i(P(k)) = ∂λ̃+
i (P(k)) and ∇λ̃i(P(k)) = ∂λ̃−i (P(k)) in (2.9).
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The parameter α(k) is chosen using the backtracking line search method, which

provides the maximum allowable step-size to move along a given search direction. This

search method starts with a relatively large estimate of the step-size, αmax, and iter-

atively reduces the step-size until a sufficient decrease in the joint cost function f̃ is

observed. The proposed algorithm for computing the solution of the optimization prob-

lem (2.4), which is a combination of Algorithm 2.1 and the subgradient method with

backtracking line search, is presented in Algorithm 2.2. In lines 11 to 14 of the algo-

rithm, the step-size is chosen such that the value of the function in the current iteration

decreases as much as possible along the search direction while staying within the feasi-

ble set R. Unlike the gradient method, the subgradient technique is not necessarily a

descent direction for every k ∈ N. For the case where v(k) is not a descent direction in

the time interval [tk, tk+1) (as specified later in Lemma 2.1), first, µ (the ratio by which

Γ is increased) is updated such that it satisfies the inequality given later in Lemma 3.1,

and then the inner optimization loop ends (lines 8 to 10 of Algorithm 2.2). This ensures

that the search direction in the next iteration of the optimization loop will be a descent

direction.

Assumption 2.1. The network digraph is assumed to be strongly connected at all times,

meaning that there is a directed path from every node in the graph to every other node.

Assumption 2.2. It is assumed that as the elements of transmission power vector P(k)

vary within the permissible set P for any k ∈ N, the edge set of the weighted digraph
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G(k) remains static, i.e., no edges are added or removed during the evolution of the

network.

Lemma 2.1. For the non-differentiable function f̃(P(k),Γ) with subdifferential set ∂f̃(P(k),Γ)

at P(k) ∈ R, v(k) is not a descent direction if

∃ g(k) ∈ ∂f̃(P(k),Γ) such that 〈v(k), g(k)〉 ≥ 0, (2.11)

for any k ∈ N and Γ ∈ R>0.

Proof. The proof follows directly from the definition of the subgradient (Definition 2.1).

�

2.3 Convergence Analysis of the Optimization Algo-

rithm

The asymptotic convergence of the proposed optimization algorithm to the global min-

imum of the constrained optimization problem (2.3) is provided in this section.

Lemma 2.2. Consider an asymmetric network composed of n nodes represented by a

weighted digraph, and let Assumptions 4.1 and 4.2 hold. Functions f(P(k)), h1(P(k)),

h2
i (Pi(k)), h3

i (Pi(k)), and I(P(k)) of the optimization problem (2.4) satisfy the conditions
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Algorithm 2.2. Sequential unconstrained optimization
1: Given strictly feasible P = P0 ∈ Rn, initialize

Γ = Γ0 and k = 1.
2: Choose arbitrary constants ν ∈ (0, 1), θ ∈ (0, 1),

µ0 ∈ R>1, ε, αmax ∈ R>0, mmax ∈ N and consider
the prescribed parameters λ ∈ R>0, and Pup, Plow ∈ Rn.

3: while mΓ−1 > ε do
4: µ = µ0

5: for miter = 1 : mmax do
6: Compute v(k).
7: Compute Qk according to (2.13).

8: if ∃g(k) ∈ ∂f̃(P(k),Γ) such that 〈v(k), g(k)〉 ≥ 0 do
9: µ = max{µ0, d 1

n
Qke}

10: break
11: α(k) = αmax
12: while P(k) + α(k) · v(k) /∈ R or

f̃(P(k) + α(k) · v(k),Γ) > f̃(P(k),Γ) + ν · α(k) · 〈v(k), g(k)〉 do
13: α(k) = θ · α(k)
14: end while
15: P(k + 1) = P(k) + α(k) · v(k)
16: k = k + 1
17: end
18: Γ = µΓ
19: end while
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of [13, Theorem 8], for all i ∈ Nn and k ∈ N. Hence, using the interior point algorithm,

the following relations hold

1. limk→∞ f(P(k)) = v∗,

2. limk→∞ f̃(P(k),Γ) = v∗,

3. limk→∞ Γ−1I(P(k)) = 0,

4. limk→∞ P(k) = P∗,

where v∗ is the global minimum of the optimization problem (2.3), and P∗ = [P ∗1 , . . . , P
∗
n ]

is its corresponding minimizer.

Proof. The proof is a straightforward extension of the result in [13, Theorem 8], and is

omitted due to space limitations. �

Lemma 2.2 shows that using the interior point algorithm, it is guaranteed that

a sequence P(k) exists for problem (2.4) which converges to the global minimizer of

optimization problem (2.3). It is desired now to show that the subgradient method with

backtracking line search generates this sequence. To this end, the following lemma and

theorem are presented.

Assume that v(k) is not a descent direction for some k ∈ N. According to Algo-

rithm 2.2, the optimization algorithm ends at iteration k without updating the trans-

mission power vector, and the value of Γ is increased. It is to be noted that the iteration
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index k does not increase, but rather the optimization loop in the time interval [tk, tk+1)

is repeated. For the sake of convergence analysis, this new iteration index is denoted

by k′, where k′ 6= k + 1, and the corresponding optimization parameter is denoted by

Γ′ = µΓ.

Lemma 2.3. If v(k) = −g(k) is not a descent direction for some k ∈ N according to

Lemma 2.1, it will be a descent direction at iteration k′, if

µ ≥ d 1

n
Qk − 1e, (2.12)

where Qk is given by

Qk =
1

Γ

n∑
i=1

∂λ̃−i (P(k)) + ∂λ̃+
i (P(k))

λ̃(P(k))− λ
+

2

Γ

n∑
i=1

P up
i + P low

i − 2Pi(k)

(P up
i − Pi(k))(Pi(k)− P low

i )
. (2.13)

Proof. Without loss of generality, assume

vi(k) = −g−i (k) = −1− 1

Γ
[− ∂λ̃−i (P(k))

λ̃(P(k))− λ
+

1

P up
i − Pi(k)

− 1

Pi(k)− P low
i

]. (2.14)

for all i ∈ Nn and any k ∈ N. If ∃g(k) ∈ ∂f̃(P(k),Γ) such that 〈v(k), g(k)〉 ≥ 0, meaning

v(k) is not a descent direction, and given that 〈v(k), g−(k)〉 < 0, we have

〈v(k), g+(k)〉 =
n∑
i=1

(
(1 +

1

Γ
[− ∂λ̃+

i (P(k))

λ̃(P(k))− λ
+

1

P up
i − Pi(k)

− 1

Pi(k)− P low
i

])×

(−1− 1

Γ
[− ∂λ̃−i (P(k))

λ̃(P(k))− λ
+

1

P up
i − Pi(k)

− 1

Pi(k)− P low
i

])
)
≥ 0. (2.15)
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Define

M1 =
∂λ̃−i (P(k))

λ̃(P(k))− λ
− 1

P up
i − Pi(k)

+
1

Pi(k)− P low
i

,

and

M2 =
∂λ̃+

i (P(k))

λ̃(P(k))− λ
− 1

P up
i − Pi(k)

+
1

Pi(k)− P low
i

.

Substituting M1 and M2 into (2.15) and simplifying the resultant equation, we have

〈v(k), g+(k)〉 = −n+
1

Γ

n∑
i=1

(M1 +M2)− 1

Γ2

n∑
i=1

M1 ·M2 ≥ 0. (2.16)

Using a similar procedure in the next iteration yields

〈v(k′), g+(k′)〉 = −n+
1

µ · Γ

n∑
i=1

(M1 +M2)− 1

µ2 · Γ2

n∑
i=1

M1 ·M2. (2.17)

Since β is assumed to be constant, and given that the transmission power vector P is not

updated at iteration k, the values of M1 and M2 will remain unchanged from iteration

k to k′. Rearranging the right-hand side of (2.16) results in

− n+
1

µ · Γ

n∑
i=1

(M1 +M2)− 1

µ2 · Γ2

n∑
i=1

M1 ·M2

≤ µ+ 1

µ2
· 1

Γ

n∑
i=1

(M1 +M2)− (
µ2 + 1

µ2
)n− 2

µ2 · Γ2

n∑
i=1

M1 ·M2. (2.18)

It is obvious that the left-hand side of (2.18) is equal to (2.17). Now, considering the
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right-hand side of (2.18), if

µ+ 1 · 1

Γ

n∑
i=1

(M1 +M2)− (µ2 + 1)n− 2

Γ2

n∑
i=1

M1 ·M2 < 0, (2.19)

then it is guaranteed that 〈v(k′), g+(k′)〉 < 0. Simplifying (2.19), one arrives at

µ ≥ d 1

n
Qk − 1e, (2.20)

where

Qk =
1

Γ

n∑
i=1

(M1 +M2) =
1

Γ

n∑
i=1

∂λ̃−i (P(k)) + ∂λ̃+
i (P(k))

λ̃(P(k))− λ
+

2

Γ

n∑
i=1

P up
i + P low

i − 2Pi(k)

(P up
i − Pi(k))(Pi(k)− P low

i )
. (2.21)

This completes the proof. �

Remark 2.1. If for any k ∈ N, v(k) is not a descent direction, the optimization in the

time interval [tk, tk+1) ends (line 10 of Algorithm 2.2), and is repeated in the next time

interval with an updated Γ such that v(k) becomes a descent direction according to

Lemma 3.1. Thus, it can be assumed that the final v(k), for any k ∈ N, is always a

descent direction.

For each Γ ∈ R>0, over the compact and convex set R, problem (2.4) has a unique

global minimum. Let the minimizer corresponding to this minimum be denoted by P∗Γ,

called the central points of the interior point algorithm [14]. Also, let P0
Γ denote the
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power vector that the inner optimization loop starts working with (when miter = 1),

for any Γ ∈ R>0. Starting from P0
Γ, it is desired to make the f̃(P(k),Γ) converge to

f̃(P∗Γ,Γ) using the subgradient method with backtracking line search. By doing so, since

P∗Γ → P∗ and f̃(P∗Γ,Γ)→ v∗ as k →∞ [14], f̃(P(k),Γ) will converge to v∗.

Theorem 2.1. Consider an asymmetric network composed of n nodes represented by a

weighted digraph. Using Algorithm 2.2, the transmission power vector P(k) asymptoti-

cally converges to a stationary vector P∗ ∈ R corresponding to the global minimum of

the optimization problem (2.3), v∗, as k →∞.

Proof. The proof is omitted due to space limitations. �

2.4 Simulation Results

Example 2.1. To investigate the efficacy of Algorithm 2.2, consider the experimen-

tal asymmetric network in [15] with four nodes, represented by a strongly connected

weighted digraph G = (V,E,W). Assume that P = [1 4]4, i.e. Plow = 14 and

Pup = 4× 14. The initial transmission power vector is chosen as

P0 = [2.2 1.4 1.7 2.0]T, (2.22)

which is contained in the compact set P in this example. Elements of the weight matrix

W of the network are related to the transmission power vector of the network according
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to (2.2) at every time instant. The resulting initial weight matrix is

W =



0 0.4211 0.3462 0.2536

0.4110 0 0.2706 0.3086

0.1745 0.2437 0 0.2137

0.3913 0 0.4417 0


.

The generalized algebraic connectivity of the directed network corresponding to the

initial transmission power vector is λ̃(P0) = 1.0451. In this example, it is desired to

have an algebraic connectivity greater than or equal to λ = 0.8. Hence, the considered

initial transmission power vector is strictly feasible, as desired.

To implement Algorithm 2.2, the maximum number of iterations for the inner

optimization loop is chosen as mmax = 20. The design parameters of the backtracking

line search are also chosen as ν = 0.5, θ = 0.75, and αmax = 1. Furthermore, the

parameter used to numerically calculate the supergradient of the GAC is chosen to be

β = 0.01, and the coefficient by which Γ is multiplied with at the end of an inner

optimization loop is at least equal to µ0 (note that µ0 = 10). The initial value of Γ is

also chosen as Γ0 = 250. The performance of the algorithm is evaluated by choosing

ε = 10−4 in the termination condition of the outer optimization loop. Finally, the search

direction is chosen as vi(k) = −g−i (k) for all i ∈ Nn and k ∈ N.

The value of the GAC of the network as the iteration index k increases is shown

in Fig. 2.1. The evolution of the transmission power of every node is also demonstrated
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in Fig. 2.2. The resultant optimal transmission power vector is

P∗ = [1.8367 1.0064 1.6318 1.3985]T, (2.23a)

and the corresponding global minimum power and the network GAC, respectively, are

v∗ =
4∑
i=1

P ∗i = 5.8734, λ̃(P∗) = 0.8000. (2.23b)

The weight matrix associated with the optimal transmission power vector is

W∗ =



0 0.3931 0.2246 0.1676

0.3483 0 0.1641 0.2358

0.1598 0.2279 0 0.1970

0.2156 0 0.3724 0


.

In order to verify the obtained results, the fmincon function of MATLAB is utilized

to solve the optimization problem (2.3) numerically, and proper penalty functions are

also incorporated for the violation of the constraints. The output of this function is

P∗ = [1.8358 1.0002 1.6301 1.4046]T, (2.24a)

v∗ =
n∑
i=1

P ∗i = 5.8707, λ̃(P∗) = 0.8000. (2.24b)

Comparing the vectors in (2.23a) and (2.24a), it can be concluded that the obtained
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Figure 2.1: Evolution of the generalized algebraic connectivity of the network of Example 2.1.

results are consistent, and in fact the maximum discrepancy between the elements of

the two vectors is less than 1%, which is within the numerical error range.

2.5 Conclusion

In this work, the problem of joint transmission power optimization and generalized alge-

braic connectivity (GAC) control in an asymmetric network represented by a weighted

directed graph (digraph) is investigated. The interior point method is utilized to con-

vert the underlying constrained optimization problem into a sequential unconstrained

optimization problem. The subgradient method with backtracking line search are then

adopted to solve each subproblem numerically. Even though the GAC is a nonconvex,
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Figure 2.2: Evolution of the transmission power of every node in the network of Example 2.1.

non-smooth continuous function, it is proved that the proposed algorithm converges to

the global minimum of the original optimization problem. Efficiency of the algorithm is

verified by numerical simulations and comparing the results with MATLAB’s fmincon

function. While the method proposed in this work is centralized, developing the dis-

tributed counterpart of the present technique is the main focus of the authors’ future

work, where the strong connectivity of the network is the key assumption for effective

information exchange.
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Chapter 3

Lifetime Optimization and

Generalized Algebraic Connectivity

Control in Asymmetric Networks

In this chapter, the problem of lifetime maximization and connectivity control over

asymmetric networks represented by weighted directed graphs (digraphs) is investigated

using a centralized approach. Each node is assumed to deplete its battery linearly with

respect to the transmission powers used for communicating with its neighbors. Lifetime

of the network is defined as the minimum lifetime over all nodes and is formulated as a

function of these transmission power levels. The notion of generalized algebraic connec-

tivity (GAC), used as the network connectivity measure, is also formulated as an implicit
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function of the network’s transmission power matrix. An optimization problem is pre-

sented to maximize the network lifetime while satisfying constraints on the GAC and

transmission power. The mixed interior point-exterior point method is utilized to trans-

form the constrained optimization problem into a sequential unconstrained problem.

Each subproblem is solved numerically using the subgradient method with backtracking

line search. Asymptotic convergence of the proposed algorithm to the global optimum

of the original optimization problem is demonstrated analytically. The effectiveness of

the algorithm is verified by simulations.

This chapter is based on the following publication:

M. Esmaeilpour, A. G. Aghdam, and S. Blouin, “Lifetime optimization and general-

ized algebraic connectivity control in asymmetric networks,” submitted for conference

publication.

Unlike Chapters 2 and 4 where the interior point method is used to numerically handle

the optimization problems, the mixed interior point-exterior point method is used in

this chapter as a result of considering equality constraints in the optimization problem.

Ultimately, note that as mentioned before, the concatenation of all transmission powers

in Chapters 3 and 4 is a matrix, whereas it is a vector in Chapter 2.
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3.1 Introduction

Sensor networks consist of geographically distributed autonomous sensor nodes, which

have sensing, processing and communication capabilities [17]. These networks have ap-

plications in environmental monitoring, surveillance, target localization, etc. [22]. The

communication links between the sensors may either be bi- or uni-directional, result-

ing in symmetric and asymmetric networks, respectively. An example of the former

is the wireless sensor networks (WSN), whereas underwater acoustic sensor networks

(UWASN) are a type of asymmetric networks [28], where bi-directional communication

links may not be possible due to several sources of uncertainty [15].

The key issue in deploying sensor networks is the power consumption of the sensor

nodes, which directly impacts the lifetime of the network [19]. The sensor nodes are

typically battery-powered, and since replacing the battery of a dead node may not be

cost-effective nor straightforward, especially in the case of UWASNs, careful battery en-

ergy management is crucial. The network lifetime is typically defined as the time until

the first sensor node depletes its energy [17, 21]. The importance of maximizing the

network lifetime has motivated numerous studies in the literature, where it is considered

as an explicit performance metric [17]. For instance, the authors of [21] consider a rout-

ing problem in static wireless ad hoc networks, where the objective of maximizing the

network lifetime is solved via a shortest path routing algorithm. In [19], an optimal con-

trol approach is used to solve the problem of routing in sensor networks with the goal of
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maximizing the network’s lifetime. The authors consider a dynamic energy consumption

model for the batteries. In a fixed topology, they show that there exists an optimal pol-

icy consisting of time-invariant routing probabilities. The authors extend these results

further in [17] where they consider a more general state space battery model. A mo-

bile sensor network for monitoring a moving target is investigated in [22]. The authors

propose a technique determining a near-optimal relocation strategy for the sensors and

an energy-efficient route for transferring information from the target to the destination.

In [23], the authors propose base station mobility to counter the suboptimal energy

dissipation of some nodes in a WSN. To prolong the network lifetime, various mobility

patterns are considered and using a mixed integer programming framework, their impact

on the network lifetime is characterized. The authors of [24] provide a mathematical

model for network lifetime maximization integrating WSN design decisions on sensor

places, activity schedules, data routes and trajectory of the mobile sink(s). They then

present two heuristic approaches for the solution of the model and show its efficacy via

numerical experiments. For further algorithms on network lifetime maximization, the

interested reader is referred to survey studies similar to [25] and the references therein.

