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ABSTRACT 

Conformation-activated metal binding and oxidation in native 

anoxygenic photosystems 

Ali Samaei 

In green plants oxygenic photosynthesis uses a manganese cluster to catalyze the oxidation 

of water molecule to molecular oxygen and protons. It is assumed that oxygenic photosynthetic 

organisms evolutionarily developed from their more ancient anoxygenic relatives. Until recently, 

the binding and utilization of manganese as a secondary electron donor in anoxygenic 

photosynthesis from Rhodobacter sphaeroides has only been achieved in genetically modified 

strains.  

In our current work we revealed that the binding is facilitated by light-induced 

conformational changes. The conformationally-activated electron transfer from manganese to the 

oxidized bacteriochlorophyll dimer was found to be 50 % faster than that of detected in the dark-

adapted conformation.  

In order to characterize the accessibility of the binding site, the local dielectric constant 

was altered by incorporating hydrophobic molecules, such as detergents to the vicinity metal 

binding site. Tuning the dielectric properties of the binding site by incorporating detergent 

molecules diminished the observed differences between the electron transfers in the dark- and 

light-adapted conformations.  
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The EPR spectra of Cu-BTP complex at various BTP concentration and pH values were 

recorded. As the concentration of BTP increased, new spectral features emerged in Cu2+ spectra, 

indicating that the water molecules coordinating Cu2+ in the hexa-aquo complex are replaced by 

BTP molecules, forming a Cu-BTP structure. The pH dependency of Cu-BTP complex was studied 

by monitoring the EPR spectra of the complex from pH values of 4.0 to 9.5, and the effect of 

deprotonation of amine groups of BTP on coordination of copper ions was observed.  
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ET Electron transfer 

R. sphaeroides Rhodobacter sphaeroides 

RC Reaction Center 

BRC Bacterial Reaction Center 

cyt c Cytochrome c (electron donor protein) 

cyt c2 Cytochrome c2 (BRC’s native secondary electron donor) 

WT Wild Type (native strain of R. sphaeroides) 

R − 26 Carotenoidless strain of R. sphaeroides 

BCh Bacteriochlorophyll 

BPheo Bacteriopheophytin 

UQ10 Ubiquinone Q10 (native quinone of the BRC) 

P Bacteriochlorophyll dimer cofactor of the BRC 

B Bacteriochlorophyll monomer cofactor of the BRC 

BA, BB Active B cofactor, inactive B cofactor 
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H Bacteriopheophytin cofactor of the BRC 

HA, HB Active H cofactor, inactive H cofactor 

Q Quinone cofactor of the BRC 

QA, QB Primary quinone, secondary quinone 

PDB Protein Data Bank (http://www.rcsb.org) 

LDAO Lauryldimethylamine N-oxide 

TX − 100 Triton X-100, or polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether 

BTP Bis Tris Propane, or 1,3-is(tris(hydroxymethyl)methylamino)propane 

Tris Tris(hydroxymethyl)aminomethane 

CAPS N-cyclohexyl-3-aminopropanesulfonic acid 

EDTA Ethylenediaminetetraacetic acid 

TEN Solution of Tris-HCl, EDTA, NaCl 

TL0.X E Dispersion of Tris-HCl, 0.X % LDAO, EDTA; where X varies from 0.03 to 0.1 

TL0.1 Dispersion of Tris-HCl, 0.1% LDAO 

UV Ultraviolet light 

VIS Visible light 

NIR Near infrared light 

KD Dissociation constant 

DAD 2,3,5,6-tetramethyl-p-phenylenediamine 
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Chapter 1 

 

Introduction 

 

 

 

 

1.1    Photosynthesis and its evolution from anoxygenic to oxygenic 

form 

 
Photosynthesis is the primary process of biological energy conversion, where light energy 

is converted into chemical energy that sustains life on earth. In Photosynthesis the inexhaustible 

solar energy is exploited to fix carbon from carbon dioxide and split water, generating simple 

sugars used as energy sources for the living organisms. Therefore sunlight is the ultimate energy 

source for all biological processes. Furthermore, all of our food is based on photosynthesis and 

also current fossil fuels, which play key role in our modern life are the products of photosynthetic 

activities from millions of years ago. Our oxygen rich atmosphere, which is important for 

metabolic process in all respiring life forms is the consequence of realising oxygen from 

photosynthesis for billions of years [1]. 
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Life began very early in Earth’s history in photosynthetic organisms (Figure 1.1) and even 

today’s life on Earth derives all its energy from this process. There are two types of photosynthesis: 

oxygenic and anoxygenic. Both oxygenic and anoxygenic organisms contain membrane bound 

protein-pigment complexes, photosystem II (PS II) and bacterial reaction center (BRC), 

respectively.  

Anoxygenic photosynthetic organisms had already existed for about a billion years before 

oxygen evolving photosynthesis was developed (Figure 1.1). The main difference between 

anoxygenic and oxygenic photosynthesis is that anoxygenic organisms convert light energy to 

glucose without releasing oxygen. These anoxygenic photoautotrophs are believed to be the first 

examples of self-sustaining life [2]. Therefore, the development of the ability to split water into 

molecular oxygen and protons could be described as a key moment in the evolution of life on 

Earth. Ultimately, the abundance of oxygen in the atmosphere of earth provided the optimum 

condition for the evolution of more advanced organisms capable of using aerobic respiration. 

In anoxygenic photosynthetic bacteria, BRCs are the pigment-protein complexes, which are 

responsible for the earliest steps in the energy conversion, while in oxygenic photosynthesis the 

PS II carries out the same process. 

The conversion of light energy into chemical energy in both BRCs and PS II trans-

membrane reaction centers is based on production of proton gradient across the membrane. PS II 

reaction center in algae, cyanobacteria and chloroplasts of green plants, is responsible to split water 

molecules into molecular oxygen, electrons, and protons, while in bacterial photosynthesis there 

is no oxygen in products, therefore the anoxygenic photosynthesis is used for this process [6]. 
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Figure 1.1 The biogeological clock of Earth. The complete history of the earth is shown in symbolic 

representation. Life began ~3.8 billion years ago and the primitive phototrophic anoxygenic bacteria 

appeared ~3.5 billion years ago. Evolution from anoxygenic to oxygenic form was occurred ~2.8 billion 

years ago in the Archaean oceans. Major development of the oxygenic atmosphere took place in another 

~800 million years by oxygen production of cyanobacteria. The abundance of oxygen in the atmosphere 

was led to diversity of organisms and development of complex form of life on earth. Figure taken from [3]. 

 

In PSII water and carbon dioxide are used as the electron donor and carbon source in the 

conversion of light energy into chemical energy, respectively, meanwhile sugars are synthesized 

and oxygen is released as a by-product (Figure 1.2).By using advanced X-ray crystallography, it 

has been shown that the two proteins have very similar structures [4]. 

Based on these similarities a polygenetic study has been established to probe the share of 

PSII and BRC with a common ancestor [5]. Although BRCs and PS II have structural and 
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functional similarities, the higher complexity of PS II is an obstacle to elucidate oxygenic 

photosynthesis in its finest details. 

The simpler BRC extracted from the anaerobically grown purple bacterium Rhodobacter 

(Rb.) sphaeroides is an excellent and simple model for studying biological energy conversion. 

Extensive research has been done in order to specify the characteristics of electron and proton 

transfer and conformational changes related to these processes in this pigment-protein complex 

[6,7,8,9]. 

 

Figure 1.2: Oxygenic photosynthetic process. Carbon dioxide and water by using the energy of light are 

converted to oxygen and glucose in plants and cyanobacteria. 

1.2     Structure of the photosynthetic reaction center  

1.2.1   Comparison of BRC and PSII structures  

X-ray crystallography has enabled the complete three-dimensional atomic structure of both 

the BRC and the PS II at a resolution of up to 1.9 Å [10,11]. The inner core of both PS II and the 
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BRC, are composed of multiple subunits with approximately 2-fold symmetry along a central axis 

normal to the membrane (see Figure 1.3). 

The BRC of Rb. sphaeroides is composed of ~800 amino acid residues arranged in three 

subunits with total mass of ~100 kDa (1Da = 1g/mol). The two main subunits, L (light) and M 

(medium) each contain five membrane-spanning α helices. The H (heavy) subunit consists of short 

beta sheets and an α -helix, capping the cytoplasmic side of the L and M subunits.  

The PSII has also two main subunits, D1 and D2 each contain five membrane-spanning α -helices 

and many other subunits surrounding its core. 

The cofactors of the two photosystems are also similar and follow the same 2-fold 

symmetry axis, with pairs along the two main subunits. In the BRC nine cofactors are arranged 

from the periplasmic surface to down (top to bottom in Figure 1.1), which includes a dimer of 

bacteriochlorophylls (P) composed of two bacteriochlorophylls crossing the center of the protein, 

followed by two bacteriochlorophyll monomers (BL and BM), two bacteriopheophytins (HL and 

HM), two ubiquinones, (QA) Primary quinone and (QB) secondary quinone, and a divalent non-

heme iron (Figure 1.3).  

While PS II is much more complex protein and contains over 20 subunits and ~100 

cofactors, it has a similar arrangement of cofactors with the bacteriochlorophylls (BChls) and 

bacteriopheophytins (BPheos) being replaced by chlorophylls and pheophytins, and having two 

plastoquinones, one non-heme iron and the oxygen evolving complex (OEC). The OEC is also 

located in this core, along the lumenal surface, near P (colored spheres in Figure 1.3B). The OEC 

is the site of water oxidation. It is comprised of four manganese (Mn) ions with varying oxidation 

states from +2 to +4, one divalent calcium (Ca2+) ion, five oxygen atoms and several water 

molecules that help bridge the complex (Figure 1.3). 
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Figure 1.3 Structures of the BRC and PS II. The arrangement of subunits in BRC: M (salmon), L (purple) 

and H (blue). 5 transmembrane helices span the L and M subunits and 1 transmembrane helix spans the H 

subunit. The nine cofactors are: BChl dimer, P (red), BChl monomers, B (blue), Bpheos, H (green), 

ubiquinones, Q (orange) and non-heme iron (gray). The axis of symmetry for the cofactors passes vertically 

through the plane of the paper from the dimer to the non-heme iron. The arrangement of PSII protein: the 

D1 (purple) and D2 (salmon) subunits is shown, both consisting of 5 transmembrane helices. These subunits 

show a strong homology with the L and M subunit of the BRC with differences mainly in the C and N 

termini regions. The chlorophylls and pheophytins are depicted in green, the plastoquinones in purple and 

the non-heme iron in light brown. The OEC is also depicted as spheres, and colored by atom: Mn (purple), 

O (red) and Ca (yellow). Atomic coordinates taken from PDB codes 4RCR and 3WU2 for BRC and PSII, 

respectively. 
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Figure 1.4:The oxygen-evolving complex and its surrounding residues. The complex is composed of 

four manganese ions, a calcium ion and several oxygen and water molecules (W1,..,W4) that bridge the 

complex. The manganese ions are utilised to store the electron equivalents. The chemical reaction of water 

splitting involves two water molecules transformed into molecular oxygen, four protons and four electrons 

in a four step process known as the Kok cycle. Figure taken from [12]. 

1.2.2   Electron transfer in the bacterial reaction center (BRC) 

The overall mechanism of light-induced electron transfer in both BRC and PSII have been 

studied in great detail since the mid 1970s. This charge transfer process occurs with the quantum 

yield of nearly unity, making it most efficient biological energy conversion process in nature.  

Based on extensive spectroscopic studies, it was determined that upon light excitation of BRC, P  

acts as primary electron donor[13-15], QA and QB are primary and secondary electron 

acceptors,[16,17] and BL and HL are intermediate acceptors. 

The charge transfer cycle of the BRC is illustrated in Figure 1.5. Absorption of photon 

excites primary electron donor, the bacteriochlorophyll dimer (P) to its electronic excited state. 

The electron sequentially is transferred to H of the L subunit (HA) with the aid of the nearby B 
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(BA) in ~3 ps. Then it is transferred to primary quinone (QA) molecule in the M subunit, in ~200 

ps, before transferring to final electron acceptor, the secondary quinone (QB) in the L subunit which 

takes place from 6 - 150 μs. 

 

Despite 2-fold symmetry in structure of BRC, QA and QB are in different dielectric 

environment, which lowers the energy level of QB relative to QA, thus allow electron transfer from 

QA
- to QB. 

The electron transfer occurs completely along the L branch and the BChl monomer and 

BPheo of the M subunit (the Left half side of the protein) don’t involve in the main photosynthetic 

process of the BRC, and likely serve as excitation quenchers, protecting overly excited RCs from 

prolonged exposure to the free radicals created from charge separation [18,19]. Electron transfer 

along the pigment cofactors of PS II follows a similar pathway, but with many more steps involved 

in the complete transfer.  

 
 

Figure 1.5: Light-induced electron transfer process in BRC. A: The light-induced electron transfer 

pathway. Upon light-excitation of the dimer the electron travels down in L branch sequentially from P to 

B, H, QA and QB. B: The free energy levels of various excited and charge-separated states formed in the 

electron transfer process, green arrows show the forward electron transfer while red arrows show the 

charge-recombination processes. The lifetimes of the forward (green) and reverse (red) reactions are 

presented.  
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In order to complete the cycle, the charge-separated state P+QB
‒ has to recover to the dark 

state PQB. In the BRC, the P+ is reduced by a secondary electron donor protein, Cytochrome c2 

(cyt c2) in 1-10μs [20]. Therefore the QB, can be reduced twice and during this process QB (accepts 

two protons from the cytoplasmic side to become quinol (QBH2). The overall electron transfer 

cycle is shown in Figure 1.6. 

 

 
 

Figure 1.6: Charge transfer cycle in photosynthetic BRC. Electron and proton transfer cycle between 

the BRC, cytochrome bc1 complex, and cytochrome c2 inside the native membrane. Figure from Axelrod 

et al [20]. 

 

The QBH2 is weakly bound to the QB binding site, and could be replaced by an oxidized 

quinone from the membrane’s quinone pool. Then it diffuses to another membrane pigment-

protein complex, the cytochrome bc1 complex. The QBH2 will be dissociated and oxidized by 

cytochrome bc1, and the cycle will continue by releasing its protons and electrons across membrane 
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to the periplasmic side. The generated proton gradient and electrons can be transferred by means 

of mobile electron carrier Cyt c2 to complete the whole cycle. 

In PS II the electron transfer process takes place in a similar way [21,22] (Figure 1.7). The light 

excites an electron on the special pair P680 and this process is followed by an electron transfer to 

the nearby pheophytin. The released electron is transferred to a plastoquinone in the QA site before 

arriving at the final electron acceptor, the plastoquinone at QB. Upon subsequent light excitation 

the QB is reduced again and this process is coupled by an uptake of two protons form quinol. 

Similarly to BRC the electron transfer process is unidirectional -along D1 branch- due to slight 

changes in the cofactor environment of PS II, which lowers the energy levels in the D1 branch as 

opposed to the D2 branch [21]. The exceptionally high oxidation potential of P680 (~1.2V) allows 

it to receive an electron from the nearby manganese cluster with the contribution of a tyrosine 

residue as an intermediate electron carrier [23]. The role of OEC is to extract four electrons from 

two water molecules, by splitting them into two oxygen molecules and four protons, which are 

released in the environment as by-products. 

By comparison of BRC and PS II electron transfer processes, the presence of the 

multivalent manganese ions in the OEC complex is the key to understanding the mechanism of 

water splitting. In fact, in order to reach evolutionary transition from an oxygenic to oxygenic 

photosynthesis, a redox interaction must have been occurred between manganese and an 

anoxygenic BRC.  

Actually we can emulate this evolutionary transition by studying possible interaction 

between manganese and anoxygenic photosynthetic reaction center in various conditions in order 

to develop and reproduce similar oxygen evolving cluster (OEC) to split water molecules to 

electrons and protons. 
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Figure 1.7: Arrangement of cofactors and charge transfer process in PS II. The PS II is composed four 

chlorophylls (two in the “special pair” PD1 and PD2 and two others ChlD1 and ChlD2), two pheophytins 

(PheoD1 and PheoD2), two quinones (QA and QB), a non-heme iron (Fe) and the OEC. The electron resulted 

by light excitation of P is transferred down to PheoD1, QA and finally QB in the D1 side. Figure taken from 

[24]. 
 

