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Abstract

Software Maintenance At Commit-Time

Mathieu Louis Nayrolles, Ph.D.
Concordia University, 2018

Software maintenance activities such as debugging and feature enhancement are
known to be challenging and costly, which explains an ever growing line of research in
software maintenance areas including mining software repository, default prevention,
clone detection, and bug reproduction. The main goal is to improve the productivity
of software developers as they undertake maintenance tasks. Existing tools, however,
operate in an offline fashion, i.e., after the changes to the systems have been made.
Studies have shown that software developers tend to be reluctant to use these tools as
part of a continuous development process. This is because they require installation
and training, hindering their integration with developers’ workflow, which in turn
limits their adoption. In this thesis, we propose novel approaches to support software
developers at commit-time. As part of the developer’s workflow, a commit marks the
end of a given task. We show how commits can be used to catch unwanted modifi-
cations to the system, and prevent the introduction of clones and bugs, before these
modifications reach the central code repository. We also propose a bug reproduction
technique that is based on model checking and crash traces. Furthermore, we propose
a new way for classifying bugs based on the location of fixes that can serve as the
basis for future research in this field of study. The techniques proposed in this thesis
have been tested on over 400 open and closed (industrial) systems, resulting in high

levels of precision and recall. They are also scalable and non-intrusive.
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Chapter 1

Introduction

1.1 Problem and Motivations

Software maintenance activities such as debugging and feature enhancement are
known to be challenging and costly [158]. Studies have shown that the cost of software
maintenance can reach up to 70% of the overall cost of the software development life
cycle [70]. This is due to many factors including the increase in software complex-
ity, the lack of traceability between the various artifacts of the software development
process, the lack of proper documentation, and the unavailability of the original de-
velopers of the systems.

The last decades have seen increased attention in research in various software
maintenance fields including mining software repository, default prevention, clone
detection, program comprehension, etc. The main goal is to improve the productivity
of software developers as they undertake maintenance tasks. There exist several tools
to help with important software development tasks that can ease the maintenance
burden. These include tools for clone detection (e.g., [14, 49, 90]), bug prevention
(e.g., [68, 92]), and bug reproduction (e.g., [32, 163, 220]).

Although these tools have been shown to be useful, they operate in an offline
fashion (i.e., after the changes to the systems have been made). Software developers
might be reluctant to use them as part of a continuous development process, unless
they are involved in a major refactoring effort. Johnson et al. [86] showed that one of
the main challenges with these tools lies in their lack of integration with the workflow

of developers. Lewis et al. and Foss et al. [59, 118] added that developers tend to



be reluctant to install external tools, which typically require extensive settings and a
high learning curve. Another issue with existing techniques, especially bug prevention
methods, is that they do not provide recommendations to developers on how to fix the
detected bugs. They simply return measurements that are often difficult to interpret
by developers. Finally, developers also expressed concerns regarding the numbers
of warnings, the general heaviness of information provided by software maintenance
tools and the lack of clear corrective actions to fix a given warning.

In this thesis, we propose novel approaches to support software developers at
commit-time. As part of the developer’s workflow, a commit marks the end of a
given task or subtask as the developer is ready to version the source code. We show
how commits can be used to catch unwanted modifications to the system before
these modifications reach the central code repository. By doing so, we do not only
propose solutions that integrate well with developers’ workflow, but also eliminate
the need for software developers to use any other external tools. In addition, shall
these approaches fail at preventing defect introduction, we propose an approach to
reproduce on-field crashes in a controlled environment. Reproducing a bug is the first
step towards fixing it. Finally, we provide a bug classification scheme to help reason

about bugs using the location of fixes.

