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Abstract 

 

Involvement of Cognitive Resources in Sensory and Sensorimotor Functioning with 

Age  

 

Halina Bruce, Ph.D. 

Concordia University, 2018 

 

Epidemiological research indicates a link between hearing loss and poor mobility 

(Lin & Ferrucci, 2012; Viljanen et al., 2009). One explanation for this association is 

cognitive compensation, wherein older adults compensate for hearing loss and declines in 

mobility by recruiting higher-level cognitive resources. A growing body of research using 

various approaches demonstrates that cognitive resources are involved in both hearing and 

mobility with age. Our work complements these studies by using experimental, 

intervention and modeling techniques to investigate how these domains relate in an aging 

population.  

Using an experimental approach, older adults and older adults with hearing loss 

completed a cognitive-motor dual-task protocol, in which they performed an auditory 

working memory task and a balance recovery task singly or concurrently. Older adults 

with mild hearing loss showed disproportionately greater dual-task costs on the auditory 

working memory task, particularly when auditory challenge was added. Given the 

involvement of cognitive resources in challenging dual-task conditions and particularly 

among a hearing loss population, the second study took a cognitive enhancement 

approach. Specifically, older adults with and without hearing loss were given either 
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simultaneous or sequential cognitive-physical training formats. While sequential training 

appeared to benefit performance on the auditory working memory task, older adults with 

hearing loss appeared to improve on this same task regardless of format. To complement 

these group-wise effects we took a structural equation modeling approach using data 

pooled from the two previous studies to examine individual differences in hearing and 

cognition which might influence mobility. An additional consideration was the impact of 

self-efficacy. It was found that the association between greater hearing loss and reduced 

mobility was mediated by cognitive status, and that self-efficacy in the hearing domain 

may be an important contributor to balance confidence. 

Taken together, the current work points to the importance of cognitive resources in 

both sensory and motor aging, particularly among older adults with age-related hearing 

loss. As such, the work suggests that cognitive remediation may be a useful complement 

to traditional hearing and mobility rehabilitation. Moreover, self-efficacy appears to be an 

important contributor in understanding the relation between hearing loss and mobility.   

  



v 
 

Acknowledgements 

Firstly, I would like to acknowledge my supervisor Dr. Karen Li for her 

unwavering support throughout my doctorate. I have greatly appreciated her enthusiasm 

for research and humorous approach to supervising me. Completing this doctorate would 

also not have been possible without my parents, family and friends who supported me over 

the years and truly made it possible for me to achieve this. I would also like to thank my 

fellow graduate students and lab mates who have been a second family to me over the 

years and made this journey a real adventure! Additionally, I would like to acknowledge 

my partner Cory who kept me grounded and laughing over the years particularly this past 

year while I was writing my dissertation and completing residency. I would also like to 

acknowledge my dog Walter, who passed shortly after my defense but who was an 

invaluable companion throughout graduate school. 

Finally, I would like to acknowledge my personal funding sources over the years 

(CIHR, FRSQ, The Perform Centre, Concordia University) and funding granted to my 

supervisor and the research team from CIHR (MOP-123302) without which my research 

would not have been possible.    



vi 
 

Contribution of Authors 

For all three papers, in collaboration with my supervisor Dr. Karen Li, I designed 

the research question and experiment, set up the experimental paradigm, performed data 

collection (where applicable) and statistical analyses, and wrote the manuscript. 

Additional contributions of other coauthors are discussed below.  

Paper 1 

 Dan Aponte helped with data collection and filtering of the raw data while Dr. 

Nancy St.-Onge provided extensive consultation with respect to setting up the 

experimental design and protocol. Dr. Natalie Phillips provided the stimuli for the auditory 

working memory task. All coauthors contributed to the conceptual interpretation of the 

findings and provided input on the final manuscript.  

Paper 2 

 Laurence Lai was the other graduate student on the training project and therefore 

was heavily involved in designing the experiment and research question and in data 

collection. Drs. Maxime Lussier and Bherer provided us with the cognitive iPad training 

task used in the study. Dr. J.-P. Gagné provided consultation regarding the auditory 

assessment and presentation of stimuli. All coauthors contributed to the conceptual 

interpretation of the findings and provided input on the final manuscript. 

Paper 3 

 As data was already collected for this study, the majority of contributions from 

coauthors was with respect to interpreting the conceptual findings and reviewing the first 

manuscript draft.    



vii 
 

 

Table of Contents 

 

List of Figures ......................................................................................................................................... viii 

List of Tables .............................................................................................................................................. ix 

CHAPTER ONE: GENERAL INTRODUCTION ................................................................................... 1 

Cognitive Aging ..................................................................................................................................... 2 

Hearing and Aging ............................................................................................................................... 5 

Mobility and Aging ............................................................................................................................ 10 

Hearing and Motor Aging ............................................................................................................... 17 

The Current Studies ......................................................................................................................... 18 

CHAPTER TWO: STUDY 1 ................................................................................................................... 19 

Abstract ................................................................................................................................................. 20 

Introduction ........................................................................................................................................ 21 

Method .................................................................................................................................................. 24 

Results ................................................................................................................................................... 29 

Discussion ............................................................................................................................................ 32 

CHAPTER THREE: STUDY 2 ............................................................................................................... 40 

Abstract ................................................................................................................................................. 41 

Introduction ........................................................................................................................................ 43 

Methods ................................................................................................................................................ 46 

Results ................................................................................................................................................... 51 

Discussion ............................................................................................................................................ 53 

CHAPTER FOUR: STUDY 3 .................................................................................................................. 64 

Abstract ................................................................................................................................................. 65 

Introduction ........................................................................................................................................ 67 

Method .................................................................................................................................................. 71 

Discussion ............................................................................................................................................ 76 

CHAPTER 5: GENERAL DISCUSSION .............................................................................................. 89 

References .............................................................................................................................................. 102 

Appendix A ............................................................................................................................................. 129 

Appendix B ............................................................................................................................................. 130 

 



viii 
 

List of Figures 

Figure 2.1. Cognitive 1-back Task Accuracy (%) as a function of age group, auditory 

challenge, and attentional load……………………………………………………………38 

Figure 2.2. Ankle Plantarflexion Amplitude in degrees (A) and hip extension amplitude in 

degrees (B) as a function of age group, auditory challenge, and attentional load………...39 

Figure 3.1. Change scores for the n-back task performed during the standing balance tasks 

and the STS divided by four groups………………………………………………………59   

Figure 3.2. Change scores for the Sit-to-Stand Task……………………………………..61   

Figure 3.3. Change scores for the standing balance tasks (ellipse area)………………….62    

Figure 4.1. Hypothesized model………………………………………………………….83 

Figure 4.2. SEM for the hypothesized model…………………………………………….84  

Figure 4.3. SEM for the hypothesized model including age in the model……………….85  

Figure 4.4. SEM for the hypothesized model using objective measures…………………86  

Figure 4.5. SEM for the hypothesized model using objective measures and testing 

mediation of cognition on relation between hearing and mobility. ……………………....87 

Figure 4.6. SEM for the hypothesized model using self-efficacy measures……………..88  

  



ix 
 

List of Tables 

Table 2.1. Means and standard deviations for all baseline measures…………………….37 

Table 3.1. Means and standard deviations for all baseline background and experimental 

measures…………………………………………………………………………………..57 

Table 3.2. Mean performance on the n-back and Sit-to-Stand tasks……………………..59  

Table 3.3. Mean performance on the standing balance tasks (mm2)……………………..60 

Table 4.1. Means and standard deviations for all baseline measures…………………….81 

Table 4.2. Intercorrelations Among the Measured Variables for the Combined Sample...82 

 



1 

 

 

 

 

 

 

 

 

 

CHAPTER ONE 

GENERAL INTRODUCTION 

  



2 

 

Population Aging 

 Over the past 40 years, the population of older adults (i.e., 65 years and older) in Canada 

has been steadily growing, increasing from 8% to 14% of the population between 1971 to 2010. 

This growth is expected to continue such that between 2015 to 2021, the number of older adults 

is projected to exceed the number of children aged 14 and younger for the first time ever 

(Statistics Canada, 2011). Aging is associated with changes in sensory and sensorimotor 

functioning. Specifically, according to Statistics Canada, 78% of adults over the age of 60 

experience hearing loss, which is more prevalent among men than women. Moreover, within this 

older adult population, 30-35% of people aged 65 and older have a form of hearing loss and this 

increases to 40-50% for people aged 75 and older (National Institute on Deafness and Other 

Communication Disorders, 1997). In addition to challenges in hearing, falls are also of 

significance to the aging population such that approximately 1 in 3 seniors aged 65 years and 

older are likely to fall at least once per year and falls are one of the leading causes of injury-

related hospitalizations (Statistics Canada, 2014). These two domains are also connected such 

that hearing loss is associated with a greater incidence of falls (Lin & Ferruci, 2012; Viljanen et 

al., 2009) even when accounting for vestibular function (Lin & Ferruci, 2012). Additionally, both 

hearing loss and falls have broader emotional and social consequences including social isolation, 

depression, safety issues, and reduced income and employment opportunities (Bizier, Contreras, 

& Walpole, 2016; Brennan, Gombac, & Sleightholm, 2009) as well as poor quality of life and 

functional limitations (Dalton et al., 2003, Mitchell et al., 2011). 

 

Cognitive Aging 

With advancing age, individuals experience declines in cognition, which impact day-to-

day functioning. While some abilities such as implicit memory, world knowledge, and verbal 
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abilities remain stable and may even increase over the lifespan, normative declines in other 

domains of long-term memory, processing speed, working memory and executive function have 

been observed (Craik & Salthouse, 2000; 2008; Park & Reuter-Lorenz, 2009; West, 1996).  

Executive functions are of particular interest to researchers because of their role in 

everyday physical and cognitive tasks and contribution to independent functioning (Baddeley, 

1986; Norman & Shallice, 1986). Contemporary models of executive function suggest a 

multifactorial construct consisting of several independent but correlated abilities such as working 

memory, inhibition, task switching and divided attention (Engle, Tuholski, Laughlin, & Conway, 

1999; Miyake et al., 2000). Different measures have been used to measure executive functions 

including “complex span” tasks, the Stroop inhibition task and dual-task paradigms and 

generally suggest declines in these domains with age (e.g., Bopp & Verhaeghen, 2005; Li, 

Vadaga, Bruce, & Lai, 2017; Wasylyshyn, Verhaeghen, & Sliwinski, 2011).   

In tandem with behavioural changes, researchers have demonstrated age-related changes 

to brain size and vasculature. With age, the volume of the brain decreases at a rate of around 5% 

per decade after the age of 40 (Peters, 2006) with decline becoming steeper with age (Dennis & 

Cabeza, 2008). Although volumetric decreases have been noted in gray and white matter, the 

brain does not change uniformly across regions, such that the prefrontal region is most affected 

by gray matter loss followed by the parietal lobe. Additionally, rate of decline also differs 

between sub-regions. For example, the medial temporal lobes which contain the hippocampus 

and entorhinal cortex show increased atrophy with age and within frontal and parietal lobes, 

inferior regions decline more sharply. Similarly, white matter declines throughout the brain 

affecting most prominently the frontal lobes. Importantly, these changes in prefrontal regions are 
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associated with decreased performance on executive function tasks as well as on measures of 

processing speed, reasoning and memory (Dennis & Cabeza, 2008; Raz, 1996).    

Interestingly, in contrast to what might be expected given the existing behavioural and 

structural data, neural activity does not globally decrease with age. Functional imaging 

techniques have revealed both increases and decreases in brain activation (Dennis & Cabeza, 

2008; Park & Reuter-Lorenz, 2009), with different patterns observed between younger and older 

adults. Several theories have been developed to explain these patterns of activation including the 

HAROLD model (Cabeza, 2002), which suggests that older adults recruit more bilateral 

prefrontal regions than younger adults when performing cognitive tasks. This increased 

activation can be linked to improved performance on behavioural tasks such as measures of 

memory attention, perception, inhibition and working memory (Cabeza et al., 2004; Cabeza, 

2002; Gutchess et al., 2005) and is present among high-performing older adults (Dennis & 

Cabeza, 2008). Together, these results suggest a process of compensation rather than 

dedifferentiation.   

A second theory to account for preserved cognitive performance in the context of neural 

decline is the Scaffolding Theory of Aging (STAC). This model states that behavioural 

performance reflects the joint influences of brain aging and compensatory scaffolding or the 

recruitment of additional brain regions and circuits. Like the HAROLD Model (Cabeza, 2002), 

this theory describes increased bilateral activation among older adults as well as increased 

activation of frontal regions. Within this framework, scaffolding is the brain’s typical response to 

challenge and although present among younger adults, increases with age to maintain cognitive 

function. Therefore, levels of performance are malleable and subject to enrichment, but 

constrained by biological factors such as age. Scaffolding is not static across the lifespan as it 
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can be supported through lifestyle factors such as exercise or cognitive training (Hertzog, 

Kramer, Wilson, & Lindenberger, 2008; Park & Reuter-Lorenz, 2009). A more recent review of 

longitudinal aging research prompted the authors to revise the STAC model and incorporate life-

course factors (i.e., accumulation of experiences and states) that impact the structure and 

function of the brain as well as the development of compensatory scaffolding (STAC-R; Reuter-

Lorenz & Park, 2014).  

Other researchers (Li & Lindenberger, 2002) have proposed that since cognitive 

resources are increasingly involved in the hearing and motor tasks with age, brain aging and 

compensatory scaffolding might also impact the sensory and sensorimotor abilities. Within this 

framework of cognitive compensation, declining peripheral functioning are compensated for via 

the recruitment of higher-order cognitive resources. Evidence for the involvement of cognitive 

resources in both auditory and motor functioning has been demonstrated in epidemiological, 

experimental, neuroimaging and intervention work as discussed below. 

Hearing and Aging 

 
Theory and cognitive involvement. With age, hearing may be impacted by several age-

normative changes including both peripheral and cognitive factors including declines in 

cognition and changes to more central auditory processes (Martin & Jerger, 2005; Pichora-Fuller, 

Schneider, & Daneman, 1995; Schneider et al., 2010). Specifically, older adults experience 

elevated hearing thresholds particularly in the high frequency range, losses in spectral and 

temporal acuity, and possible loss of neural synchrony in the auditory pathways. If these losses 

are not too severe and the auditory signal is sufficient, these changes will likely only have a 

minimal effect on simple speech recognition in quiet conditions. However, although hearing loss 

can account for speech-related problems in quiet, these peripheral changes can only account for 
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some of the challenges that older adults experience in noisy or challenging listening conditions 

(Schneider et al., 2010).  

To properly comprehend sound and speech, individuals must locate and segregate sound 

sources to focus on the stimulus of interest and ignore irrelevant information in the environment. 

In addition to locating and separating out sound sources, speech comprehension is affected by 

temporal processing, which is partly under the control of the central auditory nervous system. 

Since speech is a complex sound varying over time, listeners must process brief, time-varying 

acoustic information to understand individual phonemes, process rapid acoustic information 

about individual phonemes in a sequence of changing acoustic cues, and follow the overall 

timing of a spoken message (Gordan-Salant, Fitzgibbons, & Yeni-Komshian, 2011). With age, 

the auditory system becomes slower and more asynchronous, which can affect processing time 

and inter-aural timing respectively (Pichora-Fuller, 2003). 

Cognitive theorists have suggested that in addition to a degrading signal due to peripheral 

changes, older adults may be more vulnerable to intrusions from irrelevant or distracting stimuli 

due to age-related changes in working memory (Brebion, 2003; DeDe, Caplan, Kemtes, & 

Waters, 2004; Tun, Wingfield, & Stine, 1991;Van der Linden et al., 1999), slowed speed of 

processing (Stine, 1995; Stine & Hindman, 1994; Tun, Wingfield, Stine, & Mecsas, 1992; 

Wingfield, Poon, Lombardi, & Lowe, 1985), and a deficit in inhibitory processes (Hasher & 

Zacks, 1988; Hasher, Zacks, & May, 1999). Therefore, researchers have investigated the 

contribution of cognitive resources to hearing using varied methodologies. 

Correlational. To this end, epidemiological work has demonstrated an association 

between hearing and cognition such that sensory and cognitive abilities are more strongly 

associated in older compared to middle-aged adults (Baltes & Lindenberger, 1997). Moreover, 
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objectively assessed hearing is correlated with measures of processing speed (Lin, 2011), 

memory and executive function (Lin et al., 2011). Hearing was also associated with an increased 

risk of cognitive impairment, which was linearly associated with the severity of the individual’s 

baseline hearing loss (Lin et al., 2013). Using modeling techniques, others have demonstrated 

that compared to healthy controls, older adults with clinically diagnosed sensory impairment 

show stronger relations between cognitive abilities and behavior-related everyday functioning as 

well as self-reported mastery of everyday activities and the environment (Heyl & Wahl, 2012). 

Turning to brain correlates, neuroimaging suggests that hearing impairment is independently 

associated with reduced volumes in the auditory cortex (Eckert, et al., 2012; Husain, et al., 2010; 

Peelle, et al., 2011), as well as accelerated volume declines in whole brain and regional volumes 

in the right temporal lobe (Lin et al., 2014).  

Sensory load. Another approach to investigating the interaction between cognitive status 

and hearing is by manipulating the sensory load, for example by changing the characteristics of 

speech or by presenting speech in noise (e.g., multispeaker babble). Interestingly, multivariate 

work suggests that central processing and cognition, rather than peripheral hearing, predicts 

listening performance in noise conditions (Anderson et al., 2013). In such studies, older adults 

benefitted more from contextual cues compared to younger adults (Pichora-Fuller, 1995) and 

tended to use linguistic knowledge (i.e., semantic and syntactic context of the sentence) to 

compensate for deficits in speech-in-noise perception (Wingfield, 1996), suggesting a 

compensatory cognitive process. However, there appears to be a cost associated with this 

compensatory mechanism. For example, when auditory memory items are presented in noise, 

age and noise exhibit similar negative effects on long-term memory performance. One possible 

explanation is that the decrease in processing resources with aging is associated with less 
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effective encoding into secondary memory (Murphy, Craik, Li, & Schneider, 2000). Similarly, 

accelerating speech to challenge processing speed requirements or decreasing the presentation 

level of an auditory working memory task is more detrimental with age, hearing loss, and 

increasing task demands (Baldwin & Ash, 2012; Wingfield, McCoy, Peelle, Tun, & Cox, 2006).  