1.3   Interaction of cofactors upon charge separation in BRC 

revealed by optical spectroscopy  

 
Classically, light is considered to be a wave with an electric field component and a magnetic field 

component. In quantum mechanical view, light can be described as discrete particles or photons. 

The energy of these photons depends on wavelength (λ) through Planck’s law:  

𝐸 = ℎ𝑐/𝜆          (1.1) 

where the Planck’s constant h is 6.63×10-34 J.s. Atoms and molecules have discrete energy levels. 

The light could be either absorbed or emitted for photons with an energy that matches the energy 
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difference between occupied and unoccupied levels. The electron can absorb photons and get 

excited to higher energy levels if the energetic difference between ground and excited state 

(transition energy) matches with the energy of incident photon. Since the energy is a measurable 

characteristic of a transition, the spectrometer measures absorption as function of wavelength, 

therefore the optical spectra are often plotted as function of λ [76].  

Here in this study we used optical spectroscopy as a powerful tool to characterize the 

properties of the imbedded pigment molecules (bacteriochlorophylls, bacteriopheophytins and 

quinones) inside the specific protein environment. The electronic absorption spectrum of the BRC 

shows distinct features for each pigment due to differences in coordination and dielectric constants 

of their environment. (Figure 1.8 A) 

The π → π* electronic excitation due to great degree of conjugation in these molecules 

lowers their band gap and take them from ultraviolet (UV) spectral region to visible (VIS) and 

even to near infrared (NIR) regions [25]. The molecules have complex planar structures, each 

pigment possesses two dipole moments, QX and QY, along which electronic excitation can occur. 

The orientation of the QX transition dipole is in the plane of ring IV to ring II, and has 

absorption bands in the VIS region, at ~600 nm in bacteriochlorophylls and ~540 nm for 

bacteriopheophytins, while the QY transition moment lies in the plane of ring III to ring I and has 

absorption bands in the NIR region due to a greater degree of delocalization along this transition 

dipole (Figure 1.8B). 

In BRC the QY absorption bands in NIR regime are 865 nm for the bacteriochlorophyll 

dimer (P), ~800 nm for bacteriochlorophyll monomers (BL and BM) and 760 nm in 

bacteriopheophytins (HL and HM). 
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The bacteriochlorophyll dimer is composed of two halves of electronically coupled 

bacteriochlorophyll molecules, therefore due to its high degree of conjugation the absorption band 

falls into the highest wavelength at 865 nm. 

The Soret band due to porphyrin macrocycles has intense absorption below 400 nm, while 

the 280 nm band is characteristic to aromatic amino-acids such as tryptophans, tyrosines and 

phenylalanines, where the same π → π* transition requires higher energy hence the delocalization 

of the electron in a single phenyl group is significantly lower than in the condensed aromatic 

systems of tetrapyrrols. 

The fact that the absorption bands of the electronic transitions of the pigment molecules 

are sensitive to changes of their nearby protein environment such as the surrounding electric fields, 

optical spectroscopy is a useful technique to probe changes in the local electrostatics upon light 

excitation. 

Upon light excitation the charge-separated state, P+Q‒ quickly forms by transferring an 

electron from P to Q and a local electric field across the BRC is established. The internal electric 

field generated by the light-induced charge separation affects the cofactors and causes detectable 

changes in the absorption bands in the electronic absorption spectrum of the BRC. 
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Figure 1.8: Electronic absorption spectrum of the BRC and molecular origin of these absorptions. A: 

UV-VIS electronic abortion spectrum of BRC. In the NIR region of optical spectrum, the QY absorption 

band of dimer (P), two monomers (BL and BM), and two bacteriopheophytins (HL and HM) are around 865, 

800, and 760 nm, respectively. In the QX region bacteriochlorophylls (BChl) and bacteriopheophytins 

(Bpheo) absorb around 600 and 540 nm in VIS region, respectively. B: The structure of bacteriochlorophyll 

molecule. The bacteriochlorophyll is a tetrapyrrole macromolecule with a central magnesium atom at the 

center. Ring I has 2-acetyl and ring V has 9-keto carbonyl group. Dipole moments of QX and QY are between 

rings IV-II and rings III-I, respectively. Phy is a phytyl chain. 

 

 

The absorption bands of the pigments can be bleached, shifted, or broadened upon light 

excitation. Bleaching is due to the change in oxidation state of a species whereas shifts are due to 

the changes in the polarization and broadenings are due to changes in dipole moment (Figure 1.9) 

[26]. 
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Figure 1.9: Electrochromic absorption changes. A: Shows narrowing of an absorption band due to 

changes of permanent dipole moment of absorbing molecule. B: the shift of an absorption band 

due to a change in polarizability of the absorbing molecule or disappearance of the absorbing 

species. C: the bleaching of an absorption band due to a change in oxidation state. Grey, red and 

black traces represent initial spectra, final spectra, and difference spectra between initial and final 

states, respectively. 
 

The light-minus-dark difference spectrum, obtained by taking the difference between the 

light-induced spectrum and the dark spectrum, is useful tool to identify the subtle changes in the 

environment upon light excitation. This light-minus-dark spectrum can be decomposed into 

individual band components such as: a bleaching of the P band due to the formation of P+ 

(oxidation of dimer); an electrochromic shift of the monomer band due to the presence of the 

positive charge on P after charge separation; and a bathochromic shift in the bacteriopheophytin 

bands mainly due to the nearby negative charge on the quinone. The light-minus-dark difference 

spectrum associated with the charge-separated state is presented in Figure 1.10 A.  

The PQ-
 state could be established by presence of a secondary electron donor, if the positive 

charge on oxidized dimer is removed by its reduction. The specific components of the light-dark 

absorption spectra of PQ‒ state is shown in Figure 1.10 C. The remaining electric field due to the  
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Figure 1.10: Effect of charge separation on absorption bands of the BRC. A: NIR absolute absorption 

spectrum (dark-adapted) of the BRC is shown in gray, and the spectrum recorded during light excitation is 

colored black.  Light excitation causes the transfer of an electron from P to QB, or QA if no QB is present, 

(creating the P+Q‒state). Colored arrows indicate the specific changes of each pigment, the bleaching of the 

P band, the blue shift of the B band, and the red shift of the H band. B: the light-dark difference spectrum 

corresponding to the spectra shown in panel A without presence of any secondary electron donor. The 

spectrum is decomposed into the individual component of each band (dashed lines), with colors matching 

the arrows of panel A. C: The light-dark difference spectrum with presence of a secondary electron donor, 

the oxidized P+ is re-reduced to P state and only presence of Q state will affect the absorption bands.. The 

resulting light-dark spectrum is significantly different from P+Q‒ state, as it lacks the blue shift of B and the 

bleaching of the P band. 

 

Q‒ has a similar effect on the Qy absorption bands, though the P band is no longer bleached 

but it does have a small blue shift due to the charge on Q‒. While the red shift of the H band is 
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similar, the blue shift of the B band is absent, as the corresponding transition dipole is 

perpendicular to the ring of dipole moment. 

While the whole recovery of the P+Q‒ state takes place ~1-10 s in isolated BRCs (see Figure 

1.5) and occurs through charge recombination, the recovery of the PQ‒ state needs much longer 

time with a time constant of minutes because the reduced quinone has to find an electron acceptor 

from its surrounding in order to get rid of its charge.  

As already mentioned optical absorption spectroscopy is a powerful tool to probe the 

appearance and disappearance of certain species. The linear correlation between the intensity of 

absorbed light and the concentration is given by the Beer-Lambert law: 

𝐴(𝜆) = 𝜀(𝜆)𝑐𝑙            (1.2) 

where, A is the intensity of the absorption of light at a certain wavelength, c is the concentration 

of that species, ε is the extinction coefficient and l is the optical path length. Monitoring the kinetics 

of the absorption change at a characteristic wavelength is an effective method to explore reactions 

involving the pigments. In the present study the influence of metal ions on the absorption of the 

dimer was explored at 865 nm (Figure 1.11).  

As it can be seen before illumination the absorption of dimer is constant. When the 

saturating light is turned on without the presence of a secondary electron donor (Figure 1.11 green 

trace) the absorption at 865 nm drops as the P is oxidized and the P+ state is formed. Continuous 

illumination causes the protein to develop light-adapted conformational states. After light is turned 

off, a fraction of the protein that is in the dark-adapted conformation recovers instantaneously (blue 

trace). The fraction of the protein in the light-adapted conformations recovers at a slower pace (red 

trace) due to the stabilizing effect of the conformational changes on P+. 
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Figure 1.11: Schematic representation of kinetics of the light-induced absorption changes measured 

at Qy absorption band of P to identify different conformational states formed, during and after the 

illumination. Multiple components were identified in the kinetic traces. The green component is 

representative of the sudden change due to the formation of charge-separated state in the dark-adapted 

conformation. During prolonged saturating illumination light-induced conformational changes are occurred 

which can be assigned to orange constant part of the kinetics. When illumination is turned off, charge 

recombination from the dark-adapted conformation takes place very rapidly (~ 100 ms from QA and ~ 1 s 

from QB), which is represented by the blue part of the trace. The fraction of P+ that is recovering from the 

light-adapted state recovers on a longer time-scale (red part of the trace). Charge-recombination kinetics 

can have multiple components related to different light-adapted conformational states, but only one 

component was shown for simplicity (pink trace). 

 

1.4    Substitution of the natural membrane environment of the 

bacterial reaction center with detergent micelles 

 
BRC is a membrane protein and in natural membrane environment it is surrounded with a 

large hydrophobic region with many neighboring proteins and molecules. In Nature, different 

membranes are classified based on different combination of phospholipids, phosphatidylcholine 
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and other kinds of lipids. This variation in combination mostly depends on growth condition such 

as temperature or aerobic/semi-aerobic growth [27]. 

In order to study different characteristics of BRC’s, such as the energetics and kinetics of 

the electron and proton transfer it is necessary to isolate them from their natural membrane 

environment and substitute the membranes with simpler environment, for example with detergent 

micelles. This is also very crucial in optical spectroscopic techniques, as presence of surrounding 

molecules and complexes will strongly affect our measurements. 

In this study the natural environment of BRCs is replaced by a detergent environment. (see 

Figures 1.12) These detergent micelles form a belt like structure around hydrophobic region of 

BRCs [35]. This micellar belt around the hydrophobic region is consisting of a layer of single 

molecules with their hydrophobic chains, which are pointed towards the BRC and the polar 

headgroups pointed to the outer surface. Micelles and liposomes are able to incorporate several 

BRCs. (see Figures 1.12 and 1.13). 

The type and properties of the detergents also play key role on the function of the BRC 

[28,29]. For example, changes in hydrophobic thickness between the membrane substitute 

molecules and the BRC pigment, will alter the structure of both the BRC and nearby detergent 

molecules [30,31]. 

Several detergents are used as membrane substituents:  lauryldimethylamine-oxide (LDAO, 

zwitterionic at pH 7.0 and above) [32,33], Triton X-100 or polyethylene glycol p-(1,1,3,3-

tetramethylbutyl)-phenyl ether (TX-100, non-ionic), cetyltrimethylammonium bromide (CTAB, 

cationic), and deoxycholate (DOC, anionic). 

The ionic detergent micelles have net head-group charges that repel one another so the 

aggregation number (the number of molecules present in a micelle) is less than 100 in aqueous 
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solution. Aggregation numbers of LDAO, TX-100, CTAB, and DOC detergents are 70, 140, 61, 

and 5 respectively in solutions without presence of any salt [34].  

 

 

Figure 1.12: BRC in the natural membrane environment, in detergent micelles. After isolation of 

BRCs from natural membrane environment into membrane substituent detergent micelles, latter will form 

belt-like structure around the hydrophobic region of the BRC. The BRC’s hydrophilic and hydrophobic 

regions are represented as yellow and pale orange colors, respectively. The chemical structure of typical 

detergent molecule, LDAO is shown. Figure taken from Deshmukh,[36].  
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Figure 1.13: View of an RC with its detergent-phase ring. The color coding of the amino acid residues 

(from blue to red) according to the following hydrophobic scale are: blue, Phe, Met, lie, Leu, Val, Cys, Trp, 

Tyr; light blue, Ala, Gly, Thr, Ser; yellow. Pro, His, Gin, Asn; orange, Glu, Asp, Lys, Arg. The vertical 

axis of this picture is nearly parallel to the transmembrane axis of the molecule. This view shows that the 

detergent-phase ring is located exactly at the height of a more or less median region of subunits L and M, 

which appears completely devoid of polar and charged residues, and thus represents very likely the 

transmembrane region of the RC molecule. This detergent ring and the region of the detergent phase below 

which interacts with the H subunit belong to two different parallel detergent ring chains. Figure from Roth 

et al [35]. 

 

1.5   Light-induced conformational changes in BRC 

 

In a series of work our group has earlier identified that the light-induced conformational 

changes observed since the mid 1980s that responsible for the extended lifetime of the charge-
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separated state originate from the vicinity of P and not from the neighborhood of quinones [7-

9,68]. The structural changes were sensitive to the presence or absence of the carotenoid molecule 

next to the inactive bacteriochlorophyll monomer (BM) and the presence or absence of detergent 

or lipid molecules occupying this carotenoid binding site [9,8,68]. Briefly, the conformational 

changes involve the deprotonation of the M210 Tyr (Figure 1.14) that in turn depending on the 

conditions can either be H-bonded to the 2-acetyl group of PM or serve as a transient 6th ligand to 

the central Mg of PL. The delivery of the proton from M210 Tyr increases the local dielectric 

constant of the hydrophobic cavity of the region and resulting in the rotation of the 2-acetyl group 

of BM and up to ~80 mV decrease of the oxidation-reduction potential of P. Populating the 

carotenoid binding site with charged detergent molecules changed the electronic structure of P that 

could also be induced by the light-induced structural changes [8]. Binding of lipids and introducing 

hydrophobic mismatch the lifetime of the conformationally altered states could be extended to 

hours [64]. The structural changes could be prevented entirely if the delivery of the proton from 

M210 Tyr was blocked by introducing positively charged His residues nearby [7,9]. Interestingly, 

the manganese binding site that was discovered very recently also located at the immediate vicinity 

of BB and the carotenoid binding site [36]. This coincidence presents an opportunity to link the 

manganese binding with light induced conformational changes.  
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Figure 1.14: Structure of the bacteriochlorophyll dimer P. The residue with protonatable side chain Tyr 

M210, the bacteriochlorophyll monomer (BM) and the residues of carotenoid binding site are also shown. 

The following residues make up this site: Ser M119, Met M122, and Tyr M177. Coordinates were taken 

from PDB entry code: 4RCR. 

 

1.6    Metal binding sites in BRCs 

 

Transition metals bound to BRCs can facilitate or inhibit a number of reactions. Studying 

the effect of metal binding on kinetics of electron transfer and charge recombination can reveal 

details of function of reaction centers. Several metal binding sites were identified in BRCs and few 

are shown in Figure 1.15.  It has been reported that Zn2+ is able to bind RC with high affinity and 

can affect the rate of electron transfer from primary acceptor (QA) to secondary acceptor (QB) by 

changing the dynamics of protein [56,57]. It was shown that in addition of Zn2+, Cd2+ and Ni2+ are 

able to bind the surface-accessible region on H-subunit RC, which is defined as Site 4. Due to 

presence of metal in this binding site a significant reduction in the rate of proton transfer was 

observed by providing a barrier for proton entry internal proton transfer pathway [58-60].  
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A site homologous to the (OEC) binding site in photosystem II (Site 3) was designed by 

genetic modification, where the Met is replaced to Glu at M168 and Gly to Asp at M288 positions. 

These substitutions led to creation of additional hydrogen bonds between P and the surrounding 

protein, therefore the stability of the positive charge on P+ decreased and the P/P+  potential has 

been elevated by 60 - 125 mV for every single hydrogen bond. By these mutations the P/P+ 

potential of BRC was elevated from ~500 mV to up to~770 mV [37]. 

