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ABSTRACT
Arbitrage-free regularization, geometric learning, and non-Euclidean filtering
in finance

Anastasis Kratsios Ph.D.
Concordia University, 2018

This thesis brings together elements of differential geometry, machine learning, and
pathwise stochastic analysis to answer problems in mathematical finance. The overarching
theme is the development of new stochastic machine learning algorithms which incorporate
arbitrage-free and geometric features into their estimation procedures in order to give more
accurate forecasts and preserve the geometric and financial structure in the data.

This thesis is divided into three parts. The first part introduces the non-Euclidean up-
grading (NEU) meta-algorithm which builds the universal reconfiguration and universal
approximation properties into any objective learning algorithm. These properties state
that a procedure can reproduce any dataset exactly and approximate any function to
arbitrary precision, respectively. This is done through an unsupervised learning proce-
dure which identifies a geometry optimizing the relationship between a dataset and the
objective learning algorithm used to explain it. The effectiveness of this procedure is
supported both theoretically and numerically. The numerical implementations find that
NEU-ordinary least squares outperforms leading regularized regression algorithms and
that NEU-PCA explains more variance with one NEU-principal component than PCA
does with four classical principal components.

The second part of the thesis introduces a computationally efficient characterization
of intrinsic conditional expectation for Cartan-Hadamard manifolds. This alternative
characterization provides an explicit way of computing non-Euclidean conditional expec-
tation by using geometric transformations of specific Euclidean conditional expectations.
This reduces many non-convex intrinsic estimation problems to transformations of well-
studied Euclidean conditional expectations. As a consequence, computationally tractable
non-Euclidean filtering equations are derived and used to successfully forecast efficient
portfolios by exploiting their geometry.

The third and final part of this thesis introduces a flexible modeling framework and a
stochastic learning methodology for incorporating arbitrage-free features into many asset
price models. The procedure works by minimally deforming the structure of a model until
the objective measure acts as a martingale measure for that model. Reformulations of
classical no-arbitrage results such as NFLVR, the minimal martingale measure, and the
arbitrage-free Nelson-Siegel correction of the Nelson-Siegel model are all derived as solu-
tions to specific arbitrage-free regularization problems. The flexibility and generality of
this framework allows classical no-arbitrage pricing theory to be extended to models that
admit arbitrage opportunities but are deformable into arbitrage-free models. Numerical
implications are investigated in each of the three parts making up this thesis.
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1. Introduction
The application of machine learning to mathematical finance is a new and active research
area. Innovative applications of deep learning to optimal hedging problems in [16, 34],
price formation in [92], sparse estimation of diffusion process parameters in [25], forecast-
ing of electricity prices in [20] amongst others, have been recently explored.

Many of these machine learning algorithms are both static and Euclidean making them
unsuited to the dynamic nature of financial markets and unable to incorporate many of
the geometric features present in financial data. An objective of this thesis is to develop
new learning algorithms which are suited to the dynamic nature of financial data. To
this end, arbitrage-free regularization is a non-anticipative learning procedure beginning
with an empirical factor model for the price of a risky asset and progressively deforming
it until the real-world measure becomes a local martingale.

Measure changes will be formulated as particular types of model deformations, al-
lowing for the reformulation of many classical results from arbitrage-pricing theory can
be reformulated as the existence, uniqueness, and solution to specific arbitrage-free reg-
ularization problems. Arbitrage-free regularization extends past measure change induced
deformations and is used to extend arbitrage-pricing theoretic results to models which are
not arbitrage-free but are deformable into arbitrage-free models.

In [38, 39, 21] it is shown that a wide range of factor models for the term-structure
of interest rates admit arbitrage. Arbitrage-free regularization can be interpreted as
optimally correcting these models while retaining the maximum amount of structure of
the initial model after the deformation is complete. The arbitrage-free correction of the
Nelson-Siegel term structure model of [21] is a model specific case of this general procedure.

The second direction of this thesis focuses on the development of new learning algo-
rithms which have universal approximation properties built into them and are able to
incorporate non-Euclidean features into their estimates. Non-Euclidean geometry occurs
naturally in certain problems in finance. For example, in [10], short-rate models consis-
tent with finite-dimensional smooth manifolds were characterized. In [59], highly accurate
stochastic volatility model estimation methods are derived using heat kernel expansions of
the Riemannian metric associated with a stochastic volatility model. In [39] arbitrage-free
factor models for interest rates have been characterized using geometric methods.

Inspired by these results, the second direction of this thesis is concerned with the
introduction and development of a meta-algorithm which learns and incorporates an op-
timal geometry into any learning algorithm. It is shown that this geometry improves
the in-sample and out-of-sample forecasts of any learning algorithm. In numerical ex-
periments, the performance of basic algorithms improved with the incorporation of this
optimal geometry are seen to outperform their sophisticated counterparts while still re-
taining their simplicity. The second class of results in this direction develops a rigorous
theory of non-Euclidean conditional expectation capable of naturally incorporating non-
Euclidean features and is successfully used to obtain computationally tractable dynamics

1



CHAPTER 1. INTRODUCTION 2

for the non-Euclidean conditional expectation. This differs from the current literature
on the subject which considers Euclidean conditional expectations of functionals of a
non-Euclidean signal and observations process. Implementation of these techniques suc-
cessfully predicts efficient portfolio weights more accurately than the competitive methods
such as basis-function regression methods and penalized regression methods, such as the
LASSO of [99].

The thesis is organized as follows. Chapter 2 introduces the NEU meta-algorithm
for incorporating non-Euclidean features and the universal reconfiguration property into
any objective learning algorithm. Chapter 3 introduces non-Euclidean conditional ex-
pectation, proves its existence and alternative characterizations and uses this alternative
characterization to solve for computable non-Euclidean filtering equations. Chapter 4
introduces the theory of arbitrage-free regularization, relates many classical arbitrage-
pricing theory results to particular formulations of arbitrage-free regularization problems
and introduces a meta-algorithm for incorporating arbitrage-free information into a wide
range of estimation procedures. Chapter 5 summarizes the contributions made in the
thesis and outlines future directions of research.



2. The NEU Meta-Algorithm for
Geometric Learning with
Applications in Finance
We introduce a meta-algorithm, called non-Euclidean upgrading (NEU), which learns
algorithm-specific geometries to improve the training and validation set performance of
a wide class of learning algorithms. Our approach is based on iteratively performing
local reconfigurations of the space in which the data lie. These reconfigurations build
universal approximation and universal reconfiguration properties into the new algorithm
being learned. This allows any set of features to be learned by the new algorithm to
arbitrary precision. The training and validation set performance of NEU is investigated
through implementations predicting the relationship between select stock prices as well
as finding low-dimensional representations of the German Bond yield curve.

2.1 Introduction

Many statistical and learning algorithms such as ordinary linear regression and PCA
admit linear algebraic formulations making them quick to execute. Their inability to
capture non-linear features has motivated several non-linear generalizations. Non-linear
generalizations of linear models require alternative, computationally costly, estimation
procedures. Generalized additive models (GAM) and artificial neural networks (ANN)
are examples of non-linear generalizations of linear regression that come with a significant
increase in computational cost (see [55, Chapters 9 and 11] for a discussion of these
methods).

Patterns in the data are typically interpreted as a function relating explanatory inputs
to the observations which they explain. Alternatively, a pattern can be interpreted as
the positioning of points in space. Since a function’s graph is a specific set of points
in space, interpreting a pattern as a configuration of points in space is more general
than interpreting it as a function. The non-Euclidean Upgrading (NEU) methodology
introduced in this chapter can learn any configuration of data. As a consequence, two
versions of the universal approximation property (see [23] for details) of ANNs is also
recovered.

Non-Euclidean Upgrading (NEU) is a meta-algorithm. Meta-algorithms are algo-
rithms whose inputs and outputs are other algorithms. For example, the Boosting meta-
algorithm of [86] efficiently combines learning algorithms to build a more accurate new
learning algorithm. Bagging, as introduced in [14], is another meta-algorithm which gen-
erates bootstrapped samples from a given dataset, performs the input algorithm on those

3



CHAPTER 2. NON-EUCLIDEAN UPGRADING 4

bootstrapped samples, and aggregates each of the predictions into a lower-variance esti-
mate. NEU is also a meta-algorithm which inputs a learning algorithm and a dataset,
and outputs a new algorithm with the universal approximation property built into it.
Applying NEU to simple linear algorithms produces algorithms which are interpretable,
have a low computational burden, and can predict any pattern to arbitrary precision once
trained.

NEU works by first segmenting the input data into training and validation components,
then performing local perturbations on the space on which the data is defined, executing
the learning algorithm on the perturbed training and validation data sets, and evaluating
if the validation set performance has increased. The procedure continues iteratively,
stopping once the validation set performance begins to drop.

(a) Non-Linear Configuration of Euclidean
Data.

(b) Linear Configuration of Non-Euclidean
Data.

Figure 2.1: Visualization of Reconfiguration of the Data.

Figure 2.1 illustrates how perturbing R2 reconfigures the given dataset and allows for a
linear regression to explain a non-linear relationship. After linear regression is performed,
the transformations to R2 are inverted and the linear predictor becomes non-linear. This
illustration is analogous to the non-Euclidean regression proposed in [41] with the central
difference being that our methodology learns the geometry of the problem whereas the
algorithm in [41] relies on a prespecified geometry.

Applying NEU to principal component analysis (PCA) generates an analogue of the
principal geodesic analysis of [42] where the geometry is learned from the data. Applying
NEU to the unscented Kalman filtering algorithm of [57] or to the geometric GARCH
framework of [52] produces analogues of those algorithms but without a prespecified ge-
ometry. There are many other potential applications of NEU in statistics and machine
learning.

We consider two examples from finance. The first example considers the use of prin-
cipal component analysis (PCA) on German bond data. Using NEU on PCA shows that
one NEU-principal component performs better than 4 standard principal components.
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The second example from finance considers the relationship between Apple stock price
and the stock prices of companies related to Apple. Using NEU on linear regression
provides better out-of-sample predictions than the LASSO, Ridge regression, and non-
linear extensions of Elastic-Net (ENET) procedures. While we consider only two examples
from finance to illustrate NEU, the generality and flexibility should allow for similar
performance gains in other areas of financial statistics and machine learning.

The remainder of this chapter is organized as follows. Section 2.2 introduces the
mathematical framework for non-Euclidean upgrading, the main results regarding the
technique’s flexibility, and predictive performance enhancement are proven. Section 2.3
investigates the empirical performance of non-Euclidean upgrading on the two examples
from finance. The relationship between Apple stock price and the stock price of related
companies can be better explained training sets and validation sets using non-Euclidean
upgraded regression. Parallels are drawn to the non-Euclidean generalizations of regres-
sion and principal geodesic analysis developed in [41] and [42], respectively. We adjoin
an appendix with two sections, the first lists the regularity assumptions made and the
second contains certain technical proofs.

2.2 Non-Euclidean Upgrading

This section introduces and develops the NEU meta-algorithm. Reconfigurations are first
introduced and a universal approximation property is proven. The NEU meta-algorithm
is then introduced and its performance gain property is proven.

For the remainder of this chapter, a dataset will be comprised of training and validation
sets. The training set will be denoted by XI =

{
XI

1 , . . . , X
I
NI

}
and the validation set will

be denoted by XO =
{
XO

1 , . . . , X
O
NO

}
, where NI and NO are non-negative integers and

NI ≥ 1.

Reconfigurations perturbing the dataset are smooth maps from RD back into itself,
smooth autodiffeomorphisms, which satisfy certain local properties. These are defined as
follows.

Definition 2.2.1 (Reconfiguration Map) Let Θ be an open subset of Rm. A reconfigura-
tion on RD is a map

ξ :RD ×Θ → RD,

(x, θ) �→ ξ(x|θ)
satisfying the following properties:

(i) Invertiblility: For every θ ∈ Θ, the map fθ(x) � ξ(x|θ) is a bijection,

(ii) Smoothness: For every θ ∈ Θ, the maps fθ(x), and f−1θ are continuously differen-
tiable,
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(iii) Smooth Parametrization: For every x in RD, the map θ �→ ξ(x|θ) is continuously
differentiable,

(iv) Local Transience: For every x, y, z in RD with d(x, y) < d(x, z), there exists
θ ∈ Θ such that

ξ (x|θ) =y

ξ (z|θ) =z,

where d(·, ·) is the Euclidean distance on RD.

(v) Identity: The subset Θ0 �
{
θ ∈ Θ : ξ (x|θ) = x, ∀x ∈ RD

}
of Θ is non-empty.

The central example of a reconfiguration map, is a rapidly decaying rotation con-
centrated on a disc. These rotations slow exponentially as the boundary of the disc is
approached. Beyond the disc’s boundary the reconfiguration map becomes the identity
transformation. Rapidly decaying rotations are illustrated by Figure 2.2.

(a) Data in Euclidean Space. (b) A Rapidly Decaying Rotation.

Figure 2.2: Visualization of Rapidly Decaying Rotations.

Definition 2.2.2 (Rapidly Decaying-Rotations) Let so(D) denote the set of D×D skew-
symmetric matrices and set Θ � RD × (0,∞)× so(D). A rapidly decaying rotation is the
map ξ defined by

ξ : RD ×Θ → RD

ξ (x|(c, σ,X)) �→ exp (ψ(‖x− c‖; σ)X) (x− c) + c,
(2.1)

where ψ is the Gaussian bump-function supported on the unit sphere of radius σ centered
at the point c ∈ RD, defined by

ψ(x; σ) �

{
exp
(

−σ
σ−‖x‖2

)
: ‖x‖ < σ

0 : else,
(2.2)

and exp is the matrix exponential map.
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Proposition 2.2.3. Rapidly decaying rotations are reconfiguration maps. Moreover, the
inverse of ξ(·|(c, σ,X)) is

Φ(x|c, σ,X) = exp (−Xψ(‖y‖ ; σ)) (x− c) + c,

where y is the image of x under Φ (·|c, σ,X).

Proof. The proof is deferred to the appendix

Remark 2.2.4 (Geometric Interpretation). The rapidly decaying rotations are interpo-
lations between a rotation and the identity map interior to the disc of radius σ, centered
at c. However, the interpolation does not take place in RD, but instead happens within
the lie algebra so(D) lying tangential to the space of all generalized rotation matrices
SO(D). This ensures that the map is invertible for all possible parameter choices.

Definition 2.2.5 (Planar Micro-Bumps) A planar micro-bump on R2, is the map ξ de-
fined by

ξ : R2 ×Θ → R2

ξ ((x1, x2)|(c, σ,X)) �→ x+ ψ(‖x− c‖; σ)X,
(2.3)

where Θ = R2 × [0,∞)× R.

Proposition 2.2.6. Planar micro-bumps are reconfigurations maps on R2.

Proof. The proof is deferred to the appendix

Data points are deemed poorly placed if moving them increases the validation set per-
formance of a learning algorithm. Iteratively applying reconfiguration maps allows poorly
placed data-points to be moved to locations which increase an algorithm’s validation set
performance. The local transience property of reconfiguration maps, Definition 2.2.1 (iv),
makes it possible to only move poorly placed data-points while leaving the others fixed.
The procedure is summarized as follows.

Definition 2.2.7 (Reconfiguration) Let M be a smooth sub-manifold of RD, which is
diffeomorphic1 to RD, Φ be a diffeomorphism2 from M onto RD, let ξ be a reconfiguration
map on RD, and let θ0, . . . , θN be in Θ with θ0 ∈ Θ0. Here Θ0 is as in definition 2.2.1(v).
A reconfiguration X, is a map from M to M defined by

X (x|θ1, . . . , θN ; Φ) �Φ
(
X(N)(x)

)
where

X(i)(x) �ξ
(
X(i−1)(x)|θi

)
; i = 1, . . . , k

X(0)(x) �ξ (x|θ0) .
1 The Whitney embedding theorem implies that any smooth manifold is a smooth subset of a Euclidean

space. In this chapter, a map will be quantified as being smooth if it is once continuously differentiable.
2 A diffeomorphism is a bijection which is smooth and has a smooth inverse.
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Reconfiguring a dataset on RD maps it into new coordinates for the input D-variables.
These coordinates may not be directly interpretable, therefore after performing the learn-
ing algorithm and obtaining an estimate in the new coordinate system the reconfiguration
must be inverted. This inverse procedure is called deconfiguration.

Definition 2.2.8 (Deconfiguration) Let X be a reconfiguration of M . The deconfiguration
of X is the map denoted by X−1 defined as

X−1 (x|θ1, . . . , θN ; Φ) �Φ−1
(
X(N)(x)

)
X(i)(x) �ξ−1

(
X(i−1)(x)|θN−1

)
; i = 1, . . . , N

X(0)(x) �ξ−1 (x|θ0) .

The universal approximation property of neural networks states that certain neural
networks can approximate any function to arbitrary precision (see [23]). The first anal-
ogous property for reconfiguration states that any dataset can be transformed into any
other dataset of equal size.

Theorem 2.2.9 (Universal Reconfiguration Property). Assume that D > 1 and ξ be a
reconfiguration map on RD, and Φ be a diffeomorphism from M onto RD. Let X �

{Xi}Ni=1 and X̃ �

{
X̃i

}N

i=1
be subsets of M . There exists a positive integer K, and

θ1, . . . , θK in Θ for which
X (Xi|θ1, . . . , θK ; Φ) = X̃i,

for every i in {1, . . . , N}.

Proof. The proof is deferred to the appendix.

The universal reconfiguration property implies the following analogues to the universal
approximation property of neural networks of [72]. The first captures general functions
on a more restricted domain and the second captures a smaller class of functions on a
larger domain.

Corollary 2.2.10 (Universal Approximation Property). Let D1, D2 be positive integers,
K be a subset of RD1 and f, g be Borel-functions from K to RD2 . If K is diffeomorphic
to RD1 , then for every countable subset Q of M , probability measure P supported on Q,
and every n ∈ N, there exists θn1 , . . . , θ

n
Nn

∈ Θ such that for every ε > 0 there exists a
Borel-subset Kε of Q satisfying

1. supx∈Kε

∥∥f(x)− p ◦ X ((x, g(x)) |θn1 , . . . , θnNn

)∥∥ < 1
n
,

2. P(Q−Kε) < ε.

Here p is the second canonical projection3 of RD1+D2 onto RD2 . In the limiting case where
ε = 0, the convergence of p ◦ X ((x, g(x)) |θn1 , . . . , θnNn

)
to f(x) on Q is point-wise.

3The second canonical projection of the product space X × Y takes a pair (x, y) to y, see [73] for
details.



CHAPTER 2. NON-EUCLIDEAN UPGRADING 9

Proof. The proof will be deferred to the appendix.

Non-Euclidean upgrading uses reconfigurations to improve a class of learning algo-
rithms which we call objective learning algorithms. These are discussed in the next
section.

The learning algorithms we consider in this chapter optimize both the training set and
validation set loss functions. Regularized regression, PCA, k-means, neural networks,
Bayesian classifiers, support vector machines, and stochastic filters are all examples of
objective learning algorithms.

Objective learning algorithms associate to every pair of training and validation sets
of a given size, a pair of training set and validation set loss-functions as well as a pattern
function linking the parameters being optimized to the prediction they can make. This
formalization requires the definition of the set of all possible learning algorithms for a fixed
set of hyper-parameters Γ and parameter to prediction function φ : Rd × RD → RD×k.
Here D is the dimension of the space in which the data-points lie, d is the dimension of
the explanatory parameters, and k is the number of D-dimensional points out-putted by
the algorithm.

For example, for a 1 factor PCA, k = 1 d = D and for a two factor PCA k = 2 and
d = D. In the case of linear regression, the regression weights are scalars therefore d = 1.
If there is no intercept then k = 1 and if there is an intercept k = 2, in this formulation
D is the number of columns of the design matrix.

Let NI be a positive integer and NO be a non-negative integer. Define ΛNI ,NO

Γ,φ to be

the set of all pairs of maps
(
L

NI

I ,L NO

O

)
such that

(i) The map L
NI

I : Rd × C∞(Rd × RD,RDk)× Γ× RDNI → [−∞,∞],

(ii) The map L
NO

O : Rd × C∞(Rd × RD,RDk)× Γ× RDNO → [−∞,∞],

(iii) Regularity condition 2.5.1 holds.

The function φ(β|·) : RD → RD×k represents the estimated pattern, parameterized by β.
The parameter β lies in the space Rd and is to be chosen by optimizing training set and
validation set loss functions. L

NI

I is the training set loss function on a dataset of size
NI and L

NO

O is the out-of-sample loss function on a dataset of size NO. The space of all
learning algorithms for a specific pattern function φ is ΛΓ,φ �

⋃
(NI ,NO)∈N2 Λ

NI ,NO

Γ,φ .

Definition 2.2.11 (Objective Learning Algorithm) An objective learning algorithm is a
map

(LI ,LO,Γ, φ) :
⋃

(NI ,NO)∈N2

RD×NI × RD×NO → ΛΓ,φ,

(
XI , XO

) �→ Λ
Dim(XI )

D
,
Dim(XO)

D

Γ,φ ,
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where the pair of an training set and a validation set (XI , XO) are viewed as elements of
RD×NI

RD×NO

, and where Dim(·) is the non-negative integer-valued function mapping a
point in Euclidean space to (·).
Remark 2.2.12. Given a dataset consisting of N data-points, the regression analysis loss
function is

N∑
i=1

(βiX i − Y i), (2.4)

where {X i}Ni=1 are the data-points and {Y i}Ni=1 are the responses. Incorporating an ad-
ditional data-point X101 and an additional response Y N+1 into the regression analysis
changes the loss function of Equation (2.4) to

N+1∑
i=1

(βiX i − Y i). (2.5)

Both Equations (2.4) and (2.5) are a 1-dimensional regression problem but technically
are defined by different loss functions. Definition 2.2.11 overcomes the oddity of having
a learning algorithm differ depending on the size of the dataset, by defining an objective
learning algorithm as a map associating the size of a dataset to the corresponding loss
function; which is what we do in inadvertently.

Principal component analysis and regression analysis are objective learning algorithms.
This is illustrated by the following two examples.

Example 2.2.13 (Regression as an Objective Learning Algorithm). Let a < b be real
numbers and {fi(x)}di=1 be a continuously differentiable linearly independent set of func-
tions in L2([a, b]). Non-linear regression is an objective learning algorithm which is rep-
resented by

(i) φ(β|x) =∑d

i=1 βifi(x
i),

(ii) L N
I

(
β, φ(β|·) | XI

1 , . . . , X
I
N

)
�
∑N

i=1

(
yi − φ(β|XI

i )
)2
,

(iii) L N
O

(
β, φ(β|·) | XO

1 , . . . , X
O
N

)
�
∑N

i=1

(
yi − φ(β|XO

i )
)2
,

(iv) Γ = {0},

where xi is the ith component of the D-dimensional vector x and where yi is the ith

observed data-point. Typically, the out-of-sample dataset is always taken to be empty
unless a regularization or sparsity constraint is imposed.

By adding a penalty term, such as the �1 norm, to the training set and validation
set loss functions and expanding the hyperparameter set Γ accordingly, most regularized
regression problems, such the LASSO of [99], are seen to be objective learning algorithms.



CHAPTER 2. NON-EUCLIDEAN UPGRADING 11

Example 2.2.14 (PCA as an Objective Learning Algorithm). Calculating the first prin-
cipal component of a dataset’s empirical covariance matrix Q is an objective learning
algorithm. Here (LI ,LO,Γ, φ) are represented by

(i) φ(β|x) = xβT ,

(ii) L N
I

(
β, φ(β|XI) | XI

1 , . . . , X
I
N

)
� −

{
βT X̃T

I X̃Iβ

βT β

}
,

(iii) L N
O

(
β, φ(β|XO) | XO

1 , . . . , X
O
N

)
� −

{
βT X̃T

OX̃Oβ

βT β

}
,

(iv) Γ = {0},

where X̃I and X̃O are the training and validation sets XI and XO, viewed as matrices
but with their column-wise means removed. Typically, the out-of-sample dataset is al-
ways taken to be empty. The higher principal components, as well as sparse principal
components, can also be represented analogously as an objective learning algorithm.

The optimal evaluation of a learning algorithm, is a map taking a learning algorithm
and a dataset to an optimized pattern. The optimal evaluation is only well-defined on
datasets which admit a unique optimizer. This set of regular datasets, called the regular
domain of definition of the learning algorithm, is defined as follows.

Definition 2.2.15 (Regular Domain of Definition) Let (LI ,LO,Γ, φ) be a learning algo-
rithm. The regular domain of definition of (LI ,LO,Γ, φ), denoted by
Dom(LI ,LO,Γ, φ), is the set of all pairs of data points (XI , XO) in⋃

(NI ,NO)∈N2

RD·NI × RD·NO

satisfying the regularity condition 2.5.2.

The map associating a dataset and an objective learning algorithm to the pattern best
describing it is now defined.

Definition 2.2.16 (Optimal Evaluation) Given an objective learning algorithm, (LI ,LO,Γ, φ)
its optimal evaluation is the output of the function taking as input a pair training and val-
idation sets in Dom(LI ,LO,Γ, φ) and returning the optimal parameter β(γ̂) defined by

γ̂ ∈ arginf
γ∈Γ

L
NO

O

(
β(γ), φ(β(γ)|XO); γ | (XO

1 , . . . , X
O
NO

)
)

β(γ) = arginf
β∈RD

L
NI

I

(
β, φ(β|XI); γ | (XI

1 , . . . , X
I
NI
)
)
.
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Remark 2.2.17. The optimal evaluation takes an objective learning algorithm and a
dataset and returns the optimizer minimizing the loss function defined by the dataset.
For example, in a LASSO regression the optimal evaluation returns the parameters of
the line of best fit relating the explanatory variables to the responses, with the tuning
parameter is optimized according to the validation set.

The requirement that the dataset be in the regular domain of definition of the learning
algorithm means that the optimal evaluation is a well-defined function. For example the
points {(1, 1), (−1, 1), (1,−1), (−1,−1)} do not have a single line of best fit describing
their relationship therefore the optimal evaluation of the regression problem is not defined
on that dataset.

As in [55] the performance of a learning algorithm is defined as the negative of its loss
function evaluated at the optimal value. The definition of performance of training and
validation set performance of an objective learning algorithm is defined in an analogous
manner.

Definition 2.2.18 (Performance) Let (LI ,LO,Γ, φ) be a learning algorithm. The train-
ing set performance of (LI ,LO,Γ, φ) is the function, denoted by PI (LI ,LO), taking a
dataset (XI , XO) in Dom(LI ,LO,Γ, φ) to the extended real number

P
I (LI ,LO)

(
X̃I , X̃O

)
� −L

NI

I

(
β(γ̂), φ(β(γ̂)); γ̂ | (XI

1 , . . . , X
I
NI
)
)
.

The validation set performance of (LI ,LO,Γ, φ) is the function, denoted by PO (LI ,LO),
taking a dataset (XI , XO) in Dom(LI ,LO,Γ, φ) to the extended real number

P
O (LI ,LO)

(
X̃I , X̃O

)
� −L

NO

O

(
β(γ̂), φ(β(γ̂)); γ̂ | (XO

1 , . . . , X
O
NO

)
)
.

Remark 2.2.19. The performance is the negative of the loss function evaluated at its
optimal evaluation. It provides a measure of how well an objective learning algorithm can
explain a given dataset.

A dataset in Dom(LI ,LO,Γ, φ) is said to maximize the in (resp. out-of) sample per-
formance of (LI ,LO,Γ, φ) if there is no other dataset in Dom(LI ,LO,Γ, φ) having the
same number of training and validation data points and a higher validation set perfor-
mance.

The main result can now be stated. If the data is in the regular domain of definition
of a learning algorithm, and is not already in an optimal position, then there is a recon-
figuration which increases the performance of that algorithm. An example of optimally
positioned data for linear regression is data that is perfectly explained by a line both on
the training and validation sets. In this extreme case, it is natural to expect that no
improvement can be made to linear regression.
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Theorem 2.2.20 (Performance Gain). Let D > 1 and (LI ,LO,Γ, φ) be an objective
learning algorithm. For every pair of integersNI , NO and every (XI , XO) inDom(LI ,LO,Γ, φ),
there exists θNI ,NO

1 , . . . , θNI ,NO

K in Θ such that

P
O (LI ,LO)

(
X̃I , X̃O

)
≥ P

O (LI ,LO)
(
XI , XO

)
, (2.6)

P
I (LI ,LO)

(
X̃I , X̃O

)
≥ P

I (LI ,LO)
(
XI , XO

)
, (2.7)

where the reconfigured datasets X̃I and X̃O are defined as

X̃I
i � X

(
XI

i |θNI ,NO

1 , . . . , θNI ,NO

K

)
,

X̃O
i � X

(
XO

i |θNI ,NO

1 , . . . , θNI ,NO

K

)
.

The inequality in equation (2.7) (resp. equation (2.6)) is strict if (XI , XO) does not
maximize PO (LI ,LO) (resp. PI (LI ,LO)).

Proof. Without loss of generality assume that (XI , XO) does not maximize PO (LI ,LO),
with the proof of the statement for PI (LI ,LO) being identical. Therefore there is
(X̃I , X̃O) in Dom(LI ,LO,Γ, φ) which has a higher value of PO (LI ,LO) and has the
same number of training and validation data-points.

Therefore, by the universal reconfiguration property of Theorem 2.2.9, there exists

θNI ,NO

1 , . . . , θNI ,NO

K such that X̃i = X

(
Xi|θNI ,NO

1 , . . . , θNI ,NO

K

)
.

Theorem 2.2.20 guarantees that there exists a reconfiguration of the data which
improves an algorithm’s training set and validation set performance. The NEU meta-
algorithm is a procedure which learns the reconfiguration of the space ensuring that the
training and validation sets are positioned in a way which reduces the training set and
validation set loss functions. This is formalized by the meta-algorithms illustrated by
Figure 2.3 and made explicit in meta-algorithm 2.2.21.
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Figure 2.3: Work-flow of Reconfiguration Learning Phase of Non-Euclidean Upgrading

Meta-Algorithm 2.2.21 (Non-Euclidean Upgrading). The inputs of the non-Euclidean
upgrading algorithm are a diffeomorphism Φ : M → RD, an objective learning algorithm
(LI ,LO,Γ, φ), a pair of training-set and validation-set data-points

({XI
i }NI

i=1, {XI
i }NO

i=1

)
in M satisfying regularity condition 2.5.3, ξ a reconfiguration map, θ0 ∈ Θ0, ε ∈ (0, 1],
and a positive integer N . Non-Euclidean upgrading takes these inputs and returns the
following algorithms as its output

1. Learning Reconfiguration: Define a reconfiguration X through the following
procedure,

(a) Define the data-points X
(0)
i � Φ(pi),

(b) θ(0) � θ0,

(c) For integers n between 0 < n ≤ N :

(i) Define the tentative optimal evaluation β↑(γ̂) to be

γ̂ ∈ arginf
γ∈Γ

L
NO

O

(
β↑(γ), φ(β↑(γ)); γ | (X (XO

1 |θ
)
, . . . ,X

(
XO

NO
|θ)))(

β↑(γ), θ(γ)
)
= arginf

β∈RD,θ∈Θ

L
NI

I

(
β, φ(β); γ | (X (XI

1 |θ
)
, . . . ,X

(
XI

NI
|θ))),

(ii) Define the tentative performance measurement, Pn (LI ,LO) to be

P
n (LI ,LO) �P

O (LI ,LO)
(
X
(
XO

1 |θ
)
, . . . ,X

(
XO

NO
|θ)) ,
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(iii) if Pn (LI ,LO) > Pn−1 (LI ,LO) then

define θ1 � θ(γ̂).
else

define θn � θ0.