Dual-task. Another approach to investigating the role of cognition is through a dual-task 

approach wherein two tasks are administered singly (single-task) and then simultaneously (dual-

task) with the assumption that if there is a drop in performance from single- to dual-task 

conditions on either task, they are thought to rely on a common resource. Administering a dual-

task paradigm under quiet listening conditions reveals that listeners with hearing loss, especially 

older adults, showed larger secondary task costs while recalling a list of words even though the 

stimuli were presented at a sound intensity that allowed correct word identification (Tun, 

McCoy, & Wingfield, 2009). When this same dual-task approach is used with noise, older adults 

demonstrate a greater amount of listening effort to recognize speech in noise when compared 

with younger adults. This cost is further exacerbated with hearing loss both under identical 

Signal-to-Noise Ratio (SNR) conditions and when groups are tested at the same level of 

performance by equating for accuracy by adjusting the SNR (Gagne, Besser, & Lemke, 2017). 

Specifically, presenting words in noise resulted in lower memory performance and this decline in 

memory mimics memory deficits observed when participants performed the same task in quiet 

conditions, concurrent with a secondary attentional non-auditory task (Heinrich, Schneider, & 

Craik, 2008). Similarly, others have demonstrated that extracting information from noise comes 

at a cost to performance on a secondary non-auditory task (Gosselin & Gagne, 2011). This 

increased cognitive involvement is supported through fMRI recordings taken during dual-tasking 
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which reveal increased activation in prefrontal regions among older adults particularly in 

challenging conditions (Wong et al., 2009).   

Intervention. Another approach to understanding the contributions to age-related hearing 

loss is through interventions which either correct for peripheral hearing loss or strengthen 

cognitive resources. One approach comes from clinical audiological intervention wherein older 

adults diagnosed with hearing impairment are treated with amplification using hearing aids. 

Within this population, cognitive scores (i.e., working memory, general intelligence) correlated 

with scores on speech tests even after amplification with hearing aids (Pichora-Fuller, 2009). 

Furthermore, among first time hearing aid users, higher baseline cognitive scores were associated 

with an increased performance on a speech recognition task in noise when performed with 

amplification devices (Gatehouse, Naylor, & Elberling, 2003, 2006; Lunner, 2003). Moreover, 

working memory training and auditory training consisting of phenome discrimination in quiet 

and noise resulted in generalized improvements on measures of self-reported hearing, competing 

speech and complex cognitive tasks which assess executive function (Ferguson & Henshaw, 

2015).   

Self-efficacy. Self-efficacy can be defined as an individuals’ perceptions of their abilities 

in specific domains which will determine whether they engage in particular activities (Bandura, 

1997). In addition to normative age-related declines, negative stereotypes of aging may 

contribute to the mismatch between self-perceptions of abilities of function and actual abilities 

(Chasteen, Pichora-Fuller, Dupuis, Smith, & Singh, 2015). With respect to hearing, listening 

self-efficacy may be more strongly associated with hearing handicap and perceived difficulty in 

any given situation rather than performance on objective clinical measures of hearing (Smith, 

Pichora-Fuller, Watts, & La More, 2011). In other words, even if an individual has the ability or 
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capacity to meet the demands of a given situation, allocating resources depends in part on the 

person’s evaluation of their capacity and willingness to expend the effort (Pichora-Fuller, 2016). 

Additionally, hearing impairment is associated with reduced functioning in daily life and 

specifically with self-reported hearing handicap, communication difficulties (Dalton et al., 2003) 

and self-perceived social engagement restrictions (Gopinath et al., 2012). 

Mobility and Aging 

Definition and measurement techniques. Balance is a generic term used to describe 

postural dynamics that individuals employ to prevent themselves from falling (Winter, 1995) 

while posture can be defined as the control of the body’s position in space for the purposes of 

balance and orientation (Woollacott & Shumway-Cook, 2002). Posture is typically assessed 

using standing or static balance tasks (e.g., double support standing) and dynamic balance, 

wherein individuals respond to an environmental event such as a platform perturbation (Paillard 

& Noe, 2015). Performance is typically quantified in terms of changes in posture over time, such 

as center of mass (COM) and center of foot pressure (COP) distance, area or range of excursion, 

or variability of movement. Other parameters of posture include measurement of muscle 

activations (electromyography) or brain activation during real or imagined balance tasks. Lastly, 

performance can be described by the type of postural strategy used in response to environmental 

events, such as platform perturbations (Paillard & Noe, 2015). With aging, upright postural sway 

generally increases (Bergamin, 2014) and is linked to subsequent falls (Maki, Holliday, & 

Fernie, 1990). In response to dynamic balance tasks, older adults generate a larger COM area and 

are more likely to initiate a stepping strategy at lower levels of challenge (Brown et al., 1999; 

Jensen, Brown, & Woollacott, 2011; Tsai, Hiseh, & Yang, 2014). 
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 Although a distinct component of mobility, gait can be conceptualized as a dynamic 

balance task wherein an individual’s goal is now to move their body outside of the base of 

support while preventing falls (Winter, 1995). Gait has been assessed using many different tasks 

such as walking at self-selected speeds, treadmill walking, obstacle avoidance or using walkways 

with embedded sensors to measure more specific time- and spatially-based aspects of gait. Using 

these tasks, numerous parameters have been used to describe gait including gait speed, cadence 

(steps/minute), step length (average distance between each successive footfall), and gait 

variability (standard deviation or coefficient of variation of step time or length). Like posture, 

both structural and functional neuroimaging have been used to index gait during real or imagined 

tasks. With age, older adults typically demonstrate greater gait variability, decreased walking 

speed (Callisaya et al., 2010), shorter stride lengths, decreased stride frequency and a more rigid 

posture (Kovacs, 2005) compared to younger adults. They also tend to take shorter steps (Medell 

& Alexander, 2000) or adopt a more conservative gait pattern, such as reduced speed (Chen, 

Ashton-Miller, Alexander, & Schultz, 1991) in challenging environments. 

Some of the age-related changes in posture and gait can be linked to physical causes such 

as sarcopenia, which refers to a reduction in muscle mass and strength with age (Laurenti et al., 

2003) thus reducing the force of muscle contraction, which in turn affects proprioception 

(Hurley, Rees, & Newham, 1998). In addition, older adults often experience a reduction in joint 

flexibility (Nolan, Nitz, Choy, & Illing, 2010). Although previously conceptualized as reflexive 

and automatic, recent work suggests that in addition to changes associated with physical 

functioning, balance and gait require attentional resources with age, which vary depending on the 

task used, the age of the individual and their balance abilities (Woollacott & Shumway-Cook, 
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2002). Therefore, different research approaches have been used to investigate the involvement of 

cognition in mobility. 

Correlational. Correlational work demonstrates that lower executive function 

performance is associated with decreased gait speed and increased gait variability, particularly in 

more cognitively challenging conditions (Ble et al., 2005; Hausdorff, Yogev, Springer, Simon, & 

Giladi, 2005; Holtzer, Verghese, Xue, & Lipton, 2006), as well as self-reported incidence of 

recurrent falls (Anstey, Caldwell, Wood, Kerr, & Lord, 2009). Moreover, lower levels of 

cognitive functioning at baseline increased the risk of developing a mobility impairment later in 

life (Buchman et al., 2011).   

Experimental dual-tasking. Complementing the correlational work, dual-task studies 

have demonstrated significant attentional demands associated with balance and gait among older 

adults (Woollacott & Shumway-Cook, 2002). When performing dual-task gait, older adults 

demonstrate decreased performance on concurrent walking and memory tasks, for example when 

ambulating around obstacles (Chen et al., 1996; Lindenberger, Marsiske, & Baltes, 2000). In 

static balance conditions, older adults exhibit greater dual-task costs than young adults on either 

the balance task (e.g., increased CoP area), the concurrent cognitive task, or both (Boisgontier et 

al., 2013). However, with increasing motor challenge, these attentional costs become more 

pronounced in the cognitive domain (Brown et al., 1999; Li, Krampe, & Bondar, 2005; Little & 

Woollacott, 2014; Redfern, Muller, Jennings, & Furman, 2002; Verghese et al., 2007). This 

phenomenon has been termed postural prioritization (Li et al., 2005) and refers to the tendency 

for older adults to prioritize mobility particularly if motor tasks are ecologically valid.  

Another experimental approach involves manipulating sensory inputs such as altering 

proprioceptive information using softer surfaces (e.g., compliant foam surface, high-pile carpet 
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with rubber padding) or standing with eyes closed (Redfern, Moore, & Yarsky, 1997; Teasdale, 

Bard, LaRue, & Fleury, 1993). Using these approaches, researchers have demonstrated that older 

adults are more susceptible to reduced proprioceptive input as indexed by increased postural 

sway. Together these results suggest that when conflicting sensory information is introduced 

(Redfern, Jennings, Martin, & Furman, 2001), maintaining posture requires more attentional 

demands. Specifically, it has been hypothesized that age-related declines in inhibition might 

account for age-related difficulties in sensory integration (combining visual, vestibular, and 

proprioceptive inputs) while balancing (Redfern, et al., 2001). 

Interestingly, not all secondary tasks are detrimental to mobility and can sometimes be 

facilitative. Specifically, a U-shaped function has been observed wherein balancing or walking 

concurrent with a basic cognitive task may improve motor performance, although these dual-task 

benefits turn into costs as cognitive complexity increases (Huxhold, Li, Schmiedek, & 

Lindenberger, 2006; LaRoche, Greenleaf, Croce, & McGaughy, 2014; Lövden et al., 2008). One 

explanation is that simple cognitive loads are facilitative because devoting full attention to a 

highly automated mobility task is unnatural and detracts from motor coordination; however, at 

higher levels of cognitive interference this benefit is attenuated due to resource competition 

which becomes detrimental to motor performance (Fraizer & Mitra, 2008; Huxhold, et al., 2006).  

Another method of quantifying posture performance is through electromyography (EMG) 

to assess muscle activity either during single-task balancing or with a concurrent cognitive task. 

Reduced amplitude of muscle activation has been noted in challenging dual-task conditions, 

particularly for older adults, further supporting the idea that fewer attentional resources are 

available for balance control with age (Rankin, Woollacott, Shumway-Cook, & Brown, 2000). 

Qualitative changes with age have also been noted in the balance strategies exhibited in response 
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to perturbations. Specifically, when encountering dynamic postural challenges, such as an 

unpredictable platform movement (i.e., perturbation), typical postural recovery progresses from 

ankle, hip, to stepping strategies as perturbations become more challenging (Horak, Henry, & 

Shumway-Cook, 1997; Nashner & McCollum, 1985). However, not all balance strategies are 

equivalent in their cognitive demands: there is evidence of an attentional continuum of balance 

strategies, such that ankle flexion is more commonly exhibited during low demand situations, 

whereas hip or stepping strategies are expressed as cognitive load increases (Brown et al., 1999). 

With respect to strategy, older adults are more likely than younger adults to initiate a stepping 

strategy at lower levels of postural threat (Brown et al., 1999; Little & Woollacott, 2014) and 

demonstrated a greater cognitive cost under dual-task conditions with a stepping strategy 

compared to an ankle strategy, whereas young adults did not show this pattern (Brown, 

Shumway-Cook, & Woollacott, 1999). 

Neuroimaging. Other researchers have linked structural and functional changes in the 

brain to performance on posture and gait tasks, which appear to involve both overlapping and 

distinct brain regions. Performance on postural tasks is negatively associated with cortical 

changes in the brain (e.g., brain atrophy; Papegaaij et al., 2014) and volume in gray matter 

regions such as the basal ganglia, superior posterior parietal cortex, and cerebellum which are 

correlated with balance difficulty (Rosano et al., 2007a). Decreased gait speed and higher gait 

variability are also associated with smaller overall cortical gray matter volume, but also 

specifically within the hippocampus and anterior cingulate gyrus as well as greater white matter 

hyper-intensities (Ezzati et al., 2015; Rosano et al., 2007a; Rosano, Brach, Studenski, 

Longstreth, & Newman, 2007b; Rosso et al., 2014).  
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Other approaches such as fMRI PET, EEG and functional near infrared spectroscopy 

(fNIRS) have been used to collect real-time recordings during balance and walking tasks. Using 

these techniques, researchers have demonstrated increased activation in the premotor cortex, 

prefrontal cortex, basal ganglia, cerebellum and brainstem, when subjects imagined themselves 

standing while lying in the scanner (Papegaaij, 2014). Additionally, older adults recruit cerebral 

networks involving temporal, prefrontal and subcortical regions to perform balance tasks, with 

increased activation observed during challenging dual-task conditions (e.g., unpredictable events, 

low sensory input; Wittenberg, Thompson, Nam, & Franz, 2017). Using time-sensitive EEG, 

researchers have demonstrated that cortical responses adapt in the context of cues suggesting that 

cognitive resources are involved in planning postural responses (Papegaaij, 2014) and that 

postural responses to unpredictable perturbations appear to be slowed or weakened with age 

particularly in the later, more controlled phases of the postural response (Maki & McIlroy, 

2007).  

Turning to gait, imagined locomotion activates an indirect pathway via the supplementary 

motor cortex and basal ganglia loop implicating the primary sensorimotor area, prefrontal area, 

and temporal lobe in more cognitively demanding gait protocols such as walking while talking 

(Holtzer et al., 2014). When performing gait tasks, there is an associated increase in cerebral 

oxygenation in the prefrontal cortex (PFC), premotor cortex and SMA with increasing dual-task 

attentional demands and in anticipation of the acceleration of gait. These changes are also 

modulated by age, disease status, and walking capacity (Holtzer et al., 2011; Holtzer et al., 2015; 

Mirelman et al., 2014).  

Intervention. Several different approaches have been used to improve single- and dual-

task gait and posture. Beyond physical and balance training, researchers have used computerized 
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cognitive training which has been shown to reduce postural sway in single- and dual-task 

conditions (Fraser et al., 2017; Li et al., 2010). Similarly, cognitive training programs designed 

to improve executive function, attention, and memory have demonstrated benefit to gait speed 

during normal paced walking and dual-task walking (Smith-Ray et al., 2013; Verghese, 

Mahoney, Ambrose, Wang, & Holtzer et al., 2010).   

 Another approach combines physical and cognitive training in multimodal formats 

typically using one of two formats: sequential training where the two tasks are administered 

separately or simultaneous training where the two tasks are administered concurrently. 

Simultaneous training may be more advantageous as it trains real-life scenarios, reduces training 

time and costs (Theill et al., 2013) and trains coordination between cognitive and physical tasks 

(Zhu et al., 2016). On the other hand, simultaneous training may take attention away from the 

cognitive training task (Li, Lindenberger, Freund, & Baltes, 2001) meaning sequential training 

may be more advantageous as it allows for individuals to focus complete attention on training the 

cognitive and physical training tasks.  

The literature comparing multimodal training to single domain training is mixed. Some 

have demonstrated increased efficacy of sequential (Zhu et al., 2016) and simultaneous training 

(Agmon, Belza, Nguyen, Logsdon, & Kelly, 2014) when compared to single domain training on 

dual-task outcomes with respect to gains on the cognitive, motor or both tasks (Agmon et al., 

2014). Others (Desjardins-Crépeau, 2016; Fraser et al., 2017) have failed to find synergistic 

effects when comparing sequential physical (i.e., aerobic) and cognitive (i.e, dual-task) training 

to single domain training. Specifically, participants were randomized to one of three active 

treatment groups (i.e., cognitive, physical, cognitive + physical) or an active control group for 12 

weeks of tri-weekly training. While all participants in the active treatment groups improved on 
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outcomes of dual-task walking, postural sway, and functioning mobility, there was no additional 

benefit to training both tasks sequentially (Desjardins-Crépeau, 2016; Fraser et al., 2017).  

Self-efficacy. Self-efficacy within the domain of mobility is often described by constructs 

such as balance confidence (Powell & Myers, 1995) or fear of falling (Scheffer, Schuurmans, 

van Dijk, van der Hooft, & de Rooij, 2008). Although objective balance performance is a 

significant contributor to balance confidence, it cannot fully account for all the variance in 

balance confidence (Hatch, Gill-Body, & Portney, 2003). Self-efficacy can also translate to 

behavioural outcomes in that decreased balance confidence can contribute to the avoidance of 

activities resulting in physical frailty, falls and loss of independence (Rand, Miller, Yiu, & Eng, 

2011).  

Hearing and Motor Aging 

 Hearing and motor aging are also connected in that individuals with hearing loss are at a 

greater risk for falls (Lin & Ferruci, 2012; Viljanen et al., 2009). Additionally, severity of 

hearing impairment is associated with higher prevalence of difficulties with walking and falls as 

well as decreased performance on several objective measures of postural control (Agmon, Lavie, 

& Doumas, 2016). Similarly, a recent observational study (Wollesen et al., 2017b) revealed that 

older adults with hearing loss showed reduced walking speed which was accompanied by 

decreased step length and increased cadence, particularly in challenging dual-task conditions. 

Although less work has explicitly measured hearing, motor and cognitive functioning together, 

some researchers have considered these domains simultaneously. Using virtual-reality to mimic 

everyday motor-sensory challenges, researchers have demonstrated that while all older adults 

appeared to prioritize the walking task, those with hearing loss demonstrated greater stride 

variability and lowered performance on the auditory cognitive task (Lau et al., 2016; Niebrowska 
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et al., in press). Additionally, taking an intervention approach, others (Shayman, Earhart, & 

Hullar, 2017) have demonstrated improved gait and balance with assistive devices such as 

hearing aids and cochlear implants.  

The Current Studies 

 In sum, a growing body of research suggests that both hearing and mobility increasingly 

rely on cognitive resources with age. Additionally, within this framework, increased hearing loss 

would negatively impact mobility performance and vice versa. Given the central role of 

cognition in both sensory and sensorimotor aging, the current studies aimed to investigate the 

role of cognition in both hearing and mobility domains among older adults using three different 

approaches. 