1.2 Research Contributions
In this thesis, we make the following contributions:

1. A Bug Metarepository for researchers to manipulate millions of bug reports and
fixes (Chapter 4): In this work, we introduce BUMPER (BUg Metarepository
for dEvelopers and Researchers), a web-based infrastructure that can be used
by software developers and researchers to access data from diverse repositories
using natural language queries, regardless of where the data was created and
hosted [137]. The idea behind BUMPER is that it can connect to any bug track-
ing and version control systems and download the data into a single database.
We created a common schema that represents data, stored in various bug track-
ing and version control systems. BUMPER uses a web-based interface to allow
users to search the aggregated database by expressing queries through a single

point of access. This way, users can focus on the analysis itself and not on



the way the data is represented or located. BUMPER supports many features
including: (1) the ability to use multiple bug tracking and control version sys-
tems, (2) the ability to efficiently search very large data repositories using both
natural language and a specialized query language, (3) the mapping between
the bug reports and the fixes, and (4) the ability to export the search results
in JSON, CSV and XML formats. In addition, BUMPER differs from other
approaches such as Boa [51] because (a) it updates itself every day with the
new closed reports, (b) it proposes a clear and concise JSON API that anyone

can use to support their approaches or tools.

. Online and incremental clone detection at commit-time (Chapter 5): Code
clones appear when developers reuse code with little to no modification to the
original code. Studies have shown that clones can account for about 7% to 50%
of the code in a given software system [14, 49]. Nevertheless, introduction of
new software clones is to be controlled as they may introduce new bugs in code
[90]. If a bug is discovered in one segment of the code that has been copied
and pasted several times, then the developers will have to remember the places
where this segment has been reused to fix the bug in each place. In this research,
we present PRECINCT (PREventing Clones INsertion at Commit-Time) that
focuses on preventing the insertion of clones at commit-time, i.e., before they
reach the central code repository. PRECINCT is an online clone detection tech-
nique that relies on the use of pre-commit hooks capabilities of modern source

code version control systems.

. An approach for preventing bug insertion at commit-time using clone detection
and dependency analysis (Chapter 6): We propose an approach for prevent-
ing the introduction of bugs at commit-time. There exist tools that prevent
developers from shipping bad code [76]. Our approach, called BIANCA (Bug
Insertion ANticipation by Clone Analysis at commit-time), is different than ex-
isting approaches because it mines and analyses the change patterns in commits
and matches them against past commits known to have introduced defects in

the code (or that have just been replaced by better implementation).

. An approach for preventing bug insertion at commit-time using metrics and

code matching (Chapter 7): Clone-based bug detection approaches suffer from



scalability issues, hindering their application in industrial settings, where sev-
eral repositories receive hundreds of commits per day. We created a two-step
classifier that leverages the performances of metric-based detection and the
expressiveness of clone-based detection and resolution called CLEVER [136].
This work was conducted in collaboration with Ubisoft, one of the largest video

games company in the world.

. An approach for crash reproduction using crash traces and model checking
(Chapter 8): Crash reproduction is an expensive task because the data pro-
vided by end users is often scarce [33]. It is, therefore, important to invest
in techniques and tools for automatic bug reproduction to ease the mainte-
nance process and accelerate the rate of bug fixes and patches. We propose
an approach, called JCHARMING (Java CrasH Automatic Reproduction by
directed Model checkING) that uses a combination of crash traces and model
checking to reproduce bugs that caused field failures automatically [138, 139].
Unlike existing techniques, JCHARMING does not require instrumentation of
the code. It does not need access to the content of the heap either. Instead,
JCHARMING uses a list of functions outputed when an uncaught exception in
Java occurs (i.e., the crash trace) to guide a model checking engine to uncover
the statements that caused the crash. Such outputs are often found in bug

reports.

. A classification of bugs based on the location of fixes (Chapter 9): In recent
years, there has been an increase in attention in techniques and tools that mine
large bug repositories to help software developers understand the causes of bugs
and speed up the fixing process. These techniques, however, treat all bugs in
the same way. Bugs that are fixed by changing a single location in the code are
examined the same way as those that require complex changes. After examining
more than 100 thousand bug reports of 380 projects, we found that bugs can
be classified into four types based on the location of their fixes. Type 1 bugs
are the ones that fixed by modifying a single location in the code, while Type 2
refers to bugs that are fixed in more than one location. Type 3 refers to multiple
bugs that are fixed in the exact same location. Type 4 is an extension of Type
3, where multiple bugs are resolved by modifying the same set of locations. This

classification can help companies put the resources where they are needed the

4



most. It also provides useful insight into the quality of the code. Knowing, for
example, that a system contains a large number of bugs of Type 4 suggests high
maintenance efforts. This classification can also be used for other tasks such
as predicting the type of incoming bugs for an improved bug handling process.
For example, if a bug is found to be of Type 4, then it should be directed to

experienced developers.