(iv) Define the updated data X
(n)
i � ξ

(
X

(n−1)
i |θn

)
,

(d) Stop when P (LI ,LO)
Pn(LI ,LO)

< ε or when n = N ,

(e) Define Xi � X
(n)
i ,

(f) Define the reconfiguration X � X (·|θ1, . . . , θN ; Φ),
2. Perform Algorithm: Perform (LI ,LO,Γ, φ) on the data (X(Xi))

k

i=1 and obtain

the optimal evaluation X̂,

3. Deconfigure Prediction: Returns the values:

(a) Prediction: X−1 ◦ φ(β̂|X(x)),
(b) Performance Gain: PN (LI ,LO)

P0(LI ,LO)
,

(c) Parameter Estimates: β̂.

Geometric and algebraic interpretations of NEU are discussed now, as well as connec-
tion to other geometric algorithms.

Remark 2.2.22 (Geometric Interpretation). The reconfiguration X is a diffeomorphism
of RD back into itself. The pullback of the Euclidean metric dE along X, denoted by
X�(dE), makes

(RD,X�(dE)) = (X(RD),X�(dE)),

into a Riemannian manifold. The minimal distance curves in (RD,X�(d)) are mapped to
straight lines, through X. Therefore the non-Euclidean algorithms in [42, 41, 52, 57] are all
interpretable as parametric analogues to the NEU of PCA, regression, or Kalman filtering,
but where the geometry is prespecified and not learned in an unsupervised manner.

Remark 2.2.23 (Algebraic Interpretation). A smooth automorphism of RD is a smooth
bijection from RD back onto itself, whose inverse is itself smooth. NEU is therefore a com-
putational method for learning an autodiffeomorphisms which optimizes the validation-set
and training set performance of a learning algorithm given a dataset.

In the next section, the numerical performance of NEU is investigated. The NEU
algorithm is to improve regression analysis and principal component analysis and the
resulting NEU-OLS and NEU-PCA algorithms are applied to financial time-series data.
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2.3 Numerical Implementation of NEU-OLS and NEU-

PCA

We begin by investigating the empirical performance of non-Euclidean upgrading. The
first two implementations focus on real datasets and the second uses simulated data. The
first two use the rapidly decreasing rotations to reconfigure the data whereas the last
example uses micro-bumps since the data lies in R2.

The performance of the NEUmeta-algorithm will be investigated both in the regression
and dimensionality reduction settings on financial datasets beginning with a regression
analysis study.

Example 2.3.1 (Regression Analysis: Apple Stock Tracker). Predicting the relationship
between the price of a set of assets is central to many trading strategies. For example,
strategies that rely on illiquid assets may create a portfolio comprised entirely of liquid
assets, which tracks the illiquid asset’s movements. Since that is a particular application
of tracking portfolios, in this example, the technique is demonstrated using liquid stocks.
The target stock price will be denoted by St and the prices of the assets making the
tracking portfolio will be denoted by S1

t , . . . , S
N
t .

In this example, St will be the price of apple stock, and S1
t , . . . , S

N will be the stock
prices for IBM, Google, Cisco Systems Inc., Microsoft Corporation, Acacia Communi-
cations Inc., NXP Semiconductors NV, Qualcomm, Analog Devices Inc., Glu Mobile
Inc., Jabil Inc., Micron, and STMicroelectronics NV. These portfolio is chosen as being
comprised of the stock of major companies in the same same industry as well as major
companies making up apple’s supply chain (see [1] for a discussion on apple’s supply chain
and [96] for a discussion of the 10 tech companies with the largest market capitalization).

A tracking portfolio consisting of these assets is built by minimizing the ordinary
least-squares loss function on the training dataset

N∑
i=1

([
Sti − Sti−1

Sti−1

]
+

d∑
j=1

βj
t

[
Sj
ti
− Sj

ti−1

Sj
ti−1

])2

,

where N is the number of data points and d is the number of assets used to track the Apple
stock price. For illustrative and comparative purposes, the LASSO of [99], the Ridge (or
Tykhonov regularization) regression of [100], the Elastic-Net regularization (ENET) of
[104], and the NEU-OLS are compared.

The ENET selects the optimal regression weights by minimizing the loss function
ENET Opt. Power denotes the solution to

N∑
i=1

([
Sti − Sti−1

Sti−1

]
+

d∑
j=1

βj
t

[
Sj
ti
− Sj

ti−1

Sj
ti−1

])2

+ λ

[
(1− α)

d∑
j=1

∣∣βj
∣∣+ α

d∑
j=1

(βj)2

]
,
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with α, λ selected by sequential-validation. The LASSO is the special case where α is
fixed to 0 and Ridge regression is the special case where α = 1. The penalty

λ

[
(1− α)

d∑
j=1

∣∣βj
∣∣+ α

d∑
j=1

(βj)2

]

reduces the number of explanatory parameters in a model by forcing the regression weights
towards 0, thereby forcing the most significant parameters to only be fit. The meta-
parameter λ controls the strength of this sparsity penalty, α ∈ [0, 1] controls the aggres-
siveness of the variable-selection process, with α = 0 giving a more aggressive choice and
α = 1 towards a non-aggressive penalty. ENET, LASSO, and Ridge regression are inter-
preted in [103] as robust regression problems where the regression problem is optimized
against varying types of shocks in the data, or alternatively these can be interpreted as in
[99, 105] as modifications of the regression problem that are able to detect and converge
to the true set of explanatory variables, under linear and Gaussian noise assumptions.

In this example, 2 years of adjusted stock prices are used to compute the weights,
ending on July 25th 2018. The modeling assumption that the data does not follow a
constant pattern throughout time is made and the data is broken up into rolling windows.
Regression weights are dynamically updated on each window as is standard in practice
(for example see [37, 11, 98]). In order to extract meaningful weights β1

t , . . . , β
N
t , the time-

series must be shown to be co-integrated. The Dickey-Fuller, unit root test is performed
on the returns of the adjusted stock price time-series and the null-hypothesis that there
exists a unit root is rejected with a p-value of less than .01 and Dickey-Fuller statistic
−2.8453, therefore the βt can meaningfully be computed from the adjusted stock price’s
returns using regression methods (see [81] for more details on co-integrated time-series).

Mean 95 L 95 U 99 L 99 U

OLS 4.185 4.038 4.385 4.017 4.448

Ridge -0.831 -0.916 -0.715 -0.928 -0.678

LASSO 0.581 0.568 0.599 0.566 0.604

ENET 0.526 0.519 0.535 0.518 0.538

NEU-OLS 0.204 0.202 0.208 0.202 0.209

Table 2.1: Mean Aggregate Training Errors.

Each window is sequentially divided into a training, a validation, and a test set. Each
of the training sets consists of 200 observations, the validation sets consist of 2 weeks, and
the test sets consists of the last week of each moving window. The proportions invested
in each asset, denoted are the regression weights on that window, and are recalibrate
on each window using each of the stocks’ returns. The mean training, validation, and
test errors aggregated across each windows are reported in the Tables 2.1, 2.3, and 2.2,
respectively. The optimal parameters for the Ridge, LASSO, ELASTIC-NET, and NEU-
OLS are re-calibrated on every window using sequential validation. The optimization of
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the parameters defining the reconfiguration of the data on were performed by alternating
between stochastic gradient descent and randomized searches of the parameter space.

Mean 95%L 95%U 99%L 99%U

OLS 4.217 4.214 4.222 4.214 4.224

Ridge -0.853 -0.946 -0.726 -0.959 -0.686

LASSO 0.582 0.573 0.594 0.572 0.598

ENET 0.525 0.518 0.534 0.517 0.537

NEU-OLS 0.204 0.203 0.206 0.203 0.206

Table 2.2: Mean Aggregate Testing Errors.

Mean 95%L 95%U 99%L 99%U

OLS 4.202 4.058 4.397 4.038 4.458

Ridge -0.845 -0.928 -0.734 -0.939 -0.699

LASSO 0.581 0.571 0.594 0.569 0.598

ENET 0.525 0.521 0.530 0.520 0.531

NEU-OLS 0.204 0.203 0.206 0.202 0.206

Table 2.3: Mean Aggregate Validation Errors.

As expected the OLS performs worst and the ENET performs best amongst the bench-
mark regression methods. All the methods, except the Ridge regression are conservative
and under-estimate the price of apple stock. The NEU-OLS has the lowest error in the
training, validation, and test sets across every window. Moreover, it has the tightest
confidence intervals. Therefore the NEU-OLS performs achieves a lower bias as well as a
lower variance.

Algorithm OLS NEU-OLS Ridge LASSO ENET

Run Time (sec) 0.01 104.02 0.02 0.02 0.07
Run Time

Run Time OLS 1 12,980.03 2.74 2.57 9.11

Table 2.4: Runtime Comparison.

The NEU-OLS does have its own drawbacks, namely computational time. Once the
reconfiguration of the data is learned the OLS algorithm can be run directly on the
reconfigured dataset making NEU-OLS and OLS just as fast. However on the first run,
when the reconfiguration is being learned the NEU-OLS is significantly slower than the
other methods compared within this chapter.

Table 2.4 reports the run-times of performing the OLS, NEU-OLS, Ridge regression,
LASSO, and ENET algorithms on the dataset considered in this example using an Intel(R)
Core(TM) i5-6200U CPU at 2.30GHz, with 7844MB available RAM machine running
18.04 LTS version of the Ubuntu Linux distribution.
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We conclude that after learning the NEU-OLS has the lowest prediction error amongst
the regression methods considered in this example and its execution speed is just as fast
as OLS after the reconfiguration has been learned. However, on the first run when the
reconfiguration is being learned NEU-OLS is notably slower than the other methods.
Therefore, NEU-OLS may be the best of these options when speed is not a large factor,
but it may not be ideal for setting when the runtime of an algorithm is a determining
factor, such as for live high-frequency trading.

Example 2.3.2 (Dimensionality Reduction: German-Bond Yield Curve). Principal com-
ponent analysis (PCA) is a non-parametric technique which converts correlated data
{x1, . . . , xN} into a set of uncorrelated vectors v(1), . . . , v(K), each explaining progressively

less of the data’s variance than the last one. The vectors
{
v(k)
}K
k=1

, called principal
components, are obtained through the recursion relation:

Q̂k �Q−
k−1∑
s=1

Qx(s)v
T
(s)

v(k) �argmax
‖v‖=1

{
‖Q̂kv‖2

}
v(0) �0.

(2.8)

where Q is the empirical data matrix with column-wise means removed.

PCA is commonly used in finance, where high dimensional data is typical. A classical
use is for pricing zero-coupon bonds. Denote by B(t, T ) the price of a zero-coupon bond
with maturity T at time t. The price B(t, T ) can be modeled using the yield curve y(t, T ),
which is defined as the rate at which the price of the bond is equal to the discounted cash
flows. That is,

y(t, T ) � ln

(
B(t, T )

T − t

)
.

The first three principal components of the yield curve are known to explain its level, slope,
and curvature respectively (see [30] for more details). The validation-set loss function
which we will use is

min
β1,...,βk∈RK̃

n∑
i=1

⎛
⎝Yi −

K̃∑
k=1

βkv(k)

⎞
⎠

2

, (2.9)

where Yi is the vector of Bond yields observed on the ith day in the validation set (resp.
training set) and K̃ ≤ K is the number of principal components used to give a low
dimensional approximation of the yield curve. As discussed in [30], the first three principal
components v(1), v(2), v(3) of most yield curves tend to explain about 95% of the data’s
variance.

As a benchmark a two common alternatives to PCA, Kernel PCA (kPCA) and sparse
PCA (sPCA) will be also be considered. Kernel PCA, performs first maps the data into
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another space, called the feature space, wherein the data can be more naturally partitioned
by hyperplanes and the performs PCA in the feature space. The transformation into
the feature space is typically made indirect by only describing the feature space’s inner
product, which is possible due to the reproducing kernel Hilbert space structure of the
feature space. A choice of inner product between two vectors v1, v2 in the feature space is

t(v1)Kv2

K �

(
e
−‖xi−xj‖

2

2σ2

)N

i,j=1

.

Unlike NEU-PCA, the non-linear transformation used in kPCA is not learned from the
data but chosen before the algorithm is executed. Since kPCA does not make computa-
tions directly in the feature space but works indirectly to it by exploiting its inner product,
kPCA does not allow for reconstruction of the data. However this is not the case with
NEU-PCA, since it is entirely constructive.

Analogously to the LASSO, Ridge regression, and ENET regularization problems,
sPCA penalizes the Equation (2.8) to in order to obtain sparser principal components.
The implementation considered in this chapter will use the sPCA formulation of [36].
Sparse PCA has the advantage over PCA of being more interpretable, lower-dimensional,
and being more robust due to its low dimensionality (see [106, 36] for more details on
sPCA).

For this illustration PCA, kPCA, sPCA, NEU-PCA, NEU-kPCA, and NEU-sPCA
will all be performed on bond yield data. The daily bond data considered in this example
consists of stripped German government bond prices between January 4th 2010 and De-
cember 30th 2014. The considered bond maturities are between 6 months and 30 years.
The training-set consists of the first 1000 days of data, the validation set of the next 200
days, and the test set consists of the remainder. The reconfigurations defining the NEU
methods with be learned using NEU-PCA. The NEU-kPCA and NEU-sPCA methods
will be use the reconfigurations learned from NEU-PCA.

The NEU-PCA algorithm is implemented by optimized the training and validation
objective functions by alternating between random searches and performing bulk itera-
tions of the Nelder-Mead heuristic search method (see [78] for details Nelder-Mead opti-
mization). This heuristic scheme provided faster convergence results than direct use of
stochastic gradient descent as in Example 2.2.13 due to the data’s high dimensionality.
After learning the reconfigurations defining the NEU-PCA algorithm, the same reconfig-
urations were used to define NEU-kPCA and NEU-sPCA. This is interpreted as a form
of transfer learning between analogous models.
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N.Fact. PCA NEU-PCA kPCA NEU-kPCA sPCA NEU-sPCA

1 0.7749 0.7868 0.0906 0.0894 0.9756 0.9774

2 0.8833 0.8936 0.9171 0.9175 0.9942 0.9949

3 0.9417 0.9506 0.9948 0.9955 0.9992 0.9996

4 0.9654 0.9688 0.9981 0.9981 0.9999 0.9999

Table 2.5: Comparison of Variance Explained in Training Set.

Table 2.5 shows that NEU-PCA explains more of the training set variance than PCA
does. However, kPCA and sPCA seem to explain more training set variance than NEU-
PCA, but not as much as NEU-kPCA or NEU-sPCA. However, examining the test-set
predictive performance of the four algorithms in Table 2.6, it is observed that the kPCA
based algorithms are not able to accurately forecast the yield curve. Therefore, NEU-PCA
is the most parsimonious option for prediction between the four methods and NEU-kPCA
explains the most training set variance of the data.

The more modest gains of this method are due to the district training and validation
loss functions. For example, removing the validation loss-function and thereby the early
stopping criterion in the definition of NEU, it can be seen that one NEU-PCA can explain
more than 99.99% of the training set variability of the data. However, this leads to poor
out-of-sample predictions of the test set yield curves as well as uninterpretable NEU-
PCAs.

N.Fact. PCA NEU-PCA kPCA NEU-kPCA sPCA NEU-sPCA

1 2,245.643 2,153.412 829.210 827.651 497.683 471.695

2 344.961 294.106 829.200 827.644 290.040 265.822

3 28.633 17.927 829.197 827.640 14.489 12.400

4 4.424 2.975 829.190 827.634 12.061 12.210

Table 2.6: Comparison of test set Predictions

In this implementation, the NEU-PCAs of the yield curve. Figure 2.4 shows that,
upon rescaling, the first and fourth PCA and NEU-PCAs have identical interpretation,
while the second and fourth NEU-PCAs look similar a flipped version of the second
and fourth PCAs. The NEU-PCAs in Figure 2.4 are in the transformed, non-Euclidean
space, whereas the PCAs in Figure 2.4 are in Euclidean space itself. It should not be
surprising that the 1 and 4 factor sPCA outperforms the 1-factor NEU-sPCA since the
reconfiguration used for the NEU-sPCA was trained using the PCA algorithm.

In this implementation, the NEU-PCAs provided the most robust out-of-sample pre-
dictions of the yield curve, explained more of the training set variance than PCAs did and
retained the interoperability of each of the principal components. Moreover like PCA, the
approach is constructive therefore can be used for reconstruction purposes, which is not
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Figure 2.4: First four principal components of the German Bond Yield-curve.

the case for kPCA due to it indirectly working with the feature space (see [87, Section 4]
for a brief discussion on the data-reconstruction shortcomings of kPCA).

Table 2.7 examines the runtime of each method. All six algorithms were run on a
machine with the same specs as those of Example 2.2.13.
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Algorithm Run Time (sec) Run Time
Run Time PCA

PCA 0.01 1

NEU-PCA 2.89 474.99

kPCA 0.08 12.50

NEU-kPCA 2.96 486.48

sPCA 0.81 132.40

NEU-sPCA 3.70 606.39

Table 2.7: Runtime Comparison.

The central shortcoming of the NEU meta-algorithm is underlined by Table 2.7. Its
second row shows that the runtime of the NEU algorithms are about 1000 times slower
than PCA and 100 times slower than kPCA. Therefore if speed is necessary it may be more
desirable to turn to PCA or kPCA than their NEU counterparts. However, if time can be
spared then the first three NEU-PCAs makes 3-factors NEU-PCA the best overall choice
due to its interpretability, out-of-sample predictive power and it explaining a competitive
level of the training set’s variance.

Both numerical implementation show that the NEU algorithm makes simple algo-
rithms competitive by embedding the universal approximation and universal reconfigura-
tion properties into them. Future research could investigate the performance of the NEU
meta-algorithm applied to other learning procedures such as clustering or classification
tasks.

2.4 Conclusion

In this chapter reconfigurations were introduced and shown to have the universal recon-
figuration property introduced in Theorem 2.2.9, which stated than any dataset could
be transformed into any other dataset using a reconfiguration. Applying the universal
reconfiguration property to the graph of a continuous function, it was shown that recon-
figurations also have the universal approximation property (Corollary 2.2.10) of neural
networks.

The NEU meta-algorithm was introduced. NEU builds the universal reconfiguration
and universal approximation properties into any objective learning algorithm. The re-
sulting algorithm is found in three steps. First the optimal reconfiguration, which best
relates a given dataset to the loss function defining the learning algorithm is learned.
The old algorithm is then preformed on the new reconfigured space and subsequently the
prediction made by the learning algorithm is moved back to the original space by decon-
figuration. Given any objective learning algorithm A, the algorithm NEU-A was shown
to outperform A, in the sense that it exhibits a lower validation-set loss.
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The performance increase was justified both theoretically and supported empirically.
The empirical experiments found that the variance of German bond yields was better
explained with one NEU principal component than with 4 ordinary principal components.
Likewise, the investigations of Apple stock price found that the residuals of the NEU-OLS
algorithm was smaller than those of OLS, Ridge, LASSO, and ENET regression. The
effectiveness of NEU-OLS as a non-parametric estimator was explored in three simulation
studies which showed that using the universal reconfiguration and universal approximation
properties of reconfigurations. It was confirmed that NEU-OLS is not only competitive
with other non-parametric regression methods but can better approximate functions with
discontinuities, have non-locally determined behavior, or exhibit an oscillatory behavior.

A consequence of the construction of the NEU of an algorithm, is that once a correct
geometry is learned for the algorithm given the data, the algorithm can be executed di-
rectly in the associated non-Euclidean space. This gave fast and simple algorithms such
as linear regression higher validation set performance than their complicated and difficult
to train Euclidean counterparts. These techniques can be applied outside of mathemat-
ical finance and we believe there are many applications in geonomics and mathematical
imaging, where traditional machine learning algorithms are used.

The NEU meta-algorithm was shown to increase the explanatory and predictive power
of an algorithm, both theoretically and through the implementations considered in this
chapter. However, NEU does reduce the speed of the original algorithm on the first run,
when the reconfigurations are being learned. Future research needs to be done to find a
way to minimize this computational shortcoming.

2.5 Appendix

This appendix contains a list of all the technical regularity conditions used in this chapter.

Regularity Condition 2.5.1 (Regularity Condition) For every choice of hyper-parameters
γ ∈ Γ and every data-sample X ∈ RDNI the map

L
NI

I

(·, φ(·|XI); γ | XI
)
: Rd → R

β �→ L
NI

I

(
β, φ(β|XI); γ | XI

)
,

has a, possibly not unique, infimum.

Regularity Condition 2.5.2 Let (XI , XO) be a pair of training and validation datasets.

(i) For every hyper-parameter γ ∈ Γ, there exists a unique optimal parameter β(γ) in
Rd such that for all other parameters β̃ in Rd

L
NI

I

(
β(γ), φ(β(γ)|XI); γ | XI

)
< L

NI

I

(
β̃, φ(β̃|XI); γ | XI

)
,
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(ii) There exists a unique hyper-parameter γ̂ in Γ such that for every other hyper-
parameter γ in Γ

L
NO

O

(
β(γ̂), φ(β(γ̂)|XO); γ̂ | XO

)
< L

NO

O

(
β(γ), φ(β(γ)|XO); γ | XO

)
.

Regularity Condition 2.5.3 The pair
({

Φ
(
XI

j

)}NI

j=1
,
{
Φ
(
XO

i

)}NO

i=1

)
is in Dom(LI ,LO,Γ, φ).

Regularity Condition 2.5.4 D > 1 and there exists
(
X̃I , X̃O

)
∈ Dom(LI ,LO,Γ, φ)

such that P (LI ,LO)
(
X̃I , X̃O

)
< P (LI ,LO)

(
XI , XO

)
.

Regularity Condition 2.5.5 There exists a regular compact set V containing the com-
pact set [K × f(K)]∪ [K × g(K)]such that for every θ ∈ Θ, the reconfiguration map ξ (·|θ)
on int(V ). For every θ ∈ Θ, ξ (·|θ) the partial derivatives of ξ are uniformly bounded by
1.

Proof of Proposition 2.2.3. Since additive conjugation by c is its own inverse, we may
assume that c = 0. For any X ∈ so(D), exp(X) is a rotation matrix and is therefore an
isometry from RD onto itself. Therefore,

‖exp(f(‖x‖)X)x‖ = ‖x‖, (2.10)

from which it follows that

f(‖x‖) = f(‖exp(f(‖x‖)X)x‖). (2.11)

Moreover, since exp is a group homomorphism

exp(X + Y ) = exp(X)exp(Y ). (2.12)

Combining Equations (2.11) and (2.12) we obtain

I =(exp(f(‖x‖)X)x− f(‖x‖)X)x)

= (exp(f(‖x‖)X)x) (exp(f(‖x‖)(−X))x)

= (exp(f(‖x‖)X)x) (exp([f(‖exp(f(‖x‖)X)x‖)] (−X))x) .

(2.13)

Therefore Definition 2.2.1 (i) holds.

The maps exp and φ are infinitely differentiable, see [68] and [48] respectively. More-
over, since ‖·‖ and ·±c, therefore Ψ(·|θ) and Φ(·|θ) are infinitely differentiable. Therefore
Definition 2.2.1 (ii) and (iii) hold.

Let c be the midpoint between x and y, moreover let ε � ‖x − y‖ and σ �
‖x−z‖+ε

2
.

Therefore, for any choice of X in so(D), ξ(z|(c, σ,X)) = z. Since exp maps so(D) onto
the set SO(D) which is the collection of all maps from the D-sphere onto itself and x, y
lie on the same sphere centered at c of radius ε, then there exists X in so(D) for such
that ξ (x|(c, σ,X)) is a rotation taking x to y. Therefore Definition 2.2.1 (iv) holds.

For a triple (c, σ, 0), the application of the map ξ (x|(c, σ,X)) becomes multiplication
by the identity matrix in this case, hence (v) holds.
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Proof of Proposition 2.2.6. Definition 2.2.1 (i,ii,iii,v) hold analogously to the proof of
Proposition 2.2.3. To see Definition 2.2.1 (iv) note that if c is the midpoint between x and
y and σ is taken to be d(x, y) then ξ is the identity function outside the ball centered at c
of radius σ, therefore ξ(z|c, σ,X) = z for any X ∈ R. Taking X = (x− y)/ψ(‖x− y‖; σ)
establishes Definition 2.2.1 (iv).

The proof of Theorem 2.2.9 relies on the construction of a particular curve described
by the next Lemma.

Lemma 2.5.6. Let D > 1 and let x1, . . . , xn, x, z be distinct points in RD and let Δ ∈
(0,∞]. Then there exists positive integers n,K and a curve γ from x to z satisfying

(i) γ is rectifiable with length l,

(ii) γ(0) = x and γ(1) = z,

(iii) 0 < 1
n
< min

t∈[0,1]
i,j=1,...,N

{‖γ(t)− xi‖,Δ},

(iv) γ([0, 1]) = γ([0, 1]) ∩
[⋃K

k=1 Ball
(
γ
(

k
K

)
; 1
K

)]
,

(v) ∅ =
⋃n

i=2{xi} ∩
[⋃K

k=1Ball
(
γ
(

k
K

)
; 1
K

)]
.

Proof of Lemma 2.5.6. The existence of such a curve is equivalent to looking for a smooth

curve inside the open set RD−⋃N

i=1{Xi}∪
[⋃N

i=1{X̃i}
]
, which is in-turn equivalent to the

open subset RD−⋃N

i=1{Xi}∪
[⋃N

i=1{X̃i}
]
of RD being simply connected. More generally,

let XN be RD with the N -distinct points {x1, . . . , xN} deleted.

Simply connectedness of XN will be proven by strong induction on N . If N = 1
then XN is simply connected since X1 is homeomorphic to RD −{0} which is a deforma-
tion retract of the (D − 1)-sphere SD−1 (see [56, Excerise 0.2]). Since homeomorphisms
and deformation retractions induce chain homotopies in their associated chain complexes
(see [56, Chapter 2.1]) and since the homology functors Hn are invariant under chain
homotopies (see [56, Proposition 2.1.2]), then there are group isomorphism

Hn(X1) ∼= Hn(R
D − {0}) ∼= Hn(S

D−1) ∼=
{
Z if n = D, 0

0 else.

where the last isomorphism is computed in [95, Theorem 4.6.6]4. Applying [95, Lemma
4.4.7] implies that X1 is path-connected. Suppose that XN is path connected for some

4Actually, it is computed for the reduced homology. However, [95, Lemma 4.3.1] permits the transla-
tion into singular homology.
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N ≥ 1. Since the interiors of the sets5 A � RD −∪N
i=2{xi}, B � RD − {x1} cover RD and

their intersection is XN . The Mayer-Vietoris sequence (see [95, page 190]) implies that
there is a long-exact sequence in singular homology

0 ∼= H0(R
D) ← H0(R

D) ← H0(A)⊕H0(B) ← H0(A ∩B) ← H1(R
D). (2.14)

By [95, Lemma 4.4.1], RD is contractible, therefore H0(R
D) ∼= Z and Hn(R

D) ∼= 0 if
n > 0. Applying the strong induction hypothesis that H0(A) ∼= R ∼= H0(B), it follows
that

0 ∼= Z ← Z⊕ Z ← H0(A ∩ B) ← 0

is an exact sequence of groups. The Splitting Lemma implies that

Z ∼= Z⊕H0(A ∩B);

therefore H0(A ∩ B) = Z, hence A ∩ B is path connected by [95, Lemma 4.4.7]. Since
A ∩ B = Xd, it follows that Xd is path connected. Picking x1, . . . , xN to be the data-
points

⋃N

i=1{Xi} ∪ ⋃N

i=1{X̃i} it follows that there exists a path γ̃ which is interior to

RD −⋃N

i=1{Xi} ∪
⋃N

i=1{X̃i} connecting X1 to X̃1. This completes the induction step.

Since γ̃([0, 1]) is compact there exists a finite open cover {Vj}Jj=1 of γ̃([0, 1]). Therefore,

the open sets
{
Wj � Vj ∩

[
RD −⋃N

i=1{Xi} ∪
⋃N

i=1{X̃i

]}J

j=1
is a finite collection of sets

diffeomorphic to RD, via some diffeomorphism {φj}Jj=1. Therefore each φj ◦γ|Wj
defines a

continuous path from into RD. The Whitney Approximation Theorem (see [71, Theorem
6.12]) implies that for each j in {1, . . . , J} there exists a smooth curve ˜̃γj which is δ-close
to φj ◦ γ; where

δ � min
i=2,...,N

{
‖Xi − γ̃(t)‖, ‖X̃i − γ̃(t)‖

}
2

.

Therefore the composition φ−1j ◦ ˜̃γj a piecewise-smooth curve, denoted by γ, which joins

X1 to X̃1 and is contained entirely within RD −
[⋃N

i=1{Xi} ∪
⋃N

i=1{X̃i}
]
. Since every

piecewise-smooth curve is rectifiable, by definition of arc-length γ has finite arc-length,
which we denote by l. This establishes (i) and (ii).

Define ε > 0 as

ε � min
i=2,...,N

{
‖Xi − γ(t)‖, ‖X̃i − γ(t)‖

}
2

.

By the Archimedean property of R, there exists a positive integer n for which 0 < 1
n
<

5The interior of an open set is itself.
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min {ε, l}. Observe that the definitions of ε and γ imply that

γ([0, 1]) =U ∩ γ([0, 1]),

∅ =
N⋃
i=2

{Xi, X̃i} ∩ U,

U �

n⋃
k=1

Ball

(
γ

(
k

n

)
;
1

n

)
;

therefore (iii)− (v) hold.

Proof of Theorem 2.2.9. M is diffeomorphic to RD it may be assumed without loss of
generality that M = RD. The case that X = X̃ must hold with K = 1 by choosing θ1
to be any element of Θ0, which is possible since Θ0 is non-empty. Assume without loss of
generality that the collections X and X̃ are formed of distinct elements.

We proceed by induction. Suppose that N = 1. Let ε � 2‖X1− X̃1‖ and let Z be any
point in RD for which ‖Z −X1‖ > ε. Then the local-transience property of ξ implies that
there exists θ1 ∈ Θ such that

ξ (X1|θ1) = X̃1; ξ (Z|θ) = Z.

Suppose now that the claim holds for N ≥ 1. In the notation of Lemma 2.5.6, let
x1, . . . , xn = X2, . . . , XN , X̃2, . . . , X̃N , x = X1, and z = X̃1. Since there exists a rectifiable
curve γ connecting x to z and γ is uniformly bounded away from each xi by a distance
of at least 1

n
, where 1

n
is set to be less than the locality Δ, then there exists a set of open

balls
{
Ball

(
γ
(

k
K

)
; 1
K

)}K
k=1

covering γ which are separated from the points x1, . . . , xn,

by a distance of at least 1
n
. The local transience property of ξ implies that there exist

θ11, . . . , θ
1
K in Θ satisfying

ξ

(
γ

(
k − 1

K

)
|θ1k
)

=γ

(
k

K

)
ξ
(
xi|θ1k

)
=xi,

for every i in {1, . . . , n} and every k in {1, . . . , K}.
Repeating this construction and process for every data-point Xi we find a list of

parameters
θ11, . . . , θ

1
K1
, θ21, . . . , θ

2
K2
, . . . , θNKN

,

such that

X
(
Xj|θi1, . . . , θiKi

)
=

{
X̃i ifi = j

Xj else.

Definition 2.2.1[(iv)] implies that any Z not in ∪K
k=1Ball(γ

(
k
K

)
; 1
n
) must remain fixed by

X.
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Proof of Corollary 2.2.10. Let K be an open subset of RD1 , diffeomorphic to RD1 and
let Q be a countable subset of K. Let {xi}i∈N be an enumeration of Q and define the
sequences of points {Xi}i∈N and {X̃i}i∈N in RD1+D2 by

Xi �(xi, g(xi))

X̃i �(xi, f(xi)).

Since RD1+D2 is of dimension at least 2 andK is diffeomorphic to RD1 , then for every n ∈ N

Theorem 2.2.9 applies to the sets of points {Xi}ni=1 and {X̃i}ni=1 in RD1+D2 . Therefore for
every n ∈ N there exists θn1 , . . . , θ

n
Nn

∈ Θ such that

X
(
Xi|θn1 , . . . , θnNn

)
= X̃i; i = 1, . . . , n. (2.15)

Define the sequence of functions {fn}n∈N from K to RD2 by

fn(x) � p ◦ X ((x, g(x))|θn1 , . . . , θnNn

)
, (2.16)

where p is the second canonical projection on RD1 ×RD2 onto RD2 . From equation (2.15),
it follows that the sequence {fn}n∈N converge point-wise to f on Q. This establishes the
ε = 0 case of (i).

