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Abstract

Let X be a jump diffusion, then its reflection at the boundaries 0 and b > 0 forms the

process V . The amount by which V must reflect to stay within its boundaries is added to

a process called the local time. This thesis establishes a large deviation principle for the

local time of a reflected jump diffusion. Upon generalizing the notion of the local time to

an additive functional, we establish the desired result through a Markov process argument.

By applying Ito’s formula to a suitably chosen process M and in proving that M is a

martingale, we find its associated integro-differential equation. M can then be used to find

the limiting behavior of the cumulant generating function which allows the large deviation

principle to be established by means of the Gärtner-Ellis theorem. These theoretical results

are then illustrated with two specific examples. We first find analytical results for these

examples and then test them in a Monte Carlo simulation study and by numerically solving

the integro-differential equation.
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Chapter 1

Introduction

1.1 Motivation

A diffusion process can be thought of as a strong Markov process, where common intuition

restates this as a process in which the past cannot help in predicting the future. As our central

object of study, we will be considering jump diffusions with jumps of bounded variation. The

paths of this process will be reflected at two boundaries and the resulting process will be

studied.

In 1961, A.V. Skorokhod proposed taking an Itô diffusion and reflecting it at a single

boundary. In his original papers [23, 24], he studied the paths of such a process, proved

its existence and uniqueness and derived an equation for the solution. Since then, solving

stochastic differential equations with reflecting boundaries has become ubiquitous with the

label of a Skorokhod problem.

For the purposes of this thesis, we are concerned with reflections at two boundaries of

a single càdlàg process in R. In this light, we formally present the Skorokhod problem as

shown in [1]:

Given a càdlàg process {X(t)} and continuous, non-decreasing and adapted processes

{L(t)} and {U(t)}, we say the triple ({V (t)}, {L(t)}, {U(t)}) of processes is the solution to

the Skorokhod problem on [0, b] if

V (t) = V (0) +X(t) + L(t)− U(t) ∈ [0, b]

1



for all t and
∫ ∞

0

V (t)dL(t) = 0 and

∫ ∞

0

(b− V (t))dU(t) = 0.

Existence and uniqueness follow from the general work of [17].

It is important to note that we will not be studying solutions to the Skorokhod problem,

rather we will be primarily concerned with the boundary local time of the reflected process

V . In 1948 [16], P. Lévy introduced Brownian local time, which can be intuitively thought

of as the amount of time spent by a Brownian motion at a certain level in space. When we

consider reflected processes, the boundary local time comes to represent the amount that

must be added in order to make the process reflect. The local time is a process in its own

right for which we will study its large deviation behavior.

The theory of large deviations was unified by Varadhan in 1966 [25], previously having

been used as sparse techniques in insurance mathematics. The central question asked by the

theory relates to the asymptotic rate of decay for probabilities of rare events. An event is

rare if it deviates from its mean in excess of what the central limit theorem purports, that is,

a large deviation. Traditionally, the sequences were independent and identically distributed

but due to R. S. Ellis and J. Gärtner [6, 8], the theory was extended to include Markovian

processes for which a suitable limit to the cumulant generating function could be established.

The main result of the present thesis extends the previous works related to large devi-

ations for the boundary local time of reflected processes in [7, 11, 1]. The first reference

provided an explicit form for the rate function of a reflected standard Brownian motion and

the second and third references establish a large deviation principle for reflected diffusions

and reflected Lévy processes, respectively. They employ the Markov process argument which

we use for reflected jump diffusions.

Reflected processes have a number of applications whenever one assumes a certain capac-

ity, either minimal or maximal inherent in a model. One need not think too long to imagine

a context with some finite capacity to it, such as a queue with a maximum length, networks

with a finite buffer or when monetary authorities attempt to target specific zones for macroe-

conomic purposes. A list of references to such models are provided in the introductions to

the above mentioned articles. From a practitioner’s perspective, we are primarily concerned

2



with the probability of a rare overflow or underflow event occurring.

1.2 Thesis Outline

This thesis is structured into four main components and a conclusion. After considering the

present introduction:

Chapter 2 lists those mathematical preliminaries that were considered most relevant to

the following chapters, either as a direct application or to build up the theory behind some

of the topics. An effort was made to be as efficient in this as possible, oftentimes choosing

a less general presentation in favor of direct applicability.

Chapter 3 is the main portion of this thesis. It begins by setting up the model and then

presents some small computational results necessary for the following sections. We then

present the main proof followed by some analytical considerations and conclude the section

with the result implied by this thesis’ title. The last part of the chapter presents examples for

which analytical solutions may be reached. We use these solutions in the following chapter

as a way to verify the simulations.

Finally, Chapter 4 puts the theory into practice. Two algorithms are studied as possi-

ble practical implementations of the previous chapter’s theoretical results. One algorithm

achieves the results through a Monte Carlo simulation and the other by numerically solving

the integro-differential equation of Chapter 3. We then consider the same examples men-

tioned in the previous chapter to study the effectiveness of the algorithms in computing the

correct results.
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Chapter 2

Mathematical Preliminaries

2.1 Stochastic Analysis

Stochastic analysis allows for a theory of integration to be defined with respect to stochastic

processes. In doing so a calculus on stochastic processes can be developed similar to the

more traditional calculus. In this section, we collect a list of classic definitions and results

which will serve as the foundations for the analysis conducted in Chapter 3. Much of what

is written here can be found in [20], albeit in greater generality. The second subsection

lists some topics that play less of a background role and for which a bit more care in their

exposition was deemed necessary.

2.1.1 Preliminaries for Stochastic Analysis

Throughout this thesis, we will assume a complete probability space (Ω,F ,P), where Ω is the

sample space, F is the filtration and P is the probability measure. We say that a stochastic

process X on (Ω,F ,P) is adapted if X(t) ∈ Ft and a random variable τ : Ω → [0,∞] is a

stopping time if the event {τ ≤ t} ∈ Ft, for every t.
Finally, we refer to a stochastic processX as being càdlàg if it has sample paths which are

right continuous, with left limits or as being càglàd if the sample paths are left continuous,

with right limits. The notation P denotes the set of all partitions on [0, t], where 0 = t0 <

t1 < ... < tn−1 < tn = t, with {ti}i=1,...,n denoting a partition on the interval [0, t]. We begin

4



in familiar territory, with a discussion of the continuous time martingale.

Definition 2.1.1. A real-valued, adapted processM = (M(t))0≤t<∞ is called a martingale

with respect to (Ft)0≤t≤∞ if

(i) E[|M(t)|] <∞, and

(ii) if s ≤ t, then E[M(t)|Fs] =M(s), a.s.

This process allows one to establish the future expectation as the current state of the

process. As an immediate consequence of the martingale property, we may establish the

following two properties:

(i) E[M(t)] = E[E[M(t)|F0]] = E[M(0)];

(ii) if M(t)−M(0) is a martingale then so is M(t).

Definition 2.1.2. An adapted, càdlàg process Y is a local martingale if there exists a

sequence of increasing stopping times, τn, with lim
n→∞

τn =∞ a.s. such that Y (t ∧ τn)1{τn>0}

is a martingale for each n.

Clearly any martingale is always a local martingale, but the converse is not true in

general. A local martingale generalizes the notion of the martingale to processes that exhibit

the martingale property just at stopping times. We state the following two lemmas for use

later.

Lemma 2.1.1. The sum of two local martingales is a local martingale.

Lemma 2.1.2. Every bounded local martingale is a martingale.

Definition 2.1.3. Let A = (A(t))t≥0 be a càdlag process and let P denote the set of all

partitions on [0,∞). A is called a finite variation process if for almost all paths of A,

sup
P

∑n−1
i=0 |A(ti+1)− A(ti)| <∞.

The term sup
P

∑n−1
i=0 |A(ti+1)− A(ti)| is the total variation of the process. Clearly Brow-

nian motion, which is nowhere differentiable due to its self similarity on every time interval,

does not satisfy this property. However, the Poisson process which has finitely many jumps

on any finite time interval and is constant otherwise, does.

5



The sum of finite variation processes on [0, t] is of finite variation. To show this, consider

càdlàg processes A,B, then for A+B,

sup
P

n−1
∑

i=0

|(A+B)(ti+1)− (A+B)(ti)| =sup
P

n−1
∑

i=0

|A(ti+1)− A(ti) + B(ti+1)− B(ti)|

≤ sup
P

n−1
∑

i=0

|A(ti+1)− A(ti)|+ |B(ti+1)− B(ti)|

<∞

This idea of finite variation paths would be required to define a stochastic integral in terms

of the Riemann-Stieltjes integral, so that the sums converge. As many random processes are

not of finite variation, the Riemann-Stieltjes integral is a poor candidate for the stochastic

integral.

Definition 2.1.4. Let A be an adapted finite variation process and Y a local martingale,

then we call X a semimartingale if it can be decomposed as X = Y + A.

The semimartingale is introduced as it encompasses a sufficiently large class of processes

from which a good integrator may be chosen for the purposes of defining a stochastic integral.

Lemma 2.1.3. Let X, Y be two semimartingales. Then X+Y and XY are semimartingales.

Definition 2.1.5. Let X be a semimartingale. For a partition {ti}, we define the quadratic
variation of X as

[X]t = lim
max |ti+1−ti|→0

n−1
∑

i=0

(X(ti+1)−X(ti))
2,

where the limit is in probability.

Definition 2.1.6. Let X and Y be semimartingales. For a partition {ti}, we define the

quadratic covariation of X and Y as

[X, Y ]t = lim
max |ti+1−ti|→0

n−1
∑

i=0

(X(ti+1)−X(ti))(Y (ti+1)− Y (ti)),

where the limit is in probability.
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These last two definitions provide another way of measuring the variation in a process

or between two processes. They give a sense of how controlled the process is, in the sense

that if the total variation is unbounded, the sum of the differences squared may be finite and

provide some useful information as to the dispersion of the process. But if it is not, then the

process is truly unbounded in its fluctuations.

Definition 2.1.7. A process H = (H(t))t≥0 is said to be predictable if H is measurable

with respect to the smallest σ−algebra generated by all adapted processes with càglàd paths.

Being measurable with respect to càglàd paths means that the process’ current value

is known from the information just before the current time. For example, since standard

Brownian motion is continuous in time we may establish that W (t) = lim
s→t−

W (s), and so it

is a predictable process. Since one cannot know when a Poisson process will jump, it is not

a predictable process.

Definition 2.1.8. Let H be an adapted predictable process and let X be a semimartingale.

Let 0 = τn0 ≤ τn1 ≤ ... ≤ τnk < ∞ be a random partition of finite stopping times with

lim
n→∞

sup
k
τnk =∞. Then the stochastic integral of H with respect to X is

∫ t

0

H(s−)dX(s) = lim
sup
k

|τn
k+1−τnk |→0

n−1
∑

i=0

H(τni )(X(t ∧ τni+1)−X(t ∧ τni )),

where the limit is in probability.

Having the limit converge in probability ensures that as the partition gets smaller, the

probability of all paths whose sum does not converge, tends to zero. This allows for processes

with paths of unbounded variation to have a well defined integral.

To conclude this subsection, we present the following quick lemma which will be useful

later.

Lemma 2.1.4. Let B be a standard Brownian motion, then every local martingale Y has a

representation Y (t) = Y (0) +
∫ t

0
H(s)dB(s), where H is predictable.
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2.1.2 Definitions and Results

Ito’s Two Dimensional Formula

We present the following theorem as the two dimensional version of the more general d-

dimensional Itô formula. It will prove to be the starting point in establishing the large

deviation result.

Theorem 2.1.1. (Itô’s formula) Let X1 and X2 be two semimartingales, and let f : R2 →
R have twice continuously differentiable partial derivatives in space and once in time. Then

f(t,X1, X2) is a semimartingale and the following formula holds:

f(t,X1(t), X2(t))− f(0, X1(0), X2(0))

=

∫ t

0

ḟ(s−, X1(s−), X2(s−))ds

+
2
∑

i=1

∫ t

0

fi(s−, X1(s−), X2(s−))dX(c,i)(s)

+
1

2

∑

1≤i,j≤2

∫ t

0

fi,j(s−, X1(s−), X2(s−))d[X i, Xj]cs

+
∑

0<s≤t
[f(s,X1(s), X2(s))− f(s−, X1(s−), X2(s−))]

where the superscript c denotes the continuous part of the semimartingale.

Itô’s formula, or commonly known as the chain rule of stochastic calculus, is a funda-

mental result in that it allows for a wide range of applications like finding differentials of

functions of stochastic processes or finding solutions to stochastic integrals. The application

this thesis will be interested in is deriving the conditions under which a certain process is a

martingale.

The Compensator

Definition 2.1.9. A finite variation process A with A0 = 0 is of integrable variation if

the expected total variation is finite.
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Definition 2.1.10. Let X be a càdlàg adapted process and let A be a predictable finite

variation process, with A0 = 0. We say that A is the compensator of X if X −A is a local

martingale.

In a sense, subtracting the compensator allows one to remove the drift from a process

and be left with a (local) martingale. For the purpose of building intuition, consider the

discrete case where X is decomposable into the sum of a martingale M and a predictable

process A, that is X =M + A.

By the definition of the martingale,

E[X(n)− A(n)|Fn−1] = E[M(n)|Fn−1] =M(n− 1) = X(n− 1)− A(n− 1)

⇐⇒ A(n) = E[X(n)−X(n− 1)|Fn−1] + A(n− 1)

⇐⇒ A(n) = E[X(n)−X(n− 1)|Fn−1] + E[X(n− 1)−X(n− 2)|Fn−2] + A(n− 2)

⇐⇒ A(n) = · · ·

⇐⇒ A(n) =
n
∑

k=1

E[X(k)−X(k − 1)|Fk−1]

From this, we may develop a possible way to compute the continuous time compensator

by taking the limit of a discretization over ever smaller steps. That is, consider a stochastic

partition 0 = τ0 ≤ τ1 ≤ τ2 ≤ ... of stopping times with lim
i→∞

τi = ∞. Since, by definition,

X − A is a local martingale, we have that (X(t ∧ τi)− A(t ∧ τi))1{τi>0} is a martingale for

each i. Therefore,

1{τi−1<t}E[(X(τi)− A(τi)) |Fτi−1
] = 1{τi−1<t} (X(τi−1)− A(τi−1))

⇐⇒ 1{τi−1<t}E[(X(τi)−X(τi−1)) |Fτi−1
] + 1{τi−1<t}A(τi−1) = 1{τi−1<t}A(τi)

⇐⇒ ...

⇐⇒
∞
∑

n=1

1{τn−1<t}E[(X(τn)−X(τn−1)) |Fτn−1 ] = 1{τi−1<t}A(τi)

Finally, taking the limit as this partition goes to zero, we arrive at the following result.

Theorem 2.1.2. Let X be a cadlag adapted process with integrable total variation and let
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A be its compensator. Define an increasing stochastic partition 0 = τ0 ≤ τ1 ≤ τ2 ≤ ... with

lim
i→∞

τi =∞, then

lim
sup
n

|τn−τn−1|→0

∞
∑

n=1

1{τn−1<t}E[X(τn)−X(τn−1)|Fτn−1 ] = A.

The Local Time

In this thesis, we study the local time at the boundaries of a reflected jump diffusion. Infor-

mally, a local time can be thought of as the amount of time a process spends at a certain

level in space. When the process being studied is reflected, the boundary local time takes on

an additional interpretation in that it comes to represent the amount necessary to push the

process in order to keep it within its boundaries. The local time is connected directly to the

occupation measure, which we define first. The following definitions may be found in [2].

Definition 2.1.11. Let X be a semimartingale, for every t > 0, the occupation measure

on the time interval [0, t] is the measure µt given for every measurable function f : R→ [0,∞)

by
∫

R

f(x)µt(dx) =

∫ t

0

f(X(s))ds.

The occupation measure is quite general. However, we may specify a particular density

for it, namely Lx(t), which we define below.

Definition 2.1.12. The local time Lx(t) is defined as

Lx(t) = lim
ε→0+

1

2ε

∫ t

0

1{|X(s)−x|<ε}ds

uniformly on compact intervals of time, for every x ∈ R.

By consequence of being uniformly compact, we see the property that the local time is

continuous in t. This definition illustrates two other important properties, that the local time

is nondecreasing, cumulating strictly when |X(s)−x| < ε, and how it represents the amount

of time the process X spends in that vanishing neighborhood of x. Furthermore, we see

the connection between the occupation measure and the local time through the occupation
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density formula,
∫ t

0

f(X(s))ds =

∫

R

f(x)Lx(t)dx

which holds for all measurable bounded functions f ≥ 0.

Going forward, we will be studying the local times at the upper and lower boundaries of

a reflected process. In this context, it will be convenient to denote each local time uniquely.

Therefore, throughout the remainder of the thesis, we denote the local time at the lower

boundary of 0 as L0(t) = L(t) and the local time at the upper boundary of b > 0 as

Lb(t) = U(t).

We conclude with a final definition reproduced from [1], which will allow us to generalize

the main result of this thesis from that of a local time to an occupation time from which the

local times may be derived.

Definition 2.1.13. The process Λ = (Λ(t) : t ≥ 0) is an additive functional of X if it

can be represented as Λ(t) = gt(X(u) : 0 ≤ u ≤ t) where

gt+s(X(u) : 0 ≤ u ≤ t+ s) = gs(X(u) : 0 ≤ u ≤ s) + gt(X(s+ u) : 0 ≤ u ≤ t).

Note that the occupation time
∫ t

0
f(X(s))ds is an additive functional since by a change

of variables

∫ s

0

f(X(u))du+

∫ t

0

f(X(s+ u))du =

∫ s

0

f(X(u))du+

∫ t+s

s

f(X(u))du

=

∫ t+s

0

f(X(u))du.

2.2 Large Deviations

The study of large deviations is concerned with the rate at which probabilities of rare events

decay. Naturally, if we consider the probability that a process deviates from its mean by

more than a normal amount for a prolonged period of time, we would expect this quantity

to go to zero. The question large deviations theory asks is, at what rate does this happen?

To make the concept of normal a little more precise, we know that by the Ergodic
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theorem that the lim
t→∞

1
t

∫ t

0
F (V (s))ds =

∫

R
F (v)π(dv), where π is the stationary distri-

bution for some ergodic process V . That is, for large t, 1
t

∫ t

0
F (V (s))ds is well approx-

imated by its expected value. Furthermore, by the Functional Central Limit theorem

lim
t→∞

1
σ
√
t

(

∫ t

0
F (V (s))ds−

∫

R
F (v)π(dv)

)

= G(t) where G(t) is a standard Gaussian process.