1.3 Thesis Organization

The thesis organization is as follows; in Chapter 2, we provide background information
about the version control systems and project tracking systems. In Chapter 3, we
present the works related to ours. Chapters 4, 5, 6, 7, 8 and, 9 are dedicated to
the main contributions of this thesis we mentioned in the previous section. Finally,
we conclude the thesis in Chapter 10, following with future directions and closing

remarks.

1.4 Related Publications

Earlier versions of the work done in this thesis have been published in the following

papers:

1. Abdelwahab Hamou-Lhadj, Mathieu Nayrolles: A Project on Software De-
fect Prevention at Commit-Time: A Success Story of University-Industry Re-
search Collaboration. Proceeding of the 5th International Workshop on Soft-
ware Engineering Research and Industrial Practice, co-located with the Inter-

national Conference on Software Engineering 2018, pp. 24-25.

2. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj: CLEVER: Combining Code
Metrics with Clone Detection for Just-In-Time Fault Prevention and Resolution
in Large Industrial Projects. Proceeding of the International Conference on

Mining Software Repositories 2018.

3. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj: Towards a Classification of
Bugs to Facilitate Software Maintainibility Tasks. Proceeding of the 1st Interna-
tional Workshop on Software Qualities and Their Dependencies 2018, co-located
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with the International Conference on Software Engineering 2018, pp. 25-32.

4. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofine Tahar, Alf Larsson: A
bug reproduction approach based on directed model checking and crash traces.
Journal of Software: Evolution and Process 29(3) (2017).

5. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj: BUMPER: A Tool for Cop-
ing with Natural Language Searches of Millions of Bugs and Fixes. International
Conference on Software Analysis, Evolution and Reengineering 2016, pp. 649-
652.

6. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofine Tahar, Alf Larsson:
JCHARMING: A bug reproduction approach using crash traces and directed
model checking. International Conference on Software Analysis, Evolution and

Reengineering 2015, pp. 101-110. Best Paper Award.

The following papers were published in parallel to the aforementioned publica-
tions. While they are not directly related to this thesis, at the same time, they are
not completely irrelevant, as their topics include crash report handling and quality

oriented refactoring of service based applications.

7. Abdou Maiga, Abdelwahab Hamou-Lhadj, Mathieu Nayrolles, Korosh Kooch-
ekian Sabor, Alf Larsson: An empirical study on the handling of crash reports
in a large software company: An experience report. International Conference

on Software Maintenance and Evolution 2015, pp. 342-351.

8. Mathieu Nayrolles, Eric Beaudry, Naouel Moha, Petko Valtchev, Abdelwa-
hab Hamou-Lhadj: Towards Quality-Driven SOA Systems Refactoring Through
Planning. International Multidisciplinary Conference on e-Technologies 2015,
pp. 269-284.

9. Korosh Koochekian Sabor, Mathieu Nayrolles, Abdelaziz Trabelsi, Abdel-
wahab Hamou-Lhadj: An Approach for Predicting Bug Report Fields Using a
Neural Network Model. Accepted to the International Workshop on Debugging

and Repair (IDEAR) co-located with the International Symposium of Software
Reliability Engineering (ISSRE) 2018.



In addition, we seized the opportunity to disseminate the best practices discovered

from our extensive investigation of software ecosystems in several books aimed at

practitioners. Appendices of this thesis list the open-source systems that have been

studied for our works.

10.

11.

12.

13.

14.

15.