Fe2+ with dissociation constant ~1 µM in presence of sodium bicarbonate can bind to Site 

3 and reduce the oxidized dimer [61]. Bound Mn2+ at Site 3 could reduce P+ at pH 7.0 in presence 

of bicarbonate but at pH 9.0 presence of bicarbonate was not necessary for redox activity of Mn2+ 

[62]. The manganese in hexa-aquo complex forms a perfect octahedral complex six symmetrically 

arranged water molecules. Hence the Mn2+/Mn3+ midpoint potential in hexa-aquo complex is 1.2 

V, the substitution of one or two bicarbonate (HCO3)
‒ ions with water molecules, the potential of 

the manganese in such complexes can be lowered by ~300 mV and ~600 mV respectively [38,39]. 

By manganese coordination with bicarbonate and by elevating the pH the Mn2+/Mn3+ 

potential was lowered to ~620 mV which is below the P/P+ potential of mutants (modified BRCs) 

[38]. However, due to low binding affinity between manganese and modified BRC, the low yield 

ET between Mn2+ and P+ was observed [38]. In other study the amino acid residues with carboxylic 

acid groups were added, with total six mutations, allowed 1st order ET from Mn2+ and oxidized P 

of modified BRC [41].  

Metal binding Site 2, is located on the periplasmic surface of the BRC, where the natural 

secondary electron donor, cyt c2 binds to BRC. Metal binding Site 1 is totally different in nature 

from other metal binding sites, since it is not solvent accessible, and located in the hydrophobic 

cavity of BRC, at the inner opening of the carotenoid binding site. The binding of Mn2+ at two 

other different location, Site 1 and 2 was predicted and then confirmed experimentally [43]. The 
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light-induced conformational changes described in Section 1.5 above have been shown to be 

blocked by the presence of Mn2+ at Site 1 [36]. 

In another study the BRC was exposed to Hg2+, about 500 mercury ions binding to RC with 

low affinity ~50 mM-1 was observed. The high number of sites is due to that mercury only requires 

one ligand as opposed to Zn2+ Cd2+, Ni2+, and Mn2+ that require six ligands to form a restricted 

geometry dictated by the splitting of the d orbital energies. While the primary quinone was not 

perturbed upon mercury (II) presence, with low affinity the mercury (II) at binding site close to 

the secondary quinone caused inhibition of the interquinone electron transfer. Additionally the 

proton gate at the cytoplasmic site had the highest affinity for Hg2+ binding and blocked the proton 

uptake [63]. 
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Figure 1.15: Structural views of the BRC showing probable identified metal binding sites. Coloring 

of the cofactors is the same as in Figure 1.3. The first site is predicted to be in the hydrophobic cavity near 

the inactive bacteriochlorophyll (BM). The following residues make up this site: Ser M119, Met M122, and 

Tyr M177. In carotenoid-less strain (R-26) the LDAO molecule (cyan) have been observed to bind precisely 

to Site 1. The second site is on top of the dimer (P) at the periplasmic surface, where the natural electron 

donor, cyt c2 also binds. This site consists of Ser L158, Gly L161, Tyr L162, Gly L165, and Ser M190. 

Binding Site 3 is also on the periplasmic surface, designed by mutation at the site homologous to the (OEC) 

binding site in photosystem II. In M2 mutant metal ion at this site is coordinated by His M193, Glu M173 

and two genetically modified residues: Glu M168 and Asp M288. Metal binding Site 4 is on the surface of 

BRC, near Quinone (QA) binding site, and is consist of His H126, His H128 and Asp H124. Atomic 

coordinates taken from PDB code:1RG5 
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1.7    Research perspectives 

To mimic the incorporation of transition metals, such as manganese with ancient 

anoxygenic RCs in order to involve them in charge transfer is considered an evolutionary 

milestone that can help us to unravel possible obstacles, which ancient RCs would have had to 

overcome in an evolutionary process.  

Previous studies were based on two approaches to model this transition, either recreating 

changes in the native BRC that the high potential electron donors being able to reduce the P+ or 

trying to lower the oxidation potential of electron donors to the vicinity of the reduction/oxidation 

potential of P. 

1.7.1 Manganese as secondary electron donor in native BRCs 

The incorporation of manganese to serve as an electron source to native BRC is done by 

changing environmental factors such as coordination of manganese with other compounds. Upon 

using high concentration of bicarbonate to coordinate manganese, Mn2+/Mn3+ midpoint potential 

was lowered to ~ 520 mV. Although this potential still higher than unaltered P/P+ potential in 

native BRC, electron donation from Mn2+ to P+ was observed with very low yield [42].  

By spontaneous coordination of manganese with bis-tris propane the redox potential of manganese 

(II) to manganese (III) transition was lowered to ~ 400 mV at pH 9.4, below the P/P+ potential, 

and allowing the reduction of P+ by this complex with a rate that competes with the charge 

recombination reactions. 

Bis-tris propane (BTP), C11H26N2O6, is an organic molecule with six hydroxyl groups and 

two secondary amine groups placed symmetrically.(see Figure 1.16) It has a wide buffering range, 
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from 6 to 9.5 due to its two pKa values, 6.8 and 9.0.  Above pH 9 both amine groups of BTP are 

deprotonated, providing an additional ligand to coordinate manganese and lowering the manganese 

potential at high pH values. The maximum accessible pH for Mn-BTP complex is 9.4, which above 

this range the solution is not stable due to auto oxidation of Mn2+ to Mn3+ [48]. 

Additionally upon binding manganese to BRC, the P/P+ potential elevates from ~500 mV to ~600 

mV. Once the manganese incorporation is occurred, the electron transfer between Mn2+ and P+ 

takes place iteratively [43]. 

 

 

Figure 1.16: The molecular structure of bis-tris propane (BTP). There are two amine groups and six 

hydroxyl groups present in the molecule.  

 

1.7.2 Objectives 

The evolution from anoxygenic photosynthesis to oxygenic photosynthesis occurred by the 

incorporation of a transition metal complex by primitive photoautotrophs over 2.8 billion years 

ago. The development of this ability to split water molecules into molecular oxygen and proton 

and the harvesting of the resulting high-energy electrons had profound impact on life and earth.  
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Uncovering the details of this evolutionary transition is not only important in terms of 

enhancement of our knowledge about the history of life on earth, but it could also be used to design 

artificial energy converting device on the basis of oxygen producing photosystems. 

In order to achieve this goal the mechanism of metal binding and oxidation in BRC must be 

understood, then attempt to improve it. 

One of important step of this improvement is tuning the driving force for electron donation 

from manganese to oxidized dimer. The interaction of Mn2+ with BRC must be thermodynamically 

tuned by mapping energy levels of oxidation/reduction potential of manganese and oxidized dimer.  

On the other hand the binding of metals to BRC must be modified electrostatically, since 

interacting entities are in entirely different dielectric environment. The dielectric control of metal 

binding in addition to the well- electrostatic control, increases the affinity of binding and leads to 

electron donation with high yield.   

The organization of this thesis is as follows. The samples investigated and the 

techniques used to characterize them are described in Chapter 2. The data are included in 

Chapter 3. The analysis of the data is given in Chapter 4. The conclusions are summarized 

in Chapter 5. 
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Chapter 2 

 

Materials and Methods 

 

2.1 Growth of R. sphaeroides  bacterium 

Cell growth and purification of the BRCs from carotenoid-less strain R-26 and wild-type 

(WT) of Rb. sphaeroides were done according to the protocol outlined by Feher and Okamura 

[44]. The whole process involves preparing and sterilizing growth media, inoculation cells and 

finally photosynthetically growing bacteria. In first step the growth media was prepared with 4 g 

of casamino acid, 4 mL of growth factor (vitamin solution), 80 mL concentrated base, 40 mL 

potassium succinate solution, 80 mL phosphate buffer ( 1 M ), and 25 mL of ammonium sulfate. 

Then the volume was adjusted to 4 L. The media was then bottled in 1 L Pyrex bottles and the 

solution was autoclaved for 1 hour at 121 C, in a SV-12 scientific pre-vacuum sterilizer. Then the 

bottles cooled to room temperature before doing inoculation. The inoculations were performed by 

adding approximately 110 mL of fully grown bacteria stored from previous growths culture to the 

prepared media. To avoid any external contamination, all inoculations process was done on a 

sterilized bench near to electric burner in dark room.   
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Right after inoculation step the bottles were placed in chamber which is equipped with six 

60 W tungsten light bulbs and reflective siding and were kept in the dark for maximum 6 hours in 

order to consume the oxygen and promote the anaerobic metabolism of any oxygen in the media. 

After 6 hours the light bulbs were turned on and a thermometer was placed inside the chamber to 

control the temperature and prevent over heating the bottles. R. sphaeroides utilizes visible and 

near infra-red light and to fulfill this wide spectrum the incandescent lighting was chosen. Rb. 

sphaeroides was grown under anaerobic conditions in the presence of light for two days. 

Once the cells were completely grown, the bacteria suspension was centrifuged using 

Beckman J2-HS centrifuge with a JA-10 rotor at 7000 rpm, and 4 ◦C for 20 minutes. Then the 

supernatant was discarded, and the cells were collected, weighed, and stored at ̵20 ◦C. 

The solutions used for bacterial growth media are prepared as follows: 

 

Vitamin solution: The growth factor or vitamin solution was prepared by mixing 2 mg of biotin, 

50 mg of sodium bicarbonate, 100 mg of nicotinic acid, 50 mg of thiamine-hydrochloride, and 100 

mg of para amino benzoic acid in distilled water. The solution was boiled to dissolve all the 

ingredients and the final volume was adjusted to 100 ml. Once it is dissolved, the solution was 

autoclaved for 1 hour at 121 ºC ◦C, and cooled for storage. 

Concentrated Base: Concentrated base was prepared by mixing 12 g of potassium hydroxide and 

20 g of nitrilotriacetic acid in 1 L of distilled water. The solution was stirred with a magnetic stirrer 

for 20 minutes. This process leads to sediment and then only the supernatant was used. Then 58 g 

of magnesium sulfate heptahydrate, 6.8 g of calcium chloride dehydrate, 200 mg of ferrous sulfate 

heptahydrate, and 4 ml of ammonium molibdenate solution in the portion of 1 mL were added 

slowly, waiting for completely dissolving after each addition. All contents should be dissolved 
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before addition of the next. Finally the ‘metals 44’ solution was added, pH adjusted to 6.7 by using 

5 % m/v KOH at a rate of 2 mL per minute and the final volume was adjusted  to 2 L. 

Metals 44 solution: “Metals 44” solution was prepared by mixing 200 mg of 

ethylenediaminetetraacetic acid (EDTA), 1.1 g of zinc sulfate heptahydrate, 500 mg of ferrous iron 

sulfate heptahydrate, 150 mg of manganous sulfate monohydrate, 40 mg of cupric sulfate 

pentahydrate, 20 mg cobalt chloride, 12 mg of boric acid, and 150 μL of 6 N sulfuric acid in 

distilled water. The volume was adjusted to 100 mL. When the color of the solution turns from 

green to yellow it means the Metals 44 solution is properly prepared. The color of the solution will 

become amber weeks later. 

Potassium succinate solution with 20 % concentration: 200 g of succinic acid was added to 250 

mL of distilled water. To dissolve these contents, in another beaker 200 g of potassium hydroxide 

was dissolved in 250 mL of distilled water and cooled. While the succinic acid beaker is in an ice 

water bath, the potassium hydroxide solution was added slowly. The final volume was adjusted to 

1 L with distilled water and final pH was brought to 6.8-7.0 by adding HCl. 

1 M Phosphate buffer: To prepare the 1 M phosphate buffer 274 g of dibasic potassium phosphate 

trihydrate was added to 1.2 L distilled water. Then 136 g of monobasic potassium phosphate in 

800 ml distilled water was dissolved and finally two solutions slowly combined. Final volume was 

made to 2 L at and the final pH adjusted of 7.0. 

10 % Ammonium sulphate: The ammonium sulfate solution with 10% concentration was 

prepared by dissolving 50 g ammonium sulfate in 500 ml of distilled water and the final pH was 

adjusted to 7.0. 

All the final solutions were stored at 4 °C. 
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2.2 BRC purification 

 

The BRCs were purified and dispersed in LDAO detergent micelles according to 

previously described standard procedure [45-47]. Briefly, 100 g of frozen cells were suspended in 

200 mL of distilled water and 2 mL of 1 M Tris buffer by stirring them for 1 hour, until a 

homogenized solution was attained. 

After this 2 ml of EDTA, 1.25 g sodium chloride (NaCl) salt and 1.7 ml of LDAO detergent 

were added. The mixture was sonicated in Mandel Scientific Company’s ultrasound processor 

(Model XL2020, Farmingdale, New York, USA) to lyse the cells. This was done in an ice bath to 

avoid excessive temperature for 40 minutes in intervals of 10 seconds on and 10 seconds off 

intervals. Once the cells are lysed all following steps should be done with limited light exposure 

because of photosensitivity of BRC. 

The final volume of sonicated dispersion solution was adjusted to 210 mL, which was filled 

in 8 polycarbonate tubes and centrifuged at 4 °C for 2 hours in Beckman Optima XL-100K 

ultracentrifuge (Fullerton, California, USA) with Ti-70 fixed angle rotor at 45 000 rpm. 

After the first centrifugation, pellets were collected inside dark room and re-suspended in 

205 ml of TEN buffer and 4.66 mL of LDAO.  TEN buffer contains 15 mM Tris-HCl, 1 mM 

EDTA, and 0.1 M NaCl. The solution was allowed to stir for 10 minutes at room temperature. 

Centrifugation of this solution was done again with same parameters as the above-mentioned 

ultracentrifuge procedure to solubilize BRCs in detergent micelles.  

Crude BRCs in detergent micelles were now in the supernatant .In order to isolation of 

crude BRCs, for 220 ml of supernatant 72 g of ammonium sulfate and 7.3 ml of 30% LDAO were 

used. The mixture was left to stir for 15 minutes at room temperature and then centrifuged in the 

Beckman J2-HS centrifuge with a JA-17 rotor at 10,000 rpm (10 000 g’s) and 4 ◦C for 15 minutes. 
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The obtained solution which contains BRC micelles were re-suspended in TEN buffer and dialysed 

overnight to remove the ammonium sulphate in 15 mM Tris-HCl, 0.1% LDAO, and 1 mM EDTA 

(TL0.1E). The BRC micelles were poured in dialysis membranes with a molecular weight cut off 

(MWCO) of 12-14 kDa and after clipping both sides was floated inside slowly stirring TL0.1E 

solution inside fridge at 4 °C in the dark. 

In order to further purify the BRCs to remove antenna complexes and free pigments, 

diethylaminoethyl (DEAE) ion exchange column chromatography was used. 

First the Toyopearl 650 M beads were first washed with TL0.1E buffer and then mixture 

loaded into column. After couple minutes the will lose TL0.1E   buffer and be packed due to 

gravity. To reach further equilibration at least 250 mL of TL0.1E was flowed through a peristaltic 

pump. Then BRC was loaded onto the column with the pump, where it promptly binds to the 

column material. 

Then column material was washed with TL0.1E (15 mM Tris-HCl, 0.1% LDAO, and 1 

mM EDTA) buffer until no more free pigment be detected in the column waste. To verify whether 

the free pigment was coming, optical spectrum of eluate was recorded every 10 minutes in 260 to 

1000 nm range. A linear salt gradient from 0.03 to 0.25 M NaCl was applied to the column.to elute 

the protein. 

As the BRCs are able to bind column beads with a different ionic strength than the other 

impurities, we can separate and purify BRC samples by collecting the column elute with an 

automatic fraction collector.  

The purity of the collected BRC protein with automatic fraction collector was checked 

spectroscopically by taking the ratio of the absorbance at 280 nm and 800 nm (A280/A800). This 

ratio theoretically should be 1.2 and in practice it was kept below 1.6. The reason is at 280 nm 

absorbance band aromatic amino acids have absorbance 1.2 times of the bacteriochlorophyll 
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monomer at 800 nm. In order to have pure BRC, the ratio of amplitude of absorption bands of 

bacteriochlorophyll dimer, Bacteriochlorophyll monomer and bacteriopheophytin should be 1:2:1.  