From this we may see that
∫ t

0
F (V (s))ds deviates from its mean by an amount of order

√
t,

where deviations smaller than
√
t can be described by its variance, σ2. These deviations are

considered normal and deviations in excess of
√
t are considered large.

Most of what follows in this subsection may be found in [13, 5].

2.2.1 Preliminaries for Large Deviations

In this short subsection, we simply list some elementary facts that will be useful in our

discussion for Chapter 3. For the remainder of the thesis, we denote the domain of a function

f as Df .

Definition 2.2.1. A set C is convex if for any x, y ∈ C and any 0 ≤ α ≤ 1, we have

αx+ (1− α)y ∈ C.

Definition 2.2.2. A function f : R→ R is convex if the domain of f is a convex set and

if for all x, y ∈ Df , and α with 0 ≤ α ≤ 1, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Definition 2.2.3. The c-level set of a function f : R→ R is defined as {x ∈ Df : f(x) = c}.

Definition 2.2.4. A function f : R→ [−∞,∞] is lower semi-continuous if either of the

following is satisfied:

(i) if it has closed level sets.

(ii) lim inf
n→∞

f(xn) ≥ f(x) for all xn and x such that xn → x in R.

Theorem 2.2.1. (Heine-Borel) A closed and bounded set is compact.
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Theorem 2.2.2. (Holder’s Inequality) For random variables X, Y let 0 < r < s then

E[|X|r] ≤ (E[|Xs|]) rs .

2.2.2 Definitions and Results

Large deviations theory hinges on two main definitions, that of the rate function and estab-

lishing what it means to satisfy a large deviation principle (LDP). From these two definitions,

the theory attempts to compile and establish results for various types of sequences, how to

ascertain when an LDP is satisfied and at which rate of decay.

Definition 2.2.5. The function I : R→ [0,∞] is called a good rate function if

(1) I 6≡ ∞;

(2) I is lower semi-continuous;

(3) I has compact level sets.

We note that if I has compact level sets then it surely has closed level sets and so condition

(3) implies (2). We state it to distinguish between a good rate function and a rate function,

where the latter simply has closed level sets.

When we consider deviations in excess of
√
t, their probability will tend toward zero.

The rate function helps one quantify the rate of decay related to the probability of a large

deviation. For example, if we consider a >
∫

R
F (v)π(dv) and deviations are of size t, then if

we can establish that lim
t→∞

1
t
logP(

∫ t

0
F (V (s))ds > at) = −IF,t(a), where I is the rate function,

we may see that P(
∫ t

0
F (V (s))ds > at) = e−tIF,t(a)+o(t) and so the decay is exponential in t.

The following definition broadens the scope of this idea.

Definition 2.2.6. A sequence of probability measures (Pt) on R is said to satisfy the large

deviation principle with rate t and with good rate function I if

(1) lim sup
t→∞

1
t
logPt(C) ≤ − inf

x∈C
I(x) ∀C ⊂ R closed;

(2) lim inf
t→∞

1
t
log Pt(O) ≥ − inf

x∈O
I(x) ∀O ⊂ R open.
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Theorem 2.2.3. Let (Pt) satisfy the large deviation principle. Then the associated rate

function I is unique.

We move immediately to a discussion of the Gärtner-Ellis theorem as this is what will

allow us to establish a large deviation principle. Going forward we make the following

assumptions:

(1) lim
t→∞

1
t
logE[eθΛ(t)] = ψ(θ) ∈ [−∞,∞] exists;

(2) 0 ∈ int(Dψ), with Dψ = {θ ∈ R : ψ(θ) <∞}, i.e. the domain of ψ(θ).

The Gärtner-Ellis theorem helps establish a large deviation principle by knowing the

limiting behavior of the cumulant generating function. This quantity arises in the proof of

the upper bound for the LDP after an exponential Chebyshev inequality, which ultimately

leads to the identification of the rate function as the Legendre transform of ψ(θ). If a large

deviation principle is to be satisfied, then the lower bound must also result in the same rate

function which is confirmed by tilting the probability measure Pt(O) and so we present the

Legendre transform next.

Definition 2.2.7. Let ψ∗ denote the Legendre transform of ψ, then for x ∈ R,

ψ∗(x) = sup
θ∈R

[θx− ψ(θ)].

The fact that ψ∗(x) is a good rate function can be verified by checking the conditions

of the definition in turn. We offer a quick sketch, but full details may be found in [5, 13].

Non-negativity is assured by setting θ = 0 and noting that ψ∗(x) ≥ −ψ(0) = 0. Lower semi-

continuity can be checked by directly applying the second definition provided. This assures

we have closed level sets. Bounded level sets are shown by noting that ψ is continuous in a

δ−neighborhood around 0 so sup
θ∈(−δ,δ)

ψ(θ) = c =⇒ ψ∗(x) ≥ δ|x| − c. Finally, ψ∗ 6≡ ∞ since

there exists an x0 for which ψ(θ) ≥ x0θ for all θ ∈ R =⇒ ψ∗(x0) = 0.

Theorem 2.2.4. (Gärtner-Ellis Theorem) If ψ satisfies:

(1) ψ is lower semi-continuous on R,
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(2) ψ is differentiable on int(Dψ),

(3) either Dψ = R or lim
θ→∂Dψ :θ∈Dψ

|∇ψ(θ)| =∞,

then (Pt) satisfies a large deviation principle on R with rate t and rate function ψ∗.

Trying to directly compute the rate function using a probability density might prove to

be intractable in many situations. Although the Gärtner-Ellis theorem was developed as an

extension from the i.i.d. cases to those of moderate dependence, like Markovian sequences,

it can also serve as a general indirect way to satisfy the large deviation principle.

2.3 Description of a Jump Diffusion

By the end of this section we would like to culminate to an understanding of the jump

diffusion model. Before doing so, we briefly introduce the Lévy process as it will help in

describing some of the details necessary to get a better grasp of a jump diffusion. Many of

the definitions of the first subsection are fully developed in [15], while the second subsection

can be found mostly in [20, 18, 19].

2.3.1 The Lévy Process

Brownian motion is a continuous process of unbounded variation and the Poisson process

is a non-decreasing jump process of finite variation. Yet, it is commonly known that they

are both cases of a more general process with cadlag paths, starting at the origin and with

stationary independent increments, the Lévy process.

Definition 2.3.1. A process X = {X(t)}t≥0, defined on a probability space (Ω,F ,P), is
said to be a Lévy process if it posses the following properties:

(1) The paths of X are P-almost surely cadlag.

(2) P(X(0) = 0) = 1.

(3) For 0 ≤ s ≤ t,X(t)−X(s) is equal in distribution to X(t− s).

(4) For 0 ≤ s ≤ t,X(t)−X(s) is independent of {X(u) : u ≤ s}
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It is helpful to visualize a Lévy process as a Brownian motion, with jumps dictated by a

Poisson process. Of course one can easily extend this idea to a Brownian motion with drift

and jumps dictated by a compound Poisson process. Before we do so, we will introduce the

Lévy-Khintchine formula which will make this characterization intuitive.

Theorem 2.3.1. (Lévy-Khintchine formula for Lévy processes) Suppose that µ ∈
R, σ ∈ R and ν is a measure on R such that ν({0}) = 0 and

∫

R
(1 ∧ x2)ν(dx) < ∞. From

this triple, that is the Lévy triple (µ, σ, ν), define for each θ ∈ R,

Ψ(θ) = iµθ +
1

2
σ2θ2 +

∫

R

(1− eiθx + iθx1{|x|<1})ν(dx).

Then there exists a probability space (Ω,F ,P) on which a Lévy process is defined having

characteristic exponent Ψ.

Put briefly, we may immediately recognize the first two terms as belonging to the expo-

nent of the characteristic function for a normal distribution with mean µ and variance σ2.

As Brownian motion with drift has independent stationary N (µ, σ2) increments, we can see

these first two terms relate to the continuous part of the Lévy process. On the other hand,

the first two terms in the integral belong to the characteristic function of a compound Poisson

process, while the last term compensates for a possible measure with infinite jumps in finite

time. Since the continuous part and the jump part act independently, we may multiply their

respective characteristic functions and see where this characteristic exponent comes from. It

is in this sense that a Lévy process may be seen as a Brownian motion, with jumps dictated

by a compound Poisson process. As this is not our focus, we will refer the reader to [15] for

the computations and further explanations. However, we would like to pay close attention

to the measure ν.

Definition 2.3.2. The measure ν on R defined by ν({0}) = 0 and
∫

R
(1 ∧ x2)ν(dx) <∞ is

called the Lévy measure.

A more intuitive description of the Lévy measure is that it characterizes the expected

number of jumps of a certain size in a small interval of time. For now, of importance to

us is the condition
∫

R
(1 ∧ x2)ν(dx) < ∞. If we consider |x| > 1, intuitively jumps of
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absolute size greater than 1, we can see that the expected number of large jumps is finite,

i.e.
∫

|x|>1
ν(dx) < ∞. The alternative, small jumps of size less than 1, only leaves us with

the requirement that ν be square integrable, but with possibly infinite jumps on any small

interval of time.

Lemma 2.3.1. For a Lévy measure ν and a process X, if
∫

|x|≤1
|x|ν(dy) <∞ then the jumps

of X have bounded variation.

From this, we may see that the sum of all the jumps of X is an absolutely convergent

series and so we may infer that this sum is finite. In Section 3.1, we will require the jump

component of our process to be of bounded variation. This will ensure that even for small

jumps, we will have finite jump activity.

The Lévy measure provides a way to explain the expected number of jumps of a certain

size in an interval, but it does not tell us much about where the jumps occur nor of which

size.

Definition 2.3.3. Let N : [0,∞)× R→ {0, 1, 2, ...} ∪ {∞} with intensity measure ν, then

N is called a Poisson random measure if

(1) for mutually disjoint A1, ..., An ∈ [0,∞)× R, the variables N(A1), ..., N(An) are inde-

pendent,

(2) for each A ∈ [0,∞)× R, N(A) is Poisson distributed with parameter ν(A),

From this definition we may see that for any set A ∈ [0,∞) × R, the Poisson random

measure will count how many instances of the set occur. A may be interpreted as an interval

of time and the corresponding size of the jump, thus counting how many jumps of that size

will occur in that interval. The resulting set of points counted by the Poisson random measure

form the marked point process where the distribution of the mark variable is described by

the measure ν.

Before we move on to diffusion processes, we introduce some familiar terminology. The

Markov property is an important characteristic of diffusions and has even given name to the

Markov process argument; the argument this thesis applies to establish the conditions for

the martingale that will be used. From such a process we may derive an integro-differential
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equation, given by the infinitesimal generator, from which a number of analytical conclusions

may be reached, most notably the limiting behavior of the cumulant generating function

which we will be interested in later.

Definition 2.3.4. The process X = {X(t)}t≥0 posses the Markov property if, for each

B ∈ R and s, t ≥ 0,

P(X(t+ s) ∈ B|Ft) = P(X(t+ s) ∈ B|σ(X(t))).

Definition 2.3.5. For the stopping time τ , define the sigma algebra

Fτ ≡ {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Then, the process X is said to satisfy the strong Markov property if, for each stopping

time, τ,

P(X(τ + s) ∈ B|Fτ ) = P(X(τ + s) ∈ B|σ(X(τ))) on {τ <∞}.

The classic intuition behind the Markov property is that one need only rely on the

current time and can safely disregard the history in order to compute probabilities. The

strong Markov property takes it one step further in that it specifies the current time can be

at a stopping time. The strong Markov property naturally contains the Markov property by

setting τ = t.

It is natural to think of a Lévy process as a strong Markov process due to its indepen-

dent increments, although not a necessary condition, and so we conclude with the following

theorem whose proof may be found in [15].

Theorem 2.3.2. A Lévy processes is a strong Markov process.

2.3.2 Diffusion Processes

In this section we break the stationarity condition of the Lévy process and introduce the

diffusion. This process retains independence of its increments and the strong Markov prop-

erty, which we will see plays a major role in defining them. We introduce some preliminary
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concepts which will be necessary for the existence of the solutions to the discussed stochastic

differential equations.

Definition 2.3.6. A function f : R+×R
n → R is Lipschitz if there exists a finite constant

k such that

(1) |f(t, x)− f(t, y)| ≤ k|x− y|, for each t ∈ R
+, and

(2) t 7→ f(t, x) is right continuous with left limits, for each x ∈ R
n.

f is said to be autonomous if f(t, x) = f(x), for all t ≥ 0.

The Lipschitz condition ensures that the coefficient functions of our stochastic differential

equations do not become infinitely steep at any point and the autonomous condition will be

satisfied as we will be dealing exclusively with time homogeneous equations going forward.

We note that if a function is Lipschitz, then it must be continuous.

Theorem 2.3.3. Let Z = (Z1, ..., Zd) be a vector of independent Lévy processes starting at

0, and let (fj), 1 ≤ j ≤ d, be autonomous Lipschitz functions. Let X be a solution of

X(t) = X(0) +
d
∑

j=1

∫ t

0

fj(s−, X(s−))dZj(s).

Then X has the strong Markov property.

Definition 2.3.7. An adapted process X with values in R is a diffusion if it has continuous

sample paths and if it satisfies the strong Markov property.

Example 2.3.1. A famous example is the Itô diffusion which is the stochastic process X

satisfying a stochastic differential equation of the form

X(t) = X(0) +

∫ t

0

µ(X(s))ds+

∫ t

0

σ(X(s))dB(s)

where B(t) is a standard Brownian motion, µ : R → R and σ : R → R satisfying the

Lipschitz condition |µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ D|x− y| for x, y ∈ R and some constant

D. We stress that it is time homogeneous, which makes it autonomous and it satisfies the

Lipschitz conditions by assumption, so it possesses the strong Markov property.

19



We note that the quadratic variation of the Itô diffusion is
∫ t

0
σ2(X(s))ds. A short sketch

of this proof starts by noting that the problem reduces to finding the quadratic variation of
∫ t

0
σ(X(s))dB(s) for which [20] provides a formula resulting in

∫ t

0
σ2(X(s))d[B]s and after

applying the identity d[B]t = dt, we arrive at the conclusion.

Definition 2.3.8. A càdlàg process X is a jump diffusion if it is the solution to the time

homogeneous Lévy stochastic differential equation

X(t) = X(0) +

∫ t

0

µ(X(s))ds+

∫ t

0

σ(X(s))dB(s) +

∫ t

0

∫

M
γ(X(s−), y)p(dy, ds)

where µ : R→ R, σ : R→ R and γ : R×R→ R satisfy the appropriate Lipschitz and linear

growth conditions for existence and uniqueness and p(dy, dt) is a random counting measure

onM× (0,∞) with intensity measure ν(x, dy), where the mark spaceM is assumed to be

a subset of Euclidean space.

It is necessary to generalize the Poisson random measure to a general counting measure in

order to account for the state-dependent intensity. That is, the difference between ν(x, dy)

and ν(dy) from the previous section, is that the intensity measure now depends on the

current state of the process, X(t−). Then by definition of the intensity measure, we have

that for all bounded and measurable functions h :M→ R,

∫ t

0

∫

M
h(y)p(dy, ds)−

∫ t

0

∫

M
h(y)ν(x, dy)ds

forms a local martingale [10].

We further assume that we have jumps of bounded variation,
∫

|y|≤1
|y|ν(x, dy) <∞, and

that the intensity measure ν(x, dy) is of the form λ(x)ρ(dy) where λ : R → R is the arrival

rate function for the jumps, satisfying appropriate Lipschitz and linear growth conditions,

and ρ is the probability measure onM. Then we may interpret
∫ t

0

∫

M γ(X(s−), y)p(dy, ds)
as the sum of the jumps on (0, t] with law (λ(x), ρ(dy), γ(x, y)).

Putting it all together, we may represent our stochastic differential equation as

X(t) = X(0) +

∫ t

0

µ(X(s))ds+

∫ t

0

σ(X(s))dB(s) +
∑

0<s≤t
∆X(s)
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where µ(X(t)) is the drift function, σ(X(t)) is the volatility function and ∆X(s) = X(s)−
X(s−) = γ(X(s−), y) is the jump size, with an arrival rate λ(X(s−)), and ρ−distributed
mark variables y.

From this we may see how the Lévy process is a particular case of a jump diffusion with

constant coefficient functions. Symmetrically to the previous subsection, we conclude with

the following theorem whose result follows from Theorem 2.3.3 as found in [19].

Theorem 2.3.4. A jump diffusion is a strong Markov process.

2.4 Simulation Methods

Simulation methods allow one to reach numerical solutions where analytic ones are otherwise

intractable. In the first subsection, we summarize how to discretize a stochastic process

through the Euler-Maruyama approximation and follow it up with a discussion on the Monte

Carlo simulation method to approximate the value of an expectation. A fully detailed account

of these techniques may be found in standard textbooks such as [14, 21]. In the following

subsection, we revisit some Stochastic Analysis topics which are used to derive the algorithms

in Chapter 4, for which we provide as a reference [20].

2.4.1 Approximation Techniques

Euler-Maruyama

In order to simulate a continuous model with a computer that will only accept discrete inputs

one must approximate the space. A common technique to do this is the Euler-Maruyama

approximation method.

Consider the Itô diffusion on [0, t],

X(t) = X(0) +

∫ t

0

µ(X(s))ds+

∫ t

0

σ(X(s))dB(s)

which may be rewritten in differential form

dX(t) = µ(X(t))dt+ σ(X(t))dB(t).
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From this, we see that X(t) = X(t−) + dX(t).

If we divide the time interval [0, t] into N subintervals of equal size h = t
N
, then we have

a discretization 0 = τ0 < τ1 < τ2 < ... < τn < ... < τN = t which makes it intuitive to

consider dt = τn+1 − τn and dB(t) = B(τn+1) − B(τn). Therefore, we say that the Euler

approximation to the continuous time stochastic process X satisfies the iterative scheme

Xn+1 = Xn + µ(Xn)(τn+1 − τn) + σ(Xn)(B(τn+1)− B(τn)).

Of course we know that Brownian increments are distributed according to the normal

distribution with mean 0 and variance τn+1 − τn. If we let N denote the standard normal

random variable, then we may rewrite the Brownian increment as

B(τn+1)− B(τn) =
√
τn+1 − τnN .