Mathieu Nayrolles (2018). Angular Design Patterns. (pp. 178). Packt Pub-
lishing.

Mathieu Nayrolles, Rajesh Gunasundaram, Sridhar Rao (2017). Expert An-
gular. (pp. 454). Packt Publishing.

Mathieu Nayrolles (2015). Magento Site Performance Optimization. (pp. 92).
Packt Publishing.

Mathieu Nayrolles (2015). Xamarin Studio for Android Programming: A
C# Cookbook. (pp. 298). Packt Publishing.

Mathieu Nayrolles (2014). Mastering Apache Solr. Inkstall Publishing.
(pp. 152). Inkstall Publishing.

Mathieu Nayrolles (2013). Instant Magento Performance Optimization How-
to. (pp. 56). Packt Publishing.

Finally, the work presented in this thesis also attracted media-coverage for its

impact at Ubisoft, one of the world largest video game publisher. A google search for

“commit—+assistant+ubisoft” yields more than 114,000 results at the time of writing.

Here is a curated list of the most interesting press articles.

16.

17.

18.

Sinclair, B. (2018). Ubisoft’s “Minority Report of programming” - Gamesln-
dustry. https://www.gamesindustry.biz/articles/2018-02-22-ubisofts

-minority-report-of-programming.

Maxime Johnson. (2018). Jeux videos : reunir les chercheurs et les crateurs -
Techno - L’actualite. http://lactualite.com/techno/2018/02/23/jeu-vid

eo-reunir-les-chercheurs-et-les-createurs/

Condliffe, J. (2018). AI can help spot coding mistakes before they happen.
- MIT Technology Review. https://www.technologyreview.com/the-downl
0ad/610416/ai-can-help-spot-coding-mistakes-before-they-happen/
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19.

20.

21.

22.

23.

Matt Kamen. (2018). Ubisoft’s Al in Far Cry 5 and Watch Dogs could change
gaming - WIRED UK.http://www.wired.co.uk/article/ubisoft-commit-a

ssist-ai

Kenneth Gibson. (2018). STEM SIGHTS: The Concordian who uses Al to fix
software bugs - Concordia News. http://www.concordia.ca/cunews/main/s
tories/2018/04/10/stem-sights-concordian-who-makes-bug-free-softwa
re.html

Ryan Remiorz. (2018). Concordia develops tool with Ubisoft to detect glitches
in gaming software - Financial Post. http://business.financialpost.com/p
mn/business-pmn/concordia-develops-tool-with-ubisoft-to-detect-gli

tches-in-gaming-software

The Canadian Press. (2018). Concordia partners with Ubisoft to detect glitches
in gaming software - The Globe and Mail. https://www.theglobeandmail.co
m/business/technology/article-concordia-partners-with-ubisoft-to-d

etect-glitches-in-gaming-software/

Cyrille Baron. (2018). Commit Assistant, I'TA qui aide les dveloppeurs de jeux
- i1Q France. https://iq.intel.fr/commit-assistant-lia-qui-aide-les-
developpeurs-de-jeux/?sf184907379=1

In these publications, the work presented in this thesis is referred to as commit-
assistant which is the internal implementation of CLEVER (Chapter 7).



Chapter 2

Background

2.1

Definitions

In this thesis, we use the following definitions that are based on [10, 30, 157, 159,

202].

Software bug: A software bug is an error, flaw, failure, defect or fault in a com-
puter program or system that causes it to violate at least one of its functional
or non-functional requirement.

Error: An error is a mistake, misconception, or misunderstanding on the part
of a software developer.

Fault/defect: A fault (defect) is defined as an abnormal condition or defect at
the component, equipment, or subsystem level which may lead to a failure. A
fault (defect) is not final (the system still works) and does not prevent a given
feature to be accomplished. A fault (defect) is a deviation (anomaly) of the
healthy system that can be caused by an error or external factors (hardware,
third parties, etc.).

Failure: The inability of a software system or component to perform its required
functions within specified requirements.

Crash: The software system encountered a fault (defect) that triggered a fatal
failure from which the system could not recover from/overcome. As a result,
the system stops.