In addition to lifetime, another important issue to address in the deployment of

sensor networks is their connectivity. Networks run distributed algorithms to determine

a (often-global) quantity from local measurements. It is well-known that the conver-

gence rate of these cooperative algorithms is directly related to the connectivity level of
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the network [28]. Some of the papers in the literature that consider connectivity in the

context of prolonging the network lifetime can be found in [25]. Among the different

connectivity measures, algebraic connectivity may be used as a measure for symmet-

ric networks, where its counterpart for asymmetric networks is the generalized algebraic

connectivity (GAC) [28]. Even though it is desirable to have a highly connected network,

it would mean significantly higher total power consumption. Given the inverse relation-

ship between the network lifetime and the total power consumption, an unreasonably

high connectivity level in the network would deplete the nodes’ batteries prematurely.

Hence, an appropriate balance between the lifetime of the network and its connectivity

level is imperative.

The optimization problem considered in this chapter aims to maximize the life-

time of the network while satisfying certain constraints on the GAC and the transmission

powers and ensuring that the nodes run out of energy at the same time. In our ear-

lier work [28], a similar problem was considered; however, the main objective in [28]

is minimizing the total transmission power, which has been shown to rapidly deplete

energy from some nodes, ultimately reducing the overall network lifetime [17]. This is

in contrast with the goal of this study. To the best of our knowledge, there is currently

no study in the literature that considers the GAC in the same context as network life-

time maximization. The methodologies of this study and [28] are also different, as the

method of [28] cannot handle the eqaulity constraints considered here. unlike [28], it is
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assumed here that nodes use different transmission powers to communicate with their

neighbors. The mixed interior point-exterior point method of [13] is utilized to convert

the resulting nonlinear constrainted optimization problem to a sequential unconstrained

optimization problem. The subgradient method with backtracking line search is then

used to solve each subproblem numerically, and asymptotic convergence of the proposed

algorithm to the global optimum of the original problem is demonstrated analytically.

Efficacy of the proposed method is shown by numerical simulations, where an experi-

mental UWASN is considered as an example of an asymmetric network. The distributed

version of the algorithm proposed in this study is submitted to a journal and is currently

under review [30].

The remainder of the chapter is organized as follows. In Section II, first, notations

and preliminary graph theory concepts used throughout the chapter are given, followed

by the optimization problem and its numerical solution. In Section III, convergence

analysis of the proposed algorithm is presented. The simulation results are subsequently

provided in Section IV, and finally, Section V contains the concluding remarks.

3.2 Prelimineries

Notation: Throughout this chapter, the set of real numbers greater than r is denoted by

R>r, and the finite set of natural numbers {1, 2, ..., n} is denoted by Nn. The superscript

T is used to indicate the transpose of a real vector or matrix. Moreover, the inner
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product of two real matrices v,w ∈ Rn×n is represented by 〈v,w〉, and the function tr(·)

denotes the trace of a given real matrix. The real part of a complex number c ∈ C is

denoted by <(c), and d.e denotes the ceiling function. Bσ(·) is a closed ball of radius

σ ∈ R>0 centered around the considered point.

For any k ∈ N, let G(k) = (V,E(k),W(k)) denote a weighted directed graph

(digraph) in the time interval [tk, tk+1), characterized by a set of vertices V = Nn, a

set of edges E(k), and a weight matrix W(k) ∈ Rn×n. The (i, j) element of the weight

matrix, denoted by wij(k), is the weight associated with the communication link from

node j to node i, ~ji ∈ E(k), in the time interval [tk, tk+1) for any pair of distinct nodes

i, j ∈ Nn and any k ∈ N. Furthermore, the out-neighbor and in-neighbor sets associated

with node i and the Laplacian of the weighted digraph G(k) are denoted by N out
i (k),

N in
i (k) and L(k) ∈ Rn×n, respectively. The generalized algebraic connectivity (GAC) of

a weighted digraph G(k) is defined as the smallest real part of the nonzero eigenvalues of

the Laplacian matrix L(k) and is denoted by λ̃(L(k)) for any k ∈ N [4]. As shown in [4],

the imaginary part of the eigenvalue corresponding to the GAC is not related to the

convergence rate of the distributed algorithms running over the network. Additionally,

if a network has multiple connected components, but is not strongly connected as a

whole, the GAC would only be applicable to each component separately.
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3.2.1 Problem Formulation

Consider a time-varying asymmetric network with n stationary nodes, whose information

exchange topology is represented by the weighted digraph G(k) for all k ∈ N, as noted

earlier. As a more general case, unlike the authors’ earlier work [28], it is assumed that

each node uses different power levels to communicate with their neighbors. Therefore,

the transmission power matrix is denoted by P(k) = [Pji(k)] ∈ Rn×n, for i, j ∈ Nn and

k ∈ N, where Pji(k) ∈ [P low
ji , P

up
ji ] is the transmission power that node i uses to transmit

information to node j. P low
ji and P up

ji are, respectively, the fixed lower bound and upper

bound of the permissible transmission power Pij(k), which are known a priori. In a

noise-limited environment, the relation between the transmission power Pji(k) and the

weight of the corresponding communication link wji(k) can be described by a function

of the following form

wji(k) = h(Pji(k); ξji), (3.1)

for any i, j ∈ Nn, where ξji represents a set of real constant parameters characterizing

the communication channel ~ij, and h(.; .) is an increasing continuously differentiable

function [1].

Expression (3.1) enables the formulation of the network GAC as an implicit func-

tion of the power matrix, i.e., λ̃(P(k)) for any k ∈ N. Unlike the algebraic connectivity,

introduced in [27] for undirected networks, which is concave in its domain [31], the
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GAC is neither concave nor convex, and hence, is referred to as a nonconvex function.

Furthermore, the GAC is piecewise differentiable over finite intervals, but can be non-

differentiable in certain points. The discontinuity in the derivative of λ̃(P(k)) occurs

when the eigenvalue of the Laplacian matrix corresponding to the GAC changes from a

real eigenvalue to a complex conjugate pair or vice versa [2].

Given the transmission power vector Pi(k) = [P1i(k), · · · , Pni(k)]T for any i ∈ Nn

and k ∈ N, the lifetime of node i is given by

T (Pi(k)) =
e0
i∑

j∈Nout
i
qji · Pji(k) · τji ·Kji +

∑
j∈N in

i
qij · erij ·Kij

(3.2)

[21], where qji denotes the transmission rate per unit of time from node i to node j (like

bits per second), τji shows the time that node i has to keep transmitting one packet

of information with transmission power Pji to ensure it has been received at node j,

and Kji is the number of information packets sent from node i to node j. Moreover, e0
i

is the initial energy of node i battery, and erij is the energy used by node i to receive

information from node j. Note that T (Pi(k)), for all i ∈ Nn, is a concave function on

its domain and has a unit of time. The energy required to sense incoming information

packets is considered to be negligible compared to transmission power requirements [17].

The denominator of (3.2) is relatively simple. However, the underlying optimization

problem and the proposed algorithm are not critically dependent on the exact energy

consumption model. The system (or network) lifetime is accordingly defined as the

44



minimum lifetime over all nodes [17, 21], i.e., for all i ∈ Nn and any k ∈ N, the network

lifetime is as

Tsys(P(k)) = min
i∈Nn

T (Pi(k)). (3.3)

In a noise-limited environment, a higher transmission power leads to a more con-

nected network [28]. However, as evident from (3.2), it will lead to a decrease in the

network lifetime. Since an appropriate balance between the network lifetime and its

connectivity level is imperative for the efficient operation of the network, the following

optimization problem is considered for the network

minimize
P

−Tsys(P)

subject to λ̃(P(k)) ≥ λ, ∀k ∈ N,

P low
ji ≤ Pji(k) ≤ P up

ji , ∀i, j ∈ Nn, ∀k ∈ N,

T (Pi(k)) = Tsys(P(k)), ∀i ∈ Nn, ∀k ∈ N,

(3.4)

where λ is a prespecified constant, reflecting the lowest acceptable connectivity level. It

has been shown that maximizing the network lifetime may result in the simultaneous

depletion of the node energies [17, 19, 22]. To this end, the lifetime constraints are

considered in (3.4) to ensure that nodes deplete their energies at the same time. This is

also favorable from a practical point of view because if the entire network was to deplete

its energy at once, battery replacement can be performed more efficiently.

45



From (3.4), for all i, j ∈ Nn and k ∈ N, define

f(P(k)) = −Tsys(P(k))

as the main cost function, and

h1(k) = λ̃(P(k))− λ,

h2
ji(k) = P up

ji − Pji(k),

h3
ji(k) = Pji(k)− P low

ji ,

h4
i (k) = T (Pi(k))− Tsys(P(k)),

as the constraint functions. To solve the optimization problem (3.4), the mixed interior

point-exterior point method of [13] is utilized, which transforms a constrained optimiza-

tion problem into a sequential unconstrained problem. To this end, it is noted that when

k →∞, problem (3.4) has the same minimizers as the following problem [13]

minimize
P

f̃(P,Γ,Υ), (3.5)

where

f̃(P(k),Γ,Υ) = f(P(k)) + Γ−1 · I(P(k)) + Υ ·O(P(k)), (3.6)

I(P(k)) = − log
(
h1(k)

)
−
∑
i∈Nn

∑
j∈Nn

log
(
h2
ji(k)

)
−
∑
i∈Nn

∑
j∈Nn

log
(
h3
ji(k)

)
, (3.7)
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Algorithm 3.1. Mixed interior point-exterior point method
1: Given P = P0 ∈ Rn×n, initialize

Γ = Γ0 and Υ = Υ0 ∈ R>0.
2: Choose arbitrary constants µ, δ ∈ R>1 and ε ∈ R>0.
3: while mΓ−1 > ε

4: Compute P∗ ∈ argmin
P∈R

f̃(P,Γ,Υ).

5: P = P∗

6: Γ = µΓ
7: Υ = δΥ
8: end while

O(P(k)) =
∑
i∈Nn

h4
i (k)2, (3.8)

and Γ,Υ ∈ R>0 are updated as the optimization process moves forward. Algorithm 3.1

shows the procedure to numerically solve the optimization problem (3.5). The set R

in the algorithm is defined as the domain of the logarithmic barrier function (3.7).

The initial transmission power matrix P0 needs to be strictly inside the feasible set

R. There are five parameters ε, µ, δ, Γ0, and Υ0 in Algorithm 3.1 that need to be

chosen appropriately. The choice of ε involves a trade-off between the accuracy and the

execution speed of the algorithm. The parameters µ and δ determine the rate of increase

of Γ and Υ, respectively. The parameters Γ0 and Υ0 determine the initial weights given

to the penalty functions I(P(k)) and O(P(k)), respectively.

Since (3.5) is a sequential optimization problem, in order to solve each subproblem

(line 4 of Algorithm 3.1), the subgradient method is utilized. Note that since the GAC

is a nonconvex function, the joint cost function will also be a nonconvex function. To

this end, the definition of a matrix-valued function’s subgradient is given next. Note
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that a supergradient of a nonconvex function has the same definition as in Definition

3.1, except the inequality is flipped. The superdifferential set is also defined similarly to

the subdifferential set.

Definition 3.1. Matrix g is said to be the subgradient of the nonconvex and non-

differentiable function f̃ : Rn×n → R at P ∈ R if there exists a real scalar σ ∈ R>0 such

that for any P̂ ∈ Bσ(P), the following inequality holds:

f̃(P̂,Γ,Υ) ≥ f̃(P,Γ,Υ) + 〈P̂−P,g〉. (3.9)

The set of all subgradients of function f̃ at P ∈ R is called the subdifferential set

∂f̃(P,Γ,Υ) [2].

The subgradient method moves the current iteration of the optimization loop in

the opposite direction of a subgradient of the function to be optimized (f̃(P(k),Γ,Υ) in

this case). That is, at any time tk, k ∈ N,

P(k + 1) = P(k) + α(k) · v(k), (3.10)

where v(k) = −g(k) is the search direction in the time interval [tk, tk+1), and g(k) =

[gij(k)] ∈ ∂f̃(P(k),Γ,Υ), for i, j ∈ Nn, is an arbitrary subgradient of the cost function

f̃ . Also, for any k ∈ N, α(k) is the step-size, determining the magnitude of the move

along the search direction. At any time tk, k ∈ N, and for any i, j ∈ Nn, the (i, j)th
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element of g(k) is given by

gij(k) = −∂Tsys(P(k))

∂Pij(k)
+ Γ−1∂I(P(k))

∂Pij(k)
+ Υ

∂O(P(k))

∂Pij(k)
(3.11)

where

∂I(P(k))

∂Pij(k)
= − ∇λ̃ij(P(k))

λ̃(P(k))− λ
+

1

P up
ji − Pij(k)

− 1

Pij(k)− P low
ji

, (3.12)

∂O(P(k))

∂Pij(k)
= 2

∑
l∈Nn

(∂Tl(Pl(k))

∂Pij(k)
− ∂Tsys(P(k))

∂Pij(k)

)
×
(
Tl(Pl(k))− Tsys(P(k))

)
. (3.13)

In (3.12),∇λ̃ij(P(k)) is the subgradient of the GAC with respect to Pij(k), and can be

arbitrarily chosen from the subdifferential set

∂λ̃ij(P(k)) :=
1

β(k)
{∂λ̃+

ij(P(k)), ∂λ̃−ij(P(k))}

where β(k) = β0/k
β0 , for some β0 ∈ R>0, is the step-size used to numerically compute

∂λ̃+
ij(P(k)) and ∂λ̃−ij(P(k)) given by [2, 28]

∂λ̃+
ij(P(k)) = λ̃(P(k) + β(k)eij)− λ̃(P(k)),

∂λ̃−ij(P(k)) = λ̃(P(k))− λ̃(P(k)− β(k)eij).

Note that β(k) was assumed to be a real constant in our earlier work [28], whereas

it is time-varying in this study. Let also g+(k) and g−(k), respectively, correspond to

the cases where ∇λ̃ij(P(k)) = 1
β(k)

∂λ̃+
ij(P(k)) and ∇λ̃ij(P(k)) = 1

β(k)
∂λ̃−ij(P(k)), for all
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i, j ∈ Nn. The partial derivatives of the nodes’ lifetimes are easily found via (3.2). To

compute the partial derivatives of the network lifetime for each k ∈ N, one first needs

to determine which node the minimum lifetime corresponds to before using (3.2).

The procedure proposed for computing a solution of the sequential unconstrained

optimization problem (3.5) is presented in Algorithm 3.2. The parameter mmax is the

maximum number of iterations the inner optimization loop is repeated. In lines 12

to 15 of Algorithm 3.2, the step-size α(k) is computed via the backtracking line search

method, providing the maximum allowable step length to move along the obtained search

direction. This line search method starts with a large estimate of the step-size αmax

and iteratively reduces the step-size by the factor θ ∈ (0, 1) until a sufficient decrease

determined by the parameter ν ∈ (0, 1) is observed in the cost function. Unlike the

gradient method, the subgradient approach does not result in a descent direction at

every time instant tk, k ∈ N. For the case where v(k) is not a descent direction (as

specified later in Remark 3.1), the multiplicative factors by which Γ and Υ are increased

(µ and δ, respectively) are updated first, such that they satisfy the inequality given later

in Lemma 3.1, and then the inner optimization loop ends (lines 7 to 11 of Algorithm 3.2).

This increases the likelihood of having a descent search direction in the next optimization

iteration. The parameters µ0 and δ0 in Algorithm 3.2 are the initial values of the

parameters µ and δ, respectively.

Remark 3.1. For the non-differentiable function f̃(P(k),Γ,Υ) with subdifferential set
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∂f̃(P(k),Γ,Υ) at P(k) ∈ R, v(k) is not a descent direction if

∃ g(k) ∈ ∂f̃(P(k),Γ,Υ) such that 〈v(k),g(k)〉 ≥ 0, (3.15)

for any k ∈ N and Γ,Υ ∈ R>0.

Note that Remark 3.1 is the same result as the Lemma 1 of [28]. The only notable

difference is that the inner product in (3.15) is between two matrices, compared to the

inner product of two vectors in [28]. This is the result of considering a transmission

power matrix in this study, rather than a transmission power vector.

Remark 3.2. As can be understood from Definition 3.1, Remark 3.1 is just a sufficient

condition for v(k) to be a descent direction. Thus, even if 〈v(k),g(k)〉 < 0 for a k ∈ N,

v(k) may still not be a descent direction. In such a case, since the cost function will

not decrease sufficiently when moving along the search direction, the resulting step-

size from the backtracking algorithm will be almost zero (the parameter ζ in line 16

of Algorithm 3.2 determines the threshold below which the step-size can be considered

approximately zero). To this end, by terminating the inner optimization loop and up-

dating the values of µ and δ according to line 17 of Algorithm 3.2, the likelihood of

having a descent search direction in the next iteration increases (see Remark 3.4).

Finally, to solve the optimization problems described by (3.4) and (3.5), Assump-

tion 3.1 is assumed to hold. Unlike [28], edge set of the digraph representing the network

may change as the optimization algorithm proceeds.
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Assumption 3.1. The network digraph is assumed to be strongly connected at all times,

meaning that there is a directed path from every node in the graph to every other node.

Regarding the scalability and run-time of the proposed algorithm, the most com-

putationally heavy component of the algorithm is the calculation of the GAC of the

network. Whichever algorithm or software is utilized to determine the GAC, the GAC

needs to be calculated at most 2(n2 − n) + 1 times at each iteration of the inner opti-

mization loop. The run-time of the rest of the elements of Algorithm 3.2, such as the

backtracking algorithm, and the convergence rate of the interior point method are not

dependent on the network size.

3.3 Convergence Analysis of the Optimization Algo-

rithm

The asymptotic convergence of the proposed sequantial Algorithm 3.2 to the global

optimum of the constrained optimization (3.4) is provided in this section.