There remains an issue of finding the value of X(τ) should τ ∈ (τn, τn+1), that is, in

between the discretization steps. The workaround is to use a linear interpolation scheme,

X(τ) = X(τn) +
τ − τn
τn+1 − τn

(X(τn+1)−X(τn)).

Monte Carlo

The Monte Carlo method is an effective way to evaluate an expectation when analytically

computing it is intractable. It is based on the law of large numbers which roughly states

that taking the mean of a large enough sample of i.i.d. random variable will converge to

their expected value.

Theorem 2.4.1. (Strong Law of Large Numbers) Let X1, X2, ... be independent iden-

tically distributed random variables. Then

1

k

k
∑

i=1

g(Xi)→ E[g(X)]

with probability 1, as k →∞.
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By repeatedly sampling a distribution, one may evaluate the expectation by simply taking

the mean of all the samples. Naturally, the more samples one draws, the higher the accuracy

between the sample mean and the actual expectation. Using the central limit theorem for

i.i.d. random variables, we may build a confidence interval to see this.

Theorem 2.4.2. (Central Limit Theorem) Let X1, X2, ... be a sequence of independent

identically distributed random variables. Then

1
k

∑k
i=1 g(Xi)− E[g(X)]

S√
k

→ N (0, 1)

in distribution, as k → ∞, where N (0, 1) denotes the standard normal distribution and S

denotes the sample standard deviation of the distribution.

From this we may build (1 − α)100% confidence intervals for E[g(X)], with z being a

standard normal random variable, as

(

1

k

k
∑

i=1

g(Xi)− zα/2
S√
k
,
1

k

k
∑

i=1

g(Xi) + zα/2
S√
k

)

.

As we consider k → ∞, we expect the variability around the estimate to tend to zero and

so the difference between the estimate and the true expectation should also tend to zero.

2.4.2 Stochastic Analysis Revisited

Stochastic Time Change

Definition 2.4.1. Let A = (A(t))t≥0 be an adapted, right continuous increasing process.

The change of time associated with A is the process

τt = inf{s > 0 : A(s) > t}.

A time change allows for a warping of the time scale in such a way that one stochas-

tic process may take the properties of another. For example, if we consider, X(t) as an

inhomogeneous Poisson process with rate λ(t), we may want to warp the time scale so as
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to result in a process with unit intensity rather than time dependent intensity. We do

this by defining an increasing sequence of stopping times τ1 < τ2 < ... in such a way that

τi+1 = inf{t > τi :
∫ t

τi
λ(s)ds > E(1)} where E(1) is a standard exponential random variable.

Essentially, we are stretching out the time where the intensity is very high and compressing

the time where the intensity is very low. The new time changed process Xτ , exists on a time

scale where the old increments are now unequally spaced to line up with the intensity of the

standard Poisson process.

Doob’s Optional Sampling Theorem

Definition 2.4.2. AmartingaleM is said to be closed by a random variable Y if E[|Y |] <∞
and M(t) = E[Y |Ft], 0 ≤ t <∞.

Theorem 2.4.3. (Doob’s Optional Sampling Theorem) Let M be a right continuous

martingale, which is closed by a random variable Y = lim
t→∞

M(t). Let τ1 and τ2 be two

stopping times such that τ1 ≤ τ2 a.s. Then M(τ1) and M(τ2) are integrable and

M(τ1) = E[M(τ2)|Fτ1 ] a.s.

If the conditions of the theorem are satisfied, we may calculate the value of the expectation

knowing the value of the martingale at the current stopping time. In particular, if we define

the stopping time τ1 = 0 and τ2 = τ then we see that M(0) = E[M(τ)|F0].
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Chapter 3

Main Result

3.1 Model Setup

We begin from where we left off with Section 2.3.2. Assuming
∫

|y|≤1
|y|ν(x, dy) <∞, so that

the sum of the jumps are assured to converge absolutely for t <∞, then we have for suitably

chosen coefficient functions, a process X that solves the equation,

X(t) = X(0) +

∫ t

0

µ(X(s))ds+

∫ t

0

σ(X(s))dB(s) +
∑

0<s≤t
∆X(s),

where the triple governing the jump component is (λ(X(s−), ρ(dy), γ(X(s−), y)).
The remainder of this thesis is not focused directly on the jump diffusion but rather the

process V generated by reflecting X at the lower boundary of 0 and the upper boundary of

b > 0. We may imagine V (t), starting at V (0) ∈ [0, b], following X(t) until it is about to

cross either of the two boundaries, call this time τ−. At this point, X(τ−) may either move

continuously or jump. If we are at the lower boundary, the amount X(τ) −X(τ−) is then
added to a non-decreasing process L, which is then itself added to V (τ). Likewise, if we

were at the upper boundary instead, the amount X(τ)−X(τ−) would be added to another

non-decreasing process U , which is then subtracted from V (τ). This then repeats on [0, t],

keeping V within the interval [0, b].
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Formally, V is defined as the solution to the Skorokhod problem

V (t) = V (0) +X(t) + L(t)− U(t) ∈ [0, b], ∀t ≥ 0

where L, U are non-decreasing right-continuous processes such that

∫ ∞

0

V (t)dL(t) = 0,

∫ ∞

0

(b− V (t))dU(t) = 0.

In this context, the coefficients of the non-reflected jump diffusion X(t) are understood

to depend on the state of V (t) so that

X(t) = X(0) +

∫ t

0

µ(V (s))ds+

∫ t

0

σ(V (s))dB(s) +
∑

0<s≤t
∆X(s)

where the triple governing the jump component is (λ(V (t−)), ρ(dy), γ(V (t−), y)).

Figure 3.1: Example of a reflected jump diffusion. Black: V, Blue: X, Green: L, Red: U

Intuitively, the process L(t) represents the cumulation of all the reflections necessary to

keep V (t) ≥ 0 on [0, t], called the lower boundary local time. Likewise, U(t) is the cumulation

of all the reflections necessary to keep V (t) ≤ b and is the upper boundary local time.
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This thesis focuses on the practical implementations of the local time at the lower bound-

ary. Therefore, to avoid duplicating the same arguments, we oftentimes perform the calcu-

lations for L(t) and note that the same holds for U(t). In this light, the local time at the

lower boundary can be computed as follows,

L(t) = lim
ε→0+

1

2ε

∫ t

0

1{V (s)<ε}ds

= lim
ε→0+

1

2ε

∫ t

0

1{V (s−)+∆X(s)<0} + 1{V (s−)+∆X(s)∈[0,ε)}ds

=

∫ t

0

1{V (s−)+∆X(s)<0}ds+ lim
ε→0+

1

2ε

∫ t

0

1{V (s−)+∆X(s)∈[0,ε)}ds

=
∑

0<s≤t
[−(V (s−) + ∆X(s))]+ + Lc(t)

where the superscript c denotes the continuous part of the local time. The last equality

follows from the occupation density formula, which intuitively allows us to slice the integral

vertically with respect to time or horizontally with respect to space and arrive at the same

result. From this equation, it is evident that L(t) will only increase in the event of a jump

below 0 or a continuous crossing below 0. We arrive at the expression −(V (s−)+∆X(s)) by

noting that if there is in fact a jump below 0, ∆V (s) = V (s)− V (s−) = ∆X(s) + ∆L(s)−
∆U(s) =⇒ ∆L(s) = −(V (s−) + ∆X(s)), since V (s) = ∆U(s) = 0. If there is a going to

be a continuous crossing, L(t) grows by infinitesimal amounts, which is represented by Lc(t).

A similar computation will find that U(t) =
∑

0<s≤t
[(V (t−) + ∆X(t))− b]+ + U c(t).

It is possible to generalize the boundary local times L and U by considering the additive

functional Λ(t) of the form

Λ(t) =

∫ t

0

f(V (s))ds+
∑

0<s≤t
f̃(V (s−),∆X(s)) + r1L

c(t) + r2U
c(t)

where r1 and r2 are constants. We also assume that the function f is bounded, that f̃(x, 0) =

0, and that

sup
0≤x≤b

∫

R

∣

∣

∣
f̃(x, y)

∣

∣

∣
ν(x, dy) <∞.

Note that L may be recovered from Λ(t) by setting f ≡ 0, f̃ = [−(x + y)]+, r1 = 1 and
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r2 = 0 and likewise, U may be recovered by setting f ≡ 0, f̃ = [(x + y) − b]+, r1 = 0 and

r2 = 1.

Finally, we present a notational simplification which will be useful later. Let,

r(x, y) =



























0 x+ y ≤ 0

x+ y 0 ≤ x+ y ≤ b

b x+ y ≥ b

and we note that V (s) = r(V (s−),∆X(s)) whenever ∆X(s) 6= 0.

3.2 Preliminary Results

In this section, we introduce a series of lemmas so as to keep the proof of Theorem 3.3.1 from

being unnecessarily long. First we show that V (t) and Λ(t) are semimartingales as these are

necessary conditions to apply Itô’s formula. Following that, we compute various quadratic

variations and covariations. Finally, we construct the compensator of a process that is used

in our exposition later.

3.2.1 Λ(t) and V (t) are Semimartingales

Showing that Λ(t) and V (t) are semimartingales boils down to decomposing the respective

processes into their component parts and showing that the individual terms are either local

martingales or finite variation processes. This stems from the fact that the sum of local

martingales is itself a local martingale and the sum of finite variation processes is itself a

finite variation process. Therefore, when adding all the terms together, it will imply that

the sum forms a semimartingale.

Lemma 3.2.1. L(t) and U(t) are finite variation processes.

Proof. This is obvious since L(t) and U(t) are non-decreasing processes.

Lemma 3.2.2. X(t) is a semimartingale.
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Proof. X(t) may be decomposed into the sum of the following three terms,
∫ t

0
µ(V (s))ds,

X(0) +
∫ t

0
σ(V (s))dB(s) and

∑

0<s≤t
∆X(s). For the first term, note that

sup
P

n−1
∑

i=1

∣

∣

∣

∣

∫ ti+1

0

µ(V (s))ds−
∫ ti

0

µ(V (s))ds

∣

∣

∣

∣

=sup
P

n−1
∑

i=1

∣

∣

∣

∣

∫ ti+1

ti

µ(V (s))ds

∣

∣

∣

∣

≤ sup
P

n−1
∑

i=1

∫ ti+1

ti

|µ(V (s))|ds

<∞

since µ(x) is Lipschitz continuous on a closed interval [0, b] and V (s) is bounded, then µ(V (s))

is bounded. Also, the sum of bounded functions is bounded.

The termX(0)+
∫ t

0
σ(V (s))dB(s) is a continuous term in the Itô diffusion so lim

s→t−
σ(V (s)) =

σ(V (t)), making it predictable. Then by Lemma 2.1.4, X(0) +
∫ t

0
σ(V (s))dB(s) is a local

martingale.

Finally, the jump part of X(t) is governed by (λ(V (t−)), ρ(dy), γ(V (t−), y)) where we

have assumed
∫

|y|≤1
|y|ν(x, dy) <∞. Therefore, the sum of the jumps converges absolutely,

and so

sup
P

n−1
∑

i=1

∣

∣

∣

∣

∣

∣

∑

0<s≤ti+1

∆X(s)−
∑

0<s≤ti

∆X(s)

∣

∣

∣

∣

∣

∣

≤ sup
P

n−1
∑

i=1

∑

ti<s≤ti+1

|∆X(s)| <∞.

This implies
∑

0<s≤t
∆X(s) must be of finite variation and by consequence X(t) is a semi-

martingale.

By the previous two lemmas, we have shown that V (t) is a semimartingale. We are left

to show that Λ(t) is a semimartingale. To do so we apply the same techniques mentioned

above and so summarize it quickly in the following lemma.

Lemma 3.2.3. Λ(t) is a semimartingale.

Proof. Since we assumed f(x) is bounded, then by the same argument for
∫ t

0
µ(V (s))ds,

we conclude that
∫ t

0
f(V (s))ds is of finite variation. Again, by assumption we have that

sup
0≤x≤b

∫

R

∣

∣

∣
f̃(x, y)

∣

∣

∣
ν(x, dy) <∞ so

∑

0<s≤t
f̃(V (s−),∆X(s)) converges absolutely and therefore,
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must be of finite variation. By consequence, Λ(t) is the sum of finite variation processes

making it a semimartingale.

3.2.2 Computations of [V ]c
t
, [Λ]c

t
, [V,Λ]c

t

Note that for a partition {ti} on [0, t], as max |ti+1 − ti| → 0 then Lc(ti+1)− Lc(ti)→ 0 and

U c(ti+1)− U c(ti)→ 0, since they are continuous non-decreasing processes.

[V ]ct = lim
max |ti+1−ti|→0

n−1
∑

i=0

(V c(ti+1)− V c(ti))
2

= lim
max |ti+1−ti|→0

n−1
∑

i=0

(Xc(ti+1)−Xc(ti) + Lc(ti+1)− Lc(ti)− (U c(ti+1))− U c(ti)))
2

= lim
max |ti+1−ti|→0

n−1
∑

i=0

[

(Xc(ti+1)−Xc(ti))
2+ (Lc(ti+1)− Lc(ti)− (U c(ti+1))− U c(ti)))

2

+2(Xc(ti+1)−Xc(ti)) (L
c(ti+1)− Lc(ti)− (U c(ti+1))− U c(ti)))]

= lim
max |ti+1−ti|→0

n−1
∑

i=0

(Xc(ti+1)−Xc(ti))
2

=

∫ t

0

σ2(V (s))ds

The final equality follows from Example 2.3.1 by noting that Xc(t) is just an Itô diffusion.

Continuing, we note that

lim
max |ti+1−ti|→0

Λc(ti+1)− Λc(ti)

= lim
max |ti+1−ti|→0

∫ ti+1

0

f(V (s))ds+ r1L
c(ti+1) + r2U

c(ti+1)

− lim
max |ti+1−ti|→0

∫ ti

0

f(V (s))ds+ r1L
c(ti) + r2U

c(ti)

= lim
max |ti+1−ti|→0

[∫ ti+1

ti

f(V (s))ds+ r1(L
c(ti+1)− Lc(ti)) + r2(U

c(ti+1)− U c(ti))

]

= 0
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Consequently,

[Λ]ct = lim
max |ti+1−ti|→0

n−1
∑

i=0

(Λc(ti+1)− Λc(ti))
2 = 0

[V,Λ]ct = lim
max |ti+1−ti|→0

n−1
∑

i=0

(V c(ti+1)− V c(ti))(Λ
c(ti+1)− Λc(ti)) = 0

3.2.3 Computation of the Compensator

In this subsection we compute that compensator of the process

Y (t) =
∑

0<s≤t
A(s−)[eθf̃(V (s−),∆X(s))u(θ, V (s))− u(θ, V (s−))]

where A(s−) = eθΛ(s−)−ψ(θ)s−, u(θ, x) is a positive twice differentiable function and ψ(θ) is a

scalar. We eventually use this compensator in the proof of Theorem 3.3.1 to assert that the

result of Y (t) less its compensator is a local martingale, however this is immediate by the

discussion in Section 2.3.2.

Define an increasing sequence of stopping times 0 = τ0 ≤ τ1 ≤ ..., the compensator of

Y (t) is given by

lim
sup
n

|τn−τn−1|→0

∞
∑

n=1

1{τn−1<t}E[Y (τn)− Y (τn−1)|Fτn−1 ]

= lim
sup
n

|τn−τn−1|→0

∞
∑

n=1

1{τn−1<t}

∫

R

∑

0<s≤τn

[

A(s−)[eθf̃(V (s−),y)u(θ, V (s))− u(θ, V (s−))]

−
∑

0<s≤τn−1

A(s−)[eθf̃(V (s−),y)u(θ, V (s))− u(θ, V (s−))



 ν(x, dy)

= lim
sup
n

|τn−τn−1|→0

∞
∑

n=1

1{τn−1<t}

∫

R

[

A(τn−1)[e
θf̃(V (τn−1),y)u(θ, r(V (τn−1), y))

− u(θ, V (τn−1))] +
∑

0<s≤τn−1

A(s−)[eθf̃(V (s−),y)u(θ, V (s))− u(θ, V (s−))]

−
∑

0<s≤τn−1

A(s−)[eθf̃(V (s−),y)u(θ, V (s))− u(θ, V (s−))]



 ν(x, dy)
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= lim
sup
n

|τn−τn−1|→0

∞
∑

n=1

1{τn−1<t}

∫

R

A(τn−1)[e
θf̃(V (τn−1),y)u(θ, r(V (τn−1), y))

− u(θ, V (τn−1))]ν(x, dy)

=

∫ t

0

A(s−)
∫

R

[eθf̃(V (s−),y)u(θ, r(V (s−), y))− u(θ, V (s−))]ν(x, dy)ds

The last equality follows as a limit of Riemann sums.

3.3 Main Result

In order to arrive at a large deviation result for Λ, we first need to establish the limit of its

cumulant generating function from which the Gärtner-Ellis theorem may be applied. This

section is split into two subsections. The first is concerned with establishing this limit and

the second with finding the rate function from which to establish the large deviation result.

3.3.1 Limit of the Cumulant Generating Function

Using a typical Markov process argument, we are able to establish the limiting behavior of

the cumulant generating function. This is done by constructing an appropriate martingale

from which the limit is established and deriving the integro-differential equation that may

be used to analytically compute the limit.

Theorem 3.3.1. Fix θ ∈ R. Suppose that µ(x) and σ(x) are bounded and

∫

R

eθf̃(x,y)ν(x, dy) <∞.

If there exists a positive twice differentiable function u(θ, x) : R × [0, b] → R and a scalar

ψ(θ) such that the pair (u(θ, x), ψ(θ)) satisfies the integro-differential equation

0 =µ(x)ux(θ, x) +
1

2
σ2(x)uxx(θ, x) + (θf(x)− ψ(θ))u(θ, x)

+

∫

R

[eθf̃(x,y)u(θ, r(x, y))− u(θ, x)]ν(x, dy) (3.3.1)
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for 0 ≤ x ≤ b and subject to the boundary conditions

ux(θ, 0) = −r1θu(θ, 0), ux(θ, b) = r2θu(θ, b)

then M(θ, t) = eθΛ(t)−ψ(θ)tu(θ, V (t)) is a martingale.