Bug report: A bug report describes a behaviour observed in the field and con-

sidered abnormal by the reporter. Bug reports are submitted manually to bug



report systems (bugzilla/jira). There is no mandatory format to report a bug.
Nevertheless, a bug report should have the version of the software system, OS,
and platform, steps to reproduce the bug, screen shots, stack trace and anything
that could help a developer assess the internal state of the software system.

e Crash report: A crash report is issued as the last thing that a software system
does before crashing. Crash reports are usually reported automatically (crash
reporting systems are implemented as part of the software application). A crash
report contains data (that can be proprietary) to help developers understand

the causes of the crash (e.g., memory dump,...).

In the remaining of this section, we introduce the two types of software repositories

that are used in this thesis: version control and project tracking systems.

2.2 Version control systems

Version control consists of maintaining the versions of various artifacts such as source
code files [208]. This activity is a complex task and cannot be performed manually
in real world projects. To this end, there exist several tools that have been created
to help practitioners manage the version of their software artifacts. Each evolution of
a software system is considered as a version (also called revision) and each version is
linked to the one before through modifications of software artifacts. These modifica-
tions consist of updating, adding or deleting software artifacts. They can be referred

as diff, patch or commit!. A diff, patch or commit has the following characteristics:

e Number of files: The number of software files that have been modified, added
or deleted

e Number of hunks: The number of consecutive code blocks of modified, added
or deleted lines in textual files. Hunks are used to determine, in each file, how
many different places the developer has modified

e Number of churns: The number of modified lines. However, the churn value for

a line change should be at least two as the line has to be

Modern version control systems also support branching. A branch is a derivation

in the evolution that contains a duplication of the source code so that both versions

!These names are not to be used interchangeably as differences exists.
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can be modified in parallel. Branches can be reconciled with a merge operation that
merges modifications of two or more branches. This operation is completely auto-
mated with the exception of merging conflicts that arise when both branches contain
modifications of the same line. Such conflicts cannot be reconciled automatically and
have to be dealt with by the developers. This allows for greater agility among devel-
opers as changes in one branch do not affect the work of the developers that are on
other branches.

Branching has been used for more than testing hazardous refactoring or testing
framework upgrades. Task branching is an agile branching strategy where a new
branch is created for each task [125]. It is common to see a branch named 123
— _implement_X where 123 is the #id of task X given by the project tracking system.
Project tracking systems are presented in Section 2.3.1.

In modern versioning systems, when maintainers make modifications to the source
code, they have to commit their changes for the modifications to be effective. The
commit operation versions the modifications applied to one or many files.

Figure 1 presents the data structure used to store a commit. Each commit is
represented as a tree. The root leaf (green) contains the commit, tree and parent
hashes as same as the author and the description associated with the commit. The
second leaf (blue) contains the leaf hash and the hashes of the files of the project.

In this example, we can see that author “Mathieu” has created the file filel .java
with the message “project init”. Figure 2 represents an external modification. In
this second example, filel .java is modified while file2 .java is created. The second
commit 98ca9 have 34ac2 as a parent.

Branches point to a commit. In a task-branching environment, a branch is created
via a checkout operation for each task. Tasks can be created to fix the root cause of
a crash or bug report or features to implement. In figure 3, the master branch and
the 1 _fix_ overflow point on commit 98ca9.

Both branches can evolve separately and be merged when the task branch is ready.
In Figure 4, the master branch points on al3ab2 while the 1 _fix_overflow points on
ahj23k.
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blob 4ch1d3
import java.uitl

Figure 1: Data structure of a commit.

blob 5b1d3 blob 911e7
blob 4cb1d3
. . ) import java.uitl public static void
import java.uitl import java.collection main(String[] args)
A A

Figure 2: Data structure of two commits.
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34ac2 <+ 98ca9

[ ]

master 1 _fix_overflow

Figure 3: Two branches pointing on one commit.

master

l

34ac2 < 98ca9 D al3ab2

T ahj23k

1_fix_overflow

Figure 4: Two branches pointing on two commits.