Remark 3.3. Consider an asymmetric network composed of n nodes represented by a

weighted digraph, as described earlier, and let Assumption 3.1 hold. Using the mixed

interior point-exterior point algorithm, the following relations hold

1. limk→∞ f(P(k)) = v∗,

2. limk→∞ f̃(P(k),Γ,Υ) = v∗,
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Algorithm 3.2. Sequential unconstrained optimization
1: Given P = P0 ∈ Rn×n, initialize

Γ = Γ0, Υ = Υ0 ∈ R>0 and k = 1.
2: Choose arbitrary constants ν ∈ (0, 1), θ ∈ (0, 1),

µ0, δ0 ∈ R>1, β0, ε, αmax ∈ R>0, mmax ∈ N and consider
the prescribed parameters λ ∈ R>0, and Pup, Plow ∈ Rn×n.

3: while mΓ−1 > ε do
4: µ = µ0, δ = δ0

5: for miter = 1 : mmax do
6: Compute v(k)

7: Compute Qij(k), ∂I
1(P(k))
∂Pij(k)

, ∂I
2(P(k))
∂Pij(k)

for i, j ∈ Nn

according to Lemma 3.1.

8: if ∃g(k) ∈ ∂f̃(P(k),Γ,Υ) such that 〈v(k),g(k)〉 ≥ 0 do

9: µ = max{µ0, d
∑

i∈Nn
∑

j∈Nn Qij(k)(
∂I1(P(k))
∂Pij(k)

+
∂I2(P(k))
∂Pij(k)

)

Γ
∑

i∈Nn
∑

j∈Nn Qij(k)2
− 1e}

10: δ = 1
11: break
12: α(k) = αmax
13: while P(k) + α(k) · v(k) /∈ R or

f̃(P(k) + α(k) · vk,Γ,Υ) > f̃(P(k),Γ,Υ) + ν · α(k) · 〈v(k),g(k)〉 do
14: α(k) = θ · α(k)
15: end while
16: if α(k) ≤ ζ do
17: µ = µ0, δ = 1
18: break
19: P(k + 1) = P(k) + α(k) · v(k)
20: k = k + 1
21: end
22: Γ = µΓ
23: Υ = δΥ
24: end while
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3. limk→∞ Γ−1 · I(P(k)) = 0,

4. limk→∞Υ ·O(P(k)) = 0,

5. limk→∞P(k) = P∗,

where v∗ is the global optimum of the optimization problem (3.4), and P∗ is its corre-

sponding minimizer [13,28].

Remark 3.3 states that there exists a sequence P(k) for optimization problem (3.5)

that converges to the global minimum of the problem (3.4). Now one needs to show that

the subgradient method with backtracking line search can generate such a sequence. To

this end, the following lemma and theorem are presented.

Assume that for some k ∈ N, v(k) is not a descent direction according to either

Remark 3.1 or 3.2. Based on Algorithm 3.2, the optimization algorithm ends at iteration

k without updating the transmission power matrix, and the values of Γ and Υ are

increased accordingly. Similar to [28], the iteration index k does not increase, but

rather the optimization loop in the time interval [tk, tk+1) is repeated. For the sake of

convergence analysis, this new iteration index is denoted by k′.

Lemma 3.1. If v(k) is not a descent direction for some k ∈ N according to Remark 3.1,

it will be a descent direction at iteration k′, if

µ ≥ d
∑

i∈Nn

∑
j∈Nn
−Qij(k)(∂I

1(P(k))
∂Pij(k)

+ ∂I2(P(k))
∂Pij(k)

)

Γ
∑

i∈Nn

∑
j∈Nn

Qij(k)2
− 1e, (3.16)
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and δ = 1, where

Qij(k) = −∂Tsys(P(k))

∂Pij(k)
+ Υ

∂O(P(k))

∂Pij(k)
, (3.17)

and ∂I1(P(k))
∂Pij(k)

and ∂I2(P(k))
∂Pij(k)

are the partial derivatives of the function I(P(k)) given by

(3.7), where the superscripts correspond to the (possibly) different supergradients of the

GAC used in obtaining these values.

Proof. According to Remark 3.1, if ∃g(k) ∈ ∂f̃(P(k),Γ,Υ) such that

〈v(k),g(k)〉 =
∑
i∈Nn

∑
j∈Nn

(
− (−∂Tsys(P(k))

∂Pij(k)
+ Γ−1∂I

1(P(k))

∂Pij(k)
+ Υ

∂O(P(k))

∂Pij(k)
)×

(−∂Tsys(P(k))

∂Pij(k)
+ Γ−1∂I

2(P(k))

∂Pij(k)
+ Υ

∂O(P(k))

∂Pij(k)
)
)
≥ 0, (3.18)

then v(k) is not a descent direction. Given the definition of Qij(k) in (4.17), by simpli-

fying (4.28), one has

〈v(k),g(k)〉 =
∑
i∈Nn

∑
j∈Nn

(
−Qij(k)2 − Γ−1Qij(k)

(∂I1(P(k))

∂Pij(k)
+
∂I2(P(k))

∂Pij(k)

)
−

Γ−2∂I
1(P(k))

∂Pij(k)
· ∂I

2(P(k))

∂Pij(k)

)
≥ 0. (3.19)

For iteration k′, by considering δ = 1, we will have Qij(k
′) = Qij(k). Furthermore, since

the inner optimization loop is terminated without updating the transmission power
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matrix, we obtain

〈v(k′),g(k′)〉 =
∑
i∈Nn

∑
j∈Nn

(
−Qij(k)2 − µ−1Γ−1Qij(k)

(∂I1(P(k))

∂Pij(k)
+
∂I2(P(k))

∂Pij(k)

)
−

µ−2Γ−2∂I
1(P(k))

∂Pij(k)
· ∂I

2(P(k))

∂Pij(k)

)
. (3.20)

It is possible to make (3.20) less than zero by appropriately choosing the value of µ. To

this end, the right-hand side of (3.19) is multiplied with 1
µ2

and after manipulations, it

becomes

∑
i∈Nn

∑
j∈Nn

(
−Qij(k)2 − 1

µΓ
Qij(k)

(∂I1(P(k))

∂Pij(k)
+
∂I2(P(k))

∂Pij(k)

)
−

1

µ2Γ2

∂I1(P(k))

∂Pij(k)
· ∂I

2(P(k))

∂Pij(k)

)
≤

∑
i∈Nn

∑
j∈Nn

(
− µ2 + 1

µ2
Qij(k)2 − µ+ 1

µ2Γ
Qij(k)

(∂I1(P(k))

∂Pij(k)
+
∂I2(P(k))

∂Pij(k)

)
−

2

µ2Γ2

∂I1(P(k))

∂Pij(k)
· ∂I

2(P(k))

∂Pij(k)

)
. (3.21)

It is evident that the left-hand side of (3.21) is equal to (3.20). Now, if the right-hand

side of (3.21) is less than zero, it is guaranteed that 〈v(k′),g(k′)〉 < 0. By substituting

(3.19) in the right-hand side of (3.21), it is easy to show that if the following inequality

holds,

µ ≥ d
∑

i∈Nn

∑
j∈Nn
−Qij(k)(∂I

1(P(k))
∂Pij(k)

+ ∂I2(P(k))
∂Pij(k)

)

Γ
∑

i∈Nn

∑
j∈Nn

Qij(k)2
− 1e,

one will have 〈v(k′),g(k′)〉 < 0. This completes the proof. �
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Remark 3.4. If v(k), for some k ∈ N, is not a descent direction according to Remark 3.2,

a logical way to obtain a descent direction at iteration k′ is to determine how µ and δ

should be updated in order to have

f̃(P(k) + α(k′)v(k′),Γ′,Υ′)− f̃(P(k),Γ′,Υ′) < 0,

for some α(k′) ∈ (0, αmax]. However, the nonlinearity and complexity of the function f̃

is a barrier to achieving this. As a remedy, one can update the values of µ and δ based

on line 17 of Algorithm 3.2. It is easy to see that this will make the value of 〈v(k′),g(k′)〉

more negative, increasing the likelihood of having a descent direction at iteration k′.

For each Γ and Υ, denote the central point of the interior point-exterior point by

P∗Γ,Υ, where f̃(P∗Γ,Υ,Γ,Υ)→ v∗ as k →∞ [14].

Theorem 3.1. Consider an asymmetric network composed of n nodes represented by a

weighted digraph, as described earlier. Using the interior point method in conjunction

with the subgradient approach and the backtracking line search to solve the constrained op-

timization problem (3.4), the transmission power matrix P(k) asymptotically converges

to a stationary matrix P∗ ∈ R corresponding to the global minimum of the optimization

problem (3.4), v∗, as k →∞.

Proof. Given g(k) ∈ ∂f̃(P(k),Γ,Υ), for any k ∈ N and Γ,Υ ∈ R>0, the search direction

v(k) is a descent direction as per the previously discussed lemmas and remarks. As

a result, the backtracking line search algorithm will eventually stop for some α(k) ∈
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(0, αmax]. Then

f̃(P(k),Γ,Υ)− f̃(P(k − 1),Γ,Υ) ≤ ν · α(k − 1) · 〈v(k − 1),g(k − 1)〉. (3.22)

Given that 〈v(k),g(k)〉 < 0, for any k ∈ N, (3.22) can be rewritten as

f̃(P(k),Γ,Υ)− f̃(P(k − 1),Γ,Υ) ≤ 0. (3.23)

From the definition of subgradient (Definition 3.1), any g(k) ∈ ∂f̃l(P(k),Γ), including

the one corresponding to the search direction (v(k) = −g(k)), satisfies the following

inequality

f̃(P(k − 1),Γ,Υ) + 〈P(k − 1)−P∗Γ,Υ,g(k − 1)〉 ≤ f̃(P∗Γ,Υ,Γ,Υ). (3.24)

Combining (3.23) and (3.24) yields

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ 〈P(k − 1)−P∗Γ,Υ,g(k − 1)〉. (3.25)

The right-hand side of (3.25) can then be rewritten as

1

α(k − 1)
〈P(k−1)−P∗Γ,Υ, α(k−1)g(k−1)〉 =

1

α(k − 1)
〈P(k−1)−P∗Γ,Υ,P(k)−P(k−1)〉.

(3.26)

By manipulating the second term in the inner product of the right-hand side of (3.26),
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(3.25) becomes

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ −1

α(k − 1)
〈P(k − 1)−P∗Γ,Υ,P(k − 1)−P∗Γ,Υ〉

+
1

α(k − 1)
〈P(k − 1)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉, (3.27)

and after further manipulations, one arrives at

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ −1

α(k − 1)
〈P(k − 1)−P∗Γ,Υ,P(k − 1)−P∗Γ,Υ〉+

1

α(k − 1)
〈P(k)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉+

1

α(k − 1)
〈P(k − 1)−P(k),P(k)−P∗Γ,Υ〉.

(3.28)

The third term in the right-hand side of the above inequality is rewritten to obtain

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ −1

α(k − 1)
〈P(k − 1)−P∗Γ,Υ,P(k − 1)−P∗Γ,Υ〉+

1

α(k − 1)
〈P(k)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉+ 〈g(k − 1),P∗Γ,Υ −P(k)〉. (3.29)

The right-hand side of (3.25) is re-expressed as

f̃(P∗Γ,Υ,Γ,Υ)− f̃(P(k − 1),Γ,Υ) ≥ 〈g(k − 1),P∗Γ,Υ −P(k)〉+ α(k)〈g(k − 1),g(k − 1)〉.

(3.30)
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Now, combining (3.29) and (3.30) yields

f̃(P(k),Γ,Υ) + f̃(P(k − 1),Γ,Υ)− 2f̃(P∗Γ,Υ,Γ,Υ) ≤

−1

α(k − 1)
〈P(k − 1)−P∗Γ,Υ,P(k − 1)−P∗Γ,Υ〉+

1

α(k − 1)
〈P(k)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉−

α(k)〈g(k − 1),g(k − 1)〉. (3.31)

Note that 〈g(k−1),g(k−1)〉 in the right-hand side of (3.31) is non-negative. In addition,

f̃(P(k−1),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≥ 0 for any Γ,Υ ∈ R>0. Hence, (3.31) can be rewritten

as

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ 1

α(k − 1)
〈P(k)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉

− 1

α(k − 1)
〈P(k − 1)−P∗Γ,Υ,P(k − 1)−P∗Γ,Υ〉. (3.32)

Averaging both sides of (3.32) yields

1

k

k∑
j=2

(
f̃(P(j),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ)

)
≤ 1

k

k∑
j=2

( 1

α(j − 1)
〈P(j)−P∗Γ,Υ,P(j)−P∗Γ,Υ〉

− 1

α(j − 1)
〈P(j − 1)−P∗Γ,Υ,P(j − 1)−P∗Γ,Υ〉

)
, (3.33)
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which can be simplified to

1

k

k∑
j=2

(
f̃(P(j),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ)

)
≤

1

k
· 1

minα(j − 1)|kj=2

·
(
〈P(k)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉 − 〈P(1)−P∗Γ,Υ,P(1)−P∗Γ,Υ〉

)
.

(3.34)

Note that both the inner products in the right-hand side of (3.34) are non-negative.

Also, given the definition of the central points P∗Γ,Υ, one has

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ 1

k

k∑
j=2

(
f̃(P(j),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ)

)
. (3.35)

Now, (3.34) is transformed to

f̃(P(k),Γ,Υ)− f̃(P∗Γ,Υ,Γ,Υ) ≤ 1

k
· 1

minα(j − 1)|kj=2

·〈P(k)−P∗Γ,Υ,P(k)−P∗Γ,Υ〉. (3.36)

According to Algorithm 3.2, every time the inner optimization loop is terminated, the

values of Γ and Υ increase and f̃(P∗Γ,Υ,Γ,Υ) and P∗Γ,Υ are updated. As k → ∞, the

right-hand side of (3.36) approaches zero, and also f̃(P∗Γ,Υ,Γ,Υ) → v∗. This means

that as k → ∞, f̃(P(k),Γ,Υ) converges to v∗. Also, according to Remark 3.3, P(k)

approaches P∗ as k increases. This completes the proof. �
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3.4 Simulation Results

Example 3.1. To investigate the efficacy of Algorithm 3.2, consider the four-node ex-

perimental asymmetric network of [15]. First, it is assumed that the communication link

from node 2 to node 4 is not feasible in this network due to environmental constraints,

i.e., P42(k) is equal to zero for all k ∈ N and is not considered in the optimization

algorithm. The rest of the edge set, however, may change. Assuming that for every

i, j ∈ Nn, P low
ij = 0 and P up

ij = 4, the initial transmission power matrix is chosen as

P0 =



0 1.3 1.5 1.6

1.2 0 1.5 1.3

1.7 1.7 0 1.4

1.5 0 1.5 0


.

Using (3.1), the resulting initial weight matrix of the corresponding digraph is as

W =



0 0.3411 0.1227 0.1163

0.3813 0 0.2966 0.2914

0.1745 0.2437 0 0.1420

0.2461 0 0.3857 0


,

62



where the network’s initial GAC is λ̃(P0) = 0.7148. Assuming

q =



0 1 1 1

1 0 1 1

1 1 0 1

1 0 1 0


, K =



0 2 1 2

1 0 1 2

2 1 0 1

1 0 2 0


, τ =



0 1.2 1.5 2

1.1 0 1.8 1.4

1.5 1.7 0 0.8

1.2 0 0.9 0


,

e0
i = 20 and erij = 1.5 for every i, j ∈ Nn, the initial lifetime of nodes are

T (P0) = [1.2723, 1.6653, 1.4652, 1.2771]T .

Furthermore, it is desired to have a GAC greater than or equal to λ = 0.7. Hence, the

considered initial transmission power matrix is strictly inside the feasible set R.

To implement Algorithm 3.2, the following previously explained design parameters

are considered: mmax = 29, ν = 0.01, θ = 0.72, αmax = 1, β0 = 0.01, µ0 = 5, δ0 = 1.2,

Γ0 = 2, Υ0 = 1 and ε = ζ = 10−6. The search direction is chosen as v(k) = −g−(k) for

all k ∈ N.

Fig. 3.1 shows the individual node lifetimes as the iteration index k increases,

where the minimum of all at each instant is the network lifetime (not shown in the

figure). The evolution of the various transmission powers of nodes is presented in Fig.
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3.2. The resultant optimal transmission power matrix is

P∗ =



0 0.7717 1.7398 0.3975

0.7272 0 0.8460 0.9917

0.0003 1.5554 0 2.0393

1.8316 0 0.2034 0


,

resulting in the following weight matrix

W∗ =



0 0.2682 0.1935 0.0002

0.2903 0 0.1209 0.2328

0 0.2102 0 0.2967

0.3440 0 0.0986 0


.

As it can be seen from the above optimal matrices and Fig. 3.2, certain communication

links have been removed when compared with the initial edge set of the network. In

general, the transmission powers used for communication between nodes have decreased,

which is understandable given the inverse relationship between the lifetime and trans-

mission power defined in (3.2); however, for certain communication links, the powers

have increased, which is counter-intuitive. This can be attributed to the asymmetric

nature of the considered network. The corresponding network GAC is λ̃(P∗) = 0.7000.
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The obtained optimal lifetimes are as

T (P∗) = [1.9050, 1.9054, 1.9050, 1.9051]T ,

indicating an increase of almost 50% compared to the initial network lifetime. Also, note

that all the nodes now have similar lifetimes as desired.

To compare these results with another method, the fmincon function of MATLAB

is utilized to solve the optimization problem (3.4) with the same initial conditions, and

appropriate penalty functions are considered for the violation of the constraints. The

output of this function is obtained as

P∗ =



0 0.7410 2.6549 0.0054

0 0 0.0777 2.2314

0.0778 1.7693 0 0.0210

2.5439 0 0.3688 0


,

which leads to a network GAC of λ̃(P∗) = 0.7485 and the following lifetimes

T (P∗) = [1.8542, 1.8542, 1.8542, 1.8542]T .