Proof. For notational convenience, we define A(s) = eθΛ(s)−ψ(θ)s. An application of Itô’s

formula shows:

M(θ, t)−M(θ, 0) =

∫ t

0

−ψ(θ)A(s−)u(θ, V (s−))ds

+

∫ t

0

θA(s−)u(θ, V (s−))dΛc(s)

+

∫ t

0

A(s−)ux(θ, V (s−))dV c(s)

+
1

2

∫ t

0

A(s−)uxx(θ, V (s−))d[V ]cs

+
∑

0<s≤t
[A(s)u(θ, V (s))− A(s−)u(θ, V (s−))]

M(θ, t)−M(θ, 0) =

∫ t

0

−ψ(θ)A(s−)u(θ, V (s−))ds

+

∫ t

0

θA(s−)u(θ, V (s−))[f(V (s−))ds+ r1dL
c(s) + r2dU

c(s)]

+

∫ t

0

A(s−)ux(θ, V (s−))[µ(V (s−))ds+ σ(V (s−))dB(s)]

+

∫ t

0

A(s−)ux(θ, V (s−))[dLc(s)− dU c(s)]

+
1

2

∫ t

0

A(s−)uxx(θ, V (s−))σ2(V (s−))ds

+
∑

0<s≤t
[A(s−)eθf̃(V (s−),∆X(s))u(θ, V (s))− A(s−)u(θ, V (s−))]

M(θ, t)−M(θ, 0) =

∫ t

0

A(s)[(θf(V (s))− ψ(θ))u(θ, V (s))]ds

+

∫ t

0

A(s)[µ(V (s))ux(θ, V (s)) +
1

2
σ2(V (s))uxx(θ, V (s))]ds
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+

∫ t

0

A(s)[θr1u(θ, 0) + ux(θ, 0)]dL
c(s)

+

∫ t

0

A(s)[θr2u(θ, b)− ux(θ, b)]dU c(s)

+

∫ t

0

A(s)ux(θ, V (s))σ(V (s))dB(s)

+
∑

0<s≤t
A(s−)[eθf̃(V (s−),∆X(s))u(θ, V (s))− u(θ, V (s−))]

M(θ, t)−M(θ, 0) =

∫ t

0

A(s)ux(θ, V (s))σ(V (s))dB(s) (3.3.2)

+
∑

0<s≤t
A(s−)[eθf̃(V (s−),∆X(s))u(θ, V (s))− u(θ, V (s−))]

−
∫ t

0

A(s−)
∫

R

[eθf̃(V (s−),y)u(θ, r(V (s−), y))

− u(θ, V (s−))]ν(x, dy)ds

The last equality uses the fact that (u(θ, x), ψ(θ)) satisfy the integro-differential equation

(3.3.1) and the boundary conditions. For the first integral term in (3.3.2), we are considering

only the continuous part of the process V , therefore

lim
s→t−

A(s)ux(θ, V (s))σ(V (s)) = A(t)ux(θ, V (t))σ(V (t)).

This implies that A(s)ux(θ, V (s))σ(V (s)) is a predictable integrand. Furthermore, the

integrator is Brownian motion and so by Lemma 2.1.4, the first integral term is a local

martingale.

We note that the summation term in (3.3.2) is being subtracted by its compensator and

so the two terms define another local martingale. The sum of two local martingales is itself

a local martingale and so we may conclude that (3.3.2) is a local martingale. We are left to

show that it is a bounded local martingale to complete the proof.

Consider,

|M(θ, t)−M(θ, 0)|
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=

∣

∣

∣

∣

∫ t

0

A(s)ux(θ, V (s))σ(V (s))dB(s)

+
∑

0<s≤t
A(s−)[eθf̃(V (s−),∆X(s))u(θ, V (s))− u(θ, V (s−))]

−
∫ t

0

A(s−)
∫

R

[eθf̃(V (s−),y)u(θ, r(V (s−), y))− u(θ, V (s−))]ν(x, dy)ds
∣

∣

∣

∣

.

We can see that since u(θ, x) is twice differentiable, both u(θ, x) and ux(θ, x) are contin-

uous on a closed interval and so they must be bounded. Likewise, we have assumed jumps

of bounded variation, so A(s) and eθf̃(V (s−),∆X(s)) must be bounded on [0, t]. Since σ(x) is

a Lipschitz function and V (s) is bounded between 0 and b, then σ(V (s)) must be bounded.

Finally, we recall our assumption that
∫

R
eθf̃(V (s−),y)ν(x, dy) <∞.

Putting it all together, we conclude thatM(θ, t)−M(θ, 0) is a bounded local martingale,

ensuring that M(θ, t) is a martingale.

We assumed the function u(θ, x) is positive and we know it is bounded above and below

by constants, say K1, K2 ∈ R
+ such that 0 < K1 ≤ u(θ, x) ≤ K2. Then by the martingale

property E[M(θ, t)] = E[M(θ, 0)]. Therefore,

E[eθΛ(t)−ψ(θ)tu(θ, V (t))] = E[eθΛ(0)−ψ(θ)0u(θ, V (0))] = 1

⇐⇒ E[eθΛ(t)u(θ, V (t))] = eψ(θ)t (3.3.3)

⇐⇒ 1

t
logE[eθΛ(t)u(θ, V (t))] = ψ(θ)

⇐⇒ 1

t
logE[eθΛ(t)K1] ≤

1

t
logE[eθΛ(t)u(θ, V (t))] = ψ(θ) ≤ 1

t
logE[eθΛ(t)K2]

⇐⇒ 1

t
(logK1 + logE[eθΛ(t)]) ≤ ψ(θ) ≤ 1

t
(logK2 + logE[eθΛ(t)])

Taking limits from both sides as t→∞, we may establish that

lim
t→∞

1

t
logE[eθΛ(t)] = ψ(θ).

Now that the limiting behavior of the cumulant generating function has been established,

we may derive the expectation of Λ. To differentiate (3.3.3) with respect to θ, choose a

T > t. Since Λ(t) is a positive non-decreasing function then |eθΛ(t)u(θ, V (t))| ≤ |eθΛ(t)K2| ≤
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|eθΛ(T )K2| <∞. By the dominated convergence theorem, we may establish that

∂

∂θ
E[eθΛ(t)u(θ, V (t))] =

∂

∂θ
eψ(θ)t

⇐⇒ E[Λ(t)eθΛ(t)u(θ, V (t)) + eθΛ(t)uθ(θ, V (t))] = ψ′(θ)teψ(θ)t.

Set θ = 0, then

E[Λ(t)u(0, V (t)) + uθ(0, V (t))] = ψ′(0)teψ(0)t.

For u(0, x) = 1, uθ(0, x) = 0 and noting that ψ(0) = 0, we have derived the following,

E[Λ(t)] = ψ′(0)t.

From this, it is clear that

lim
t→∞

1

t
E[Λ(t)] = lim

t→∞

1

t
ψ′(0)t = ψ′(0).

Similarly,

∂

∂θ
E[Λ(t)eθΛ(t)u(θ, V (t)) + eθΛ(t)uθ(θ, V (t))] =

∂

∂θ
ψ′(θ)teψ(θ)t

⇐⇒ E[Λ(t)2eθΛ(t)u(θ, V (t)) + 2Λ(t)eθΛ(t)uθ(θ, V (t)) + eθΛ(t)uθθ(θ, V (t))]

= ψ′′(θ)teψ(θ)t + ψ′(θ)2t2eψ(θ)t.

Set θ = 0, then

E[Λ(t)2u(0, V (t)) + 2Λ(t)uθ(0, V (t)) + uθθ(0, V (t))] = ψ′′(0)t+ ψ′(0)2t2.

For u(0, x) = 1, uθ(0, x) = 0, uθθ(0, x) = 0, we have derived the following

E[Λ(t)2] = ψ′′(0)t+ ψ′(0)2t2.
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Therefore,

V ar(Λ(t)) =E[Λ(t)2]− E[Λ(t)]2

=ψ′′(0)t+ ψ′(0)2t2 − (ψ′(0)t)2

=ψ′′(0)t.

Which implies,

lim
t→∞

1

t
V ar(Λ(t)) = ψ′′(0).

3.3.2 Large Deviations for Λ

To establish a large deviation principle for Λ, we start by computing a good rate function

and arrive at the conclusion by means of the Gärtner-Ellis theorem. We recall that by using

Theorem 3.3.1, we have already shown lim
t→∞

1
t
logE[eθΛ(t)] = ψ(θ) and assuming 0 ∈ int(Dψ),

we have that ψ(0) = 0. We begin with a lemma that shows the Legendre transform of ψ(θ)

is a good rate function.

Lemma 3.3.1. Let ψ∗ denote the Legendre transform of ψ. Suppose there exists a θ∗ > 0

for which ψ(·) exists in a neighborhood of θ∗ and is continuously differentiable there. Then,

(1) ψ∗(a) = θ∗a− ψ(θ∗), where a = ψ′(θ∗).

(2) ψ and ψ∗ are convex.

(3) ψ∗ is a good rate function.

Proof. We split the proof into its three parts:

Proof of (1)

By definition ψ∗(a) = sup
θ∈R

[θa−ψ(θ)]. Taking the derivative with respect to θ and setting

it equal to zero,

a− ψ′(θ) = 0 =⇒ a = ψ′(θ).

So for θ∗ > 0,

ψ∗(a) = θ∗a− ψ(θ∗), where a = ψ′(θ∗).
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Proof of (2)

First we show that ψ is convex. Define ϕt(θ) =
1
t
logE[eθΛ(t)], let x, y ∈ Dψ and α ∈ [0, 1].

Then,

ϕt(αx+ (1− α)y) = 1

t
logE[e(αx+(1−α)y)Λ(t)]

=
1

t
logE[eαxΛ(t)e(1−α)yΛ(t)]

By Hölder’s inequality

≤ 1

t
logE[exΛ(t)]αE[eyΛ(t)]1−α

= α
1

t
logE[exΛ(t)] + (1− α)1

t
E[eyΛ(t)]

= αϕt(x) + (1− α)ϕt(y)

Since ϕt is convex for all t, then so is ψ.

Now we show that ψ∗ is convex. Let a, b ∈ Dψ∗ and let α ∈ [0, 1]. Then,

ψ∗(αa+ (1− α)b) =(αa+ (1− α)b)θ∗ − ψ(θ∗)

=αaθ∗ + (1− α)bθ∗ − ψ(θ∗) + αψ(θ∗)− αψ(θ∗)

=αaθ∗ − αψ(θ∗) + (1− α)bθ∗ − (1− α)ψ(θ∗)

=αψ∗(a) + (1− α)ψ∗(b)

Therefore, ψ∗ is convex.

Proof of (3)

A quick sketch of this proof was provided in Section 2.2.2. Full details may be found in

[5, 13].

Assuming the conditions on ψ(θ) are satisfied in the Gärtner-Ellis theorem, then we may

immediately claim that the local time of the doubly reflected jump diffusion satisfies a large
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deviation principle on R with rate t and with good rate function ψ∗. That is,

1

t
logP(Λ(t) ≥ at)→ ψ(θ∗)− θ∗a.

Finally, we note that the minimum of the rate function ψ∗(a) is at a = ψ′(0). This is the

case since (ψ∗(a))′ = 0 =⇒ θ∗ = 0 and ψ∗ is convex. Using the limit established earlier, we

may compute this value by

lim
t→∞

1

t
E[Λ(t)] = ψ′(0).

3.4 Analytic Examples

This section presents two examples where we solve the integro-differential equation (3.3.1) to

find an implicit formula for ψ(θ). We do this so that in Chapter 4 we have analytic solutions

from which to test the simulated solutions. The first example we are interested in is standard

Brownian motion and then we consider a simple pure jump process.

3.4.1 Doubly Reflected Brownian Motion

In this example, we establish an implicit equation for ψ(θ) of the the local time at the lower

boundary of a doubly reflected standard Brownian motion. We first find the expression

for a Brownian motion with drift and show it reduces to the case we are interested in.

In this context the parameter set µ(x) = µ, σ(x) = σ, ν(x, dy) = 0, f(x) = 0, f̃(x, y) =

[−(x+ y)]+, r1 = 1, r2 = 0 leads to the differential equation

0 =
σ2

2
uxx(θ, x) + µux(θ, x)− ψ(θ)u(θ, x)

subject to the boundary conditions

θu(θ, 0) = −ux(θ, 0), u(θ, b) = 1, ux(θ, b) = 0.

This is a linear second order differential equation with constant coefficients and so the
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roots of the characteristic equation β2 + 2µ
σ2β − 2ψ(θ)

σ2 = 0 are

β =
−2µ
σ2 ±

√

4µ2

σ4 + 4(2ψ(θ)
σ2 )

2
=
−µ±

√

µ2 + 2σ2ψ(θ)

σ2

The discriminant can be zero, positive or negative. We consider the three cases separately.

Case 1: µ2 + 2σ2ψ(θ) = 0. In this case β = − µ
σ2 , therefore

u(θ, x) = C1e
−µx

σ2 + C2xe
−µx

σ2 =⇒ ux(θ, x) = −
µ

σ2
C1e

−µx

σ2 + C2e
−µx

σ2 − µ

σ2
C2xe

−µx

σ2 .

Applying the boundary condition ux(θ, b) = 0 results in

ux(θ, b) = −
µ

σ2
C1e

− µb

σ2 + C2e
− µb

σ2 − µ

σ2
C2be

− µb

σ2 = 0

⇐⇒ C1 =
C2

(

−e− µb

σ2 + µ
σ2 be

− µb

σ2

)

− µ
σ2 e

− µb

σ2

=
C2(−1 + µb

σ2 )

− µ
σ2

= C2

(

σ2

µ
− b
)

.

Continuing with the boundary condition u(θ, b) = 1 we see that

u(θ, b) = C2

(

σ2

µ
− b
)

e−
µb

σ2 + C2be
− µb

σ2 = 1 ⇐⇒ C2 =
e
µb

σ2

(

σ2

µ
− b
)

+ b
=

µ

σ2
e
µb

σ2

=⇒ C1 =
µ

σ2
e
µb

σ2

(

σ2

µ
− b
)

= e
µb

σ2

(

σ2 − µb
σ2

)

.

Therefore,

u(θ, x) = e
µ(b−x)

σ2

(−bµ+ σ2 + µx

σ2

)

=⇒ ux(θ, x) = e
µ(b−x)

σ2

(

µ2(b− x)
σ4

)

.

Finally, applying the boundary condition θu(θ, 0) = −ux(θ, 0) and solving for θ,

θe
µb

σ2

(−bµ+ σ2

σ2

)

= −e µbσ2
(

µ2b

σ4

)

⇐⇒ θ = − µ2b

σ2(σ2 − bµ) .

Case 2: µ2 + 2σ2ψ(θ) > 0. For convenience, we will denote α =
√

µ2 + 2σ2ψ(θ) so that

40



β1 =
−µ+α
σ2 and β2 =

−µ−α
σ2 . Therefore,

u(θ, x) = C1e
(α−µ)x

σ2 + C2e
−(α+µ)x

σ2 =⇒ ux(θ, x) =
C1(α− µ)e

(α−µ)x

σ2 − C2(α + µ)e
−(µ+α)x

σ2

σ2
.

Applying the boundary condition ux(θ, b) = 0 results in

ux(θ, b) =
C1(α− µ)e

(α−µ)b

σ2 − C2(α + µ)e
−(µ+α)b

σ2

σ2
= 0 ⇐⇒ C1 =

C2(α + µ)e−
2αb
σ2

α− µ .

Continuing with the boundary condition u(θ, b) = 1 we see that

u(θ, b) =
C2(α + µ)e−

2αb
σ2

α− µ e
(α−µ)b

σ2 + C2e
−(α+µ)b

σ2 = 1 ⇐⇒ C2 =
(α− µ)e−

b(−α−µ)

σ2

2α

=⇒ C1 =
(α + µ)e−

b(α−µ)

σ2

2α
.

Therefore,

u(θ, x) =
e
b(µ−α)−x(α+µ)

σ2

(

(α− µ)e 2αb
σ2 + (α + µ)e

2αx
σ2

)

2α

and

ux(θ, x) =
(µ− α)(α + µ)

(

e
2αb
σ2 − e 2αx

σ2

)

e
b(µ−α)−x(α+µ)

σ2

2ασ2

. Applying the boundary condition θu(θ, 0) = −ux(θ, 0) results in

θ





e
b(µ−α)

σ2

(

(α− µ)e 2αb
σ2 + (α + µ)

)

2α



 = −





(µ− α)(α + µ)
(

e
2αb
σ2 − 1

)

e
b(µ−α)

σ2

2ασ2





⇐⇒ θ =
(α− µ)(α + µ)

(

e
2αb
σ2 − 1

)

σ2
(

(α− µ)e 2αb
σ2 + (α + µ)

) .

Case 3: µ2 + 2σ2ψ(θ) < 0. For convenience, we will define α =
√

−(µ2 + 2σ2ψ(θ)) so

that β1 =
−µ+αi
σ2 and β2 =

−µ−αi
σ2 . Therefore,

u(θ, x) = e−
µx

σ2

(

C1 cos
(αx

σ2

)

+ C2 sin
(αx

σ2

))
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and

ux(θ, x) =
e−

µx

σ2
(

(αC2 − C1µ) cos
(

αx
σ2

)

− (αC1 + C2µ) sin
(

αx
σ2

))

σ2
.

Applying the boundary condition ux(θ, b) = 0 results in

ux(θ, b) =
e−

µb

σ2
(

(αC2 − C1µ) cos
(

αb
σ2

)

− (αC1 + C2µ) sin
(

αx
σ2

))

σ2
= 0

⇐⇒ C1 =
αC2 cos

(

αb
σ2

)

− C2µ sin
(

αb
σ2

)

µ cos
(

αb
σ2

)

+ α sin
(

αb
σ2

)

.

Continuing with the boundary condition u(θ, b) = 1 we see that

u(θ, b) = e−
µb

σ2

((

αC2 cos
(

αb
σ2

)

− C2µ sin
(

αb
σ2

)

µ cos
(

αb
σ2

)

+ α sin
(

αb
σ2

)

)

cos

(

αb

σ2

)

+ C2 sin

(

αb

σ2

)

)

= 1

⇐⇒ C2 =
e
bµ

σ2
(

µ cos
(

αb
σ2

)

+ α sin
(

αb
σ2

))

α
=⇒ C1 =

e
bµ

σ2
(

α cos
(

αb
σ2

)

− µ sin
(

αb
σ2

))

α
.