2.3 Version Control Systems Providers

In this thesis, we mainly refer to three version control systems: Svn, Git and, to
a lesser extent, Mercurial. SVN is distributed by the Apache Foundation and is
a centralized concurrent version system that can handle conflicts in the different
versions of different developers. SVN is widely used in industry. At the opposite,
Git is a distributed revision control system — originally developed by Linus Torvald
— where revisions can be kept locally for a while and then shared with the rest of
the team. Finally, Mercurial is also a distributed revision system, but shares many
concepts with SVN. It will be easier for people who are used to SVN to switch to a

distributed revision system if they use Mercurial.

2.3.1 Project Tracking Systems

Project tracking systems allow end users to create bug reports (BRs) to report unex-

pected system behaviour, managers can create tasks to drive the evolution forward
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and crash report (CRs) can be automatically created. These systems are also used by
development teams to keep track of the modifications induced by bugs, crash reports,

and keep track of the fixes.

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state [ UNCONFIRMED
Bug is reopened,

Bug confirmed or
receives enough votes

was never confirmed

Developer = kes
NEW
Cwinership
is changed Developer tmkes Development is
poesassion finished with bug
Peesible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer takes RESOLVED _
prEsEssio Bug is closad
QA not satisfied QA verifies
with solution solution worked
E- ed
REOPEN U Is reopen VERIFIED
Bug is reopened
Bug is closed
CLOSED

Figure 5: Lifecyle of a report

Figure 5 presents the life cycle of a report [28]. When an end-user submits a
report, it is set to the UNCONFIRMED state until it receives enough votes or that
a user with the proper permissions modifies its status to NEW. The report is then
assigned to a developer to be fixed. When the report is in the ASSIGNED state,
the assigned developer(s) starts working on the report. A fixed report moves to the

RESOLVED state. Developers have five different possibilities to resolve a report:
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FIXED, DUPLICATE, WONTFIX, WORKSFORME and INVALID [106].

e RESOLVED/FIXED: A modification to the source code has been pushed, i.e.,
a changeset (also called a patch) has been committed to the source code man-
agement system and fixes the root problem described in the report.

e RESOLVED/DUPLICATE: A previously submitted report is being processed.
The report is marked as a duplicate of the original report.

e RESOLVED/WONTFIX: This is applied in the case where developers decide
that a given report will not be fixed.

e RESOLVED/WORKSFORME: If the root problem described in the report can-
not be reproduced on the reported OS/hardware.

e RESOLVED/INVALID: If the report is not related to the software itself.

Finally, the report is CLOSED after it is resolved. A report can be reopened
(sent to the REOPENED state) and then assigned again if the initial fix was not
adequate (the fix did not resolve the problem). The elapsed time between the report
marked as new and the resolved status is known as the fizing time, usually in days.
In case of task branching, the branch associated with the report is marked as ready
to be merged. Then, the person in charge (quality assurance team, manager, ect. .. )
will be able to merge the branch with the mainline. If the report is reopened: the
days between the time the report is reopened and the time it is marked again as
RESOLVED/FIXED are cumulated. Reports can be reopened many times.

Tasks follow a similar life cycle with the exception of the UNCONFIRMED and
RESOLVED states. Tasks are created by management and do not need to be con-
firmed to be OPEN and ASSIGNED to developers. When a task is complete, it will
not go to the RESOLVED state, but to the IMPLEMENTED state. Bug and crash
reports are considered as problems to eradicate in the program. Tasks are considered
as new features or amelioration to include in the program.

Reports and tasks can have a severity associated with them [22]. The severity

indicates the degree of impact on the software system. The possible severities are:

blocker: blocks development and/or testing work.

critical: crashes, loss of data, severe memory leak.
e major: major loss of function.

e normal: regular report, some loss of functionality under specific circumstances.
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e minor: minor loss of function, or other problem where easy workaround is
present.

e trivial: cosmetic problems like misspelled words or misaligned text.