Since the user has the freedom of choosing the design parameters in the proposed

algorithm, the resulting optimal solution is slightly better in comparison to that of the
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Figure 3.1: Evolution of the lifetimes of the nodes of the network of Example 3.1.

fmincon function. The output of the fmincon function has converged to the neighbor-

hood of the same optimal point obtained via the centralized approach; however, it has

stopped prematurely. It can also be seen that the two methods have different minimizers

for the same optimal point.
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Figure 3.2: Evolution of the transmission power for nodes making up the network of Example
3.1.
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3.5 Conclusion

In this work, the problem of joint network lifetime maximization and generalized alge-

braic connectivity (GAC) control in an asymmetric network, represented by a weighted

directed graph, is investigated in a joint manner. The mixed interior point-exterior point

method is employed to convert the resulting constrained optimization problem into a se-

quential unconstrained problem. The subgradient method with backtracking line search

are then adopted to solve each subproblem. Unlike the gradient method, the subgradi-

ent approach may not necessarily be a descent direction at each optimization iteration.

This issue is addressed as well. It is proved accordingly that the proposed method con-

verges asymptotically to the global optimum of the optimization problem. Efficacy of

the algorithm is verified by numerical simulations, and the results obtained are com-

pared with another method. The obtained optimal transmission power matrices lead to

the simultaneous depletion of the node energies. Furthermore, the results obtained for

some nodes are counter-intuitive, as they suggest increasing certain transmission power

levels to achieve better network lifetime.
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Chapter 4

Connectivity, Transmission Power,

and Lifetime Optimization in

Asymmetric Networks: A

Distributed Approach

In this chapter, three problems over asymmetric networks represented by weighted di-

rected graphs (digraphs) are investigated using a distributed approach. The first problem

relates to transmission power control over the network to maximize connectivity. It is

assumed that different nodes use different transmission power levels to communicate

with their neighbors. The notion of generalized algebraic connectivity (GAC), used as
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a network connectivity measure, is formulated as an implicit function of the network’s

transmission power matrix. An optimization problem is introduced to maximize the

network GAC while satisfying constraints on communication transmission powers. The

second problem is the dual of the first one, i.e., minimizing the total transmission power

of the network while controlling the network GAC. Ultimately, an optimization problem

is formulated to maximize the lifetime of the network and control its connectivity. Each

node is assumed to deplete its battery linearly with respect to the transmission powers

used for communication. The network lifetime is defined as the minimum lifetime over

all nodes and is formulated as a function of the transmission power levels used. The

interior point method is utilized to transform the mentioned constrained optimization

problems into sequential unconstrained optimization problems. Each subproblem is then

solved numerically via the subgradient method with backtracking line search. Asymp-

totic convergence of the proposed algorithms to a local or global optima of the original

optimization problems are demonstrated analytically. The effectiveness of the proposed

distributed algorithm is verified by simulations.

This chapter is based on the following journal paper submission:

M. Esmaeilpour, A. G. Aghdam, and S. Blouin, “Connectivity, transmission power,

and lifetime optimization in asymmetric networks: A distributed approach,” submitted

for journal publication.
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4.1 Introduction

Ad-hoc networks are composed of spatially distributed fixed or mobile sensors capable

of sensing, processing and exchanging data without the need for a pre-existing frame-

work. The challenges involved in deploying effective networks and the recent advances

in computation, communication and sensing have stimulated substantial research in this

area of study [4, 26, 28]. There is a plethora of applications using these networks, such

as environmental monitoring, target detection and localization, disaster control, smart

farming, etc. [15,18,25,26]. A graph can be used to represent the communication links of

the deployed network, which may either be symmetric or asymmetric. An example of a

symmetric network is the terrestrial wireless sensor networks (WSN), and an example of

an asymmetric network, where the communication link between two distinct nodes are

often uni-directional, is underwater acoustic sensor networks (UWASN) [4,28,55]. In the

latter example, several sources of uncertainty and noise contribute to this asymmetric

nature, which include, but are not limited to, multipath propagation, inconsistencies in

the shape of the seabed, sound speed profile variations, temperature fluctuations, and

nearby shipping activities [15,36,55]. Another difference between the terrestrial and un-

derwater sensor networks is that contrary to the WSNs which may consist of hundreds

of nodes for a speific application, the number of deployed nodes in UWASNs is much

smaller. For instance, the experimental network of [15] consists of only four nodes.
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Several issues need to be addressed in deploying sensor networks, and in partic-

ular, the connectivity of the network and its lifetime are two of the most important

issues. Sensor networks typically utilize cooperative algorithms in order to determine

specific (often-global) quantities using only local information. It is well-known that the

convergence rate of these algorithms is directly related to the network connectivity, and

that a highly connected network diffuses information more efficiently [4, 28, 29]. Ad-

ditionally, having an algebraic connectivity measure allows one to apply mathematical

tools such as differential operators on the considered measure. Algebraic connectivity

has been used as a measure of connectivity in symmetric networks, and is defined as the

second smallest eigenvalue of the Laplacian matrix of the (weighted) undirected graph

representing the network [27]. There are many studies in the literature investigating

algebraic connectivity in symmetric networks. For instance, a distributed algorithm is

presented in [3] to estimate and control the algebraic connectivity of symmetric networks

using a stochastic power iteration method. In [37], a distributed method, which relies

on the distributed computation of the powers of the adjacency matrix, is proposed to

obtain both upper and lower bounds at each iteration for the algebraic connectivity of

a symmetric network. As the algorithm proceeds, these bounds converge to the true

value of the algebraic connectivity. In addition, a supergradient algorithm is used along

with a decentralized eigenvector estimation strategy in [5] to maximize the algebraic

connectivity of a symmetric network.
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Unlike symmetric networks, the equivalent of algebraic connectivity in asymmetric

networks has not been investigated as much. A simple extension of algebraic connectivity

to directed graphs is proposed in [38], where the magnitude of the smallest nonzero

eigenvalue of the Laplacian matrix is presented as a measure of connectivity. This notion,

however, fails to capture any operational characteristic of the network [4]. To address this

shortcoming, the notion of generalized algebraic connectivity (GAC) is introduced in [39]

as the real part of the smallest nonzero eigenvalue of the Laplacian matrix of the weighted

directed graph (digraph) representing the network, and is shown to be directly related to

the asymptotic convergence rate of continuous-time consensus algorithms running over

the network. An algorithm based on the subspace consensus approach is proposed in [4]

for distributed computation of the GAC using only local information. Furthermore,

in [28], the GAC is formulated as a function of the transmission power vector of the

network, and then a distributed supergradient algorithm is proposed to maximize the

GAC.

In addition to connectivity, another critical aspect of a network is the power con-

sumption of the nodes, directly affecting its lifetime. Power consumption in sensor

networks is either communication-related or non-communication-related. In some appli-

cations, such as a UWASN, it is the communication-related part that plays a dominant

role in power consumption [17, 21]. Sensor nodes are typically battery-powered, and

recharging or replacing their batteries is not always a viable option. Incapacitation of
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some nodes due to battery depletion can result in a disconnected network, which in turn

can prevent the network from completing its mission [20,23]. Therefore, an appropriate

power management scheme is essential for the efficient operation of any sensor network.

Typically, network lifetime is defined as the time it takes for the first node to completely

deplete its energy [17,21,22]. There are numerous studies in the literature where, due to

the significance of a network’s lifetime, it is considered as an explicit performance metric.

In [17], the authors study the problem of maximizing the network lifetime via routing,

where they consider a general state-space battery model for the nodes. They show that in

a fixed topology, there exists an optimal policy consisting of time-invariant routing prob-

abilities. They also consider a joint routing and initial energy allocation problem, and

prove that the optimal policy depletes the energy reserves of all nodes simultaneously.

In [23], base station mobility is proposed as a remedy for countering inefficient routing

and topology in WSNs. The authors build a framework to characterize the impact of

various mobility patterns on the network lifetime and conclude that optimal Gaussian

and spiral patterns result in the highest lifetime values. A mobile sensor network for

monitoring a moving target is investigated in [22], where an algorithm is developed to

find a near-optimal relocation strategy for the sensors as well as an energy-efficient route

for transferring information from the target to destination. The author of [40] proposes

an optimal distance-based transmission strategy based on ant colony optimization to

maximize the lifetime of WSNs and demonstrate the effectiveness of their findings by
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simulations. In [41], the joint optimal design of the physical, medium access control, and

network layers is considered to maximize the lifetime of WSNs with limited available

energy. The optimization problem is formulated by taking into account several network

variables such as the routing flow, transmission rate, etc. The Gauss-Seidel algorithm,

in conjunction with the gradient method, is subsequently used to update the considered

network variables. For further studies on network lifetime maximization, the interested

reader is referred to recent survey studies such as [25] and [26].

In a noise-limited environment, higher transmission powers used by the nodes

for communication result in better and stronger communication links, which normally

means that the network will be more connected [28, 36]. Even though having a highly

connected network is desirable, it may require higher total transmission power. On the

other hand, given the inverse relationship between the network lifetime and its power

consumption, higher total transmission power would lead to shorter network lifetime.

Given the importance of the connectivity and lifetime of the network as discussed previ-

ously, it is imperative to determine an appropriate balance between the two. To this end,

three optimization problems are considered in this chapter over asymmetric networks

represented by weighted digraphs. In the first problem, the objective is to maximize the

GAC of the network while satisfying constraints on the total transmission power of the

network and the individual transmission power values. To the best of our knowledge, [2]

is the only paper in the literature that aims at maximizing connectivity in asymmetric
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networks but it does not consider any limit on the total power consumption of the net-

work. In the second problem, it is desired to minimize the total transmission power of

the network while ensuring that connectivity is maintained above a certain level, and

that the power values are bounded within prescribed limits. This work extends the

results of [28] by considering a transmission power matrix for a more general formula-

tion, and also, by proposing a distributed approach to solve the underlying optimization

problem using local information. In [1], the total transmission power is minimized while

a constraint on some non-algebraic connectivity measure is imposed; the constraint in

the present chapter, however, is imposed on the GAC. The third optimization prob-

lem relates to network lifetime maximization subject to constraints on the GAC and

transmission power values. In our earlier work [29], a similar problem is considered;

however, this study extends the results of [29] by proposing a distributed optimization

algorithm. The reason for considering both the second and the third problems is that

it has been shown in the literature that the second optimization problem can reduce

the overall network lifetime [17]. We aim to determine the extent to which this result

holds in the context of strongly-connected asymmetric networks with constraints on the

connectivity level and the values of transmission powers. The interior point method is

used to transform the resultant constrained optimization problems into unconstrained

ones. The subgradient method along with a novel approximate backtracking line search

is utilized to solve the above subproblems. The case where the subgradient method
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does not yield a descent direction is examined in detail. Convergence of the proposed

distributed algorithm to a local or global optima of the optimization problems is shown

analytically, and its efficacy is demonstrated by numerical simulations.

The remainder of the chapter is organized as follows. In Section II, notations and

preliminary graph theory concepts used throughout the chapter are presented. Then

the optimization problems and the distributed algorithm proposed to numerically solve

them are described. In Section III, convergence analysis of the proposed algorithm is

presented. The simulation results are subsequently provided in Section IV. Finally,

Section V contains concluding remarks and directions for future work.

4.2 Problem Formulation

4.2.1 Preliminaries and Notation

Throughout this chapter, the set of real numbers greater than r is denoted by R>r, and

the finite set of natural numbers {1, 2, ..., n} is denoted by Nn. The superscript T is used

to indicate the transpose of a real vector or a matrix. The function tr(·) denotes the trace

of a given real matrix. Moreover, the inner product of two real matrices v,w ∈ Rn×n is

represented by 〈v,w〉 (note that 〈v,w〉 = tr(vwT) =
∑

i∈Nn

∑
j∈Nn

vijwij). The ceiling

function is represented by d.e, where for a real scalar r ∈ R, dre gives the least integer

greater than or equal to r. The real part of a complex number c ∈ C is denoted by <(c).
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Additionally, Bσ(·) is a closed ball of radius σ ∈ R>0 centered around a given point, and

eij ∈ Rn×n is a matrix whose elements are all zero, except for its (i, j) element which is

equal to one. The domain of a given function is denoted by dom(·), and the Frobenius

norm of a given real matrix by ‖ · ‖F.

At any time instant k ∈ N, let G(k) =
(
V,E,W(k)

)
denote a weighted directed

graph (digraph) in the time interval [tk, tk+1), characterized by a set of vertices V = Nn,

a set of edges E, and a weight matrix W(k) ∈ Rn×n. The (i, j) element of the weight

matrix W(k), denoted by wij(k), is the weight associated with the edge ~ji ∈ E for any

pair of distinct nodes i, j ∈ Nn and any k ∈ N. Note that ~ji ∈ E if node j sends

information to node i at some point in time, i.e., ~ji ∈ E if wij(k) 6= 0 for some k ∈ N.

In the same time interval, the in-neighbor and out-neighbor sets associated with node i

are defined as [2]

N in
i = {j ∈ V \ {i}|~ji ∈ E}, (4.1a)

N out
i = {j ∈ V \ {i}|~ij ∈ E}, (4.1b)

respectively. The Laplacian of the weighted digraph G(k) is a real asymmetric matrix
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L(k) ∈ Rn×n whose (i, j) element is given by [2, 45]

lij(k) =



−wij(k), if ~ji ∈ E,

∑
p 6=iwip(k), if j = i,

0, otherwise,

(4.2)

for any pair of distinct nodes i, j ∈ Nn and any k ∈ N. The ith eigenvalue of the

Laplacian matrix L(k) is denoted by λi(L(k)). The spectrum of a matrix is the set of

all of its eigenvalues, and is denoted by Λ(·).

The generalized algebraic connectivity (GAC) of a weighted digraph G(k) with

Laplacian matrix L(k) is defined as the smallest real part of the nonzero eigenvalues of

L(k), i.e.,

λ̃L(k) = min
λi(L(k))6=0, λi(L(k))∈Λ(L(k))

<(λi(L(k))), (4.3)

for any k ∈ N [4]. In [4], it is shown that the imaginary part of the eigenvalue corre-

sponding to the GAC is not related to the convergence rate of the distributed algorithms

running on the network. Additionally, given expression (4.3), the GAC is defined only

for a network where the second smallest eigenvalue of its graph Laplacian is nonzero. If

a network has multiple connected components, but is not strongly connected as a whole,

the GAC would only be applicable to each component separately.
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4.2.2 Optimization Problems

Consider a time-varying asymmetric network with n stationary nodes, whose information

exchange topology is represented by the weighted digraph G(k) for all k ∈ N. Similar

to [29,52–54], it is assumed (as a more general formulation) that each node uses different

power levels to communicate with its neighbors. However, it is not necessary to impose

this assumption on every network, as for example in a large network, having different

power levels for each out-neighbor is not feasible. The algorithm proposed in this study

and the supporting analysis are not dependent on the assumption of a node using one or

multiple transmission power levels communicate with its neighbors. The transmission

power matrix is denoted by P(k) = [Pij(k)] ∈ Rn×n, for i, j ∈ Nn and k ∈ N, where

Pij(k) ∈ [P low
ij , P up

ij ]. In the literature, Pij(k) is used to denote the transmission power

required by node i to transmit information to node j. In the present study, however, this

order of indices is flipped in order to be consistent with the rest of the parameters used

throughout the thesis, i.e., Pij(k) is the transmission power that node j uses to transmit

information to node i. P low
ij and P up

ij are, respectively, the fixed lower and upper bounds of

the permissible transmission power Pij(k), which are known a priori. It is assumed that

the values of the transmission powers used by nodes for communication directly impact

the existence probabilities of the network’s communication links [1]. These probabilities

can be regarded as the weight matrix W(k) of the network. Assuming a noise-limited

environment, at any time instant k ∈ N, the relation between the transmission power
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Pij(k) and the link weight wij(k) can be described by the following function

wij(k) = h(Pij(k); ξij), (4.4)

for any i ∈ Nn and j ∈ N in
i , where ξij represents a set of real constant parameters

characterizing the communication channel ~ji, and h(.; .) is a continuously differentiable

and increasing function [29]. The stochastic framework for the existence probabilities

mentioned above is encoded in h(.; .) and can be found in [1]. To find the weight of

a specific communication link experimentally, a number of messages are sent from the

destination node to the target node, and the percentage of successfully received messages

at the target node (when the received signal-to-noise ratio (SNR) is above a certain

threshold) determines probability of the existence of that link.

Given the above formulation, the Laplacian matrix of the network can be ex-

pressed as a function of its transmission power. Consequently, the network GAC can be

expressed as an implicit function of the power matrix, λ̃(P(k)), for any k ∈ N. Unlike the

notion of algebraic connectivity introduced in [27] for undirected networks, an increase

(or a decrease) in the elements of the transmission power matrix, which results in an

increase (or a decrease) in the corresponding elements of the weight matrix W(k), does

not necessarily lead to an increase (or a decrease) in the value of the network GAC [2].

This outcome is observed in the simulation results of this study as well. Additionally,

unlike the algebraic connectivity of undirected networks which is concave [31], the GAC
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is neither concave nor convex, and hence, is referred to as a nonconvex function. Fur-

thermore, the GAC is piecewise differentiable, but can be non-differentiable in certain

points. As the elements of the transmission power matrix change, the discontinuity in

the derivative of λ̃(P(k)) occurs when the eigenvalue of the Laplacian matrix corre-

sponding to the GAC changes from a real eigenvalue to a complex conjugate pair or vice

versa. Ultimately, λ̃(P(k)) is a locally Lipschitz continuous function with finite Lipschitz

constants [2].

Given the transmission power vector Pi(k) = [P1i(k), · · · , Pni(k)]T for any i ∈ Nn

and k ∈ N, the lifetime of node i is given by [21,29,32]

T (Pi(k)) =
e0
i∑

j∈Nout
i
qji · Pji(k) · τji ·Kji +

∑
j∈N in

i
qij · erij ·Kij

, (4.5)

where qji denotes the transmission rate per unit of time from node i to node j (like bits

per second), τji is the time that node i has to keep transmitting one packet of information

with transmission power Pji(k) to ensure it has been received at node j without errors,

and Kji is the number of information packets sent from node i to node j. Moreover,

erij is the energy used by node i to receive information from node j, and e0
i is the initial

energy of node i battery. This definition of lifetime indicates that if node i was to solely

use a fixed transmission power vector Pi(k) for communication, its lifetime would be

equal to T (Pi(k)) given by (4.5). Considering the definitions of qji and τji, the units of

these parameters should be in line with each other from a practical point of view. Note
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that T (Pi(k)) is a concave function on its domain and has a unit of time.