After the column chromatography step, the gathered fractions were pooled and dialyzed 

overnight to remove excess salt from the BRC protein. This step was done in similar manner as 

before with TL0.1E buffer. Afterwards the column material was washed with 1M NaCl and stored 

at 4 ◦C. 

The following day the purified BRC was further concentrated in order to easy use and 

storage. This was done by using a millipore ultrafiltration unit having a nominal molecular weight 

limit (NMWL) of 30 kDa under 5 psi of nitrogen. 

The concentration of BRC protein was measured with optical absorption spectroscopy by 

determining absorption at 800 nm where it has extinction coefficient of 288 mM-1 cm-1 [47]. 

Purified BRC were concentrated to approximately 100 μM and then stored in black tubes at -20 

°C. 

 

2.3 Sample preparation 

 

In all experiments the concentrated and frozen BRCs were thawed and diluted to 1 μM 

final concentration in different buffers immediately before the experiments. Different buffers were 

used depending on pH and used metal ions. In modified BRCs buffer solution prepared from 

distilled water by using 15 mM HEPES, 25 mM sodium bicarbonate, 0.05% Triton X-100 at pH 

7.0.  

For native BRC (R-26) the buffer contains 80 mM Bis Tris Propane (BTP) and 0.03 % 

LDAO at various pH values. These buffers were chosen as result of previous studies which 
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outlined the necessary conditions for binding of metal ions to modified BRCs and optimal ET from 

manganese to the BRC [48,36]. 

All sample preparation and experiments were done in the dark with only weak orange-

filtered light to avoid any BRC pre-illumination before experiment. 

Cupper and manganese solutions were prepared from copper (II) sulfate and manganese(II) 

acetate, >98 % pure, from Sigma Aldrich,. These were dissolved in the buffer at 1 M concentration 

and vortexed until they completely dissolved. The copper sulfate solutions were prepared at 1 M 

concentration the pH dropped to ~ 3.8. In order to adjust the pH the solution was diluted to 10 mM 

concentration. Manganese solutions were prepared fresh before experiment because Mn2+ needed 

for electron donation and it would auto-oxidize to Mn3+ under ambient conditions [48]. Therefore 

all samples with exposed manganese were measured no more than 2 hours after preparation. 

 

 

2.4 Biophysical characterization 

 

2.4.1 Optical absorption spectroscopy of BRCs in neutral and 

charge separated states 

 

Measurements of light-induced difference optical spectra and Steady-state kinetics were 

performed on a Cary 5000 UV-VIS-NIR spectrophotometer from Agilent (formerly Varian, 

Mulgrave, Victoria, Australia). In order to form light-induced states continuous and white light 

excitation was provided by a 1000 W mercury xenon arc lamp (Oriel 6140) powered by an Oriel 

8550-5 power supply, for high and low intensity experiments. 
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The light was delivered to assay samples through liquid-filled light guide which is coupled 

to the spectrophotometer. The used flux intensities were 0.5 W/cm2 as low intensity and 1.05 

W/cm2 as high intensity depending to experiment conditions. 

All measurements were done in 3 mL quartz cuvette. Kinetic measurements were 

performed at 865 nm with 1 nm spectral bandwidth and 0.033 s temporal resolution. Light-induced 

difference spectra were measured with following parameters:  

Scanning wavelength: 700-1000 nm 

Spectral bandwidth: 2 nm 

Spectral resolution: 1.1 nm 

Scanning rate: 2000 nm/min 

Spectra without BRC and excitation illumination were recorded to track the changes of 

cupper and sodium bicarbonate complex from 200 – 1000 nm at 2000 nm/min, with 1.1 nm spectral 

resolution and 2 nm spectral bandwidth. Baseline correction was done for all spectra measurements 

before measuring the spectra. 

2.4.2 Electron paramagnetic resonance spectroscopy 

2.4.2.1 EPR basic principles 

The Electronic paramagnetic resonance (EPR) spectroscopy is a technique to study 

materials with unpaired electrons such as free radicals, transition metals with odd number of 

electrons. Molecules with all pared electrons have no electron magnetic moment and have no EPR 

spectroscopic signatures. Electron has magnetic moment and spin quantum number s=1/2, with 

magnetic components ms=±1/2.In absence of any magnetic field there is no difference between the 
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energy levels of electron’s magnetic moments. However in presence of external magnetic field 

with strength B0, the electron’s magnetic moments align either parallel (ms=-1/2) or antiparallel 

(ms=+1/2) to the field, and the energy levels of them linearly increase (see Figure 2.1) due to 

Zeeman effect: 

𝐸 = 𝑚𝑠 𝑔𝑒𝜇𝐵𝐵0           (2.1) 

where the ge is the so called g-facor( for free electron ge=2.0023) and µB is Bohr magneton. The 

difference between the energy levels of upper and lower state is ∆E=geµBB0 for unpaired free 

electron, which ge and µB are constant. An unpaired electron can move between the two energy 

levels by either absorbing or emitting a photon of energy hυ such that the resonance condition 

∆E=hυ is obeyed. Generally the EPR measurements are made with microwaves in the 9–10 GHz 

region. The EPR spectra can be generated by either varying the photon frequency incident while 

the magnetic field is held constant or doing the reverse. In practice usually the frequency is kept 

fixed and magnetic field varies [77]. 

 

Figure 2.1: Scheme of splitting the energy levels of upper and lower state in presence of external 

magnetic field.  

 



39 

 

Upon increasing the external magnetic field the energy levels of upper and lower state is increased 

until it matches with the energy of the applied microwaves, as indicated by the double headed-

arrow in Figure 2.1. At this point the unpaired electrons can move between their two spin states. 

Due to the Maxwell–Boltzmann distribution more electrons are existed in lower energy state, net 

energy absorption occurs and this absorption is converted into a spectrum. In Figure 2.2 the upper 

spectrum shows the simulated absorption for a system of free electrons in a varying external 

magnetic field. However the first derivative of the absorption spectrum is the most common way 

to record and represent continuous wave EPR spectra [77]. 

 

Figure 2.2: The simulated absorbance and first derivate EPR spectrum for a system of free electrons 

in a varying magnetic field 

2.4.2.2 EPR spectrometer 

Measurements of Electronic paramagnetic resonance (EPR) spectroscopy were performed on an 

X-band MS-5000 Magnettech by Freiberg Instruments spectrometer at a microwave frequency of 

~9.41 GHz. Samples of ~300 μL were prepared at concentrations of 10 mM Mn2+ and Cu2+ in 

various concentrations of BTP between pH 4.0 and 9.4, in order to reveal the effect of BTP at 
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different pH regimes in Mn-BTP and Cu-BTP complexes. Similarly to sample preparation in 

Section 2.3, manganese and cupper solutions were prepared fresh before experiment. 

 

2.5 Data analysis 

2.5.1 Analysis of kinetic traces 

One of the main methods to determine the rate constant of manganese oxidation by BRC 

is monitoring the kinetics of light-induced changes at Qy absorption band of dimer at 865 nm. The 

studying of these changes due to formation of P+ and its recovery could reveal other features of 

BRC interaction with surrounding ions and molecules. 

This kinetics produced by continuous illumination were decomposed into 1 or 2 different 

exponential decays, associated to different processes, depending on the conditions being probed. 

The decomposition was done according to the following equation: 

 

𝐴(𝑡) = 𝐵𝑒𝑘1𝑡 + 𝐶𝑒𝑘2𝑡            (2.2) 

 

 

Where, 

A(t) ≡ total signal amplitude at any time t 

B, C ≡ amplitudes of the different decaying kinetic components 

t ≡ time 

k1, k2 ≡ rate constants of the decaying kinetic components 

The time constant, or lifetime is defined by τ = 1/k, the inverse of the respective rate constant (k)  
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2.5.2 Ligand binding 

The dissociation constants were determined for ligand binding by assuming equilibrium 

condition, 

𝑛𝐿 + 𝑠 ↔ 𝑛𝐿: 𝑆 

 

where, 

L ≡ the ligand (generally manganese or copper in our case) 

n ≡ the number of ligands active in the binding, 

S ≡ the substrate (generally R-26 BRC or modified BRC) 

nL : S ≡ substrate with bound ligand(s). 

 

 The binding equation based on this equilibrium is: 

 

𝐴 =
𝐵

1+(
𝐾𝐷
[𝐿]

)𝑛
        (2.3) 

Where, 

A ≡ the fraction of occupied binding sites; in our case this is generally the fraction of BRCs 

exhibiting reduction by manganese  

B ≡ total amplitude or maximum fraction of binding attainable 

KD ≡ dissociation constant of the binding 

[L] ≡ free ligand concentration; (generally Mn2+ or Cu2+ in our case) 
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2.5.3 Determination of proton dissociation constant 

The pH dependencies of the manganese oxidation were fitted with a Henderson-Hasselbach 

equation (2.3). The yielded fit used to explain pK shifts of the protonatable amine residues  of the 

BTP that are associated with the Mn2+ ions as ligands. 

𝑓(𝐻) =
1

1+10(𝑝𝐻−𝑝𝐾𝑎)                   (2.4) 

 

The Henderson-Hasselbach equation was extended to the involvement of two protonatable 

residues as following: 

 

𝑓(𝐻) =
1

1+102(𝑝𝐻−𝑝𝐾𝑎)                   (2.5) 

 

Where,  

f(H): fraction protonated  

pKa: acid dissociation constant for protonatable residues  
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Chapter 3 

 

Results 

 

 

 

As explained in Section 1.5 of the Introduction, BTP coordinated manganese ions at certain 

conditions are able to bind native BRCs and act as secondary electron donor. The Mn3+/ Mn2+ 

potential is pH dependent, and much remains unclear about the interaction between manganese 

ions and the BRC including; diffusion limits and accessibility of binding sites of BRC to 

manganese ions, and the rate of electron donation to oxidized dimer at different pHs.  

3.1.1 Reaction scheme for manganese oxidation by BRC 

As it has been shown the observed kinetics of oxidized dimer of BRC following flash light 

excitation is not the evidence for ET from Mn2+ to the dimer because the charge separated state 

does not provide enough life time for electron donation [43]. 

The reaction scheme of manganese and BRC complex can be expressed with the rate constants of 

each process as: 
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In order to determine the real ET rate constant between Mn2+ and P+ by monitoring 

absorbance changes at 865 nm, the effect of each reaction and its rate must be distinguished. As 

we see from the equation the Mn2+ oxidation reaction (kMn) and charge recombination (krecomb) are 

two opposite and competitive processes. The rate constant of electron transfer from Mn2+ to P+  

after generation of  charge separated state (P+Q‒) is only observable if its rate (kMn) is higher than 

that of the charge recombination (kMn > krecomb). 

Under saturating continuous illumination, when the rate constant of charge separated state 

creation kI is much higher than the rate of charge recombination (kI>>krecomb) the steady state 

approximation can be considered, and kMn can directly be measured. Additionally the rate of 

recovery of quinone should be much lower than the rate of manganese oxidation in the steady state 

approximation (kQ << kMn).  After electron donation from Mn2+ to P+, the Mn3+ is replaced by a 

fresh Mn2+ from nearby pool and new cycle can start again once Q‒ loses its electron. Saturating 

continuous illumination is dependent upon the light intensity and it was determined ~0.95 W/cm2, 

yielding maximum ET rate constants of 1.3 s-1 and 0.8 s-1 for R-26 and wild type (WT) BRCs, 

respectively [43]. In present work all the kinetics of P+ reduction in presence of manganese has 

been performed by 0.95 W/cm2 light intensity.  

 

3.1.2 Metal binding sites in bacterial reaction centers 

As explained in Section 1.5 of the introduction, many sites in RCs are identified as 

plausible candidate for metal ions binding but only two are within the distance of effective 

(3.1) 
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biological electron transfer. These two binding sites were predicted by ligand binding site 

modeling software (Q-SiteFinder, University of Leeds [49]) One of these sites (Site 1) is located 

at the inner opening of the carotenoid binding site, in a large cavity in the membrane-shielded 

region of the protein. The other (Site 2) is located on the periplasmic surface of the BRC at the 

approximate location of the docking site of the native electron donor, cytochrome c2 (cyt c2).The 

location of these two metal binding sites of the BRC are shown in Figure 3.1.  

  

 
 
Figure 3.1: Predicted metal binding sites of the R-26 BRC. BRC represented as semi-transparent surface. 

Binding sites are shown as bright pink regions. Coloring of the subunits and cofactors is the same as in 

Figure 1.1. Atomic coordinates taken from PDB code: 1PCR 

 

These two sites are located in different environment and have different binding 

characteristics. Carotenoid binding site or site 1 is like cavity inside hydrophobic region of 

membrane which ends to the cofactors of M-subunits. The direction of this cavity is in alignment 
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with the direction of Qy dipole moment of bacteriochlorophyll dimer (P) and monomer (B), 

therefore presence of any charged ions will affect the absorption bands of these dipoles.  

The electrochromic absorption changes at ~865 nm and ~800 nm both in the dark and upon 

illumination suggest that manganese is present at the hydrophobic site along the direction of the 

Qy transition dipoles of P and of BChlB [43]. The presence of bound manganese to site 2 was 

confirmed by using Dual Polarization Interferometer (DPI) [43]. 

The other binding site (Site 2) is located at periplasmic surface of the BRC, the site which 

the native electron donor cyt c2 binds there. As the distance between Site 2 and bacteriochlorophyll 

dimer is 13Å, the bounded manganese at this site has the potential to involve in redox activity with 

oxidized dimer.  

3.2 Effect of light-induced conformational changes on the 

accessibility of binding site to Mn2+ 

As explained in Section 3.1.2, the two predicted binding site of BRC have very different 

nature. The binding site1 is located at periplasmic surface located in region with very high 

dielectric constant and instantaneously is accessible to polar molecules and ions of solvent. On the 

other hand the binding site 2 at the hydrophobic cavity of BRC membrane region has very small 

dielectric constant and possibly has limited–diffusion accessibility due to its geometry. The affinity 

of these two binding sites to ions and polar complexes could be probed energetically as well. The 

energy of ion can be expressed as: 

𝐸𝑠 =
𝑞2

2𝐷𝑅𝑠
               (3.2) 
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which Es is the self-energy, q is the charge of  ion ze (which z is the number of charge, e is the 

elementary charge constant, 1.6 ×10-19 C), D is dielectric constant (D is equal to 4 εε0, ε0 is 

the electric constant also known as "the absolute permittivity of free space”, ε0= 8.85×10-12 

C2 m−2 N−1, ε is the dimensionless relative permittivity of the material in which the charges are 

immersed ), Rs is the Stocks radius (The Stokes radius or Stokes-Einstein radius of a solute is the 

radius of a hard sphere that diffuses at the same rate as that solute). It can be seen that the energy 

of ion, which charge is distributed in large molecule is smaller than a point charge. Also we know 

that the ε is small in hydrophobic region of the protein, therefore it is very difficult to bury a charge 

inside the membrane shielded region of the protein due to unfavorable energetic enhancement. The 

accessibility of binding sites to manganese electron donor was tested by addition of Mn2+ to BRC, 

allowing to incubate for various time and measuring the rate content of P+ reduction in certain 

times [50]. Although the experiment was not performed in optimum condition in terms of 

manganese concentration and light intensity, the diffusion rate of Mn2+ coordinated by BTP 

complex to binding site 1 was observed. The Fick’s first law relates the diffusive flux to the 

concentration under the assumption of steady-state conditions is expressed as:   

𝐽 = −𝐷∇𝑐               (3.3) 

Which J is the diffusion flux or diffusion rate (mole per unit area per unit time), D is the diffusion 

coefficient (area per unit time) and c is the concentration (mole) of diffusing substance (manganese 

in our case).  

In order to reveal the Mn2+ diffusion to binding site, the dependency of the kinetics of 

manganese oxidation by P+ was measured different times after metal addition in R-26 BRC with 

pre-illuminated and dark-adapted samples at various pH values. The dark-adapted samples were 

prepared by addition of manganese without any exposure to illumination. For pre-illuminated 
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samples the BRC was illuminated for one minute under saturating continuous illumination with 

0.95 W/cm2 intensity. The samples were allowed to recover (~10 minutes), and then Mn2+ from 

fresh solution was added. 