Now assume that ε > 0. Since P is a probability measure, Q is of finite P-measure.
Therefore {fn}n∈N is a sequence of Borel-measurable functions over a set of finite P-
measure converging point-wise to the Borel-measurable function f , where f takes values
in the separable metric space (RD2 , dE). Here dE is the Euclidean metric on RD2 . Hence,
Egorov’s Theorem (see [83] for details) gives the existence of the set Kε as well as the
uniform convergence of the sequence {fn}n∈N to f on Kε. This establishes (i).



3. Non-Euclidean Conditional
Expectation and Efficient Portfolio
Filtering
A non-Euclidean generalization of conditional expectation is introduced, proven to exist,
and characterized as the minimizer of expected intrinsic squared-distance from a manifold-
valued target. The computational tractable formulation expresses the non-convex opti-
mization problem as transformations of Euclidean conditional expectation. This gives
computationally tractable filtering equations for the dynamics of the intrinsic conditional
expectation of a manifold-valued signal and is used to obtain accurate numerical forecasts
of efficient portfolios by incorporating their geometric structure into the estimates.

3.1 Introduction

Non-Euclidean geometry occurs naturally in problems in finance. Short-rate models con-
sistent with finite-dimensional Heath-Jarrow-Morton (HJM) models are characterized us-
ing Lie group methods, in [10]. In [59], highly accurate stochastic volatility model estima-
tion methods are derived using Riemannian heat-kernel expansions. In [39], the equivalent
local martingale measures (ELMMs) of finite-dimensional term-structure models for zero-
coupon bonds are characterized using the smooth manifold structure associated which
factor models for the forward-rate curve. In [15], information-geometric techniques for
yield-curve modeling which consider finite-dimensional manifolds of probability densities
are developed. In [53, 52], Riemannian geometric approaches to stochastic volatility mod-
els and covariance matrix prediction are employed to successfully predicts stock prices. In
[70], it is shown that considering a relevant geometric structures on a mathematical finance
problem leads to more accurate out-of-sample forecasts. The superior forecasting power
of non-Euclidean methods is interpreted as encoding information present in mathemat-
ical finance problems which is otherwise overlooked by the classical Euclidean methods.
Each of these methodologies approach distinct problems in mathematical finance using
differential geometry.

Conditional expectation and stochastic filtering are some of the most fundamental
tools used in applied probability and finance. Geometric formulations of conditional
expectation, such as those used in [94, 85] are solutions to non-convex optimization prob-
lems. The non-convexity of the problem makes computation of these formulations of
non-Euclidean conditional expectations difficult or intractable.

Non-Euclidean filtering formulations such as those of [31], [79], or [64] assume that
the signal and/or noise processes are non-Euclidean and estimate functionals of the noisy
signal using the classical Euclidean conditional expectation. In [85] dynamics for the

30
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intrinsic conditional expectation of a manifold-valued signal was found, using the Le
Jan-Watanabe connection. This connection reduced the intrinsic non-Euclidean filtering
problem to a Euclidean filtering problem. However, the authors of [85] remark that
implementing their results may be intractable due to the added complexity introduced by
the Le Jan-Watanabe connection.

This chapter presents an alternative computationally tractable characterization of in-
trinsic conditional expectation, called dynamic conditional expectation, and uses it to
produce a computable solution to a non-Euclidean filtering problem similar to that of
[85]. The implementation is similar to [94] for a non-Euclidean particle filter. However,
in [94] the convergence of the algorithm to the non-Euclidean conditional expectation
is left unjustified. The dynamic conditional expectation expresses the intrinsic condi-
tional expectation as a limit of certain transformations of Euclidean conditional expec-
tations associated to the non-Euclidean signal process. Analogue to [85], this reduces
the computation of the non-Euclidean problem the computation of a Euclidean prob-
lem with the central difference being that the required transformations are available in
closed form. The infinitesimal linearization transformations considered here are similar to
those empirically postulated in the engineering, computer-vision, and control literature
in [42, 41, 53, 57, 3, 94].

Portfolios maximizing returns given a fixed risk-appetite have a natural non-Euclidean
structure. The empirical performance of our filtering algorithm is evaluated on the space
of efficient portfolios called the Markowitz space. These are compared against other
intrinsic filtering algorithms from the engineering and computer vision literature.

3.2 Preliminaries and Notation

For the duration of this chapter, (Ω,F ,F•,P) will be a complete stochastic base on which
independent Brownian motions, denoted by Wt and Bt are defined. Furthermore, G• will
denote a sub-filtration of F•. The vector-valued conditional expectation will be denoted
by EP[Xt|G ].

The measurem will denote the Lebesgue measure, Lp
m(F ;RD) will denote the Bochner-

Lebesgue spaces for F -measurable RD-valued functions with respect to the D-tuples of
Lebesgue measure m. If D = 1, the Bochner-Lebesgue spaces will be abbreviated by
Lp
m(F ). For a Riemannian manifold (M , g), the intrinsic measure is denoted by μg and

the induced distance function is denoted by dg.

The disjoint union, or coproduct, of topological spaces will be denoted by
∐
. The set

of càdlàg paths from R into the metric space induced by (M , g), is defined byD(R;M , dg).

The next section motivates the geometries studied in this chapter by introducing and
discussing the geometry of efficient portfolios.
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3.3 The Geometry of Efficient Portfolios

A fundamental problems in mathematical finance is choosing an optimal portfolio. Typi-
cally, in modern portfolio theory, a portfolio is comprised of D predetermined risky assets
and a riskless asset. Efficient portfolios are portfolios having the greatest return but not
exceeding a fixed level of risk. Classically, the return level is measured by the portfolio’s
expected (log)-returns. The portfolio’s risk is quantified as the portfolio’s variance. The
optimization problem defining efficient portfolios may be defined in a number of ways,
the one considered in this chapter is the following Sharpe-type ratio

ŵ(γ, μ,Σ) � argmin
w∈RD

1̄�w=1

(
−γμ�w +

w�Σw

2

)
. (3.1)

Here w is the vector of portfolio weights expressed as the proportion of wealth invested
in each risky asset, μ ∈ R is the vector of the expected log-returns of the risky assets, Σ
is the covariance matrix of those log-returns, γ is a parameter balancing the objectives of
maximizing the portfolio return versus minimizing the portfolio variance, 1̄ is the vector
with all its components equal to 1, and � indicates matrix transpose operation. If Σ is
not degenerate, the unique optimal solution to Equation (3.1) is

ŵ(γ, μ,Σ) =
Σ−11̄

1̄�Σ1̄
+ γ

(
Σ−1μ− 1̄�Σ−1μ

1̄�Σ−11̄
Σ−11̄

)
. (3.2)

The particular case where t is set to 0 is the minimum variance portfolio of [74]. The
minimum-variance portfolio ŵ(0, μ,Σ) may also be derived by minimizing the portfolio
variance subject to the budget constraint 1̄�w = 1. By adding a risk-free asset to the
portfolio, one can derive similar expressions for the market portfolio and the capital
market line (for more details on this approach to portfolio theory see [7]).

Unlike the returns vector μ, a portfolio’s covariance matrix is not meaningfully repre-
sented in Euclidean space. That is, a covariance matrix does not scale linearly and the
difference of covariance matrices need not be a covariance matrix. Therefore, forecasting
a future covariance matrix, even through a simple technique such as linear regression
directly to the components of Σ, can lead to meaningless forecasts. Using the intrinsic
geometry of the set of positive-definite matrices, denoted by P

+
D , avoids these issues.

The space P
+
D , has a well studied and rich geometry lying at the junction of Cartan-

Hadamard geometry and Lie theory. Empirical exploitation of this geometry has found
many applications in mathematical imaging (see [76]), computer vision (see [80]), and
signal processing (see [6]). Moreover, connections between this geometry and information
theory have been explored in [93], linking it to the Cramer-Rao lower bound.

The set P
+
D is smooth and comes equipped with a natural infinitesimal notion of dis-

tance called Riemannian metric. Denoted by g, the Riemannian metric on P
+
D quantifies

the difference in making infinitesimal movements in Euclidean space along P
+
D to making
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infinitesimal movements with respect to the geometry of P
+
D . The description of Rieman-

nian manifolds as subsets of Euclidean space is made rigorous by Nash in the embedding
theorem in [77]. Distance between two points on P

+
D is quantified by the length of the

shortest path connecting the two points, called a geodesic. On P
+
D , any two points can

always be joined by geodesic. The distance function taking two points to the length of
the unique most efficient curve joining them can be expressed as

d2g (Σ1,Σ2) �
∥∥∥log (Σ 1

2
2Σ1Σ

1
2
2

)∥∥∥2
F
=

d∑
i=1

λ2
i

(
log
(
Σ
− 1

2
2 Σ1Σ

− 1
2

2

))
. (3.3)

The function dg makes P
+
D into a complete metric space, where the distance between

two points corresponds exactly to the length of the unique distance minimizing geodesic
connecting them. Where, ‖ · ‖F is the Frobenius norm, which first treats a matrix as

a vector and subsequently computes its Euclidean norm, Σ
1
2 is the matrix square-root

operator, log is the matrix logarithm, and λi(Σ) denotes i
th eigenvalue of Σ. Both the log

and Σ
1
2 operators are well-defined on P

+
D .

The disparity between the distance measurements is explained by the intrinsic curva-
ture of P

+
D . Sectional curvature is a formalism for describing curvature intrinsically to

a space, such as P
+
D . It is measured by sliding a plane tangentially to geodesic paths

and measuring the twisting and turning undergone by that tangential plane. A detailed
measurement of P

+
D shows that its sectional curvature is everywhere non-positive. This

means that locally the space P
+
D is locally curved somewhat between a pseudo-sphere

and Euclidean space. Alternatively this can be described by stating that P
+
D nowhere

bulges out like a circle but is instead puckered in or flat.

A smooth subspace of Euclidean space having everywhere non-positive curvature when
equipped with a Riemannian metric, and for which every pair of points can be joined by
a unique distance minimizing geodesic is called a Cartan-Hadamard manifold. These
spaces posses many well-behaved properties, as studied in [5], but for this discussion the
most relevant property of Cartan-Hadamard manifolds to this chapter is the existence
of a smooth map Logg () from P

+
D × P

+
D onto Rd. Here Rd is the Euclidean space of

equal dimension to P
+
D . For every fixed input, this map is infinitely differentiable, has

an infinitely differentiable inverse and therefore puts P
+
D in smooth correspondence with

Rd. The map Logg () is called the Riemannian Logarithm. It is related to the distance
between two covariance matrices through

dg (Σ1,Σ2) =‖LoggΣ1
(Σ2)‖2,

LogΣ1(Σ2) �Σ
1
2
1 log

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)
Σ

1
2
1 . (3.4)

The Riemannian Exponential map, denoted by Expg (), is the inverse of Logg (). The
Riemannian Exponential map takes a covariance matrix Σ1 and a tangential velocity
vector v to Σ1, and maps it to the covariance matrix Σ2, found by traveling along P

+
D at

the most efficient path beginning at Σ1 with initial velocity v and stopping the movement
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after one time unit. Geodesics on P
+
D are obtained by scaling the initial velocity vector

in the Expg () map, which is expressed as

Expg
Σ1

(v) �Σ
1
2
1 exp

(
Σ
− 1

2
1 Sym(v)Σ

− 1
2

1

)
Σ

1
2
1 (3.5)

Sym(v) �

⎛
⎜⎜⎜⎝
v1 v2 . . . vD
v2 vD+1 . . . v2D−1
...

. . .
...

vD . . . vD(D+1)
2

.

⎞
⎟⎟⎟⎠ ,

where exp is the matrix exponential.

Returning to portfolio theory, any efficient portfolio in the sense of Equation (3.2), is
entirely characterized by the log-returns, the non-degenerate covariance structure between
the risky assets, and the risk-aversion level. The space parameterizing all the efficient
portfolios, which will be called the Markowitz space after [74], has a natural geometric
structure.

Definition 3.3.1 (Markowitz Space) Let g1E, g
D
E , and g be the Euclidean Riemannian

metrics on R, RD, and the Riemannian metric on P
+
D . The Riemannian manifold(

M
Mrk
D , gMrk

D

)
�
(
R× Rd × P

+
D , g

1
E ⊕ g2E ⊕ g

)
is called the (D-dimensional) Markowitz space.

Proposition 3.3.2 (Select Properties of the Markowitz Space). The Markowitz space is
connected, of non-positive curvature, and its associated metric space is complete. The
distance function is

d2Mrk ((γ1, μ1,Σ1), (γ2, μ2,Σ2)) �‖γ2 − γ1‖22 + ‖μ2 − μ1‖22 +
(

d∑
i=1

λ2
i

(
log
(
Σ
−

1

2

2 Σ1Σ
−

1

2

2

)))2

. (3.6)

The Riemannian Logg () and Expg () maps on MMrk are of the form

Expg

(γ1,μ1,Σ1)
((v1, v2, v3)) �

(
γ1 + v1, μ1 + v2,Σ

1
2
1 exp

(
Σ
− 1

2
1 Sym(v3)Σ

− 1
2

1

)
Σ

1
2
1

)
Logg(γ1,μ1,Σ1)

((γ2, μ2,Σ2)) �
(
γ2 − γ1, μ2 − μ1,Σ

1
2
1 log

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)
Σ

1
2
1

)
. (3.7)

Note that the Riemannian exponential and logarithm maps are defined everywhere and

put MMrk in a smooth 1 to 1 correspondence with R1+D+
D(D+1)

2 .

Proof. The proof is deferred to the appendix.

The Markowitz space serves as the prototypical example of the geometric spaces con-
sidered in the rest of this chapter, these are Riemannian manifolds, of non-positive curva-
ture, for which every two points can be joined by a unique distance minimizing geodesic.
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In the remainder of this chapter, all Riemannian manifolds will be Cartan-Hadamard
manifolds. Cartan-Hadamard manifolds appear in many places in mathematical finance,
for example in [60] the natural geometry associated with stochastic volatility models with
two driving factors are Cartan-Hadamard manifolds.

On Cartan-Hadamard manifolds, such as the Markowitz space, there is no rigorously
defined notion of conditional expectation. Therefore rigorous estimation intrinsic to these
spaces’ geometries is still a generally unsolved problem. We motivate this problem by
discussing a few formulations of intrinsic conditional expectation and related empirical
techniques present in the mathematical imaging literature.

The least-squares formulation of conditional expectation is

EP[Xt|G ] � argminZ∈L2
P
(G ;Rd) EP

[‖Xt − Z‖22
]
.

Replacing the expected Euclidean distance by the expected intrinsic distance gives the
typical formulation of a non-Euclidean conditional expectation. This formulation will be
referred to as intrinsic conditional expectation.

Alternatively, estimates in a Riemannian manifold are made by locally linearizing
the data using the Riemannian log map, performing the estimate in Euclidean space,
and returning the data back onto the manifold. This type of methodology has been
used extensively in the computer vision and mathematical imaging literature by [42,
53, 57, 3], and [94]. In [94], the authors empirically support estimating the intrinsic
conditional expectation a following procedure which first linearizes the observation using
the Riemannian Log transform, subsequently computes the conditional expectation in
Euclidean space, and lastly returns the prediction onto the Riemannian manifold using
the Riemannian Exp map.

This chapter provides a rigorous framework for the two methods described above,
proves the existence of their optimum, and shows that both formulations agree. The
rigorous formulation of the non-Euclidean filtering algorithm of [94] is used to derive non-
Euclidean filtering equations. The non-Euclidean filtering problem is implemented and
used to accurately forecast efficient portfolios by exploiting the geometry of the Markowitz
space.

Empirical evidence for the importance of considering non-Euclidean geometry will
be examined in the next section before developing a general theory of non-Euclidean
conditional expectation in Section 3.4.



CHAPTER 3. NON-EUCLIDEAN CONDITIONAL EXPECTATION 36

3.4 Non-Euclidean Conditional Expectations and In-

trinsic Forecasting

Let EP[Xt|Gt] denote the vector-valued conditional expectation in Rd. Let 0 < Δ < t and
consider

EP[Xt|Gt] = lim
Δ↓0

EP[Xt|Gt]

=

(
lim
Δ↓0

EP[Xt−Δ|Gt−Δ] + EP[(Xt − EP[Xt−Δ|Gt−Δ])|Gt]

)

= lim
Δ↓0

Expg

EP[Xt−Δ|Gt−Δ]

(
EP

[
Logg

EP[Xt−Δ|Gt−Δ] (Xt)
∣∣∣Gt

])
.

(3.8)

The equality is obtained by taking the limit of a constant sequence and the second line
it achieved using the Gt-measurability of EP[Xt−Δ|Gt−Δ] and the linearity of conditional
expectation. The last line is obtained by using the fact that the Riemannian Exponential
and Logarithm maps in Euclidean space respectively correspond to addition and subtrac-
tion.

Equation (3.8) expresses the conditional expectation at time t as moving from the
conditional expectation at an arbitrarily close past time along a straight line with ini-
tial velocity given determined by the position of Xt and the last computed conditional
expectation. The past time-period is made arbitrarily small by taking the limit of Δ to
0.

The last line is obtained by noting that in Euclidean space, the Riemannian exponen-
tial and logarithm maps correspond to vector addition and subtraction. Equation (3.8)
may be generalized and taken to be the definition of conditional expectation in the general
Cartan-Hadamard manifold setting.

In general, this definition will rely on a particular non-anticipative pathwise extension
of a process. The definition of this pathwise extension is similar to the horizontal path
extensions introduced in [32]. The extension Xe:t

t of a process Xt holds the initial realized
value X0 constant back to −∞ and the time t value constant all the way to ∞. Formally,
Xe:t

t is defined pathwise by

Xe:t
s (ω) �

⎧⎪⎨
⎪⎩
Xt(ω) t ≤ s

Xs(ω) 0 ≤ s ≤ t

X0(ω) s ≤ 0

.

Figure 3.1: Extension of the process Xt.

The next assumption will be made to ensure that the initial conditional probability
laws exist on M .



CHAPTER 3. NON-EUCLIDEAN CONDITIONAL EXPECTATION 37

Assumption 3.4.1 Suppose that X0 is G0-measurable and is absolutely continuous with
respect to the intrinsic measure μg on (M , g). Denote its density by f0, and assume that
there exists at-least one point x0 in M such that the integral

∫
y∈M

d2g (x0, y) f0(y)μg(dy)
is finite.

Definition 3.4.2 (Dynamic Conditional Expectation) Let Xt be an (M , g)-valued càdlàg
process and Gt be a sub-filtration of Ft. The intrinsic conditional expectation of Xt given
Gt, denoted by Xg

t is defined to be the solution to the recursive system

Xg
t �

⎧⎪⎨
⎪⎩

lim
n �→∞

Expg

X
g

t− 1
n

(
EP

[
Logg

X
g

t− 1
n

(Xe:t
t )

∣∣∣∣Gt

]o)
ift > 0

argmin
x∈M

∫
y∈M

d2g (x, y) f0(y)μg(dy) if t ≤ 0,
(3.9)

where Y o is the Gt-optional projection.

The geometric intuition behind Equation (3.9) is that the current dynamic conditional
expectation at time t is computed by first predicting the infinitesimal velocity describing
the current state on (M , g) from the previous estimate at time t − 1

n
, and then mov-

ing across the infinitesimal geodesic along (M , g) in that direction. The computational
implication of Equation (3.9) is that all the classical tools for computing the classical
Euclidean conditional expectation may be used to compute the dynamic conditional ex-
pectation, once the Riemannian Exp and Riemannian Log maps are computed.

Lemma 3.4.3 (Existence of Initial Condition). Under Assumption 3.4.1, Xg
0 exists and

is P-a.s unique.

Proof. Under Assumption 3.4.1, [5, Exercise 5.11] guarantees the existence of X0.

Dynamic conditional expectation is an atypical formulation of non-Euclidean condi-
tional expectation. Typically, non-Euclidean conditional expectation is defined as the
M -valued random element minimizing the expected intrinsic distance to Xt.

Following [69], by first isometrically embedding (M , g) into a large Euclidean space
RD, the space Lp

P (F ;M ) is subsequently defined as the subset of the Bochner-Lebesgue
space Lp

P

(
F ;RD

)
consisting of the equivalence classes of measurable maps which are

P-a.s. supported on M , and for which there exists some X̂ ∈ M for which(∫
ω∈M

dpg

(
X(ω), X̂

)
P (dω)

) 1
p

< ∞. (3.10)

The set Lp
P (F ;M ) is a Banach manifold (see [82] for more general results).

Definition 3.4.4 (Intrinsic Conditional Expectation) The intrinsic conditional expecta-
tion with respect to the σ-subalgebra Gt of F of an M -valued stochastic process Xt is
defined as the optimal Bayesian action

E
g,p
P [Xt|Gt] � arginf

Zt∈L
p
P
(Gt;M )

EP

[
dpg(Zt, Xt)

]
.
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When p = 2, we will simply write E
g
P[Xt|Gt].

Intuition about intrinsic conditional expectation is gained by turning to the Markowitz
space.

Example 3.4.5. Let γ ≥ 0 be fixed and constant. Let Xt � (γ, μt,Σt) be a process taking
values in the Markowitz space, Equation (3.6). Then the intrinsic conditional expectation
of Xt given Gt is

E
g
P[(γ, μt,Σt)|Gt] = argmin

(μ̃t,Σ̃t)∈L
p
P
(Gt;M )

EP

[‖μt − μ̃t‖22
]

+ EP

⎡
⎣( d∑

i=1

λ2
i

(
log

(√
Σ̃t

−1

Σt

√
Σ̃t

−1
)))2

⎤
⎦. (3.11)

The conditional expectation intrinsic to the Markowitz space seeks portfolio weights which
give the most likely log-returns given the information in Gt, while penalizing for the
variance taken on by following that path.

In the case where Σt is independent of μt and Σt is Gt-measurable, Equation (3.11)
simplifies. Since μt does not depend on Σt and the latter is in L2

P (Gt;M ), Σt may be
substituted into the second term, which sets it to zero. Therefore, in this simplified
scenario the least-squares property of Euclidean conditional expectation (see [65, Page
80]) that

E
g
P[(γ, μt,Σt)|Gt] = argmin

(μ̃t,Σ̃t)∈L
p
P
(Gt;M )

EP

[‖μt − μ̃t‖22
]
= EP[μt|Gt]. (3.12)

There is a natural topology defined on Lp
P(Gt;M ) which is characterized as being the

weakest topology on which sequences of cádl’ag process process
{
Xt− 1

n

}
n∈N

in Lp
P(Gt;M )

converge to Xt in Lp
P(Gt;M ) (see 3.7.2 for a rigorous discussion). For any two elements

X and Y of Lp
P(Gt;M ) with this topology, we will write

X ≡ Y,

if X and Y are indistinguishable in this topology. Intuitively, this means that they cannot
be further separated in the topology. For example in RD two points are indistinguishable
if and only if they are equal, the same is true for example in metric spaces. Whereas in
the space of measurable functions from R to itself which are square integrable equipped
with its usual topology, two functions are inst indistinguishable if and only if they are
equal on almost all points (see [67] for details on topological indistinguishability.)

Under mild assumptions, the dynamic conditional expectation and intrinsic conditional
expectation agree on Cartan-Hadamard spaces as shown in the following theorem.

Theorem 3.4.6 (Unified Conditional Expectations). LetXt be an M -valued process with
càdlàg paths which is in L2(Gt;M ) for m-a.e. t ≥ 0 and is such that Assumptions 3.4.1
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and 3.7.7 hold. For 1 ≤ p < ∞, the intrinsic conditional expectation E
g
P[Xt|Gt] exists.

Moreover, if p = 2, then

E
g
P

[
Xe:t

t

∣∣Gt

]e:t ≡ Xg
t
e:t, (3.13)

where the left-hand side of Equation (3.13) is the intrinsic conditional expectation and
its right-hand side is the dynamic conditional expectation.

Theorem 3.4.6 justifies the particle filtering Algorithm of [94]. Before proving The-
orem 3.4.6 and developing the required theory, a few implications and examples will be
explored.

Theorem 3.4.6 has computational implications in terms of forecasting the optimal
intrinsic conditional expectation using the dynamic conditional expectation. These im-
plications are in the computable solution to the certain filtering problems.

Instead of discussing the dynamics of a coupled pair of M -valued signal processXt and
observation processes Yt intrinsically to (M , g), Theorem 3.4.6 justifies locally linearizing
Xt and Yt, then subsequently describing their Euclidean dynamics before finally returning
them onto M . More, specifically assume that

X̃ i
t =

∫ t

0

f i(X̃ i
u)du+

∫ t

0

βi(u, X̃ i
u)dB

i
u,

Ỹ i
t =

∫ u

0

ci(X̃ i
u, Ỹ

i
u)du+

∫ t

0

αi(u, Ỹ i
u)dW

i
u,

X̃ i
t �〈Logg

X
g

t− 1
n

(Xt), ei〉Rd

Ỹ i
t �〈Logg

X
g

t− 1
n

(Yt), ei〉Rd

Bi ⊥⊥ W j, Bi ⊥⊥ Bj, W i ⊥⊥ W j; i �= j

(3.14)

where Bt andWt are independent Brownian motions and X̃ i
t , Ỹ

i
t satisfy the usual existence

and uniqueness conditions (see [22, Chapter 22.1] for example). This implies that X i
t

depends on only itself and that Ỹ i
t depends only one X i

t and itself. In particular, this
implies that

EP

[
X̃ i

t

∣∣∣Gt

]
= EP

[
X̃ i

t

∣∣∣Gt
i
]
, (3.15)

where G i
t is the filtration generated only by Ỹ i

t . Using these dynamics, asymptotic lo-
cal filtering equations for the dynamics of the dynamic conditional expectation Xg

t �

E
g
P

[
Xext

t

∣∣Gt

]
in terms of ηextt can be deduced and are summarized in the following Corollary

of Theorem 3.4.6.

Corollary 3.4.7 (Asymptotic Non-Euclidean Filter). Let M = Rd, denote the ith coor-
dinate of Xg

t by Xg,i
t , and suppose Assumptions 3.4.1 and 3.7.7 as well as the assumptions
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on Xt and Yt made in [22, Chapter 22.1]. If Xg
t is P ⊗ m-a.e. unique, a version of the

intrinsic conditional expectation Xg
t � E

g
P

[
Xext

t

∣∣Gt

]
must satisfy the SDE

Xg,i
t = lim

Δ �→0+
〈Expg

X
g
t−Δ

(
d∑

i=1

X i
0

)
, ei〉Rd

+

∫ t

0

[
d∑

i=1

〈
∂

∂xi

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

EP

[
f i(Xu)

∣∣G i
u

]

+
1

2

d∑
i,j=1

〈
∂2

∂xixj

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

Ξi,j
u

]
du

+

∫ t

0

d∑
i=1

〈
∂

∂xi

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

EP

[
f i(Xu)

∣∣G i
u

]
dVu, (3.16)

where the limit is taken with respect to the metric topology on L2
P (Gt;M ) and the pro-

cesses Ξi,j
t are defined by

Ξi,j
t �

(
EP

[
X̃i

uc
i
∣∣∣G i

u

]
− EP

[
X̃i

u

∣∣∣G i
u

]
EP

[
ci(X̃i

u)
∣∣∣G i

u

]) (
EP

[
Xj

uc
j
∣∣G j

u

]− EP

[
Xj

u

∣∣G j
u

]
EP

[
ci(Xj

u)
∣∣G j

u

])
.

Proof. The proof is deferred to the appendix.

Corollary 3.4.7 gives a way to use classical Euclidean filtering methods to obtain arbi-
trarily precise approximations to an SDE for the non-Euclidean conditional expectation.
It is two-fold recursive as it requires the previous non-Euclidean conditional expectation
Xg

t−Δ to compute the next update. In practice, Xg
t will be taken to be the previous

asymptotic estimate.

The next section investigates the numerical performance of our non-Euclidean filtering
methodology.

3.5 Numerical Performance

To evaluate the empirical performance of the filtering equations of Corollary 3.4.7, 1000
successive closing prices ending on June 30th 2018, for the Apple and Google stock are
considered. The unobserved signal process Xt is the covariance matrix between the clos-
ing prices at time t and the observation process Yt, is the empirical covariance matrix
generated on 7-day moving windows.

The signal and observation processes Xt and Yt are assumed to be coupled by Equa-
tion (3.14). The functions f i and ci are modeled as being deterministic linear functions
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and βi, αi are modeled as being constants.

X̃ i
t =

∫ t

0

Ai,iX̃ i
udu+

∫ t

0

C i,idBi
u

Ỹ i
t =

∫ t

0

H i,iX̃ i
udu+

∫ t

0

Ki,idW i
u,

Ỹ i
t �〈Logg

X
g

t− 1
n

(Yt), ei〉Rd

X̃ i
t �〈Logg

X
g

t− 1
n

(Xt), ei〉Rd

Bi ⊥⊥ W j, Bi ⊥⊥ Bj, W i ⊥⊥ W j; i �= j

(3.17)

where A, B, C, H, and K are invertible diagonal matrices non-zero determinant.

Analogous dynamics are for the benchmark methods, ensuring that the Kalman filter
is the solution to the stochastic filtering problem. The values of A,B,C,H, and K are
estimated using maximum likelihood estimation.

Both the classical (KF ) and proposed methods (N -KF ) are also benchmarked against
the non-Euclidean Kalman filtering algorithm of [57] (N -KF -int). This algorithm pro-
poses that the dynamics of X i

t and Y i
t be modeled in Euclidean space using the transfor-

mations
X̃ i

t �
〈
Logg

Σ̄
(Xt), ei

〉
Rd ,

Ỹ i
t �

〈
Logg

Σ̄
(Yt), ei

〉
Rd ,

Σ̄ � argmin
Σ∈P

+
D

1

15

15∑
j=1

d2g(Σ, Ytj),

where Σ̄ is the intrinsic Riemannian Barycenter (see [8] for details properties of the intrin-
sic mean), and the Riemannian Log and Exp functions are derived from the geometry of
P

+
D and not of MMrk, 15 was chosen by sequential-validation. Unlike equations (3.14),

the Riemannian log and exp maps are always performed about the same point Σ̄ and
do not update. This will be reflected in the estimates whose performance progressively
degrades over time.

The Riemannian Barycenter Σ̄, is computed both intrinsically and extrinsically using
the first 15 empirical covariance matrices. The extrinsic Riemannian Barycenter on P

+
D

is defined to be the minimizer of

Σ̄ext � Expg
Y1

(
1

15

15∑
j=1

LoggY1
(Yj)

)
.

The extrinsic formulation of the Kalman filtering algorithm of [57] (N -KF -ext), models
the linearized signal and observation processes by

X̃ i
t �
〈
Logg

Σ̄ext (Xt), ei
〉
Rd ,

Ỹ i
t �

〈
Logg

Σ̄ext (Yt), ei
〉
Rd .
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The length of the moving window was calibrated in a way which maximized the perfor-
mance of the standard Kalman-filter performed componentwise (EUC). The choice of 15
observed covariance matrices used to compute the intrinsic mean was made by sequential
validation on the initial 25% of the data. The findings are reported in the following table.