All parameters in (4.5), other than the transmission powers, are assumed to be con-

stant and known. Furthermore, the energy required to sense incoming data is supposed

to be negligible compared to transmission power requirements [17, 29]. Furthermore,

the significant portion of the battery energy of a node is used to communicate with

its neighbors [17, 21], and therefore, the energy that the nodes need to carry out the

calculations required for the proposed algorithm is assumed to be negligble. Note that

nodes only perform simple mathematical operations and need to use a basic consensus

algorithm to determine any required global quantity. The lifetime definition given by

(4.5) is relatively simple, indicating that a node’s battery depletion has a linear rela-

tion with its transmission powers. It is known, however, that batteries have nonlinear

dynamics in reality [17]. Nevertheless, the underlying optimization problem and the pro-

posed algorithm are not critically dependent on the exact energy consumption model.

The system (or network) lifetime is accordingly defined as the minimum lifetime over

all nodes [17,21], i.e., given the nodes have the transmission power vectors Pi(k), for all

i ∈ Nn and any k ∈ N, the network lifetime is

Tsys(P(k)) = min
i∈Nn

T (Pi(k)). (4.6)

In a noise-limited environment, a higher transmission power leads to stronger com-

munication links and a more connected network [29]. However, that would be at the
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cost of higher total transmission power and lower node lifetime as evident from (4.5).

Since a proper balance between the network lifetime, its connectivity level and the total

transmission power is crucial for the efficient operation of the network, the following

three optimization problems are considered for an asymmetric network:

minimize
P

− λ̃(P)P1

subject to
∑
i

∑
j

Pij(k) ≤ P̄,

P low
ij ≤ Pij(k) ≤ P up

ij ,

minimize
P

∑
i

∑
j

PijP2

subject to λ̃(P(k)) ≥ λ,

P low
ij ≤ Pij(k) ≤ P up

ij ,

minimize
P

−Tsys(P)P3

subject to λ̃(P(k)) ≥ λ,

P low
ij ≤ Pij(k) ≤ P up

ij ,

for all i ∈ Nn, j ∈ N in
i and k ∈ N, where P̄ and λ are prespecified bounds, reflecting

the highest acceptable total transmission power and the lowest connectivity level of

the network, respectively. Given the number of constraints, which at most is equal to

m = 2(n2−n)+1, and that λ̃(P(k)) is an implicit nonlinear function of the transmission
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power matrix of the network, finding analytical solutions for the optimization problems

P1-P3 may not be feasible.

In the optimization problem P1, it is desired to maximize the connectivity level of

the network while considering an upper limit for the total transmission power consumed

by the network (the first constraint) and limiting the transmission power of each node to

a prespecified range (the second set of constraints). In the optimization problem P2, the

objective is to minimize the total transmission power of the network while considering

a lower limit for the connectivity level of the network (the first constraint) and again

limiting the transmission powers to a prescribed range. In optimization problem P3,

it is desired to maximize the network lifetime with the same set of constraints as the

optimization problem P2. The three problems are summarized in Table 4.1. Each

of the three optimization problems introduced above can play an important role in

underwater acoustic sensor networks in different periods of time. For example, consider

a sensor network deployed in a noisy environment prior to winter, meant to last long.

Initially, in adverse noise conditions, the GAC needs to be maximized while there is

no immediate concern of the new battery being depleted; this obviously relates to the

framework of the first optimization problem. As winter settles, the water temperature

drop will have a negative impact on the battery reserve capacity, which means that

now the total network transmission power must be managed while maintaining minimal

network connectivity, which matches the second optimization problem. After many
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Table 4.1: The proposed optimization problems.

Optimization

Problem
GAC

Transmission

Power

Network

Lifetime

P1 Maximize

Constraint

(Individual Nodes and

Total of Network)

-

P2 Constraint
Minimize (Total of Network)

Constraint (Nodes)
-

P3 Constraint Constraint (Nodes) Maximize

months of operation, battery reserves are such that now the overall network lifetime is

at risk and must be maximized; this can be described by the third optimization problem.

The optimization problem P3 with additional constraints T (Pi(k)) = Tsys(P(k)), for all

i ∈ Nn, is investigated in [29] using a centralized approach. These lifetime constraints are

not considered in this study in order to achieve a more streamlined approach using only

the interior point method for all three optimization problems. A centralized solution to

the optimization problem P2 was proposed in [28]. However, unlike the current work,

in [28], each node uses just a single transmission power level to communicate with its

neighbors, i.e., the concatenation of all transmission powers is a vector, not a matrix as

in this study. In the sequel, distributed algorithms are proposed to numerically find a

local minima of the above-mentioned problems.

Let l ∈ N3 be an index used to distinguish between the three optimization prob-

lems, with l = 1, 2, 3 representing P1, P2 and P3, respectively. For all i ∈ Nn, j ∈ N in
i
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and k ∈ N, define

fl(P(k)) =



−λ̃(P(k)), if l = 1,

∑
i

∑
j Pij(k), if l = 2,

−Tsys(P(k)), if l = 3,

as the main cost functions, and

h1
l (k) =


P̄−

∑
i

∑
j Pij(k), if l = 1,

λ̃(P(k))− λ, if l = 2 or 3,

h2
ij(k) = P up

ij − Pij(k),

h3
ij(k) = Pij(k)− P low

ij ,

as the constraint functions. Since the equality constraints in [29] are not considered

in the problem P3, the interior point method, similar to [28], is utilized to transform

the inequality-constrained optimization problems P1-P3 into sequential unconstrained

problems. To this end, depending on the value of l, minimizers of the following problems

converge asymptotically to the respective minimizers of the optimization problems P1-

P3,

minimize
P

f̃l(P,Γ), (4.7)

where

f̃l(P(k),Γ) = fl(P(k)) + Γ−1 · Il(P(k)), (4.8)
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Il(P(k)) = − log
(
h1
l (k)

)
−
∑
i∈Nn

∑
j∈Nin

i

log
(
h2
ij(k)

)
−
∑
i∈Nn

∑
j∈Nin

i

log
(
h3
ij(k)

)
, (4.9)

and Γ ∈ R>0 is updated as the optimization algorithm proceeds [13,14]. For any l ∈ N3,

the set Rl is defined as the domain of the corresponding joint cost function in (4.8).

The general procedure to numerically solve the sequential unconstrained optimization

problem (4.7) is presented in Algorithm 4.1, where the initial transmission power matrix

P0 = P(0) needs to be strictly inside the corresponding feasible set Rl and not on its

boundaries [28, 29]. There are three design parameters in Algorithm 4.1, namely ε, µ

and Γ0, which need to be chosen appropriately. The choice of ε involves a trade-off

between the accuracy and the execution speed of the algorithm, whereas the parameter

µ determines the rate of increase of Γ and will be discussed later. The parameter Γ0

denotes the initial weight given to the penalty function Il(P(k)).

To find P∗ in line 4 of Algorithm 4.1, the subgradient method with backtracking

line search is utilized. The subgradient method enables the procedure to deal with

the non-differentiable cost function f̃l(P(k),Γ), whereas the backtracking line search

gives the maximum allowable step size to move along the search direction obtained

via the subgradient approach. In [28, 29], the same approach was used to solve the

considered optimization problems using a centralized approach. The main focus of this

chapter, however, is to propose a distributed algorithm, while taking into consideration

the estimation of global variables. Note that since the GAC is a nonconvex function, the

joint cost function will also be nonconvex. The definitions of a matrix-valued function’s
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Algorithm 4.1. A procedure for solving the optimization
problem (4.7) for l = 1, 2, 3.
1: Given strictly feasible P = P0 ∈ Rn×n, initialize

Γ = Γ0 ∈ R>0.
2: Choose arbitrary constants µ ∈ R>1 and ε ∈ R>0.
3: while mΓ−1 > ε

4: Compute P∗ ∈ argmin
P∈Rl

f̃l(P,Γ).

5: P = P∗

6: Γ = µΓ
7: end while

subgradient and supergradient are given next (the same definition was used in [3] but is

brought here for the sake of self-containedness).

Definition 4.1. Matrix g is said to be the subgradient of the nonconvex and non-

differentiable function f̃l : Rn×n → R at P ∈ Rl if there exists a real scalar σ ∈ R>0

such that for any P̂ ∈ Bσ(P), the following inequality holds:

f̃l(P̂,Γ) ≥ f̃l(P,Γ) + 〈P̂−P,g〉. (4.10)

The set of all subgradients of function f̃l at P ∈ Rl is called the subdifferential set

∂f̃l(P,Γ) [2, 14].

Definition 4.2. For the nonconvex and non-differentiable function λ̃ : Rn×n → R,

matrix g′ is said to be its supergradient at P ∈ dom(λ̃) if there exists a real scalar

σ ∈ R>0 such that for any P̂ ∈ Bσ(P), the following inequality holds:

λ̃(P̂) ≤ λ̃(P) + 〈P̂−P,g′〉. (4.11)
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The set of all supergradients of function λ̃ at P ∈ dom(λ̃) is called the superdifferential

set ∂λ̃(P) [2].

Using the subgradient method, the current iteration of the optimization loop is

moved in the opposite direction of a subgradient of the cost function (f̃l(P(k),Γ) for a

specific l). That is, at any time tk, k ∈ N,

P(k + 1) = P(k) + α(k) · v(k), (4.12)

where v(k) = −g(k) is the search direction, and g(k) = [gij(k)] ∈ ∂f̃l(P(k),Γ), for

i ∈ Nn, j ∈ N in
i and a specific l ∈ N3, is an arbitrary subgradient of the cost function

f̃l(P(k),Γ). Also, α(k) is the step size obtained via the backtracking line search, deter-

mining the magnitude of the move along the search direction. For different l, at any

time tk with k ∈ N, and for any i ∈ Nn and j ∈ N in
i , the (i, j)th element of g(k) is given

by

• if l = 1,

gij(k) = −∇λ̃ij(P(k)) + Γ−1
( 1

P̄−
∑

i

∑
j Pij(k)

+
1

P up
ij − Pij(k)

− 1

Pij(k)− P low
ij

)
,

(4.13)

• if l = 2,

gij(k) = 1 + Γ−1
(
− ∇λ̃ij(P(k))

λ̃(P(k))− λ
+

1

P up
ij − Pij(k)

− 1

Pij(k)− P low
ij

)
, (4.14)
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• if l = 3,

gij(k) = −∂Tsys(P(k))

∂Pij(k)
+ Γ−1

(
− ∇λ̃ij(P(k))

λ̃(P(k))− λ
+

1

P up
ij − Pij(k)

− 1

Pij(k)− P low
ij

)
,

(4.15)

where ∇λ̃ij(P(k)) is the (i, j) element of the subgradient matrix of the GAC, i.e., the

first-order partial derivative of the GAC with respect to Pij(k), and is arbitrarily chosen

from the subdifferential set [28,29]

∂λ̃ij(P(k)) :=
1

β(k)
{∂λ̃+

ij(P(k)), ∂λ̃−ij(P(k))}. (4.16)

In (4.16), β(k) = β0/k
β0 , for some β0 ∈ R>0, is the step size used to numerically compute

∂λ̃+
ij(P(k)) and ∂λ̃−ij(P(k)) given by [2, 28,29]

∂λ̃+
ij(P(k)) = λ̃(P(k) + β(k)eij)− λ̃(P(k)), (4.17a)

∂λ̃−ij(P(k)) = λ̃(P(k))− λ̃(P(k)− β(k)eij). (4.17b)

In (4.13)-(4.15), let g+
ij(k) and g−ij(k), for any i ∈ Nn, j ∈ N in

i and k ∈ N, correspond to

the cases where ∇λ̃ij(P(k)) has been explicitly chosen to be equal to 1
β(k)

∂λ̃+
ij(P(k)) or

1
β(k)

∂λ̃−ij(P(k)), respectively. If no superscript is used in the notation of gij(k), it means

that the choice of ∇λ̃ij(P(k)) is arbitrary. To compute the partial derivatives of the

network lifetime for each k ∈ N in (4.15), one needs to first determine which node the
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minimum lifetime corresponds to before using (4.6).

The general procedure to implement (4.12), i.e. line 4 of Algorithm 4.1, is presented

in Fig. 4.1. The initialization of the variables is not shown in the figure as it happens in

the previous lines of Algorithm 4.1. This inner loop is repeated for a prespecified number

of iterations before moving to line 5 of Algorithm 4.1. If the outcome of a decision block

is No, the inner loop is terminated, and the parameter µ is updated as described later.

Then the optimization algorithm skips line 5 and moves to line 6. The steps in Fig. 4.1

need to be implemented in a distributed manner, and will be discussed in further detail

in the next section. For this purpose, the following assumptions are required.

Assumption 4.1. The network digraph is assumed to be strongly connected at all times,

meaning that there is a directed path from every node in the graph to every other node.

Assumption 4.2. As the elements of the transmission power matrix P(k) vary within

the permissible set Rl, for l = 1, 2, 3, the weighted digraph G(k) remains structurally

static, i.e., no edges are added or removed during the optimization process.

Remark 4.1. Under the following two conditions, it is guaranteed that the digraph is

structurally static, as required in Assumption 4.2.

• P low
ij ∈ R>0, for all i ∈ Nn and j ∈ N in

i , should be chosen such that if a transmission

power of a node is equal to this value, the corresponding weight, i.e. the existence

probability of that communication link, is strictly greater than zero. This ensures

that no communication link is removed.
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• If the transmission power corresponding to a communication link is initially zero,

i.e., if a communication link does not initially exist, it will not be considered

in the optimization algorithm. Therefore, any possible addition of new edges is

disregarded.

Assumption 4.3. To be able to estimate the GAC (which is a global quantity) using

only local information, the eigenvalue representing the GAC should be observable to the

nodes [33]. It is assumed that the initial topology of the network satisfies the necessary

conditions for observability, as mentioned in [34, 35].

Remark 4.2. Given that the topology of the graph is supposed to be invariant (Assump-

tion 4.2), and that GAC is assumed to be observable in the initial topology, the GAC

remains observable during the entire optimization procedure.

4.3 Distributed optimization algorithm

In this section, distributed implementation of the elements of the inner optimization loop

(demonstrated in Fig. 4.1), is investigated, and the proposed distributed optimization

algorithm is presented at the end.

Starting with the distributed calculation of the search direction v(k), it can be

easily understood from (4.13)-(4.17) that each node requires knowledge of certain global

variables in order to determine the direction along which to update its transmission
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Find v(k)

Is it a
descent

direction?

Find α(k)

Is it
non-zero?

Update P(k)

Update µ

Maybe

Yes

No

No

Figure 4.1: The inner optimization loop (line 4 of Algorithm 4.1).
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powers. That is, for all i ∈ Nn, j ∈ N in
i and any k ∈ N, the following global variables

are present in (4.13)-(4.17): λ̃(P(k)), λ̃(P(k) + β(k)eij) or λ̃(P(k) − β(k)eij) for the

calculation of gij(k). It is relatively easy to obtain the sum of transmission powers∑
i

∑
j Pij(k) and the partial derivatives of the network lifetime ∂Tsys(P(k))/∂Pij(k) as

they only require a simple consensus between the nodes. On the contrary, calculating the

GAC using only local information for each k ∈ N is challenging. For this purpose, the

methods of [4] and [33] can be utilized within the proposed optimization algorithm. The

algorithm of [4] converges to an arbitrarily close neighborhood of the value of the GAC,

whereas the algorithm of [33] can be used to obtain the exact values of the observable

eigenvalues of the graph Laplacian, including the eigenvalue corresponding to the GAC,

in finite-time. Due to Assumption 4.3, the results of [4] and [33] can be used to obtain

the GAC, but the approach of [33] will be utilized in this work.

From the previous paragraph, one may insinuate that the distributed calculation

of the elements of v(k) is straightforward; however, unlike the gradient method, the

search direction obtained via the subgradient method does not necessarily yield a descent

direction at every iteration k ∈ N. Consequently, the first decision-making block in Fig.

4.1 helps to determine if v(k) fails to be a descent direction at time tk based on the

following result.

Lemma 4.1. For the non-differentiable function f̃l(P(k),Γ) with subdifferential set
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∂f̃l(P(k),Γ) at P(k) ∈ Rl, l = 1, 2, 3, v(k) is not a descent direction if

∃ g(k) ∈ ∂f̃l(P(k),Γ) such that 〈v(k), g(k)〉 ≥ 0, (4.18)

for any k ∈ N and Γ ∈ R>0.

Proof. The proof follows directly from the definition of the subgradient (Definition 4.1).

�

Note that Lemma 4.1 is presented in [29] and is brought here for the sake of

completeness. Also, as mentioned in [29], Lemma 4.1 does not provide a necessary

condition for v(k) to be a descent direction, but rather a sufficient one for not to be

a descent direction (this is explained in detail later). To implement Lemma 4.1 in a

distributed manner, 〈v(k),g(k)〉, for each l ∈ N3, expands in a distributed manner as

follows

• if l = 1,

〈v(k),g(k)〉 =
∑
i∈Nn

∑
j∈N in

i

(
−∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))

+ Γ−1
(
∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))

∂Pij(k)
− Γ−2

(∂I1(P(k))

∂Pij(k)

)2
)
, (4.19)
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• if l = 2,

〈v(k),g(k)〉 =
∑
i∈Nn

∑
j∈N in

i

(
− 1− Γ−1

(∂I1
2 (P(k))

∂Pij(k)
+
∂I2

2 (P(k))

∂Pij(k)

)
−

Γ−2∂I
1
2 (P(k))

∂Pij(k)
· ∂I

2
2 (P(k))

∂Pij(k)

)
, (4.20)

• if l = 3,

〈v(k),g(k)〉 =
∑
i∈Nn

∑
j∈N in

i

(
−
(∂Tsys(P(k))

∂Pij(k)

)2
+

Γ−1∂Tsys(P(k))

∂Pij(k)

(∂I1
3 (P(k))

∂Pij(k)
+
∂I2

3 (P(k))

∂Pij(k)

)
− Γ−2∂I

1
3 (P(k))

∂Pij(k)
· ∂I

2
3 (P(k))

∂Pij(k)

)
, (4.21)

where ∂Il(P(k))/∂Pij(k) is the partial derivative of the indicator function (4.9), and

corresponds to the terms inside the parenthesis multiplied by Γ−1 in (4.13)-(4.15). The

numerical superscripts in the variables of (4.19)-(4.21) correspond to the (possibly) dif-

ferent supergradients of the GAC used in obtaining those expressions. That is, v(k)

and g(k) are not necessarily the same for distinct values of l. In the distributed imple-

mentation of (4.19)-(4.21), the worst-case scenario is considered for g(k), i.e., for each

i ∈ Nn, j ∈ N in
i ,
∑

i

∑
j Pij(k), ∂Tsys(P(k))/∂Pij(k), λ̃(P(k)) and the values of both

λ̃(P(k)+β(k)eij) and λ̃(P(k)−β(k)eij) are estimated, and are checked to see which one

results in the most positive vij(k) · gij(k) element. Note that Lemma 4.1 is implemented

in a distributed manner for l = 1, 2, 3 as per Algorithm 4.2.
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As mentioned before, finding
∑

i

∑
j Pij(k) or ∂Tsys(P(k))/∂Pij(k) in Algorithm 4.2

is simple. On the other hand, more complex algorithms are required to obtain the GAC

in a distributed way. Using the finite-time method of [33], the obtained GAC values in

different optimization iterations will be exact at every node, meaning that Algorithm 4.2

can be implemented as it is. However, if the method of [4] is used, the estimated GAC

values at each node will be within an arbitrarily small neighborhood of the exact val-

ues. The resulting errors would need to be taken into consideration as they may lead

to erroneous decisions/values throughout the algorithm. In the sequel, only the exact

method of [33] is exploited.