The kinetics of P+ reduction and the rate constants of these kinetics as function of 

manganese incubation time for pre-illuminated and dark-adapted samples in various pH is shown 

in Figure 3.2 and 3.3, respectively. It can be seen that in each probed pH the rate constants of ET 

from Mn2+ to P+ are increased with increasing Mn2+ incubation time. Since the Mn2+/Mn3+ 

potential is pH dependent, as it was expected the rate constants were found to decrease by lowering 

the pH. The considerable increase in ET rate constants by manganese incubation time confirms the 

diffusion-limited accessibility of the buried binding site to the hydrophilic manganese ions. 

First, we hypothesise that since at pH 9.4 the rate constants of ET from Mn2+ to BRC is so 

high only the manganese at binding site 1 is involved in ET process, but at low pH the contribution 

of manganese at periplasmic binding site could be detectable. Being at the surface binding site 2 

is instantaneously accessible for Mn2+ ions, therefore a constant component should be observed in 

decomposition of kinetic traces. While the kinetics of P+ reduction in presence of manganese for 

both pre-illuminated and dark adapted samples in all pH ranges were well fitted with single 

exponential function, the probability of any redox activity of Mn2+ at site 2 was rejected. 

For pre-illuminated BRCs the rate constant increased by 57 % to a maximum rate of 1.2 s-

1, and increased by 82% to maximum of 0.85 s-1 for dark-adapted BRCs at pH 9.4. The role of 

Mn2+ incubation time on the enhancement of rate constants was highlighted by lowering the pH. 

For example, at pH 8.4 the rate constant increased by 316 % and 180 % to a maximum of 0.25 s-1 

and 0.1 s-1 for pre-illuminated and dark-adapted BRCs, respectively. The rise in rate constant with 

manganese incubation time took ~20 minutes to reach saturation for pre-illuminated samples, 

while dark-adapted samples needed ~60 minutes. 
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The insufficient dependency on Mn2+ incubation time and large rate constants to attain 

the saturation condition for pre-illuminated samples suggest that light-induced conformational 

changes of BRC increase the accessibility of manganese ions to binding site. 

 

Figure 3.2: Electron transfer from Mn2+ to P+ in light-adapted conformation of the BRC at different 

pH values. A: Representative traces of P+ recovery kinetics soon after manganese addition (purple traces), 

and 40 minutes after manganese addition (green traces) in various pHs. B: rate constants as a function of 

Mn2+ incubation time for pH 8.4 to 9.4. Solid lines represent exponential fits to the increasing rate constant 

with time. Conditions: 1 μM R-26 in 0.03 % LDAO, 80 mM BTP 30 mM Mn2+ at various pH. Continuous 

illumination excitation of 0.95 W/cm2 with xenon lamp. Pre-illuminated BRCs were prepared by exposure 

of the samples to 0.95 W/cm2 continuous illuminations for 1 minute, 15 minutes prior to manganese 

addition.  
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Figure 3.3: Electron transfer from Mn2+ to P+ in dark-adapted conformation of the BRC at different 

pH values. A: Representative traces of P+ recovery kinetics soon after manganese addition (pink 

traces), and 40 minutes after manganese addition (blue traces) in various pHs. B: rate constants as 

a function of Mn2+ incubation time for pH 8.4 to 9.4. Solid lines represent exponential fits to the 

increasing rate constant with time. Conditions as for Figure 3.2. 

 

Under strong continuous illumination that corresponds to a quasi-equilibrium condition the 

rate of manganese oxidation in wild type (WT) BRC which contains carotenoid near binding Site 

1 is reported 0.8 s-1, which is similar to the value observed in dark-adapted R-26 BRC [43].  
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3.3 Effect of LDAO molecule on the accessibility of binding site to 

Mn2+ 

It has been reported that many molecule with different dielectric properties are present 

inside the hydrophobic cavity of the BRC, such as water, glycerol, lipids and detergents [7,51]. 

Presence or absence of these molecules can be used as a useful method to probe various aspects of 

manganese ions binding to BRC and their function as a secondary electron donor to P+. 

In order to identify the influence of changes in dielectric constant of metal binding site of 

BRC on the accessibility of binding site to manganese ions, LDAO molecule was chosen to probe 

the cavity. The kinetics of the absorption changes at 865 nm in the presence of manganese in R-

26 BRC were reported 1.3 and 0.6 s-1 at low (0.03%) and high LDAO (1%) concentrations [43]. 

High LDAO concentration in wild type (WT) BRC did not cause any further change in the rate of 

manganese oxidation, since the carotenoid is present in the cavity near the metal binding site. 

Upon finding evidence of LDAO molecule affecting the rate of ET from Mn2+ to oxidized 

dimer, the effect of excess of this molecule on accessibility of binding site of BRC to Mn2+ ions 

was probed by performing a manganese incubation while the reduction of P+ under sub-saturating 

continuous illumination was monitored. The result of rate constant of manganese oxidation as 

function of manganese incubation time in pre-illuminated and dark-adapted BRC in high and low 

LDAO concentrations at pH 9.4 and 8.4 is shown in Figure 3.4. 

While in agreement with previous studies the ET rate constants at both pH 9.4 and 8.4 were 

dropped upon addition of high LDAO in pre-illuminated BRC, dark-adapted BRC was particularly 

interesting because excess of LDAO increased the ET rate constants. A huge effect from presence 

of LDAO molecules at high concentration on the rate constant of Mn2+ incubation was observed 
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for pre-illuminated samples, which was decreased from 13 s-2 to 3.5 s-2 and 27 s-2 to 4.5 s-2 at pH 

9.4 and 8.4, respectively. 

 

Figure 3.4: Influence of excess of LDAO molecules on accessibility of manganese ions to metal binding 

site of BRC. The rate constants of electron donation from Mn2+ to P+ as a function of Mn2+ 

incubation time is shown for pH 8.4 and 9.4. Solid and dashed lines represent exponential fits to 

the increasing rate constant with time for low and high LDAO concentration. Red and black 

symbols represent pre-illuminated and dark-adapted R-26 samples, respectively, while open 

circles and diamonds represent high LDAO concentration, closed circles and diamonds represent 

low LDAO concentration. Conditions as for Figure 3.2, except 0.03% and 1% LDAO were chosen 

as low and high concentration. 
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For dark-adapted BRCs elevated LDAO concentration did not cause any further changes 

in the rate constant of Mn2+ incubation, since 4.6 s-2 , 4.5 s-2  at pH 8.4 and 2.4 s-2 , 2.5 s-2 at pH 

9.4 were observed with low and high LDAO concentrations, respectively. As it was shown in 

section 1.4 the LDAO molecule is composed a hydrocarbon chain and a charged headgroup due 

to presence of negative and positive charges of oxygen and nitrogen, respectively. Presence of 

charged complexes can alter the dielectric constant of the environment which complex is 

immersed, and can increase the hydrophilic property of the membrane-shielded region of the 

protein. As explained in Section 1.5 Introduction the structural changes are sensitive to the 

presence or absence of detergent or lipid molecules occupying this carotenoid binding site next to 

the inactive bacteriochlorophyll monomer (BM). These light induced structural changes take place 

by deprotonation of the M210 Tyr, and resulting in the rotation of the 2-acetyl group of BM. 

Therefore due to presence of LDAO molecule the rotation of the 2-acetyl group of BM could be 

restricted, and light-induced conformational changes are not able to provide the optimum 

conditions for manganese ions to access deep into cavity binding site. 
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3.4 Decomposition of manganese oxidation kinetics: first and second 

order reactions 

With the evidence of diffusion of redox active manganese to Site 1, we next characterized 

the kinetics manganese oxidation as function of manganese concentration in Mn-BRC system. 

This was accomplished by probing the strong saturating continuous light-induced kinetics of P+ 

reduction by Mn2+ in various manganese concentrations.  

 

Figure 3.5: Evidence of first and second order reactions in manganese oxidation. A: The kinetics of 

continuous light-induced manganese oxidation from R-26 BRC at low and high concentration of 

Mn2+. B: rate constants of fast (closed circles) and slow (open circles) kinetic components of Mn2+ 

oxidation as function of manganese concentration. C: relative amplitudes of fast and slow kinetics 

component. Solid line represent fitting to binding equation (2.3) for two Mn2+ ligands, yielding KD  

of 6.6 mM. Conditions: 1 μM R-26 in 0.03 % LDAO, 80 mM BTP, pH 9.4 and varying 

concentration of Mn2+. Continuous illumination excitation of 0.95 W/cm2 with xenon lamp. 
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A titration of Mn2+ was performed while monitoring the continuous light-induced kinetics 

in R-26 BRC. This experiment allowed us to observe second order rate constant of P+ reduction at 

low Mn2+ concentration, which is assigned to be a collisional process and a first-order kinetics 

observed at high manganese concentration where the strong binding is established. The results can 

be seen in Figure 3.5. The kinetics was found to be biphasic at intermediate concentrations, the 

fast component due to oxidation of bound Mn2+ to BRC, and the slower component due to 

oxidation of free Mn2+ ions.(see Figure 3.5 B) The amplitude of the slower component fell, in 

favor of the faster component, as the concentration of Mn2+ increased. The behaviour of amplitude 

of the fast component was fitted to binding equation (2.3) with two manganese ligands, yielding 

KD of 6.6 mM. The rate constant of fast component in the presence of 30 mM Mn2+ was 1.2 s-1 and 

was kept constant for lower Mn2+ concentration. Below 2 mM Mn2+ concentration the relative 

amplitude of the fast component is less than 5%, therefore its contribution could not be measured 

accurately.  The rate of slow component was elevated by the presence of 0.5 mM Mn2+ from 0.1 s-

1 to 0.75 s-1 at 10 mM Mn2+concentration.  

 

 
Figure 3.6: Simplified mechanism of Mn2+ ions interaction with BRC. At low manganese 

concentration, Mn2+ ions are unable to bind BRC. Upon addition of Mn2+ concentration, due to 

increasing of the driving force, Mn2+ ions diffuses to metal binding site of BRC, and Mn-BRC 

system forms. The ET from bound manganese and free manganese represent first order process, 

respectively.  

 

At low concentration of Mn2+, metal ions are in free state and rate constant of ET from 

Mn2+ to BRC was slow. The minimum concentration of 1 mM Mn2+ was needed to observe the 
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contribution of Mn2+ at bound state in ET process. As the concentration of Mn2+ increased, the 

population of Mn2+ in bound state raised, at maximum 30 mM Mn2+ concentration, the whole 

electron donation originates from Mn2+ at bound state. At 5 mM Mn2+ concentration, 

approximately 50 % of reaction centers are in bound state. In Figure 3.5 B, a linear relationship 

between the rate constants before saturation (below 5 mM) and the concentration of added Mn2+ 

was observed. This relationship indicates a second-order, collisional process and its measured rate 

constant is 3.5×102 M-1s-1. 

 

3.5 Effect of pH on manganese interaction with BRC 

3.5.1 Influence of pH on electron transfer from manganese to 

oxidized dimer 

Figure 3.7 A shows the pH dependency of Mn2+ oxidation rate constants as function of pH 

for both pre-illuminated and dark-adapted samples. As it can be seen the rate constant of ET from 

Mn2+ to P+ increases by increasing the pH of assay solution until to reach maximum rates at pH 

9.4. This observation is in line with previous results since the Mn2+/Mn3+ potential is ~400 mV at 

pH 9.4 and increases as the pH is lowered [43]. Also in Figure 3.7 A there is linear relation between 

rate constant of Mn2+ oxidation and pH. The steepness of lines shows 0.7 and 0.98 order of 

magnitude difference per pH in the rate constants in the light-induced and dark-adapted 

conformations, respectively.  
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Figure 3.7: Effect of pH on ET rate constants from Mn2+ to oxidized dimer and rate constants of 

manganese ions incubation. Red and black circles represent pre-illuminated and dark-adapted R-26 BRCs, 

respectively. A: Rate constants of electron transfer from Mn2+ to P+ during light excitation as function of 

pH. The linear dependence of ET rate on pH indicates second order diffusion-limited process. The steepness 

of lines shows 0.7 and 0.98 order of magnitude difference in rate constant per pH for pre-illuminated and 

dark-adapted BRCs, respectively. B: Rate constant of Mn2+ incubation as function of pH, indicating the rate 

of diffusion of Mn2+ to metal binding site of BRC. Conditions as for Figure 3.2. 

 

Also we found that the rates of increasing in ET rate constant to reach saturation state were 

strongly pH dependent. This change in rate of ET with respect to Mn2+ incubation time can be 

modeled by exponential function, and the rate constants of incubation are obtained. Figure 3.7 B 

shows the rate constants of Mn2+ incubation as function of pH for pre-illuminated and dark-adapted 

BRCs. While changes in rate constant of incubation for BRCs that are kept in the dark-adapted 

state were negligible, the pre-illuminated BRCs showed complex pH-dependence.t manner.  

Between pH 8.4 and 9.0 in dark-adapted BRCs the rate constants of incubation 

approximately are independent of pH, decreasing from 4.7 s-2 to 4.4 s-2, and slight drop was 

observed above pH 9.0, where the rates were 2.6 s-2 and 2.4 s-2 at pH 9.2 and 9.4, respectively. For 

pre-illuminated BRCs the maximum rate constant of incubation was observed at pH 8.4 and up to 
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pH 9 it had only a moderate dependence (nearly horizontal line in Figure 3.7 B), while above pH 

9 it showed stronger dependence.  

This pH dependence can be explained with the deprotonation of the second amino group 

of BTP molecule that can become available as an additional ligand to coordinate manganese. 

Similarly at this step the increased role of light-induced conformational changes on the 

accessibility of binding site to metal ions was observed. The manganese ions in pre-illuminated 

BRCs could reach to saturation rates ~5 and ~6 fold faster than in dark-adapted BRCs, below and 

above pH 9.0, respectively. 

Therefore this observation suggests that despite variation in pH, light-induced 

conformational changes cause the manganese ions to access optimum position in binding site in 

shorter timescale, even though the rate constant of electron donation from Mn2+ to BRC strongly 

depends to pH due to different Mn2+/Mn3+ potential.  

3.5.2 Influence of pH on reduction of oxidized dimer  

It has been reported that the coordination of Mn2+ ions by BTP is essential for manganese 

ions to serve as secondary electron donor to oxidized dimer of BRC [48]. The two protonable 

amine groups of BTP molecule appear to coordinate the manganese ions when the maximal 

electron transfer rate was observed. In aqueous solutionthe two pKa, values of BTP were reported 

to be 6.9 and 9.0, which were assigned to deprotonation of first and second amine groups of the 

molecule, respectively. Spectroscopic studies showed that at pH values below the first pKa there 

is no coordination of manganese ions by BTP. At pH values between the first and second pKa 

(semi-deprotonated region), the Mn-BTP complex was showed signatures of manganese ion 

coordination [43]. Above pH 9.0 further spectral features appeared that were assigned to 
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deprotonation of second amine group. Two coordinating BTP molecules per Mn2+ ion were 

identified [48,43]. 

In this study we determined the in situ pKa of Mn-BTP complex when in association with 

BRCs. We also explored the ability of Mn2+ ions to serve as secondary electron donor and reduce 

P+ under suboptimal conditions. The influence of pH on P+ reduction kinetics of R-26 BRC with 

presence of Mn-BTP complex using saturating continuous illumination was studied for both pre-

illuminated and dark-adapted samples. The samples were exposed to 1.5 minute illumination and 

steady state values of P+ prior to end of light excitation were recorded. Figure 3.8 A shows the 

kinetics of electron donation from Mn2+ to P+ at different pH values for pre-illuminated BRCs. 