Specifically, the first experimental study investigated the role of cognition by 

manipulating cognitive load and simulating age-related hearing loss using a dual-task cognitive-

motor paradigm. Rather than increase cognitive load, the second study took an intervention 

approach using combined physical and cognitive training to strengthen cognitive resources with 

the goal of also increasing cognitive-motor dual-tasking. Lastly, the third study used modeling 

techniques to examine the relations between cognitive, mobility and hearing domains from an 

individual difference perspective and incorporating the concept of self-efficacy. Generally, we 

expected that older adults with hearing loss would show greater dual-task costs given the 

increased reliance on cognitive resources. We also anticipated that strengthening cognition 

would benefit dual-task outcomes measures, particularly among those with hearing loss. Lastly, 

we expected that hearing loss would be associated with decreased cognition and mobility.   
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Abstract 

Objectives: Among older adults, hearing loss is associated with an increased risk for falls. The 

aim of the present study was to experimentally investigate the cognitive compensation 

hypothesis, wherein decreased auditory and motor functioning are compensated by the 

recruitment of cognitive resources. Method: 29 younger adults (YA), 26 older adults (OA), and 

32 older adults with age-related hearing loss (ARHL) completed a dual-task paradigm consisting 

of cognitive and balance recovery tasks performed singly and concurrently. The auditory stimuli 

were presented with or without background noise. Results: Both older adult groups performed 

significantly worse than YA on the cognitive task in noisy conditions and ARHL also 

demonstrated disproportionate negative effects of dual-tasking and noise. The kinematic data 

indicated that OA and ARHL demonstrated greater plantarflexion when compared with YA. 

Conversely, YA showed greater hip extension in response to dual-tasking. Discussion: The 

cognitive and balance results suggest that YA were able to flexibly allocate their attention 

between tasks, whereas ARHL exhibited prioritization of posture over cognitive performance.  

Word count: 165 (max 200) 

Key words: Motor Aging, Auditory Aging, Postural Recovery, Cognitive Compensation  
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Introduction 

With age, older adults experience increasing difficulty with cognitive, physical and 

sensory functioning, which in turn affects social functioning and impacts independent living. 

Epidemiological work demonstrates that poorer hearing acuity is associated with an increased 

risk of falling (Lin & Ferrucci, 2012; Viljanen et al., 2009). With age, both auditory functioning 

and balance increasingly rely on cognitive resources to compensate for peripheral changes (Li & 

Lindenberger, 2002), suggesting that both domains compete for common cognitive resources. 

However, despite the accumulating correlational evidence, little experimental research exists 

investigating this association. The present study was designed to test this hypothesis using an 

auditory-motor dual-task paradigm with young, older, and older adults with age-related hearing 

loss.  

Auditory aging 

With age, hearing is impacted by both peripheral and cognitive changes (Schneider et al., 

2010), such as elevated thresholds for tone detection in the high frequency range (i.e., 4000 Hz, 

8000 Hz) and suprathreshold difficulties when auditory stimuli are presented in multi-speaker 

contexts and in environments with background noise (Schneider et al., 2010). Declines in 

cognitive and attentional processes such as inhibition, working memory, and processing speed 

also contribute to age-related difficulties in speech comprehension and auditory memory 

(Schneider et al., 2010).  

Support for the association between cognitive and auditory aging can be found in 

experimental studies of speech perception wherein sensory load is manipulated. One common 

approach is to overlay target speech with background noise such as multi-speaker babble, which 

is more detrimental to older listeners’ performance than to young, and might prompt a greater 
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reliance on top-down processes (Pichora-Fuller et al., 2016). Importantly, this utilization of top-

down resources in speech perception may come at a cost to other cognitive processes such as 

those needed for memory encoding (e.g., Murphy et al., 2000).  

Another experimental strategy used to examine the cognitive contribution to hearing in old 

age is to add a concurrent task to the listening task (i.e., dual-tasking). For example, dual-task 

costs are exacerbated by aging and hearing loss during performance of an auditory recognition 

memory task (Gosselin & Gagné, 2011; Tun et al., 2009). Importantly, these patterns of age-

differential cognitive costs persist even when the presentation level (in dB-A) is adjusted 

individually to control for hearing loss (e.g., Heinrich et al., 2008). Together, the available 

evidence indicates an increasing interaction between auditory and cognitive processing with age, 

and a greater reliance on cognitive capacity for those with hearing loss (Heyl & Wahl, 2012).   

Motor Aging 

Similar to the auditory aging findings, patterns of cognitive compensation have been 

observed during balance and gait as expressed with behavioural and neural indices (Seidler et al., 

2009; Woollacott & Shumway-Cook, 2002; Yogev-Seligman, Hausdorff, & Giladi, 2008). 

Importantly, postural sway increases with age (Maylor & Wing, 1996), and is associated with 

subsequent falls (Maki et al., 1990). When encountering dynamic postural challenges, such as an 

unpredictable platform movement (i.e., perturbation), typical postural recovery progresses from 

ankle, hip, to stepping strategies as perturbations become more challenging (Horak et al., 1997; 

Nashner & McCollum, 1985).  Compared to younger adults, older adults generate a greater 

center of mass (i.e., COM) sway (Tsai et al., 2014), which may be further exacerbated by 

postural threat or concurrent cognitive demands. In a study of postural recovery from a forward 

platform perturbation, older adults demonstrated a greater cognitive cost under dual-task 
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conditions with a stepping strategy compared to an ankle strategy, whereas young adults did not 

show this pattern (Brown et al., 1999), suggesting that postural recovery strategies vary in their 

attentional demands.  

Another notable age difference in motor strategy is that older adults tend to prioritize 

physical safety over cognitive performance in the context of cognitive-motor dual-tasking (Li et 

al., 2005). This pattern of prioritization has been termed the “posture first” response, and is 

evident in cognitive-motor dual-task studies when older adults show greater cognitive dual-task 

costs than young adults, but comparable motor costs. Others have found that within dual-task 

conditions, older adults exhibit less sensitivity to manipulations of cognitive task difficulty 

compared to younger adults, suggesting that they are less willing to relinquish resources to 

address increased cognitive demands (e.g., Lajoie, Teasdale, Bard, & Fleury, 1993). 

In sum, the current research on mobility and aging strongly parallels the research on auditory 

aging, in showing an increasing role of cognitive resources to address sensory and motor 

declines. To merge these separate areas of research, our present thesis is that because both 

hearing and motor performance require greater cognitive capacity in aging, there is competition 

for compensatory cognitive resources, which may account for the extant correlations between 

hearing loss and mobility decline (Agmon et al., 2017; Lin & Ferrucci, 2012).  

Current Study  

To experimentally integrate the domains of auditory and motor aging, a dual-task method 

was used to challenge younger adults, normal hearing older adults, and older adults with age-

related hearing loss. In line with the cognitive compensation view, we paired a challenging 

auditory working memory task with a postural recovery task, expecting that older adults with 

age-related hearing loss would show disproportionately greater dual-task costs than normal 
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hearing young and older adults, due to greater reliance on cognitive resources with hearing loss. 

Listening difficulty was also manipulated by adding background noise to the auditory stimuli. 

Based on previous findings, we expected that under noisy listening conditions, both older adults 

and older adults with age-related hearing loss would perform more poorly on the auditory 

cognitive task than younger adults. Finally, in line with the posture first principle, we anticipated 

that both older adult groups would prioritize balance performance over performance on the 

auditory cognitive task due to the ecological value of maintaining one’s balance, whereas young 

adults would be able to more flexibly distribute their attentional resources between the auditory 

task and the balance task.  

Method 

Participants  

The total sample consisted of eighty-seven individuals: twenty-nine healthy younger adults 

(YA) between the ages of 18 and 30 years old (M = 21.83, SD = 3.01, females = 25) recruited 

through the Concordia University participant pool, twenty-six healthy older adults (OA) between 

the ages of 65 and 85 years old (M = 65.19, SD = 3.26, females = 20) and thirty-two older adults 

with age-related hearing loss (ARHL) between the ages of 65 and 85 years old (M = 70.75, SD = 

5.76, females = 15) recruited through an existing senior participant pool at Concordia and 

advertisements in a local senior paper. ARHL participants were defined as having an average 

pure-tone hearing threshold between 25-40 dB HL (i.e., decibel hearing level; re: ANSI S3.6-

2004), while normal hearing younger and older adults were defined as having an average pure-

tone hearing threshold below 25 dB HL. YA received course credits and older adults received an 

honorarium. Exclusion criteria included the existence of any progressive medical conditions and 

the use of any medication affecting cognitive or balance abilities. Further exclusion criteria 
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included suspected presence of mild cognitive impairment as defined by the Montreal Cognitive 

Assessment (MoCA < 26/30; Nasreddine et al., 2005), hearing aid use, and any self-reported 

difficulties in balance or mobility. Participants were also required to be fluent in English and 

have normal or corrected-to-normal visual acuity. Of the 141 participants screened, 54 were 

ineligible due to low MoCA scores, poor physical health, scheduling conflicts, or severity of 

hearing loss.  

Materials  

Session 1: Screening and background. A health and demographics questionnaire was 

administered by telephone to evaluate eligibility. Eligible participants underwent in-person tests 

of sensory, motor, and cognitive functioning. Measures used for screening purposes are marked 

below with an asterisk.  

Cognitive measures. Global cognitive functioning was assessed using the Montreal 

Cognitive Assessment “MoCA”* (Nasreddine et al., 1996) with a score of 26/30 or greater 

indicating normal cognitive performance. Cognitive processing speed and working memory were 

assessed using the Coding (Digit Symbol) Task and Letter Number Sequencing subtests of the 

Wechsler Adult Intelligence Scale (WAIS-IV; Wechsler, 2008) respectively. Executive 

functioning was measured using the Trail Making subtest of the Delis Kaplan Executive 

Functioning Scale “D-KEFS” (Delis, Kaplan, & Kramer, 2001), which assesses visuomotor 

processing speed (Conditions 2 & 3) and task switching (Condition 4). To isolate the executive 

component of the task, the average time to complete the visuomotor processing speed conditions 

was subtracted from the task switching condition.    

Sensory measures.  Air-conduction pure-tone audiometry* was administered using a Maico 

(MA 42) audiometer to assess hearing acuity for group classification, and to derive an average 
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pure-tone threshold, which was then used to determine the appropriate intensity at which to 

present the auditory experimental stimuli. Participants were presented with pure tones at varying 

frequencies (250-8000 Hz) following standard procedure. The mean detection threshold of 

hearing corresponded to the average of the tone detection thresholds assessed at 500, 1000, 2000 

and 3000 Hz, in both ears. Participants were also administered the Listening Self Efficacy 

Questionnaire (LSEQ: Smith et al., 2011), as a subjective index of hearing ability.  

Physical measures. Global mobility was assessed using the Dynamic Gait Index (DGI: 

Shumway-Cook et al., 1997), a multi-component assessment (e.g., turning, stair ascent). The 

maximum possible score on the DGI is 24 and scores of 19 or less have been related to increased 

incidence of falls in the elderly (Shumway-Cook et al., 1997). Mobility was further assessed 

using the Sit-to-Stand task (Puthoff, 2008), which measures total time to stand up five times 

from a seated position with their arms crossed. The Activities-Specific Balance Confidence Scale 

“ABC Scale” (Powell & Myers, 1995) assessed self-reported balance confidence during different 

activities.  

Session 2: Experimental tasks. 

Balance task. The balance task involved a custom made perturbation platform (H2W, 

California) that delivered perturbations in the forward direction for a distance of 50 mm at a 

maximum velocity of 130-135 mm/s and an acceleration of 600-650 mm/s2 (Quant, Adkin, 

Staines, Maki, & McIlroy, 2004). These parameters were designed to produce a mild 

perturbation that would not elicit a stepping response. A motion capture system made up of 8 

MX-T20 cameras sampling at 100Hz (Vicon Motion Systems Ltd., Oxford, U.K.) was used to 

measure 3-dimensional positioning of major landmarks on the body (i.e., legs, chest, arms, head) 
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using a standard whole-body 35 marker placement protocol (Plug-in Gait) and four markers on 

the moving platform.  

Participants stood on the platform with their feet positioned shoulder width apart. They were 

instructed to remain as stable as possible with their hands on their hips and look forward at a 

stationary target (7.5 x 2 cm) located 4.4 m away. During each 30 second trial, participants 

experienced zero, one, or two perturbations, in random order. Perturbations occurred in one of 

two time windows (i.e., the first or second time window). For trials with two perturbations (one 

in each time window), the second perturbation occurred no less than five seconds after first to 

allow for adequate recovery time. Three short beeps signaled the beginning of each trial and a 

single beep signaled the end of the trial.   

Cognitive task. The auditory working memory “n-back” task (Kirchner, 1958) served as the 

experimental cognitive task. In each trial, participants were presented with fifteen pseudo-

randomly ordered (without consecutive repetition) single digit numbers between one and ten 

excluding the two-syllable numeral seven at a fixed presentation rate of one digit per second. The 

stimuli were presented via insert headphones (E-A-RLINK 3A) at 50 dB greater than each 

participant’s average pure-tone threshold, as determined in Session 1. Participants were asked to 

report the number presented one step prior to the currently presented number (1-back) while the 

tester recorded their verbal responses. Half the trials were presented in quiet and half were 

presented in background noise (i.e., multi-talker babble consisting of six people speaking 

simultaneously) at a fixed signal-to-noise ratio (SNR) of -6 dB.  

Procedure  

All participants were tested individually at the PERFORM Centre of Concordia 

University. In Session 1, participants completed the demographic questionnaire and background 
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measures of cognition, mobility and audition. During Session 2, participants completed the 

experimental cognitive and balance tasks under single and dual-task conditions. Participants first 

practiced on each of the experimental tasks separately. Following practice, participants were 

administered blocks of five trials of the cognitive and balance tasks separately without feedback, 

followed by two dual-task blocks of five trials in which the 1-back and balance tasks were 

performed concurrently. Under the dual-task condition, participants were instructed to treat each 

task as equally important. Finally, single-task blocks of the balance and cognitive tasks were 

administered again. This entire sequence was performed twice – once under quiet conditions, and 

once under noise conditions. Participants were given a seated break between any consecutive 

blocks involving the balance task. The order of task (balance or cognitive task) and auditory 

condition (quiet or noise) was counterbalanced between participants. 

Data Analyses  

Balance Data. Raw trajectory data collected via the motion capture system were filtered 

with a recursive low-pass Butterworth filter at 6 Hz. The filtered data were then used to compute 

ankle and hip angular displacements in the sagittal plane (see Appendix A). The analysis window 

was five seconds long; one second before each perturbation onset and four seconds after. The 

ankle plantarflexion amplitude refers to the most plantarflexion (i.e., foot pointed down) 

compared to the participant’s baseline standing position prior to the perturbation. The hip 

extension amplitude refers to the most hip extension (i.e., sway-back or leaning backwards) 

compared to the participant’s baseline standing position prior to the perturbation.  

Cognitive Data. Cognitive performance was defined as the total number of correct 

responses identified in a given trial (maximum of 14 correct per trial). The number of correct 

responses was then summed across all ten trials per condition and converted to a percentage. To 
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further explore the degree of interference from the secondary motor task, dual-task costs were 

calculated for the cognitive data by subtracting dual-task scores from single-task scores in both 

noise and quiet conditions for each participant. 

Results 

Data Screening. All measures were checked for outliers (i.e., > 3.5 SD) both in terms of 

intra-individual and interindividual variability. One OA and one ARHL participant were each 

found to have one extreme score on a cognitive trial and therefore their scores were replaced 

with the next most extreme value on that trial type for that age group.  

Background measures.  Descriptive statistics and between-groups analyses are shown 

for all background measures in Table 1. To examine group differences on the background 

measures, a series of one-way ANOVAs with follow-up Bonferroni corrected contrasts were 

performed for measures administered to all three groups of participants. For measures only 

administered to the older adults (MoCA, DGI), independent samples t-tests were conducted to 

compare the OA and ARHL groups. Notably, compared to the ARHL group, the OA group 

performed better on processing speed measures (i.e., Coding and DKEFS Trails Condition 

Three), task switching (DKEFS Trails Condition Four) and the MoCA. Furthermore, the OA 

group demonstrated higher confidence in both their balance (ABC) and listening (LSEQ) than 

the ARHL group, and performed better on the objective measure of global mobility (i.e., DGI).  

However, after controlling for age, OA and ARHL groups only differed significantly on the ABC 

scale.   

Cognitive Accuracy  

To assess cognitive performance on the 1-back working memory task, a Group (YA vs. 

OA vs. ARHL) x Attentional Load (single task vs. dual task) x Auditory Challenge (quiet vs. 
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noise) mixed factorial ANOVA was performed using the accuracy scores (%; see Figure 1). The 

analysis revealed a significant main effect of auditory challenge, F(1, 84) = 413.22, p < .001, p 
2 

= .84, such that cognitive performance was higher in quiet (M = 97.79, SE = .29) than noise 

conditions (M = 62.21, SE = 1.80). A significant main effect of group was also observed, F(2, 

84) = 3.81, p = .026, p 
2 = .08. Pairwise comparisons with Bonferroni correction revealed that 

YA (M = 83.61, SE = 1.63) performed significantly better than ARHL (M = 77.77, SE = 1.55) 

across all conditions (p = .033). All other pairwise comparisons between groups were not 

statistically significant (ps ≥ .114). Statistically significant 2-way interactions were observed for 

group and auditory challenge, F(2, 84) = 4.82, p = .010, p 
2 = .10, and group and attentional 

load, F(2, 84) = 5.26, p = .007, p 
2 = .11. These were qualified by a significant 3-way 

interaction of group, auditory challenge and attentional load, F(2, 84) = 7.30, p = .001, p 
2 = .15. 

This significant 3-way interaction was preserved even when controlling for age and sex, F(2,81) 

= 3.21, p = .046, p 
2 = .073. All remaining main effects and interactions were not statistically 

significant (ps ≥ .448).  

To explore the three-way interaction of group, attentional load, and auditory challenge, a 

series of Attentional Load ANOVAs were performed for each group to investigate the impact of 

attentional load in noise conditions. Among YA, a main effect of attentional load was observed 

in noise conditions, F(1, 28) = 8.77, p = .006, p 
2 = .24 such that cognitive accuracy was higher 

in dual-task noise (M = 70.96, SD = 13.29) conditions compared with single-task noise 

conditions (M = 68.10, SD = 14.83). Among the ARHL group, a main effect of attentional load 

was also observed in noise conditions, F(1, 31) = 5.50, p = .026 p 
2 = .15 with significantly 

worse performance in dual-task noise conditions (M = 55.93, SD = 18.99) compared with single-
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task noise conditions (M = 59.00, SD = 19.47). All other main effects were non-significant (ps ≥ 

0.239). 