Therefore,

u(θ, x) =
e
µ(b−x)

σ2

(

α cos
(

α(b−x)
σ2

)

− µ sin
(

α(b−x)
σ2

))

α

and

ux(θ, x) =
(α2 + µ2) e

µ(b−x)

σ2 sin
(

α(b−x)
σ2

)

ασ2
.

Finally, applying the boundary condition θu(θ, 0) = −ux(θ, 0) results in the expression

θ

(

e
µb

σ2
(

α cos
(

αb
σ2

)

− µ sin
(

αb
σ2

))

α

)

= −
(

(α2 + µ2) e
µb

σ2 sin
(

αb
σ2

)

ασ2

)

⇐⇒ θ =
(α2 + µ2) sin

(

αb
σ2

)

σ2
(

µ sin
(

αb
σ2

)

− α cos
(

αb
σ2

)) .

We consider the particular case of standard Brownian motion with µ = 0 and σ = 1. In

this case
√

µ2 + 2σ2ψ(θ) =
√

2ψ(θ). For

Case 1:

µ2 + 2σ2ψ(θ) = 0 then ψ(θ) = 0 and θ = 0.
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Case 2:

µ2 + 2σ2ψ(θ) > 0 then ψ(θ) > 0 and θ =
2ψ(θ)

(

e2
√

2ψ(θ)b − 1
)

√

2ψ(θ)
(

e2
√

2ψ(θ)b + 1
)

=
√

2ψ(θ) tanh
(

b
√

2ψ(θ)
)

> 0.

Case 3:

µ2 + 2σ2ψ(θ) < 0 then ψ(θ) < 0 and θ =
−2ψ(θ) sin(b

√

−2ψ(θ))
−
√

−2ψ(θ) cos(b
√

−2ψ(θ))
= −

√

−2ψ(θ) tan(b
√

−2ψ(θ)). To ensure it is invertible, we restrict

− π

2
< b
√

−2ψ(θ) < π

2
=⇒ −π2

8b2
< ψ(θ) < 0 =⇒ θ < 0.

After applying the identity tanh(x) = −i tan(ix), we note that this last equality

is equal to −
√

i22ψ(θ) tan(b
√

i22ψ(θ)) =
√

2ψ(θ) tanh(b
√

2ψ(θ)).

Therefore, Case 2 and Case 3 are identical and after noting that
√

2ψ(θ) tanh(b
√

2ψ(θ)) = 0

implies ψ(θ) = 0, given the range of ψ(θ) ∈ (− π2

8b2
,∞), then ψ(θ) may be solved numerically

using the implicit formula

θ =
√

2ψ(θ) tanh(b
√

2ψ(θ)).

This agrees with the result found in [7].

For the simulations we will carry out in Chapter 4, we set b = 1 and solve θ =
√

2ψ(θ) tanh(
√

2ψ(θ)).

3.4.2 Doubly Reflected Pure Jump Process

For this example, we are interested in constructing a simple pure jump process that has equal

probability of jumping up one and of jumping down one with constant arrival λ(x) = λ > 0.

As before, we are considering the local time at the lower boundary. In this context the

parameter set µ(x) = 0, σ(x) = 0, ν(x, 1) = λ
2
, ν(x,−1) = λ

2
, f(x) = 0, f̃(x, y) = [−(x +

y)]+, r1 = 1, r2 = 0 leads to the recurrence relation

0 = −(λ+ ψ(θ))u(θ, x) +
λ

2

(

eθ[−(x+1)]+u(θ, r(x, 1))
)

+
λ

2

(

eθ[−(x−1)]+u(θ, r(x,−1))
)
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subject to the boundary conditions

θu(θ, 0) = −ux(θ, 0), u(θ, b) = 1, ux(θ, b) = 0.

There are three cases to consider which lead to three different recurrence relations that

must be satisfied. When:

x = 0 : 0 = −(λ+ ψ(θ))u(θ, 0) +
λ

2
u(θ, 1) +

λ

2
eθu(θ, 0); (3.4.1)

x ∈ [1, b− 1] : 0 = −(λ+ ψ(θ))u(θ, x) +
λ

2
u(θ, x+ 1) +

λ

2
u(θ, x− 1); (3.4.2)

x = b : 0 = −(λ+ ψ(θ))u(θ, b) +
λ

2
u(θ, b) +

λ

2
u(θ, b− 1). (3.4.3)

Applying the boundary condition u(θ, b) = 1 to (3.4.3), we see that u(θ, b − 1) must

satisfy

u(θ, b− 1) = 1 +
2

λ
ψ(θ).

If we let x = b− 1 in (3.4.2) then we may derive an expression for u(θ, b− 2) as

0 = −(λ+ ψ(θ))u(θ, b− 1) +
λ

2
u(θ, b) +

λ

2
u(θ, b− 2)

⇐⇒ u(θ, b− 2) =
λ2 + 6λψ(θ) + 4ψ(θ)2

λ2
.

Using (3.4.1), we may derive an expression for u(θ, 0),

u(θ, 0) =
u(θ, 1)

2
λ
(λ+ ψ(θ))− eθ .

Similarly, from (3.4.2), we set x = 1 then u(θ, 0) must satisfy

0 = −(λ+ ψ(θ))u(θ, 1) +
λ

2
u(θ, 2) +

λ

2
u(θ, 0)

⇐⇒ u(θ, 0) =
2

λ
(λ+ ψ(θ))u(θ, 1)− u(θ, 2).
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Setting these two equations for u(θ, 0) equal to each other,

u(θ, 1)
2
λ
(λ+ ψ(θ))− eθ =

2

λ
(λ+ ψ(θ))u(θ, 1)− u(θ, 2). (3.4.4)

Furthermore, we may solve (3.4.2) by letting βx = u(θ, x) then

0 = −(λ+ ψ(θ))βx +
λ

2
βx+1 +

λ

2
βx−1

⇐⇒ 0 = β2 − 2

λ
(λ+ ψ(θ))β + 1.

Solving for β,

β =

2
λ
(λ+ ψ(θ))±

√

4
λ2
(λ+ ψ(θ))2 − 4

2

=

(

1 +
ψ(θ)

λ

)

±
√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

.

We consider the three cases for the discriminant individually.

Case 1: ψ(θ)
λ

(

ψ(θ)
λ

+ 2
)

= 0 ⇐⇒ ψ(θ) = 0 or ψ(θ) = −2λ then

u(θ, x) = C1

(

1 +
ψ(θ)

λ

)x

+ C2x

(

1 +
ψ(θ)

λ

)x

.

Solving

u(θ, b− 1) = C1

(

1 +
ψ(θ)

λ

)b−1

+ C2(b− 1)

(

1 +
ψ(θ)

λ

)b−1

= 1 +
2

λ
ψ(θ)

u(θ, b− 2) = C1

(

1 +
ψ(θ)

λ

)b−2

+ C2(b− 2)

(

1 +
ψ(θ)

λ

)b−2

=
λ2 + 6λψ(θ) + 4ψ(θ)2

λ2

for C1 and C2, we find that

u(θ, x) =

(

λ+ψ(θ)
λ

)−b+x+1

(λ2ψ(θ)(5b− 5x− 3) + 10λψ(θ)2(b− x− 1))

λ3

+

(

λ+ψ(θ)
λ

)−b+x+1

(4ψ(θ)3(b− x− 1) + λ3)

λ3
.
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Now that we have an equation for u(θ, x), we may use it to solve (3.4) and find that θ = log(A
B
)

where

A =(5b+ 6)λ4ψ(θ) + 10(3b− 1)λ3ψ(θ)2 + 2(27b− 23)λ2ψ(θ)3 + 36(b− 1)λψ(θ)4

+ 8(b− 1)ψ(θ)5 + λ5

B =λ(λ+ ψ(θ))
(

(5b− 3)λ2ψ(θ) + 10(b− 1)λψ(θ)2 + 4(b− 1)ψ(θ)3 + λ3
)

.

Case 2: ψ(θ)
λ

(

ψ(θ)
λ

+ 2
)

> 0 ⇐⇒ ψ(θ) > 0 or ψ(θ) < −2λ then

u(θ, x) =C1

(

(

1 +
ψ(θ)

λ

)

+

√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

)x

+ C2

(

(

1 +
ψ(θ)

λ

)

−
√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

)x

.

Solving

u(θ, b− 1) =C1

(

(

1 +
ψ(θ)

λ

)

+

√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

)b−1

+ C2

(

(

1 +
ψ(θ)

λ

)

−
√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

)b−1

=1 +
2

λ
ψ(θ)

u(θ, b− 2) =C1

(

(

1 +
ψ(θ)

λ

)

+

√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

)b−2

+ C2

(

(

1 +
ψ(θ)

λ

)

−
√

ψ(θ)

λ

(

ψ(θ)

λ
+ 2

)

)b−2

=
λ2 + 6λψ(θ) + 4ψ(θ)2

λ2

for C1 and C2, we find that
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u(θ, x) =
1

2

(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)x−b

+
1

2

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)x−b

+
ψ(θ)

2











(

−
√

ψ(θ)(2λ+ψ(θ))
λ2

+ ψ(θ)
λ

+ 1

)x−b

λ

√

ψ(θ)(2λ+ψ(θ))
λ2











− ψ(θ)

2











(

√

ψ(θ)i(2λ+ψ(θ))
λ2

+ ψ(θ)
λ

+ 1

)x−b

λ

√

ψ(θ)(2λ+ψ(θ))
λ2











.

Now that we have an equation for u(θ, x), we may use it to solve (3.4) and find that θ = log(A
B
)

where

A =− 2ψ(θ)2

(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ 2ψ(θ)2

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ λ2

√

ψ(θ)(2λ+ ψ(θ))

λ2

(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ λ2

√

ψ(θ)(2λ+ ψ(θ))

λ2

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ λψ(θ)



(2

√

ψ(θ)(2λ+ ψ(θ))

λ2

(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

− 3

(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ 2

√

ψ(θ)(2λ+ ψ(θ))

λ2

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b
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+3

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b




B =λ



λ

√

ψ(θ)(2λ+ ψ(θ))

λ2

(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ λ

√

ψ(θ)(2λ+ ψ(θ))

λ2

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

− ψ(θ)
(

−
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b

+ψ(θ)

(
√

ψ(θ)(2λ+ ψ(θ))

λ2
+
ψ(θ)

λ
+ 1

)b


 .

Case 3: ψ(θ)
λ

(

ψ(θ)
λ

+ 2
)

> 0 ⇐⇒ −2λ < ψ(θ) < 0 then

u(θ, x) =C̃1

(

(

1 +
ψ(θ)

λ

)

+ i

√

−ψ(θ)
λ

(

ψ(θ)

λ
+ 2

)

)x

+ C̃2

(

(

1 +
ψ(θ)

λ

)

− i
√

−ψ(θ)
λ

(

ψ(θ)

λ
+ 2

)

)x

.

We then convert to trigonometric form and apply De Moivre’s theorem,

u(θ, x) = C1 cos(ϕx) + C2 sin(ϕx)

where ϕ solves cos(ϕ) =
(

1 + ψ(θ)
λ

)

and sin(ϕ) =

√

−ψ(θ)
λ

(

ψ(θ)
λ

+ 2
)

. Solving

u(θ, b− 1) = C1 cos(ϕ(b− 1)) + C2 sin(ϕ(b− 1)) = 1 +
2

λ
ψ(θ)

u(θ, b− 2) = C1 cos(ϕ(b− 2)) + C2 sin(ϕ(b− 2)) =
λ2 + 6λψ(θ) + 4ψ(θ)2

λ2

for C1 and C2, we find that

u(θ, x) =− csc(ϕ)λ(λ+ 2ψ(θ)) sin(ϕ(b− x− 2))

λ2
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+
csc(ϕ) (λ2 + 6λψ(θ) + 4ψ(θ)2) sin(ϕ(b− x− 1))

λ2
.

Now that we have an equation for u(θ, x), we may use it to solve (3.4) and find that θ = log(A
B
)

where

A =2λ2
(

λ2 + 3λψ(θ) + 2ψ(θ)2
)

sin((b− 4)ϕ)

− λ
(

5λ3 + 28λ2ψ(θ) + 40λψ(θ)2 + 16ψ(θ)3
)

sin((b− 3)ϕ)

+
(

3λ4 + 26λ3ψ(θ) + 64λ2ψ(θ)2 + 56λψ(θ)3 + 16ψ(θ)4
)

sin((b− 2)ϕ)

B =λ(−λ
(

3λ2 + 12λψ(θ) + 8ψ(θ)2
)

sin((b− 3)ϕ) + λ2(λ+ 2ψ(θ)) sin((b− 4)ϕ)

+ 2
(

λ3 + 7λ2ψ(θ) + 10λψ(θ)2 + 4ψ(θ)3
)

sin((b− 2)ϕ))

For the purpose of the simulations, we will set λ = 50 and b = 3 which reduces our three

cases to:

Case 1:

θ = log

(

16ψ(θ)5 + 3600ψ(θ)4 + 290000ψ(θ)3 + 10000000ψ(θ)2

50(ψ(θ) + 50) (8ψ(θ)3 + 1000ψ(θ)2 + 30000ψ(θ) + 125000)

+
131250000ψ(θ) + 312500000

50(ψ(θ) + 50) (8ψ(θ)3 + 1000ψ(θ)2 + 30000ψ(θ) + 125000)

)

Case 2:

θ = log

(

ψ(θ)4 + 175ψ(θ)3 + 9375ψ(θ)2 + 156250ψ(θ) + 390625

25 (ψ(θ)3 + 125ψ(θ)2 + 3750ψ(θ) + 15625)

)

Case 3:

θ = log

(

ψ(θ)4 + 175ψ(θ)3 + 9375ψ(θ)2 + 156250ψ(θ) + 390625

25 (ψ(θ)3 + 125ψ(θ)2 + 3750ψ(θ) + 15625)

)

As can be seen, Case 2 and Case 3 reduce to the same equation and if ψ(θ) = 0 then so is

θ. If we set ψ(θ) = 0 in Case 1, then θ = 0 and if we set ψ(θ) = −100, θ = log(9
7
) + iπ 6∈ R

and so −100 is not in the range of ψ(θ).

To summarize, we may solve for ψ(θ) implicitly in the equation

θ = log

(

ψ(θ)4 + 175ψ(θ)3 + 9375ψ(θ)2 + 156250ψ(θ) + 390625

25 (ψ(θ)3 + 125ψ(θ)2 + 3750ψ(θ) + 15625)

)

.
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Chapter 4

Simulation and Numerics

4.1 Algorithms

Unlike the two examples proposed in Chapter 3, some models are too computationally in-

tractable to have closed form solutions. In this section, we present the main algorithms used

to put the theory of the previous chapter into practice. First we implement a Monte Carlo

scheme based on the previous results and then we numerically solve the integro-differential

equation (3.3.1). The former method requires that we simulate many paths of the reflected

jump diffusion, which we introduce first by slightly modifying an algorithm for simulating

jump diffusions shown in [9].

4.1.1 Reflected Jump Diffusion Path Simulation

The challenge with simulating a jump diffusion is that the jump intensity may depend on

the position of the process right before the jump. As such, attempting to simulate the

continuous part and the jump parts separately is futile. One way to work around this is to

apply a stochastic time change so that the new process will have the same intensity as a

Poisson process with unit intensity.

Following the work in [9], we let En and Zn be i.i.d. sequences of standard exponentials

and ρ−distributed random variables, respectively. We define a new process X̃ with X̃0 = x0
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and an increasing sequence of jump times 0 = τ0 < τ1 < τ2 < ... such that

X̃(t) = X̃(τn) +

∫ t

τn

µ(V (s))ds+

∫ t

τn

σ(V (s))dW (s)

for t ∈ [τn, τn+1), with

τn+1 = inf

{

t > τn :

∫ t

τn

λ(V (s))ds ≥ En+1

}

and with jump update

X̃(τn+1) = X̃(τn+1−) + γ(V (τn+1−), Zn+1).

Finally, we define the process A(t) =
∫ t

0
λ(V (s))ds.

Essentially, our new process X̃ is defined recursively in such a way that we consider the

process as a diffusion with the same parameters of our original jump diffusion up to a jump

and repeat throughout. τ is defined as the stochastic change of time, where the intensity of

the original process X is scaled to match that of a Poisson process. If we observe X̃ at the

times τn then the time change has constant intensity λ = 1.

It is immediately clear that between jump times, X and X̃ have the same distribution

as it has the same drift and volatility. It can be shown that (X(t))t≥0 and (X̃(t))t≥0 are in

fact equal in distribution [9]. So we may use X̃ to simulate for X.

In order to update the reflected process V between jumps, that is on [τn, τn+1), we need

to first update U and L by checking if a jump over a boundary happens and whether there

have been any continuous crossings. Therefore, define

L(t) = L(τn) + [a− (V (τn−) + ∆X̃(τn))]
+ +

∫ t

τn

dLc(s),

U(t) = U(τn) + [(V (τn−) + ∆X̃(τn))− b]+ +

∫ t

τn

dU c(s), and

V (t) = V (τn) +

∫ t

τn

dX̃(s) +

∫ t

τn

dL(s)−
∫ t

τn

dU(s)

where a and b are the lower and upper boundaries, respectively.
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With this, we may apply the Euler-Maruyama discretization by setting h = T
N

where T

is the total time interval and N is the total number of steps. We use the superscript h to

denote the discretized path of the process and subscript i to denote the current interval step.

The usual approximation is given by

Xh
ti+1−

= Xh
ti
+ µ(V h

ti
)(ti+1 − ti) + σ(V h

ti
)(Wti+1

−Wti)

Ahti+1
= Ahti + λ(V h

ti
)(ti+1 − ti)

at the discretization times ti and

Xh
t = Xh

ti
+ µ(V h

ti
)(t− ti) + σ(V h

ti
)(Wt −Wti)

Aht = Ahti + λ(V h
ti
)(t− ti)

between discretization times where t ∈ [ti, ti+1). We note that for the nth approximate jump

time and ηhn = inf{ti : Ahti + λ(V h
ti
)
((⌊

ti
h

⌋

+ 1
)

h− ti
)

> En}, the last discretization time

before the jump,

τhn = inf{t : Aht ≥ En}

= inf{t : Ahti + λ(V h
ti
)(t− ti) ≥ En}

= inf{ti : Ahti + λ(V h
ti
)

((⌊

ti

h

⌋

+ 1

)

h− ti
)

> En}

+ inf{t− tηhn : Ahηhn + λ(V h
ηhn
)(t− tηhn) = En}

=ηhn +
En − Ahηhn
λ(V h

ηhn
)

where the second to last equality follows since Aht is linearly increasing.