The amount of P+ remained at the end of the illumination varies with pH: minimum is at pH above 

9.0 and increased by lowering the pH. The fraction of this residual P+ as function of pH is plotted 

in Figure 3.8 B and the data was fitted by using Henderson-Hasselbalch models involving 1 or 2 

protons. Assuming the involvement of two protons fits the data significantly better. The obtained 

pKa value is ~8.2 for both pre-illuminated and dark-adapted BRCs.  
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Figure 3.8: The effect of pH on the population of P+ during continuous illumination. A: representative 

kinetic traces of light induced absorption changes recorded at 865 nm at different pH. Only pre-illuminated 

BRC kinetic traces has been shown. The light was on for a period of 90 seconds with start at t=0. The 

formation and disappearance of P+ during continuous illumination is monitored at various pH values. B: 

The fraction of P+ available at 90 s illumination is plotted against pH, black and red circles represent dark-

adapted and pre-illuminated BRCs, respectively. Solid and dashed line represent fitting to Henderson-

Hasselbalch model with 2 H+/pH and 1 H+/pH, respectively.  Black and red curves for dark-adapted and 

pre-illuminated, respectively. The apparent pKa obtained was 8.2 ± 0.03 for both BRCs. Conditions: 1 μM 

R-26 BRC, 30 mM Mn2+ in 80 mM BTP, 0.03% LDAO. 

3.6 Spectroscopic signatures of dielectric tuning 

The product spectrum in the NIR region after the manganese ion donated an electron should 

have two contributions: The spectrum characteristic to the presence of a negative charge trapped 

on the quinone (PQ‒ state) and possible signatures of the presence of the Mn3+. The former is a 

spectrum containing a small blue shift of the dimer peak around 865 nm (with a peak at ~835 nm 

and a trough at ~885 nm) and a red shift of bacteriopheophytin peak around 760 nm (with a peak 
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at ~770 nm and a trough at ~745 nm). Both of these are due to charge-dipole interactions, namely 

the charge on the quinone interacting with the dipoles of the nearby Bpheo and the distant (24 Å) 

P. The differences in distance are consistent with the larger shift in the Bpheo-band than in the P-

band. If the oxidized Mn3+ is localized at the binding site, it is much closer to P (15 Å) than the 

quinone, therefore a stronger charge-dipole interaction is expected that can be monitored by a 

magnified shift on the P-band. The position of the Mn3+ must be sensitive to the presence or 

absence of carotenoid or LDAO molecule that was reported to interfere with the metal binding 

[50]. To understand the influence of LDAO molecules on accessibility of binding sites to 

manganese ions and their influence to modulate the conformational changes we monitored the 

recovery of the dimer shift relative to recovery of the electrochromic signals associated to the PQ‒ 

state in both low and high LDAO concentration.  

The peak-to-trough amplitude of two main spectral features of the PQ- state in R-26 strain, 

namely the blue shift of the dimer peak around 865 nm with a peak at ~835 nm and a trough at 

~885 nm) and the red shift of bacteriopheophytin peak around 760 nm (with a peak at ~770 nm 

and a trough at ~745 nm) after the first and second illumination is plotted as function of time at 

low LDAO concentration, in Figure 3.9. 

After the first illumination at pH 9.4 the electrochromic shifts recovered in 12 minutes with 

a rate constant of 410-3 s-1 with respect to Q‒ that recovered with a twice slower rate, 210-3 s-1. 

However, this was not found to be the case after the second illumination, as all spectral features of 

light-dark spectrum recovered with same rate constant of ~210-3 s-1 in ~15 minutes,  

This recovery kinetics corresponds to reaction scheme for manganese oxidation, which is 

described equation (3.1). The system starts with PQ:Mn2+ state and upon light excitation, 

manganese is oxidized. The oxidized manganese is being replaced by Mn2+ while the Q- recovers 
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to Q. Finally, the Mn2+ returns to same binding position and the system restores to PQ:Mn2+  state. 

This means that the recovery of PQ‒ to PQ state and replacement of oxidized Mn3+ with Mn2+ can 

occur in two different rates. 

The observed difference for earlier recovery of the electrochromic shift of P with respect 

to Q- state after first illumination does not necessarily mean that these spectral features are 

originated from different sources. It could, therefore, be possible that after first illumination the 

position of Mn3+ is not properly in line with the Qy dipole of P and as the quinone recovers to its 

neutral state, leaving the Mn3+ from effective arc of the dipole takes place faster than and recovery 

of reduced quinone.  

These PQ- spectra lack the large electrochromic shift of dimer because the BRCs were in 

the dark-adapted conformation before the addition of manganese. After first and second 

illuminations the BRCs are still predominantly in the dark-adapted conformation. The lack of pre-

illumination prevents manganese to occupy the most advantageous position. Pre-illumination prior 

to addition of manganese is mandatory to observe the highest electron transfer rate. Upon addition 

of manganese the subsequent illuminations will not help the BRCs to turn to conformationally 

altered state, and the manganese will occupy somewhere further away from P and no interaction 

with P is obvious from the spectrum (inserts in Figure 3.9). 
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Figure 3.9: Recovery of the light-induced spectral changes after first and second illumination in the 

presence of manganese at low LDAO concentration. The insert shows the light - dark difference spectra 

promptly after first and second illumination was stopped. The orange and red double head arrows show 

where the peak-trough amplitudes are measured. Open and closed circles represent first and second 

illumination, respectively, while red and orange symbols represent peak-to-trough amplitudes of the 865 

nm shift of the P band and the 757 nm shift of the Bpheo- band, respectively. Solid and dotted lines represent 

single exponentials yielding to rate constants at 865 nm and 757 nm, respectively: 410-3 s-1 and 210-3 s-1 

for first illumination, 2.210-3 s-1 and 2.310-3 s-1 for second illumination. Conditions as for the traces in 

Figure 3.2. 

 

We performed similar experiments in the presence of elevated LDAO concentration at pH 

9.4, 9.0 and 8.7 to monitor the influence of altered dielectric environment on the binding and 

oxidation of manganese. After the first illumination in all probed pHs, the peak-to-trough 

amplitudes of two main spectral features of PQ- state: the blue shift of the dimer peak around 865 

nm and red shift of bacteriopheophytin peak around 760 nm were observed.(Figure 3.10, panels 

A-C) While the peak-to-trough amplitudes of red shift of bacteriopheophytins did not changed 

upon addition of LDAO, its recovery time increased by ~2-fold at pH 9.4. Additionally the peak-

to-trough amplitudes blue shift of dimer around 865 nm is increased by 66% in presence of high 

LDAO. The main difference by addition of high LDAO concentration was that the recovery of 

blue shift of dimer. Similarly to low LDAO condition the blue shift of dimer was needed ~10 
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minutes to be fully recovered after first illumination. However, the change of dimer absorption 

band was not stopped at high LDAO condition, where the blue shift after recovery transformed to 

red shift. The amplitude of red shift of dimer increased until ~30 minutes and never fully recovered. 

In order to reveal the effect of pH on the binding and oxidation of manganese in altered 

dielectric environment, the similar experiments were performed at low pH values. The peak-to-

trough amplitudes of red shift of bacteriopheophytins and its recovery time did not changed upon 

lowering the pH. However, the blue shift of dimer recovered in ~5 and ~2 minutes at pH 9.0 and 

8.7, respectively and then transformed to red shift. Further increase in the amplitude of red shift of 

dimer was observed by 41% at pH 9.0 and nearly 3-fold at pH 8.7, where the red shift reached to 

maximum amount in ~10-15 minutes after illumination was stopped, and then recovered in ~40 

and ~80 minutes at pH 9.0 and 8.7, respectively. (Figure 3.10 B,C) 

The recovery of the electrochromic signals of PQ- state: namely the shift of the dimer peak 

and red shift of bacteriopheophytin peak after the first illumination at high LDAO concentration 

is fitted to single and double exponential functions, yielding to rate constants, which are shown in 

Table 3.1. It must be noted that during the course of observation the dimer shift observed after the 

first illumination changed sign at all three monitored pH values, namely the initial blue shifts 

(positive signals) were converted to red shifts (negative signals) reaching their maximum values 

10-20 minutes after the illumination seized, depending on pH. This is an indication of a de-

coupling between the diffusion of the oxidized Mn3+ from (characterized by k3 rate constant) and 

the diffusion of the fresh, reduced Mn2+ to the weak binding site (characterized by k4 rate constant).  

The extent of the reversal was increased as the pH was lowered indicating a weakening binding at 

lower pH values. This can only be interpreted if the bound LDAO  
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Figure 3.10: The recovery of peak-to-trough amplitude of two main spectral features of PQ- state 

after first and second illuminations in R-26 BRCs in the presence of manganese at high LDAO 

concentration. A, B, C: First illumination and D, E, F: second illumination at pH 9.4, 9.0 and 8.7, 

respectively. The inset shows the light-dark difference spectra promptly after illumination was stopped 

(blue traces), 10 minutes later (brown trace) and 20 minutes later (green trace). Open and closed circles 

represent first and second illumination, respectively, while red and orange symbols represent peak-to-

trough amplitudes of the 865 nm shift of the P band and the 760 nm shift of the H band, respectively. Solid 

lines represent fitted single or double exponential function. Conditions: 1 μM R-26 BRC in 1% LDAO, 80 

mM BTP, 30mM Mn2+ at various pHs. Continuous illumination excitation of 0.95 W/cm2  
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molecule also changes conformation upon illumination. After the second illumination the two 

monitored electrochromic signals recovered in similar rates and the reversal of the blue-shift of 

the P band was not observed, rather its amplitude has grown by 2-fold compared to that observed 

after the first illumination.(Figure 3.10 D,E and F panels) 

 

 

pH 

Red shift of Bpheo band at ~760 nm  Shift of P band at ~ 865 nm 

A1 k1 (s
-1) 

10-4 

A2 k2 (s
-1) 

10-3 

A3 k3 (s
-1) 

10-3 

A4 k4 (s
-1) 

10-4 

9.4 0.011 8.3 _ _ 0.007 1.6 _ _ 

9.0 0.010 10 0.002 6.4 0.016 3.4 -0.007 6.6 

8.7 0.004 3.5 0.007 3.4 0.021 0.28 -0.016 4.0 

Table 3.1: The relative amplitude and rate constants assigned to recovery of spectral features of 

PQ- state, red shift of bacteriopheophytin peak at 757 nm and the shift of dimer band at 865 nm 

after first light excitation, fitted to double exponential function at different pH. In the recovery of 

red shift of Bpheo band at ~760 nm, the fast and slow components were assigned to oxidation of 

from the secondary ( QA
-
 ) or the primary (QB

-
 ) reduced quinones, respectively. In the recovery of 

shift of P band at ~ 865 nm, the k3 and k4 rate constants were assigned to the diffusion of the 

oxidized Mn3+ and the diffusion of the fresh Mn2+ to binding site, respectively. 

 

The recovery of peak-to-trough amplitude of spectral features of PQ-  the shift of the dimer 

peak around 865 nm and red shift of bacteriopheophytin peak around 760 nm after second 

illumination at high LDAO concentration could be well fitted to single exponential function.(see 

Table 3.2). As it can be seen, similarly to low LDAO concentration, both spectral features of PQ- 

state after subsequent illumination decay with similar rate, which means they are coupled.  
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pH 

Red shift of Bpheo 

band at ~760 nm 

Shift of P band at 

~865 nm 

A1 k1 (s
-1) 

10-3 

A2 k2 (s
-1) 

10-3 

9.4 0.010 1.5 0.008 1.8 

9.0 0.011 3.1 0.013 5.0 

8.7 0.010 2.6 0.013 3.1 

Table 3.2: The relative amplitude and rate constants assigned to recovery of spectral features of PQ- state, 

red shift of bacteriopheophytin peak and the shift of dimer band after second light excitation, fitted to single 

exponential function at different pH. 

 

3.7 EPR data 

3.7.1 Replacing manganese with non-redox active metal 

It is shown here that by coordination of the manganese ion with BTP into a complex with 

much lower redox midpoint potential, the manganese ion was able to act as secondary electron 

donor to the native BRCs. Upon light excitation of Mn-BRC system, the oxidation is triggered and 

the resulting spectroscopic signatures are the combination of those of binding/unbinding and 

oxidation of manganese ions. In order to study exclusively the signatures of binding to BRCs, 

Cu(II) was chosen as a  suitable substitute for manganese as it is unable to undergo further 

oxidation, therefore any observed change in the Cu-BRC system could be interpreted as a signature 
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of binding. Coordination geometry of the copper ion is not as strict as it is for manganese and the 

change of coordination can be detected by EPR spectroscopy. Only limited distortion from the 

octahedral geometry is allowed when Mn(II) is coordinated by different ligands. As a 

consequences, the EPR spectra of the various mononuclear manganous complexes are very similar 

to each other (see Figure 3.11). Cu(II) can have many different coordination geometries ranging 

from octahedral in water to trigonal plane and tetrahedrally distorted square planar in type I and 

type II Cu-proteins, respectively [68]. The change of coordination geometry can be studied by EPR 

spectroscopy as the electronic structure of the coordinated Cu(II) can be correlated with the 

chemical composition. Additional benefit of exploring Cu coordination is that Cu(II) is the only 

transition metal ion besides iron that is involved in long-range electron transfer in proteins [68].   

 

Figure 3.11: The X-band EPR spectra of Mn-BTP complex at room temperature at different pH 

values. Condition: 10 mM Mn2+, 80 mM BTP, 0.03% LDAO at various pH values. Recorded at ~9.51 GHz. 
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3.7.2 Formation of the Cu-BTP complex 

As explained in Section 3.4, BTP has three protonable states, separated by pKa values of 

6.8 and 9.0 determined in aqueous solutions. It has been reported that BTP is able to coordinate 

transition metal ions with its hydroxyl and amine groups [57]. Reports of BTP coordinated Cu, 

however, describe synthetized complexes that are used in biologically incompatible solvents [69]. 

Here we recorded the EPR spectra of Cu-BTP complexes at various BTP concentration and pH 

values in order to gain information on the change of coordination geometry of Cu upon association 

with BTP. BTP-coordinated metal complexes recently have been synthetized to model metal 

complexes in electron transfer proteins [70].  

In the absence of BTP molecules, water molecules coordinate Cu2+ in the hexa-aquo 

complex involving six symmetrically arranged water molecules as ligands forming a perfect 

octahedral around the Cu2+ ion. The EPR signature of this complex was observed only at pH 4.0 a 

broad signal was observed, most likely due to the very short spin relaxation time in this complex. 

As the concentration of BTP increased, new spectral features were raised, indicating that the water 

molecules are replaced by BTP molecules, forming a Cu-BTP structure. In order to describe the 

coordination of Cu2+ ions with BTP molecules, the increment of the relative amplitude of the signal 

intensity at particular value of the magnetic field as a function of the added BTP was plotted. As 

it can be seen in Figure 3.12 this behavior followed the binding equation (2.3). Fit to this equation 

with two BTP ligands per metal, yielded KD values of 5.54 mM, 5.52 mM and 4.90 mM  at pH 

5.0, 7.0 and 9.0, respectively. While at pH 9.0 the data fitted well to binding equation with 2 

BTP/Cu2+ stoichiometry, at low pH the exact stoichiometry is not obvious. The observed pH 

dependency suggests that the coordination is changing as the amine groups successively 

deprotonate.  
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Figure 3.12: Change in coordination by addition of BTP to in hexa-aqua complex. Panels A, B and C 

represent the X band EPR spectra recorded at ~9.41 GHz of Cu-BTP complex at pH 5.0, 7.0 and 9.0, 

respectively. Dependence of the intensity of spectra on BTP concentration are shown in panels D to F.  The 

solid circles in red represent the relative intensity of the signal at the magnetic field, which is indicated in 

panels A, B, C as vertical red dashed lines. The dashed and solid lines are fit to the data using the binding 

equation (2.3) assuming 1 BTP/Cu2+ or 2 BTP/Cu2+, respectively .Condition: 10 mM Cu2+, 0.03% LDAO 

at various BTP concentrations.  
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3.7.3 The effect of change in pH on coordination of copper in Cu-

BTP complex as monitored by EPR 

In order to reveal the effect of deprotonation of amine groups of BTP on coordination of 

copper ions, the pH dependency of Cu-BTP complex was studied by monitoring the EPR spectra 

of the complex from pH values of 4.0 to 9.5 at a high BTP concentration. Upon increasing the pH 

two transitions could be identified. These transitions were attributed to the deprotonation of the 

two secondary amine groups. The shift of the third peak position from ~319 mT to ~322 mT due 

to changes in the hyperfine coupling constant (a sensitive parameter that reflects change in 

coordination) is plotted as function of pH in Figure 3.13. The data were fitted by using Henderson-

Hasselbalch model (equation 2.5). The obtained pKa values are 5.8 and 8.7 for Cu-BTP complex. 