To further explore dual-tasks costs, a Group x Auditory Challenge ANOVA was 

performed using 1-back dual-task costs. Analyses revealed a significant main effect of group, 

which was qualified by a statistically significant 2-way interaction of group and auditory 

challenge, F(2, 84) = 7.30, p = .001, p 
2 = .15. To explore this interaction, a series of one-way 

ANOVAs were performed to compare groups on dual-task costs in noise and quiet conditions 

separately. In noise conditions, there was a statistically significant effect of group on dual-task 

cost F(2, 84) = 6.81, p = .002,  2 = .14, with Bonferroni corrected pairwise comparisons 

revealing that ARHL (M = 3.07, SE = 1.31) demonstrated greater dual-task costs than both YA 

(M = -2.86, SE = 0.96) and OA (M = -1.67, SE = 1.39).  

Balance Analysis 

 Ankle Plantarflexion Amplitude (degrees). A Group x Attentional Load x Auditory 

Challenge mixed factorial ANOVA was performed using the amplitude of plantarflexion (i.e., 

foot pointed down) exhibited by the ankles (see Figure 2). Results revealed a main effect of 

group, F(2, 81) = 6.60, p = .002, p 
2 = .140, with follow-up Bonferroni contrasts indicating that 

both OA (M = -0.90, SE = 0.14) and ARHL (M = -0.93, SE = 0.12) demonstrated greater 

plantarflexion across all conditions when compared with YA (M = -0.35, SE = 0.13). The same 

ANOVA analysis performed using only the two older adult groups and covarying out age and 

sex revealed non-significant findings (ps ≥ .151). Additionally, there was a main effect of 

attentional load, F(1, 81) = 11.36, p = .001, p 
2 = .123, such that all participants demonstrated 

greater plantarflexion in single-task (M = -0.80, SE = 0.08) compared with dual-task (M = -0.65, 

SE = 0.07) conditions. To further explore the interference from a secondary cognitive task, dual-
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task costs (DTC) were calculated by subtracting single-task performance from dual-task 

performance for both quiet and noisy listening conditions. A Group x Listening Condition 

ANOVA using DTC as the dependent variable revealed non-significant findings (ps ≥ 0.196). 

Hip Extension Amplitude (degrees). A Group x Attentional Load x Auditory Challenge 

mixed factorial ANOVA was performed using amplitude of hip extension (see  

Figure 2). Analyses revealed an interaction of group and attentional load, F(2, 81) = 4.38, p = 

.016, p
2 = .098. Simple main effects analyses were carried out to explore this interaction. 

Analyses revealed a main effect of attentional load among YA, F(1, 28) = 5.62, p = .025, p
2 =  

.167, such that they exhibited more hip extension in dual-task (M = -0.85, SE = 0.16) compared 

with single-task (M = -0.66, SE = 0.16) conditions. All other main effects across age groups were 

not statistically significant (ps ≥ .062). The same ANOVA analysis performed using only the two 

older adult groups and covarying out age and sex revealed non-significant findings (ps ≥ .054).  

Discussion 

 The purpose of the current study was to experimentally integrate the two domains of 

auditory and motor functioning to better understand their correlation, as shown in 

epidemiological studies (Viljanen et al., 2009). We used a dual-task design to challenge younger 

adults, older adults, and older adults with age-related hearing loss and evaluated the impact of 

auditory challenge and cognitive load on dual-task balance performance. As hypothesized, both 

older adults exhibited disproportionate negative effects with increases in auditory challenge (i.e., 

noise), and the ARHL group demonstrated greater dual-task costs in noise when compared with 

OA and YA. Furthermore, in line with the posture first principle, the ARHL group prioritized 

balance performance over cognitive performance likely due to the ecological value of balancing, 
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whereas YA were able to more flexibly distribute their attentional resources between the 

auditory task and the balance task.  

Auditory Working Memory Performance 

The present study was based on the assumption that with age, cognitive resources become 

more limited and therefore performance might be more negatively impacted by an increased 

attentional load or when information was presented in a noisy environment. As predicted, the 

ARHL group demonstrated lower cognitive performance on the 1-back task when compared with 

YA. Furthermore, all participants were negatively impacted by the addition of noise. Most 

importantly for our hypothesis and congruent with prior research on the negative impact of 

babble on word identification and memory encoding (Murphy, Daneman, & Schneider, 2006), 

this noise effect was magnified among the ARHL group. This finding is notable given that the 

presentation level of the auditory stimuli was adjusted to correct for individual differences in 

hearing acuity. In addition, the ARHL group demonstrated a drop in cognitive performance when 

moving from single- to dual-task conditions in the presence of noise, demonstrating a dual-task 

cost not present in the other two groups. In contrast, we observed an increase in cognitive 

performance among YA when moving from single- to dual-task conditions in noise, suggesting 

an ability to modulate task emphasis as conditions change.  

The correlational results further support the cognitive compensation viewpoint (Li & 

Lindenberger, 2002). Among the ARHL group, 1-back accuracy in the most challenging dual-

task noise condition correlated significantly with a measure of working memory (r = .38, p = 

0.031), but not with average hearing thresholds (r = -.08, p = .519), suggesting that peripheral 

hearing loss is not enough to account for group differences. Additionally, although the ARHL 

group demonstrated decreased cognitive abilities on numerous background measures consistent 
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with previous work (e.g., Lin, 2011), controlling for individual differences on background 

cognitive measures generated the same pattern of findings.   

Postural Recovery Strategies 

  Turning to the parameters reflecting postural recovery, as expected based on previous 

work (Horak et al., 1997; Nashner & McCollum, 1985), participants implemented more of an 

ankle strategy in response to less challenging perturbations (i.e., single-task) as compared with 

more difficult task conditions (i.e., dual-task). Furthermore, congruent with previous research 

(Brown et al., 1999; Quant et al., 2004), age differences in postural recovery strategy were 

found. YA exhibited a hip strategy in response to challenging task conditions whereas older adult 

groups exhibited greater use of an ankle strategy across all conditions, irrespective of hearing 

status. This finding is further evidence that older adults maintain an attentionally economical 

strategy to conserve cognitive resources, while younger adults adapt their strategy to increasing 

task challenge (Brown et al., 1999).  

Task Prioritization 

Considering the cognitive and balance results together, the current findings also converge 

with other research (Lajoie et al., 1993) in that YA were able to respond to task manipulations 

(i.e., addition of noise or concurrent task) and flexibly split attention between the two tasks, 

whereas older adults maintained a posture first response as a means of protecting balance. 

Postural prioritization among the ARHL group was further supported through cognitive dual-task 

costs in noisy conditions, suggesting that they reallocated their cognitive resources to 

maintaining their postural strategy in the most challenging condition (e.g., Doumas, Smolders, & 

Krampe, 2008).  



35 

 

These results are in line with the cognitive compensation view (Li & Lindenberger, 2002) in 

that the ARHL group demonstrated a drop in cognitive performance in the most challenging 

dual-task noise condition. Importantly, the postural strategy of both older adult groups was 

invariant in response to the noise manipulation suggesting that the ARHL group reallocated 

cognitive resources from the working memory to the motor task in order to maintain their 

posture. Interestingly, the ARHL group also demonstrated a lower score on a self-report measure 

of balance confidence even after controlling for age, suggesting that their pattern of prioritization 

may be influenced by a fear of falling. Similar cognitive dual-task costs were not observed for 

the OA group suggesting they had sufficient cognitive resources to maintain task performance in 

the most challenging condition. If the level of challenge was increased (e.g., faster perturbation), 

it is likely that the OA group would also demonstrate a trade-off in performance in favor of 

maintaining postural stability.  

Limitations and Future Directions 

One possible limitation to the interpretation of our findings is that we did not control for 

vestibular dysfunction despite using self-report measures of fall history and vertigo and an 

objective measure of mobility. However, controlling for vestibular function did not change the 

magnitude of the association between hearing loss and falls in a study of young adults and older 

adults (Lin & Ferrucci, 2012). Nevertheless, future studies would benefit from including 

objective assessment of vestibular impairment (Jacobson & Shepard, 2008). A further limitation 

is that the sample consisted of older adults with only mild hearing loss (i.e., average pure-tone 

thresholds of 25-40 dB-A). If older adults with more severe hearing loss were tested in future, we 

expect that the effect of dual-tasking and noise would be exacerbated among individuals with 

moderate to severe hearing loss. Lastly, our older adult groups were not balanced for age and 
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sex. However, these demographic variables are strongly correlated with hearing loss (Stenklev & 

Laukli, 2004) and therefore the current sample of older adult men is representative of the ARHL 

population. Moreover, group differences on the experimental working memory task were 

preserved even when controlling for these demographic variables.    

Conclusions 

The current work complements the epidemiological evidence linking hearing loss and 

reduced mobility (Viljanen et al., 2009) and provides new experimental evidence showing 

competition for common cognitive resources in the context of simultaneous auditory and motor 

demands even after correcting for individual differences in hearing acuity. For older adults with 

mild hearing loss, this competition for cognitive resources was even more apparent, suggesting 

that falls risk or reduced working memory efficiency could be exacerbated during everyday 

activities. Evidence of the interdependence of sensory, motor, and cognitive factors in old age 

could be used to inform rehabilitation programs in the fields of physical therapy and audiology 

by incorporating cognitive training (Li et al., 2010). Future research is needed to determine 

whether cognitive training might therefore reduce the risk of falling particularly in older adults 

with hearing loss. 
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Table 1 

Means and standard deviations for all baseline measures 

 

Source YA OA ARHL Differences 

Age (years) 21.83 (3.01) 65.19 (3.26) 70.75 (5.76) 1, 2, 3 

Education (years) 14.15 (1.10) 16.88 (1.66) 16.47 (3.32) 1, 2 

Average Hearing 

Threshold (dB) 

11.72 (3.81) 18.48 (3.14) 29.07 (3.78) 1, 2, 3 

Letter-Number 

Sequencing (max 30) 

19.66 (2.04) 19.04 (2.81) 18.78 (2.55) -- 

Digit Symbol (max 135) 81.54 (8.79) 72.81 (12.78) 61.88 (12.17) 1, 2, 3 

DKEFS Trails Condition 

2 (seconds) 

24.14 (4.43) 32.82 (13.28) 37.37 (12.96) 1, 2 

DKEFS Trails Condition 

3 (seconds) 

26.27 (6.05) 32.20 (10.47) 40.30 (15.49) 2, 3 

DKEFS Trails Condition 

4 (seconds) 

63.24 (21.84) 73.37 (26.73) 102.36 (38.44) 2, 3 

DKEFS Trails Difference 

(seconds) 

38.04 (20.05) 42.03 (18.72) 63.53 (32.24) 2, 3 

MoCA (max 30) -- 27.88 (1.77) 26.78 (1.93) 3 

ABC (max 100) 95.33 (3.24) 96.78 (2.85) 90.68 (9.14) 2, 3 

LSEQ (max 100) 89.82 (7.32) 84.42 (9.89) 75.36 (17.04) 2, 3 

Sit to Stand (seconds) 10.07 (1.59) 13.09 (3.10) 12.96 (3.57) 1, 2 

DGI (max 24) -- 23.73 (0.53) 22.71 (1.74) 3 

 

Note. 1 denotes a statistically significant group difference between YA and OA, 2 denotes a 

statistically significant group difference between YA and ARHL and 3 denotes a statistically 

significant group difference between OA and ARHL at p <.05. DKEFS = Delis Kaplan 

Executive Function System. MoCA = Montreal Cognitive Assessment. ABC = Activities-

Specific Balance Confidence Scale. LSEQ = Listening Self-Efficacy Questionnaire. DGI = 

Dynamic Gait Index.   
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Figure 1. Cognitive 1-back Task Accuracy (%) as a function of age group, auditory challenge, 

and attentional load. Note. Error bars represent one standard error of the mean. YA = younger 

adults. OA = older adults. ARHL = older adults with age-related hearing loss. 
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Figure 2. Ankle Plantarflexion Amplitude in degrees (A) and hip extension amplitude in degrees 

(B) as a function of age group, auditory challenge, and attentional load. Note. Error bars 

represent one standard error of the mean. YA = younger adults. OA = older adults. ARHL = 

older adults with age-related hearing loss. 
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CHAPTER THREE 

STUDY 2 

 

 

 

 

 

The Effect of Simultaneously and Sequentially Delivered Cognitive and Aerobic Training 

on Mobility among Older Adults with Hearing Loss 
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Abstract 

 

Background: Older adults exhibit declines in auditory and motor functioning, which are 

compensated for through the recruitment of cognitive resources. Cognitive or physical training 

alone has been shown to improve cognitive functioning and transfer to motor tasks, but results 

are mixed when these are combined in studies of healthy older adults, and few studies have 

included those with age-related hearing loss (ARHL), who are at a higher risk of falls. Research 

question: To examine format effects in mixed training, we used a repeated measures 

intervention design to compare the efficacy of Simultaneous and Sequential multimodal training 

formats. Methods: 42 older adults (Mage = 68.05, SDage = 4.65, females = 26) with (ARHL) and 

without hearing loss (OAH) completed an intervention study consisting of 12 sessions of 

multimodal training (computerized cognitive dual-task and recumbent aerobic cycling). 

Participants were randomly assigned to either the Simultaneous (concurrent cognitive and 

aerobic) or Sequential training group (cognitive followed by aerobic) and completed assessments 

of single- and dual-task mobility concurrent with an auditory working memory task. Training 

gains were assessed with repeated measures ANOVAs using magnitude of improvement from 

pre- to post-training on primary outcome measures as the dependent variable. Results: Gains in 

auditory working memory were greater in the Sequential group than Simultaneous particularly 

among OAH. ARHL participants were unaffected by format. While all participants improved on 

a measure of chair rises, there was no benefit to standing balance. The results demonstrate an 

advantage to Sequential training, suggesting a benefit to focusing on each task in isolation. 

Significance: The gains noted in the ARHL indicate the potential benefit of incorporating 

cognitive remediation into traditional audiological rehabilitation. Moreover, it is important to 

consider the cost of dividing attention when combining training.   
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Introduction 

 

 Aging is associated with declines in cognitive functioning especially in the domain of 

executive functions. In tandem, older adults also experience declines in sensorimotor and sensory 

functioning, which can be compensated for through recruitment of cognitive processes, also 

termed Cognitive Compensation (Li & Lindenberger, 2002). This effect is thought to be 

exacerbated among older adults with age-related hearing loss (ARHL), who are at a higher risk 

of falls (Viljanen et al., 2009). There is substantial evidence that cognitive remediation 

techniques, such as computerized cognitive training (e.g., Li et al., 2010) and exercise (Bherer, 

Erickson, & Liu-Ambrose, 2013) can enhance cognitive functions and consequently, improve 

mobility and posture (e.g., Li et al., 2010). More recently, researchers have examined multimodal 

physical and cognitive training formats in the interest of optimizing training and findings are 

mixed regarding their cumulative efficacy (Agmon et al., 2014; Zhu et al., 2016). The present 

study extends this multimodal approach to older adults with mild hearing loss. 

Hearing and Motor Aging 

There is an increasing interdependence between cognitive and both auditory and motor 

functioning with age (Li & Lindenberger, 2002). Within the domain of hearing, sensory 

challenges such as background noise (Pichora-Fuller et al., 2016) and lower signal intensity 

(Baldwin & Ash, 2011) are more detrimental to older than younger listeners’ working memory 

(WM) performance, and draw upon high-level cognitive processes and executive functions. 

Executive function involvement has also been observed during balance and walking tasks 

(Woollacott & Shumway-Cook, 2002). Cognitive-motor dual-task studies demonstrate an age-

related increase of cognitive recruitment to perform such tasks (Woollacott & Shumway-Cook, 

2002). While a simple cognitive task can sometimes facilitate postural performance (i.e., U-
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Shaped Non-Linear Interaction Model), dual-task costs are typically observed with increasing 

task complexity. According to the Task Prioritization Model, the nature of these costs depends 

on the novelty and type of motor task, complexity of the secondary cognitive task and degree of 

postural reserve and hazard estimation (Wollesen et al., 2017a). When costs are observed in the 

cognitive domain, this tendency to prioritize posture over the concurrent cognitive task is often 

referred to as the posture-first principle (Li et al., 2005). We have recently shown that the cost of 

prioritizing posture is exacerbated among individuals with ARHL, who demonstrate a greater 

cognitive dual-task cost in challenging balance conditions in in favor of posture (Bruce et al., 

2018). Other research has demonstrated that walking parameters are negatively impacted by 

hearing loss, particularly in dual-task conditions (Wollesen et al., 2017b). Since cognitive 

capacity is recruited to support performance in both motor and auditory domains, improving 

cognitive capacity might improve dual-task performance, particularly among ARHL.  

Cognitive remediation 

 Executive function training has been used to address the age-related declines in working 

memory and executive functions (Lustig, Shah, Seidler, & Reuter-Lorenz, 2009), which are 

important to target given their involvement in activities of daily living (Loewenstein & Acevedo, 

2010). Beyond improving cognition, this type of training produces gains that transfer to motor 

tasks, with improvements noted in gait speed and balance under dual-task conditions in healthy 

older adults (Li et al., 2010; Fraser et al., 2017). Another approach to cognitive remediation 

involves exercise training, with the largest gains observed in measures of executive function and 

attentional control (Bherer et al., 2013) as well as benefit to gait speed during dual-task walking 

(Plummer, Zukowski, Giuliani, Hall, & Zurakowski, 2015).  
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More recently, researchers have implemented multimodal approaches (exercise plus 

cognitive training) to maximize training gains among healthy older adults (Agmon et al., 2014) 

as well as with MCI and dementia populations (Karssemeijer et al., 2017) typically using two 

approaches: Simultaneous training wherein a motor and cognitive task are performed 

concurrently, and Sequential training wherein the two training modes are performed 

consecutively. Simultaneous training can be more advantageous as it is more comparable to real-

life situations, reduces training time and costs (Theill et al., 2013), and trains coordination 

between cognitive and physical components (Zhu et al., 2016). However, Simultaneous formats 

risk taking attention from the cognitive task (Li et al., 2001), while Sequential training allows 

participants to focus on both cognitive and physical tasks under full attention.   