Finally, the jump update takes the form,

Xh
τhn

= Xh
τhn− + γ(V h

τhn−, Zn).

We may follow the same discretization scheme for the processes used to reflect X̃. At

each interval step ti+1, we verify whether V h
ti+1

would cross either an upper or lower boundary
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and update Lhti+1
and Uh

ti+1
accordingly to ensure that when V h

ti+1
is updated, it stays within

its boundaries,

Lhti+1
= Lhti +max[0, a− ((Xh

ti+1
−Xh

ti
) + V h

ti
)]

Uh
ti+1

= Uh
ti
+max[0, ((Xh

ti+1
−Xh

ti
) + V h

ti
)− b]

V h
ti+1

= V h
ti
+ (Xh

ti+1
−Xh

ti
) + (Lhti+1

− Lhti)− (Uh
ti+1
− Uh

ti
).

Likewise, if a jump occurs between interval steps at t ∈ [ti, ti+1),

Lht = Lhti +max[0, a− ((Xh
t −Xh

ti
) + V h

ti
)]

Uh
t = Uh

ti
+max[0, ((Xh

t −Xh
ti
) + V h

ti
)− b]

V h
t = V h

ti
+ (Xh

t −Xh
ti
) + (Lht − Lhti)− (Uh

t − Uh
ti
).

Pseudo-Code

Let N be a standard normal random variable and let E be a standard exponential random

variable. The input parameters are: T for the total time, N for the number of interval steps,

x0 for the starting value of X̃, v0 for the starting value of V , a for the lower boundary and b

for the upper boundary. The particular implementation for this thesis may be found in the

appendix.

1: procedure PathSimV (T,N, x0, v0, a, b)

2: Set h← T
N

3: Initialize i = n = s← 0, Xh
s ← x0, V

h
s ← v0, A

h
s = Lhs = Uh

s ← 0, E = E
4: while s 6= T do

5: Compute Ahtemp = Ahs + λ(V h
s )((i+ 1)h− s)

6: if Ahtemp ≥ E then . jump between s and (i+ h)h

7: Compute τhn = s+ E−Ahs
λ(V hs )

8: Compute Xh
τhn−

= Xh
s + µ(V h

s )(τ
h
n − s) + σ(V h

s )
√

τhn − sN
9: Compute Xh

τhn
= Xh

τhn−
+ γ(V h

τhn−
, Zn)

10: Compute Lh
τhn

= Lhs +max[0, a− ((Xh
τhn
−Xh

τhn−
) + Vτhn−)]
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11: Compute Uh
τhn

= Uh
s +max[0, ((Xh

τhn
−Xh

τhn−
) + Vτhn−)− b]

12: Compute V h
τhn

= V h
s + (Xh

τhn
−Xh

τhn−
) + (Lh

τhn
− Lhs )− (Uh

τhn
− Uh

s )

13: Set s← τhn , A
h
s ← E, n← n+ 1, E ← E + E

14: else . no jump between s and (i+ h)h

15: Compute Xh
(i+1)h = Xh

s + µ(V h
s )((i+ 1)h− s) + σ(V h

s )
√

(i+ 1)h− sN
16: Set s← (i+ 1)h,Ahs ← Ahtemp, i← i+ 1

17: Compute Lhs = Lh(i−1)h +max[0, a− ((Xh
s −Xh

(i−1)h) + V h
(i−1)h)]

18: Compute Uh
s = Uh

(i−1)h +max[0, ((Xh
s −Xh

(i−1)h) + V h
(i−1)h)− b]

19: Compute V h
s = V h

(i−1)h + (Xh
s −Xh

(i−1)h) + (Lhs − Lh(i−1)h)− (Uh
s − Uh

(i−1)h)

4.1.2 Simulation Methods for ψ(θ)

We consider the first of our algorithms for approximating ψ(θ) for given values of θ. Recall

the result from Chapter 3, lim
t→∞

1
t
logE[eθΛ(t)] = ψ(θ). Our objective will be to numerically

simulate this limit and in the process approximate ψ(θ).

The Monte Carlo method allows us to evaluate E[eθΛ(t)] by repeatedly sampling Λ(t) from

simulations of V (t) and taking an appropriate average. For k samples of Λ(t), where the ith

sample is denoted by Λi(t), and by letting c be the maximal θΛi(t), we see that

lim
t→∞

1

t
logE[eθΛ(t)] = ψ(θ) ⇐⇒ 1

t
logE[eθΛ(t)] = ψ(θ) + o(t)

⇐⇒ 1

t
logE[

ec

ec
eθΛ(t)] = ψ(θ) + o(t)

⇐⇒ c

t
+

1

t
logE[eθΛ(t)−c] = ψ(θ) + o(t)

=⇒ c

t
+

1

t
log

1

k

k
∑

i=1

[eθΛi(t)−c] ≈ ψ(θ).

While running the simulation in practice, we will be increasing the value of t which will

cause samples of Λi(t) to grow relatively large. We introduce c so as to avoid the finite

capacity of the computer from returning a value of infinity when the answer should not be

infinite.

This method of approximating ψ(θ) will inevitably give rise to two types of errors, the
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estimation error from the Monte Carlo estimate of the expectation and the truncation error

resulting from having to choose a fixed value for t. Since any errors in the estimation of

Λi(t) are being exponentiated, we would expect that for larger values of θ, the estimate will

increasingly diverge from its true value.

Pseudo-Code

Let T,N, x0, v0, a, b be as above. Let k be the desired number of simulations of Λ(t) and

let θ̄ = (θ1, θ2, ...θl). This method requires that the path simulation algorithm from the

previous subsection, PathSimV, return the value of the local time at the last iteration step

and it stores this value in a variable L.

1: procedure PsiThetaMC(T,N, x0, v0, a, b, k, θ̄)

2: Initialize LT = (L1
T = 0, L2

T = 0, ..., LkT = 0)

3: for i in 1 : k do

4: Compute LiT ← PathSimV(T,N, x0, v0, a, b)

5: Initialize ψ(θ̄)

6: for j in 1 : l do

7: Compute c← max[θjLT ]

8: Compute ψ(θj) = c
T
+ 1

T
log
(

1
k

∑k
i=1 e

θjLiT−c
)

9: return ψ(θ̄)

Before moving on to numerically solving the integro-differential equation, we present

two modifications to this algorithm. If implemented as suggested, the following algorithms

produce inferior results to the aforementioned algorithm. However, it is believed that with

more work, these algorithms may produce reasonable results.

An immediate way to improve on using the limit definition above would be to arrive at

an equation for ψ(θ) by solving for u(θ, x). We recall M(θ, t) = eθΛ(t)−ψ(θ)tu(θ, V (t)) is a

martingale so that E[M(θ, t)] = E[M(θ, 0)] = 1. Then by conditioning

E[eθΛ(t)−ψ(θ)tu(θ, V (t))] = 1

⇐⇒ E[E[eθΛ(t)−ψ(θ)tu(θ, V (t))]|V (t) = x] = E[1|V (t) = x]
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⇐⇒ u(θ, x)E[eθΛ(t)|V (t) = x] = eψ(θ)t

⇐⇒ 1

t
log u(θ, x) +

1

t
logE[eθΛ(t)|V (t) = x] = ψ(θ)

Now we only need one boundary point to solve for ψ(θ). We will continue with the lower

boundary local time, then r1 = 1 and r2 = 0 which gives us the boundary point u(θ, b) = 1.

This point is ideal as it does not require estimating ux(θ, x) which will involve a truncation

error from the finite difference scheme chosen. Therefore,

ψ(θ) =
1

t
logE[eθΛ(t)|V (t) = b]

=⇒ ψ(θ) ≈ 1

t
log

1

k

k
∑

i=1

[eθΛi(t)|Vi(t) = b]

We omit the pseudo-code as it is identical to the previous code with one difference. When

the reflected jump diffusion is simulated, rather than returning every value of Λi(t), we only

return those for which Vi(t) = b and reject all other paths. Naturally, such a method is quite

slow.

This method of solving for ψ(θ) numerically has the advantage of only introducing the

estimation error from the Monte Carlo simulation of the expected value. Unfortunately, since

we are approximating an integral of an exponential function, small errors in estimating Λi(t)

are exponentiated and produce large errors in the final estimate. One possible workaround

would be to use Laplace’s method which involves applying a formula to approximate integrals

of exponential functions.

To work around the issue of computational speed, we offer another way to possibly sim-

ulate solutions for ψ(θ). This may be done by applying Doob’s Optional Sampling theorem

to obtain an expression for u(θ, x) and then through the same boundary condition as above,

solve for ψ(θ). We begin by noting that sinceM(θ, t) is always positive and by the dominated

convergence theorem

E

[∣

∣

∣ lim
t→∞

M(θ, t)
∣

∣

∣

]

=E

[∣

∣

∣ lim
t→∞

eθΛ(t)−ψ(θ)tu(θ, V (θ))
∣

∣

∣

]

=E

[

lim
t→∞

eθΛ(t)−ψ(θ)tu(θ, V (θ))
]
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= lim
t→∞

E
[

eθΛ(t)−ψ(θ)tu(θ, V (θ))
]

= lim
t→∞

E [M(θ, 0)] = 1 <∞.

For t ≤ s,E[ lim
s→∞

M(θ, s)|Ft] = lim
s→∞

E[M(θ, s)|Ft] = lim
s→∞

M(θ, t) = M(θ, t). Therefore,

M(θ, t) is closed by M(θ,∞). Define τx = inf{t : V (t) = x} then by Doob’s Optional

Sampling theorem

E[M(θ, τx)|F0] =M(θ, 0) = 1

⇐⇒ E[eθΛ(τx)−ψ(θ)τxu(θ, V (τx))|F0] = 1

⇐⇒ u(θ, x) =
1

E[eθΛ(τx)−ψ(θ)τx |F0]

Applying the boundary condition u(θ, b) = 1, we see that

u(θ, b) =
1

E[eθΛ(τb)−ψ(θ)τb |F0]
= 1

⇐⇒ E[eθΛ(τb)−ψ(θ)τb |F0] = 1.

In a similar way to above, we will simulate Λ(τb) and τb, k times and consider the Monte

Carlo estimate to approximate the expectation. Then we find ψ(θ) as the unique root of the

equation

1

k

k
∑

i=1

eθΛi(τb)−ψ(θ)τi,b = 1.

This method of using the solution to the integro-differential equation has the advantage

that one simulation run can stop at the first instance of V (t) = b, making it computationally

faster for the same choice of step size and number of simulations. However, we are now

estimating two quantities in the exponential function which results in an even larger error.

We provide the pseudo-code below but due to the large errors, we do not pursue these

methods further. In the next section we numerically solve the integro-differential equation

which is both computationally faster and more precise than using Monte Carlo methods.
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Pseudo-Code

Let T,N, x0, v0, a, b, k, θ̄ be as above. This method requires that the path simulation algo-

rithm from 4.1.1, PathSimV, return two values. The first is the stopping time at V (t) = b

which we store in a variable R1 and the second value is the corresponding local time which

we store in a variable R2.

1: procedure PsiTheta2(T,N, x0, v0, a, b, k, θ̄)

2: Initialize τb = (τ 1b = 0, ...τ kb = 0) and Lb = (L1
b = 0, ...Lkb = 0)

3: for i in 1 : k do

4: Return R1 and R2 from PathSimV(T,N, x0, v0, a, b)

5: Set τ ib ← R1, L
i
b ← R2

6: Initialize ψ(θ̄)

7: for j in 1 : l do

8: Solve for x in 1 = 1
k

∑k
i=1 e

θjLi
b
−xτ i

b

9: Set ψ(θj)← x

10: return ψ(θ̄)

4.1.3 Numerical Methods for ψ(θ)

In order to numerically solve the integro-differential equation, we discretize the equation

from Section 3.3.1 using finite differences and solve the corresponding eigenvalue problem.

Recall from Chapter 3 that

0 =µ(x)ux(θ, x) +
1

2
σ2(x)uxx(θ, x) + (θf(x)− ψ(θ))u(θ, x)

+

∫

R

[eθf̃(x,y)u(θ, r(x, y))− u(θ, x)]ν(x, dy)

for 0 ≤ x ≤ b and subject to the boundary conditions

ux(θ, 0) = −r1θu(θ, 0), ux(θ, b) = r2θu(θ, b).

We begin by choosing the number of steps, N , from which we define h = b
N
, xi = ih
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where i = 0, 1, 2, .., N , and ui = u(θ, xi). In what follows, all finite difference formulas chosen

are of second order accuracy. We first approximate the first and second derivatives using the

centered difference formulas, which are easily derived from Taylor’s expansion and may be

found in [4],

ux(θ, xi) ≈
ui+1 − ui−1

2h
, uxx(θ, xi) ≈

ui+1 − 2ui + ui−1

h2
.

Since we do not have prior knowledge of the measure ν(x, dy), we apply Monte Carlo

estimation to approximate the integral term. Recall ν(x, dy) is of the form λ(x)ρ(dy) and so

we simulate k trials of yj ∼ ρ(dy) where j = 1, 2, ..., k and compute

1

k

k
∑

j=1

eθf̃(xi,yj)ul − ui

where l refers to the corresponding step that r(xi, yj) falls within the discretization scheme;

that is, l ≤ r(xi, yj) < l + 1 for l = 0, 1, 2, ..., N .

Now consider the upper and lower boundary conditions to derive expressions for u0 and

uN which are then substituted into the numerical scheme. The first boundary condition is

ux(θ, 0) = −r1θu(θ, 0), then the three-point forward difference formula gives

−3

2
u0 + 2u1 −

1

2
u2 = −r1θu0 ⇐⇒ u0 =

u2 − 4u1
2r1θ − 3

,

where r1θ 6= 3
2
.

Also,

ux(θ, x0) =
−3

2
u0 + 2u1 − 1

2
u2

h
= a1u1 + a2u2

=

(

2

h
+

6

h(−3 + 2hr1θ)

)

u1 +

(

− 1

2h
− 3

2h(−3 + 2hr1θ)

)

u2

ux(θ, x1) =
−u0 + u2

2h
= a3u1 + a4u2

=

(

2

h(−3 + 2r1θ)

)

u1 +

(

1

2h
− 1

2h(−3 + 2r1θ)

)

u2

uxx(θ, x0) =
2u0 − 5u1 + 4u2 − u3

h2
= b1u1 + b2u2 + b3u3
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=

(−5
h2
− 8

h2(−3 + 2hr1θ)

)

u1 +

(

4

h2
+

2

h2(−3 + 2hr1θ)

)

u2

+

(

− 1

h2

)

u3

uxx(θ, x1) =
u0 − 2u1 + u2

h2
= b4u1 + b5u2

=

(

− 2

h2
− 4

h2(−3 + 2hr1θ)

)

u1 +

(

1

h2
+

1

h2(−3 + 2hr1θ)

)

u2

Likewise, for the second boundary condition ux(θ, b) = r2θu(θ, b), the backward difference

formula gives

3

2
uN − 2uN−1 +

1

2
uN−2 = r2θuN ⇐⇒ uN =

uN−2 − 4uN−1

2r2θ − 3

where r2θ 6= 3
2
.

Also,

ux(θ, xN−1) =
−uN−2 + uN

2h
= a5uN−2 + a6uN−1

=

(

− 1

2h
+

1

2h(−3 + 2r2θ)

)

uN−2 +

(

− 2

h(−3 + 2r2θ)

)

uN−1

ux(θ, xN) =
3
2
uN − 2uN−1 +

1
2
uN−2

h
= a7uN−2 + a8uN−1

=

(

1

2h
+

3

2h(−3 + 2hr2θ)

)

uN−2 +

(

−2

h
− 6

h(−3 + 2hr2θ)

)

uN−1

uxx(θ, xN−1) =
uN − 2uN−1 + uN−2

h2
= b6uN−2 + b7uN−1

=

(

1

h2
+

1

h2(−3 + 2hr2θ)

)

uN−2 +

(

− 2

h2
− 4

h2(−3 + 2hr2θ)

)

uN−1

uxx(θ, xN) =
2uN − 5uN−1 + 4uN−2 − uN−3

h2
= b8uN−3 + b9uN−2 + b10uN−1

=

(

− 1

h2

)

uN−3 +

(

4

h2
+

2

h2(−3 + 2hr2θ)

)

uN−2

+

(−5
h2
− 8

h2(−3 + 2hr2θ)

)

uN−1

Putting it all together, we must solve the following system of equations,

µ(x0)

((

2

h
+

6

h(−3 + 2hr1θ)

)

u1 +

(

− 1

2h
− 3

2h(−3 + 2hr1θ)

)

u2

)
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+
1

2
σ2(x0)

((−5
h2
− 8

h2(−3 + 2hr1θ)

)

u1 +

(

4

h2
+

2

h2(−3 + 2hr1θ)

)

u2

+

(

− 1

h2

)

u3

)

+ θf(x0)
u2 − 4u1
2r1θ − 3

+
λ(x0)

k

k
∑

j=1

[

eθf̃(xi,yj)ul −
u2 − 4u1
2r1θ − 3

]

= ψ(θ)u0,

µ(x1)

((

2

h(−3 + 2r1θ)

)

u1 +

(

1

2h
− 1

2h(−3 + 2r1θ)

)

u2

)

+
1

2
σ2(x1)

((

− 2

h2
− 4

h2(−3 + 2hr1θ)

)

u1 +

(

1

h2
+

1

h2(−3 + 2hr1θ)

)

u2

)

+ θf(x1)u1 +
λ(x1)

k

k
∑

j=1

[

eθf̃(xi,yj)ul − u1
]

= ψ(θ)u1,

µ(xi)
ui+1 − ui−1

2h
+

1

2
σ2(xi)

ui+1 − 2ui + ui−1

h2
+ θf(xi)ui +

λ(xi)

k

k
∑

j=1

[

eθf̃(xi,yj)ul − ui
]

= ψ(θ)ui for each i = 2, 3, ..., N − 2,

µ(xN−1)

((

− 1

2h
+

1

2h(−3 + 2r2θ)

)

uN−2 +

(

− 2

h(−3 + 2r2θ)

)

uN−1

)

+
1

2
σ2(xN−1)

((

1

h2
+

1

h2(−3 + 2hr2θ)

)

uN−2 +

(

− 2

h2
− 4

h2(−3 + 2hr2θ)

)

uN−1

)

+ θf(xN−1)uN−1 +
λ(xN−1)

k

k
∑

j=1

[

eθf̃(xi,yj)ul − uN−1

]

= ψ(θ)uN−1,

µ(xN)

((

1

2h
+

3

2h(−3 + 2hr2θ)

)

uN−2 +

(

−2

h
− 6

h(−3 + 2hr2θ)

)

uN−1

)

+
1

2
σ2(xN)

((

− 1

h2

)

uN−3 +

(

4

h2
+

2

h2(−3 + 2hr2θ)

)

uN−2

+

(−5
h2
− 8

h2(−3 + 2hr2θ)

)

uN−1

)

+ θf(xN)
uN−2 − 4uN−1

2r2θ − 3

+
λ(xN)

k

k
∑

j=1

[

eθf̃(xi,yj)ul −
uN−2 − 4uN−1

2r2θ − 3

]

= ψ(θ)uN .