These values represent 1.0 and 0.3 pH unit shifts from the reported aqueous pKa values of BTP. It 

can be seen that the steepness of the curve at low and high pH follows the deprotonation of one 

and two groups, respectively. This therefore suggests that at low and high pH, the Cu2+ is 

coordinated by one and two BTP molecules, respectively.  
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Figure 3.13: Change in coordination by deprotonation of amine groups in Cu-BTP complex. A: X 

band EPR spectra of Cu-BTP complex recorded at ~9.41 GHz at various pH. B: shift of third peak position 

from 319.1 mT to 321.7 mT.  Black curve represents fitting to Henderson-Hasselbach model with 1 H+/pH 

(equation 2.4) and 2 H+/pH (equation 2.5) at low and high pH, respectively. The apparent pKa values 

obtained were 5.8 and 8.7. Conditions: 10 mM Cu2+ in 0.5 M BTP, 0.03% LDAO.  
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3.7.4 Simulation of Cu-BTP complex EPR spectra 

The simulated spectra for Cu-BTP complex for low and high pH values show different 

configurations of the complex. The simulation of EPR spectra was done by EasySpin software and 

the simulated spectra and the fitted parameters, along with the observed spectra, are shown in 

Figure 3.14 and Table 3.3, respectively. The spread of the wings at lower magnetic fields in the 

simulations are not reproduces as it is an effect associated with the tumbling in the liquid state 

whereas the simulations are done in the solid state (rigid limit) [78]. 

 

Figure 3.14: The simulated EPR spectra of Cu-BTP complex at low and high pH. The solid black 

and green spectra represent experimental and simulated spectra, respectively. The simulation shows the 

spectrum in the rigid limit (solid state), whereas the experimental spectrum is in liquid state at room 

temperature. As a consequence the low field lines are smeared out due to the tumbling motion of the 

complex, not simulated in the rigid-limit simulation. 
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pH 4.0 9.5 

g(1) 2.1202 2.1274 

g(2) 2.1004 2.1085 

g(3) 2.1469 2.0585 

A(1) (MHz) 218.86 305.68 

A(2) (MHz) 145.87 215.13 

A(3) (MHz) 270 110.47 

g   2.1225 2.0981 

ε┴ 0.0093 0.0090 

εǁ 0.0114 -0.0188 

 

Table 3.3: The EPR parameters obtained from the simulated EPR spectra of Cu-BTP complex at 

low and high pH. The mean value of g , axial (ε┴) and longitudinal (εǁ) anisotropies are calculated by 

following equations: 𝑔̅ = (𝑔(1) + 𝑔(2) + 𝑔(3))/3 , 𝜀┴  = |𝑔(1) − 𝑔(2)|/ 𝑔̅ and 𝜀ǁ = (𝑔(3) − 𝑔̅)/ 𝑔̅ . 

 

 

The distortion of the Cu-BTP octahedron can be estimated by calculating the axial (ε┴) and 

longitudinal (εǁ) anisotropies as listed in Table 3.3. If the axial (ε┴) and longitudinal (εǁ) 

anisotropies are equal to zero, the geometry of the complex will be a symmetrical octahedron 

(Figure 3.15 A). In the present case the values of ε+ are ~0.9%, indicating only a small departure 

from the axial symmetry, whereas the values of εǁ indicate less than 2% elongation or compression 

along the z-axis. The positive and negative values of the longitudinal (εǁ) anisotropy indicate 

compression and elongation along the z-axis of octahedron, respectively (Figure 3.15 B, D). The 

value ε┴=0 shows the presence of square-planer geometry of the octahedron. From Table 3.3 the 

calculated axial (ε┴) anisotropy of Cu-BTP complex for both pH 4.0 and 9.5 are positive values, 
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indicating that the geometry of complex is distorted from square planer (Figure 3.15 C). 

Additionally the longitudinal (εǁ) anisotropy is positive at pH 4.0 and negative at pH 9.5, which 

indicates that the Cu-BTP complex has been compressed and elongated along the z-axis of the 

octahedron at low and high pH values, respectively. 

 

Figure 3.15: Plausible geometries for Cu-BTP complex. The perfect symmetrical octahedron is 

represented in panel A. The distortion from this symmetrical octahedron could occur as elongation (B), 

distortion of square plane (C) and compression (D). The arrows show the directions of the distortions. The 

location of the Cu(II) ion inside the octahedron is indicated as a blue solid circle. 
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Chapter 4 

 

Discussion 

 

 

 

In this work we extended the study of BTP coordinated metal binding and oxidation to 

involve broadened pH regime and dielectric tuning. Recently it was shown that upon spontaneous 

coordination of Mn2+ with hydroxyl and amine groups of bis-tris propane, the Mn2+ /Mn3+ midpoint 

potential was lowered to ~400 mV at pH 9.4, and allowed it to bind and serve as secondary electron 

donor to native BRC [43]. The rate of electron transfer from Mn2+ to P+ was successfully competed 

with charge recombination. 

This is particularly interesting as environmental factors were required to incorporate Mn2+ 

as secondary electron donor to native BRC, freeing the system from genetic modification. 

Additionally from evolutionarily point of view, this process serves as proof of alternative transition 

mechanism for the development of oxygen producing photosynthesis. 

We mapped the pH dependency of the diffusion of manganese ions to binding site. The 

influence of pH on the electron donation process highlights the importance of the deprotonated 

amine groups of BTP in the proper coordination of the complex. 
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In our current work we revealed that the binding is facilitated by light-induced conformational 

changes. In order to characterize the accessibility of the binding site, the local dielectric constant 

was altered by incorporating hydrophobic molecules, such as detergents to the vicinity metal 

binding site. 

4.1 Pre-illumination history influences the diffusion of Mn2+ to metal 

binding site 1 and its oxidation 

Photoactivation, namely subsequent illumination has been shown to be required for the 

photoassembly of the Oxygen Evolving Complex (OEC) in PSII [65]. The electron transfer form 

QA
- to QB in BRC has also been demonstrated to require structural changes [66]. In genetically 

modified BRCs, where tyrosine oxidation was enabled by highly elevated P/P+ potential and the 

introduction of Tyr residues to positions analogous to the redox active Tyr residues of PSII. The 

Tyr oxidation was also found dependent on the light-induced structural changes near P [40]. 

Here we found that both the rate of oxidation of the bound Mn2+ and its diffusion   to the 

proposed binding site were dependent upon the conformational state of the BRC (Figures. 3.2-

3.4). In the light-adapted conformation (induced by pre-illumination prior to addition of Mn2+) the 

rate of electron transfer was found to be 50% to 3-fold higher depending on the pH than in the 

dark-adapted conformation at the same pH value (Figures 3.2-3.4).  It is anticipated that the 

electron transfer rate from manganese to P+ decreases with decreasing pH. If one assumes change 

only in the driving force over the pH, generally one order of magnitude change of the rate constant 

is expected over one pH unit indicating the involvement of one proton that likely determines the 

oxidation potential of one of the reacting entities [55]. This would mean that the difference in mid-
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point potentials should be changing with a slope of ~60 mV/pH at room temperature [38]. This 

value corresponds to the pre-logarithmic term in the Nernst-equation at room temperature 

assuming the transfer of one electron.  The pH dependency of the P/P+ potential was reported to 

be very modest with a value of only ~6 mV/pH between pH 7.0 and 10 [67]. It should be noted, 

however, that this value was determined in the absence of any metal. Our group also found nearly 

identical potentials for the P/P+ potentials in the presence of Manganese at pH 8.0 and pH 9.4 

[48,43]. The modest pH dependence was interpreted by the electrostatic stabilization of P+ by the 

nearby amino acid side chains that deprotonate, and thus provide an accumulation of negative 

charges near P+. The pH dependence of the oxidation potential of Mn2+/Mn3+  in BRCs when 

coordinated with bicarbonate was reported to have a slope of -63 mV/pH in the same range 

between pH 7.0 and 10 [38]. There the manganese was not bound to the BRC, so the strong pH 

dependence is attributed to the lack of strong association and interaction between the manganese 

and the BRC.  Here the observed 0.9 order of magnitude/pH slope change of the rate constant in 

the dark-adapted BRCs (Figure 3.7 panel A) also indicates that there must not be a strong binding 

between manganese and the BRC. This slope is also indicative of the transfer of only one electron 

that must be electrostatically compensated by the loss of one proton, hence the difference of mid-

point potential should have a ~-60 mV/pH slope. Contrarily, in the light-adapted BRCs that were 

subjected to light-induced conformational changes before addition of manganese we only observed 

a -0.70 order of magnitude/pH slope in the pH dependence of the electron transfer from manganese 

to P+ (Figure 3.7 panel A). Since the P/P+ potential in the presence of Mn2+ in this pH regime is 

nearly independent of pH this dependence must be attributed to the elevation of the potential of 

Mn2+/Mn3+ as the pH was lowered. This pH dependency, however, is weaker than the one expected 

without association (1 order of magnitude/pH), thus binding to BRC electrostatically stabilizes the 

manganese cofactor.   
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The pH-dependence of the rate of diffusion to the active site is nearly pH independent in 

the dark-adapted BRCs and shows a two-phase dependence in the light-adapted BRCs (Figure 3.7 

panel B). The lack of strong pH dependence in the dark-adapted BRCs is consistent with the lack 

of strong interaction, whereas the two phases in the light-adapted BRCs can clearly be related to 

the two protonational states of BTP. Below pH ~9 in the semi-deprotonated form BTP provides 

weaker coordination to manganese and thus moderate dependence on pH is observed. Diffusion to 

the binding site slows down above pH 9.0 as the BTP loses another proton from its second amine 

group. 

As it was explained in Section 1.6 Introduction, light-induced conformational changes of 

the BRC, which have been shown to occur in the cavity of protein, near BB, precisely where the 

manganese binds to BRC. The light-induced conformational changes are consequence of 

deprotonation of M210 Tyr. The maximum influence of light-induced structural changes on 

increasing the local dielectric constant of the hydrophobic cavity of BRCs was observed at low pH 

values such as pH 6.0, since most of the residuals are still protonated [9]. At higher pH values the 

probability of deprotonation of amino acid side chains nearby P increases, therefore the effect of 

light-induced structural changes on increment of local dielectric constant decreases as the pH is 

raised. This in line with our observation that the effect of light-induced conformational changes 

on acceleration of Mn2+ diffusion to metal binding site of BRCs was decreased upon increasing 

the pH. At low pH the effect of pre-illumination on acceleration of Mn2+ diffusion to the binding 

site is pronounced, but the observed difference is diminished at higher pH values between the dark- 

and light-adapted conformations.  
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4.2 Two possible electron donating manganese  

We observed further evidence of diffusion of manganese to metal binding site of BRC 

when reaction centers were incorporated with various Mn2+ concentrations. The nearly ~2-fold 

difference in the observed ET rate from decomposition of kinetics manganese oxidation using 

continuous saturating illumination (Figure 3.5  panel B) clearly suggest two different reaction are 

taking place. The faster process observed in Figure 3.5 suggests a rapid, first-order kinetics from 

a bound Mn2+, while the slower process  can be attributed to a second-order reaction, where the 

electron donation is limited by the slow diffusion of the Mn2+ to and from the vicinity of P. 

At low concentration of manganese due to low driving force, manganese is unable to bind 

to proteins and Mn-BRC complex (bound Mn2+ to BRC) cannot be formed. The minimum 

concentration of ~2 mM manganese was needed to observe the initial evidence of manganese at 

bound state to BRC. It was particularly interesting that manganese ions even at free state were able 

to reduce oxidized dimer, but at slow rate. The slow component of rate constant linearly increased 

with concentration of added Mn2, indicating that the driving force of manganese diffusion to 

vicinity of P has been increased due to increased number of collision between Mn2+ and BRC. 

However, the relative amplitude of slow component slower component fell, in favor of the faster 

component, as the concentration of Mn2+ increased. The concentration of 5 mM manganese was 

enough to convert ~50% of BRCs to Mn-BRC complex. At high concentration of manganese, the 

faster ET from Mn2+ to P+ totally originates from bound manganese, indicating a rapid first order 

manganese oxidation process. 

The rate constant for ET from Mn2+ to P+ assuming originates from bound manganese to 

BRC is 1.22 s-1, leads to time constant of 0.81 s, which can  compete with wasteful P+QB
- charge 
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recombination with lifetime of ~1-10 s. This time constant for cyt c2 (natural secondary electron 

donor), ferrocene and 3,6-diaminodurene (DAD) are ~ 1 µs, ~250 µs and 1 ms, respectively [9].  

The association between Mn2+ and the BRC has been determined by assuming binding of two 

manganese ligand, leads to dissociation constant of 6.5 mM. This observation is in line with 

pervious study, which the dissociation constant of 6.5 mM was determined by monitoring flash-

induced kinetics of Mn-BRC system [43]. 

The second order rate constant for Mn2+ has been measured at 3.5×102 M-1s-1. The second 

order rate constant for Mn2+ with mutant BRC was reported 9×104 M-1s-1 [38]. Much faster second-

order rate constant was measured, 109 M-1s-1 for reduction of P+ by cyt c2  [58]. 

 

4.3 Influence of LDAO on tuning the local dielectric environment of 

metal binding site 1 

Besides prolonged illumination the conformation of the BRC near P can also be altered by 

selective use of detergent molecules. Two decades ago it was demonstrated that the use of 

sulfobetaine detergents, such as SB12 resulted in shifts the optical absorbance spectrum of P from 

865 nm to 850 nm in Rhodobacter sphearoides [71]. This shift was accompanied by the spin 

density ratio of P+ between PL and PM, namely the probability of the localization of the electron 

hole on either the L or M half of the dimer, to change from 2:1 ratio to 4:1 ratio [72]. This spin 

density change indicates that the bacteriochlorophyll dimer behaves more monomeric in the 

presence of these detergents. The molecular origin of these detergent-induced conformational 

changes were not identified that time but our group has recently found similar shifts in the 

absorption band of P in Rhodobacter capsulatus  (a very similar strain to Rhodobacter 
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sphaeroides) in the presence of LDAO detergent [8]. The spin density distribution and the position 

of the P band was systematically altered by the use of detergents with positive (CTAB, 

cetyltrimetylammonium-bromide), zwitterionic (LDAO) and negative (DOC, deoxycholate) 

headgroups. The detergent-induced conformational change was combined with light-induced 

conformational change to identify that the shift of the optical absorbance band of P was caused by 

the out of plane rotation of the 2-acetyl group of PL [8]. This shift did not influence the oxidation 

potential of P/P+ in the dark-adapted conformation but provided an additional ~70 mV drop in the 

potential in the light-adapted conformation on top of the ~80 mV drop detected in BRCs without 

the blue-shift of the P band. Here using BTP coordinated Mn as electron donor to BRC we found 

that the large blue-shift of the P band can only be seen upon the light-induced oxidation with 

manganese if the BRCs were in the light-adapted conformation ([43], Figure 3.10). This is 

consistent with the presence of an entity with an extra positive charge along the Qy transition 

moment of P, similarly to the presence of a detergent molecule with positive charges [71]. By 

increasing the LDAO concentration and thus, increasing the population of LDAO molecules in the 

vicinity of the binding site in the cavity (please see Figure 4.1 for reference) the shift of the P band 

can be increased as evidenced by the larger derivative signal in the optical spectra around 865 nm 

(Figure 3.10 panels D, E, and F inserts). High LDAO concentration, however, also means that the 

cavity must be shared by free Mn ions and LDAO molecules and the replacement of the oxidized 

Mn3+ to Mn2+ via diffusion became slower (Figure 3.10 panels A, B, and C). At low LDAO 

concentrations in both  dark- and light adapted conformations of the BRCs  the recovery of Q- 

(measured as the time dependent difference of the signals measured at 770 nm and 745 nm) was 

found to be the rate limiting step to make the BRC open again for a new photocycle [43]. Here at 

high LDAO concentration in the dark-adapted conformation the replacement of the oxidized Mn3+ 

with a fresh Mn2+ became the rate limiting step (Figure 3.10 A, B, and C panels). The positively 



83 

 

charged manganese ions were displaced (hence the reversed electrochromic shift of the P band) 

and were replaced with Mn2+ on a long timescale, which is in line with our observation that the 

Mn2+ is needed 40-60 minutes to completely diffuse to its binding position in dark-adapted BRCs 

(see Figures 4.2 and 3.4).  