The current literature on the efficacy of multimodal training compared with single 

domain (cognitive or motor) training is mixed although some have demonstrated transfer to daily 

activities (Laatar, Kachouri, Borji, Rebai, & Sahli, 2018) and instrumental activities of daily 

living (Tennstedt & Unverzagt, 2013) using both types of protocols. Some researchers have 

demonstrated increased efficacy of Sequential (Zhu et al., 2016) and Simultaneous training 

(Agmon et al., 2014) on dual-task outcome measures with training-related improvements 

observed through increased performance on the cognitive task, motor task, or on both (Agmon et 

al., 2014; Wollesen & Voelcker-Rehage, 2013). Using a protocol of tri-weekly training for 

twelve weeks, others failed to find synergistic benefits from sequentially combined physical and 

cognitive training (Fraser et al., 2017).  

In sum, while many studies using a multimodal training approach have demonstrated an 

improvement on some aspect of dual-task performance, the heterogeneity of methods makes 

comparisons between studies challenging (Agmon et al., 2014). To date, no study has directly 
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compared the effects of Sequential and Simultaneous training formats on dual-task mobility 

outcomes. Additionally, no studies have examined the effect of cognitive remediation on dual-

task mobility in older adults with hearing loss (Wollesen et al., 2017b). 

Current Study 

 We aimed to compare the effects of sequential and simultaneous formats of multimodal 

cognitive and exercise training on cognitive-motor dual-tasking in older adults with and without 

mild hearing loss. Older adults underwent aerobic exercise training and computerized dual-task 

training, either sequentially or simultaneously. Given that the efficacy of each training 

component has been previously established (e.g., Bherer et al., 2013; Fraser et al., 2017), we 

opted to omit a control group. Single-and dual-task measures of postural control and mobility 

were assessed and included two levels of listening challenge as primary outcome measures.  

Objectives and Hypotheses. Due to the increasing involvement of cognitive resources in hearing 

with aging, we considered a sub-a of older adults with mild hearing loss and hypothesized that 

these individuals would demonstrate dual-task training gains on the primary outcome measures, 

particularly in challenging auditory conditions (e.g., lowered volume). Given the cognitive 

involvement in sensorimotor and sensory functioning, we also hypothesized that all participants 

would demonstrate dual-task gains on the primary outcome measures, but based on the literature 

which shows age-related increases in cognitive-motor DT costs (Woollacott & Shumway-Cook, 

2002; Shumway-Cook et al., 1997), the Sequential training group would show larger gains than 

the Simultaneous group, due to the advantage of training each task under full attention.    

Methods 

Participants 

 To achieve a power of .80 at a significance level of p < .05 for the group by time 
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interaction, we aimed to test 20 participants per group to allow for attrition. A total of 42 older 

adults (M = 68.05 years, SD = 4.65, females = 26) were recruited through a participant pool and 

newspaper advertisements by the laboratory research staff. Exclusion criteria included the 

existence of any progressive medical conditions, the use of medications affecting cognition or 

balance, and suspected presence of mild cognitive impairment as defined by the Montreal 

Cognitive Assessment (MoCA < 26/30; Nasreddine et al., 2005). Additionally, cardiovascular 

health was assessed with the Jones protocol (Jones, Makrides, Hitchcock, Chypchar, & 

McCartney, 1985). Participants were excluded if they presented with cardiac symptoms or an 

elevated heart rate. All participants were non- hearing aid users. Of a total of 85 participants who 

were initially recruited, 42 eligible participants were randomly assigned to Simultaneous or 

Sequential training groups by the research coordinator based on the time at which they were 

recruited into the study. Participants received an honorarium for their participation. To 

investigate the impact of hearing status and effortful listening on training gains, participants 

within each training format were classified by hearing status, resulting in four groups: ARHL 

Sequential (n = 7), ARHL Simultaneous (n = 6), OAH Sequential (n = 15) and OAH 

Simultaneous (n = 15).  

Materials 

 Screening and background. A health and demographics screening was administered by 

telephone. Eligible participants underwent in-person tests of sensory, motor, and cognitive 

functioning. Measures used for screening are marked with an asterisk. 

 Cognitive measures. Global cognitive functioning was assessed using the Montreal 

Cognitive Assessment * (Nasreddine et al., 2005). Cognitive processing speed and working 

memory were assessed using the Coding (Digit Symbol) and Letter Number Sequencing subtests 
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of the Wechsler Adult Intelligence Scale (Wechsler, 2008) respectively. Executive functioning 

was measured using the Stroop Task (MacLeod, 1991) as an assessment of response inhibition. 

Scores were derived by dividing the number of correct responses by the total completion time.        

Hearing measures. Air-conduction pure-tone audiometry was administered using a 

Maico (MA 42) audiometer to derive an average pure-tone threshold, which was then used to 

determine the appropriate intensity at which to present the auditory experimental stimuli. 

Participants were presented with pure tones at varying frequencies (250-8000 Hz) following 

standard procedure, from which average detection thresholds were derived (500, 1000, 2000 and 

3000 Hz) averaged across both ears. Participants were classified as having normal hearing: OAH 

with average pure-tone hearing thresholds below 25 dB HL (decibel hearing level), or with mild 

hearing loss: ARHL, with average pure-tone hearing thresholds between 25-40 dB HL. 

Subjective hearing was assessed using the Listening Self Efficacy Questionnaire (LSEQ; Smith 

et al., 2011). 

Physical measures. The Activities-Specific Balance Confidence Scale “ABC Scale” 

(Powell & Myers, 1995) assessed self-reported balance confidence. The Jones Test (Jones et al., 

1985)* was performed on a stationary bike, as a sub-maximal estimate of maximum heart rate.  

 Training Tasks.  

Dual-task (DT) Training. The DT training task (Lussier, Gagnon, & Bherer, 2016) was 

adapted for iPad use (MD785CL/BIOS 8.2) and is described elsewhere (Lussier et al., 2016; Lai, 

Bruce, Bherer, Lussier, & Li, 2017). Each of the two tasks involved the presentation of a central 

figure (e.g., fruits, vehicles), to which participants responded by pressing the corresponding 

button (see Appendix B). Response times and errors were recorded (Lai et al., 2017). Blocks of 
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single- and dual-task trials were given, with individualized and continuous feedback. Each 

session lasted approximately 30 minutes.  

Physical Training. The aerobic training component involved recumbent cycling, chosen 

to minimize balance demands. Physical workload was increased from 40% of baseline estimated 

maximum heart rate in Sessions 1-4, to 44% in Sessions 5-8, and to 48% in Sessions 9-12. Each 

training session lasted 35 minutes (5 min. warm-up, 25 min. at target heart rate, 5 min. cool-

down).   

 Outcome measures. 

 Four different motor tasks were performed singly (A) and concurrently (B) with a 

cognitive task described below under both low and ideal conditions. Participants completed two 

trials of each condition in an ABBA format. 

 Sit-to-stand task. The Sit-to-Stand task (Puthoff, 2008) served as a measure of global 

mobility, as indexed by the total time to complete five chair rises with arms crossed.  

 Balance task. Balance was assessed using a NeuroCom Equitest apparatus (computerized 

dynamic posturography). Participants completed three balancing conditions: double support, 

visual sway-referenced (i.e., visual surround moves synchronously with sway in AP dimension), 

and single-support (i.e., balancing on their preferred leg). Each trial was 30 seconds and the 

outcome measure was the ellipse area (mm2). 

Cognitive task. The auditory working memory “n-back” task (Kirchner, 1958) served as 

the cognitive outcome measure. In each trial, participants were presented with fifteen pseudo-

randomly ordered (without consecutive repetition) single digit numbers between one and ten 

excluding the two-syllable numeral seven. The stimuli were presented via insert headphones (E-

A-RLINK 3A) at 35 dB HL above each participant’s average pure-tone threshold. Participants 
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were asked to report the number presented one item prior to the currently presented number (1-

back). To increase auditory challenge, half the trials were presented more quietly (i.e., 20 dB HL 

above the average pure-tone threshold; 12). The number of correct responses was averaged 

across trials in each condition. 

Procedure 

 Participants underwent two pre-assessment sessions. First, they were administered the 

neuropsychological measures. In Session 2, they underwent the physical assessment (blood 

pressure, height, weight, heart rate, and sub-maximal VO2) and baseline testing on the n-back 

task. As well, the experimental tests of single- and dual-task auditory working memory and 

balance were given. Three short warning beeps preceded each trial, and one short beep signaled 

the end of each trial. The experimental procedure was performed under both ideal and low 

listening conditions, in counterbalanced order.  

Training was administered in blocks of four to seven people who met twice per week for 

six weeks, for a total of 12 sessions and once one cohort had completed training, a new one 

started. The Simultaneous training groups performed both training tasks at the same time (30 

minutes total), while the Sequential training group first performed the iPad training task (30 

minutes) followed by recumbent cycling (30 minutes) to equate the “dosage” of each training 

activity across groups. Following the final training session, both groups completed identical post-

training assessments. Personnel involved in training were different from those conducting pre- 

and post-training assessments to remain blind to treatment condition. There was no attrition such 

that all participants randomized to treatments completed the training protocols.  
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Planned Analyses. Analysis of the primary outcome measures was performed using repeated 

measures mixed factorial ANOVAs. Where appropriate, multiple tests were Bonferonni 

corrected and otherwise, results were considered significant at p < .05.  

Results 

 Data screening. All background and baseline experimental measures were checked for 

outliers (i.e., > 3.5 SD) both in terms of intra-individual and interindividual variability and 

extreme scores were winsorized. Additionally, a square root transformation was applied to two 

scores which demonstrated non-normal distributions: changes scores on the n-back task in dual 

ideal single-support conditions (skew = 3.91, kurtosis = 20.02) and on the Neurocom data for the 

single-task single support condition (skew = -3.19, kurtosis = 15.80). Data from one participant 

were removed due to extreme posture scores, leaving 21 participants in the Simultaneous group 

and 20 participants in the Sequential group. For the analysis of single-support performance, data 

from six participants were excluded due to difficulty performing the task correctly, leaving data 

from 18 participants in the Simultaneous group and 17 participants in the Sequential group.  

 Baseline assessment. Descriptive statistics and between-groups analyses are shown for 

all background measures and baseline experimental measures in Table 1. A series of one-way 

ANOVAs with Bonferroni corrected contrasts were conducted to compare the four training 

groups at baseline, confirming that beyond differences in PTA between the two hearing groups 

such that both ARHL groups had worse hearing than both OAH groups, the groups did not differ 

significantly on any other background measures (ps ≥ 0.103) or baseline experimental measures 

(ps ≥ 0.209).   

Dual-task training. To confirm that the dual-task training was effective, changes in iPad 

dual-task reaction times and error rates were analyzed across early, middle and late phases of 



52 

 

training pooling all participants (n = 41). The analysis revealed a significant main effect of time 

for reaction times, F(2, 42) = 91.76, p = <.001, p 
2 = 0.814, 95% CI [0.69, 0.86], and error rates, 

F(2,76) = 14.63 p < .001, p 
2 = 0.28, 95% CI [0.11, 0.41]. Bonferroni corrected contrasts 

revealed that reaction times and error rates improved post training (ps < .001), replicating 

previous work [35]. 

Change scores.  Change scores for all primary outcomes were calculated by subtracting 

baseline scores from post-training scores.  

Cognitive task. To assess training related effects in the cognitive domain, a Group 

(ARHL Sequential vs. ARHL Simultaneous vs. OAH Sequential vs. OAH Simultaneous) x 

Balance (seated vs. STS vs. double support vs. visual vs. single support) x Listening Level (ideal 

vs. low) mixed factorial ANOVA was performed using change scores on the n-back task (Figure 

1, Table 2 for significant pre-post changes). A main effect of balance was observed, F(4, 116) = 

3.64, p = 0.008 p 
2 = 0.11, 95% CI [0.01, 0.20], with follow-up Bonferonni contrasts indicating 

greater gains in stable (M = 0.76, SE = 0.45) and visual (M = 0.83, SE = 0.44) conditions 

compared with single support (M  = 0.00, SE  = 0.47). The main effect of group, F(3, 29) = 5.04, 

p = 0.006, p 
2 = 0.34, 95% CI [0.04, 0.51], was also significant, and was qualified by a 

significant interaction between group and listening level, F(3, 29) = 4.15, p = 0.015, p 
2 = 0.30, 

95% CI [0.01, 0.47]. A series of one-way ANOVAs were performed to compare groups on n-

back change scores separately for low and ideal listening conditions. In low conditions, there was 

a statistically significant effect of group on training gains, F(3,32) = 221.88, p = .008. Bonferroni 

corrected contrasts revealed greater gains in the Sequential OAH group (M = 4.08, SE = 1.25) 

compared with the Simultaneous OAH group (M = -2.01, SE = 1.06), p = .005. All other group 

contrasts were non-significant (p ≥ 0.554) and a similar pattern was not observed in ideal 
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conditions (p = 0.170). Numerically, it appeared that the ARHL group improved post training 

regardless of format. 

Sit-to-Stand. A Group (4) x Challenge (Single vs. Dual-Ideal vs. Dual-Low) mixed 

factorial ANOVA was performed using change scores in timed performance (Figure 2, Table 2 

for significant pre-post changes). A significant main effect of challenge was observed, F(2, 74) = 

4.29, p = 0.017, p 
2 = .0.10, 95% CI [0.01, 0.23], with Bonferroni corrected comparisons 

revealing greater reductions of time in Dual-Ideal (M = -0.91, SE = 0.40), p = .028 and Dual-

Low (M = -1.14, SE = 0.55), p = .021 conditions compared with Single-Task conditions (M = -

0.037, SE = 0.30).  

Standing balance. To assess change on the Equitest task, a Group x Balance (stable vs. 

visual vs. single support) x Challenge (Single vs. Dual-Ideal vs. Dual-Low) mixed factorial 

ANOVA was performed using change scores in ellipse area (Figure 3, Table 3). The analysis 

revealed non-significant findings (p ≥ 0.415).  

  Discussion 

 

 The purpose of the current study was to compare the effects of Sequential and 

Simultaneous formats of cognitive (i.e., computerized dual-task) and exercise (i.e., aerobic) 

training on the primary outcome measures of cognitive-motor dual-tasking (n-back, sit-to-stand, 

balance task).  

Auditory Working Memory Gains  

As hypothesized, sequentially trained participants demonstrated significant gains on the 

auditory working memory task under dual-task conditions. In contrast, the Simultaneous group 

did not demonstrate similar gains, suggesting a cost associated with dividing attention during 

training. Support for this interpretation is found in the cognitive training data, in which the 
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Sequential group outperformed the Simultaneous group, if only numerically (Lai et al., 2017). 

By contrast, group equivalence was observed on both subjective (Borg Scale; p = .509) and 

objective (i.e., mean power output in Watts; p = .833) measures of physical workload. This 

overall pattern is consistent with a postural prioritization strategy (Li et al., 2005), in that the cost 

of dividing attention during training was observed on the cognitive rather than the physical task. 

This pattern was likely influenced by the complexity of the cognitive training task (i.e., U-

Shaped Non-Linear Interaction Model). Moreover, according to the Task Prioritization Model, 

other factors which were not explicitly measured such as the novelty of the physical training task 

and low postural reserve may also have contributed to these findings (Wollesen et al., 2017a). 

The Sequential training group also demonstrated larger gains on an independent measure of 

working memory (LNS) than the Simultaneous group (Lai et al., 2017). 

As anticipated, hearing status interacted with group format to influence training gains. The 

ARHL participants appeared numerically to benefit from training regardless of training format. 

These gains were most apparent in the low volume listening conditions, which has been shown 

as detrimental to older adult’s auditory WM performance (Baldwin & Ash, 2011). Pairing a 

challenging auditory and motor task exacerbated these costs (Bruce et al., 2017). Strengthening 

cognitive resources through training may have enabled these participants to better compensate 

for age-related sensory loss.  

Motor Outcome Measures 

 In line with previous work, both groups demonstrated improved performance on sit-to-

stand performance under dual-task conditions (Desjardins-Crépeau et al., 2016; Strouwen et al., 

2017); however, no pre-post improvements were observed for the measures of balance. These 

findings may be explained using the concept of postural prioritization. Specifically, if older 
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adults were prioritizing posture throughout the assessment sessions, the cognitive training might 

have freed up capacity for the lower priority task, namely WM. This pattern echoes previous 

work on balance and walking, in which training reduced brain activation during imagined motor 

tasks, freeing resources up for secondary cognitive tasks (Godde & Voelcker-Rehage, 2017).  

Limitations and Future Directions 

A limitation of the current study is that our sample consisted of healthy older adults and 

individuals with only mild hearing loss. A second limitation was the administration of cognitive 

training before exercise in the Sequential group, which was done to enable participants to 

quickly transition from cognitive to exercise training (Barban et al., 2017). Another issue is the 

absence of ecological measures of dual-task gait or balance which could provide information 

regarding the transferability of training to everyday functioning. Additionally, future studies 

could sample older adults with more severe hearing loss or fallers who rely more heavily on 

cognitive resources to compensate for sensory/sensorimotor decline. A final limitation is the use 

of moderate intensity for our aerobic training which may have limited training related gains. 

However, previous research in simultaneous training demonstrated that increasing physical 

training beyond moderate levels negatively impacted performance on the concurrent secondary 

task (Labelle, Bosquet, Mekary, & Bherer, 2013).  

Conclusions  

 The current work complements the existing multimodal training literature and provides 

new experimental evidence on how to optimize training, particularly for those with age-related 

hearing loss. When combining cognitive and physical training, it is important to consider the cost 

of dividing attention, which may detract from performance gains. Moreover, to date, traditional 

audiological rehabilitation focuses on amplification, environmental support and formal listening 
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training. The current study suggests that cognitive training may be beneficial to this population 

particularly in the context of complex listening conditions, such as listening while balancing.  
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Table 1. 