Table 3.1: Efficient Portfolio One-Day Ahead Forecasts

γ = 0 γ = 0.5 γ = 1

�2 �∞ �2 �∞ �2 �∞

EUC 0.780 0.695 0.811 0.723 0.834 0.746

N-KF 0.101 0.087 0.162 0.140 0.162 0.140

N-KF-int 0.550 0.493 0.671 0.608 0.671 0.608

N-KF-extr 0.865 0.828 0.969 0.931 0.969 0.931

Table 3.1 examines the one day ahead predictive power by evaluating the accuracy
of the forecasted portfolio weights. N-KF is our proposed algorithm. N-KF-int is the
algorithm of [57] based on the methods of [43], without the unscented transform. N-KF-
int computes the Riemannian Loggμ (·) and Loggμ (·) maps where μ is the intrinsic mean
to the first 15 observed covariance matrices and N-KF-ext is the same with the mean
computed extrinsically (see [8] for a detailed study of intrinsic and extrinsic means on
Riemannian manifolds). The one-day ahead predicted weights are evaluated both against
the next day’s optimal portfolio weights using both the �2 and �∞ norms for portfolios
with the risk-aversion levels γ = 0, 0.5, 1.

According to each of the performance metrics, the forecasted efficient portfolios us-
ing the intrinsic conditional expectation introduced in this chapter performs best. An
interpretation is that the Euclidean method disregards all the geometric structure, and
that the competing non-Euclidean methods do not update their reference points for the
Expg () and Logg () transformations. The failure to update the reference point results in
progressively degrading performance. This effect is not as noticeable when the data is
static as in [43, 42], however the time-series nature of the data makes the need to update
the reference point for the transformations numerically apparent.

Table 3.2: Comparison of Covariance Matrix Prediction

Frobenius Max Modulus Infinity Spectral Intrinsic

EUC 0.001 0.001 0.001 0.001 2.069

N-KF 0.0001 0.0001 0.0001 0.0001 0.843

N-KF-int 0.003 0.003 0.003 0.003 2.797

N-KF-extr 0.0004 0.0003 0.0005 0.0004 14.395

Table 3.2 examines the covariance matrix forecasts of all four methods directly. The
performance metrics considered are the Frobenius, Maximum Modulus, Infinite and Spec-
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tral matrix norms of the difference between the forecasted covariance matrix and the re-
alized future covariance matrix of the two stocks closing prices. An intrinsic performance
metric, the distance on P

+
D between the forecasted covariance of the stock prices matrix

and the realized future covariance matrix is also considered.

In Table 3.2, all the non-Euclidean methods out-perform the component-wise classical
Euclidean forecasts of the one-day ahead predicted covariance matrix. The prediction
of covariance matrices is less sensitive than that of the efficient portfolio weights, this is
most likely due to (1̄�Σ−11̄)

−1
term appearing in Equation (3.2) which is sensitive to small

changes due to the observably small value of Σ.

Table 3.3: Bootstrapped Adjusted Confidence Intervals for Performance Metrics

95.l Mean 95 U

Frobenius 0.001 0.001 0.001

Max Modulus 0.0004 0.001 0.001

Infinity 0.001 0.001 0.001

Spectral 0.001 0.001 0.001

Intrinsic 1.793 2.069 2.359

(a) Euclidean Kalman Filter

95.l Mean 95 U

Frobenius 0.00005 0.0001 0.0001

Max Modulus 0.00004 0.0001 0.0001

Infinity 0.0001 0.0001 0.0001

Spectral 0.00005 0.0001 0.0001

Intrinsic 0.407 0.843 1.900

(b) Asymptotic Non-Euclidean Kalman Filter

95.l Mean 95 U

Frobenius 0.001 0.003 0.007

Max Modulus 0.001 0.003 0.008

Infinity 0.001 0.003 0.008

Spectral 0.001 0.003 0.007

Intrinsic 2.549 2.797 3.064

(c) Non-Updating Intrinsic Barycenter

95.l Mean 95 U

Frobenius 0.0003 0.0004 0.001

Max Modulus 0.0002 0.0003 0.0004

Infinity 0.0003 0.0005 0.001

Spectral 0.0003 0.0004 0.001

Intrinsic 11.721 14.395 17.128

(d) Non-Updating Extrinsic Barycenter

Tables 3.3 and 3.2 report 95% confidence intervals about the estimated mean of the
one-day ahead mean error of each respective distance measure. The error distribution of
the performance metrics is non-Gaussian according to the Shapiro-Wilks test performed
for normality (see [90] for details). The bootstrap adjusted confidence (BAC) interval
method of [29] is used instead to non-parametrically generate the 95%-confidence intervals.
The BAC method is chosen since it does not assume that the underlying distribution is
Gaussian, it corrects for bias, and it corrects for skewness in the data. The bootstrapping
was performed by re-sampling 10, 000 times from the realized error distributions of the
performance metrics.

Tables 3.1 and 3.4 show that the N-KF method is the most accurate and has the
lowest variance amongst all the methods according to the Frobenius, Maximum modulus,
infinity, and spectral matrix norms. However the variance of the intrinsic distance is not
the lowest, but it’s variance is. This is interpreted as a bias-variance trade-off.
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Table 3.4: Performance Metrics of Portfolio Weights One-Day Ahead Predictions

95 L Mean 95 U

γ = 0 �2 0.610 0.780 0.962

�∞ 0.547 0.695 0.842

γ = 0.5 �2 0.649 0.811 0.995

�∞ 0.558 0.723 0.894

γ = 1 �2 0.669 0.834 1.004

�∞ 0.600 0.746 0.908

(a) Euclidean Kalman Filter

95 L Mean 95 U

γ = 0 �2 0.069 0.101 0.171

�∞ 0.056 0.087 0.146

γ = 0.5 �2 0.084 0.162 0.367

�∞ 0.067 0.140 0.292

γ = 1 �2 0.080 0.162 0.347

�∞ 0.072 0.140 0.335

(b) Non-Euclidean Kalman Filter

95 L Mean 95 U

γ = 0 �2 0.429 0.550 0.691

�∞ 0.388 0.493 0.604

γ = 0.5 �2 0.516 0.671 0.879

�∞ 0.480 0.608 0.807

γ = 1 �2 0.514 0.671 0.848

�∞ 0.467 0.608 0.792

(c) Non-Updating Intrinsic Barycenter

95 L Mean 95 U

γ = 0 �2 0.731 0.865 1.013

�∞ 0.692 0.828 0.966

γ = 0.5 �2 0.791 0.969 1.113

�∞ 0.755 0.931 1.078

γ = 1 �2 0.803 0.969 1.115

�∞ 0.761 0.931 1.084

(d) Non-Updating Extrinsic Barycenter

Tables 3.2 and 3.1 reflect that the forecasting performance for the efficient portfolio
weights of the N-KF method is more accurate than the others. This is again seen in the
lower bias and tighter 95% confidence interval reported in the Table 3.4.

The numerics reflect the importance of incorporating relevant geometry to mathemat-
ical finance problems and that the manner in which it is incorporated is a subtle matter.

The next section summarizes the contributions made in this chapter.

3.6 Summary

The need to incorporate relevant geometric information into probabilistic estimation pro-
cedures was supported by the efficient portfolio weight prediction at the start of the
chapter. Non-Euclidean filtering was seen to outperform traditional Euclidean filtering
methods with the estimates presenting a lower bias and generally having tighter confidence
intervals.

The numerical procedure was justified by Theorem 3.4.6 which proved the equivalence
and existence of common formulations of intrinsic conditional expectation to transfor-
mations of a specific Euclidean conditional expectation. These results were established
using the variational-calculus theory of Γ-convergence introduced in [24] and subsequently
developed by [13] by temporarily passing through the larger L

p
P (G•;M )-spaces. To our
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knowledge, these are novel proofs techniques within the field of mathematical finance and
applied probability theory.

A central consequence of Theorem 3.4.6 is the potential to write down computable
stochastic filtering equations for the dynamics of the intrinsic conditional expectation on
(M , g) using classical Euclidean filtering equations. Our results differed from those of [79],
[31], or [64] since dynamics for an intrinsic conditional expectation are forecasted and not
dynamics of the Euclidean conditional expectation of a function of a non-Euclidean signal
and/or observation process. Likewise, out results did not rely on the Le Jan-Watanabe
connection as those of [85] and the only computational bottleneck may be to compute the
Riemannian Logarithm and Riemannian Exponential maps. However, these are readily
available in many well-studied geometries not discussed in this chapter, for example the
hyperbolic geometry used to study the λ-SABR models in [60].

Many other naturally occurring spaces in mathematical finance have the required
properties for the central theorems of this chapter to apply. For instance the geometry
of two-factor stochastic volatility models developed in [60] do. The techniques developed
here can find applications to that geometry and other relevant geometries in mathematical
finance and could find many other areas of applied probability theory where standard
machine learning methods have been used extensively.

3.7 Appendix

In this, section technical proofs or results from the main body of this chapter are given.

Proof of Proposition 3.3.2. In general, for any three Riemannian manifolds (M, gM ), (N, gN),

(Ñ , gÑ), there is a natural bundle-isomorphism T (M ×N × Ñ) ∼= TM × TN × TÑ (see
[63, Section 2.1] for a discussion on vector bundles). Under this identification, define the
metric on T (M ×N × Ñ) as follows for each (p, q, r) ∈ M ×N × Ñ .

gM×N×Ñ(p,q,r) : T(p,q,r)(M ×N × Ñ)× T(p,q,r)(M ×N × Ñ) → R,

((x1, y1, z1), (x2, y2, z3)) �→ gMp (x1, x2, z3) + gNq (y1, y2, z3) + gÑr (y1, y2, z3).

Let ∇M×N×Ñ be the Levi-Civita connection on the product of two Riemannian man-
ifolds, then ∇M×N = ∇M +∇N +∇Ñ . Therefore for if γM , γN , γÑ are geodesics on M ,
N , Ñ respectively then

∇M×N×Ñ
·

(γM , γN , γÑ) = ∇M γ̇M +∇N γ̇N +∇Ñ γ̇Ñ = 0 + 0 + 0 = 0,

whence M × N × Ñ -valued curve t �→ (
γM(t), γN(t)

)
is a geodesic on the product Rie-

mannian manifold. Therefore geodesics, and hence the Expg () as well as the Logg () maps
can be expressed component-wise on the product Riemannian manifold. Particularizing
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M,N, Ñ to R,RD, and P
+
D implies that the Markowitz space is a well-defined Rieman-

nian manifold. The formula for dMrk is just the formula for the product metric between
metric spaces.

Using the natural isomorphism discusses above, the sectional curvature of the product
Riemannian is the sum of the sectional curvatures. Since Euclidean space has 0-sectional
curvature and P

+
D has non-positive sectional curvature (see[12]), then the Markowitz

space has non-positive sectional curvature.

The general linear group GLD(R) has two connected components corresponding to
the matrices with negative or positive determinant. Since P

+
D is a subset comprised

of matrices with strictly positive eigenvalues, its elements all have a strictly positive
determinant. Therefore P

+
D is simply connected. Since each of the component spaces

of the Markowitz space is geodesically complete (see [12] for the statement concerning
P

+
D) the Hopf-Rinow Theorem implies that the associated metric space is complete.

The non-positive curvature of the Markowitz space together with the Cartan-Hadamard
Theorem imply that the Riemannian exponential map at every point of the Markowitz

space is a diffeomorphism onto the R1+D+
D(D+1)

2 , where D(D+1)
2

is the dimension of the
P

+
D . The dimension is obtained by counting the entries on and above the main diagonal

of a symmetric matrix.

Proof of Corollary 3.4.7. Denote the conditional expectation EP

[
X̃ i

t

∣∣∣Gt

]
by X i

t . The fil-

tering Equations of [22, Remark 22.1.15] imply that each of the conditional mean of each
locally linearized coordinate processes X̃ i

t given the filtration Gt
i is

Xi
t =EP

[
Xi

0

∣∣G i
0

]
+

∫ t

0
EP

[
f i(Xu)

∣∣G i
u

]
du+

∫ u

0

(
EP

[
X̃i

uc
i
∣∣∣G i

u

]
− EP

[
X̃i

u

∣∣∣G i
u

]
EP

[
ci(X̃i

u)
∣∣∣G i

u

])
dVu

(3.18)

where the innovations processes V i
t and the optional projections of ci are defined by

V i
t �

∫ t

0

α(u, Yu)
−1dYu −

∫ t

0

αi(s, Ỹ i
u)
−1
(
ĉi(ω, u, Ỹ i

u)
)
du

ĉi(ω, t, y) �EP

[
ci(t,Xt, y)

∣∣Gt
i
]
,

(see [22, Chapter 22.10] for more details on the innovations process and [22, Chapter 7.6]
for more details on optional projections).

Abbreviate E
g
P[Xt|Gt] by Xtg Applying the Itô-Lemma to the (smooth) function

x �→
〈
Expg

X
g
t−Δ

(
d∑

i=1

x

)
, ei

〉
Rd
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to the process
∑d

i=1 Xtei yields

〈Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei〉Rd =〈Expg

X
g
t−Δ

(
d∑

i=1

X i
0

)
, ei〉Rd

+

∫ t

0

d∑
i=1

〈
∂

∂xi

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

dX̂ i
t

+
1

2

∫ t

0

d∑
i,j=1

∂2

∂xixj

〈
Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

d[X̂ i, X̂j ]t

=〈Expg

X
g
t−Δ

(
d∑

i=1

X i
0

)
, ei〉Rd

+

∫ t

0

[
d∑

i=1

〈
∂

∂xi

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

EP

[
f i(Xu)

∣∣G i
u

]

+
1

2

d∑
i,j=1

〈
∂2

∂xixj

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

Ξi,j
u

]
du

+

∫ t

0

d∑
i=1

〈
∂

∂xi

Expg

X
g
t−Δ

(
d∑

i=1

X i
t

)
, ei

〉
Rd

EP

[
f i(Xu)

∣∣G i
u

]
dVu,

(3.19)

where the processes Ξi,j
t is defined by

Ξi,j
t �

(
EP

[
X̃i

uc
i
∣∣∣G i

u

]
− EP

[
X̃i

u

∣∣∣G i
u

]
EP

[
ci(X̃i

u)
∣∣∣G i

u

]) (
EP

[
Xj

uc
j
∣∣G j

u

]− EP

[
Xj

u

∣∣G j
u

]
EP

[
ci(Xj

u)
∣∣G j

u

])
.

The results follow by applying Theorem 3.4.6 and the Optional Projection [22, Theorem
7.6.2].

We return to the proof of Theorem 3.4.6. This will require moving to a slightly larger
space where things become more manageable.

Definition 3.7.1 (The Lp
P (G•;M ) Spaces) Let L̃p

P (G•;M ) denote the subset of the disjoint
union

∐
t∈R L

p
P (Gt∨0;M ) consisting of all families {Xt}t∈R satisfying

t �→ Xt(ω) ∈ D(R;M , dg);P− a.s.

The natural topology on L̃p
P (G•;M ) induced by these operations will be denoted by τ0.

Refine the topology on L̃p
P (G•;M ) into the coarsest topology on L̃p

P (G•;M ) satisfying

(i) τ is no coarser than the topology on L̃p
P (G•;M ),

(ii) {Zn
t }n∈N converges to an element of L̃p

P (G•;M ) if and only if it converges to Zt with
respect to τ and {Zn

t− 1
n

}n∈N converges to Zt in τ .
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The one-point compactification of L̃p
P (G•;M ) is denoted by L

p
P (G•;M ), the new point,

denoted by ∞ is called the escape point. Elements of Lp
P (G•;M ) are called eternal processes

and are denoted by Z•.

Remark 3.7.2. Since Lp
P(Gt;M ) is a topological subspace of Lp

P (G•;M ) then it inherits
a relative topology. The indistinguishability discussed in Theorem 3.4.6 is with respect
to this relative topology.

Remark 3.7.3 (Escape Point). The escape point ∞ is interpreted as describing the
eternal processes which either fail the finiteness condition of Equation (3.10) or fail to
take values in M at a given point in time P-a.s.

Remark 3.7.4 (Points in L
p
P (G•;M ) are Eternal and May Explode). Every element of

L
p
P (G•;M ) is indexed by the time t which takes values in R and not only in [0,∞). The

time t = 0 is interpreted as when the observer first gained information of the process. In
this way the part above time t = 0 is a process which may explode arbitrary number of
times and the part below is interpreted as a pre-history to an observer at time t = 0. In
this way, processes in L

p
P (G•;M ) are thought of as eternal. Note that the eternal process

Xe:T
t is Gt∧T -adapted.

Lemma 3.7.5 (Existence). The space L
p
P (G•;M ) exists and is unique up to homeomor-

phism. Moreover, L̃p
P (G•;M ) is dense in L

p
P (G•;M ).1

Proof. The uniqueness and the density of L̃p
P (G•;M ) are in L

p
P (G•;M ) the properties of

the one-point compactification.

Let τ0 denote the topology on L̃p
P (G•;M ). Let T denote the set of topologies con-

taining τ0 and for which (ii) holds. T is non-empty since the discrete topology sat-
isfies both (i) and (ii). Since the intersections of topologies is again a topology (see
[67, page 55 Problem A.a]) then the topology on L

p
P (G•;M ) exists and is ∩τ∈T τ. Exis-

tence follows from the existence of the one point-compactification of the topological space(
L̃p
P (G•;M ) ,∩τ∈T τ

)
.

The Riemannian Log and Riemannian Exponential maps extend to a correspondence

1These spaces also exhibit universal properties that follow directly from those of the Alexandroff one-
point compactification used to construct them, but they are besides the central focus of this chapter and
so will not be discussed here.
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between L
p
P (G•;M ) and L

p
P

(
G•;Rd

)
. To see this consider the maps

LOGg () : Lp
P (G•;M )× L

p
P (G•;M ) → L

p
P

(
G•;Rd

)

LOGg
Z•
(Y•) �→

⎧⎪⎨
⎪⎩
⎧⎪⎨
⎪⎩
0 : Z• = Y• = ∞
LoggZt

(Yt) : Z• and Y• �= ∞
∞ : else

⎫⎪⎬
⎪⎭

t∈R

,

EXPg () : Lp
P (G•;M )× L

p
P

(
G•;Rd

)→ L
p
P (G•;M )

EXPg
Z•
(Y•) �→

{{
Expg

Zt
(Yt) : Z• �= ∞ and Y• �= ∞

∞ : else

}
t∈R

.

Both these maps collapse to component-wise post-composition by Logg () (resp. Expg ())
if the eternal process Z• never hits ∞.

The map dg(·, ·) also induces a map from L
p
P (G•;M ) × L

p
P (G•;M ) into [0,∞]. The

induced map, denoted by Dg(·, ·) is defined by

Z• �→
{
dg(Zt, Xt) : if X• and Z• �= ∞
∞ : else.

All of these collapse to their usual definitions when the escape point is not encountered.
They will play a key technical role for the remainder of this chapter.

Lemma 3.7.6. For every 1 ≤ p < ∞ and every sub-filtration G• of F•, the functionals

Fn(Z•) �

∫
t∈R

EP

[∥∥∥∥LOGg
Z
t− 1

n

(Zt)− LOGg
Z
t− 1

n

(Xt)

∥∥∥∥
p

2

]
dt,

Γ-converges to the functional

F (Z•) �

∫
t∈R

EP

[
Dp

g(Zt, Xt)
]
dt

on L
p
P (G•;M ).

Proof. Let Z• be an element of Lp
P (Gt;M ), {Zn

• }n∈N be a sequence converging to Z• in
L

p
P (Gt;M ) and X• be an element of Lp

P (Ft;M ). For every t ∈ R, Reverse Fatou’s Lemma
implies that

lim
n �→∞

∫
t∈R

EP

[∥∥∥∥LOGg
Zn

t− 1
n

(Zn
t )− LOGg

Zn

t− 1
n

(Xt)

∥∥∥∥
p

2

]
dt (3.20)

≤
∫
t∈R

EP

[
lim
n �→∞

∥∥∥∥LOGg
Zn

t− 1
n

(Zn
t )− LOGg

Zn

t− 1
n

(Xt)

∥∥∥∥
p

2

]
dt (3.21)
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The continuity of ‖ · ‖22, Logg (), and the P-a.s. continuity of the path t �→ Zt(ω) and the
choice of topology on L

p
P (G•;M ) implies that the limit on the RHS of Equation (3.21)

exists and can be computed to be

lim
n �→∞

∫
t∈R

EP

[∥∥∥∥LOGg
Zn

t− 1
n

(Zn
t )− LOGg

Zn

t− 1
n

(Xt)

∥∥∥∥
p

2

]
dt

≤
∫
t∈R

EP

[∥∥LOGg
Zt
(Zt)− LOGg

Zt
(Xt)

∥∥p
2

]
dt (3.22)

=

∫
t∈R

EP

[∥∥LOGg
Zt
(Xt)
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dt
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]
dt. (3.23)

Here the fact that LOGg
x (x) = 0 was used along with the relationship between the Rie-

mannian Logarithm and the Riemannian metric, as exemplified in P
+
D by Equation (3.4).

Analogously, by the ordinary Fatou’s Lemma∫
t∈R
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Dp

g(Zt, Xt)
]
dt ≤ lim

n �→∞

∫
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]
dt. (3.24)

By the definition of Γ-convergence, F is the Γ-limit of the functionals Fn on L
p
P (G•;M ).

Assumption 3.7.7 Both Xg
• , X• �= ∞.

The proof of Theorem 3.4.6 relies on a result of central interest in the theory of Γ-
convergence. This results [75, Theorem 7.8], is also called the Fundamental Theorem of Γ-
convergence in [13, Theorem 2.10] in the metric space formulation. It may be reformulated
as stating that if a sequence of functionals Fn Γ-converges to a functional on a compact
topological space2 X, then it must satisfy

min
x∈X

Γ-lim
n �→∞

Fn(x) = lim
n �→∞

inf
x∈X

Fn(x). (3.25)

Proof of Theorem 3.4.6. Lemma 3.4.3 established the required Γ-convergence between the
discussed functionals on the compact topological space Lp

P (G•;M ); this gives existence of
the intrinsic conditional expectation E

g,p
P [Xt|Gt], for every 1 ≤ p < ∞.

For the remainder of this proof, p will be equal to 2. Equation (3.11) will be established
by an uncountable strong induction, indexed by the totally ordered set (R,≤). By the
definitions of Xg

t and E
g,p
P [Xt|G0]if follows that

Xg
0 = E

g
P[X0|G0] = Z0.

2The assumption of compactness is a special case of the statement which only requires equicoercivity.
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Since Xge:0
t = Xg

0 and E
g
P[X

e:0
t |Gt] = E

g
P[X0|G0] for every t ≤ 0, the base case of the

(uncountable) strong induction hypothesis is established.

Suppose that for every t ≤ T , Xg
t = E

g,p
P [Xt|Gt]

e:t. It follows from the Γ-convergence
of Fn to F , that

min
Z•∈L

p

P
(G•;M )
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]
dt.

Here the fact that Xe:T
t is identical above T and below 0 was used. The non-negativity

of the integrands on of both sides of Equation (3.26) and the monotonicity of integration
implies that the LHS of Equation (3.26) must minimize EP

[
Dp

g(Zt, X
e:T
t )
]
for m-a.e. value

of t between 0 and the current time T . Therefore by the definition of intrinsic conditional
expectation, the left-hand side of Equation (3.26) is minimized by the eternal process

E
g
P

[
Xe:T

t

∣∣Gt

]e:T
. (3.27)

Likewise, the right-hand side of Equation (3.26) is minimized by the minimizers of
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Z
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n

(Zt)− LOGg
Z
t− 1
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(
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]
.

Since t− 1
n
< t, the induction hypothesis may be, applied hence

Zt− 1
n
= Xge:t

t− 1
n

= E
g
P

[
Xe:t

t− 1
n

∣∣∣Gt− 1
n

]
. (3.28)

Equation (3.28) implies that LOGg

Xge:t

t− 1
n

(Xe:t
t ) no longer enters into the optimization as

a variable. The correspondence between L
p
P (G•;M ) and L

p
P(G•;Rd) defined by the map
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LOGg
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)∣∣∣∣∣Gt

]
, (3.30)

where the least-squares property of the L2-formulation of conditional expectation (see [65,
page 80]) was used. Since the Riemannian Logarithm is a diffeomorphism, the change of
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variables may be undone. Hence
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(3.31)

Recombining equations (3.26), (3.27), and (3.31) yields

E
g
P

[
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]e:T
= lim

n �→∞
EXPg

Xge:t
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(
EP

[
LOGg

Xge:T
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n

(
Xe:T

T

)∣∣∣∣Gt

])e:T

= Xge:T
T . (3.32)

Assumption 3.7.7 implies that Dg, LOGg (), EXPg () reduce to their usual counterparts.
This completes the induction and establishes Theorem 3.4.6.

The proof of Theorem 3.4.6 showed how passing through the larger space L2
P (G·;M )

conclusions about the smaller L2
P(Gt,M ) spaces could be made.



4. Arbitrage-Free Regularization
We introduce an unsupervised and non-anticipative machine learning algorithm which is
able to detect and remove arbitrage from a wide variety of models. In this framework, fun-
damental results and techniques from risk-neutral pricing theory such as NFLVR, market
completeness, and changes of measure are given an equivalent formulation and extended to
models which are deformable into arbitrage-free models. We use this scheme to construct
a meta-algorithm which ensures that a wide range of factor estimation schemes return
arbitrage-free estimates and incorporate this additional information into their estimation
procedure. We show that, using our meta-algorithm, we are able to produce more accurate
estimates of forward-rate curves, specifically at the long-end. The spread between a model
and its arbitrage-free regularization is then used to construct a mis-pricing detection or
classification algorithm, which is in turn used to develop a pairs trading strategy. Our
theory provides a sound theoretical foundation for a risk-neutral pricing theory capable
of handling models which potentially admit arbitrage but which can be deformed into
arbitrage-free models.

4.1 Introduction

This chapter introduces a novel machine learning framework founded on stochastic calcu-
lus and arbitrage-pricing theory which extracts financial features from relevant time-series
data in order to learn an arbitrage-free model describing the data. The framework we
introduce is built on the following modeling principles, analogous to those discussed in
[54].

A modeling framework should produce interpretable models, in that the model learned
should either directly depend on factors which can easily be understood, or be as close
as possible to a model whose factors are interpretable. The models produced from the
framework should be describable. That is they should rely only on a finite number of
factors and their evolution must be described by a finite number of SDEs. The modeling
approach should be data-driven. By this we mean that the learned model should be dy-
namic and continuously updating according to the statistical and financial features of any
relevant incoming data. This self-updating property should happen with minimal input
from the user and, therefore, produce a low modeling bias. All models produced using
the procedure should not conflict with the efficient market hypothesis. More precisely,
it will be required that any model produced by the framework should be self-correcting,
removing the potential for any arbitrage opportunities in an unsupervised fashion. The
modeling framework should be natural in that it applies to, relates, explains, and trans-
fers meaning between a variety of asset classes with minor changes. This requirement not
only ensures that the modeling framework is widely applicable, but that it captures core
properties which are fundamental to most market’s behavior irrespectively of the market
asset’s particularities.

53
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A commonly employed approach for obtaining interpretable models is to use factor
models to either model the asset price or an auxiliary process. It was shown in [39]
that, for very large classes of factor models for the term-structure of a zero-coupon bond
introduce arbitrage opportunities into the bond market. Since many empirically chosen
factor models allow arbitrage these models must disregard certain subtle financial features
of the data and therefore are not as data-driven as they may appear. Although employing
empirically chosen factor models may result in an interpretable and reusable picture of
the market, this approach does not meet all of our modeling principles.

In [28], it is argued that the absence of arbitrage and the related subtleties in the data
are not of great consequence. The authors empirically demonstrated that the predictive
power of certain arbitrage-free interest-rate models have comparable performance to their
factor-model approximation at the short end of the curve. However, a detailed inspection
of these results confirms that the performance of an empirically chosen factor model
rapidly degrades for maturities at the long end of the forward-rate curve. Therefore, a
model which lacks a low-dimensional representation, interpretability, or admits arbitrage
opportunities is not practically tractable or theoretically viable. To meet these three
modeling requirements, we introduce the arbitrage-free regularization algorithm. This
algorithm extracts financial features from the realized time-series and uses them to remove
arbitrage opportunities from the empirical factor model. This predictive advantage will
be illustrated on the long-end of the forward-rate curve.

Our framework can be interpreted as producing a dynamically self-correcting model
with a factor model at its core. More precisely, our approach will begin by taking an
interpretable empirically chosen factor model φ and deforming it into a factor-like model
Φt(φ). The predictable function Φt can be interpreted as dynamically deforming the factor
model φ in an optimal way to remove arbitrage opportunities. The deformation Φt will
be optimal in the sense that it minimizes the objective function

D(φ,Φt(φ); xt) + AF (Φt(φ)), (4.1)

where D is a distance measuring how far the deformed factor model Φt(φ) is from the
interpretable empirical factor model φ on the realized data’s path up to time t, that
path will be denoted by xt. Here AF is a penalty detecting the presence of arbitrage
opportunities in Φt(φ). A deformation which is far from the data or the empirical factor
model would either be poorly performing or uninterpretable. In contrast, a model which
admits arbitrage fails to be theoretically sound and will be shown to have poorer predictive
powers than the closest arbitrage-free model. The Arbitrage-Free Regularization problem
of Equation (4.1) is defined as the model selection criteria for determining Φt(φ).

As a consequence of our methodology, we are able to use the spread between the
optimal model Φt(φ) and the model φ to detect and classify market mispricings. This is
then used to construct a pairs trading strategy which trades pairs of assets whose price
frequently fluctuate between over and under-priced states. The pairs trading strategy
developed as an application of the theory serves as an alternative to the usual pairs
trading strategy of [19] which can be deployed on pairs assets exhibiting co-integration.
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The Heath-Jarrow-Morton (HJM) framework of [58], provides a flexible modeling
framework which describes the evolution of bond prices for every maturity through an
infinite dimensional system of SDEs. We will refer to the extension of the HJM frame-
work to other asset classes, as in [32, 18], the Generalized-HJM (GHJM) framework and
reserve the acronym HJM for the bond setting. A central point of interest of the GHJM
models, other than their flexibility, is that the existence of arbitrage opportunities for the
GHJM model representing the price of a bond, or pair of a call option and stock have been
characterized in [58, 66, 17] through specifications on the driving process drift. However,
there still is no general characterization of the existence of arbitrage opportunities to the
general GHJM models of [32, 18].

The infinite dimensionality of GHJM models make them computationally intractable.
The computational intractability of the infinite dimensionality of this approach is re-
solved in [9], where finite-factor models could be found to be consistent with an infinite
dimensional GHJM model. These consistent finite dimensional models are called finite
dimensional realizations of an GHJM model (FDR-HJM), and the dimension reduction is
achieved by turning to non-Euclidean methods. FRD-HJMs characterize the HJM model
which can be represented as a finite-factor model. These additional benefits come with
the cost that the characterization of the existence of arbitrage opportunities is lost in
the case of call options. Under certain assumptions, a characterization of equivalent lo-
cal martingale measures for FDR-HJMs representing the price of a zero-coupon bond is
provided by [39]. Furthermore, a characterization of the existence of arbitrage opportu-
nities for FDR-HJMs modeling zero-coupon bonds whose factor model is an exponential
polynomial is given in [38].

Another drawback of the FDR-HJM models is that the introduction of factor models
makes them parametric. The parametric nature of FDR-HJM models is a further draw-
back since it introduces model selection bias introduced by the user’s choice of model as
opposed to being learned non-parametrically. An alternative to the HJM and FDR-HJM
approach is the non-parametric principal component analysis approach. The FDR-HJM
method is computationally tractable, low-dimensional and generally interpretable, it’s
factor model component is static. The static factor model component of the FDR-HJM
methodology is not suited to the dynamic nature of the financial landscape and is respon-
sible for many of the drawbacks associated to FDR-HJM models.

Flow models provide an alternative extension to the FDR-HJMs extension of GHJM
models. Flow models are designed to be a general modeling framework on which Arbitrage-
Free Regularization is defined. Arbitrage-Free Regularization is an unsupervised learning
method for learning a what we will call a flow model from an empirical factor model.
The method predictably deforms the empirical factor model until the objective measure
P becomes risk-neutral for the deformed model. Arbitrage-free regularized models are
semi-parametric since they are non-parametric deformations of parametric models.