As noted earlier, the search direction v(k) may not be a descent direction for some

k ∈ N. In this case, as per Algorithm 4.1 and Fig. 4.1, the optimization algorithm

is terminated at iteration k without updating the transmission power matrix P(k) or

increasing the optimization iteration index k. The value of Γ is then increased. The

repetition of the kth optimization iteration is denoted by k′, where the only difference

between this and the kth iteration is the updated value for Γ (Γ′ = µΓ). It is now desired

to update µ such that the non-descent search direction of iteration k will be a descent

one at iteration k′ (hence the µ update block in Fig. 4.1).

Lemma 4.2. For each optimization problem (4.7), if v(k) is not a descent direction for

some k ∈ N according to Lemma 4.1, the value of µ used to update Γ should satisfy the

following inequalities in order to have a descent direction at iteration k′
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Algorithm 4.2. Distributed implementation of Lemma 4.1.

1: Nodes estimate λ̃(P(k)) using the information locally.
2: For every i ∈ Nn and j ∈ N in

i , the values of

λ̃(P(k) + β(k)eij) and λ̃(P(k)− β(k)eij) are
estimated using information locally available to node i.

3: Depending on the optimization problem P1, P2 or P3, nodes
communicate to obtain

∑
i

∑
j Pij(k) or

∂Tsys(P(k))/∂Pij(k).
4: Each node calculates both g+

ij(k) and g−ij(k),
where vij(k) is equal to one of the two.

5: Each node calculates x1
ij = vij(k) · g−ij(k) and

x2
ij = vij(k) · g+

ij(k).
5: xij = max{x1

ij, x
2
ij}

6: Nodes communicate to calculate X =
∑

i

∑
j xij.

7: If X ≥ 0, then v(k) is not a descent direction.

• for l = 1,

µ ≥ d
∑

i∈Nn

∑
j∈N in

i

(
∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))
∂Pij(k)

Γ
∑

i∈Nn

∑
j∈N in

i
∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))

− 1e, (4.22)

• for l = 2,

µ ≥ d −1

n2Γ

∑
i∈Nn

∑
j∈N in

i

(∂I1
2 (P(k))

∂Pij(k)
+
∂I2

2 (P(k))

∂Pij(k)

)
− 1e, (4.23)

• for l = 3,

µ ≥ d
∑

i∈Nn

∑
j∈N in

i

∂Tsys(P(k))

∂Pij(k)

(∂I13 (P(k))

∂Pij(k)
+

∂I23 (P(k))

∂Pij(k)

)
Γ
∑

i∈Nn

∑
j∈N in

i

(∂Tsys(P(k))

∂Pij(k)

)2 − 1e, (4.24)

where the numerical superscripts in the variables of (4.22)-(4.24) are defined as before.

Proof. For l = 1, according to Lemma 4.1, if ∃ g(k) ∈ ∂f̃1(P(k),Γ) such that 〈v(k),g(k)〉 ≥
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0, then v(k) is not a descent direction at iteration k, for some k ∈ N. By terminating

the inner optimization loop and updating the value of Γ, at iteration k′, one obtains

〈v(k′),g(k′)〉 =
∑
i∈Nn

∑
j∈N in

i

(
−∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))+

Γ′
−1(∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))

∂Pij(k)
− Γ′

−2(∂I1(P(k))

∂Pij(k)

)2
)
, (4.25)

where Γ′ = µΓ as previously mentioned. It is desired to make the inner product (4.25)

less than zero by appropriately choosing the value of µ that Γ, at iteration k, is multiplied

with. To this end, the right-hand side of (4.19) is multiplied by µ−2, and is re-arranged

to obtain

∑
i∈Nn

∑
j∈N in

i

(
−∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))+

µ−1Γ−1
(
∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))

∂Pij(k)
− µ−2Γ−2

(∂I1(P(k))

∂Pij(k)

)2
)
≤

∑
i∈Nn

∑
j∈N in

i

(
− µ2 + 1

µ2
∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))+

µ+ 1

µ2
Γ−1
(
∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))

∂Pij(k)
− 2

µ2
Γ−2
(∂I1(P(k))

∂Pij(k)

)2
)
. (4.26)

The left-hand side of (4.26) is equal to (4.25), and as mentioned, it is desired to be less

than zero. To guarantee this, the right-hand side of (4.26) needs to be less than zero.
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From (4.19), one has

∑
i∈Nn

∑
j∈N in

i

Γ−2
(∂I1(P(k))

∂Pij(k)

)2 ≤
∑
i∈Nn

∑
j∈N in

i

(
−∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))+

Γ−1
(
∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))

∂Pij(k)

)
. (4.27)

By incorporating the inequality (4.27) in the right-hand side of (4.26) and simplifying,

one arrives at

µ ≥ d
∑

i∈Nn

∑
j∈N in

i

(
∇λ̃1

ij(P(k)) +∇λ̃2
ij(P(k))

)∂I1(P(k))
∂Pij(k)

Γ
∑

i∈Nn

∑
j∈N in

i
∇λ̃1

ij(P(k)) · ∇λ̃2
ij(P(k))

− 1e,

which guarantees 〈v(k′),g(k′)〉 < 0. This completes the proof for l = 1. For l = 2, 3,

the proofs follow a similar argument. �

The implementation of Algorithm 4.2 precedes Lemma 4.2. Therefore, if the nodes

need to update the value of µ as per Lemma 4.2, they have already obtained the required

global values in Algorithm 4.2, and only need to use a basic consensus algorithm to

determine the summations in (4.22)-(4.24).

Recall that Lemma 4.1 provides a sufficient condition for not having a descent

search direction. That is, at any time tk, k ∈ N, even if 〈v(k),g(k)〉 < 0 for all g(k) ∈

∂f̃l(P(k),Γ), l = 1, 2, 3, v(k) may not necessarily be a descent direction. In such cases,

the cost function will not decrease along that direction, and the resulting step size α(k)

from the backtracking algorithm will be approximately zero. This is the reason for
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considering the second decision-making block of Fig. 4.1. When such a condition is

encountered, one needs to terminate the inner optimization loop and update the value

of µ such that

f̃l(P(k) + α(k′)v(k′),Γ′)− f̃l(P(k),Γ′) < 0,

for some α(k′) ∈ (0, αmax], where αmax is the maximum value taken by the step size.

This procedure will enable one to have a descent direction at iteration k′. However, the

nonlinear nature of f̃l, l = 1, 2, 3, is a barrier to achieving this. As a remedy, according to

Algorithm 4.1 and Fig. 4.1, the inner optimization loop is terminated once the step size

is approximately zero, and the value of µ is updated to be any µ ∈ R>1. Note that the

parameter µ is used to update Γ, which is directly related to the termination condition

of the outer optimization loop (as seen in Algorithm 4.1). Using large values for this

parameter may lead to the premature termination of the optimization algorithm. As

explained in the following remark, the considered µ will make the value of 〈v(k′),g(k′)〉

more negative at iteration k′, increasing the likelihood of having a descent direction.

Remark 4.3. By expanding 〈v(k′),g(k′)〉 for l = 2, 3, it can be easily seen that any

µ ∈ R>1 will make the inner product more negative. For l = 1, however, this is not

necessarily the case. If ∇λ̃1
ij(P(k)) · ∇λ̃2

ij(P(k)) is negative, a µ ∈ R>1 will make

(4.25) more positive, which is contrary to the present objective. However, note that

∇λ̃1
ij(P(k)) · ∇λ̃2

ij(P(k)) ≤ 0 indicates that the algorithm has reached a local or global

optimum, and therefore, no further move is required in any direction.
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In order to determine the step size α(k) in (4.12) via the backtracking line search,

as long as the Armijo-Goldstein condition [14] given by

f̃l(P(k) + α(k)v(k),Γ) ≤ f̃l(P(k),Γ) + να(k)〈v(k),g(k)〉 (4.28)

is not satisfied, the step size will be shrinked by a factor of θ ∈ (0, 1) (note that ν ∈ (0, 1)

as well in the above inequality, which determines the expected amount of decrease in

the cost function). This procedure also needs to be implemented in a distributed way.

Estimating the global variable f̃l for l = 1, 2, 3, using the methods of [4] or [33] would

be computationally demanding and time consuming, which is not desirable given the

nodes’ limited resources. This problem is addressed in the following lemmas by finding

bounds for the Armijo-Goldstein condition.

Lemma 4.3. For l = 1 in the optimization problem (4.7), the step size α(k) is reduced

by a factor θ ∈ (0, 1) until the following condition is satisfied

α(k) ·L ·‖v(k)‖F+Γ−1
(
I1(P(k)+α(k)v(k))−I1(P(k))

)
−να(k)〈v(k), g(k)〉 ≤ 0, (4.29)

where L is the Lipschitz constant of the GAC, introducing an upper bound on the mag-

nitude of the derivatives of the GAC.

Proof. By expanding the function f̃l for l = 1, the Armijo-Goldstein condition (4.28) is
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re-written as

− λ̃(P(k) + α(k)v(k)) + λ̃(P(k)) + Γ−1
(
I1(P(k) + α(k)v(k))− I1(P(k))

)
−

να(k)〈v(k),g(k)〉 ≤ 0. (4.30)

If (4.30) was to be implemented in its present form, the first two GAC terms would need

to be estimated for each step size value before possibly shrinking it. A better approach

is to approximate these terms in order to avoid further complication. Since the GAC is

a locally Lipschitz function with constant L, one can write

|λ̃(P(k) + α(k)v(k))− λ̃(P(k))| ≤ α(k) · L · ‖v(k)‖F. (4.31)

By combining (4.30) and (4.31), one arrives at (4.29). This completes the proof. �

Remark 4.4. In deriving Lemma 4.3, the term −λ̃(P(k) + α(k)v(k)) + λ̃(P(k)), which

may have a negative value, is approximated by an always positive term. At any iteration

k, the Armijo-Goldstein condition for l = 1 given by (4.30) may be satisfied, whereas

the approximated value (4.29) may still be positive. The result is that at each iteration

k, the step size obtained via the approximate backtracking line search will be smaller

compared to the case when the global values are used, i.e., the approximate method

will take smaller steps at each iteration toward the optimum. The choice of the real

constant L determines how close the step sizes obtained from the approximate and exact
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methods are. It is possible that for some applications, depending on the magnitude of

the terms in (4.29), the terminal condition of Lemma 4.3 may not be satisfied, in which

case the approximate method cannot be used. In such a case, at the expense of longer

computational time, the exact values of the GAC may be used in (4.30) to obtain the

step sizes.

Lemma 4.4. For l = 2, 3 in the optimization problem (4.7), the step size α(k) is reduced

by the factor θ ∈ (0, 1) at consecutive steps until the following inequality is satisfied

h(k)− Γ−1 log(
α(k) · L · ‖v(k)‖F
λ̃(P(k))− λ

+ 1) ≤ 0, (4.32)

where, for l = 2,

h(k) = α(k)
∑
i

∑
j

vij(k) +Q(k), (4.33)

and for l = 3,

h(k) = −Tsys(P(k) + α(k)v(k)) + Tsys(P(k)) +Q(k), (4.34)

and

Q(k) = −να(k)〈v(k), g(k)〉+ Γ−1
(∑

i

∑
j

log
( P up

ij − Pij(k)

P up
ij − Pij(k)− α(k)vij(k)

)
+

∑
i

∑
j

log
( Pij(k)− P low

ij

Pij(k) + α(k)vij(k)− P low
ij

))
, (4.35)
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for all i ∈ Nn and j ∈ N in
i .

Proof. By expanding f̃2 and f̃3, the Armijo-Goldstein condition (4.28) becomes

h(k)− Γ−1 log
( λ̃(P(k) + α(k)v(k))− λ

λ̃(P(k))− λ
)
≤ 0, (4.36)

where h(k) is given by (4.33) or (4.34). The last term in the left-hand side of (4.36) is

approximated to make the distributed algorithm less computationally demanding. Using

the Lipschitz property of the GAC again, (4.31) can be re-written as

λ̃(P(k) + α(k)v(k))− λ
λ̃(P(k))− λ

≥ α(k) · L · ‖v(k)‖F

λ̃(P(k))− λ
+ 1. (4.37)

As per Assumption 4.2, the initial transmission power matrix is chosen to be strictly

feasible, and consequently, the denominator in (4.37) is not equal to zero. Manipulating

(4.37), one arrives at

h(k)− Γ−1 log
( λ̃(P(k) + α(k)v(k))− λ

λ̃(P(k))− λ
)
≤ h(k)− Γ−1 log

(α(k) · L · ‖v(k)‖F

λ̃(P(k))− λ
+ 1
)
.

(4.38)

As the left-hand side of (4.38) is equal to (4.36), the Armijo-Goldstein condition is

guaranteed to be satisfied if the right-hand side of (4.38) becomes less than or equal to

zero. This completes the proof. �

Similar to Lemma 4.3, it is shown in Lemma 4.4 that reducing the step size prop-

erly at each iteration ensures that the Armijo-Goldstein condition is eventually satisfied.
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However, the issue with Lemma 4.3 not being satisfied in some applications (as men-

tioned in Remark 4.4) is less pronounced for Lemma 4.4. The reason is that even if the

approximate term has a large positive value, taking its logarithm as in (4.32) will reduce

it. Nonetheless, if the same issue comes up in Lemma 4.4, the global value of the GAC

could be used to obtain the step size at the expense of additional computational time.

Distributed implementations of Lemmas 4.3 and 4.4 are straightforward, as nodes only

need to use a basic consensus protocol to determine the required values (there is no need

to estimate new global values such as the GAC anymore). Additionally, it is assumed

that each node knows an upper bound of the GAC function’s Lipschitz constant L.

Remark 4.5. The locally Lipschitz property of the GAC function, used in the proofs of

Lemmas 4.3 and 4.4, holds only in the neighborhood of the original point (P(k) in these

cases). In using the approximate backtracking approaches, if α(k) is too large, (4.31)

will not necessarily hold. By appropriately choosing αmax, this problem can be avoided.

Having explained all the components in the Fig. 4.1, the proposed distributed

optimization procedure is given in Algorithm 4.3. The parameters of this algorithm

which are not previously described are µ0, β0, ζ and mmax. The parameter µ0 is the

initial value of µ, which is updated as the algorithm proceeds. The parameter β0 is a

real constant used to calculate β(k), which is the step size used to numerically calculate

the partial derivatives of the GAC. The parameter ζ in line 19 of Algorithm 4.3 deter-

mines the threshold below which the step size can be considered to be approximately
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zero. Ultimately, the parameter mmax is the maximum number of iterations the inner

optimization loop runs.

Before starting the approximate backtracking line search in Algorithm 4.3 (line 16),

an additional step is considered for reducing the step size to ensure that moving along

the determined search direction will not take the algorithm out of the corresponding

feasible region Rl; otherwise, certain logarithmic terms in the formulations of Lemmas

4.3 and 4.4 would be undefined. The implementation of this step is presented next.

Remark 4.6. In determining the maximum value of α(k) which ensures that P(k) +

α(k) ·v(k) ∈ Rl in Algorithm 4.3, the nodes need to first implement the local constraints

h2
ij(k) and h3

ij(k), for all i, j ∈ Nn and k ∈ N. That is, each node should check whether

Pij(k) + α(k)vij(k) is within the range [P low
ij , P up

ij ]. Once each node finds the maximum

α(k) for its transmission power levels, they can communicate with one another, share

their values of the step size, and choose the minimum value among the step sizes of each

node in that iteration to move onto the global constraint. Unlike the backtracking line

search which was approximated to make it computationally more efficient, the nodes next

need to determine the exact values of the required global variables, such as the GAC. To

check the global constraint h1
l (k) for l = 1, the nodes can use a basic consensus protocol

to determine the value of α(k) which satisfies the following condition

P̄−
∑
i

∑
j

(
Pij(k) + α(k)vij(k)

)
≥ 0.
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On the other hand, to check the global constraint h1
l (k) for l = 2, 3, the nodes need to

use the method of [1] or [33] to determine the maximum value of α(k) that satisfies the

following inequality

λ̃(P(k) + α(k)v(k))− λ ≥ 0.

As far as the scalability and run-time of the proposed procedure is concerned, the

main difference between Algorithm 4.3 and its centralized counterpart is the estimation

of the GAC using local information and the additional computation time it requires.

Other than that, the two algorithms (centralized and distributed) are almost identical.

Whichever method is utilized to estimate the GAC in a distributed manner and whatever

its computational complexity may be, it is repeated at most 2(n2 − n) + 1 times. Also,

given the GAC constraint for l = 2, 3 in the optimization problem (4.7) and the need

to use a GAC estimation algorithm in line 13-15 of Algorithm 4.3 (see Remark 4.6), the

selected estimation algorithm will need to be executed dlog( ζ
αmax

)/ log(θ)e times in the

worst case scenario. Note that this value is not dependent on the size of the network.