Means and standard deviations for all baseline background and experimental measures  

Source Simultaneous Sequential p value 

Age (years) 68.19 (4.66) 68.60 (5.26) 0.793 

Education (years) 16.76 (2.84) 16.22 (2.82) 0.557 

Vo2 Max (220-age) 37.77 (5.87) 36.05 (9.36) 0.488 

Mean Power (Watts) 50.86 (15.94) 46.50 (13.88) 0.357 

Average Hearing Threshold (dB) pooled 22.38 (6.55) 20.00 (8.24) 0.311 

     Healthy Older Adults 19.44 (4.72) 15.90 (7.25) 0.132 

    Older Adults with Age-Related Hearing Loss 29.72 (4.34) 27.62 (2.37) 0.291 

Montreal Cognitive Assessment (max. 30) 27.29 (1.68) 27.80 (1.64) 0.328 

Letter-Number Sequencing (max. 30) 19.29 (2.00) 18.70 (2.36) 0.397 

Digit Symbol (max. 135) 66.57 (14.62) 64.25 (11.93) 0.582 

Stroop Colour Naming (# correct / second) 1.28 (0.32) 1.20 (0.30) 0.420 

Stroop Word Reading (# correct / second) 0.86 (0.21) 0.77 (0.14) 0.122 

Balance Confidence (max. 100) 95.29 (5.55) 95.07 (5.44) 0.900 

Listening Self-Efficacy (max. 100) 83.02 (12.54) 86.64 (9.43) 0.312 

Sit-to-Stand (seconds) 9.84 (2.55) 10.74 (2.80) 0.289 
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N-back Ideal (# correct) 13.76 (0.89) 12.80 (1.96) 0.055 

Double Support (mm2) 163.72 (227.41) 167.43 (220.32) 0.538 

Note. * denotes a statistically significant group difference at p <.05.
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Table 2.  

Mean performance on the aerobic training task, n-back and Sit-to-Stand tasks 

 

Note. STS = Sit-to-Stand. DS = double support. * denotes a statistically significant change from 

pre to post at p <.05.

Condition Sequential Simultaneous 

Pre Post Pre Post 

Power (Watts) 44.13(18.28) 42.25(11.78) 56.02(16.71) 49.95(15.07) 

N-back task (# correct) 

Single-ideal 12.80 (1.96) 13.40 (1.43) 13.76 (0.89) 13.86 (0.36) 

Single-low 9.20 (3.46) 12.15 (3.40)* 11.10 (3.58) 11.00 (4.14) 

Dual-STS-ideal 11.95 (2.08) 13.28 (1.53)* 12.88 (1.07) 12.81 (1.34) 

Dual-STS-low 6.88 (4.21) 10.22 (3.21)* 8.24 (3.92) 8.31 (4.24) 

Dual-DS-ideal 13.40 (1.22) 13.85(0.56)* 13.62 (0.65) 13.90 (0.26)* 

Dual-DS-low 8.73 (4.37) 11.48 (3.34)* 10.57 (4.14) 10.07 (4.54) 

Dual-visual-ideal 13.58 (1.04) 13.60 (0.62) 13.81 (0.49) 13.83 (0.46) 

Dual-visual-low 9.00 (4.33) 11.28 (3.10)* 10.07 (4.12) 10.50 (4.33) 

Dual-SS-ideal 13.50 (1.55) 13.63 (0.62) 13.94 (0.24) 13.89 (0.32) 

Dual-SS-low 9.75 (3.94) 11.87 (2.70) 11.72 (3.87) 9.72 (4.78) 

Sit-to-Stand (seconds) 

Single 10.74 (2.80) 10.61 (3.34) 9.83 (2.55) 9.76 (2.59) 

Dual-ideal 13.17 (3.29) 11.85 (3.19)* 11.29 (2.42) 10.75 (2.31) 

Dual-low 13.83 (4.19) 12.20 (3.41) 12.08 (2.42) 11.11 (2.93) 
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Table 3.  

 

Mean performance on the standing balance tasks (mm2) 

Note. * denotes a statistically significant change from pre to post at p <.05. 

  

Condition Sequential Simultaneous 

Pre Post Pre Post 

Single-double support 167.43  

(220.32) 

202.00  

(256.88) 

163.72  

(227.41) 

125.60  

(154.99) 

Dual-double support-ideal 96.59  

(72.32) 

166.07  

(240.12) 

138.21  

(186.65) 

134.63  

(167.35) 

Dual-double support-low 227.57  

(378.07) 

133.16  

(133.78) 

103.76  

(156.31) 

120.46  

(89.11) 

Single-visual 442.72  

(797.51) 

296.91  

(326.28) 

208.93  

(228.65) 

155.76  

(113.96) 

Dual-visual-ideal 175.36  

(149.07) 

242.99  

(309.26) 

159.96  

(141.71) 

139.67  

(107.98) 

Dual-visual-low 225.62  

(268.43) 

262.13  

(293.29) 

177.70  

(225.38) 

113.75  

(69.57) 

Single-single support 2240.95  

(4770.86) 

908.40  

(908.98) 

969.28  

(1622.88) 

1056.82  

(1379.00) 

Dual-single support-ideal 887.06  

(977.53) 

710.77  

(636.58) 

572.89  

(486.92) 

835.17  

(738.61) 

Dual-single support-low 1142.05  

(1980.11) 

726.51  

(955.91) 

910.02  

(1638.60) 

550.50  

(288.07) 
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Figure 1. Change scores for the n-back task performed during the standing balance tasks and the 

STS divided by four groups.  Note. Error bars represent one standard error of the mean. STS=Sit-

to-Stand. DS = Double Support. Visual = Visual sway-referenced. SS=Single Support. 
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Figure 2. Change scores for the Sit-to-Stand Task.  Note. Negative values indicate a reduction in 

completion time and improvement in performance. Error bars represent one standard error of the 

mean.  
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Figure 3. Change scores for the standing balance tasks (ellipse area).  Note. Error bars represent 

one standard error of the mean. DS = Double Support. SS=Single Support.  
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Abstract 

Background: Epidemiological research indicates a link between hearing loss and poor mobility 

in older adults (Viljanen et al., 2009). Moreover, cognitive resources and everyday functioning 

are more strongly related in older adults with sensory impairments than in unimpaired controls 

(Heyl & Wahl, 2012). A potential explanation is that because both sensory and motor aging are 

associated with cognitive compensation, these domains compete for common cognitive capacity 

(Bruce et al., 2017). However, the interrelationships among cognitive, sensory, and motoric 

abilities are not often considered together, nor are subjective and objective measures commonly 

compared. Methods: The study consisted of a combined dataset of healthy older adults (N = 218; 

Mage = 69.11, SDage = 5.89,) with normal hearing and with age-related hearing loss, as defined 

using standard audiometric cut-offs (average pure-tone threshold ≥ 25 dB HL at 500, 1000, 2000 

Hz in the better ear). All participants completed standardized cognitive tests (MoCA, Letter-

Number Sequencing, Digit Symbol Coding), as well as objective and subjective assessments of 

hearing (pure-tone testing, Listening Self-Efficacy Questionnaire) and mobility (Dynamic Gait 

Index, Activities-specific Balance Confidence Scale). Results: Confirmatory factor analysis first 

determined that these assessment measures loaded on the relevant latent constructs: hearing, 

mobility and cognition. These latent constructs were then used to perform subsequent structural 

equation modeling (SEM) analyses. A negative association was found between hearing and both 

mobility and cognitive functioning, such that greater hearing loss predicted lower scores on 

measures of mobility and cognition. Subdividing the sample by objective and self-efficacy 

measures revealed that the association between lower objective hearing loss and greater mobility 

was mediated through higher cognitive performance. Turning to the self-efficacy measures, 

lower listening self-efficacy was associated with lower balance confidence. Conclusions: 
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Together, these results suggest that hearing loss affects both mobility and cognition, and that 

subjective measures may be useful in assessing perceived effort in these domains. Moreover, 

individuals with poor hearing appear to rely more heavily on cognitive capacity when 

performing an objective mobility task. 
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Introduction 

 Older adults with hearing loss are at a higher risk for falls (Viljanen et al., 2009) even 

when controlling for objectively assessed vestibular dysfunction (Lin & Ferruci, 2012). While 

there are several hypothesized links for this association, one explanation is that of cognitive 

compensation (Li & Lindenberger, 2002), wherein older adults compensate for declining 

sensorimotor and sensory functioning through the recruitment of cognitive processes. To date, 

correlational and experimental work has demonstrated the increased involvement of cognitive 

resources in both listening and motor functioning among older adults (e.g., Agmon et al., 2016; 

Pichora-Fuller et al., 2016; Yogev-Seligman et al., 2008). Other researchers (Heyl & Wahl, 

2012) have shown that the relation between cognitive abilities and everyday behaviors such as 

activities of daily living (e.g. using public transport), is stronger in populations with sensory loss 

compared with healthy controls. One explanation is that the relation between cognition and 

mobility increases in those with sensory impairment and is reflected in assessments of everyday 

functioning. To date, few studies have considered hearing, motor and cognitive functioning 

together using both self-efficacy and objective assessments of mobility and hearing loss. 

Hearing Loss and Falls 

Epidemiologic studies have revealed that older adults with hearing loss are at a higher 

risk for falls (Viljanen et al., 2009), even when accounting for vestibular function (Lin & Ferruci, 

2012). Experimental research suggests that self-reported hearing loss is associated with slowed 

walking speed (Tomioka et al., 2015), as well as reduced mobility and day-to-day functioning 

(Gispen, Chen, Genther, & Lin, 2014). Other studies have implemented objective assessments of 

hearing using pure tone audiometry to demonstrate that hearing impairment is independently 

associated with poorer objective physical functioning in older adults, as well as an increased risk 
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for incident disability (Chen et al., 2015). One explanation for this association is that older adults 

use higher-level cognitive processes (i.e., cognitive compensation) to compensate for declines in 

sensorimotor and sensory functioning (Li & Lindenberger, 2002). Specifically hearing loss may 

result in a greater amount of cognitive resources being applied to listening at the expense of safe 

motor function. However, testing this hypothesis requires an assessment of motor, sensory, and 

cognitive functions within the same individuals. 

Cognitive Compensation in Sensory and Sensorimotor Functioning. 

Beyond peripheral changes, both sensory and sensorimotor functioning increasingly rely 

on cognitive resources with age (Li & Lindenberger, 2002). To this end, researchers have 

demonstrated stronger relations between sensory loss and cognition in older, compared to 

middle-aged and young adults (Baltes & Lindenberger, 1997; Lindenberger & Ghisletta, 2008). 

Moreover, hearing loss has been linked to incident cognitive decline even when controlling for 

known confounders, and, greater hearing loss, as assessed by objective audiometric testing, is 

associated with lower scores on both verbal and nonverbal cognitive tests of processing speed, 

executive function, memory, and global cognition (Bush, Lister, Lin, Betz, & Edwards, 2015; 

Lin et al., 2011). Other evidence comes from dual-task studies, wherein older adults demonstrate 

greater cognitive dual-task costs than younger adults on a secondary cognitive task when 

performing a concurrent listening task (e.g., Gosselin & Gagné, 2012; Tun et al., 2009).  

Similarly, the involvement of cognitive resources in mobility and posture has been 

demonstrated in correlational work, which suggests that lower performance on measures of 

executive function is associated with greater stride time variability and slowed gait speed 

(Beauchet et al., 2012; Demnitz et al., 2016; Yogev-Seligmann et al., 2008) as well as self-

reported incidence of recurrent falls (Anstey et al., 2009). In keeping with the work on auditory 
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aging, experimental approaches using dual-task paradigms have revealed dual-task costs among 

older adults when performing concurrent cognitive and posture tasks (Brown et al., 1999; Norrie, 

Maki, Staines, & McIllroy, 2002). Notably, these costs are typically most evident in the 

cognitive domain as older adults tend to prioritize posture over cognitive performance, termed 

postural prioritization (Li et al., 2005). Moreover, older adults with mild hearing loss show 

greater dual-task costs when performing a concurrent auditory and balance task, and 

computerized cognitive training is beneficial to this population particularly in challenging dual-

task conditions (Bruce et al., 2017; Bruce et al., 2018). Similarly, using virtual-reality to mimic 

everyday sensory-motor challenges, all older adults appeared to prioritize safe walking, although 

those with hearing loss generally demonstrated lower performance on the auditory cognitive task 

and greater stride time variability (Lau et al., 2016; Nieborowska et al, in press).  

Sensory Impairment and Everyday Functioning 

Moving from the laboratory to everyday functioning, Heyl and Wahl (2012) used 

structural equation modeling techniques to investigate the relation between sensory impairment 

classified using clinical assessment tools (e.g., pure-tone audiometry, hearing aid use), objective 

measures of cognition (e.g., processing speed, working memory),  behavior-related everyday 

functioning (i.e., Activities of Daily Living; ADLs, instrumental ADLs; iADLs) and self-

reported mastery of everyday activities and the environment (Ryff, 1989; e.g., I have been able 

to build a home and a lifestyle for myself that is much to my liking). Using these variables, they 

demonstrated that cognitive resources and everyday functioning are more strongly related in 

older adults with visual and hearing impairment(s), compared with healthy controls. Moreover, 

sensory impaired older adults were more aware of subtle cognitive changes as suggested by 

stronger associations between cognitive functioning and individuals’ evaluation of everyday 
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functioning as measured by their feelings of subjective autonomy and feelings of mastery and 

competency in managing the environment. This increased sensitivity was associated with 

decreased confidence in mastering day-to-day life (Heyl & Wahl, 2012). Although mobility was 

not formally assessed, one possibility is that their results may, in part, reflect the effects of 

cognitive capacity and physical status on mobility. Moreover, although the study included both 

subjective and objective assessments of everyday functioning, self-efficacy in the hearing and 

mobility domains were not assessed and could be important given that older adults with hearing 

loss report effortful listening (Pichora-Fuller et al., 2016) and that balance confidence is linked to 

avoidance of daily activities (Rand et al., 2011).  

Self-Efficacy and Aging  

Self-efficacy can be defined as an individuals’ perceptions of their abilities in specific 

domains which will determine whether they engage in particular activities (Bandura, 1997). This 

concept is important in the context of aging because in combination with age-related decline, 

negative stereotypes of aging may be one of the reasons why self-perceptions of abilities of 

function do not always accurately represent their actual abilities (Chasteen et al., 2015). Within 

the domain of hearing, listening self-efficacy may be more related to perceived difficulty in 

given situations and hearing handicap rather than performance on clinical objective measures 

(Smith et al., 2011). Moreover, hearing impairment is associated with self-perceived social 

engagement restrictions (Gopinath et al., 2012) as well as reduced functioning in daily life, self-

reported hearing handicap and communication difficulties (Dalton et al., 2003). Similarly, within 

the motor domain, objective balance performance is a strong determinant of balance confidence, 

but cannot fully account for all the variance in balance confidence (Hatch et al., 2003) and this 
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low confidence can lead to avoidance of activities resulting in physical frailty, falls and loss of 

independence (Rand et al., 2011).  

Current Study 

 In sum, previous work has investigated the involvement of cognitive resources in hearing 

and mobility largely separately, with some emerging experimental and correlational work 

considering these domains together (Agmon et al., 2017; Bruce et al., 2017; Bruce et al., 2018; 

Lau et al., 2016; Nieborowska et al, in press; Wollesen et al., 2017b). However, the 

interrelationships among cognitive, sensory, and motoric abilities are not often considered 

together, nor are self-efficacy and objective assessments of sensory and motoric ability 

commonly compared. Therefore, the goal of this study was to use structural equation modeling to 

examine the relationship between measures of hearing loss and mobility, and whether this 

association is influenced by cognitive status. We predicted that increased hearing loss would be 

associated with lower mobility and that this association would be mediated through cognition. 

This hypothesis was investigated by considering a pooled sample of older adults from two 

independent studies (Bruce et al., 2017; Bruce et al., 2018), as well as by subdividing the data by 

type of measure used (i.e., objective or subjective). Within these subdivided models, we further 

predicted that self-efficacy would be an important contributor to understanding the association 

between these measures, given that persons with sensory impairment generally report less 

mastery of their environment and daily activities which likely include demands on hearing and 

mobility.   

 

Method 

Participants  
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A total of 218 participants (Mage = 69.11, SDage = 5.89, females = 127) were pooled across 

two experimental studies of aging, hearing loss, mobility, and cognition (Bruce et al., 2017; 

Bruce et al., 2018; Lai et al., 2017), which included both normal hearing older adults as well as 

older adults with mild hearing loss (35.5%), defined as a pure-tone threshold of 25-40 dB HL at 

octave test frequencies below 4kHz in the better ear (see Table 1). For both studies, participants 

were recruited through an existing senior participant pool at Concordia and advertisements in a 

local senior newspaper. They received an honorarium for their participation ($20 - $300 

depending on the length of each study). Using standard audiometric testing, the mean absolute 

threshold of hearing (i.e., Pure Tone Audiometry; PTA) was calculated using the average of the 

minimum tone detection thresholds assessed across test frequencies of 500, 1000, 2000 and 3000 

Hz from the better ear. To maximize the range of scores, the average PTA spanned from mild to 

profound hearing loss. Similarly, for the Montreal Cognitive Assessment (MoCA), we included 

participants with scores below the cutoff of 26 as a means of maximizing the range of scores 

(range: 17-30). All participants were screened for the existence of any progressive medical 

conditions and self-reported mobility or vestibular difficulties and had normal or corrected-to-

normal visual acuity.   

Materials  

Cognitive measures. Global cognitive functioning was assessed using the Montreal 

Cognitive Assessment “MoCA” (Nasreddine et al., 1996) with a score of 26/30 or greater 

indicating normal cognitive performance. Cognitive processing speed and working memory were 

assessed using the Coding (Digit Symbol) Task (Wechsler, 2008) and Letter Number Sequencing 

(Wechsler, 2008) subtests of the Wechsler Adult Intelligence Scale (WAIS-IV; Wechsler, 2008), 

respectively.  
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Sensory measures.  Pure-tone audiometry was administered using a Maico (MA 42) 

audiometer to assess participants’ hearing acuity for group classification, and to derive an 

average pure-tone threshold. Participants were presented with pure tones at varying frequencies 

(250, 500, 2000, 3000, 4000, and 8000 Hz) and intensities over headphones and indicated that a 

tone was detected by pressing a hand-held button. Participants were also administered the 

Listening Self Efficacy Questionnaire (LSEQ: Smith et al., 2011), as a subjective index of 

hearing ability. Participants were asked to rate their level of confidence on a scale of 0 (i.e., 

cannot do this at all) to 100 (i.e., I am certain I can do this) in a variety of listening conditions 

(e.g., I can understand the TV, I can understand conversation when someone speaks in a 

whisper) without the use of listening aids. A summary score was derived by averaging responses 

across the eighteen items.   