The comparison of modeling approaches is summarized in this table.
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Approach AF-Reg GHJM FDR-HJM PCA

N. Factors Finite N/A Finite Finite

N. Diffusions Finite Infinite Finite N/A
Path Dependence Yes No No No
Non-Euclidean Features Yes No Yes No
Estimation Semi-Param. NA Parametric Non-Parametric

Characterization of No-Arbitrage Yes Partial Partial No.

Table 4.1: AF-Reg abbreviates arbitrage-free regularization of flow models.

Section 4.3 introduces the class of models, called flow models, on which arbitrage-free
regularization is defined. This section focuses on providing example of flow models and
characterizes flow models which do not admit arbitrage opportunities. The mathematics
of regularization is subsequently developed in Section 4.4. Section 4.5 focuses of the the-
oretical implications of arbitrage-free regularization. Specifically, central results to risk-
neutral pricing theory such as NFLVR, market completeness and the minimal martingale
measure are shown to be have an equivalent reformulations in terms of specific arbitrage-
free regularization problems. Corrections to models which admit arbitrage, such as the
Arbitrage-Free Nelson-Siegel correction of the Nelson-Siegel model, are shown to be model
specific solutions to particular arbitrage-free regularization problems. The arbitrage-free
regularization framework provides a methodology, which is not model specific, for remov-
ing arbitrage from models. Section 4.5 extends the classical risk-neutral pricing theory
beyond semi-martingales to models which admit arbitrage, but are deformable into models
arbitrage-free flows models.

Computational aspects of arbitrage-free regularization are considered in Section 4.6,
with numerical illustrations set within the fixed-income setting. It is observed that the
arbitrage-free regularized models outperform their empirical factor counterparts. Their
improved performance is interpreted as the incorporation of financial features into the
learned model and this interpretation is validated through information theoretic methods.
In particular, it is observed that this newly assimilated information yields more accurate
price forecasts for bonds maturing in at-least 20 years. As an application, an algorithm
exploiting the spread between the arbitrage-free regularization of a factor model to detect
and classify types of mis-pricing in the bond market is introduced. With the addition of
Hidden Markov Model (HMMs), a low-risk trading strategy simultaneously shorting over-
priced bonds, and going long on underpriced bonds is introduced as situational alternative
to classical pairs trading strategies.

The next section discusses the conventions and notation used in this chapter.

4.2 Preliminaries and Notation

For the remainder of this chapter, we assume that all processes are defined on a stochastic
base (Ω,Gt,G ,P), with P-complete left-continuous filtration on which a Brownian motion



CHAPTER 4. ARBITRAGE-FREE REGULARIZATION 57

Wt exists. For the remainder of this chapter, Xt(u) will denote the price of an asset
depending on the parameter u.

We denote the complete left-continuous sub-filtration of Gt, jointly generated by Xt(u)
and Wt by Ft, and the complete left-continuous sub-filtration of Gt generated by Xt(u)
(resp. Wt) by FX

t (resp. FW
t ). We will denote by μt, a cádlág FX

t -predictable process
taking values in the set of σ-finite Borel measures on U .

Moreover (M , gt) will denote a Riemannian manifold with time-dependent connection,
D([0, t];RD) (resp. D([0, t];S+

d )) the space of paths with values in Rd (resp. S+
d , the set of

d×d-positive-definite matrices), and U be a Borel subset of RD, for some D ≥ d. We will
denote the Lebesgue measure on [0,∞) by m and by Bt the Borel σ-algebra on [0,∞). A
family of functionals (Ft)t∈[0,∞) will be abbreviated by Ft and said to be non-anticipative
if is non-anticipative (resp. predictable) with respect to the paths of Xt(u) and of Wt. By
Hs

μ(U) we mean the Sobolev space W s,2
μt

(U) on U . By L2
μ(H

s(U)μ;Hs(U)μ) we mean the
square-integrable Bochner-Lebesgue space.

The next section introduces and presents examples of flow models. Flow models which
are arbitrage-free are also characterized.

4.3 Arbitrage-Free Flows

Arbitrage-free flows are dynamically updating models motivated by empirical factor mod-
els. The definition is presented and will be followed by a series of examples emphasizing
the use and necessity of each of a flow model’s defining components.

Definition 4.3.1 (Flow Model) Let Xt � {Xt(u)}u∈U be a family of price processes such
that there exists (F, φ, βt, gt) such that for P⊗m⊗ μ-a.e. (ω, t, u) in Ω× [0,∞)× U

Xt(u) = Ft (φ(t, βt, u)|u) (4.2)

A flow model for Xt(u), denoted by (F, φ, βt), is a triple satisfying the regularity conditions
4.8.11, 4.8.12, and 4.8.13 found in the Appendix and characterized by

(i) Stochastic Factors: An M -valued semi-martingale βt. They are the dynamic-
factors for the empirical factor model and M is their domain of definition,

(ii) Empirical Factor Model: A Ft-predictable process {φ(t, β, u)}t≥0 taking values
in the set of Borel-measurable maps from M ×U to R which are twice differentiable
in their M component. The predictable time-inhomogeneity of the factor model
φ(t, β, u) represents the ability to update/recalibrate the factor model as new data is
received,

(iii) Encoding Functional: A non-anticipative functional
Ft(·|u) : D([0, t];R)×D([0, t];S+

1 )×U → R. This encodes the dynamic factor model
into the family of asset prices being modeled,
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(iv) Geometry’s Factor: The family of Riemannian metrics {gt}t∈[0,∞) on M cap-
ture the potentially non-Euclidean features present in the evolution of the stochastic-
factors βt.

Remark 4.3.2. In the remainder of this chapter simplified dynamics are assumed on
the stochastic factor process which rely on stochastic differential geometry to be stated (
See Appendix 4.8.2 for details on stochastic differential geometry). For the remainder of
this chapter the stochastic factor process will be assumed to be g-horizontal. When the
context is clear, both the stochastic factor process and its g-stochastic anti-development
will be denoted by βt. The dynamics of the g-horizontal anti-development of the stochastic
factor process will be assumed to solve the diffusion process

βt = β0 +

∫ t

0

μ(s, βs)ds+

∫ t

0

σ(s, βs)dWs, (4.3)

where Wt is a Brownian motion on the Euclidean space of the same dimension as M .
The g-horizontal lift of the stochastic factor process βt to the orthonormal frame bundle
O(M ) with initial frame ξ0 = Ξ will be denoted by ξt.

The set U is called the parameter space of the assets prices Xt(u), M represents the
factor’s domain of definition, and the process F (φ(t, βt, u)|u) is called the flow model’s
realization. The collection of all flow models with the same encoding functional F and
stochastic factors βt, but with possible different empirical factor models φ, is denoted by
Cμ (F, βt).

Definition 4.3.3 (Arbitrage-Free Flow) If μ-a.e. member of the family of price processes
{Xt(u)}u∈U satisfies NFLVR for μ-a.e. u in U , then (F, φ, β) is said to be an Arbitrage-
Free Flow.

Arbitrage-free regularization begins with a flow model and learns the closest arbitrage-
free flow to it. Flow models can be used to model the price of zero-coupon bonds, call
options, portfolios of stocks, amongst other asset prices.

Example 4.3.4 (Instantaneous Forward-Rate Curve). The time t price of a zero-coupon
bond with maturity T , denoted by B(t, T ), depends on the instantaneous interest rate in
effect at that time. This interest-rate is called the short-rate rt and is related to the bond
price through

B(t, T ) = E

[
e−

∫ T

t
rsds | F

r
t

]
,

where F r
t is the filtration generated by the short rate rt. Modeling bond prices through

using short-rate models lacks the flexibility to easily calibrate to the realized initial term
structure of interest to the bond price as well as incorporating the term-structure of
interest into the bond price. This motives the framework of [58] which models B(t, T ) as
a function of all the future instantaneous interest rates between times t and T , as observed
from the current time t.
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This family of future interest rates are denoted by f(t, T ) and the map T �→ f(t, T )
defines a stochastic process called the instantaneous forward-rate curve (FRC), which is
related to the price of a zero-coupon bond and the short-rate by

B(t, T ) = e−
∫ T

t
f(t,s)ds; f(t, t) = rt. (4.4)

Every maturity T defines a particular point on the FRC, and each individual FRC point’s
evolution is described by a SDE. This gives a description of f(t, T ) as system of infinitely
many SDEs makes working directly with FRC models computationally intractable.

In practice, this is typically overcome by modeling f(t, T ) by a factor model φ(t, β, T ).
For example, consider the following flexible extension of the typically used Nelson-Siegel
model, abbreviated NS

φ (t, β, T ) =
N∑
i=1

βiϕi ;N ≥ 3

ϕ1 =1

ϕ2 =
[1− exp (−T/τ)]

T/τ

ϕ3 =

(
[1− exp (−T/τ)]

T/τ
− exp (−T/τ)

)

ϕi =

[
1− exp

(−T ki/τ
)]

T ki/τ
; i > 3, ki > 0.

(4.5)

The loadings β1, β2, β3, and τ are interpreted as level, slope, curvature, and shape pa-
rameters, respectively [30]. To capture the dynamic nature of the market the factors
β1, β2, β3 are often taken to be stochastic. The additional factors {φi}i>3 capture various
decay rates of the FRC.

The price of a zero-coupon bond modeled within the HJM framework, modeled by a
factor model such as the extended Nelson-Siegel family of equation (4.5), has the following
representation as a flow model:

(i) The manifold (M , gt) is an open subset of the d-dimensional Euclidean space on
which the factors β of φ are defined,

(ii) The set of possible parameters U = [0,∞) are the possible times of maturity of the
bond B(t, T ),

(iii) The stochastic factors βt are the factors of φ which, in the extended Nelson-Siegel
example, captured the stochastic evolution of level, slope and curvature parameters,
and decay rates,

(iv) The factor model φ is a low-dimensional factor model for the FRC,
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(v) The functional F encoding the FRC into the price of a zero-coupon bond B(t, T ) is

F (·|u) � e−
∫ u

t
·ds.

Hence the FDR-HJM

B(t, T ) = e−
∫ u

t
f(t,u)du = e−

∫ u

t
φ(t,βt,T )ds = F (φ(t, βt, u)|u). (4.6)

Therefore the price of a zero-coupon bond B(t, T ) can be represented by the flow

model
(
e−

∫ T

t
·ds, φ(t, T, β), βt

)
.

Remark 4.3.5 (Relationship to FDR-HJMs). If φ is assumed to be deterministic and
constant in time, then equation (4.6) is precisely the definition of an FDR-HJM as intro-
duced in [9]. In this way, FDR-HJMs are particular cases of flow models.

Example 4.3.6 (Portfolio Value). Let (S1
t , . . . , S

d
t ) be a set of risky assets, assume than

an equivalent martingale measure Q exists and that the log-returns of the risky assets
follow a d-dimensional diffusion process. Any self-financing portfolio with positions w =
(w1

t , . . . , w
d
t ) on the risky assets is valued at a future time T via the risk-neutral pricing

formula

VT (w) � EQ

[
d∑

i=1

wi
tS

i
t | F

S
t

]
,

where F S
t is the filtration generated by St. The value process VT can be represented by

the following flow model:

(i) The manifold (M , gt) is the d-dimensional Euclidean space,

(ii) The set of possible parameters U = [0,∞)d are taken to be the weights u � w,

(iii) The stochastic factors βt are defined to be the log-returns

βi
t � ln

(
Si
t

S0

)
,

(iv) The factor model φ will be taken to be the map aggregating the positions in each
stock

φ(t, β, u) �
d∑

i=1

wi
tS

i
0e

βi

,

(v) The functional F encoding the factor model φ into the value of the portfolio VT (u)
is the path-dependent functional

F (·|u) � EQ [· | σ(S�)t] .
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Hence the portfolio value can be represented by the flow model(
EQ [· | σ(S�)t] ,

∑d

i=1 w
i
tS

i
0e

βi
t , (ln

(
St

S0

)
)
)
with realization

VT (w) = EQ

[
d∑

i=1

wi
tS

i
t | σ(S�)t

]
= F (φ(t, βt, u)|u).

Example 4.3.7 (Stochastic Local Volatility). In the Black-Scholes framework, the price
of a European call option on a stock is characterized by the Black-Scholes formula

C(t, St, T,K, σ) = N(d1)St −N(d2)Ke−r(T−t)

d1 =
1

σ
√
T − t

[
ln

(
St

K

)
+

(
r +

σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t

dSt = σStdWt.

(4.7)

This formula depends only on the current price of the stock St, the time T at which
the option matures, its pre-agreed upon strike price K, and the stock’s volatility σ. All
these quantities are known at time T except for the volatility σ which must be estimated.
The volatility implied by the realized market option prices C̃, is typically found by first
viewing C(t, St, T,K, σ) solely a function of the volatility σ and subsequently solving the
inverse problem

C(t, St, T,K, σ)− C̃ = 0, (4.8)

for the volatility that best explains the realized market prices C̃.

Solving the inverse problem of equation (4.8) yields different values of σ for different
strikes and maturity times. Options with lower strike prices tend to have higher implied
volatilities than their high stike price counterparts which leads to the well known volatility
smile phenomenon. The surface obtained by solving this inverse problem for each strike
and maturity time is called the implied volatility surface of St.

Models in which the volatility σ is allowed to be stochastic have superior empirical
performance over their deterministic counterparts and their implied volatility surfaces
takes on more natural shapes (see [60, Chapter 6.1] for a more in depth discussion on the
subject) and provide a partial solution to this issue. Under a stochastic volatility model
(SVM), the assets’ risk-neutral dynamics is assumed to satisfy the following SDE

dSt = σtdWT

dσt = μ(t, σt)dt+ ν(t, t, σt)dBt

E [[W,B]t] = ρ; ρ ∈ [−1, 1],

(4.9)

where σt is the instantaneous volatility of St at time t called the instantaneous spot-
volatility, analogously to rt.

Just as the instantaneous spot-rate rt discussed in Example (4.3.4), was inflexible and
difficult to calibrate to daily observed market prices, the instantaneous spot-volatility σt
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suffers from the similar shortcomings. In [32], both these issues are overcome by modeling
the entire volatility surface, denoted by σ(t, T,K), as a stochastic function of T and K.
Analogously to equation (4.4), it is shown in [18] that for such a model the price of
Call options, denoted henceforth by C(t, T,K) is the unique solution to the initial value
problem

∂tC(τ,K) =

(
K2ν(t, τ,K)

2

)
∂2
KC(τ,K)

C(0, K) =(St −K)+

dSt =σ(t, St, K)dWt

σ =ν2

τ �T − t,

(4.10)

where ν = σ2, called the stochastic variance surface1, is often used instead of σ for
notational and computational convenience.

Analogously to the FRC setting, the dimensionality of the stochastic volatility surface
σ(t, T,K) leads to computational intractability. Analogously to the FRC setting, the
curse of dimensionality motivates the use of factor models for the stochastic variance
surface in place of modeling ν(t, T,K) directly as an infinite of SDEs. A common globally
parameterized example is the SVI-JW described in [47] for the stochastic volatility surface
or locally parameterized alternative that can be described following wavelet model for the
variance surface

ν(t, T,K) �
d∑

i,j=1

βi,j
t ψi,j(T,K); βi,j

t > 0

ψi,j(t) =
1√
2−i

ψ

(
t− 1

j

2−i

)

ψ(x, y) =
1

πσ2

(
1− 1

2

(
x2 + y2

σ2

))
e−

x2+y2

2σ2 .

(4.11)

In Appendix 4.8.7, a natural Riemannian metric gc is described on the space (0,∞), which
ensures that the factor model

∑d

i,j=1 β
i,j
t ψi,j(T,K) is well defined for all time by forcing

the dynamic factors βi,j
t not to be able to escape (0,∞) in a finite amount of time. The

price of a European call option C(t, T,K) on the stock price can be represented by the
following flow model:

(i) The manifold (M , gc) is the subset (0,∞)d
2
of Rd2 equipped with the Riemannian

metric gc described in Lemma 4.8.5,

(ii) The set of possible parameters U = [0,∞)× [0,∞) represents the set of all possible
strikes and times of maturity of a European option on St,

(iii) The stochastic factors βt are the loadings on the wavelet basis functions ψi,j,

1 The variance surface tends to be numerically simpler to work with in general.
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(iv) The factor model φ is the map

φ(t, β, (T,K)) �
d∑

i,j=1

βi,j
t ψi,j(T,K),

(v) The functional Ft(·|(T,K)) encoding the stochastic variance surface ν into the price
of a European call option is the solution operator Σt(·|T,K) mapping a positive
number ς to the solution of the initial value problem

∂tc(τ,K) =ςc(τ,K)

c(0, K) =(St −K)+.
(4.12)

Therefore the price of a European call option on a stock with price St can be repre-

sented by the flow model
(
Σt(·|T,K),

∑d

i,j=1 β
i,jψi,j(T,K); βi,j

t > 0, βc
t

)
, with real-

ization

C(t, T,K) = Σt (ν(t, T,K)|(T,K)) = Σt (φ(t, β, (T,K))|(T,K)) = F (φ(t, βt, u)|u).
Example 4.3.8 (Price Of An Option with Uncertain Stochastic Volatility). Suppose μt

is the density of the log price of a risky asset at a maturity time t > 0. The value of
an option at time t with payoff-function f , denoted by pft , is computed in terms of the
log-returns as

pft �

∫
R

f(x)μt(x)dx. (4.13)

Suppose μt itself is unknown, but has been estimated by the density wt and let lt be the
likelihood ratio

lt �
gt
wt

.

Under suitable conditions (see [2] for details), the time t option price pft can be approxi-
mated by

pf,Nt �

N∑
n=0

fnl
n
t

fn
t �

∫
R

f(x)Hn(x)wt(x)dx,

lnt �

∫
R

Hn(x)μt(x)dx,

(4.14)

where {Hn}n∈N is an orthonormal polynomial basis of the weighted space L2
wt

and fn
t as

well as lnt are the projection of f and lt onto the span of each function Hn.

In general, making assumptions on the dynamics of the volatility is more subtle than
modeling those of the stock price since, since the volatility is unobservable. Therefore the
exact specification of the volatility’s evolution is subject to a certain amount of model
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uncertainty. It is therefore more realistic to consider a variety of dynamics for the asset’s
volatility, each of which describes a different model for the log-stock-price,{

dSk
t =σk

t dWt

dσk
t =αk(t, σk

t )dt+ βk(t, σk
t )dBt

}d

k=1

E [[W�, B�]t] = ρ,

(4.15)

where the correlation coefficient, denoted by ρ, is between −1 and 1, and Sk
t denotes the

log-stock price under the assumption that the volatility process follows σk
t .

If μk
t (x) denotes the density log-price of the asset under the volatility specification σk

t ,
then it is more robust to select an optimally empirically performant mixture

d∑
k=1

β1+···+βd=1

βk>0

βkμk
t (x)

than modeling the log-stock price using a single density specification.

The constraint set {
β ∈ Rd : β1 + · · ·+ βd = 1 and βk > 0,

}
(4.16)

may be difficult to work with. Instead working with the geometry provided by the largest
open ball lying within this constraint set, defined by

B �

⎧⎨
⎩x ∈ Rd+1 :

√√√√ d∑
i=0

x2
i = 1 and x0, . . . , xd > 0 and d◦(x̄, x) <

π

4

⎫⎬
⎭ ,

provides a convenient proxy to this constraint set; here d◦ is the distance intrinsic to
the d-sphere. This is because a geometry may be defined on B which provides a closed-
form characterization of all continuous semi-martingales which do not leave B in a finite
amount of time. See Appendix 4.8.8 for a detailed treatment of this technical point.

To summarize, the approximation pf,Nt to the value of the option at time t may be
represented by the following flow model:

(i) The manifold (M , g) is the largest open ball B lying in the intersection of the d-
dimensional sphere and the first orthant of Rd, and g a Riemannian metric defined
in Appendix 4.8.8.

(ii) The set of possible parameters U = {0} is a single dummy point,

(iii) The stochastically evolving mixture proportions of the hypothesized densities for the
asset log-price movements, are described by a B-valued continuous semi-martingale
βc
t . The precise definition of βc

t is given in Appendix 4.8.8.
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(iv) The factor model φ is the map mixing the densities g1, . . . , gd:

φ(t, β, u) �
d∑

k=1

βkμk
t (u),

(v) The functional F encoding a density μt(x) into approximate option value is

F (·|u) �
N∑

n=0

fn
t

(∫
R

Hn(x) · dx
)
.

Hence the approximate price of an option with payoff f under uncertain stochastic
volatility models can be represented by the flow model(

N∑
n=0

fn
t

(∫
R

Hn(x) · dx
)
,

d∑
k=1

(βc
t )

k μk
t (u), β

c
t

)
,

with realization

pf,Nt =
N∑

n=0

fn
t l

n
t =

N,d∑
n=0,k=1

(βc
t )

k fn
t

(∫
R

Hn(x)μ
k
t (x)dx

)
= F (φ(t, βc

t , u)|u).

Analogously to the FDR-HJM framework of [58] and its consistent analogue studied
in [39], analogues to the HJM drift restriction and consistency conditions are given in the
next section to characterize the non-existence of arbitrage opportunities. These will play
an integral role in constructing an arbitrage-free penalty.

Remark 4.3.9. The terminology ”flow model” comes from the fact that the factors
βt evolve on a manifold with time-dependent Riemannian metric, which in differential
geometry is called a flow. Analogously to the static models of [9], if the mappings

{β �→ (u �→ φ(t, β, u))}t∈[0,∞) ,

are invertible, they dynamically associates the manifold (M , gt) to open subset of the
Sobolev space W s(U) defined by their image at time t. The encoding functional termi-
nology originates from the GHJM setting, where an unobservable process, or codebook is
encoded into the price of an asset as introduced in [32].

Remark 4.3.10. In Lemma 4.8.9 it is shown that if M ⊆ RD can be interpreted as a
suitable set of constraints on the factors β, then any continuous semi-martingale βt on Rd

can be transformed to a continuous semi-martingale βc
t on M such that its infinitesimal

tangential movements are βt and βc
t do not leave M in a finite amount of time. If

Rd = M = RD, then βt and βc
t are indistinguishable. A time-dependent Riemannian

metric gt is allowed so that the structure of the factor’s domain M may be updated.
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By the tower law of conditional expectation, all the flow models of Example 4.3.6 are
martingales and therefore cannot admit arbitrage opportunities. However, not all flow
models are arbitrage-free flows and, in order to build an arbitrage penalty, we will first
characterize the existence arbitrage for a flow model. First, recall that a local martingale
measure (LMM) is a measure dominated by the reference measure P, under which each
Xt(u) is a local martingale. Unlike an equivalent local martingale measure (ELMM), and
LMM need not be equivalent to P (see [88] for details on LMMs and ELMMs).

Theorem 4.3.11. Let Q � P, φ be deterministic, and (F, φ, βt, gt) be a flow model with
realization Xt(u). For every u ∈ U , the measure Q is a LMM for Xt(u) if and only if

∫ t

0
DsF (s, ϕu

s , [ϕ
u]s|u)ds+

∫ t

0
VsF (s, ϕu

s , [ϕ
u]s|u)

[
∂φ

∂s
(s, βs, u) +

d∑
i=0

(ξsei)φ(s, βs, u)μ(s, βs)

+
1

2

d∑
i,j=1

Hessgt (φ(s, βs, u)) (βsei, βsej)[β
i, βj ]s

⎤
⎦ ds

+

∫ s

0

⎛
⎝1

2
tr[tV 2

s F (s, ϕu
s , [ϕ

u]s)]

[
d∑

i=0

(ξsei)φ(s, βs, u)σ(s, βs)

]2
ds

⎞
⎠ = 0

ϕu
t �φ(t, βt, u)

(4.17)

is satisfied for Q⊗m-a.e. (ω, t) in Ω× [0,∞), here D and V are the horizontal and vertical
derivatives of [33] (see [45] for details). In particular, if Q ∼ P then Q is simultaneously
an ELMM for μ-a.e. {Xt(u)}u∈U if and only if equation (4.17) holds for Q ⊗m ⊗ μ-a.e.
(ω, t, u) ∈ Ω× [0,∞)× U . Here Hessgt is the Hessian on (M , gt) at time t.

Proof. See Appendix B.

Proposition 4.3.12 (Arbitrage-Free Characterization for the Forward-Rate Curve). Let
Q � P, φ be deterministic, and (F, φ, βt, gt) be the flow model of Example 4.3.4. The
measure Q is a LMM for each {B(t, T )}T∈[0,∞) for m-a.e. Maturity T ≥ 0 if and only if,
in local-coordinates,

∫ t

0

[
∂φ

∂t
(s, T, βs) +

d∑
i=0

(ξsei)φ(s, T, βs)μ(s, βs)

+
1

2

d∑
i,j=1

(
∂2φ

∂βiβj

(s, T, βs)−
d∑

k=1

Γk
ij(t)

∂φ

∂βk

(s, T, βs)

)
σi(s, βs)σj(s, βs)

+
1

2

d∑
i,j=1

∂φ

∂xi

(s, T, βs)
∂φ

∂xj

(s, T, βs)σi(s, βs)σj(s, βs)

]
ds = 0,

(4.18)

holds, Q⊗m⊗m-a.e. Γk
ij(t) are the Christoffel symbols of the Riemannian metric gt at

time t.
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If (M , gt) is an Euclidean space and we assume that μ(t, z) = μ(z) and σ(t, z) = σ(z)
are both smooth and deterministic, then Corollary 4.3.12 can be simplified to a PDE
and we recover the consistency result of [40]. To see this, first consider the time reversal
φ(t, τ(t), T ) where τ �→ T − t. Then since the integral equation (4.18) must hold for all
t ≤ T and all initial conditions of βt it follows that we may let t → 0. Doing so and
replacing t by x, we obtain the PDE found in [40, Proposition 9.1].

Proposition 4.3.13 (Arbitrage-Free Characterization of the Stochastic Local Volatility
Surface). Let (τ, x) be a pair of time-to maturity and log-strike, let Q ∼ P be an ELMM
for St, and consider the stochastic local volatility surface setting of Example 4.3.7. The
measure Q is an ELMM for the call surface C(t, τ, x) for every pair (τ, x) ∈ [0,∞)× [0,∞)
if and only if, in local-coordinates on (M , gt),

∫ t

0

Δs(τ, x)

[
∂ϕ

∂x
(s, τ, x, βs) +

d∑
i=0

(ξsei)ϕ(s, τ, x, βs)μ(s, βs)

+
1

2

d∑
i,j=1

(
∂2φ

∂βiβj

(s, τ, x, βs)−
d∑

k=1

Γk
ij(t)

∂φ

∂βk

(s, τ, x, βs)

)
σi(s, βs)σj(s, βs) ds

+
1

2
Γs(τ, x)

[
d∑

i=0

(ξsei)ϕ(s, τ, x, βs)σi(s, βs)

]2⎤⎦ ds = 0

(4.19)

holds P ⊗ m ⊗ m-a.e, where Δs(τ, x) and Γs(τ, x) are the Greeks of the modified stock
price S̃t defined by the SDE

dS̃t =
Kσ(t, τ, x)√

2
dWt.

The Greeks can be computed by

Δt(τ, x) �
1

τz(S̃t)
E

[(
S̃τ+t − ex

)
+
ητt | F

S̃
t

]

Γt(τ, x) �E

[
(S̃τ+t − ex)+ζ

x
s,τ | Ft

S
]
,

(4.20)

where the weight ζxs,T is defined by

ητt �

∫ τ+t

t

zs
σ(Ss)

dWs

ζt �
(ητ+t

0 − ηs0)
2

τ 2z2t
− V σ(St)

σ(St)

(ητ+t
0 − ηt0)

τzt
− 1

τσ2(St)
,

and zt is the first variation process of βt defined by

dzt = μ(t, zt)dt+ σ′(St)ztdWt.
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A consequence of equation (4.19) is that a necessary condition for a stochastic local
volatility surface to be arbitrage-free is for the option’s Gamma and Delta to evolve
according to the ratio ρt(τ, x) defined by

Δt(τ, x) = −ρt(τ, x)Γt(τ, x)

ρt(τ, x) �

[∑d

i=0 ϕ
i
tσ

i
s

]2
2ϕ̇t +

∑d

i=0 ϕ
i
tμt +

∑d

i,j=1

(
ϕi,j
t −∑d

k=1 Γ
k
ij(t)ϕ

k
t

)
σi
tσ

j
t

,
(4.21)

whenever the denominator of ρt(τ, x) is defined. Here μi
t, σ

i
t, ϕ

i
t, ϕ

i,j
t , and ϕ̇i

t abbreviate

μi(t, βt), σi(t, βt),
∂ϕ(t,τ,x,βt)

∂βi
, ∂2ϕ(t,τ,x,βt)

∂βiβj
, and ∂ϕ(t,τ,x,βt)

∂t
respectively. Note that Proposi-

tion 4.3.13 has different assumptions than the central result of [18]. Namely, the differ-
entiability requirements for α and β are weakened and the prescription on the dynamics
on ν is relaxed.

Example 4.3.14 (Uncertain Volatility Model). Let (F, φ, βt, gt) be the flow model of
Example 4.3.8, with d = 2. The maps φ and F are infinitely differentiable and constant
in time. Therefore, their derivatives may be readily computed to be

∂φ

∂t
=0

∇φ =
(
g1t , g

2
t

)
∇2φ =0

V

N∑
n=0

fn

(∫
R

Hn(x) · dx
)

=
N∑

n=0

fnHn(x) · dx

V
2

N∑
n=0

fn

(∫
R

Hn(x) · dx
)

=
N∑

n=0

fnHn(x)dx

D
2

N∑
n=0

fn

(∫
R

Hn(x) · dx
)

=0.

(4.22)

Substituting the quantities of equation (4.22) into equation (4.17) and noting that it is
sufficient for the integrand to be zero for all values of βc

t and of t, we conclude that an
uncertain stochastic volatility model is arbitrage-free if

gT
(
M(t, z) +

1

2
Γ(t, z) +

Σ(t, z)

2β(z)T g(x)

)
= 0 (4.23)

holds for m-a.e. (t, x, z) ∈ [0,∞)× R× {z ∈ C : Im(z) > 0} where g,M,Σ, and β are:

g(x) �(g1(x), g2(x));M(t, β) � (μ1(t, β1), μ2(t, β2)); Σ � (σ1(t, β1), σ2(t, β2)); β � (β1, β2)

βk � cos(‖
�z − i

z + i
‖)

�
(
1√
2
,
1√
2
) + sin(‖

�z − i

z + i
‖)

�z−i
z+i

‖ �z−i
z+i

‖
; k = 1, 2.

(4.24)
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Here Γk
ij are the Christoffel symbols of the hyperbolic upper-half plane and the expression

for β is discussed in Appendix 4.8.10. Rearranging and integrating both sides over R, we
obtain an HJM-type drift restriction∫

x∈R

gT (x)M(t, z)dx = −
∫
x∈R

gT (x)

(
Γ(t, z)β(z)T g(x) + Σ(t, z)

2β(z)T g(x)

)
dx. (4.25)

Theorem 4.3.11 characterizes arbitrage-free flows. Flow models which are not arbitrage-
free may be minimally deforming them into arbitrage-free flows using Theorem 4.3.11 as
well as a suitable measure of deviation from the initial flow model. This deviation is
introduced now.

4.4 Arbitrage-Free Regularization

Following the introduction of flow models, the formalization of arbitrage-free regulariza-
tion requires three components: a precise definition of what it means to deform a flow
model, a rigorous way to measure how far a deformation is from the undeformed reference
model, and a penalty detecting the existence of arbitrage opportunities permitted by the
deformed model. This section introduces these three components in order and uses them
to develop arbitrage-free regularization.

Definition 4.4.1 (Model Deviation) Let (F, ψ, βt, gt), (F, φ, βt, gt) be in Cμ (F, βt). Let
ΔD

t be a non-anticipative functional from Cμ (F, βt)× Cμ (F, βt) to R satisfying

(i) Non-negativity ΔD
t is non-negative in both arguments.