It is more convenient to view this in matrix form as the eigenvalue problem Au = ψ(θ)u,

where u is the eigenvector corresponding to the eigenvalue ψ(θ) andA is the matrix generated

from all the coefficient terms. Using boldface to denote a matrix, let

A = µ · ux + σ · uxx + f · u + λ · (B − u)
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or explicitly, A is the (N + 1)× (N + 1) matrix equal to























µ(x0) 0 0 . . . 0

0 µ(x1) 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 µ(xN−1) 0

0 . . . 0 0 µ(xN)

























































0 a1 a2 0 . . . 0 0 0 0

0 a3 a4 0 . . . 0 0 0 0

0 − 1
2h

0 1
2h

. . . 0 0 0 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 . . . − 1
2h

0 1
2h

0

0 0 0 0 . . . 0 a5 a6 0

0 0 0 0 . . . 0 a7 a8 0



































+























σ2(x0)
2

0 0 . . . 0

0 σ2(x1)
2

0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 σ2(xN−1)

2
0

0 . . . 0 0 σ2(xN )
2

























































0 b1 b2 b3 . . . 0 0 0 0

0 b4 b5 0 . . . 0 0 0 0

0 − 1
h2
− 2
h2

1
h2

. . . 0 0 0 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 . . . − 1
h2
− 2
h2

1
h2

0

0 0 0 0 . . . 0 b6 b7 0

0 0 0 0 . . . b8 b9 b10 0



































+























θf(x0) 0 0 . . . 0

0 θf(x1) 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 θf(xN−1) 0

0 . . . 0 0 θf(xN)













































0 − 4
2r1θ−3

1
2r1θ−3

. . . 0

0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

0 . . . 1
2r2θ−3

− 4
2r2θ−3

0























+























λ(x0) 0 0 . . . 0

0 λ(x1) 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 λ(xN−1) 0

0 . . . 0 0 λ(xN)













































B−























0 − 4
2r1θ−3

1
2r1θ−3

. . . 0

0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

0 . . . 1
2r2θ−3

− 4
2r2θ−3

0













































62



so that

A























u0

u1
...

uN−1

uN























=























ψ(θ) 0 0 . . . 0

0 ψ(θ) 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 ψ(θ) 0

0 . . . 0 0 ψ(θ)













































u0

u1
...

uN−1

uN























.

The matrix B is randomly generated as follows. For each i, simulate yj ∼ ρ(dy), j =

1, 2, ..., k. Denote l as l ≤ r(xi, yj) < l + 1 and construct Btemp, a k × N + 1 matrix, by

considering the following cases:

Case 1: if l = 0, assign B
j,1
temp = −

4eθf̃(xi,yj)

2hr1θ − 3
and B

j,2
temp =

eθf̃(xi,yj)

2hr1θ − 3
.

Case 2: if l = N, assign B
j,N−1
temp = − 4eθf̃(xi,yj)

2hr2θ − 3
and B

j,N−2
temp =

eθf̃(xi,yj)

2hr2θ − 3
.

Case 3: if 0 < l < N, assign B
j,l
temp = eθf̃(xi,yj).

Finally, average each column vector of Btemp to get Bi,· = 1
k

∑k
j=1 B

j,·
temp.

Once the matrix A has been computed, we use the eigen() function in R to compute the

eigenvalues and eigenvectors of the system, disregarding the eigenvalues from the first and

last columns, as these will always be zero. In order to isolate the desired eigenvalue from the

generated list of N−1 values, we recall the assumption that u(θ, x) is a positive function and

so we search for eigenvectors with exclusively positive values. Empirically, while running the

simulations, this eigenvector has always been unique and its existence appears to depend on

an appropriate choice of step size. Further research is needed to make this precise. However,

it has been possible to consistently identify the correct eigenvalue by searching for either all

positive or all negative eigenvectors for any choice of step size.

Pseudo-Code

Let b be the upper boundary, N the number of steps from 0 to b, r1 and r2 as described in

Section 3.1, k the desired number of trials and let θ̄ = (θ1, θ2, ..., θj, ..., θl) be the vector of

θ values for which to compute ψ(θ). In the following pseudo-code, when we state: Set a
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matrix, we are referring to the scheme used from the corresponding matrices in this section.

1: procedure numericalPsiTheta(N, k, r1, r2, b, θ̄)

2: Set h← b
N
, xi ← ih for i = 0, 1, 2, ..., N

3: Initialize ψ(θ̄)

4: for each θ̄ do

5: Set (N + 1)× (N + 1)matrices µ, σ, f , λ,u, ux, uxx and B

6: Compute A = µ · ux + σ · uxx + f · u + λ · (B − u)

7: Compute eigenvectors of A

8: Set m ← index of unique positive eigenvector

9: Set ψ(θj)← mth eigenvalue of A

10: return ψ(θ̄)

4.2 Algorithm Verification

We numerically verify the algorithms proposed against the analytic solutions found in Section

3.4. To remain consistent with the rest of the thesis, all computations will be for the local

time at the lower boundary L(t).

4.2.1 Doubly Reflected Brownian Motion

Recall from Section 3.4.1, we analytically computed θ =
√

2ψ(θ) tanh(
√

2ψ(θ)) for standard

Brownian motion with parameter b = 1. The first test we would like to carry out is to

check whether the algorithm to simulate the paths of a reflected jump diffusion result in an

empirical mean for L(t) that converges to the exact value of E[L(t)]. To do this we compare

the two cases t = 1 and t = 10 with N = 400, by increasing k from 1 to 160000 and verify

lim
t→∞

1
t
E[L(t)] = ψ′(0). The green line represents the true value of ψ′(0) = 0.5 which was

computed by numerical differentiation.

As is evident from Figure 4.1, increasing the number of trials will cause the empirical

mean to converge, but more importantly, increasing the time interval will cause the empirical

mean to converge to the true expected value. This is due to the error from approximating
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the limit being o(t) which tends to zero as t increases.

Likewise, we can plot the variances of L(t) for increasing values of N and k, where

k = N2 and see that they converge as well. The blue, black and green lines in Figure 4.2

represent variances for t = 1, t = 10 and the true variance respectively. The true variance

was computed to be 0.3329.

Figure 4.1: Reflected Brownian Motion Path Simulation: Convergence of empirical mean to
true mean (green overlay). Left: T=1, N=400. Right: T=10, N=400.

Figure 4.2: Reflected Brownian Motion Path Simulation: Variance plot. Blue: T=1. Black:
T=10. Green: exact variance.

Now we move on to compute the errors between the estimated ψ(θ) by its limit definition

for N = 100 and 10000 trials and the analytically computed ψ(θ). Figure 4.3 shows the

numerically exact value for ψ(θ). Figures 4.4 and 4.5 show plots of the estimated ψ(θ) with

a green overlay line representing the exact value for ψ(θ) for T = 1 and T = 10, respectively,

and the difference between the two values.

The equality lim
t→∞

1
t
logE[eθΛ(t)] = ψ(θ) holds only as t tends to infinity. The error in
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comparing an estimate of 1
t
logE[eθΛ(t)] and ψ(θ) comes from having to choose a fixed value

for t which allows for there to be a difference between the two quantities as long as this

difference grows slower than t. To compound this, each sample of Λ(t) will vary by a certain

amount which is expected to converge in the mean as the sample size is increased. However,

the small errors in the exponential function are expected cause the overall errors to become

large quickly, especially if they are being multiplied by an increasing value of θ. So as is

expected, the error grows as we move further away from θ = 0.

Furthermore, we also notice that as t increases from T = 1 to T = 10, the estimate

becomes more precise near θ = 0 and less so for larger values of θ. This happens since as

we increase t, there is a larger variability around which values Λ(t) can take and again, this

error is exponentiated. This can be mitigated by making the estimate more precise, that is

taking larger values for N and k, as can be seen in Figure 4.6 where we keep T = 10 but

increase N = 400, k = 160000.

ψ(θ) computed analytically:

Figure 4.3: Reflected Brownian Motion Path Simulation: Analytic ψ(θ)
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ψ(θ) computed by limiting behavior:

Figure 4.4: Reflected Brownian Motion: Left: Estimated ψ(θ) by limit with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). T = 1, N = 100, k = 10000.

Figure 4.5: Reflected Brownian Motion: Left: Estimated ψ(θ) by limit with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). T = 10, N = 100, k = 10000.

Figure 4.6: Reflected Brownian Motion: Left: Estimated ψ(θ) by limit with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). T = 10, N = 400, k = 160000.
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Similarly to above, we will now compare the estimate of ψ(θ) that was found by numeri-

cally solving the integro-differential equation to the analytic solution for ψ(θ). In Figure 4.7

and Figure 4.8 respectively, we present plots for N = 10 and N = 100, with the green line

still representing the true value of ψ(θ).

We can see a considerable improvement in the precision of the estimate from solving

the integro-differential equation as opposed to using a Monte Carlo estimate. As expected,

increasing the step size from N = 10 to N = 100 improved the precision of the estimate. We

note that using finite differences results in both a round-off error and a truncation error which

increase inversely for changes in the step size. Therefore, improvements to the precision be-

yond a certain optimal choice of N are not expected. Lastly, we note that the errors increase

for larger θ and this is due to the order of accuracy chosen for the model, which is further

evidenced by the fact that the errors for N = 10 and N = 100 are proportional to each other.

ψ(θ) computed by solving the IDE:

Figure 4.7: Reflected Brownian Motion: Left: Estimated ψ(θ) by IDE with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). N = 10, k = 10000.
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Figure 4.8: Reflected Brownian Motion: Left: Estimated ψ(θ) by IDE with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). N = 100, k = 10000.

To further illustrate the differences between the errors of the Monte Carlo estimate and

those from solving the integro-differential equation, we present a table for select values of θ

below. The parameters chosen for the Monte Carlo estimate are T = 10, N = 100, k = 10000

and for the integro-differential equation, N = 100, k = 10000.

θ Analytic ψ(θ) Monte Carlo ψ(θ) IDE ψ(θ)
Exact Estimate Absolute Error Estimate Absolute Error

-0.5 -0.21338162 -0.20270337 0.01067825 -0.213378326 0.000003294
-0.1 -0.04837694 -0.04620514 0.0021718 -0.048376750 0.00000019
0.1 0.05171196 0.04953719 0.00217477 0.051712189 0.000000229
0.25 0.1361446 0.1307937 0.0053509 0.136146270 0.00000167
0.5 0.29776223 0.28824002 0.00952221 0.297770605 0.000008375
1 0.71961442 0.72229774 0.00268332 0.719670359 0.000055939
2 2.13281081 2.06865321 0.0641576 2.133413301 0.000602491

Table 4.1: Reflected Brownian Motion: Numerical comparison of two algorithms for esti-
mating ψ(θ). Parameter values for MC estimate are T = 10, N = 100, k = 10000 and for
IDE estimate are N = 100, k = 10000.

Recall that 1
t
logP(Λ(t) ≥ at) → ψ(θ∗) − θ∗a where a = ψ′(θ). Using this, we may

numerically estimate the rate function, ψ∗(a), and subsequently compute P(L(t) ≥ at) ≈
e−tψ

∗(a) for various values of θ > 0. We present these numerical results in three tables: Table

4.2 lists the results derived from analytically computing ψ(θ), Table 4.3 from the Monte

Carlo estimate of ψ(θ) and from the IDE estimate of ψ(θ). We choose t = 10 and continue

with the same parameter values as above. In Figure 4.9 we plot the rate function to show

that it is in fact convex and the minimum is achieved exactly where the theory would suggest,
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that is at ψ′(0) = 0.5 and we illustrate the exponential decay of the probabilities.

θ a = ψ′(θ) ψ∗(a) P(L(t) ≥ at)
0 0.5 0 1
0.1 0.5347 0.0018 0.9826
0.25 0.5922 0.0119 0.8877
0.5 0.7043 0.0544 0.5804
1 1 0.2804 0.0606
2 1.8828 1.6327 0

Table 4.2: Reflected Brownian Motion: Numerical large deviations result using analytic
ψ(θ). t = 10.

θ a = ψ′(θ) ψ∗(a) P(L(t) ≥ at)
0 0.4782 0 1
0.1 0.513 0.0018 0.9825
0.25 0.5718 0.0122 0.8855
0.5 0.6936 0.0586 0.5566
1 1.0724 0.3501 0.0302
2 1.4677 0.8666 0.0002

θ a = ψ′(θ) ψ∗(a) P(L(t) ≥ at)
0 0.5 0 1
0.1 0.5347 0.0018 0.9826
0.25 0.5922 0.0119 0.8877
0.5 0.7044 0.0544 0.5803
1 1.0002 0.2805 0.0605
2 1.8788 1.6241 0

Table 4.3: Reflected Brownian Motion: Numerical large deviations result using: Left: Monte
Carlo estimate of ψ(θ). Right: IDE estimate of ψ(θ). t = 10.

Figure 4.9: Reflected Brownian Motion: Left: Plot of the convex rate function, minimum at
0.5. Right: Plot of the exponential decay of the probabilities.
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4.2.2 Doubly Reflected Pure Jump Process

We now repeat the same checks as in the previous section for the simple pure jump pro-

cess from Section 3.4.2. Since the discussion remains the same, we simply provide the plots

with captions describing the choice of parameters. Recall from Section 3.4.2, we analyt-

ically computed θ = log
(

ψ(θ)4+175ψ(θ)3+9375ψ(θ)2+156250ψ(θ)+390625
25(ψ(θ)3+125ψ(θ)2+3750ψ(θ)+15625)

)

for a pure jump process

with parameter b = 3 and constant arrival function λ = 50. In this case E[L(t)] = 6.25 and

V ar(L(t)) = 17.1875.

Figure 4.10: Reflected Pure Jump Process: Convergence of empirical mean to true mean
(green overlay). Left: T=1, N=400. Right: T=10, N=400.

Figure 4.11: Reflected Pure Jump Process: Variance plot. Blue: T=1. Black: T=10. Green:
exact variance.
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ψ(θ) computed analytically:

Figure 4.12: Reflected Pure Jump Process: Analytic ψ(θ)

ψ(θ) computed by limiting behavior:

Figure 4.13: Reflected Pure Jump Process: Left: Estimated ψ(θ) by limit with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). T = 1, N = 100, k = 10000.

Figure 4.14: Reflected Pure Jump Process: Left: Estimated ψ(θ) by limit with green analytic
overlay. Right: Difference between exact and estimated ψ(θ).T = 10, N = 100, k = 10000.
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ψ(θ) computed by solving the IDE:

Figure 4.15: Reflected Pure Jump Process: Left: Estimated ψ(θ) by IDE with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). N = 10, k = 10000.

Figure 4.16: Reflected Pure Jump Process: Left: Estimated ψ(θ) by IDE with green analytic
overlay. Right: Difference between exact and estimated ψ(θ). N = 100, k = 10000.

We note that the instability for increasing values of θ arises because of the way we cal-

culated the integral part of the integro-differential equation. When designing the algorithm

for general use, we do not know the measure ν(x, dy) and so the only method we are aware

of to handle such generality is to approximate it by Monte Carlo methods. Then the same

issues that were present in computing ψ(θ) by its limit definition are present here, namely

the growing error of the exponential term with increasing θ and the variability of the Monte

Carlo estimate. Having said this, this algorithm performs considerably better for large values

of θ and follows the exact value of ψ(θ) consistently throughout.
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θ Analytic ψ(θ) Monte Carlo ψ(θ) IDE ψ(θ)
Exact Estimate Absolute Error Estimate Absolute Error

-0.5 -1.7745581 -1.7756343 0.0010762 -1.786109 0.0115509
-0.1 -0.5476136 -0.5247709 0.0228427 -0.5579613 0.0103477
0.05 0.3351856 0.3229893 0.0121963 0.328563 0.0066226
0.1 0.7209206 0.6941261 0.0267945 0.718304 0.0026166
0.15 1.165823 1.1173521 0.0484709 1.187411 0.021588
0.2 1.679614 1.5897722 0.0898418 1.680787 0.001173
0.25 2.272985 2.0999454 0.1730396 2.302708 0.029723

Table 4.4: Reflected Pure Jump Process: Numerical comparison of two algorithms for es-
timating ψ(θ). Parameter values for MC estimate are T = 10, N = 100, k = 10000 and for
IDE estimate are N = 500, k = 50000.

θ a = ψ′(θ) ψ∗(a) P(L(t) ≥ at)
0 6.25 0 1
0.05 7.1834 0.024 0.7867
0.1 8.277 0.1068 0.3438
0.15 9.5541 0.2673 0.069
0.2 11.0361 0.5276 0.051
0.25 12.7399 0.912 0.0001

Table 4.5: Reflected Pure Jump Process: Numerical large deviations result using Analytic
ψ(θ). t = 10.

θ a = ψ′(θ) ψ∗(a) P(L(t) ≥ at)
0 6.0173 0 1
0.05 6.9235 0.0232 0.793
0.1 7.9381 0.0997 0.369
0.15 8.9816 0.2299 0.1004
0.2 9.871 0.3844 0.0214
0.25 10.486 0.5216 0.0054

θ a = ψ′(θ) ψ∗(a) P(L(t) ≥ at)
0 6.3166 0 1
0.05 7.2035 0.0316 0.729
0.1 8.3576 0.1175 0.309
0.15 9.4243 0.2262 0.1041
0.2 10.243 0.3678 0.0253
0.25 13.5507 1.085 0

Table 4.6: Reflected Pure Jump Process: Numerical large deviation result using: Left: Monte
Carlo estimate of ψ(θ). Right: Using IDE estimate of ψ(θ). t = 10.