Physical measures. Global mobility was assessed using the Dynamic Gait Index (DGI: 

Shumway-Cook et al., 1997), which involves walking 20 meters, turning, stepping, and stair 

ascent and descent components. The maximum possible score on the DGI is 24 and scores of 19 

or less have been related to increased incidence of falls in the elderly (Shumway-Cook et al., 

1997). The Activities-Specific Balance Confidence Scale “ABC Scale” (Powell & Myers, 1995) 

assessed self-reported balance confidence during different activities. Specifically, participants 

were asked to report their level of confidence from 0% (i.e., no confidence) to 100% (i.e., 

complete confidence) in performing activities such as walking in a crowded area or walking up 

and down stairs. A summary score was derived by averaging responses across the sixteen items.    

Procedure  

All participants were tested individually at the PERFORM Centre of Concordia 

University. During an initial screening session, they were administered assessments of cognition, 
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mobility and audition. Participants from Study 1 (n = 144) were also administered the DGI 

during this initial session. Eligible participants then participated in subsequent experimental and 

intervention sessions, which are described elsewhere (see Bruce et al., 2017; Bruce et al., 2018; 

Lai et al., 2017).  

Results 

Data Screening. All measures were checked for outliers (i.e., > 3.5 SD) both in terms of 

intra-individual and interindividual variability and extreme scores were winsorized.  

Background measures.  Descriptive statistics and between-groups analyses are shown 

for all background measures in Table 1. A series of independent samples t-tests were first 

performed to test whether the groups were comparable on the aforementioned dependent 

measures between the two studies. Correlations among the measures are presented in Table 2.  

Confirmatory Factor Analysis. Confirmatory factor analysis was performed using  

MPLUS (Version 8.0) as we were interested in fitting the data to a model that is supported by 

empirical research. Before testing the latent constructs, the LSEQ was reverse coded (e.g., 70% 

becomes 30%) since greater values on this measure conventionally indicate better hearing, while 

a higher PTA is indicative of worse hearing. Several indices were then used to assess goodness 

of fit of the model, including the comparative fit index (CFI), Tucker–Lewis index (TLI), root 

mean square error of approximation (RMSEA) and standardized root mean square residual 

(SRMR). According to Kelloway (2015), CFI and TLI values greater than 0.95 and RMSEA and 

SRMR values lower than 0.08 indicate good fit between the hypothesized model and the 

observed data. The model tested was a two-factor model that assumes that Cognition is 

comprised of the MoCA, Digit Symbol and Letter-Number Sequencing and that Hearing is 

comprised of the Listening Self Efficacy Questionnaire and PTA (see Figure 1). The results 
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indicated that the model exhibited good overall fit indices: CFI = 1.00, TLI = 1.01, SRMR = .02, 

RMSEA = .00, 90% CI [.00, .10]. A three-factor model including a Mobility construct comprised 

of the DGI and ABC exhibited poor fit and therefore was not used for subsequent analyses.  

Hypothesized Model. As show in Figure 1, our hypothesized model depicts relationships 

among the variables of hearing, cognition and mobility for the sample of combined OAH and 

ARHL. This model had good overall fit indices: CFI = .95, TLI = .89, SRMR=.05, RMSEA=.08, 

90% CI [.03, .13]. As shown in Figure 2, hearing was negatively associated with cognition, β = -

0.44, p = .003 and with balance confidence, β = -0.63, p < .001. To investigate the impact of 

chronological age on hearing in the main hypothesized model (Figure 1), chronological age was 

added to the model with good overall fit indices: CFI = .93, TLI = .84, SRMR=.04, 

RMSEA=.09, 90% CI [.05, .13] (see Figure 3). Importantly, the association between hearing and 

balance confidence was maintained, β = -0.91, p < .001. 

Subjective and Objective Models. The hearing and mobility measures were then 

subdivided by self-efficacy and objective measures to separately investigate their association 

with cognition. Specifically, the objective model included indices of hearing acuity and global 

mobility (PTA and DGI, respectively); and the self-efficacy model included indices of hearing 

self-efficacy and balance confidence (LSEQ and ABC, respectively). The model for objective 

measures had good overall fit indices: CFI = 1.00, TLI = 1.07, SRMR=.01, RMSEA=.00, 90% 

CI [.00, .00] (see Figure 4). Namely, objective hearing (PTA) was negatively associated with 

cognition, β = -0.37, p < .001 and cognition was positively associated with objective mobility 

(DGI), β = 0.45, p < .001.  

Based on these findings, a mediation analysis was run on the objective measures to 

investigate whether the relation between objective hearing and mobility is mediated through 
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cognition. This model had good overall fit indices: CFI = 1.00, TLI = 1.07, SRMR=.01, 

RMSEA=.00, 90% CI [.00, .00] (see Figure 5). Consistent with the previous model (Figure 4), 

objective hearing (PTA) was negatively associated with cognition, β = -0.39, p < .001, cognition 

was positively associated with objective mobility (DGI), β = 0.55, p < .001, and the relation 

between objective hearing (PTA) and objective mobility (DGI) was not significant, β = -0.15, p 

=.134. In addition, the relation between objective hearing (PTA) and objective mobility (DGI) 

was mediated through cognition, β = -0.22, p < .001.   

The model for self-efficacy measures also had good overall fit indices: CFI = .99, TLI = 

.97, SRMR=.03, RMSEA=.04, 90% CI [.00, .12] (see Figure 6). Specifically, all hypothesized 

associations were significant such that hearing self-efficacy (LSEQ) was negatively associated 

with cognition, β = -0.26, p = .021 and with balance confidence (ABC), β = -0.46, p < .001. 

Moreover, cognition was positively associated with balance confidence (ABC), β = 0.31, p < 

.001.  

Discussion 

 The purpose of the current study was to investigate the associations between cognition, 

hearing and motor functioning in a sample of older adults. Given the importance of both 

objective functioning and self-efficacy in this population in influencing outcomes such as social 

engagement and falls, our models were subdivided according to objective and self-efficacy 

measures as a secondary analysis. We predicted that hearing loss would be negatively associated 

with mobility and that this association would be influenced by cognitive status. Secondly, we 

predicted that self-efficacy would be an important contributor to understanding the association 

between these measures in aging, given that persons with sensory impairment generally report 
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less mastery of their environment and daily activities which likely include demands on hearing 

and mobility.   

Using our hypothesized model, we first confirmed previous work (e.g., Bush et al., 2015; 

Lin et al., 2011) in showing that hearing loss is associated with poorer cognitive functioning on 

both verbal and nonverbal cognitive measures. Given the possibility that chronological age might 

be contributing to the relation between hearing loss and decreased cognitive performance, we 

then added age to the model. However, given that age and peripheral hearing loss are also 

strongly correlated (r = .497), this statistical correction likely removed some of the variance 

associated with peripheral hearing loss in addition to any error variance (Martin, Ellsworth, & 

Cranford, 1991). Nevertheless, when chronological age was added to the model, increased 

hearing loss was associated with lower balance confidence consistent with previous work 

suggesting that older adults with hearing loss show decreased balance confidence (e.g., Bruce et 

al., 2017). These findings could suggest one mechanism by which older adults with hearing loss 

are at a higher risk of falls as fear of falling is associated with reduced physical and functional 

activities (Dionyssiotis, 2012) and decreased willingness to engage in such activities (Viljanen et 

al., 2009).   

Considering the objective and self-efficacy measures in separate models generated 

different patterns of results. Using objective measures, we found that poorer cognitive 

performance was associated with decreased global mobility, replicating previous work that has 

shown relationships between working memory and processing speed with dual-task gait speed 

and gait variability (e.g., Holtzer et al., 2006; Yogev-Seligman et al., 2008). Although in the 

present findings, there was no direct association between objective hearing loss and mobility, a 

mediation analysis revealed that the association between greater hearing loss and lower mobility 
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was mediated through lowered cognitive status.  These findings are consistent with 

neuroimaging results wherein older adults demonstrate increased activation of frontal regions 

and decreased activation in the auditory cortex when performing a word perception in noise task 

(Wong et al., 2009). Similarly, within the domain of motor functioning, previous research has 

shown increased cerebral oxygenation in the prefrontal cortex among older adults during 

walking (Holtzer et al., 2011; Holtzer et al., 2015). Moreover, increased cerebral activation 

was positively associated with increasing dual-task attentional demands (Holtzer et al., 2011; 

Holtzer et al., 2015). Taken together, our findings are in line with the cognitive compensation 

viewpoint, which posits that age-related decline in motor and sensory abilities are compensated 

for through cognitive resources (Li & Lindenberger, 2002). The current findings add to previous 

experimental work demonstrating the involvement of cognitive resources in hearing and balance 

among older adults with age-related hearing loss (Bruce et al., 2017; Lau et al., 2016; 

Nieborowska et al, in press). 

A novel addition to this growing area of research is the consideration of self-efficacy in 

the auditory and motor domains. Our secondary analyses of listening self-efficacy, balance 

confidence, and cognitive performance revealed significant associations between all variables in 

the model, including a direct association between listening self-efficacy and balance confidence 

not found in the objective model. Previous work has suggested that older adults with hearing 

impairment report more effortful listening and that listening effort depends not only on hearing 

difficulties, but also on the listener’s motivation to expend mental effort in the challenging 

situations of everyday life (Pichora-Fuller, 2016; Pichora-Fuller et al., 2016). The current results 

further suggest that self-efficacy in the domain of hearing is an important predictor of balance 

confidence. These results are consistent with work done in the domain of life-space mobility 
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which has demonstrated that perceived decline in hearing is associated with decreased mobility 

and engagement with society (Polku et al., 2015), and that perceived benefit from hearing aid use 

was associated with better life-space mobility scores (Polku et al., 2016).  

These self-efficacy findings also extend work done by Heyl and Wahl (2012) who found 

stronger associations between cognitive functioning and individuals’ feelings of subjective 

autonomy and environmental mastery among sensory impaired older adults, which also 

functioned to undermine their confidence in mastering day-to-day life. The current findings 

suggest one possible explanation for Heyl’s results, wherein self-efficacy in hearing and motor 

domains may have influenced older adults’ confidence in behaviour-related everyday 

functioning.  

Limitations and Future Directions: A limitation of the current study is that we did not include 

a measure of cognitive self-efficacy. Future studies could include such a measure to investigate 

whether older adults’ perceptions of their cognitive abilities are an important contributor to 

understanding self-efficacy in other domains (Hertzog & Dunlosky, 2011; Lachman, 2006). 

Future work should also add measures of motor and sensory functioning to generate more stable 

latent constructs, as well as a measure of central hearing loss in addition to the current 

assessment of peripheral hearing. Moreover, our sample consisted of healthy older adults with 

mostly mild hearing loss. Future studies could include individuals with more severe hearing loss 

(e.g., hearing aid users) and/or physical frailty (e.g., fallers) to determine whether the observed 

relationships hold, or are strengthened in less healthy samples (Heyl & Wahl, 2012). Lastly, 

future studies could use a longitudinal design to investigate the predictive value of these 

associations over time.   
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Conclusions and Implications: Together, the current results suggest that both objective 

assessments and self-efficacy measures are important contributors to understanding the relations 

among cognition, hearing, and mobility. Moreover, the findings underscore the role of cognitive 

compensation in mediating the relationship between hearing and mobility. As such, they suggest 

that cognitive remediation through computerized training or aerobic exercise (Bherer et al., 2013; 

Bruce et al., 2017; Lustig et al., 2008) may play an important role in improving mobility and 

functional capacity for older adults with hearing loss.  
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Table 1 

Means and standard deviations for all baseline measures 

Source Study One  

(n = 144) 

Study Two 

(n = 76) 

Pooled Sample 

(n = 218) 

p value 

Age (years) 69.03 (6.00) 69.29 (5.70) 69.11 (5.89) .766 

Education (years) 16.32 (3.39) 16.34 (3.30) 16.33 (3.35) .964 

Average Hearing 

Threshold (dB) 

25.65 (8.63) 24.34 (8.63) 22.49 (8.05) .288 

LNS (max 30) 18.91 (2.82) 18.57 (2.54) 18.79 (2.72) .380 

DS (max 135) 63.94 (13.48) 63.78 (14.44) 63.88 (13.79) .933 

MoCA (max 30) 26.65 (2.48) 26.68 (2.68) 26.66 (2.54) .931 

ABC (max 100) 93.34 (7.25) 94.47 (6.48) 93.67 (7.02) .305 

LSEQ (max 100) 81.78 (13.10) 83.48 (13.11) 82.29 (13.09) .408 

DGI (max 24) 22.75 (1.62)  ---  

 

Note. p value refers to the independent samples t tests comparing the two study groups. Average 

Hearing Threshold = average of the minimum tone detection thresholds assessed across 500, 

1000, 2000 and 3000 Hz from the better ear. LNS = Letter-Number Sequencing. DS = Digit 

Symbol. MoCA = Montreal Cognitive Assessment. ABC = Activities-Specific Balance 

Confidence Scale. LSEQ = Listening Self-Efficacy Questionnaire. DGI = Dynamic Gait Index.   
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Table 2 

 

Intercorrelations Among the Measured Variables for the Combined Sample 

 
Variable 1. 2. 3. 4. 5. 6. 7. 8. 

1. Age 1        

2. PTA .497** 1       

3. LSEQ .382** .360** 1      

4. ABC -.331** -.287** -.535** 1     

5. DGI -.364** -.321** -.245** .340** 1    

6. MoCA -.142* -.187** -.080 .134 .244** 1   

7. LNS -.266** -.184** -.223** .220** .275** .297** 1  

8. DS -.362** -.286** -.171* .326** .375** .413** .411** 1 

 

Note. * indicates correlations which are significant at the p < 0.05 level and ** indicates 

correlations which are significant at the p < 0.01 level. PTA = average pure tone threshold (500, 

1000, 2000 and 3000 Hz). LSEQ = Listening Self Efficacy Questionnaire reverse scored. ABC = 

Activities-Specific Balance Confidence Scale. DGI = Dynamic Gait Index. MoCA = Montreal 

Cognitive Assessment. LNS = Letter-Number Sequencing. DS = Digit Symbol.  
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Figure 1. Hypothesized model. Note. LSEQ = Listening Self Efficacy Questionnaire reverse 

scored. PTA = average pure tone threshold (500, 1000, 2000 and 3000 Hz). MoCA = Montreal 

Cognitive Assessment. DS = Digit Symbol. LNS = Letter-Number Sequencing. ABC = 

Activities-Specific Balance Confidence Scale.  
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Figure 2. SEM for the hypothesized model. Note. Path coefficients are standardized regression 

weights. ** indicates path coefficients which are significant at the p < .05 level. LSEQ = 

Listening Self Efficacy Questionnaire reverse scored. PTA = average pure tone threshold (500, 

1000, 2000 and 3000 Hz). MoCA = Montreal Cognitive Assessment. DS = Digit Symbol. LNS = 

Letter-Number Sequencing. ABC = Activities-Specific Balance Confidence Scale.  
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Figure 3. SEM for the hypothesized model including age in the model. Note. Path coefficients 

are standardized regression weights. ** indicates path coefficients which are significant at the p 

< .05 level. Age = Chronological Age. LSEQ = Listening Self Efficacy Questionnaire reverse 

scored. PTA = average pure tone threshold (500, 1000, 2000 and 3000 Hz). MoCA = Montreal 

Cognitive Assessment. DS = Digit Symbol. LNS = Letter-Number Sequencing. ABC = 

Activities-Specific Balance Confidence Scale.  

  



86 

 

 

Figure 4. SEM for the hypothesized model using objective measures. Note. n = 132. Path 

coefficients are standardized regression weights. ** indicates path coefficients which are 

significant at the p < .05 level. PTA = average pure tone threshold (500, 1000, 2000 and 3000 

Hz). MoCA = Montreal Cognitive Assessment. DS = Digit Symbol. LNS = Letter-Number 

Sequencing. DGI = Dynamic Gait Index.  
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Figure 5. SEM for the hypothesized model using objective measures and testing mediation of 

cognition on relation between hearing and mobility. Note. n = 132. Path coefficients are 

standardized regression weights. ** indicates path coefficients which are significant at the p < 

.05 level. PTA = average pure tone threshold (500, 1000, 2000 and 3000 Hz). MoCA = Montreal 

Cognitive Assessment. DS = Digit Symbol. LNS = Letter-Number Sequencing. DGI = Dynamic 

Gait Index. 
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Figure 6. SEM for the hypothesized model using self-efficacy measures. Note. Path coefficients 

are standardized regression weights. ** indicates path coefficients which are significant at the p 

< .05 level. LSEQ = Listening Self Efficacy Questionnaire reverse scored. MoCA = Montreal 

Cognitive Assessment. DS = Digit Symbol. LNS = Letter-Number Sequencing. ABC = 

Activities-Specific Balance Confidence Scale. 
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CHAPTER 5 

GENERAL DISCUSSION 
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 As previously reviewed, a growing body of research suggests that both hearing and 

mobility increasingly rely on cognitive resources with age. Given the central role of cognition in 

both sensory and sensorimotor aging, the current studies aimed to investigate the role of 

cognition in both hearing and mobility domains among older adults using experimental, 

intervention and modeling approaches. In Paper 1 (Bruce et al., 2017) we investigated the impact 

of increasing cognitive load among older adults with and without hearing loss. Specifically, we 

challenged them with a cognitive-motor dual-task while also including an element of auditory 

challenge using noise. As hypothesized, compared to their normal hearing counterparts, older 

adults with hearing loss demonstrated greater dual-task costs particularly in challenging 

conditions. This cost was characterized by a drop in cognitive performance while posture 

remained similar to that observed under single-task conditions. Given the findings of Paper 1, we 

aimed to strengthen cognitive resources in Paper 2 (Bruce et al., 2018), along the lines of the 

scaffolding enhancement component of Reuter-Lorenz’s STAC model (Park & Reuter-Lorenz, 

2009). Using this approach, we demonstrated that strengthening cognition through sequentially 

combined cognitive-physical training benefitted dual-task outcomes measures. This effect was 

particularly evident during the more challenging auditory conditions, and among those with 

hearing loss. Beyond considering these group-wise effects, in Paper 3 (Bruce et al., in 

preparation) we investigated individual differences in hearing, cognition, and self-efficacy, 

which might influence mobility functioning. Results from structural equation modeling revealed 

that greater hearing loss was associated with decreased cognition and mobility and lower 

listening self-efficacy was associated with decreased balance confidence. 