(ii) Identity of Indiscernibles ΔD
t ((F, ψ, βt, gt), (F, φ, βt, gt)) = 0 if ψ(t, βt, u) =

φ(t, βt, u) for P⊗m⊗ μ-a.e. (ω, t, u).

(iii) Convexity ΔD
t is convex in its first argument,

(iv) Data-Driven ΔD
t is FX

t -predictable,

where FX
t is the σ-algebra generated by Xt(u). The non-anticipative functional Dt �

ΔD
t (·, φ) is called a model deviation.

Lemma 4.4.2 (Effective Existence). Let g : R × R → [0,∞] be a Borel-measurable
function which is convex in its first argument and let μt be a FX

t -predictable cádlág
process taking values in the set of σ-finite Borel measures on U equivalent to μ. The
family of functionals

Dt(F, ψ, βt, gt) � E

[∫ t

0

∫
u∈U

g (ψ(s, βs, u), φ(s, βs, u))
dμs

dμ
μ(du)ds

]

defines a model deviation.
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Proof. By the monotonicity of integration (i) and (ii) hold. For every (ω, t, u) ∈ Ω ×
[0,∞)×U , the function g(·, φ(t, βt, u)(ω)) is strictly convex. Therefore, its integral is also
convex by a result of [84].

Definition 4.4.3 (Deformation of a Flow Model) Let (F, ψ, βt, gt), (F, φ, βt, gt) be in
Cμ (F, βt). The flow model (F, ψ, βt, gt) is said to be a deformation of (F, φ, βt, gt) if and
only if there exists an L2

μ(H
s(U)μ;Hs(U)μ)-valued stochastic process Φt such that

1. (Deformation) Dt((F, ψ, βt, gt), (F,Φt(φ), β)) = 0, for P⊗m⊗ μ-a.e. (ω, t, u) in
Ω× [0,∞)× U ,

2. (Predictability) The process Φt is Bt ⊗ Ft-predictable,

3. (Square Integrability) E
[∫

u∈U

∫∞
0

(Φt(φ)(t, βt, u))
2 dtμ(du)

]
< ∞

We say that Φt deforms (F, φ, βt, gt) and we will interchangeably denote the deforma-
tion (F, ψ, βt, gt) with Φt, and vice-versa depending on the context. The collection of all
deformations of (F, φ, βt, gt) will be denoted by D2

μ(F, φ, βt, gt).

We will denote the family of price processes corresponding to the flow model (F, ψ, βt, gt)
by XΦ

t . For every u in U , the member of XΦ
t indexed by u will be denoted by XΦ

t (u).

Definition 4.4.4 (Arbitrage Penalty)
Let
(
AFt : D

2
μ(F, φ, βt, gt) → [0,∞]

)
t∈[0,∞)

be a non-anticipative functional such that for

every t ∈ [0,∞] and every (F, φ, βt, gt) ∈ Cμ (F, βt),

AFt(F, φ, βt, gt)(t, βt, u) = 0; P⊗m⊗ μ− a.e.

if and only if the subset of parameters in U for which P is not an ELMM for Xt(u) has
μ-measure 0. AFt is called an arbitrage penalty for (F, φ, βt, gt).

Equation (4.17) characterizes the measures Q � P under which Xt(u) is a local-
martingale as the measures under which LHS of equation (4.17) is equal to 0. Denote the
LHS of equation (4.17) by Λ(F, φ, βt, gt). An arbitrage-penalty can be built by integrating
the square of Λ(F, φ, βt, gt) over all the relevant states.

Theorem 4.4.5 (Effective Existence). For any (F, ψ, βt, gt) in D2
μ(F, φ, βt, gt), the non-

anticipative functional AFt defined by

AFt(F, ψ, βt, gt) � E

[∫
u∈U

∫ t

0

[Λ(F, φ, βs, gs)(ω, s, u)]
2 dsμ(du)

]
(4.26)

is an arbitrage penalty on any subset A of D2
μ(F, φ, βt, gt).
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Proof. Since the map (F, ψ, βt, gt) �→ Λ(F, ψ, βt, gt) is non-anticipative, then AFt is a non-
anticipative functional. Let A ⊆ D2

μ(F, φ, βt, gt). For any (F, ψ, βt, gt) ∈ A the process
Λ(F, ψ, βt, gt)(ω, s, u) equals 0 P⊗m⊗ μ-a.e. if and only if the SPDE of Theorem 4.3.11
holds for P⊗m⊗ μ-a.e. (ω, t, u) ∈ Ω× [0,∞)×U , where φ is replaced with ψ. For μ-a.e.
u ∈ U the process Λ(F, ψ, βt, gt) is real-valued and therefore the process [Λ(F, ψ, βt, gt)]

2

takes values in [0,∞] and the monotonicity of integration implies that Definition 4.4.4
part (ii) holds.

Including all the possible deformations of a flow model may be computationally in-
tractable, thus limiting the problem defined in equation (4.1) to a more narrow subset of
D2

μ(F, φ, βt, gt) is advantageous. Within such a subset of D2
μ(F, φ, βt, gt), it may happen

that there is more than one optimizer of equation (4.1). All these optimizers exhibit equal
model deviation from the empirical factor model φ and none of them admits arbitrage
opportunities. Classes of deformations are introduced to address these two issues.

Lemma 4.4.6 (Equivalent). The relation Φt ∼ Ψt on elements of D2
μ(F, φ, βt, gt) defined

by
Dt(Φt) = Dt(Ψt) and AFt(Φt) = AFt(Ψt),

describes an equivalence relation on D2
μ(F, φ, βt, gt).

Proof. The equivalence property follows directly from the fact that equality is an equiv-
alence, together with the properties of logical conjunctions.

Let τ denote the topology on Cμ (F, βt) generated by the functionals
{
ΔD

t

}
together

with the sets {AF−1t (−∞, ε] : ε ∈ R}. The subspace topology of τ relative toD2
μ(F, φ, βt, gt)

makes D2
μ(F, φ, βt, gt) into a topological subspace of Cμ (F, βt). Since

D∼
AF

defines an equiv-

alence relation on D2
μ(F, φ, βt, gt), its set of equivalence classes inherits the quotient topol-

ogy of D2
μ(F, φ, βt, gt) relative to the equivalence relation

D∼
AF

. This topological space will

be denoted by D2
μ(F, φ, βt, gt).

Remark 4.4.7. By construction of τ , AFt is lower semi-continuous on D2
μ(F, φ, βt, gt).

Definition 4.4.8 (Class of Deformations) Let D2
μ(F, φ, βt, gt) denote, D

2
μ(F, φ, βt, gt)/ ∼

where ∼ is the equivalence relation defined in Lemma 4.4.6.A subset A of D2
μ(F, φ, βt, gt)

is said to be a class of deformations for (F, φ, βt, gt) if and only if

1. The equivalence class of the trivial deformation Ĩt defined by

Ĩt(ψ) �→ ψ, (4.27)

is an element of A ; ψ ∈ W s,2
μt

(U)
2. The subset {Φt ∈ A : AFt (Φt) = 0}is non-empty,
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3. For every Φ1,Φ2 ∈ A there exists some Φ1,2 ∈ A such that

Φ2
t (Φ

1
t (φ)) = Φ1,2

t (φ).

Remark 4.4.9. For simplicity of notation, unless unclear within its context, the equiva-

lence relation
D∼
AF

will be denoted simply by ∼. Likewise the trivial deformation Ĩt may be

denoted by the empirical factor model φ. Furthermore the equivalence relation ∼ ensures
that AFt and Dt are well-defined on D2

μ(F, φ, βt, gt).

Definition 4.4.10 (Arbitrage-Free Regularization Operator) Let Dt be a fixed model
divergence and AFt be a fixed an arbitrage penalty on D2

μ(F, φ, βt, gt). Let Dom(F, φ, βt, gt)
denote the collection of pairs (Ψt,A ), of a deformation Ψt in D2

μ(F, φ, βt, gt) and a subset
A of D2

μ(F, φ, βt, gt) satisfying

1. limλ �→0+ arginf
Φt∈A

Dt(Φt(Ψt(φ))) +
1
λ
AFt(Φt(Ψt(φ))) ∈ D2

μ(F, φ, βt, gt),

2. limλ �→0+ infΦt∈A Dt(Φt(ψ)) +
1
λ
AFt(Φt(ψ)) < ∞.

The map Aφ [·|·] : Dom(F, φ, βt, gt) → D2
μ(F, φ, βt, gt) is called the arbitrage-free regular-

ization operator with domain Dom(F, φ, βt, gt). We will call Aφ [Φt|A ] the arbitrage-free
regularization of (F,Φt(φ), βt) with respect to the class of deformations A and we will
denote by

XA

t (u) � F
(
Aφ [φt|A ] (t, βt, u), [Aφ [φ|A ] (�, β�, u)]t

)
,

the price of asset under the arbitrage-free regularized model.

Theorem 4.4.11 (Arbitrage-Free Regularization). Let Aφ [·|·] be an arbitrage-free regu-
larization operator. For any (Ψt,A ) in Dom(F, φ, βt, gt), X

A
t (u) is a P-local martingale.

Proof. Definition 4.4.8 (iii) implies that the minimizers of Aφ [Ψ|A ] and of Aφ [φ|A ] are
the same. Therefore, without loss of generality Φλ

t , will denote a minimizer of Dt(Φt(φ))+
1
λ
AFt(Φt(φ)) over A .

Suppose that limλ→0+ AFt

(
Φλ

t

) �= 0. Since the non-anticipative functional AFt is non-

negative, there must exist a real number c > 0 and a sequence {Φλn

t }n∈N with λn �→ 0+,
such that limn �→∞AFt

(
Φλn

t

)
= c.

The functional Dt is non-negative, therefore

∞ = lim
n �→∞

1

λn

c (4.28)

= lim
n �→∞

1

λn

AFt(Φ
λ
t ) (4.29)

≤ lim
n �→∞

Dt(Φ
λ
t ) +

1

λn

AFt(Φ
λ
t ), (4.30)
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contradicting Definition 4.4.10 (ii). Therefore limλ→0+ AFt

(
Φλ

t

)
= 0. Since AFt is non-

negative and lower semi-continuous in the topology of D2
μ(F, φ, βt, gt), it follows that

0 ≤ AFt

(
lim
λ→0+

Φλ
t

)
= lim

λ→0+
AFt

(
Φλ

t

)
= 0.

Since Aφ [Ψ|A] is defined to be limλ→0+ Φλ
t , Definition 4.4.4 implies thatXA

t (u) is a P-local
martingale.

This section introduced and justified the theoretical machinery needed to formalize the
arbitrage-free regularization problem. The next section discusses examples, applications,
and connections to other theories and practices in finance.

4.5 Extensions of Classical Risk-Neutral Pricing The-

ory

For a particular class of deformations, the Fundamental Theorem of Asset Pricing (FTAP)
of [26], can be expressed in terms of the existence and uniqueness of the arbitrage-free
regularization operator’s output. In this section, we show how the FTAP, and the minimal
martingale measure of [88] are both particular formulations of the arbitrage-free regular-
ization problem. This fact used to motivate arbitrage-free regularization over more general
classes of deformations than those corresponding to measure changes. Consequentially,
arbitrage-free regularization extends the reach of classical risk-neutral pricing theory and
techniques to flow models which permit arbitrage-opportunities, since they are minimally
deformable into arbitrage-free flows using arbitrage-free regularization.

In [88, Corollary 3 and Theorem 1] it was shown that for a sufficiently well-behaved
wealth process, there exists an equivalent local martingale measure (ELMM) to the real-
world measure P which is most similar to P. Dissimilarity between measures is quantified
in terms of the lack of information, which is quantified by entropy (or Kullback-Leibler
divergence divergence) defined by

H(Q‖P) �
{
EQ

[
log(dQ

dP
)
]

if Q � P

∞ else,
(4.31)

see [89] for a discussion between information and entropy. For this reason, the mini-
mizer of the relative entropy over the collection of ELMMs measure is called the minimal
martingale measure and will be denoted by P̂.

Consequentially, under the assumptions of [88, Theorem 7], the existence of the mini-
mal martingale measure is equivalent to the set of equivalent martingale measures being
non-empty. This property, as shown in [26], is equivalent to the NFLVR formulation of no-
arbitrage holding for Xt (see Appendix 4.8.1 or [26] for details on NFLVR. Alternatively,
see [44] for a discussion on various no-arbitrage conditions).
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We view this argument as a special usage of the arbitrage-free regularization framework
by considering the class of deformations AP defined by mapping φ to a factor model Φt(φ)
which can be represented as a measure change.

Definition 4.5.1 (Family of ELMMs) A family of measures Q � {Qu}u∈U such that for
μ-a.e. u in U , Xt(u) is a local-martingale under Qu, will be called a family of LMMs. If
moreover for μ-a.e. u in U , Qu is equivalent to P, we call Q a family of ELMMs to P.

Definition 4.5.2 (Equivalent Measure-Deformations) A deformation of φ is in AP if
and only if there exists a family Q � {Qu}u∈U of equivalent measure, to P whose cádlág

versions of their density process ZQu

t satisfy

ΦQ

t (φ)(t, ·, u) = φ(t, ZQu

t ·, u).

Lemma 4.5.3. The operator

A
H,ÂF
φ,μ [φ|·] �arginf

Φt∈AP

E

[∫ T

0

Ĥ (Φt) dt

]
+ ÂF

(
ΦQ

t

)
, (4.32)

where

Ĥ (Φt) �

{∫
u∈U

H(Qu‖P)2μ(du) if (∃ΦQ
t ∈ AP)Φ

Q
t (φ) = Φt

∞ else

ÂF
(
ΦQ

t

)
�

{
0 if

∫
u∈U

Λ (Φt(φ)(t, βt, u))μ(du) = 0

∞ else
,

(4.33)

defines an arbitrage-free regularization operator on the class of deformations AP.

Proof. The relative entropy H(·‖·) is a functional Bregman divergence, as shown in [46],
and therefore is convex in the first argument, non-negative and zero if and only if Q and
P are the same up to a set of measure 0. Since x2 is convex, then H(·‖·) is also convex.
Setting μt to be Lebesgue measure m, it follows that μt is deterministic and therefore
FX

t -predictable. Hence, Lemma 4.4.2 implies that Ĥ(Q‖P) is a model deviation.

Since Ĥ only takes on finite values for deformations which are identifiable with measure
changes we will only consider those for the following and subsequently identify Ĥ with
H. The non-anticipative functional ÂF t is non-negative and takes value 0 if and only if
Q is an ELMM, then it defines an arbitrage-penalty. The non-anticipative functional ÂFt

takes constant values 0 or ∞ therefore for any λ > 0, a minimizer of

E

[∫ T

0

H (Q‖P) dt
]
+

1

λ
ÂF
(
ZQ

t

)

and of

E

[∫ T

0

H (Q‖P) dt
]
+ ÂF

(
ZQ

t

)
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must be equivalent up to ∼ as defined in Lemma 4.4.6. Therefore

lim
λ↓0+

arginf
ΦQ

t ∈·

E

[∫ T

0

H (Q‖P) dt
]
+

1

λ
ÂF
(
ZQ

t

)

=arginf
ΦQ

t ∈·

E

[∫ T

0

H (Q‖P) dt
]
+ ÂF

(
ZQ

t

)

=A
H,ÂF
φ,μ [φ|·]

Hence AH,AFF
φ,μ [φ|·] defines an arbitrage-free regularization operator, with AP ∈ Dom(F, φ, βt, gt).

Theorem 4.5.4 (Arbitrage-Free Regularization Formulation of NFLVR). Let βt be a
continuous M -valued semi-martingale satisfying regularity conditions 4.8.11 as well as
4.8.12, and assume that μ, σ and F are deterministic functions. Then for μ-a.e. u in U ,
Xt(u) satisfies NFLVR if and only if the arbitrage-free regularization

A
H,AFF
φ,μ [φ|AP]

exists. Moreover, if AH,AFF
φ,μ [φ|AP] does exist, then for μ-a.e. u in U

1. P is an ELMM for every XAP

t (u),

2. A
H,AFF
φ,μ [φ|AP] = φ(t, Z P̂u

t βt, u) where for every Z P̂u

t is the density process of the
minimal martingale measure for Xt(u) relative to P.

Proof. The proof of Theorem 4.5.4 will be deferred to the appendix.

We take a moment to discuss it and examine one of its consequences. To reformulate
NFLVR for portfolios of a (finite) number of assets we refine the class of deformations AP

to a smaller subclass. A subset ĀP of AP defined by

ĀP �
{
ΦQ

t ∈ AP : (∃Q ∼ P)μ ({u ∈ U : Qu �= Q}) = 0
}
.

We denote the elements of ĀP by ΦQ
t , where Q is the μ-a.e. unique measure equating to

all the members of the family Q.

Corollary 4.5.5 (Arbitrage-Free Regularization Formulation of NFLVR). Consider a
sub-market M � {Xt(u1), . . . , Xt(uN)} of {Xt(u)}u∈U . Then NFLVR holds on M if and
only if

1. A
H,AFF
φ,μ [φ|AP] exists,

2. A
H,AFF
φ,μ [φ|AP] = A

H,AFF
φ,μ

[
φ
∣∣ĀP

]
,
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where μ is taken to be the measure defined on subsets B of U by

μ(B) � #(B ∩ {u1, . . . , uN}).

Proof. By Theorem 4.5.4 for each ui, Xt(ui) satisfies NFLVR if and only if there exists a
unique ΦQ

t in AP solving the arbitrage-free regularization problem defining AH,AFF
φ,μ [φ|AP].

The Fundamental Theorem of Asset Pricing implies that any portfolio on {Xt(ui)} satisfies
NFLVR (jointly) if and only if there exists an ELMM Q ∼ P simultaneously making every
{Xt(ui)} a local-martingale. [88, Theorem 7] implies that if such an ELMM exists then
there exists a unique minimal martingale measure P̂ minimizing H(·‖P), across equivalent
measures such that each Xt(ui) are simultaneously local-martingales. By definition of
A

μ
P , this implies that the unique element of AP solving the arbitrage-free regularization

problem defining A
H,AFF
φ,μ [φ|AP] is an element the element of A

μ
P of the form ΦQ

t ; Qui
=

P̂; i = 1, . . . , N.

In Remark 4.3.5, the FDR-HJM models of [9] were related to flow models representing
the price of a zero-coupon bond for which the additional assumptions that σ, μ, and φ are
deterministic and constant in time are made. In [39] it is shown that most FDR-HJM
models fail to be arbitrage-free. Results such as [39, 38, 18] required that there exist a
unique ELMM simultaneously making every {Xt(u)}u∈U into a local-martingale. However
as pointed out in Corollary 4.5.5, NFLVR is equivalent to this requirement holding for
a finite number of the members of the infinitely large market {Xt(u)}u∈U . On the other
hand, Theorem 4.5.4 showed that P can be viewed as an ELMM by considering the

arbitrage-free regularization φ(t, Z P̂u

t βt, T ) in place of φ(t, βt, T ). However, φ(t, Z
P̂u

t βt, T )

fails to be an FDR-HJM model, since the empirical factor model φ(t, Z P̂u

t β, T ) is itself
predictable and therefore is not deterministic. Therefore arbitrage-free regularization
of FDR-HJM models, viewed within the flow model framework, may be an appropriate
relaxation of the FDR-HJM formulation which freely allows for the existence of arbitrage-
free factor models for the FRC.

The Fundamental Theorem of Asset Pricing of [26], states that every contingent claim
can be replicated by a portfolio of market assets if and only if there exists a unique ELMM.
In particular, this implies that there exists a unique Q ∼ P under which (F, φ, βt, gt)
is arbitrage-free. In the language of arbitrage-free regularization, there must exist a
unique ΦQ

t ∈ AP such that (F, φ, βt, gt) is a local-martingale. However, this implies that
market completeness is equivalent to the independence of the choice of model deviation
or arbitrage-penalty when defining an arbitrage-free regularization operator on AP.

Theorem 4.5.6 (Arbitrage-Free Regularization Formulation of Market Completeness).
Let (F, φ, βt, gt) be a flow model. For μ-a.e. u in U , the market generated by Xt(u) is com-
plete if and only if for every pair of arbitrage-free regularization operators AD,AF

φ,μ [φ|AP]

and A
D̃,ÃF
φ,μ [φ|AP],

A
D,AF
φ,μ [φ|AP]

D∼
AF

A
D̃,ÃF
φ,μ [φ|AP] .
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Proof. If for μ-a.e. u in U the market generated by Xt(u) is complete, then the family
minimal martingale measures Q � {P̂u}u∈U for {Xt(u)}u∈U is the unique family of ELMMs
for {Xt(u)}u∈U . Equivalently, there exists a unique ΦQ

t ∈ AP such that XAP

t (u) is a local-

martingale. Assume that there exists and AF penalty and a deformation ΦQ̃
t of (F, φ, βt, gt)

in AP minimizing Aφ [φ|AP] such that for μ-a.e. u in U Qu are not the minimal-martingale
measures. It follows that

lim
λ �→0+

inf
ΦQ̃

t ∈A

Dt(Φ
Q̃

t ) +
1

λ
AF t(Φt) = lim

λ �→0+
Dt(Φ

Q̂
t ) +

1

λ
AF t(Φ

Q̂
t ) ≥ lim

λ �→0+

1

λ
AF t(Φ

Q̂
t ).

Since AF t takes finite values if and only if {XAP

t (u)}u∈U are local-martingales for μ-a.e
u in U , which by market completeness only happened if for μ-a.e. u in U Q̃u is P̂u.

Therefore the LHS of equation (4.5.2) must be infinite for ΦQ̂
t . This is a contradiction

of the finiteness condition Definition 4.4.10 (ii). Therefore there exists a μ-a.e. unique
minimizer of every arbitrage-free regularization with respect to AP in a complete market.

Conversely, assume that every arbitrage-free regularization operator on AP has a
unique value (F, ψ, βt, gt), up to the equivalence relation ∼, of Lemma 4.4.6. In the
first case that for μ-a.e. u in U , {Xt(u)}u∈U is a P-local martingale, then, by Definition
4.4.4 (ii), it follows that for any arbitrage-penalty AFt,

AFt(Ĩ) = 0. (4.34)

Similarly, by Definition 4.4.1 (ii), it follows that for any model deviation Dt,

Dt(Ĩ) = 0. (4.35)

Since any model deviation and any arbitrage-penalty are non-negative, then Equations
(4.34) and Equations (4.35) imply that for every model deviation Dt, every arbitrage-
penalty AFt, every t ≥ 0 and every λ > 0

0 = Dt(Ĩ) +
1

λ
AFt(Ĩ) ≤ arginf

ΦQ
t ∈AP

Dt(Φ
Q
t ) +

1

λ
AFt(Φ

Q
t ). (4.36)

It follows that for every Dt and AFt, Xt(u) must be in the same equivalence class as
Aφ [φ|AP].

For the case where P itself is not an ELMM, assume that the market is not complete.
Then, there exist families of ELMMs for which the set{

u ∈ U : Qu �= Q̃u

}
has positive μ-measure. For a family of ELMMs Q � {Qu}u∈U , define the non-anticipative
functional

DQ

t (Φt) �

⎧⎪⎨
⎪⎩
0 if Φt = Ĩ ,∫
u∈U

H(Q̃u‖Qu)
2μ(du) if (∃ΦQ̃

t ∈ AP)Φ
Q̃
t (φ) = Φt and Q̃u �= P, μ− a.e,

∞ else,
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where we have abbreviated {Q̃u}u∈U by Q̃.

The non-anticipative functionalDQ
t is non-negative, convex and has value 0 if (F, ψ, βt, gt)

and (F, φ, βt, gt) define the same price processes P⊗m⊗μ-a.e. Hence, DQ
t defines a model

deviation. Moreover, any arbitrage-penalty AFt such that Definition 4.4.10 (ii) holds,

A
Q,AF
φ,μ [Φ|A ] � lim

λ �→0+
arginf
Φt∈A

DQ

t (Φt) +
1

λ
AFt(Φt),

defines an arbitrage-free regularization operator. Moreover, by construction the only
unique minimizers of DQ

t are the deformations Ĩt and ΦQ
t . Since Q is a family of ELMMs

and P is not, it follows that, for any arbitrage-penalty AFt

AFt

(
Ĩt

)
> 0; AFt

(
ΦQ

t

)
= 0. (4.37)

Therefore,

lim
λ �→0+

DQ

t

(
Ĩt

)
+

1

λ
AFt

(
Ĩt

)
≥ lim

λ �→0+

1

λ
AFt

(
Ĩt

)
= ∞

lim
λ �→0+

DQ̃

t

(
ΦQ̃

t

)
+

1

λ
AFt(Φ

Q̃

t ) = DQ̃

t

(
ΦQ̃

t

)
> 0

lim
λ �→0+

DQ

t

(
ΦQ

t

)
+

1

λ
AFt

(
ΦQ

t

)
= 0,

where Q̃ � {Q̃u}u∈U is any family of ELMMs for which the set

{u ∈ U : Q̃u �= Qu}
has positive μ-measure. Hence, ΦQ

t is the unique minimizer of AQ,AF
φ,μ [·|A ]. Therefore for

distinct families of ELMMs Q and Q̃,

(
F,ΦQ

t (φ) , βt, gt
) DQ

t�∼
AFt

(
F,ΦQ̃

t (φ) , βt, gt

)
,

contradicting the assumption that every arbitrage-free regularization operator of (F, φ, βt, gt)
has a unique value up to ∼ on AP. Therefore, there must exist a unique family of ELMMs.
Hence, for μ-a.e. u in U the market generated by Xt(u) must be complete by the Funda-
mental Theorem of Asset Pricing part 2.

Theorem 4.5.4 reformulated the FTAP in terms of the existence and uniqueness of a
particular arbitrage-free regularization problem which could be understood as deforma-
tions by measure change, for equivalent measures to P. This intuition of the FTAP as
particular types of deformations of a model may be extended to other types of deforma-
tions under which the flow model becomes arbitrage-free. This is explored in the next
section.

The Fundamental Theorem of Asset Pricing gives mathematical meaning to risk-
neutral pricing through conditions for the existence and uniqueness of the risk-neutral
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value of a contingent claim with payoff function f , on an asset whose price process fol-
lows Xt defined by

vT � EP̂ [f(XT ) | Ft] . (4.38)

When Xt can be represented by a flow model (F, φ, βt, gt), Theorems 4.5.5 and 4.5.6 state
that, if XΦ

t (u) satisfies NFLVR, then the risk-neutral pricing formula may be expressed
as

vT (u) = EP̂ [f (XT (u)) | Ft] =EP

[
f
(
XAP

T (u)
)
| Ft

]
, (4.39)

with this formulation being unique if and only if the market is complete. Equation
(4.39) implies that pricing f(XT (u)) under the minimal martingale measure is equivalent

to pricing the arbitrage-free regularization f
(
XAP

T (u)
)
directly under P, by minimally

deforming the factor model φ according to AP instead of requiring a measure change from
P to P̂.

More generally, Theorem 4.4.11 implies that for any class of deformations A , P is
always an ELMM for XA

t (u). Therefore the right-hand side of equation (4.39) is always
the risk-neutral price for the model XA

t (u). Therefore the right-hand side of equation
(4.39) provides an alternative to the classical risk-neutral pricing formula when the change
of measure from P to P̂ is intractable, or does not exist. Moreover, there are other
classes of deformations for which AP may provide better forecasts than pricing using
XAP

t (u). Hence, pricing derivatives on Xt (u) is equivalent to the price of derivatives on
the minimally deformed model XA

t (u), is a consistent extension of the classical change-
of-measure approach to risk-neutral pricing.

Definition 4.5.7 (Proximal Risk-Neutral Pricing Formula) Let (F, φ, βt, gt) be a flow
model, A be a class of deformations in Dom(F, φ, βt, gt), and Aφ [·|·] an arbitrage-free
regularization operator. Let f be a Borel-measurable function representing the payoff of a
contingent claim at time T on the underlying asset whose price follows Xt (u). If

1. (Proximal No-Arbitrage) the arbitrage-free regularization Aφ [φ|A ] exists and

2. (Proximal Market Completeness) the process defined by the arbitrage-free reg-
ularization is independent of choice of model deviation and arbitrage-penalty up to
∼,

then the proximal risk-neutral price of the contingent claim f(XT (u)) is defined to be

vt (u|A ) � EP

[
f
(
XA

T (u)
) | Ft

]
. (4.40)

To motivate equation (4.40), a particular arbitrage-free regularization problem both
admitting a closed form solution and not requiring the existence of an ELMM will now
be developed. This arbitrage-free regularization problem’s closed form expression will be
the central component of efficient arbitrage-free estimation procedures introduced in the
final section of this chapter.
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Moving Beyond Measure Changes with Spread Deformations

When the dynamics factors βt are assumed to follow an OU-process, a correction to this
drawback is proposed in [21] by adding a deterministic spread C(t, T ) over the Nelson-
Siegel curve φNS(t, βt, T ), the resulting model is called the Arbitrage-Free Nelson-Siegel
model (AFNS). The addition of a spread over the factor model is a type of deformation
which we illustrate in more generality here.

Definition 4.5.8 (Spread Deformations) The set of maps{
φ �→ φ+ C(t, u) : u �→ C(t, u) ∈ C1(U ;U) and t �→ C(t, u) is F

β
t -predictable

}
,

under the equivalence relation defined in Lemma 4.4.6, is called the class of spread defor-
mations. It will be denoted by A+.

Lemma 4.5.9 (Least-Squares Arbitrage-Free Regularization). The non-anticipative func-
tional

D2
t � E

[∫ t

0

∫
u∈U

(ψ(t, βt, u)− φ(t, βt, u))
dμt

dm
μ(du)ds

]
,

defines a model deviation. In particular, if AFt is as in Theorem 4.4.5 and ΛB represents
the left-hand side equation (4.18), then

A
2,B
φ,μ [Φ|A ] � lim

λ �→0+
inf

Φt∈A
D2

t (Φt(ψ)) +
1

λ
AFB

t (Φt(ψ))

AFB
t (F, ψ, βt, gt) �E

[∫
u∈U

∫ t

0

{ΛB(F, ψ, βs, gs)}2 dsμ(du)
]

(4.41)

defines an arbitrage-free regularization operator.

Proof. Since x2 is strictly convex, Lemma 4.4.2 implies thatD2
t must be a model deviation.

Corollary 4.3.12 shows that ΛB is zero if and only if Λ is zero when (F, φ, βt, gt) is the flow
model of Example 4.3.4. Therefore, by Theorem 4.3.11 and Theorem 4.4.5, A2,B

φ,μ [Φ|A ]
defines an arbitrage-free regularization operator for the flow model of Example 4.8.6.

Theorem 4.5.10. Let (F, φ, βt, gt) be a flow model such that

1. For every t ≥ 0, DtF = 0,

2. V F (t, ϕu
s , [ϕ

u
s ]) �= 0, m⊗ P-a.e.

3. φ(t, β, u) =
∑N

i=1 β
iϕi(u) where {ϕi}Ni=1 is a linearly-independent set in W s(U).
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The class of spread deformations A+ is a class of deformation of the flow (F, φ, βt, gt).
Moreover, if Xt(u) is not arbitrage free, then the arbitrage-free regularization A

2,B
φ,μ [φ|A+]

is given by

A
2,B
φ,μ [Φ|A ] =φ(t, βt, u) + Ĉ(t, u)

Ĉ(t, u) =−
∫ t

0

d∑
i=0

(ξsei)φ(s, β, u)dμ(s, β, u)

+
1

2

d∑
i,j=1

Hessgt (φ(s, u)) (βei, βej)d[β
i, βj]sds‖β=βs

.

(4.42)

Proof. Since C(t, u) = 0 is both predictable and smooth, then the trivial deformation is
in A+. Therefore, Definition 4.4.8 part (i) holds.

If Φt(φ) �→ ϕ(t, u, βϕ
t ) + Cg(t, u) and ht(φ) �→ ϕ(t, u, βϕ

t ) + Ch(t, u) then the map

gt ◦ ht(φ) �→ ϕ(t, u, βϕ
t ) + (Cg(t, u) + Ch(t, u)) , (4.43)

is in A+ and Definition 4.4.8 part (iii) holds.