4.4 Convergence analysis of the optimization algo-

rithm

The asymptotic convergence of the proposed optimization algorithms to a local or global

minimum of the constrained optimization problems P1-P3 is investigated next.
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Algorithm 4.3. Proposed distributed optimization algorithm.
1: Given strictly feasible P = P0 ∈ Rn×n, initialize Γ = Γ0 ∈ R>0

and k = 1.
2: Choose arbitrary constants ν ∈ (0, 1), θ ∈ (0, 1),

µ0 ∈ R>1, β0, ε, ζ, αmax ∈ R>0, mmax ∈ N and consider
the prescribed parameters Pup, Plow ∈ Rn×n, and λ or P̄ ∈ R>0.

3: while mΓ−1 > ε do
4: µ = µ0

5: for miter = 1 : mmax do
6: Compute v(k) according to (4.13)-(4.15).
7: Use Lemma 4.1 and Algorithm 4.2 to determine whether

v(k) is not a descent direction.
8: if not a descent direction do
9: µ = max(µ0, µ

′), where µ′ is a value obtained from Lemma 4.2.
11: break
12: α(k) = αmax
13: while P(k) + α(k) · v(k) /∈ Rl according to Remark 4.6 do
14: α(k) = θ · α(k)
15: end while
16: while the inequalities in Lemmas 4.3 or 4.4 are not satisfied do
17: α(k) = θ · α(k)
18: end while
19: if α(k) ≤ ζ do
20: µ = µ0

21: break
22: P(k + 1) = P(k) + τ(k) · v(k)
23: k = k + 1
24: end
25: Γ = µΓ
26: end while
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Remark 4.7. Consider an asymmetric network composed of n nodes represented by a

weighted digraph. Let Assumptions 4.1, 4.2 and 4.3 hold. Using the interior point

algorithm, the following relations hold for l = 1, 2, 3

1. limk→∞ fl(P(k)) = v∗l ,

2. limk→∞ f̃l(P(k),Γ) = v∗l ,

3. limk→∞ Γ−1 · Il(P(k)) = 0,

4. limk→∞P(k) = P∗l ,

where v∗l , for l = 1, is a local minimum of the optimization problem P1, and for l = 2, 3,

is the global minimum of the optimization problems P2 and P3. P∗l is the corresponding

minimizer of v∗l [13, 28].

The relations in Remark 4.7 are presented in [28,29], and are repeated here for ease

of reference. The remark states that sequences P(k) converging to local or global minima

of the problems P1-P3 exist. Now, one needs to show that the subgradient method with

the approximate backtracking line search can generate such sequences. To this end,

for each Γ, the unique global minimum of optimization problem (4.7), for l = 1, 2, 3,

is denoted by P∗Γ. These global minima are called central points of the interior point

algorithm [14]. Additionally, let P0
Γ denote the power matrix that the inner optimization

loop starts with (when miter = 1), for any Γ ∈ R>0. Starting from P0
Γ, f̃l(P(k),Γ) must

converge to f̃l(P
∗
Γ,Γ), for l = 1, 2, 3, using the subgradient method with approximate
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backtracking line search. Since f̃l(P
∗
Γ,Γ)→ v∗l as k →∞ [14], f̃l(P(k),Γ) is guaranteed

to converge to v∗l .

Theorem 4.1. Consider an asymmetric network composed of n nodes represented by a

weighted digraph, as described earlier. Using the interior point method in conjunction

with the subgradient approach and the backtracking line search to solve the constrained

optimization problems P1-P3, as k → ∞, the transmission power matrix P(k) asymp-

totically converges to a stationary matrix P∗l ∈ Rl corresponding to a local minimum v∗1

and to the global minima v∗2 and v∗3 of the optimization problem (4.7).

Proof. Given g(k) ∈ ∂f̃l(P(k),Γ), for any k ∈ N, l ∈ N3 and Γ ∈ R>0, the search

direction v(k) is a descent direction as per the previously discussed lemmas and remarks.

As a result, the backtracking line search algorithm will eventually stop for some α(k) ∈

(0, αmax]. Then

f̃l(P(k),Γ)− f̃l(P(k − 1),Γ) ≤ ν · α(k − 1) · 〈v(k − 1),g(k − 1)〉. (4.39)

Given that 〈v(k),g(k)〉 < 0, for any k ∈ N, (4.39) can be rewritten as

f̃l(P(k),Γ)− f̃l(P(k − 1),Γ) ≤ 0. (4.40)

From the definition of subgradient (Definition 4.1), any g(k) ∈ ∂f̃l(P(k),Γ), including

the one corresponding to the search direction (i.e. v(k) = −g(k)), satisfies the following
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inequality

f̃l(P(k − 1),Γ) + 〈P(k − 1)−P∗Γ,g(k − 1)〉 ≤ f̃l(P
∗
Γ,Γ). (4.41)

Combining (4.40) and (4.41) yields

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ 〈P(k − 1)−P∗Γ,g(k − 1)〉. (4.42)

The right-hand side of (4.42) can then be rewritten as

1

α(k − 1)
〈P(k− 1)−P∗Γ, α(k− 1)g(k− 1)〉 =

1

α(k − 1)
〈P(k− 1)−P∗Γ,P(k)−P(k− 1)〉.

(4.43)

By manipulating the second term in the inner product of the right-hand side of (4.43),

(4.42) becomes

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ −1

α(k − 1)
〈P(k − 1)−P∗Γ,P(k − 1)−P∗Γ〉

+
1

α(k − 1)
〈P(k − 1)−P∗Γ,P(k)−P∗Γ〉, (4.44)

and after further manipulations, one arrives at

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ −1

α(k − 1)
〈P(k − 1)−P∗Γ,P(k − 1)−P∗Γ〉+

1

α(k − 1)
〈P(k)−P∗Γ,P(k)−P∗Γ〉+

1

α(k − 1)
〈P(k − 1)−P(k),P(k)−P∗Γ〉. (4.45)
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The third term in the right-hand side of the above inequality is rewritten to obtain

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ −1

α(k − 1)
〈P(k − 1)−P∗Γ,P(k − 1)−P∗Γ〉+

1

α(k − 1)
〈P(k)−P∗Γ,P(k)−P∗Γ〉+ 〈g(k − 1),P∗Γ −P(k)〉. (4.46)

The right-hand side of (4.42) is re-expressed as

f̃l(P
∗
Γ,Γ)− f̃l(P(k − 1),Γ) ≥ 〈g(k − 1),P∗Γ −P(k)〉+ α(k)〈g(k − 1),g(k − 1)〉. (4.47)

Now, combining (4.46) and (4.47) yields

f̃l(P(k),Γ) + f̃l(P(k− 1),Γ)− 2f̃l(P
∗
Γ,Γ) ≤ −1

α(k − 1)
〈P(k− 1)−P∗Γ,P(k− 1)−P∗Γ〉+

1

α(k − 1)
〈P(k)−P∗Γ,P(k)−P∗Γ〉 − α(k)〈g(k − 1),g(k − 1)〉. (4.48)

Note that 〈g(k−1),g(k−1)〉 in the right-hand side of (4.48) is non-negative. In addition,

since f̃l(P
∗
Γ,Γ) is the minimum of the cost function f̃l, l = 1, 2, 3, for any Γ ∈ R>0, it is

evident that f̃l(P(k − 1),Γ)− f̃l(P∗Γ,Γ) ≥ 0. Hence, (4.48) can be rewritten as

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ 1

α(k − 1)
〈P(k)−P∗Γ,P(k)−P∗Γ〉

− 1

α(k − 1)
〈P(k − 1)−P∗Γ,P(k − 1)−P∗Γ〉. (4.49)
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Averaging both sides of (4.49) yields

1

k

k∑
j=2

(
f̃l(P(j),Γ)− f̃l(P∗Γ,Γ)

)
≤ 1

k

k∑
j=2

( 1

α(j − 1)
〈P(j)−P∗Γ,P(j)−P∗Γ〉

− 1

α(j − 1)
〈P(j − 1)−P∗Γ,P(j − 1)−P∗Γ〉

)
, (4.50)

which can then be rewritten as

1

k

k∑
j=2

(
f̃l(P(j),Γ)− f̃l(P∗Γ,Γ)

)
≤ 1

k
· 1

minα(j − 1)|kj=2

·
k∑
j=2

(
〈P(j)−P∗Γ,P(j)−P∗Γ〉

− 〈P(j − 1)−P∗Γ,P(j − 1)−P∗Γ〉
)
. (4.51)

The right-hand side of (4.51) further simplifies to

1

k

k∑
j=2

(
f̃l(P(j),Γ)− f̃l(P∗Γ,Γ)

)
≤ 1

k
· 1

minα(j − 1)|kj=2

·
(
〈P(k)−P∗Γ,P(k)−P∗Γ〉

− 〈P(1)−P∗Γ,P(1)−P∗Γ〉
)
. (4.52)

Note that both inner products in the right-hand side of (4.52) are non-negative. Also,

given the definition of the central points P∗Γ, one has

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ 1

k

k∑
j=2

(
f̃l(P(j),Γ)− f̃l(P∗Γ,Γ)

)
. (4.53)

115



Now, (4.52) is transformed to

f̃l(P(k),Γ)− f̃l(P∗Γ,Γ) ≤ 1

k
· 1

minα(j − 1)|kj=2

· 〈P(k)−P∗Γ,P(k)−P∗Γ〉. (4.54)

According to Algorithm 4.3, every time the inner optimization loop is terminated, Γ

increases and the values of f̃l(P
∗
Γ,Γ) and P∗Γ are updated. As k → ∞, the right-hand

side of (4.54) approaches zero, and also f̃l(P
∗
Γ,Γ) → v∗l (see Remark 4.7). This means

that as k → ∞, f̃l(P(k),Γ) converges to v∗l . Also, according to Remark 4.7, P(k)

approaches P∗l as k increases. This completes the proof. �

Note that according to Theorem 4.1, Algorithm 4.3 converges to a neighborhood

of the solutions of the optimization problems P1-P3. At the cost of a longer conver-

gence time, this neighborhood can be made arbitrarily small by a proper choice of the

parameter ε in the termination condition of Algorithm 4.3 (line 3).

Remark 4.8. If the elements of the transmission power matrix converge to the boundaries

of the set Rl, for any l ∈ N3, the corresponding terms of g(k) will go to infinity. Because

the initial transmission power matrix is chosen to be strictly inside the feasible set Rl,

its elements will only converge to the boundaries as k → ∞ if an optimum lies on

the boundaries. In other words, g(k) becoming infinity implies that the algorithm has

already reached a solution.
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4.5 Simulation Results

The results of the centralized optimization algorithm (with the exact GAC and back-

tracking line search values) concerning the three variants of the optimization algorithm

(4.7) are presented first. It is then followed by the results of the distributed optimization

algorithm proposed in this study (with the estimated GAC and approximate backtrack-

ing line search values). The results are also compared with the outcome of the fmincon

function of MATLAB R©. Note that the centralized algorithms for l = 2, 3 are available

in [28] and [29], respectively, and can be derived in a similar fashion for l = 1.

Example 4.1. To investigate the efficacy of Algorithm 4.3, the four-node experimental

asymmetric network of [15] is examined here. It is assumed that the communication link

from node 2 to node 4 is not feasible in this network due to environmental constraints,

i.e., P42(k) is equal to zero for all k ∈ N and is not considered in the optimization

algorithm. Assuming that for every i ∈ Nn and j ∈ N in
i , P low

ij = 1 (the smallest power

level required to establish a link) and P up
ij = 4, the initial transmission power matrix is

chosen as

P0 =



0 1.3 1.5 1.6

1.2 0 1.5 1.3

1.7 1.7 0 1.4

1.5 0 1.5 0


.
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Using (4.4), the resulting initial weight matrix of the corresponding digraph is as

W =



0 0.4474 0.5889 0.4846

0.5178 0 0.5932 0.4653

0.5214 0.5682 0 0.4677

0.6192 0 0.5224 0


,

where the network’s initial GAC is λ̃(P0) = 1.6027 and initial total transmission power

is
∑

i

∑
j P

0
ij = 16.2. Assuming

q =



0 1 1 1

1 0 1 1

1 1 0 1

1 0 1 0


, K =



0 2 1 2

1 0 1 2

2 1 0 1

1 0 2 0


, τ =



0 1.2 1.5 2

1.1 0 1.8 1.4

1.5 1.7 0 0.8

1.2 0 0.9 0


,

e0
i = 200 and erij = 1.5 for every i ∈ Nn and j ∈ N in

i , the initial lifetime of nodes are

T (P0) = [12.7226, 16.6528, 14.6520, 12.7714]T.

Furthermore, it is required that the GAC be greater than or equal to λ = 1.5 and

the total transmission power be less than or equal to P̄ = 20. As a result, the initial

transmission power matrix is strictly inside the feasible set Rl, for all l ∈ N3.

118



4.5.1 Minimizing f̃1 in (4.7)

To implement the centralized optimization algorithm for l = 1 in the optimization

problem (4.7), i.e., maximizing the GAC with constraints on the total transmission

power and each transmission level, the maximum number of iterations for the inner

optimization loop is chosen to be mmax = 30. The design parameters of the backtracking

line search are selected to be ν = 0.01, θ = 0.95, and αmax = 1. Additionally, the

parameter used to numerically calculate the supergradients of the GAC is β = 0.1, and

the coefficient by which Γ, the weight given to the penalty terms I1(P(k)), is multiplied

with at the end of an inner optimization loop is at least equal to µ0 = 5. The initial

value of Γ is Γ0 = 150. The performance of the algorithm is evaluated by choosing

ε = 10−4 as the termination condition of the outer optimization loop. The parameter ζ

in line 19 of Algorithm 4.3 is set equal to 10−4. Finally, the search direction is chosen

as v(k) = −g−(k) for all k ∈ N. Using the above-mentioned parameters, the optimal

transmission power matrix is obtained as

P∗c,1 =



0 1.1922 1.8520 1.8751

1.3183 0 1.4881 2.6007

1.6812 1.6015 0 1.9287

2.6221 0 1.8401 0


,
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resulting in the following weight matrix

W∗
c,1 =



0 0.4337 0.7409 0.5893

0.5365 0 0.5898 0.6462

0.5150 0.5387 0 0.6468

0.8646 0 0.5629 0


.

The corresponding network GAC is λ̃(P∗c,1) = 2.2210 and the total transmission power

is
∑

i∈Nn

∑
j∈Nn

Pij
∗
c,1 = 20. The evolution of the GAC and the total transmission power

of the network as the iteration index k increases is shown in Fig. 4.2, and the evolution

of the individual transmission powers of each node is presented in Fig. 4.3.

As mentioned earlier, the algorithm of [33], proposed for obtaining all the eigen-

values of the graph Laplacian, is utilized to obtain the exact value of the eigenvalue

corresponding to the GAC in a distributed manner. Moreover, Lemma 4.3 is used to

obtain the step sizes; however, the problem pointed out in Remark 4.4 arises in this

example. Considering an upper bound of L = 1.5 for the Lipschitz constant of the GAC

function, regardless of the values of the design parameters, the condition of Lemma 4.3

is not satisfied after a few iterations of the optimization algorithm. The reason is that

as seen in (4.29), only the second term can have negative values, and only while its

coefficient Γ is not too large, the inequality of Lemma 4.3 may be satisfied. However, as

the value of Γ increases as per line 25 of Algorithm 4.3, inequality (4.29) is not satisfied
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Figure 4.2: Evolution of the GAC and the total transmission power of the network of Example
4.1 for the first optimization problem in (4.7) (l = 1) obtained using the centralized algorithm.
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Figure 4.3: Evolution of the transmission power for the nodes comprising the network of
Example 4.1 for the first optimization problem in (4.7) (l = 1) obtained using the centralized
algorithm.
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after a few iterations. Nonetheless, the following design parameters are chosen to find

the best possible solution using Lemma 4.3: mmax = 5, ν = 0.005, θ = 0.97, αmax = 1,

β = 0.2, µ0 = 5, Γ0 = 0.1, ε = ζ = 10−4, and v(k) = −g−(k) for all k ∈ N. The

following optimal transmission power matrix is obtained

P∗d,1 =



0 1.7249 1.7225 1.7101

1.7311 0 1.7272 1.7471

1.7245 1.7250 0 1.7323

1.7680 0 1.7392 0


,

resulting in the weight matrix

W∗
d,1 =



0 0.4923 0.6919 0.5288

0.5908 0 0.6527 0.5438

0.5295 0.5754 0 0.5884

0.7048 0 0.5518 0


.

The corresponding network GAC is λ̃(P∗d,1) = 1.8116, and the total transmission power

is
∑

i∈Nn

∑
j∈Nn

Pij
∗
d,1 = 19.0579. It is evident from the results of the distributed solution

that it is terminated prematurely compared to the centralized algorithm. Additionally,

it can be seen from the matrix P∗d,1 that all of the nodes are converging to the same

transmission power, which is due to the initial weight Γ0 given to the penalty function

Il(P(k)), for l = 1. The parameter Γ0 gives more weight to the penalty terms initially,
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and the optimization algorithm prioritizes minimizing the sum of these terms rather than

giving more weight to the maximization of the GAC. If a bigger value is considered for

Γ0, even fewer iterations are completed successfully by the algorithm due to Lemma 4.3

not being satisfied. For this specific example, Lemma 3 is not applicable, but it can still

be useful for other examples. If the method of [33] was utilized to obtain the GAC to

be used with the exact backtracking line search (which can still be implemented in a

distributed manner but will be computationally heavier), the obtained results via the

distributed approach would be identical to its centralized counterpart, considering the

same design parameters as in the centralized algorithm.

The fmincon function of MATLAB R© is utilized to solve the optimization problem

(4.7) for l = 1, with the same initial conditions, and appropriate penalty functions are

considered for the violation of the constraints. The output of this function is

P∗f,1 =



0 1.0012 1.7608 1.9681

1.0000 0 1.4689 2.6781

1.5712 1.8078 0 2.0850

2.8624 0 1.7965 0


,

which leads to a network GAC of λ̃(P∗f,1) = 2.2211 and a total transmission power of∑
i∈Nn

∑
j∈Nn

Pij
∗
f,1 = 20.