Linking Hearing Loss and Mobility Through Cognition 

Reduction of Cognitive Capacity 
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The current work is consistent with previous studies demonstrating that both listening and 

mobility increasingly rely on cognitive resources with age (e.g., Brown et al., 1999; Gosselin & 

Gagné, 2011; Tun et al., 2009). The current work is novel in combining these two domains and 

challenging older adults with and without age-related hearing loss using a cognitive-motor dual-

task paradigm. Using this approach, we showed a dual-task cost in the cognitive domain among 

older adults with age-related hearing loss. Specifically, despite equating the SNR for our 

participants, older adults with age-related hearing loss demonstrated a dual-task performance 

decrement on the auditory cognitive task, while maintaining their postural response during 

challenging dual-task conditions. Importantly, this performance cost was not observed among 

normal hearing older adults who exhibited a similar postural strategy. Consistent with the idea of 

cognitive compensation (Li & Lindenberger, 2003), this pattern of results suggests that hearing 

loss is associated with increased competition for cognitive resources particularly in challenging 

dual-task conditions.  

Expansion of Cognitive Capacity 

Given the observation that older adults with age-related hearing loss exhibited greater dual-

task costs than normal hearing older adults, one possible implication is to increase cognitive 

capacity to reduce these costs. Other researchers have aimed to improve single and dual-tasking 

among older adults using single domain or combined training to strengthen cognitive capacity. 

Among healthy older adults, single domain cognitive training has been shown to benefit 

executive functions (Lustig et al. 2009) and transfer to motor tasks including measures of 

postural control (Li et al., 2010) and gait (Smith-Ray et al., 2013; Verghese et al., 2010).  

However, the literature is mixed regarding the increased efficacy of single versus combined 

training on motor (Agmon et al., 2014; Fraser et al., 2017) and cognitive (Zhu et al., 2016) 



92 

 

outcomes. Moreover, there is a high degree of heterogeneity in the types of training tasks used 

and how researchers combine cognitive and physical training. Specifically, tasks can be trained 

separately (i.e., sequentially) or at the same time (i.e., simultaneously). Additionally, combined 

training formats are often compared to single domain cognitive or physical training or to a 

placebo to assess the potential synergistic effects of combined training (Agmon et al., 2014; 

Fraser et al., 2017; Zhu et al., 2016). Importantly, aside from the present work, no study has 

directly compared simultaneous and sequential approaches while specifically targeting a hearing 

loss population. While simultaneous training may be more beneficial as it mimics real-life 

conditions, reduces training time and costs (Theill et al., 2013) and trains coordination between 

cognitive and motor tasks (Zhu et al., 2016), there might also be a cost associated with dividing 

attention between the trained cognitive task and the concurrent motor task (Li et al., 2001). Our 

second study therefore compared simultaneous and sequential cognitive-physical combined 

training formats on cognitive-motor dual-task outcomes, while also sampling older adults with 

hearing loss.  

With respect to the intervention design in Paper 2, we opted to omit a control group given 

that the efficacy of each training component had already been established (e.g., Desjardins-

Crépeau, 2016; Fraser et al., 2017). Moreover, in a recent study using the same training 

components with a similar sample of healthy older adults, an active control condition (stretching 

plus computer lessons) did not yield pre-post changes or learning effects (Fraser et al., 2017). 

Another consideration is the total amount of time spent in training. While the sequential training 

group received 30 minutes of cognitive training followed by 30 minutes of physical training (1-

hour total), the simultaneous group received 30 minutes of concurrent cognitive and physical 
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training (30 minutes total). Although the total training time differed between the two groups, 

training was designed such that both groups received the same “dosage”.  

In Paper 2, it was found that sequential training was more effective in improving auditory 

working memory performance particularly in challenging low volume auditory conditions, which 

have previously been shown to be detrimental to older adults’ working memory performance 

(Baldwin & Ash, 2011). After subdividing the sample by hearing status, we showed that older 

adults with age-related hearing loss appeared to benefit from training regardless of format in 

these same challenging auditory conditions. In contrast, while all participants demonstrated gains 

on a measure of global mobility, there was no transfer or format effect on postural outcome 

measures.  

The differential benefits of sequential training on the cognitive and motor outcome measures 

can be understood by considering the literature on cognitive aging and transfer effects. That is, 

the magnitude of transfer to untrained measures depends on its relationship to the trained task 

(Dahlin et al., 2008) in that training is likely to benefit tasks that share surface features or 

strategies with the trained task (Hertzog et al., 2008). Consistent with this idea, in the current 

work, transfer of training was most prominent for the near transfer task of auditory working 

memory. This near transfer was also supported through significantly greater gains for the 

sequential group on an independent measure of working memory as compared to the 

simultaneous group (Lai et al., 2017). Presumably the sequential format of training was more 

effective than the simultaneous format because it allowed participants to practice their dual-task 

processing without the distraction of simultaneous cycling. This is consistent with what was 

observed in the training phase data in that there was a slightly higher rate of progress on DT 
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performance in the sequential group when compared to the simultaneous group but comparable 

progress on the aerobic training task.   

In contrast, there was less far transfer to mobility outcome measures, which likely share less 

functional overlap with the trained tasks. However, this finding contrasts with previous work (Li 

et al., 2010), which demonstrated transfer to postural outcomes using a similar cognitive training 

task. Although the current study used similar outcomes measures of dual-task single support, the 

previous work demonstrated training-related gains particularly when participants were asked to 

perform this condition with eyes closed. Given that older adults are more susceptible to reduced 

proprioceptive input (Redfern et al., 1997; Teasdale et al.,1993), it is possible that this 

manipulation resulted in greater recruitment of cognitive resources thus rendering it more 

sensitive to cognitive training. When considering the mobility outcomes, another possibility is 

that training reduced the amount of cognitive resources needed to perform the motor task, thus 

freeing up resources for the secondary auditory cognitive task (Godde & Voelcker-Rehage, 

2017).  

Overall, the findings in Paper 2 demonstrate that strengthening cognitive resources through 

sequentially combined training can be beneficial to challenging dual-task cognitive-motor 

outcomes particularly for older adults with age-related hearing loss. This finding is consistent 

with other intervention work with a hearing-impaired population which shows that intervention 

with amplification devices (e.g., hearing aid, cochlear implants) can benefit gait and balance 

(Shayman et al., 2017) and that working memory and auditory training can improve scores on 

measures of competing speech and complex cognitive tasks which assess executive function 

(Ferguson & Henshaw, 2015).   

Cognitive Mediation 
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Another approach is to go beyond the group-wise effects that were investigated in the first 

two papers and consider individual differences in hearing acuity and cognitive status which 

might play a role in predicting mobility. Using multivariate approaches, it has previously been 

demonstrated that older adults with hearing loss show lower scores on both verbal and nonverbal 

cognitive measures (e.g., Lin et al., 2011) as well as poorer physical functioning (e.g., Chen et 

al., 2015). Moreover, others (Heyl & Wahl, 2012) demonstrated that older adults with sensory 

impairment rely more heavily on cognitive resources to perform everyday activities and show 

decreased confidence in mastery of their environment. However, to date, cognitive motor and 

hearing domains have not often been considered together, nor have self-efficacy and objective 

assessments of hearing and mobility been commonly compared.  

In Paper 3, replicating previous work (e.g., Lin et al., 2011), hearing loss was associated with 

decreased cognition and reduced balance confidence. Additionally, the association between 

lower objective hearing loss and greater mobility was mediated through higher cognitive status, 

which is consistent with neuroimaging work demonstrating increased brain activation during 

hearing (e.g., Wong et al., 2009) and mobility (e.g., Holtzer et al., 2011; Holtzer et al., 2015) 

tasks among older adults. Moreover, this finding is in line with cognitive compensation (Li & 

Lindenberger, 2002), wherein older adults compensate for declines in motor and hearing 

domains by recruiting cognitive resources.  

In addition, self-efficacy (Bandura, 1977) appeared to be an important contributor to 

understanding the relation between hearing and mobility in that lower listening self-efficacy was 

directly associated with decreased balance confidence. This work is consistent with other studies 

which demonstrate that older adults with hearing loss expend more listening effort (Pichora-

Fuller, 2016; Pichora-Fuller et al., 2016) and that perceived hearing loss is associated with 
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decreased mobility and engagement (Polku et al., 2015). Our study also extends work by Heyl 

and Wahl (2012), who found that older adults with sensory impairment demonstrated decreased 

subjective autonomy and environmental mastery, particularly with respect to “daily activities of 

living”. The current work adds to this literature by explicitly measuring listening self-efficacy 

and balance confidence, which may contribute to this population’s reduced confidence in 

behaviour-related everyday activities. Ultimately, this decreased self-efficacy in both domains 

may lead to a process of disengagement and deconditioning. Future studies could include an 

assessment of activities of daily living to investigate whether mobility self-efficacy is predictive 

of daily activities.      

Postural Prioritization 

A common theme that relates to much of the present empirical work is postural prioritization, 

the observation of increased costs in the cognitive domain during cognitive-motor dual-tasking 

(Brown et al., 1999; Li et al., 2005; Little & Woollacott, 2014; Redfern et al., 2002; Verghese et 

al., 2007). Consistent with previous work, our experimental and intervention studies (Papers 1 

and 2) demonstrated that older adults tended to prioritize posture relative to listening 

performance. Specifically, our dual-task experimental work showed that older adults with 

hearing loss exhibited a drop in performance from single- to dual-task conditions on the 

secondary cognitive task in order to maintain posture on the mobility task. Turning to the 

intervention work and specifically to the training phase cognitive data, there was a trend such 

that older adults who were trained simultaneously had lower gains on the cognitive training task 

but similar performance on the aerobic training task, compared to those who were trained 

sequentially. That is, measured both objectively and subjectively, the simultaneous group 

showed lower gains on the cognitive training task across sessions. These findings suggest that 
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older adults prioritized the aerobic training task at the expense of cognitive training indicating a 

cost to dividing attention. Together, these results suggest that older adults with and without 

hearing loss appear to prioritize posture in cognitive-motor dual-task conditions.  

Theoretical Implications 

 Overall, the current work has demonstrated that cognition is involved in both hearing and 

mobility among an older adult population, particularly among those with age-related hearing 

loss. These findings are largely consistent with the theory of cognitive compensation (Li & 

Lindenberger, 2002) which proposes that declining peripheral functioning is compensated for 

through the recruitment of cognitive resources. Within this framework, increased demands on 

hearing, motor, or cognitive abilities would result in greater competition for common cognitive 

resources. This effect is evident in the current work wherein cognitive involvement was more 

pronounced in challenging conditions (e.g., dual-tasking, performing an auditory working 

memory task in noise) and among those with reduced peripheral hearing. The current work is 

also consistent with the idea of compensatory scaffolding (Park & Reuter-Lorenz, 2009), in that 

strengthening cognitive resources using combined training improved performance on cognitive-

motor dual-task outcome measures with an auditory working memory component.  

Other theories of compensation (Cabeza, 2002; Park & Reuter-Lorenz, 2009) suggest that 

older adults demonstrate compensatory frontal and bilateral brain activation to maintain 

behavioural performance. Although the current work did not include functional neuroimaging 

measures, previous work has demonstrated a link between brain volume in frontal regions (e.g., 

dorsolateral prefrontal cortex) and mobility parameters such as gait speed (Rosano et al., 2007). 

Others have demonstrated patterns of neural compensation during real-time walking 

performance, in that greater activation in prefrontal regions is observed with increasing cognitive 



98 

 

demands during walking (Holtzer et al. 2011; 2015).  Given this previous work, it is possible that 

older adults and particularly those with hearing loss would have demonstrated increased frontal 

or bilateral brain activation in response to challenging conditions (e.g., dual-tasking, performing 

an auditory working memory task in noise) as a means of maintaining their mobility 

performance. Future training studies could incorporate functional imaging techniques into pre- 

and post-training assessments of dual-task posture and gait to investigate the impact of training 

on compensatory brain activation.     

Limitations and Future Directions 

 One limitation of our studies is that we tested older adults with mild hearing loss who 

were free from mobility impairments. Particularly in Study 2, the older adults were very fit 

relative to the general aging population, given the strict inclusion criteria concerning readiness to 

exercise. Future studies could sample older adults with more profound hearing loss or mobility 

difficulties who would likely exhibit greater competition for cognitive resources particularly in 

challenging dual-task conditions. These clinical populations would be particularly important to 

investigate given their risk for cognitive decline, incident dementia (Lin et al., 2013; Lin et al., 

2011) and falls (Viljanen et al., 2009).  

A second limitation of our studies is the use of cross-sectional data, particularly with 

respect to modeling. Future studies could take a longitudinal approach perhaps even starting in 

midlife to better elucidate the mechanisms accounting for the relation between hearing loss, 

decreased mobility and reduced cognition (Pichora-Fuller & Schow, 2017). These studies would 

also have implications for interventions which could be implemented earlier on to prevent 

decline in old age. Other approaches which are currently underway include implementing 
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interventions such as physical exercise or hearing aid intervention (e.g., Deal et al., 2017) to 

examine physical, cognitive and hearing outcome measures longitudinally.  

Another limitation of our studies is that we did not include an objective measure of 

vestibular dysfunction to complement the objective assessment of mobility and self-reported falls 

and vertigo. This consideration is important given the role of vestibular dysfunction in falls 

(Agrawal, Carey, Della Santina, Schubert, & Minor, 2009) and the possibility of concomitant 

cochlear and vestibular dysfunction in a hearing impaired population (Lin & Ferrucci, 2012). 

However, previous work has demonstrated that the association between hearing loss and falls 

remained even when controlling for objectively assessed vestibular dysfunction (Lin & Ferrucci, 

2012). Regardless, future studies which include a hearing loss population could incorporate an 

objective clinical assessment of vestibular impairment (Jacobson & Shepard, 2008).  

Lastly, a limitation of our studies is that our hearing loss samples were typically older and 

comprised of more men. However, these demographic characteristics are strongly correlated with 

hearing loss and therefore our samples were representative of this population (Stenklev & Laukli, 

2004). Moreover, controlling for age with this population is challenging as age is strongly 

associated with peripheral hearing loss (Stenklev & Laukli, 2004) and therefore, controlling for 

age likely removes some of the variance associated with hearing loss in addition to error variance 

(Martin et al., 1991).  Nevertheless, after controlling for age in two of our studies where samples 

differed in age, the majority of our findings remained statistically significant. This is consistent 

with previous epidemiological work which demonstrates correlations between hearing loss and 

decreased cognition (Lin, 2011; Lin et al., 2011) and falls (Viljanen et al., 2009) even after 

correcting for chronological age.   

Clinical Implications 
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 Having demonstrated using a variety of experimental and analytic techniques, the 

involvement of cognitive capacity in audition and motor performance, the present work suggests 

that targeted cognitive training could be used to complement more traditional audiological or 

physical rehabilitation. While traditional audiological rehabilitation entails auditory training, 

hearing aid use, patient education and counseling (Ferguson & Henshaw, 2015), physical 

rehabilitation often includes encompasses both active (e.g., exercise) and passive (e.g., 

therapeutic modalities) methods to maintain or improve mobility, physical activity, and overall 

health and wellness (Canadian Physiotherapy Association, 2012). Extending rehabilitation to 

include cognitive training may be particularly beneficial in challenging everyday situations 

which draw more heavily on cognitive resources such as cognitive-motor dual-tasking (e.g., 

walking and talking) or in the presence of noise (e.g., a busy restaurant). Since older adults and 

particularly those with hearing loss are at a greater risk for falls (Viljanen et al., 2009), this type 

of intervention may also serve to reduce the number of falls and help older adults maintain 

functional independence.  

On a more practical level, the present results suggest that when working with older adults 

in clinics, it would be beneficial to reduce the amount of noise in the environment, use 

amplification devices when communicating, and reduce dual-tasking particularly when walking 

or providing important information. Due to the associations between cognition, hearing and 

mobility domains, clinicians (e.g., physiotherapists, audiologists, geriatricians) could embrace an 

interdisciplinary approach to treating older adults and consider referring patients to other services 

if they notice cognitive, mobility, or hearing difficulties. When completing cognitive screening, 

it would be important for clinicians to be aware of the impact of hearing loss on cognitive scores 

(e.g., MoCA; Dupuis et al., 2015) as well as the increased risk for cognitive decline and incident 



101 

 

dementia (Lin et al., 2013; Lin et al., 2011) among this population. Moreover, given that older 

adults often have untreated hearing loss, clinicians could use screening questions to assess 

hearing loss and make a referral to an audiologist if warranted (Alzheimer’s Society of Canada, 

2017).  

Since self-efficacy appears to be an important contributor to the relation between hearing 

loss and mobility, clinicians could consider approaches that would serve to increase confidence. 

Confidence is particularly important given the role it might play in older adults’ willingness to 

engage in hearing and physical activities. Specifically, decreased self-efficacy may contribute to 

lower engagement in activities (Dionyssiotis, 2012; Polku et al., 2015; Viljanen et al., 2009), 

ultimately leading to a process of deconditioning and impairment. If not already implemented, 

suggestions to increase confidence may include tracking progress and continuous feedback on 

performance with respect to audiological and physical rehabilitation goals or tasks.     

Conclusion 

 In sum, the current work was novel in using three different types of approaches to 

explicitly measure and investigate the role of cognitive resources in both mobility and hearing 

domains, while specifically sampling older adults with age-related hearing loss. Consistent with 

cognitive compensation (Li & Lindenberger, 2002), the current work demonstrated a role for 

cognition in mobility and hearing performance, with increasing competition in a hearing-

impaired population. Moreover, self-efficacy emerged as another important contributor to the 

relation between hearing loss and mobility, suggesting that those with decreased listening self-

efficacy also demonstrate reduced balance confidence. Together, these results suggest several 

mechanisms by which older adults with hearing loss are at a greater risk for falls (Viljanen et al., 

2009) and have implications for future work and clinical practice.    
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Appendix A 

Panel A shows a representation of participants’ postural response to the platform perturbation: 1. 

The perturbation phase, when the platform abruptly moves forward, 2. the reactive phase, when 

participants actively correct for the postural disturbance, 3. the recovery phase, when 

participants’ posture slowly returns to its original position. Panel B is an individual trace for the 

ankle joint, with negative values indicating greater plantarflexion. Panel C is an individual trace 

for the hip joint, with negative values indicating greater hip extension. The vertical dotted lines 

in panels B and C denote the three postural phases. Note. YA = younger adults. OA = older 

adults. ARHL = older adults with age-related hearing loss. 
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Appendix B 

 

Dual-Mixed Trial of the DT training task  
 

 