If Xt(u) is arbitrage-free, then (ii) of Definition 4.4.8 holds. Suppose that Xt(u) fails
to be arbitrage-free. Since φ is of the form φ(t, β, u) =

∑N

i=1 β
iϕi(u), then⎛

⎝1

2
tr[tV 2

s F (s, ϕu
s , [ϕ

u]s)]

[
d∑

i=0

(ξsei)φ(s, βs, u)dσ(s, βs, u)

]2
ds

⎞
⎠ = 0. (4.44)

Plugging equation (4.44) into equation (4.17) and using assumption (i) − (ii) it follows
that for any gt ∈ A+, Φt(φ) = φ+ C(t, u) for any fixed β ∈ M , equation (4.17) can only
hold if

−∂C(t, u)

∂t
= −∂Φt(φ)(t, β, u)

∂t
=

[
d∑

i=0

(ξsei)φ(s, βs, u)dμ(s, βs, u)

+
1

2

d∑
i,j=1

Hessgt (φ(s, u)) (βsei, βsej)d[β
i, βj ]s

⎤
⎦ .

(4.45)

Fixing β in equation (4.45) and integrating with respect to t, implies that C(t, u) must
be of the form described in equation (4.42). Therefore Definition 4.4.8 part (ii) holds.

Moreover, since Φt(φ) � φ+ Ĉ(t, u) is the only element of A+ on which the arbitrage
penalty L is not infinite, then it follows that it must solve the minimization problem
defining the arbitrage-free regularization operator A2,B

φ,μ [Φ|A ].

The existence of the solution to the arbitrage-free regularization problem of Proposi-
tion 4.5.10 does not depend on the existence of an ELMM to P for Xt (u). Therefore, like



CHAPTER 4. ARBITRAGE-FREE REGULARIZATION 82

the NS model for the price of a bond, Xt(u) is permitted to admit arbitrage-opportunities.

However, unlike the AFNS correction to the NS model, the construction of X
A+

t (u) does
not require (F, φ, βt, gt) to represent the price of a bond or for the stochastic factors βt to
follow an OU process. Instead it works for any price process representable by a sufficiently
time-homogeneous flow model.

Example 4.5.11 (Extended Arbitrage-Free Nelson-Siegel Models). The extended Nelson-
Siegel models satisfy the assumptions of Proposition 4.5.10. Therefore the arbitrage-free
regularization problem of Proposition 4.5.10 applied to the Extended Nelson-Siegel admit
the following closed-form solution

A
2,B
φ,μ [φ|A+] =

N∑
i=1

βi
tϕi(T ) +

∫ t

0

[
d∑

i=1

φi(T )μ(s, T ) +
1

2

d∑
i,j=1

φi(T )φj(T )σi(s, T )σj(s, T )

]
ds

φ1 =1

φ2 =
[1− exp (−T/τ)]

T/τ

φ3 =

(
[1− exp (−T/τ)]

T/τ
− exp (−T/τ)

)

φi =

[
1− exp

(−T ki/τ
)]

T ki/τ
; i > 3, ki > 0.

(4.46)
Equation (4.46) is the FRC formulation of the AFNS model, when d = 3 and βt follows
an OU-process.

In [38] it is shown that the Nelson-Siegel model of equation (4.5) admits arbitrage
opportunities and therefore the Fundamental Theorem implies that there does not exist
and ELMM to P making the Nelson-Siegel model arbitrage-free. In contrast, Lemma 4.5.9
showed that deforming the Nelson-Siegel model with respect to A+ gave a arbitrage-free
bond model. Therefore, the following conclusion is taken.

Theorem 4.5.12 (Beyond Measure Changes). There exist flow models (F, φ, βt, gt) for
which there does not exist an ELMM to P making Xt(u) a local-martingale, but there
exists a class of deformations A for which Aφ [φ|A ] exists and is a P-local-martingale.

In summary, arbitrage-free regularization with respect to AP was consistent with the
Fundamental Theorem of Asset Pricing, as well as the risk-neutral pricing formula. More-
over, arbitrage-free regularization with respect to A+ provided a closed-form expression
extending the classical risk-neutral pricing formula to flow models which may admit ar-
bitrage. This provided an alternative procedure for constructing the AFNS correction to
the NS model. Moreover, this procedure gave a closed-form arbitrage-free correction to
solve a broad scope of models across many asset classes.
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4.6 Empirical Performance

This section investigates the empirical performance of arbitrage-free regularization. It is
observed that arbitrage-free regularization extracts subtle information not detectable by
classical learning algorithms. Implementations are in the forward-rate curve setting.

The incorporation of no-arbitrage information into our estimates is desirable not only
from a theoretical point-of-view, but also from a forecasting and curve-fitting perspective
since they assimilate more information about the market. A meta-algorithm which takes
an estimation procedure for the factors at time ti+1 given the current time ti and returns
an arbitrage-free estimate of the FRC at time ti+1 is introduced, implemented, and tested.
It relies on a class of deformations, denoted by A +, which provide more flexibility than
the class of spread deformation. The class of deformations A + is defined, on the flow
model of Example 4.5.11 by

φ(t, β, u) �
d∑

i=1

βiϕi(T ) �
d∑

i=1

(
βi + αi

t

)
ϕi(T ) + C(t, T ), (4.47)

where αt is Ft-predictable. A key remark in Equation (4.47) is that the optimal spread
Ĉ(t, T ) of Proposition 4.5.10 is only a function of φ, μ, σ and the state of the dynamic
factors βt at time t. To emphasis this, for a given state of βt, we will denote Ĉ(t, T, βT )
by Ĉ(t, T ; βt).

Meta-Algorithm 4.6.1 (Arbitrage-Free Estimation).



CHAPTER 4. ARBITRAGE-FREE REGULARIZATION 84

Input: Bond data B (ti, Tj)i,j ; an estimation algorithm A for βt; a strictly-convex

penalty P in Rd

Output: An arbitrage-free FRC at time ti+1

for every past time ti do

1. (Stochastic Factor Estimation:)

(a) Empirical Estimation Step: Estimate βti+1
according to algorithm A.

(b) (Spread Optimization:) Find αti+1
(γ) ∈ RN by minimizing (resp.

heuristically reduce) the loss function:∑
j=1

[
C(t, Tj, βti+1

+ αti+1
(γ))
]2

+ γP (αt(γ))
2 . (4.48)

Minimize (resp. heuristically improve) α(γ) via cross-validation, to obtain
α̂ti+1

,

2. (Arbitrage-Free Estimate:) Predict the curve at time ti+1 to be

N∑
i=1

(
βi
ti+1

+ α̂i
ti+1

)
ϕi(T ) + Ĉ(t, T, βti+1

+ αti+1
).

Choose d with sequential-validation.

Every perturbation βt � βt + αt impacts not only the loadings, but the optimal
spread by perturbing it from Ĉ(t, T ; βt) into Ĉ(t, T ; βt + αt). This allows a method for
computing (resp. heuristically approximating to an arbitrage-free solution) A2,B

φ,μ [φ|A +];
thus providing an arbitrage-free estimate of the FRC once βt is estimated according to
some estimation scheme. This procedure is summarized in Meta-Algorithm 4.6.1.

Remark 4.6.2. Equation (4.48) balances the prediction quality with arbitrage-free cor-
rection by parsimoniously estimating dynamical factors which simultaneously predict well
and decrease the magnitude of the optimal spread C(t, T ) over the curve φ.

For this empirical study, we consider successive 14054 business days of US interest-
rate data, from January 1st, 1970 until April 12th, 2018. The observed maturities are at
1, 2, 3, 5, 7, 10, 20, and 30 years.

Estimation: Bi-Monthly

We investigate the proportion of monthly in-sample estimates for which the empirical
factor model has a larger sum-of-squared errors than A

2,B
φ,μ [φ|A +], in greater detail. The

assumption that the instances when one of these models outperforms the other are i.i.d.
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binomial random variables with proportion p is justified by the Wald-Wolfowitz, whose
results are reported in Table 4.2 (see [101] for more details on this non-parametric test).

1 2 3 5 7 10 20 30
Runs 8 6 7 16 4 12 6 8
p-value < e−5 < e−5 < e−5 < e−5 < e−5 < e−5 < e−5 < e−5

Table 4.2: Wald-Wolfowitz Run Test Summary.

For this empirical investigation, we implement the Nelson-Siegel factor model of Ex-
ample (4.46), with N = 2. The convex penalty function P in equation (4.48) is taken
to be the �2 penalty on the vector αt. The estimation step (1a), this time, is initialized
using a moving window regression on two-month moving windows. The dynamics of βt

are assumed to follow an uncorrelated OU process

βt = β0 +

∫ t

0

A(K − βs)ds+

∫ t

0

ΣdWs,

where Σ is a diagonal matrix. A,K,Σ are estimated using maximum likelihood estima-
tion. We find that, unlike the previous daily estimation procedure, the bi-monthly moving
windows yields a significant increase in the proportion of times the arbitrage-free regu-
larized model outperforms the Empirical factor model. We denote the sample proportion
by p̂.

Maturity p̂ St. Dev. of Estimate 99.9% Lower 99.9% Upper

1 Year 0.826 0.061 0.763 0.884
2 Year 0.829 0.069 0.757 0.894
3 Year 0.905 0.047 0.855 0.948
5 Year 0.956 0.033 0.920 0.984
7 Year 0.968 0.030 0.934 0.992
10 Year 0.987 0.018 0.967 1.000
20 Year 0.982 0.031 0.947 1.000
30 Year 0.918 0.053 0.860 0.965

Table 4.3: Estimated proportion when has lower squared error than φ does.

Table 4.3 presents 99.9% confidence intervals for the true probability that Aφ [φ|A +]
outperforms φ. We make the assumption that this proportion follows a binomial distribu-
tion. Estimates are computed using Wilson’s score interval which provides more accurate
confidence intervals than the normal approximation where the population is binomial (see
[102] for details on Wilson’s score interval). The findings of Table 4.3 reinforce the fact
that the arbitrage-free regularized model nearly always outperforms its empirical coun-
terpart. However, a closer look a the statistics of Table 4.3 imply that there are indeed
moments where the empirical factor model outperforms its arbitrage-free regularization.
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Prediction: Daily

The one-day ahead forecasting performance of various arbitrage-free regularization oper-
ators will be compared against each other and benchmarked against their empirical factor
model counterpart. For this implementation. We assume that φ is the extended Nelson-
Siegel model and that βt follows a multivariate OU process, as in Example 4.46. The
stochastic factor estimation of Algorithm 4.6.1 step (1a), is performed using a Kalman
smoother. The Kalman smoother is initialized using the following sequence of algorithms.
First the dynamics factors βt are estimated using regression. The regression estimates are
used to initialize the maximum likelihood method. The maximum likelihood estimates
are then used to initialize the Kalman filter. Finally the Kalman smoother is used to
estimate the one-day-ahead parameters, it is initialized with the estimates of the Kalman
smoother. Step (1b) is performed using heuristic methods to estimate α.

The parameters 0.5 ≤ γ ≤ 1.5 and 0 ≤ N ≤ 20 are chosen through cross-validation
on a grid of possible values; the initial bounds for the grid where chosen empirically. The
optimal values for γ and d were found to be 0.7 and 10, respectively.

Table 4.4 shows that for nearly every maturity, the absolute mean error and standard
deviation of the errors is lower for the A2,B

φ,μ [φ|A +] model than they are for the Empirical

and the extended AFNS model A2,B
φ,μ [φ|A+] 2 models. In general, A2,B

φ,μ [φ|A+] performs

poorer than A
2,B
φ,μ [φ|A +] and φ. This is because for every value of βt, there exists exactly

one spread C(t, T, βt) correcting for the existence of arbitrage in the bond price. This
makes A

2,B
φ,μ [φ|A+] inflexible, not allowing it to simultaneously describe the data and

meet the no-arbitrage requirement. On the other hand, A2,B
φ,μ [φ|A +] regularized does not

suffer from this limitation. The performance is significantly better than the alternatives
for all maturities below 10 years and competitively better for those on and above 10 years.
The empirical factor model does exhibit a lower variance for long-end maturities.
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1 Year 2 Year

Error Statistics A + A+ Empirical A + A+ Empirical
Mean -0.704 0.00000 -0.704 0.141 0.845 -0.704
St.dev 0.073 0.006 0.073 0.063 0.028 0.074

95% Upr -0.560 0.013 -0.560 0.265 0.900 -0.559
95% Lwr -0.847 -0.013 -0.847 0.017 0.790 -0.848
99% Upr -0.515 0.017 -0.515 0.303 0.917 -0.514
99% Lwr -0.892 -0.017 -0.892 -0.022 0.773 -0.893

AIC 11, 059.310 -37,283.540 11, 059.310 -4,602.155 12, 888.850 11, 058.020

3 Year 4 Year

Error Statistics A + A+ Empirical A + A+ Empirical
Mean 0.449 1.152 -0.704 0.449 1.152 -0.704
St.dev 0.051 0.050 0.072 0.051 0.050 0.072

95% Upr 0.549 1.251 0.562 0.549 1.251 -0.562
95% Lwr 0.348 1.054 -0.846 0.348 1.054 -0.846
99% Upr 0.581 1.281 -0.517 0.581 1.282 -0.517
99% Lwr 0.317 1.023 -0.891 0.317 1.023 -0.891

AIC 6,452.629 16, 117.440 11, 081.030 6,439.378 16, 089.490 11, 063.310

5 Year 7 Year

Error Statistics A + A+ Empirical A + A+ Empirical
Mean 0.618 1.321 -0.702 0.643 1.347 -0.707
St.dev 0.034 0.079 0.073 0.034 0.100 0.073

95% Upr 0.684 1.476 -0.559 0.710 1.543 -0.563
95% Lwr 0.552 1.167 -0.846 0.577 1.152 -0.850
99% Upr 0.704 1.524 -0.514 0.731 1.604 -0.518
99% Lwr 0.531 1.118 -0.891 0.556 1.090 -0.895

AIC 9,674.864 17, 505.120 11, 039.740 10,096.060 17, 714.500 11, 101.500

10 Year 20 Year

Error Statistics A + A+ Empirical A + A+ Empirical
Sample Mean 0.666 1.370 -0.699 0.673 1.377 -0.711

St.dev 0.048 0.118 0.077 0.083 0.154 0.071

95% Upr 0.759 1.601 -0.549 0.836 1.679 -0.572
95% Lwr 0.572 1.138 -0.850 0.511 1.075 -0.850
99% Upr 0.789 1.674 -0.502 0.887 1.774 -0.529
99% Lwr 0.543 1.065 -0.897 0.460 0.980 -0.894

AIC 10,459.950 17, 894.160 11, 002.570 10,628.570 17, 977.620 11, 163.980

30 Years

Error Statistics A + A+ Empirical
Sample Mean 0.692 1.396 -0.699

St.dev 0.085 0.158 0.075

95% Upper 0.860 1.706 -0.551
95% Lower 0.525 1.087 -0.846
99% Upper 0.913 1.803 -0.505
99% Lower 0.472 0.989 -0.893

AIC 10,915.270 18, 119.850 10, 989.520

Table 4.4: One day ahead FRC prediction errors.

In Table 4.4, A + denotes the model A2,B
φ,μ [φ|A +], A+ denotes the model A2,B

φ,μ [φ|A+],
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and Empirical denotes φ. Recall that A
2,B
φ,μ [φ|A+] reduces to the AFNS model when

N = 2. Table 4.4 shows that A2,B
φ,μ [φ|A +] contains more information about the data, in

the sense of information theory than its naive or extended AFNS counterparts with the
exception of the 1 year maturity bond, as is reflected in the lower AIC score. Expressed
differently, the low AIC of A2,B

φ,μ [φ|A +] implies that it is the most parsimonious amongst

the naive model and extended AFNS model A2,B
φ,μ [φ|A+].

In [38] it was shown that a large class of factor models for the FRC admit arbitrage
and contain the extended Nelson-Siegel models as a particular case. Therefore, there are
instances in which a model admitting arbitrage better explains the data than the closest
arbitrage-free model to it.

In the frame of behavioral finance, if market frictions are overlooked, this is empirical
evidence that there are instances where the market is acting more irrational than rational
by admitting potential mis-pricing opportunities. These behavioral anomalies can be
quantified by first investigating when there is a spread between the empirical factor model
and its arbitrage-free regularization, and secondly asking if that spread is statistically
significant in terms of the data.

Definition 4.6.3 (Irrational Overpricing (resp. Underpricing)) Let T be a fixed maturity
time and consider that either

1. Aφ [φ|A ] (t, T, βt) > φ(t, T, βt),

2. φ(t, T, βt) > Aφ [φ|A ] (t, T, βt),

where I(·) is the indicator random variable.

In the case where (ia) holds, we say that T is irrationally under-priced. Similarly, if
(ib) holds, then we say that T is irrationally over-priced. If either (ia) and (ib) do not
hold, then we say that the market is in a rational state.

Since βt is not directly observable, the irrational overpricing (resp. underpricing) will
be modeled using the following observable process.

Definition 4.6.4 (Potential Overpricing (resp. Underpricing)) Let β̂t be the parameters
of the factor model φ(t, T, βt) for the FRC estimated using the Kalman smoother. Let
t0 < · · · < tM be a sequence of times on which the vector of forward-rates {f(t, Tj)}Nt

j=1

was observed for a zero-coupon Bond with price B(t�, T�) were observed. Here Nt ≥ 1.
Fix the thresholds ε, δ > 0. Let T be a fixed maturity time and consider that

1. Potentially there is a price inconsistent with the no-arbitrage pricing theory, in the
sense that either

(a) Aφ [φ|A ] (t, T, β̂t) > φ(t, T, β̂t) + ε,

(b) φ(t, T, β̂t) > Aφ [φ|A ] (t, T, β̂t) + ε.
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2. The tail mass of the empirical error distribution for the arbitrage-free regularized
model is less than that of the empirical factor model. That is

(1 + δ) <

1
M

∑M

i=1

∑Nti

j=1 I
([

errN(ti, Tj)− errN
]2

>
[
errN(ti, T )− errN

]2)
1
M

∑M

i=1

∑Nti

j=1 I
([

errA(ti, Tj)− errA
]2

>
[
errA(ti, T )− errA

]2)
errA(t, T ) �Aφ

[
φ
∣∣A +

]
(t, βt, T )− f(t, T ); errN(t, T ) � φ(t, βt, T )− f(t, T ),

errA �
1

M

M∑
i=1

Nti∑
j=1

errA(ti, Tj)

Nti

; errN �
1

M

M∑
i=1

Nti∑
j=1

errN(ti, Tj)

Nti

,

where I(·) is the indicator random variable.

In the case where (ia) and (ii) hold, we say that T is potentially under-priced. Simi-
larly, if (ib) and (ii) hold, then we say that T is potentially over-priced. If either (ii) or
(i) fails to hold, we say that the market is in a potentially rational state.

As expected, when estimating the empirical factor model and its arbitrage-free regu-
larization on a daily basis, the arbitrage-free regularization performs better, but its error
distribution has a greater sample average than when these models are estimated on a bi-
monthly basis. This is consistent with economic theory, which stipulates that mispricings
exist, but are corrected very quickly by the market due to market efficiency.

The proportion of times that that a point of the FRC is either potentially over-priced,
or potentially under-priced varies it may be large or small depending on the chosen thresh-
old. We denote this proportion by π̂ε

δ. Its estimates are illustrated by the following
Table 4.5, ε and δ are in basis points.
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Thresholds: ε = 0.1, δ = 0

Maturity π̂ε
δ St. Dev. of Estimate Lower-Bound Upper-Bound

US1Y 0.429 0.080 0.350 0.509
US2Y 0.458 0.088 0.370 0.546
US3Y 0.484 0.080 0.404 0.565
US5Y 0.500 0.080 0.420 0.580
US7Y 0.404 0.081 0.323 0.486

US10Y 0.547 0.080 0.467 0.627
US20Y 0.303 0.090 0.216 0.395
US30Y 0.365 0.090 0.277 0.456

Thresholds: ε = 1, δ = 0.1

Maturity π̂ε
δ St. Dev. of Estimate Lower-Bound Upper-Bound

US1Y 0.225 0.067 0.160 0.294
US2Y 0.377 0.089 0.289 0.467
US3Y 0.303 0.074 0.231 0.379
US5Y 0.374 0.078 0.298 0.453
US7Y 0.316 0.080 0.238 0.397

US10Y 0.410 0.079 0.331 0.489
US20Y 0.018 0.031 0.000 0.053
US30Y 0.307 0.090 0.220 0.399

Thresholds: ε = 2, δ = 0.8

Maturity π̂ε
δ St. Dev. of Estimate Lower-Bound Upper-Bound

US1Y 0.193 0.064 0.133 0.259
US2Y 0.346 0.087 0.260 0.435
US3Y 0.256 0.070 0.188 0.329
US5Y 0.300 0.074 0.228 0.375
US7Y 0.262 0.076 0.189 0.339
US10Y 0.327 0.075 0.253 0.404
US20Y 0.018 0.031 0.000 0.053
US30Y 0.278 0.087 0.194 0.368

Table 4.5: Probability that a point is potentially mispriced.

As in Table 4.3, italicized maturities are least likely and exhibit greatest variance,
while boldface maturities exhibit the lowest variance and highest estimated probability of
being potentially priced.

Table 4.5 shows that the 2 and 10 year bonds have the highest probability of being
potentially mispriced, according to the conservative thresholds ε = 2, and δ = .8. These
mispricings do not take liquidity or market frictions into account and may not present
arbitrage opportunities for these reasons. If in a pair of bonds with different maturities
one is frequently potentially overpriced while the other is potentially underpriced and the
two rapidly switch between these two states, relative to one another, then this pair of
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bonds can be used to form a statistical arbitrage strategy.

Define the states (2 > 10)∗, (2 < 10)∗, and (2|10)∗ by

• (2 > 10)∗:
– B(t, 2) is potentially rationally priced and B(t, 10) is potentially underpriced,

– B(t, 2) is potentially overpriced and B(t, 10) is potentially rationally priced,

– B(t, 2) is potentially overpriced and B(t, 10) is potentially underpriced,

• (2 < 10)∗:
– B(t, 10) is potentially rationally priced and B(t, 2) is potentially underpriced,

– B(t, 10) is potentially overpriced and B(t, 2) is potentially rationally priced,

– B(t, 10) is potentially overpriced and B(t, 2) is potentially underpriced,

• (2|10)∗: (2 > 10)∗ and (2 < 10)∗ are false.

• (2 > 10):

– B(t, 2) is rationally priced and B(t, 10) is irrationally underpriced,

– B(t, 2) is irrationally overpriced and B(t, 10) is rationally priced,

– B(t, 2) is irrationally overpriced and B(t, 10) is irrationally underpriced,

• (2 < 10):

– B(t, 10) is irrationally rationally priced and B(t, 2) is irrationally underpriced,

– B(t, 10) is irrationally overpriced and B(t, 2) is irrationally rationally priced,

– B(t, 10) is irrationally overpriced and B(t, 2) is irrationally underpriced,

• (2|10): (2 > 10) and (2 < 10) are false.

The observable states (2 > 10)∗, (2 < 10)∗, and (2|10)∗ are modeled as reflecting the
hidden states (2 > 10), (2 < 10), and (2|10). The transitions between the hidden states is
assumed to follow a time-homogeneous Markov process. Likewise, the transition between
the observable states is modeled as following a time-homogeneous Markov process.

The matrix whose entries describe the probabilities that any observable state is seen
given that the hidden Markov process is in any one of the hidden states is called the emis-
sion probability matrix. The matrix describing the probability that the hidden Markov
process transitions between any two of its states, as well as the emission probability ma-
trix are estimated in Table 4.5. The transition probability matrix between the states
(2 > 10), (2|10), and (2 < 10) and the emission probability matrix, are estimated using
the Baum-Welch formulation of the EM algorithm.
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We initialize the estimate of the EM algorithm using a maximum likelihood estimate of
the transition between the observed states. Our findings are recorded within the following
tables.

(a) Transition Probabilities

(2 < 10) (2|10) (2 > 10)
(2 < 10) 0.968 0.015 0.017

(2|10) 0 0.975 0.025
(2 > 10) 0.041 0.046 0.912

(b) Emission Probabilities

(2 < 10)∗ (2|10)∗ (2 > 10)∗

(2 < 10) 0.532 0.468 0
(2|10) 0 0.993 0.007

(2 > 10) 0 0.264 0.736

Figure 4.1: Estimated Transition Probability Matrix for Pair of Maturities (2, 10)

In Figure 4.1a, We denote by (2 < 10)∗ (resp. (2|10)∗, resp. (2 > 10)∗) the estimated
analogue of (2 < 10) (resp. (2|10), resp. (2 > 10)) estimated using π̂ε

δ as in Table 4.5. As
anticipated, Figure 4.1a shows that the pair B(t, 2) and B(t, 10) infrequently transition
between the states (2 < 10), (10 < 2) and (2|10). Since transitions do indeed occur
making a pairs trading strategy possible. The nearly diagonal nature of the transition
probability matrix implies that round trips will take some time to complete.

The first and third entries of the emission probabilities matrix’s middle column show
that many the estimated times when the probability that a point is indeed irrationally
mispriced, given that it is potentially mispriced can be significantly lower than the prob-
ability that it is mispriced. Therefore the probabilities of potential mispricings reported
in Table 4.5 are much higher than the estimated probabilities that any of the US treasury
bonds are indeed mispriced.

We discuss the strategy in more detail here before evaluating its performance.

Strategy 4.6.5 (Statistical Fixed-Income Arbitrage Strategy).

1. Identify High Arbitrage Potential Maturities: At the current time t1, iden-
tify maturities {T1 < · · · < Tn} which have a high positive probability of being
potentially mispriced,

2. Identify Most Actively Fluctuating Pair: Select two maturities Ta and Tb

amongst {T1 < · · · < Tn}, maximizing

(Ta, Tb) � max
(a,b)

3∑
i,j=1
i �=j

(
pa,bi,j

)2
,

where (pa,bi,j )i,j is the transition probability matrix between states (Ta < Tb), (Ta >
Tb), and (Ta|Tb), represented by j = 1, 2, 3 respectively.

3. Buy low sell high: Go short B(t1, Ta) and go long on B(t1, Tb) by K units if in
state (Ta > Tb) at time t,
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4. Close positions: For a future time point t2 > t1, go short B(t2, Tb) and go long
on B(t2, Ta) by K units if in state (Ta < Tb), and if B(t2, Tb) > B(t1, Tb) as well as
B(t2, Ta) > B(t1, Ta).

Repeat steps 3 and 4 until desired capital is reached.

We implement strategy 4.6.5 across a 15 year time horizon ending on December 2014 on
US bonds. As expected, transitions rarely occur in pairs and 2 round trips takes about 15
years. The performance of the strategy is benchmarked against two strategies, one which
invests in the 2 year bond and reinvests immediately when the bond matures, and another
which does the same for the 10 year bond. Each of the three implemented strategies is
self-financing with initial portfolio value of 1m USD and short-selling is allowed with the
constraint that the total portfolio value is non-negative.

Portfolio Metrics Pairs US2 US10 Best Worst
Terminal Wealth 2,019,419.000 1, 794, 979.000 2, 006, 301.000 Pairs US10

Min. Excess Wealth 605,300.300 0 0 Pairs US2 & US10
Max. Excess Wealth 1,019,419.000 794, 979.000 1, 006, 301.000 Pairs US10

ES0.5 10.894 14.731 5.127 US10 US2
ES0.9 3.475 5.319 1.670 US10 US2
ES0.95 3.128 4.774 1.499 US10 US2
ES0.99 2.883 4.396 1.380 US10 US2
ES0.999 3.497 4.318 1.355 US10 US2

Prop. Time Active 0.558 1 1 Pairs US2 & US10

Table 4.6: Strategy Comparisons and Metrics

In Table 4.6, Maximum (resp. Minimum) Excess Wealth denote the most (resp. least)
the portfolio were worth, minus the initial capital of 1m USD, during the trading period.
ES denotes the historical expected shortfall, and Prop. Time Active is the proportion
of the time window on which the portfolio is non-empty. Portfolios evaluated here as
self-financing with initial capital of 1m USD.

From Table 4.6 we see that the pairs strategy spends the least time actively trading in
the market, has the highest portfolio value and the lowest minimum portfolio value. The
Pairs trading strategy seems to take on less risk than investment in the 10 Year bond but
more risk than investment in the 2 Year bond, this is due to the short and long positions
of both bonds partially of setting each-other. The expected shortfall does not capture the
risk avoided by not participating in the market. As is illustrated in the last row of Table
4.6, the pairs trading strategy must have a lower market risk since the trader spends less
time actively holding assets than with the other two a-priori seemingly passive strategies.
Overall, our pairs trading strategy has a higher payout and relatively lower risk when
benchmarked against these two low-risk passive bond investing strategies.

In summary, our low-risk pairs strategy based on the detection and classification of
potential mispricings in the market provides an alternative to classical pairs strategies
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where the assets are required to be co-integrated (see [19, Chapter 11] for details). Instead,
here, we require that the pair of assets’ pricing states fluctuate often and above a preset
threshold. This is the final application of arbitrage-free regularization presented in this
chapter, and serves as a natural endpoint wherein our new tools were used to obtain
a tangible and novel trading signal. We now close this chapter by taking the time to
summarize our findings.

4.7 Summary

We have introduced an unsupervised learning algorithm, arbitrage-free regularization,
which optimally removes arbitrage opportunities from factor models for a wide range of
asset classes. Its definition resided on the introduction of a new class of semi-parametric
models providing an alternative finite dimensional generalization of the FDR-HJM models
other than to the GHJM framework. This new modeling framework have factor models at
their core, but allows for their constant predictable deformation, a feature which allowed
us to meet all of our modeling principles. Since flow models are a predictably deform-
ing factor model, and are not statically chosen factor model such as FDR-HJM models,
the no-arbitrage condition can be enforced with arbitrage-free regularization while the
interpretability of the original factor model. Lastly, their re-usability is a result of the
generality and flexibility provided by the functional F , allowing flow models and their
arbitrage-free regularization to model many asset classes. Additionally, flow models nat-
urally are able to incorporate path-dependent and non-Euclidean features adding to their
flexibility and generality.

The arbitrage-free regularization operator, within the framework of flow models, al-
lowed to give equivalent and extended formulations of many classical results from risk-
neutral pricing theory such as NFLVR, market completeness, minimal martingale measure,
and the risk-neutral pricing formula. Arbitrage-free regularization allowed for finding the
risk-neutral price directly under the objective measure P by optimally deforming the factor
model’s structure instead of changing measure. This formulation was shown to extend the
classical risk-neutral pricing theory to models which admit arbitrage. The Nelson-Siegel
model was used as a familiar example on this theme and the Arbitrage-Free Nelson-Siegel
was shown to be the result of a particularly formulation of the Nelson-Siegel model’s
arbitrage-free regularization.

Arbitrage-free regularization was used as an integral part of the arbitrage-free estima-
tion meta-algorithm, which allowed any estimation procedure for the dynamic factors to
simultaneously extract further arbitrage-free information from the market data and the
empirical factor model. The arbitrage-free estimation analogues of the Kalman-smoother
and MLE algorithms were shown to provide superior one-day ahead forecasts and in-
sample bi-monthly estimates of forward-rate curves. These improvements were quantified
in terms of SSE, standard-deviation of errors, AIC, and probability that the arbitrage-free
regularization outperforms its empirical counterpart. The Nelson-Siegel, AFNS, and their
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extensions provided benchmarks to make concrete understanding of this performance gain.
In nearly every case arbitrage-free regularization was found to outperform their empiri-
cal and AFNS counterparts. The predictive advantage of arbitrage-free regularization of
the NS model over the empirical factor model was due to the flexible incorporation of the
arbitrage-free evolution of the bond price. The out-performance of the AFNS model by the
arbitrage-free regularized NS model was explained as the added flexibility the arbitrage-
free estimated models provided since they admit many arbitrage-free deformations and
not only a single spread deformation.