The maximum observed reversed electrochromic shift of the P band corresponds to a de-

coupling between the diffusion of the oxidized Mn3+ from and the diffusion of the fresh, reduced 

Mn2+ to the weak binding site. This decoupling can only be explained if one allows the bound 

LDAO molecule to be part of the light-induced conformational change as proposed earlier [8, 72, 

73]. At this point the spectroscopic signature of bound manganese to RC is lost. The amplitude 

reversed electrochromic shift of the P band corresponds to distance which Mn3+ is being thrown 

out from initial binding site. At high pH due to higher affinity of manganese binding this distance 

is too short, and increased by nearly 41% and 3-fold by lowering the pH to 9.0 and 8.7, 

respectively.  
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Figure 4.1: X-ray crystallographic image of showing LDAO molecules in the vicinity of the site 1. The 

protein is shown with gray semi-transparent surface, and the metal binding site is colored pink. The 

cofactors of reaction center are colored red, blue and green for bacteriochlorophyll dimer, 

bacteriochlorophyll monomer and bacteriopheophytins, respectively. In R-26 multiple LDAO molecules 

(cyan) have been observed to bind to the BRC in this region, with one bound precisely to Site 1. Atomic 

coordinates taken from PDB code: 2UXK. 

 

 

 

Figure 4.2: Decomposition of peak-trough amplitude recovery of shift of P band at pH 9.0. The A and 

B processes are assigned to displacement of Mn3+
 and diffusion of Mn2+

 to binding site, respectively. The 

composition of these two processes (A+B) is recovery of shift of the P band. 

 



85 

 

As explained in Section 1.2.2 Introduction, the binding sites of QA and QB, the primary and 

secondary electron acceptors are very different in nature, where the QB is located near the 

hydrophobic cavity of RC, and QA is shielded inside hydrophobic region of protein, tightly bound 

to the complex in contrast to QB. 

Due to this difference in binding environment the recovery of the PQA
- state requires the 

reduced quinone to find an electron acceptor from its hydrophobic surroundings, and thus takes 

much longer time than the recovery of PQB
- state, where QB binding site provides limited 

accessibility to plausible oxidizers inside the solvent, such as Mn3+ in our case.  

The binding affinity of QB strongly depends on environmental conditions, such as presence 

of metal ions and variation of pH. At higher pH the QB is loosely bound and its binding affinity 

increases by lowering the pH [75]. It has been reported that at pH 9.4 manganese ions are able to 

access to QB binding site and trigger the displacement of QB from its binding site [46]. This process 

could be intensified upon presence of a detergent molecule with positive charges such as LDAO, 

where the binding affinity of QB decreases due to enhancement of the dielectric constant of 

hydrophobic cavity of RC.  

Briefly we anticipate that at high LDAO concentration, presence of manganese and high 

pH, due to displacement and limiting electron transfer to QB, the recovery of Q- state takes much 

longer time, since the only reduced quinone is QA. However the contribution of faster recovery of 

QB
- must be observed, as the pH lowers. 

This in line with our observations, where at high LDAO concentration in the dark-adapted 

conformation the recovery of Q- was found to be biphasic, with the faster component due to BRCs 

in the PQB
- state, and the more slow component due to those in the PQA

-
 state (see Table 3.1) 

At high pH only contribution of slow component in the recovery of Q- was observed, since 

primary quinone QA is only active electron acceptor. As the pH decreased, the fraction of the fast 
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component that accounts for the fraction of BRCs that have active secondary quinone QB 

increased.  

Additionally the kinetics of recovery of shift of P around 865 nm (measured as the time 

dependent difference of the signals measured with a peak at ~835 nm and a trough at ~885 nm) 

was found to be biphasic, the component with negative amplitude due diffusion of Mn2+ to binding 

site, and the component with positive amplitude due to removal of the oxidized Mn3+. (see Table 

3.1, Figure 3.10 B and C panels) 

This indicates that the slow component in recovery PQ- state, and the component with 

negative amplitude in recovery of shift of P were yielded to similar rate constants, suggesting that 

the recovery of reduced primary quinone (QA
-) to its neutral state and Mn2+ diffusion into binding 

site are two coupled physical processes.  

Contrarily, the recovery of both spectral features of PQ- state at pH 9.4 are monophasic, 

where the shift of P band recovers by 2-fold faster -. It could be possible that in the high pH due to 

high affinity of manganese binding to RCs the oxidized manganese Mn3+ does not leave 

completely the binding site, similarly to low LDAO condition the exchange of Mn2+ to Mn3+ 

process takes place coincidentally and we are not able to track Mn2+ diffusion to binding site. (see 

Table 3.1, Figure 3.10 panel A) 

As the spectroscopic features fully recover at pH 9.0 and 8.7, the Mn2+ can come to binding 

site and PQ:Mn2+ state is re-established. 

The larger electrochromic shift of dimer after second illumination does not necessarily 

means that the replaced Mn2+ is now in a more optimal position (Figure 3.10 panels D, E, and F 

inserts), since we are still in dark-conformation due to fast electron donation of manganese. Before 

measuring the spectra in subsequent illumination, baseline correction was done for all spectra 
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measurements. Therefore the effect of reversed electrochromic shift of due to displacing oxidized 

Mn3+ in previous illumination has been added to emerged electrochromic shift of P band. However, 

as explained in Section 3.5.3, the fraction of P is increased by lowering the pH. Therefore at low 

pH values some RCs which have not involved in manganese oxidation could be converted to light-

adapted conformation. As it can be seen in Figure 3.10, at pH 8.7 the ∼90% of RCs are reduced 

by manganese, therefore they follow the dark-conformation and the rest small fraction could turn 

to conformationally altered state, therefore manganese could be located in much more closer 

optimum binding position. 

After the subsequent illumination the recovery of peak-to-trough amplitude of spectral 

features of PQ-  the shift of the dimer peak around 865 nm and red shift of bacteriopheophytin 

peak around 757 nm were become monophasic, yielding very similar rate constants (see Table 

3.2). Similarly to low LDAO condition, it seems that the subsequent illumination facilitate charge 

displacement, eliminating the rate-limiting replacement of Mn2+ to Mn3+ process, where it couples 

to recovery of reduced quinone (Q-) to its natural state. 

The changes in behaviour of the Q- recovery could be related to light-induced structural 

changes occur near the QB binding site. Based on crystallographic data, it was reported that QB 

could be located either in a so-called distal position in the dark-adapted state of the RC or in a 

proximal position in the illuminated state. Distal and proximal refer to the QB position relative to 

the non-heme iron. QB was proposed to undergo a light-induced shift of ∼4.5 Å towards the non-

heme iron, accompanied by a 180° propeller twist around the isoprenoid tail [73]. 

Also the population of proximal bound QB in light state is pH dependent, while at pH 7.0 

100% of the QB are in proximal position, this population decreased to ∼25% at pH 10 [74]. 
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These results support our observation, since at high pH the subsequent illumination did not help 

to activation of QB, and the Q- recovered in long time scale similar to initial illumination due to 

recovery QA
- to its natural state.  

However, at low pH the effect of light-induced conformational changes on acceleration of 

Q- state recovery is pronounced, where the Q- recovered ∼50 % earlier, likely due to illumination 

the QB is activated and only QB
- contribution is observable.  

 

4.4 Three types of manganese binding at metal binding site 1 

In the current work we probed the accessibility of metal binding site of RCs by tuning the 

dielectric constant of hydrophobic cavity of BRC. The structure of metal binding Site 1 is shown 

in Figure 4.3.  The residues make up this site are Ser M119, Met M122, and Tyr M177. At low 

LDAO concentration, the Mn2+ could be well coordinated by these three residues, if the BRC has 

undergone light-induced conformational change. This binding position could be labeled as the 

most optimal binding geometry, corresponding to fast oxidation of manganese with a rate constant 

of 1.22 s-1 Light-induced structural changes are required for enabling this site. At high LDAO 

concentration, the bound LDAO molecule in this region interferes with Mn2+ binding, due to 

sharing of binding site between two entities, and forces manganese to be coordinated at position 

further away, known as sub-optimal binding geometry. The ~18% reduction in rate of manganese 

oxidation for light-adapted BRCs at pH 9.4 is the consequence of changing manganese location 

from optimum to sub-optimum binding geometry, as the bound LDAO in vicinity of binding site 

1 prevented formation of optimum photo-activated metal binding site.(see Figure 3.4) 



89 

 

Under strong continuous illumination the rate constant of 0.8 s-1 for manganese oxidation 

has been reported in wild type (WT) BRC, which contains carotenoid in the binding site [46]. This 

rate is exactly equal to the maximum observed electron donation rate in carotenoid-less strain (R-

26) BRCs, when they were in dark-adapted conformation. This level of binding is the worst in 

terms of Mn2+ ability to donate electron to P+, and can be labeled as passive binding site. 

On the other hand presence of excess LDAO had no effect on the rate of Mn2+ oxidation in wild 

type (WT), where this site was already occupied by carotenoid [46].  

This set of observation suggests that manganese binding position in R-26 at dark-

conformation is similar to wild type (WT), which is further away from sub-optimum binding 

position. It seems that we can force this sub-optimum binding geometry be restored without pre-

illumination of R-26, if high LDAO is added. The excess of LDAO improved the dielectric 

constant of metal binding site of dark-adapted R-26 RCs, and the rate of manganese oxidation is 

increased by ~25%, very close to the level of manganese oxidation rate in light-adapted R-26 in 

presence of high LDAO, where the manganese located at sub-optimum binding geometry. 

While at high LDAO concentration the rate of Mn2+ incubation did not changed in dark-

adapted RCs, this rate decreased by ~73%  in light-adapted RCs to the level of RCs in dark-adapted 

conformation. As we expected, due to tuning the dielectric constant of metal binding site of BRCs 

by incorporating detergent molecules, upon manganese presence at sub-optimum binding position 

the observed differences for manganese binding and oxidation were diminished between the dark 

and light-adapted conformations. 
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Figure 4.3: Structural views of the BRC showing metal binding site 1 at low and high LDAO 

concentration. Close up top view of the predicted metal binding site near BM is shown in left panels. The 

surrounding cofactors were removed for clarity. This site is composed of the residues: Ser M119, Met 

M122, and Tyr M177. At high LDAO concentration the binding site 1 is being shared with LDAO molecule 

and manganese Atomic structures are taken from PDB code: 1PCR. 
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4.5 The EPR Spectroscopic evidence for structural changes of Cu-

BTP complex  

The influence of the protonational state of the amine groups on Cu(II) coordination in Cu-

BTP complex was studied by EPR spectroscopy for various pH values as the electronic structure 

of the coordinated Cu(II) ion is correlated with the chemical composition. The Cu(II) ion in the 

hexa-aquo complex is coordinated with six symmetrically arranged water molecules, forming a 

perfect octahedral around the Cu(II) ion. Upon addition of BTP, new spectroscopic signatures were 

observed indicating changes in the ligand configuration of the complex as discussed in Section 

3.7.4. Increasing the pH of Cu-BTP complex from 4 to 9.5 resulted in changes in the EPR spectra 

that were modeled assuming the participation of the secondary amine groups of BTP as new 

ligands as they become available upon their deprotonation.  

The shift of the third peak position from ~319 mT to ~322 mT due to changes in the 

hyperfine coupling constant as function of pH were fitted by using Henderson-Hasselbalch model, 

where two apparent pKa values 5.8 and 8.7 were obtained for Cu-BTP complex. The model 

revealed that at low and high pH, the Cu2+ ion is coordinated by one and two BTP molecules, 

respectively (Figure 3.12 and 3.13). This observation is in line with the reported stoichiometry of 

Mn-BTP complex, where coordination with BTP involves two amine groups per Mn(II) ion [43].  

In this study we also determined the in situ pKa of Mn-BTP complex when in association 

with BRCs. The fraction of the residual P+ as function of pH was fitted by using Henderson-

Hasselbalch model involving 2 protons, and the obtained pKa value was ~8.2 (Figure 3.8). While 

the obtained pKa values of the Cu-BTP complex and Mn-BTP complex associated with BRCs are 

quite different, involvement of two protonable groups of BTP per metal was observed.  



92 

 

The Cu-BTP EPR spectra change with pH, and are characterized by two different sets of 

spectra at pH 4.0 and 9.5. The intermediate pH values, particularly for pH values in the 8.0 to 9.0 

region, the spectra are admixtures of those corresponding to pH 4.0 and 9.5 (Figure 3.13). For the 

pH 4.0 to 7.0 the spectra are almost the same. The change in spectra shows that the configurations 

of Cu-BTP complexes change.  

The distortion of the Cu-BTP octahedron was estimated by calculating the axial (ε+) and 

longitudinal (εǁ) anisotropies, indicating that the geometry of complex is distorted from square 

planer both at low and high pH values. Additionally, the calculated longitudinal (εǁ) anisotropy 

indicated that the geometry of the Cu-BTP complex has been compressed and elongated along the 

z-axis of octahedron at low and high pH values, respectively (Table 3.3 and Figure 3.15). 
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Chapter 5 

 

Conclusions 

 
This study unraveled many aspects of the interactions between manganese ions acting as a 

secondary electron donors to native bacterial reaction centers. First, we mapped the pH 

dependency of the diffusion of manganese ions to binding site 1, which previously the presence of 

bound manganese at this site had been confirmed experimentally.  It was observed that the rate of 

diffusion to the binding site was at least 3-fold higher for BRCs that underwent light-induced 

structural changes. 

Then the pH dependency of electron transfer from Mn2+ to P+ in dark-adapted and pre-

illuminate BRCs was studied. We determined the rate constant of this electron transfer in light-

induced conformationally altered BRCs was 50 % faster than the dark-adapted conformation. 

Next, we found evidence for slight variations of manganese locations at metal binding Site 1. 

The local dielectric constant of metal binding site was altered by incorporating 

hydrophobic molecules, such as detergents. Tuning the dielectric properties of the binding site by 

incorporating detergent molecules diminished the observed differences between the electron 

transfers in the dark- and light-adapted conformation. 
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This set of observations reveal that the two ways to influence the local dielectric constant 

of metal binding site of BRCs are: subjecting the BRCs to conformational changes and adding 

molecules that have access to the cavity. Spectroscopic signature of increasing local dielectric 

constant of the binding site in presence of detergent molecules was studied and a molecular 

mechanism for the interaction of Mn2+ with BRCs was proposed. 

The Cu-BTP EPR spectra change with pH, and are characterised by two different sets of 

spectra for pH 4.0 and 9.5. The intermediate pH values, particularly in pH 8.0 to 9.0 region the 

spectra are the mixture of the corresponding to pH 4.0 and 9.5. For the pH 4.0 to 7.0 the spectra 

are almost the same. The change in spectra shows that the configurations of Cu-BTP complexes 

are different from each other. As for the Mn-BTP complex, the spectra did not change with pH in 

the liquid state, because only the central hyperfine sextet was observed, which is rather insensitive 

to the environmental change when the pH of the solution is changed. 
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Chapter 6 

 

Future work 
 

The ability of manganese to serve as secondary electron donor to BRC must be tested in 

preparations that more closely resemble the natural environment of living cells. It is obvious that 

BTP was not readily available in the Archean ocean. Therefore it is more useful to find more 

natural compounds to form low potential manganese complexes.  

As discussed in Section 3.3, tuning the dielectric properties of the binding site by 

incorporating molecules, which has access to cavity of RC, such as detergent molecules, the rate 

of electron donation from manganese was increased for RCs in dark-adapted conformation. The 

effect of tuning the dielectric constant of metal binding site of RCs must be tested in presence of 

other electron donors, such as ferrocene and cyt c2, natural secondary electron donor. Probing the 

influence changing the dielectric constant of binding site on charge recombination in RCs is 

recommended as well. Studying the diffusion of manganese ions to binding site of wild type (WT) 

RC, which contains carotenoid in its binding site will reveal new aspect of interaction of manages 

with RCs.  

It is desirable to measure EPR spectra in the frozen state to be simulated in the rigid limit. 
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