Figure 4.17: Reflected Pure Jump Process: Left: Plot of the convex rate function, minimum
at 6.25. Right: Plot of the exponential decay of the probabilities.
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Chapter 5

Conclusion

5.1 Concluding Remarks

In [11] a large deviation result for the local time was established for reflected diffusions and

in [1] the same was accomplished for reflected Lévy processes. In this thesis, we extended

those results to the reflected jump diffusion setting. By way of Itô’s formula, we derived

an integro-differential equation with appropriate boundary conditions from which the limit

of the cumulant generating function was found. This limit allowed for the Gärtner-Ellis

theorem to be applied which established the result.

The theory was practically implemented in a simulation study. We first described how

to simulate a path of a reflected jump diffusion and then derived algorithms to approximate

ψ(θ) in two ways, first by approximating the limit and then by numerically solving the

integro-differential equation. The algorithms’ decimal precision was then tested against the

analytically computed results for standard Brownian motion and a simple pure jump process

with constant coefficients.

Further research can still be done to improve the algorithms. Namely Laplace’s method

could be attempted to improve the Monte Carlo simulations and a deeper study of the

behavior of the eigenvectors would certainly help in developing a more efficient numerical

scheme for the solution of the integro-differential equation. Having said this, we look forward

to seeing the real world practical applications of this theory and continuing this research into

related areas of applied probability.
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Appendix A

Appendix

A.1 R Code

A.1.1 Reflected Jump Diffusion

1 ############ Path Simulat ion − Re f l e c t ed Jump D i f f u s i on ############

2

3 ################################################USER INPUT FUNCTIONS

4 mu = func t i on (V) { r e turn (0 ) }
5 sigma = func t i on (V) { r e turn (0 ) }
6 lambda = func t i on (V) { r e turn (0 ) }
7 gamma = func t i on (V, Z) { r e turn (0 ) }
8 rho = func t i on (V) { r e turn (0 ) }
9 ####################################################################

10

11 PathSimV = func t i on (T, N, x0 , v0 , a , b ) {
12 h = T / N

13 i = 0 ; s = 0 ; j = 1

14 A = 0

15 E = rexp (1)

16

17 X = L = U = V = vector ( )

18 X[ 1 ] = x0 ; V[ 1 ] = v0

19 L [ 1 ] = U[ 1 ] = 0
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20

21 whi le ( s !=T) {
22

23 Atemp = A + lambda (V[ j ] ) ∗ ( ( i +1)∗h−s )
24

25 i f (Atemp >= E) { #jump between s and ( i +1)h

26

27 tau = s + (E − A)/ ( lambda (V[ j ] ) )

28 X[ j ] = X[ j ] + mu(V[ j ] ) ∗ ( tau − s ) + sigma (V[ j ] ) ∗ s q r t ( tau − s ) ∗rnorm (1)

29 deltaX = gamma(V[ j ] , rho (V[ j ] ) )

30 X[ j ] = X[ j ] + deltaX

31

32 deltaL = max(0 , a − ( deltaX + V[ j ] ) )

33 deltaU = max(0 , ( deltaX + V[ j ] ) − b)

34 L [ j ] = L [ j ] + del taL

35 U[ j ] = U[ j ] + deltaU

36 V[ j ] = V[ j ] + deltaX + deltaL − deltaU

37

38 s = tau ; A = E; E = E + rexp (1)

39

40 } e l s e { #no jump between s and ( i +1)h

41

42 X[ j +1] = X[ j ] + mu(V[ j ] ) ∗ ( ( i +1)∗h − s ) + sigma (V[ j ] ) ∗ s q r t ( ( i +1)∗h − s ) ∗
rnorm (1)

43 s = ( i +1)∗h ; A = Atemp ; i = i + 1 ; j = j + 1

44

45 L [ j ] = L [ j −1] + max(0 , a − ( (X[ j ] − X[ j −1]) + V[ j −1]) )
46 U[ j ] = U[ j −1] + max(0 , (X[ j ] − X[ j −1]) + V[ j −1] − b)

47 V[ j ] = V[ j −1] + (X[ j ]−X[ j −1]) + (L [ j ]−L [ j −1]) − (U[ j ]−U[ j −1])
48

49 }
50 }
51 #return (L [N+1])

52 }
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A.1.2 ψ(θ) by Limit of CGF

1 ########## Psi Theta by Limit o f CGF ##########

2 PsiThetaMC = func t i on (T, N, x0 , v0 , a , b , k , thetaVec ) {
3 L = vecto r ( )

4 f o r ( i in 1 : k ) { L [ i ] = PathSimV(T, T∗N, x0 , v0 , a , b ) }
5 psiTheta = vecto r ( )

6 f o r ( i in 1 : l ength ( thetaVec ) ) {
7 maxThetaL = max( thetaVec [ i ] ∗L)
8 psiTheta [ i ] = 1/T∗maxThetaL + 1/T∗ l og (mean( exp ( thetaVec [ i ] ∗L−maxThetaL) ) )

9 } r e turn ( psiTheta )

10 }

A.1.3 ψ(θ) by DOS theorem

1 ########## Psi Theta by DOS theorem ##########

2 PsiThetaDOS = func t i on (T, N, x0 , v0 , a , b , k , thetaVec ) {
3 taub=lb=vecto r ( )

4 f o r ( i in 1 : k ) {
5 temp=PathSimV(T, T∗N, x0 , v0 , a , b )

6 whi le ( i s . nu l l ( temp) ) {temp=PathSimV(T, T∗N, x0 , v0 , a , b ) }
7 taub [ i ] = temp [ 1 ]

8 lb [ i ] = temp [ 2 ]

9 }
10 psiTheta = vecto r ( )

11 f o r ( j in 1 : l ength ( thetaVec ) ) {
12 f=func t i on (x ) −1+mean( exp ( thetaVec [ j ] ∗ lb−x∗ taub ) )
13 psiTheta [ j ]= un i root ( f , c ( 0 , 1 ) , t o l =.Machine$double . eps ∗ 10 , extendInt = ”yes

” ) $ root

14 } r e turn ( psiTheta )

15 }

78



A.1.4 ψ(θ) by IDE numerics

1 ########### Eigenvalue − IDE ##########

2

3 ################################################USER INPUT FUNCTIONS

4 mu = func t i on (V) { r e turn (0 ) }
5 sigma = func t i on (V) { r e turn (0 ) }
6 lambda = func t i on (V) { r e turn (0 ) }
7 gamma = func t i on (V, Y) { r e turn (0 ) }
8 rho = func t i on (V) { r e turn (0 ) }
9 f = func t i on (V) { r e turn (0 ) }

10 f t i l d e = func t i on (V, Y) { r e turn (0 ) }
11 ####################################################################

12 numericalPsiTheta = func t i on (N, k , r1 , r2 , b , thetaVec ) {
13 h=b/N

14 x = seq ( from=0, to=b , by=h)

15 counter = 0

16 psiTheta = vector ( )

17 f o r ( theta in thetaVec ) {
18 counter = counter + 1

19 muMatrix = matrix (0L , nrow=length (x ) , nco l=length (x ) )

20 f o r ( i in 1 : l ength (x ) ) { muMatrix [ i , i ]=mu(x [ i ] ) }
21 sigmaMatrix = matrix (0L , nrow=length (x ) , nco l=length (x ) )

22 f o r ( i in 1 : l ength (x ) ) { sigmaMatrix [ i , i ]=sigma (x [ i ] ) ˆ2/2 }
23 fMatr ix = matrix (0L , nrow=length (x ) , nco l=length (x ) )

24 f o r ( i in 1 : l ength (x ) ) { fMatr ix [ i , i ]= theta ∗ f ( x [ i ] ) }
25 lambdaMatrix = matrix (0L , nrow=length (x ) , nco l=length (x ) )

26 f o r ( i in 1 : l ength (x ) ) { lambdaMatrix [ i , i ]=lambda (x [ i ] ) }
27 u = matrix (0L , nrow=length (x ) , nco l=length (x ) )

28 u[1 ,2]=−4/ (2 ∗ r1 ∗ theta −3)
29 u [1 ,3 ]=1 / (2 ∗ r1 ∗ theta −3)
30 u [ l ength (x ) , ( l ength (x )−1)]=−4/ (2 ∗ r2 ∗ theta −3)
31 u [ l ength (x ) , ( l ength (x )−2)]=1/ (2 ∗ r2 ∗ theta −3)
32 f o r ( i in 2 : ( l ength (x )−1) ) {
33 u [ i , i ]=1

34 }
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35 ux = matrix (0L , nrow=length (x ) , nco l=length (x ) )

36 ux [1 ,2 ]=2 /h+6/ (h∗(−3+2∗h∗ r1 ∗ theta ) )
37 ux [1 ,3]=−1/ (2 ∗h)−3/ (2 ∗h∗(−3+2∗h∗ r1 ∗ theta ) )
38 ux [2 ,2 ]=2 / (h∗(−3+2∗h∗ r1 ∗ theta ) )
39 ux [2 ,3 ]=1 / (2 ∗h)−1/ (2 ∗h∗(−3+2∗h∗ r1 ∗ theta ) )
40 ux [ l ength (x )−1, l ength (x )−1]=−2/ (h∗(−3+2∗h∗ r2 ∗ theta ) )
41 ux [ l ength (x )−1, l ength (x )−2]=−1/ (2 ∗h)+1/ (2 ∗h∗(−3+2∗h∗ r2 ∗ theta ) )
42 ux [ l ength (x ) , ( l ength (x )−1)]=−2/h−6/ (h∗(−3+2∗h∗ r2 ∗ theta ) )
43 ux [ l ength (x ) , ( l ength (x )−2)]=1/ (2 ∗h)+3/ (2 ∗h∗(−3+2∗h∗ r2 ∗ theta ) )
44 f o r ( i in 3 : ( l ength (x )−2) ) {
45 ux [ i , i−1]=−1/ (2 ∗h)
46 ux [ i , i +1]=1/ (2 ∗h)
47 }
48 uxx = matrix (0L , nrow=length (x ) , nco l=length (x ) )

49 uxx [1 ,2]=−5/hˆ2−8/ (hˆ2∗(−3+2∗h∗ r1 ∗ theta ) )
50 uxx [1 ,3 ]=4 /hˆ2+2/ (hˆ2∗(−3+2∗h∗ r1 ∗ theta ) )
51 uxx [1 ,4]=−1/hˆ2
52 uxx [2 ,2]=−2/hˆ2−4/ (hˆ2∗(−3+2∗h∗ r1 ∗ theta ) )
53 uxx [2 ,3 ]=1 /hˆ2+1/ (hˆ2∗(−3+2∗h∗ r1 ∗ theta ) )
54 uxx [ l ength (x )−1, l ength (x )−1]=−2/hˆ2−4/ (hˆ2∗(−3+2∗h∗ r2 ∗ theta ) )
55 uxx [ l ength (x )−1, l ength (x )−2]=1/hˆ2+1/ (hˆ2∗(−3+2∗h∗ r2 ∗ theta ) )
56 uxx [ l ength (x ) , ( l ength (x )−1)]=−5/hˆ2−8/ (hˆ2∗(−3+2∗h∗ r2 ∗ theta ) )
57 uxx [ l ength (x ) , ( l ength (x )−2)]=4/hˆ2+2/ (hˆ2∗(−3+2∗h∗ r2 ∗ theta ) )
58 uxx [ l ength (x ) , ( l ength (x )−3)]=−1/hˆ2
59 f o r ( i in 3 : ( l ength (x )−2) ) {
60 uxx [ i , i −1]=1/hˆ2

61 uxx [ i , i ]=−2/hˆ2
62 uxx [ i , i +1]=1/hˆ2

63 }
64 B = matrix (0L , nrow=length (x ) , nco l=length (x ) )

65 f o r ( i in 1 : l ength (x ) ) {
66 tempB = matrix (0L , nrow=k , nco l=length (x ) )

67 f o r ( j in 1 : k ) {
68 y=rho (x [ i ] )

69 i f ( x [ i ]+y<0){
70 tempB [ j ,2 ]=tempB [ j ,2]−4∗exp ( theta ∗ f t i l d e ( x [ i ] , y ) ) /(−3+2∗h∗ r1 ∗ theta )
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71 tempB [ j ,3 ]=tempB [ j ,3 ]+ exp ( theta ∗ f t i l d e ( x [ i ] , y ) ) /(−3+2∗h∗ r1 ∗ theta )
72 } e l s e i f ( x [ i ]+y>b) {
73 tempB [ j , ( l ength (x )−1)]=tempB [ j , ( l ength (x )−1)]−4∗exp ( theta ∗ f t i l d e ( x [ i

] , y ) ) /(−3+2∗h∗ r2 ∗ theta )
74 tempB [ j , ( l ength (x )−2)]=tempB [ j , ( l ength (x )−2)]+exp ( theta ∗ f t i l d e ( x [ i ] , y

) ) /(−3+2∗h∗ r2 ∗ theta )
75 } e l s e {
76 i f ( y==0){
77 i f ( i==1){
78 tempB [ j ,2 ]=tempB [ j ,2]−4∗exp ( theta ∗ f t i l d e ( x [ i ] , y ) ) /(−3+2∗h∗ r1 ∗

theta )

79 tempB [ j ,3 ]=tempB [ j ,3 ]+ exp ( theta ∗ f t i l d e ( x [ i ] , y ) ) /(−3+2∗h∗ r1 ∗ theta )
80 } e l s e i f ( i == length (x ) ) {
81 tempB [ j , ( l ength (x )−1)]=tempB [ j , ( l ength (x )−1)]−4∗exp ( theta ∗ f t i l d e (

x [ i ] , y ) ) /(−3+2∗h∗ r2 ∗ theta )
82 tempB [ j , ( l ength (x )−2)]=tempB [ j , ( l ength (x )−2)]+exp ( theta ∗ f t i l d e ( x [

i ] , y ) ) /(−3+2∗h∗ r2 ∗ theta )
83 } e l s e {
84 tempB [ j , i ]=exp ( theta ∗ f t i l d e ( x [ i ] , y ) )

85 }
86 } e l s e i f (y<0){
87 i f ( c e i l i n g ( (N+1)∗ ( x [ i ]+y ) /b)==1){
88 tempB [ j ,2 ]=tempB [ j ,2]−4∗exp ( theta ∗ f t i l d e ( x [ i ] , y ) ) /(−3+2∗h∗ r1 ∗

theta )

89 tempB [ j ,3 ]=tempB [ j ,3 ]+ exp ( theta ∗ f t i l d e ( x [ i ] , y ) ) /(−3+2∗h∗ r1 ∗ theta )
90 } e l s e {
91 tempB [ j , c e i l i n g ( (N+1)∗ ( x [ i ]+y ) /b) ]=exp ( theta ∗ f t i l d e ( x [ i ] , y ) )

92 }
93 } e l s e {
94 i f ( f l o o r ( (N+1)∗ ( x [ i ]+y ) /b)==length (x ) ) {
95 tempB [ j , ( l ength (x )−1)]=tempB [ j , ( l ength (x )−1)]−4∗exp ( theta ∗ f t i l d e (

x [ i ] , y ) ) /(−3+2∗h∗ r2 ∗ theta )
96 tempB [ j , ( l ength (x )−2)]=tempB [ j , ( l ength (x )−2)]+exp ( theta ∗ f t i l d e ( x [

i ] , y ) ) /(−3+2∗h∗ r2 ∗ theta )
97 } e l s e {
98 tempB [ j , f l o o r ( (N+1)∗ ( x [ i ]+y ) /b) ]=exp ( theta ∗ f t i l d e ( x [ i ] , y ) )
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99 }
100 }
101 }
102 }
103 f o r ( l in 1 : l ength (x ) ) {
104 B[ i , l ]=mean(tempB [ , l ] )

105 }
106 }
107 A=muMatrix%∗%ux+sigmaMatrix%∗%uxx+fMatr ix%∗%u+lambdaMatrix%∗%(B−u)
108 A = A[ 2 : ( l ength (x )−1) , 2 : ( l ength (x )−1) ]
109 EVec=e igen (A) $ ve c t o r s

110 EVal=e igen (A) $ va lue s

111 i = length (x )−1
112 ct1=0

113 ct2=0

114 whi le ( ct1 != ( l ength (x )−2)&& ct2 != ( l ength (x )−2) ) {
115 i=i−1
116 ct1=0

117 ct2=0

118 f o r ( j in 1 : ( l ength (x )−2) ) {
119 i f (Re(EVec [ j , i ] )>0&&abs (Im(EVec [ j , i ] ) ) <0.0001){
120 ct1=ct1+1

121 }
122 i f (Re(EVec [ j , i ] )<0&&abs (Im(EVec [ j , i ] ) ) <0.0001){
123 ct2=ct2+1

124 }
125 }
126 }
127 psiTheta [ counter ] = Re(EVal [ i ] )

128 } r e turn ( psiTheta )

129 }
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[8] J. Gärtner. “On Large Deviations from the Invariant Measure”. In: Theory of Proba-

bility & Its Applications 22.1 (1977), pp. 24–39. doi: 10.1137/1122003.

[9] K. Giesecke et al. “Numerical Solution of Jump-Diffusion SDEs”. In: (Mar. 2018). doi:

http://dx.doi.org/10.2139/ssrn.2298701.

83



[10] P. Glasserman and M. Merener. “Convergence of a Discretization Scheme for Jump-

Diffusion Processes with State-Dependent Intensities”. In: Proceedings: Mathematical,

Physical and Engineering Sciences 460.2041 (2004), pp. 111–127. issn: 13645021.

[11] P. W. Glynn and R. J. Wang. “Central Limit Theorems and Large Deviations for

Additive Functionals of Reflecting Diffusion Processes”. In: ArXiv e-prints (July 2013).

arXiv: 1307.1574 [math.PR].

[12] G. Grimmett and D. Stirzaker. Probability and Random Processes. Probability and

Random Processes. OUP Oxford, 2001. isbn: 9780198572220.

[13] F. den Hollander. Large Deviations. Fields Institute monographs. American Mathe-

matical Society, 2008. isbn: 9780821844359.

[14] P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.

Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, 2011. isbn:

9783540540625.

[15] A. E. Kyprianou. Introductory lectures on fluctuations of Lévy processes with applica-
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