The mismatch between certain models admitting arbitrage in a model and their
arbitrage-free regularization gave way to an mispricing-detection technique. This mis-
price detection methodology was used to construct a mispricing classification algorithm
which in-turn formed the cornerstone of a pairs trading strategy relying on methods from
hidden-Markov model theory. The disadvantage of our arbitrage-free regularization is
that regularization with respect to more general classes of deformations that A +,A+,
or AP may have less straightforward solutions and potentially requires the introduction
of new estimation techniques. However, arbitrage-free regularization and arbitrage-free
estimation with respect to either of the three aforementioned classes of deformations is
solved and provides numerically encouraging results.

In closing, arbitrage-free regularization and estimation of flow models provides a novel
extension of the classical foundation of risk-neutral pricing theory. This extension pro-
vides many theoretical and predictive advantages as well as new types of problems and
applications to explore.

4.8 Appendix

This section contains a number of appendices which deal either with technical proofs or
with related background material.

Definition 4.8.1 (Admissibility) Let I be a finite subset of U . A Ht strategy is said to
be (α, I)-admissible, for α > 0 if

1. Ht is predictable with respect to the filtration generated by {Xt(ui)}Ni=1,

2. lim
t �→∞

∑
i∈I

∫ t

0
Hs(ui)dXs(ui) ≥ −α,

3. H(u) = 0 for u �∈ I. .

If Ht is (α, I)-admissible with respect to some α > 0 and then Ht is said to be I-admissible.

Remark 4.8.2. The FTOAP, as formulated in [27] assumes that the market there are
only a finite number of underlying assets in the market; which in the notation of this
chapter means that U is finite. If U is finite, then the definition of admissibility in [44,
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Definition 2.1] is the same as Definition 4.8.1 if U is finite. However, Definition 4.8.1 does
not require that U be finite, but instead it requires that assets from the market generated
by a finite collection {Xt(ui)}i∈I of pre-determined assets may be traded. As illustrated in
[4], allowing for an infinite number of assets to be traded at once may become intractable
through conventional tools.

Definition 4.8.3 (No Free Lunch with Vanishing Risk) Let I be a finite subset of U . A
sequence {Hn

t }n∈N of I-admissible strategies is said to be an Free Lunch with Vanishing
risk if there exists and increasing sequence {δn}n∈N in [0, 1) converging to 1 and ε > 0
such that

1. P

(
lim
t �→∞

∑
i∈I

∫ t

0
Hs(ui)dXs(ui) > δn − 1

)
= 1,

2. P

(
lim
t �→∞

∑
i∈I

∫ t

0
Hs(ui)dXs(ui) > ε

)
≥ ε.

If there are no free lunches with vanishing risk, then we say that {Xt(ui)}i∈I satisfies
NFLVR. If for every finite subset I of U , {Xt(ui)}i∈I satisfies NFLVR then we say that
{Xt(u)}u∈U satisfies NFLVR.

Remark 4.8.4. Since the FTOAP of [27] only requires a finite number of underlying
assets in the market then Definition 4.8.3 is equivalent to [44, Definition 2.2 (iii)]. If U
is infinite, then Definition 4.8.3 is exactly NFLVR with the restriction that the trader
first selects a sub-market generated by the finite collection of assets {Xt(ui)}i∈I and
subsequently only trades using that sub-market. This is realistic since, for example,
portfolios of call options are finite even though any number of strikes and maturity times
may be mathematically modeled or since bond portfolios are finite but any number of
maturity times may be mathematically modeled.

Therefore once the set I is selected the definition of NFLVR in Definition 4.8.3 becomes
equivalent to [44, Definition 2.2 (iii)]. Therefore by the FTOAP, NFLVR holds for the
market generated by {Xt(ui)}i∈I if and only if there exists an ELMM Q ∼ P for which
{Xt(ui)}i∈I are Q-local martingales. However, the FTOAP does not make claims about
{Xt(u)}u∈U if U is not finite.

Therefore the requirement that Q is an ELMM for each {Xt(u)}u∈U is a strictly
stronger claim. This greater restrictiveness can be understood as the reason that ELMMs
for the large class of factor models studied in [38] fail to exist. This restriction may be
relaxed by allowing the measure μ in Definition 4.4.1 be the counting measure supported
on a finite subset of U .

The focus of this Appendix is to show that, on any suitable constraint set, any con-
tinuous semi-martingale has a geometric analogue which does not leave the constraint
set in a finite amount of time P-a.s. This geometric process’s tangential movements are
precisely those of the original process. We first take a moment to review the stochastic
differential geometry of [35] is first taken.
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A Primer on Stochastic Riemannian Geometry

To every tangent space to a point on M , there can be attributed a collection of orthogonal
basses. Gluing each of these collection of basses to every point on M defines a manifold
O(M ) called the orthogonal frame bundle on M . Riemannian geometry can be formalized
as the study of movement on M which is describable by smooth transitions of these
orthogonal basses on O(M ). More formally once a basis is chosen at the path’s starting
point, it can be shown that any smooth path on M corresponds to a unique path in the
frame bundle O(M ) describing the infinitesimal evolutions of its orientations (see [91] for
details on this discussion).

The same remains true for the path of any continuous semi-martingale βt on M , once
an initial frame Ξ is chosen in the tangent space of β0. The resulting lifted process, denoted
by Uβ

t , is called the horizontal lift of βt to O(M ) for the initial frame Ξ, and can be shown
to itself be an O(M )-semi-martingale. Since every tangent space of a point in M can
be identified with Rd, the movement is described by the horizontal lift Uβ

t of βt. This
procedure traces out a process in Rd called the Riemannian stochastic anti-development of
bt in Rd. This procedure can be inverted and it can be used to trace out a continuous semi-
martingale on M beginning with a semi-martingale on Rd; the inverse procedure of the
Riemannian stochastic anti-development is called the Riemannian stochastic development
in M of a continuous semi-martingale. For more detail, the reader is directed to [61] or
[97]. In this chapter, the Riemannian metric gt is allowed to smoothly vary in time. All
the analogous time-dependent results remain true in this context, a detailed treatment of
which is found in [51].

Proof of Remark 4.3.10

A central difficulty when working intrinsically on M is that the process can leave M

in finite time. We construct a Riemannian metric which extends the usual Euclidean
metric to M which ensures that any stochastic process does not leave the set M in finite
time. We would like to note that the work of [59] on the Riemannian metric of the SABR
volatility model uses some of the same tools we employ in our framework.

Lemma 4.8.5. Let M be an d-dimensional sub-manifold of RD such that there exists
natural numbers 0 ≤ d1, d2 ≤ d and there is a C2-diffeomorphism Φ from M to the
product manifold:

Ad1 ×B × Rd−d1−d2

A �{(x, y) ∈ R2 : y > 0}
B �{x = (x1, . . . , xd2−1, 0) ∈ Rd2 : ‖x‖ < 1}
E �Rd−d1−d2 .

(4.49)

There exists a Riemannian metrics gc,� and gc on Ad1×B×RD−d1−d2 and M , respectively
such that
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1. Both
(
Ad1 ×B × Rd−d1−d2 , gc,�

)
and (M , gc) are geodesically and stochastically

complete,

2. The diffeomorphism Φ is an isometric embedding .

Proof. Since A is the upper-half plane, the hyperbolic metric whose Riemannian metric
tensor dsA is defined by

(dsA)2(p, v) �
dE(p, v)

‖p‖ ,

where dE is the Euclidean metric tensor on A, p is a point in A, and v is a tangent vector
in A, defines a Riemannian metric on A. In [50] it is proven that the hyperbolic metric
is both geodesically and stochastically complete. Similarly the Riemannian metric tensor
dsB on B defined by

(dsB)2(p, v) �
dE(p, v)

‖p‖2 − 1
,

is the Poincaré-disc model for hyperbolic space (see [71]), which is isometrically-isomorphic
to A, and therefore is geodesically and stochastically complete. In [50], it is shown that
E with the usual Euclidean metric tensor dE is both geodesically as well as stochastically
complete. Since the product of geodesically complete Riemannian manifolds is geodesi-
cally complete then A × B × E is geodesically complete under the product Riemannian
metric [63].

The Laplacian on a product manifold, such as A×B ×E, can be written as the sum
of the Laplacian Δ of its parts

Δ = ΔA1 + · · ·+ΔAd1
+ΔB +ΔE, (4.50)

where A1 × . . . Ad1 are d1 distinct copies of making up Ad1 . Since A1, . . . , Ad1 , B and E
where stochastically complete the equations

Δiv = av; i ∈ {A1, . . . , Ad1 , B, E} a > 0,

have precisely one solution ([49, page 74]). By the linear relationship in equation (4.50),
it follows that there exists a unique solution to the equation

Δv =

d1∑
i=0

ΔAi
vAi

+ΔBvB +ΔEvE

=

d1∑
i=0

avAi
+ avB + avE.

(4.51)

Therefore, A×B×E is stochastically complete by [50, Theorem 1.1], where vA1 , . . . , vAd1
, vB

and vE are the projections of v onto the subspaces A, B and E respectively. Therefore
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Ad1×B×E is both geodesically and stochastically complete when equipped with the prod-
uct Riemannian metric defined y gc,� �

⊗d1
i=1(ds

A) ⊗ dsb ⊗ dsE. Define the Riemannian
metric gc on M to be the pull-back of gc, that is

gc(x, y) � gc,�(dΦ−1(x), dΦ−1(y)),

where dΦ−1 is the pushforward of gc,� along Φ (see [63] for details); makes Φ into an
isometry.

Example 4.8.6 (Extended Nelson-Siegel Loadings). In equation (4.5), the factors of the
Nelson-Siegel model could take on arbitrary values. Therefore the process βt constrained
to the manifold M = Rd on which the factors are defined must be βt itself. In this case
the Riemannian metric gc on M is the Euclidean metric and the isometry Ψ is the identity
map.

Example 4.8.7 (Stochastic Volatility Surface Factors). In equation (4.11), the factors β
of the wavelet model for the stochastic variance surface were required to live on (0,∞)d

2
=

Bd2 . By Lemma 4.8.9, any continuous semi-martingale βt on Rd2 may be constrained to
(0,∞)d

2
. In this case, the Riemannian metric gc on M is non-Euclidean, but the isometry

Φ is the identity map.

Example 4.8.8 (Mixed Densities for Stochastically Uncertain Models). The set

M � Ball(x̄;
π

4
); x̄ �

1√
3
(1, 1, 1),

is the open ball contained within the set {x ∈ Rd+1 : ‖x‖ = 1 and xi > 0} with maximal
measure. The Riemannian exponential map

Expx̄ :Ball
(
x̄;

π

4

)
→ Rd,

Expx̄(�v) � cos(‖�v‖)�̄x+ sin(‖�v‖) �v

‖�v‖
(4.52)

is a radial isometry (see [63] for details) therefore it defines an isometric isomorphism from
the set M onto the open set B0 �

{
x ∈ Rd : ‖x‖ < π

4

}
. The map z �→ z+i

z−i
is an isometry

between the hyperbolic metric equipped with the hyperbolic metric and the upper half
plane C+ � {z ∈ C : Im(z) > 0}. Since it will be simpler to work in the upper-half plane
directly, the map

Φ : C+ → M

Φ(z) = cos(‖
�z − i

z + i
‖)�̄x+ sin(‖

�z − i

z + i
‖)

�z−i
z+i

‖ �z−i
z+i

‖
;

x̄ �
1√
2
(1, 1),
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defines a diffeomorphism between the hyperbolic upper-half plane and the points on the
largest intrinsic ball on the sphere of radius 1 contained entirely within the first orthant
of R3. By Lemma 4.8.5, the C+ is of the form A2 × B0 × R2−0−2 = B, therefore the
Riemannian metric gc on M is the defined by the pull-back across Φ.

We are now in a position to formalize and prove Remark 4.3.10.

Lemma 4.8.9 (Canonical Constrained Process). Let M be a d-dimensional sub-manifold
of RD and suppose there exists non-negative integers d1 and d2, such that there exists
a C2-diffeomorphism from Φ : M → Ad1 × B × RD−d1−d2 , where A,B are as in Lemma
4.8.5. Let βt be an Rd-valued continuous semi-martingale.

Then the process βc
t defined by

βc
t � Φ

(
βgc

t

)
,

is a gc-semi-martingale; it does not leave the manifold M in a finite amount of time P-a.s.
Moreover, if d1 = d2 = 0 then βt = βc

t .

Proof. In [61] it is shown that the anti-development of a continuous semi-martingale onto
a Riemannian manifold (M , g) is itself a g-semi-martingale. Lemma 4.8.5 shows that
(M , gc) is stochastically complete therefore any gc-semi-martingale does not leave M in
a finite amount of time; in particular this is the case for βc

t .

If Rd = M , then the left action by Ut is the identity map x �→ Ix. Therefore its
derivative is the map I and the Hessian Hessgt(Ute

i, Ute
j) = 0. Hence,

dβc
t =

D∑
i=1

ei · dβt + 0 = dβt.

Example 4.8.10. Let βt be an R2-valued diffusion solving the SDE

dβt = μ(t, βt)dt+ σ(t, βt)dWt.

Let Φ be the diffeomorphism described in Example 4.8.8. In local coordinates on A, the
canonical constrained process βΦ

t is given by

dβc
t =μ(t, βc

t )dt− Γdt+ σ(t, βc
t )dWt

Γ �

(
1

(βc
t )

2
−1

(βc
t )

2

−1
(βc

t )
2

−1
(βc

t )
2

)(
(σ(t, βc

t )
1)

(σ(t, βc
t )

2)

)
,

see [35, Section 9.2.4] for local descriptions of g-martingales, in terms of Christoffel sym-
bols; here the Christoffel symbols used are those of the hyperbolic space.

Proofs whose length may detract from the flow of the chapter are recorded in this
appendix. The proofs are divided into two groups, proofs of No-Arbitrage related results
and proofs related to the extensions of classical risk-neutral pricing theory.
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Proofs of No-Arbitrage Theorems

Proof of Theorem 4.3.11. For legibility, abbreviate φ(t, u, βt) by f(t, u) and let

f(t, u) = f(0, u) +

∫ t

0

α(s, u, f(t, u))ds+

∫ t

0

γ(s, u, f(t, u))dWs.

If F (t, f(t, u), [f(t, u)]) is a realization of the flow model then, by [45, Theorem 3.1], it
follows that

F (t, ft, [f ]t) =F (0, f0, [f ]0) +

∫ t

0

DsF (s, fs, [f ]s)ds+

∫ t

0

VsF (s, fs, [f ]s)α(s, u, f)ds

+

∫ t

0

1

2
tr[tV 2

s F (s, fs, [f ]s)]γ(s, u, f)
2ds

+

∫ t

0

1

2
tr[tV 2

s F (s, fs, [f ]s)]γ(s, u, f)dWs.

(4.53)
By the (constructive) Martingale Representation Theorem (see [45, Theorem 3.2]), it
follows that F (t, ft, [f ]t) is a local-martingale if and only if∫ t

0

DsF (s, fs, [f ]s)ds+

∫ t

0

VsF (s, fs, [f ]s)α(s, u, f)ds

+

∫ t

0

1

2
tr[tV 2

s F (s, fs, [f ]s)]γ(s, u, f)
2ds = 0. (4.54)

Since (F, φ, βt, gt) is a flow model, then, by an Ito’s formula for βt on the Riemannian
manifold (M , g), it follows that

α(t, u, f)dt =
∂φ

∂t
(t, u, βt) +

d∑
i=0

(ξtei)φ(t, u, βt)μ(t, βt)dt

+
1

2

d∑
i,j=1

Hessgt (φ(t, u)) (βtei, βtej)d[β
i
t , β

j
t ]t

γ(t, u, f)dWt =
d∑

i=0

(ξtei)φ(t, u, βt)σ(t, βt)dWt.

(4.55)

Moreover, the Martingale Representation Theorem guarantees that α and β are unique
up to indistinguishability. By Lemma 4.8.5 we have a Riemannian metric on M and from
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the Itô formula of [51, Corollary 3.6], we obtain

∫ t

0

DsF (s, fs, [f ]s)ds+

∫ t

0

VsF (s, fs, [f ]s)

[
∂φ

∂t
(t, u, βt) +

d∑
i=0

(ξtei)φ(t, u, βt)μ(t, βt)dt

+
1

2

d∑
i,j=1

Hessgt (φ(t, u)) (βtei, βtej)d[β
i
t , β

j
t ]t

]
ds

+

∫ t

0

⎛
⎝1

2
tr[tV 2

s F (s, fs, [f ]s)]

[
d∑

i=0

(ξtei)φ(t, u, βt)σ(t, βt)

]2
ds

⎞
⎠ = 0.

(4.56)
Since the process F (t, φ(t, u, βt)) is a local-martingale if and only if its drift term is
indistinguishable from 0, it follows that F (t, φ(t, u, βt)) is a local-martingale if and only
if the functional SPDE of equation (4.56) holds.

Proof of Corollary 4.3.12. If we take F (t, x, a) in Theorem 4.3.11 to be

F (t, f(t, u), [f(t, u)]) � exp

(
−
∫ T

t

f(t, u)du

)
,

then F is a C∞ function of only the current state f(t, τ) and not of the entire path
t �→ f(t, u). Therefore, [45, Example 3.1] implies that

DtF =(∂texp (x))|x=− ∫ T

t
f(t,u)du = 0,

VtF =(∂xexp (x))|x=− ∫ T

t
f(t,u)du = exp

(
−
∫ T

t

f(t, u)du

)
.

(4.57)

Define the process φ(t, u, βt) � − ∫ T

t
ϕ(t, u, βt)du and substitute equations (4.57) into

equation (4.17) to obtain

0+exp

(
−
∫ T

t

f(t, u)du

)[∫ t

0

[
∂φ

∂t
(t, u, βt) +

d∑
i=0

(ξtei)φ(t, u, βt)μ(t, βt)dt

+
1

2

d∑
i,j=1

Hessgt (φ(t, u)) (βtei, βtej)d[β
i
t , β

j
t ]t

]
ds

+

∫ t

0

⎛
⎝1

2

[
d∑

i=0

(ξtei)φ(t, u, βt)σ(t, βt)

]2
ds

⎞
⎠
⎤
⎦ = 0.

(4.58)
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Since exp
(
− ∫ T

t
f(t, u)du

)
> 0, we have

0 =

∫ t

0

[
∂φ

∂t
(t, u, βt) +

d∑
i=0

(ξtei)φ(t, u, βt)μ(t, βt)dt

+
1

2

d∑
i,j=1

Hessgt (φ(t, u)) (βtei, βtej)d[β
i
t , β

j
t ]t

]
ds

+

∫ t

0

⎛
⎝1

2

[
d∑

i=0

(ξtei)φ(t, u, βt)σ(t, βt)

]2
ds

⎞
⎠

=

∫ t

0

[
∂φ

∂t
(t, u, βt) +

d∑
i=0

(ξtei)φ(t, u, βt)μ(t, βt)dt

+
1

2

d∑
i,j=1

Hessgt (φ(t, u)) (βtei, βtej)d[β
i
t , β

j
t ]t

]
ds

+

∫ t

0

(
1

2

d∑
i,j=1

(ξtei)φ(t, u, βt)σ(t, βt)(ξtej)φ(t, u, βt)σ(t, βt)ds

)
.

(4.59)

In local coordinates, equation (4.59) takes the form∫ t

0

[
∂φ

∂t
(t, T, βt) +

d∑
i=0

(ξtei)φ(t, T, βt)μ(t, βt)dt

+
1

2

d∑
i,j=1

(
∂2φ

∂βiβj

(t, T, βt)−
d∑

k=1

Γk
ij(t)

∂φ

∂βk

(t, T, βt)

)
σi(t, βt)σj(t, βt)

+
1

2

d∑
i,j=1

∂φ

∂xi

(t, T, βt)
∂φ

∂xj

(t, T, βt)σi(t, βt)σj(t, βt)

]
ds,

(4.60)

which established equation (4.18).

Proof of Proposition 4.3.13. Let F (t, ·) be the solution operator Σt(·|(T,K)) defined by
equation (4.12). Theorem 4.3.11 implies∫ t

0

V Σt(ϕ
(T,K)
t |(T,K))

[
∂ϕ

∂x
(t, βt, τ,K) +

d∑
i=0

(ξtei)ϕ(t, βt, τ,K)μ(t, βt, )dt

+
1

2

d∑
i,j=1

Hessgt (φ(t, βt, τ,K)) (βtei, βtej)d[β
i
t , β

j
t ]t

]
ds

+

∫ t

0

⎛
⎝1

2
V

2Σt(ϕ
(T,K)
t |(T,K))

[
d∑

i=0

(ξtei)ϕ(t, βt, τ,K)σ(t, βt)

]2
ds

⎞
⎠ = 0.

(4.61)
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Since Σt(ϕ
(T,K)
t |(T,K)) takes its input to the solution of the parabolic PDE with Borel-

measurable initial condition given by the function (ST − K)+, then the Feynman-Kac
formula implies that

Σt(ϕ
(T,K)
t |(T,K)) =EQ

[(
S̃T −K

)
+
| σ(St)

]

dS̃t =
Kν(t, τ,K)√

2
.

(4.62)

As discussed in [62], the call-option price verifies [62, Assumptions 4.7 and 4.8]; there-
fore by [62, Corollary 4.14 and Theorem 4.17] the first and second vertical derivatives of

EQ

[(
S̃T −K

)
+
| σ(St)

]
are equal to the quantities described in equation (4.20). Hence,

substituting V EQ

[(
S̃T −K

)
+
| σ(St)

]
and V 2EQ

[(
S̃T −K

)
+
| σ(St)

]
into equation

(4.61) and making the change of variables x � log(K) and τ � T − t, yields equation
(4.19).

Proofs of Risk-Neutral Pricing Theory Results

Proof. Proof of Theorem 4.5.4

1. Assume that AH,ÂF
φ,μ [φ|·] exists. Therefore there exists a minimizer of the equation

(4.33) in AP. Hence there exists a family of measures {P̂u} such that for μ-a.e. u
in U , Xt(u) is a local-martingale. Therefore, for μ-a.e. u in U , the Fundamental
Theorem implies that Xt(u) satisfies NFLVR.

2. Assume now that for μ-a.e. u in U , NFLVR holds if and only if, for μ-a.e. u in
U , there exists equivalent martingale measures P̂u to P and Xt(u) admits a strict
martingale density.

Since μ, σ and F are deterministic, then the functional Ito formula of [45, Theorem
6.2.1] implies that the drift and volatility of Xt(u) are deterministic for every u ∈ U .
Therefore, the definition of the mean-variance trade-off process described in [88,

Equations 1.1-1.3], which we will denote by K̂
Xt(u)
t , must be deterministic for every

u ∈ U . Hence, for μ-a.e. u in U the conditions [88, Theorem 7] are met, thus the
minimal martingale measure P̂u is the unique solution to the problem

arginf
Q∈ELMM(P|Xt(u))

H(Q‖P), (4.63)

where ELMM(P|Xt(u)) is the collection of equivalent local-martingale measures

for Xt(u) to P with P-square integrable density processes. Since
∫ T

0

∫
u∈U

·2μ(du)dt
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is monotone and convex, then equation (4.63) implies that its unique minimizer of

arginf
{P̂u}u∈U∈E (P)

∫ T

0

∫
u∈U

H(Qu‖P)2μ(du)dt (4.64)

must be the family of measures {P̂u}u∈U ; here E (P) is the collection of all families
of measures {Qu}u∈U such that for μ-a.e. u in U , Qu is an ELMM for Xt(u). Since
the Qu-dynamics of βt are Z

Qu

t βt, then by theorem 4.3.11, the condition that Xt(u)
is a Qu-local martingale is equivalent to

0 = Λ
(
φ(t, ZQuβt, u)

)
= Λ

(
ΦQ

t (φ)(t, βt, u)
)
,

which is in turn equivalent to ÂF
(
ΦQ

t

)
being finite and thus taking value 0. There-

fore, equation (4.63) is equivalent to

arginf
ΦQ

t ∈AP

∫ T

0

∫
u∈U

H(Q‖P)2μ(du)dt+ ÂF
(
ΦQ

t

)
. (4.65)

Since H is deterministic and constant in time, H(Q‖P) achieves its minimum only

if E
[∫ T

0
H(Q|P)dt

]
achieves its minimum. Therefore, equation (4.65) is equivalent

to minimizing Equation (4.33).

By construction, φ(t, Z P̂u

t βt, u) is a local martingale, for every u. Therefore, whenever
XAP

t (u) exists the measure P is a LMM for it.

Following [45], denote the class of boundedness-preserving functionals of a path by
B. Denote the horizontal and vertical derivative operators of the path by D([0, T ];Rd)
and V respectively (see Definitions 2.6 and 2.8 of [45]). Write C1,2 for the class of once
continuously horizontally and twice continuously vertically differentiable functionals of a
path. Finally, F∞l denotes the class of all left-continuous functionals of the path by.

Regularity Condition 4.8.11 (Encoding Functional Regularity)

1. F is predictable in its second argument,

2. V F , V 2F , DF are all in B,

3. F,V F,V 2F are all in F∞l , and

4. V F is horizontally Lipschitz ([45]).

Regularity Condition 4.8.12 (Factor Model Regularity)

1. E
[∫

u∈U

∫∞
0

(φ(t, βt, u))
2 dtμ(du)

]
< ∞.
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2. For every (u, β) ∈ U × M the map t �→ ϕ(t, u, z) is continuously differentiable,

3. There exists an s > (D + 1)/2, such that for every β ∈ M , the map

(t, u) �→ φ(t, β, u) (4.66)

is an element of the Sobolev space W s
2 (R× U),

4. For every (t, u) ∈ [0,∞) × U , the map β �→ φ(t, β, u) is a C2-diffeomorphisms its
image.

Regularity Condition 4.8.13 (Geometric Regularity)

P⊗m ({(ω, t) ∈ Ω× [0,∞) : βt(ω) �∈ M }) = 0.



5. Conclusions and Future Work
This thesis consists of three main projects: the Non-Euclidean Upgrading meta-algorithm,
a computational characterization and proof of the existence of non-Euclidean condi-
tional expectation, and the introduction of arbitrage-free regularization and flow modeling
framework. Our main contributions to each of these projects will be summarized here
and related future research directions will also be discussed.

5.1 The NEU meta-algorithm

The contributions of this project are summarized below.

• The introduction of the universal reconfiguration property,

• The proof that the universal reconfiguration property implies the universal approx-
imation property,

• The discovery of a class of algorithms other than neural networks having the uni-
versal approximation property,

• The introduction of the NEU meta-algorithm, which incorporated the universal
reconfiguration property into any objective learning algorithm,

• The proof that the NEU version of any algorithm outperforms the original algorithm
if the dataset is not already ideal,

• Numerical illustration of the performance gained by the NEU meta-algorithm as
applied to regression analysis and principal component analysis,

• Applications to stock tracking and low-dimensional term-structure modeling,

• Parallels and contrasts to geodesic regression, principal geodesic analysis algorithms
of [41, 42], and the geometric methods of [53].

Future work for the NEU meta-algorithm project will be to apply NEU to other classes
of objective learning algorithms such as classification or clustering, use those to detect
subtle trends in financial data, and the development of trading strategies exploiting those
trends. The investigation of new properties the NEU algorithm may gain by consider-
ing reconfiguration maps other than rapidly decaying rotations presents another future
research direction for this project.

107
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5.2 Non-Euclidean Conditional Expectation and Ef-

ficient Portfolio Filtering

The contributions of the non-Euclidean conditional expectation and efficient portfolio
filtering project are now summarized.

• Two rigorous formulations and characterizations of intrinsic conditional expectation
were introduced,

• Both formulations were shown to exist and be equivalent on L2
P(Gt;M ),

• Non-Euclidean filtering equations were derived as a consequence of the characteriza-
tions of non-Euclidean conditional expectation as dynamic conditional expectation,

• A Non-Euclidean Kalman filtering methodology was used to forecast efficient port-
folios, these were benchmarked against competing algorithms from the electrical
engineering and mathematical imagining literature, and found to outperform their
Euclidean and non-Euclidean competitors,

• The spaces Lp
P (G·;M ) were introduced and used to formulate Γ-convergence based

proof techniques which are novel to applied probability theory.

A future line of work for the non-Euclidean conditional expectation project is to fur-
ther localize the results and relax the assumption that non-Euclidean signal is defined on
a Cartan-Hadamard manifold. This can either be accomplished by generalizing the results
to arbitrary Riemannian manifolds or to general non-positive curvature spaces. Connec-
tions with the Cartan-Hadamard manifold structure of two-factor stochastic volatility
models, discussed in [60], will also be explored.

5.3 Arbitrage-Free Regularization

The contributions of the arbitrage-free regularization project will now be summarized.

• An finite-dimensional, non-Euclidean, path-dependent alternative to the general
HJM framework of [18] was introduced,

• Equivalent local martingale measures (ELMMs) for flow models were characterized,

• ELMMs for stochastic local volatility surfaces were characterized in terms of the
Greeks,

• The arbitrage-free regularization methodology which deforms a model until the ob-
jective measure becomes its risk-neutral measure was introduced,
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• Classical arbitrage-free pricing theory results such as the NFLVR, market com-
pleteness, and the minimal martingale measure were reformulated as the existence,
uniqueness, and the solution to a particular arbitrage-free regularization problem,

• The generality of arbitrage-free regularization was used to extend classical arbitrage-
pricing theory to models which admit arbitrage opportunities but are deformable
into arbitrage-free models; this gave meaning to pricing under models such as the
Nelson-Siegel model,

• The correction of a model admitting arbitrage into one that does not, such as the
arbitrage-free Nelson-Siegel correction of the Nelson-Siegel model, was addressed in
for general flow models and closed form solutions were found in the fixed-income
setting,

• Implementations confirmed the predictive gain of arbitrage-free regularized models
over their empirical counterparts,

• An arbitrage-detection methodology and pair trading strategy was introduced and
shown to provide high payoffs at a low risk.

A future direction for the arbitrage-free regularization project is to further explore
the numerical performance of arbitrage-free regularization for volatility surfaces and op-
tions. Another direction for the arbitrage-free regularization project is to apply the novel
minimal deformation methodology to meet financial objectives other than risk-neutrality,
such as aggregate risk minimization.
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[76] M. Moakher and M. Zéräı. The riemannian geometry of the space of positive-definite
matrices and its application to the regularization of positive-definite matrix-valued
data. J. Math. Imaging Vis., 40(2):171–187, 2011.

[77] J. Nash. The imbedding problem for Riemannian manifolds. Ann. of Math. (2), 63:
20–63, 1956.

[78] J. A. Nelder and R. Mead. A simplex method for function minimization. Comput.
J., 7(4):308–313, 1965.

[79] S. Ng and P. Caines. Nonlinear filtering in riemannian manifolds. IFAC Proceedings
Volumes, 17(2):817–821, 1984.

[80] X. Pennec, P. Fillard, and N. Ayache. A riemannian framework for tensor comput-
ing. International Journal of Computer Vision, 66(1):41–66, 2006.

[81] B. Pfaff. Analysis of integrated and cointegrated time series with R. Use R! Springer,
New York, second edition, 2008.

[82] P. Piccione and D. V. Tausk. On the banach differential structure for sets of maps
on non-compact domains. Nonlinear analysis, 46(2):245–265, 2001.

[83] F. Riesz. Elementarer beweis des egoroffschen satzes. Monatshefte für Mathematik
und Physik, 35(1):243–248, 1928.

[84] R. T. Rockafellar. Integrals which are convex functionals. Pacific J. Math., 24:
525–539, 1968.

[85] S. Said and J. H. Manton. On filtering with observation in a manifold: reduction
to a classical filtering problem. SIAM J. Control Optim., 51(1):767–783, 2013.

[86] R. E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):197–227,
1990.

[87] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[88] M. Schweizer. On the minimal martingale measure and the Föllmer-Schweizer de-
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