It is evident from the above results that as a characteristic of the interior point
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method, neither the centralized algorithm nor the distributed algorithm violate any

of the constraints. Comparing the results of the centralized algorithm and the fmincon

function, it is observed that the minimum obtained by both methods are almost identical.

The error between the minimum point obtained via the centralized algorithm and the

MATLAB R© function is less than 1%, which is within the numerical error range. The

difference in the elements of the optimal transmission power matrix obtained via the

two approaches may also be avoided by further tuning of the design parameters of the

centralized algorithm. Note that using the exact GAC for determining the step size of

the distributed algorithm results in the exact same solution as that of the centralized

algorithm. Even though a higher GAC may require higher transmission power, it can

be observed from Fig. 4.3 and P∗f,1 that the transmission powers of certain links have

actually decreased. Similar to [28] and [29], this can be attributed to the asymmetric

nature of the network and how the characteristics of those specific communication links

are different from other links.

4.5.2 Minimizing f̃2 in (4.7)

To implement the centralized optimization algorithm for l = 2 in the optimization

problem (4.7), i.e., minimizing the total transmission power with constraints on the

GAC and transmission power levels, the following design parameters are considered:

mmax = 25, ν = 0.05, θ = 0.7, αmax = 1, β = 0.1, µ0 = 2, Γ0 = 85, ε = ζ = 10−4,
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and v(k) = −g−(k) for all k ∈ N. The following optimal transmission power matrix is

obtained as

P∗c,2 =



0 1.0007 1.2477 1.0012

1.0011 0 1.0635 1.0007

1.2847 1.2199 0 1.0043

1.4747 0 1.0005 0


,

resulting in the weight matrix

W∗
c,2 =



0 0.4063 0.4428 0.2061

0.4816 0 0.4419 0.3968

0.3644 0.4040 0 0.2893

0.6099 0 0.4418 0


.

The optimal total transmission power from the centralized algorithm is
∑

i∈Nn

∑
j∈Nn

Pij
∗
c,2 =

12.2990, and the corresponding network GAC is λ̃(P∗c,2) = 1.5. The evolution of the total

transmission power and the GAC of the network is presented in Fig. 4.4. In addition,

Fig. 4.5 depicts the evolution of the transmission power levels of each node.

To implement the distributed optimization Algorithm 4.3 for l = 2 in the opti-

mization problem (4.7), the following design parameters are considered: mmax = 25,

ν = 0.01, θ = 0.7, αmax = 1, β = 0.1, µ0 = 4, Γ0 = 85, ε = ζ = 10−4, L = 1.5 and

v(k) = −g−(k) for all k ∈ N. Unlike the previous case (the first optimization problem

in Example 4.1), the problem with the approximate backtracking algorithm pointed out
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Figure 4.4: Evolution of the total transmission power and the GAC of the network of the
network of Example 4.1 for the second optimization problem in (4.7) (l = 2) obtained using
the centralized algorithm.
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Figure 4.5: Evolution of the transmission power for the nodes comprising the network of
Example 4.1 for the second optimization problem in (4.7) (l = 2) obtained using the centralized
optimization algorithm.
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in Remark 4.4 does not occur in using Lemma 4.4 in this case. The following optimal

transmission power matrix is obtained

P∗d,2 =



0 1.0018 1.2433 1.0541

1.0015 0 1.0037 1.0022

1.3686 1.2168 0 1.0021

1.4053 0 1.0062 0


,

resulting in the weight matrix

W∗
d,2 =



0 0.4065 0.4401 0.2314

0.4817 0 0.4166 0.3972

0.3989 0.4028 0 0.2882

0.5832 0 0.4430 0


.

The optimal total transmission power obtained by the distributed algorithm is∑
i∈Nn

∑
j∈Nn

Pij
∗
d,2 = 12.3056, and the corresponding network GAC is λ̃(P∗d,2) = 1.5000.

The evolution of the total transmission power and the GAC of the network using the

proposed distributed algorithm is provided in Fig. 4.6. The evolution of the various

transmission powers of each node is presented in Fig. 4.7.
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Figure 4.6: Evolution of the total transmission power and the GAC of the network of the
network of Example 4.1 for the second optimization problem in (4.7) (l = 2) obtained using
the distributed algorithm.
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Figure 4.7: Evolution of the transmission power for the nodes comprising the network of
Example 4.1 for the second optimization problem in (4.7) (l = 2) obtained using the distributed
algorithm.
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The output of the fmincon function for l = 2, given the same initial values is

P∗f,2 =



0 1.0000 1.3837 1.0000

1.0003 0 1.1572 1.0000

1.2935 1.0278 0 1.0022

2.4187 0 1.0000 0


,

which results in a total transmission power of
∑

i∈Nn

∑
j∈Nn

Pij
∗
f,2 = 12.2833 and a

network GAC of λ̃(P∗f,2) = 1.5001.

The discussions given at the end of the previous subsection (for l = 1) hold true

for this case as well. As observed from Figs. 4.4-4.7, the proposed algorithms do not

violate any of the constraints. Similar to the previous subsection, the difference between

the optimal points obtained via the different approaches is within 1%. Note that the

elements of the matrices P∗c,2 and P∗d,2 are close to each other, and with a proper choice of

design parameters, they could be even closer. Ultimately, for the considered optimization

problem where smaller transmission powers are desirable, it can be seen from P∗f,2 that

this objective is achieved by increasing the power corresponding to the communication

link ~14 ∈ E.
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4.5.3 Minimizing f̃3 in (4.7)

To implement the centralized optimization algorithm for l = 3 in the optimization

problem (4.7), i.e., maximizing the network lifetime with constraints on the GAC and

transmission power levels, the following design parameters are considered: mmax = 40,

ν = 0.001, θ = 0.95, αmax = 1, β = 0.05, µ0 = 1.3, Γ0 = 20, ε = ζ = 10−4, and

v(k) = −g−(k) for all k ∈ N. The following optimal transmission power matrix is

obtained

P∗c,3 =



0 1.4678 1.4077 1.0122

1.0015 0 1.4731 1.2136

1.0002 1.7721 0 1.3196

1.1685 0 1.2446 0


,

resulting in the weight matrix

W∗
c,3 =



0 0.4666 0.5389 0.2114

0.4817 0 0.5854 0.4471

0.2407 0.5885 0 0.4343

0.4787 0 0.4852 0


.

The optimal lifetimes obtained by the centralized algorithm are

T (P∗c,3) = [15.3793, 15.9550, 15.3807, 15.3813]T,
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and the corresponding network GAC is λ̃(P∗c,3) = 1.5032. The values of the lifetime and

the GAC of the network as the iteration index k in the proposed centralized algorithm

increases are shown in Fig. 4.8. The evolution of the lifetime of the individual nodes is

presented in Fig. 4.9, and the way the different transmission power levels of each node

changes is depicted in Fig. 4.10.

To implement the distributed optimization algorithm (Algorithm 4.3) for l = 3 in

the optimization problem (4.7), the following design parameters are considered: mmax =

30, ν = 0.001, θ = 0.9, αmax = 1, β = 0.1, µ0 = 1.5, Γ0 = 10, ε = ζ = 10−4, L = 1.5

and v(k) = −g−(k) for all k ∈ N. Similar to the previous case (l = 2), the problem

encountered while using the approximate backtracking algorithm in subsection 4.5.1

(concerning Lemma 4.3) does not arise in this case (l = 3) using Lemma 4.4. The

resulting optimal transmission power matrix is

P∗d,3 =



0 1.6176 1.3686 1.0077

1.0002 0 1.4831 1.2027

1.0003 1.8292 0 1.3650

1.1596 0 1.2605 0


,
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Figure 4.8: Evolution of the lifetime and the GAC of the network of the network of Example
4.1 for the third optimization problem in (4.7) (l = 3) obtained using the centralized algorithm.
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Figure 4.9: Evolution of the lifetime of the nodes of the network of the network of Example 4.1
for the third optimization problem in (4.7) (l = 3) obtained using the centralized algorithm.
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Figure 4.10: Evolution of the transmission power for the nodes comprising the network of
Example 4.1 for the third optimization problem in (4.7) (l = 3) obtained using the centralized
algorithm.
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leading to the weight matrix

W∗
d,3 =



0 0.4821 0.5165 0.2092

0.4815 0 0.5884 0.4447

0.2407 0.6039 0 0.4534

0.4743 0 0.4877 0


.

The optimal lifetimes obtained by the distributed algorithm are

T (P∗d,3) = [15.3934, 15.3942, 15.3950, 15.3962]T,

and the corresponding network GAC is λ̃(P∗d,3) = 1.5013. Fig. 4.11 shows the evolution

of the lifetime and the GAC of the network as the iteration index k in the distributed

optimization algorithm increases. The evolution of the lifetime of the individual nodes

is presented in Fig. 4.12, and the way the different transmission power levels of each

node changes is depicted in Fig. 4.13.

The output of the fmincon function in this case with the same initial variables and

parameters as before, is

P∗f,3 =



0 1.9915 1.4232 1.0000

1.0000 0 1.6723 1.0000

1.0000 1.2699 0 2.0552

1.1248 0 1.0001 0


,
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Figure 4.11: Evolution of the lifetime and the GAC of the network of the network of Example
4.1 for the third optimization problem in (4.7) (l = 3) obtained using the distributed algorithm.
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Figure 4.12: Evolution of the lifetime of the nodes of the network of the network of Example 4.1
for the third optimization problem in (4.7) (l = 3) obtained using the distributed algorithm.
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Figure 4.13: Evolution of the transmission power for the nodes comprising the network of
Example 4.1 for the third optimization problem in (4.7) (l = 3) obtained using the distributed
algorithm.
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and the resultant network GAC is λ̃(P∗f,3) = 1.5000. The obtained optimal lifetimes are

T (P∗f,3) = [15.4443, 15.4579, 15.4498, 15.4509]T.

The discussions presented in the previous two subsections to justify the simulation

results for l = 1, 2 hold true for l = 3 as well. That is, according to Figs. 4.8, 4.10,

and Figs. 4.11, 4.13, none of the constraints is violated. The discrepancy between the

above values and those obtained by using the proposed algorithm is less than 1%, and

is due to the numerical inaccuracies. It can also be observed that to maximize the

network lifetime, the transmission powers associated with certain communication links

are actually increased.

Note that the transmission power matrices P∗c,2, P∗d,2 and P∗f,2 corresponding to the

optimization problem P2 result in the network lifetimes of 14.0598, 13.8949 and 14.1011,

respectively, which are, as expected, shorter than the solution of the optimization prob-

lem P3.

In terms of convergence time, the run-times of the centralized algorithm and the

fmincon function for all the considered optimization problems are almost identical to

each other, and both take just a few seconds. On the other hand, the distributed algo-

rithm takes a few minutes to converge to the same optimum. As previously mentioned,

the most computationally heavy element of the distributed algorithm is the estimation

of the GAC using only local information. Apart from that, the run-time of the other
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parts of the distributed algorithm would be similar to the analogous parts in the other

two approaches.

4.6 Conclusion

In this study, three optimization problems are considered over an asymmetric network,

represented by a weighted directed graph. In the first problem, it is desired to maximize

the generalized algebraic connectivity (GAC) while satisfying certain constraints on the

transmission power of the network and that of each node. The second problem is to

minimize the total transmission power of the network while imposing a constraint on

the GAC of the network as well as constraints on the transmission power levels. The

third one is the problem of network lifetime maximization subject to constraints on the

GAC and the power levels is considered. Due to the complexity of the aforementioned

problems, they are solved numerically via the interior point method, transforming the

constrained optimization problems into sequential unconstrained problems. The sub-

gradient method with backtracking line search is adopted to solve each interior point

subproblem. To implement this approach in a distributed manner, certain modifications

are made to the centralized algorithm, e.g., a finite-time algorithm is used to obtain the

exact GAC in a distributed manner, and the backtracking algorithm is approximated in

order not to require the GAC estimation in determining the step size. It is proved ana-

lytically that the proposed distributed algorithm converges to a local or global optimum.
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Efficacy of the proposed method is verified by numerical simulations. It is observed that

the errors between the optimal solutions obtained via the proposed algorithm and the

fmincon function of MATLAB R© are all less than 1%. As a counter-intuitive result, it was

observed that in order to increase the network GAC, the transmission powers associated

with certain communication links had to be decreased. Additionally, it was observed

that in order to increase the network lifetime, certain transmission powers had to be

increased.

In this work, it was assumed that the network is structurally static, and that the

GAC is observable to nodes. As a future work, one can incorporate the requirements

for observability of the GAC in the optimization problems. This enables one to add or

remove communication links while preserving the GAC observability from each node.

Additionally, considering a dynamic nonlinear behavior for the battery depletion of the

nodes would be another contribution to the current study. Finally, a more general

approximate backtracking algorithm, suitable for all applications, could be developed.
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Chapter 5

Conclusions and Future Work

In this thesis, three different problems concerning proper power management are in-

vestigated over asymmetric networks represented by weighted directed graphs. In all

the problems, the notion of the generalized algebraic connectivity (GAC) is used as the

network connectivity measure and is formulated as an implicit function of the nodes’

transmission powers. Lifetime of the network is also formulated as a function of nodes’

transmission powers and is defined as the minimum lifetime over all nodes. It is as-

sumed that the nodes deplete their battery linearly with respect to the transmission

powers used for communication with their neighbors.

In Chapter 2, it is desired to minimize the total transmission power of the network

while having constraints on the minimum acceptable connectivity level for the network

and the individual transmission powers. In this chapter, it is assumed that each node
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uses the same transmission power to communicate with its out-neighbor set. The interior

point method is used to transform the inequality-constrained optimization problem into

a sequential unconstrained problem. To solve each subproblem, the subgradient method

is used to obtain the search directions at each optimization iteration. Since the subgradi-

ent method may not necessarily produce a descent direction, this issue is addressed. The

backtracking line search is then used to obtain the step-sizes to move along the search

directions. Asymptotic convergence of the proposed algorithm is then demonstrated an-

alytically. An experimental underwater acoustic sensor network (UWASN) is considered

as an asymmetric network to verify the effectiveness of the proposed algorithm. The

results of the proposed algorithm are compared to the output of the fmincon function

of MATLAB R©, and it is seen that the maximum discrepancy between the elements of

the optimal transmission power vectors obtained via the two methods is less than 1%,

which is within the numerical error range.

In Chapter 3, the problem of network lifetime maximization with constraints on

the values of the transmission powers and minimum acceptable network connectivity

level is investigated. An additional constraint is added requiring the nodes to deplete all

their energies simultaneously,i.e., all the nodes will have the same lifetime. Given this

equality constraint, the mixed interior point-exterior point method is used to transform

the constrained optimization problem into a sequential unconstrained problem. Similar

to Chapter 2, the subgradient method with the backtracking line search is used again to
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solve the subproblems. Asymptotic convergence of the algorithm is shown analytically,

and its effectiveness is verified by simulations where the same network from Chapter 2 is

used again as an example of an asymmetric network. Since it is assumed in this chapter

that the edge set of the network may change, it is observed that certain communication

links have been removed from the initial set-up of the network. In general, it is seen that

the transmission powers have decreased to increase the lifetime of the network; however,

for certain communication links, the transmission powers have increased. This counter-

intuitive result can be attributed to the asymmetric nature of the considered network.

Given the obtained optimal transmission power matrix, lifetime of the network has

increased almost 50% compared to the initial set-up.

In Chapter 4, the problem of network connectivity maximization with constraints

on the total transmission power of the network and the individual node transmission

powers is considered along with the problems of Chapter 2 and Chapter 3, and a dis-

tributed approach is presented to numerically solve them. Note that the requirement

on nodes having the same lifetime in Chapter 3 is removed here to achieve a stream-

lined optimization algorithm using only the interior point algorithm. Using this method,

the inequality-constrained optimization problems are transformed into sequential uncon-

strained problems. To solve the subproblems, the subgradient method is implemented

in a distributed manner, and the estimation of global values such as the GAC values is

taken into account. An approximate backtracking line search is proposed which does not
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require the estimation of new GAC values to obtain the step-sizes. Asymptotic conver-

gence of the algorithm is demonstrated analytically, and its effectiveness is assessed by

means of numerical simulations. The errors between the optimal solutions obtained via

the proposed algorithm and those of the fmincon function of MATLAB R© are all less than

1%. It is observed that the obtained results for some nodes are counter-intuitive, e.g.,

to increase the GAC of the network, the transmission powers corresponding to certain

communication links have decreased.

5.1 Future Work

Considering that the distributed optimization algorithm presented in Chapter 4 is the

most significant result of this thesis and contains the material of Chapters 2 and 3,

the following are some suggestions to improve the results and to relax some of the

assumptions of the distributed method for future work:

• To be able to estimate the global values of the GAC using a distributed algorithm

such as [4] or [33], it is assumed that the eigenvalue corresponding to the GAC

is observable to the nodes. Since it is desired to preserve this property as the

optimization algorithm proceeds, it is also assumed that the network is structurally

static, i.e., if the GAC is observable initially, it will be so for the rest of the

optimization. For future work, one can incorporate the necessary observability

conditions mentioned in [34,35] in the considered optimization problems. This will
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allow the topology of the network to change to a certain degree while preserving

the GAC observability to the nodes.

• It is assumed in this thesis that the nodes deplete their batteries linearly with

respect to the transmission powers used for communication. However, in reality,

batteries have dynamic nonlinear behavior as discussed in [17]. The proposed dis-

tributed algorithm is not critically dependent on the considered battery model.

Nevertheless, considering a nonlinear battery behavior would be another contribu-

tion to the present work.

• The approximate backtracking line search presented in Chapter 4 requires knowl-

edge of the Lipschitz constant of the GAC function for the specific network topol-

ogy. Additionally, as explained in Remark 4.4, it may not be applicable to every

application. Even though the exact backtracking line search can be implemented

in a distributed manner at the expense of higher computational time but without

the issues of the approximate method, a more general approximate backtracking

algorithm which does not require the calculation of new global GAC values could

be developed for future work.
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