The relationship between a report or a task and the actual modification can be
hard to establish, and it has been a subject of various research studies (e.g., [2, 12,
203]). The reason is that they are on two different systems: the version control system
and the project tracking system. While it is considered a good practice to link each
report with the versioning system by indicating the report #id on the modification

message, more than half of the reports are not linked to a modification [203].

2.4 Project Tracking Systems Providers

We have collected data from four different project tracking systems: Bugzilla, Jira,
Github and Sourceforge. Bugzilla belongs to the Mozilla foundation and has first
been released in 1998. Jira, provided by Altassian, has been released 16 years ago, in
2002. Bugzilla is 100% open source and it is difficult to estimate how many projects
use it. However, we can envision that it owns a great share of the market as major
organizations such as Mozilla, Eclipse and the Apache Software Foundation use it.
Jira, on the other hand, is a commercial software tool — with a freemium business
model — and Altassian claims that they have 25,000 customers over the world.
Github and Sourceforge are different from Bugzilla and Jira in a sense that they
were created as source code revision systems and evolved, later on, to add project
tracking capabilities to their software tools. This common particularity has the ad-

vantage to ease the link between bug reports and the source code.
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Chapter 3

Related work

3.1 Clone Detection

Clone detection is an important and difficult task. Throughout the years, researchers
and practitioners have developed a considerable number of methods and tools to
efficiently detect source code clones. In this section, we first describe the classical
clone detection approaches and then present works that focus on local and remote

detection.

3.1.1 Traditional Clone Detection Techniques

Tree-matching and metric-based methods are two sub-categories of syntactic analysis
for clone detection. Syntactic analyses consist in building abstract syntax trees (AST)
and analyze them with a set of dedicated metrics or searching for identical sub-trees.
Many existing AST-based approaches rely on sub-tree comparison to detect clone,
including the work of Baxter et al.[18], Wahleret et al. [196], and the work of Jian et
al. with Deckard [83]. An AST-based approach compares metrics computed on the
AST, rather than the code itself, to identify clones [15, 155].

Text-based techniques use the code and compare sequences of code blocks to each
other to identify potential clones. Johnson was perhaps the first one to use fingerprints
to detect clones [87, 88]. Blocks of code are hashed, producing fingerprints that can
be compared. If two blocks share the same fingerprint, they are considered as clones.
Manber et al. [122] and Ducasse et al. [49] refined the fingerprint technique by using
leading keywords and dot-plots.
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Another approach for detecting clones is to use static analysis and to leverage the
semantics of a program to improve the detection. These techniques rely on program
dependency graphs, where nodes are statements and edges are dependencies. Then,
the problem of finding clones is reduced to the problem of finding identical sub-groups
in the program dependency graph. Examples of existing techniques that fall into this
category are the ones presented by Krinke et al.[108] and Gabel et al. [61].

Many clone detection tools resort to lexical approaches for clone detection. Here,
the code is transformed into a series of tokens. If sub-series repeat themselves, it
means that a potential clone is in the code. Some popular tools that use this technique
include Dup [14], CCFinder [93], and CP-Miner [119].

In 2010, Hummel et al. proposed an approach that is both incremental and scal-
able using index-based clone detection [77]. Incremental clone detection is a technique
where only the changes from one version to another are analysed. Thus, the required
computational time is greatly reduced. Using more than 100 machines in a cluster,
they managed to drop the computation time of Type 1 and 2 to less than a sec-
ond while comparing a new version. The time required to find all the clones on a
73 MLOC system was 36 minute. We reach similar performances, for one revision,
using a single machine. While being extremely fast and reliable, Hummel et al.‘s
approach required an industrial cluster to achieve such performance. In our opinion,
it is unlikely that standard practitioners have access to such computational power.
Moreover, the authors’ approach only targets Type 1 and 2 clones. Higo et al. pro-
posed an incremental clone detection approach based on program dependency graphs
(PDG) [73]. Using PDG is arguably more complex than text comparison and allows
the detection of clone structures that are scattered in the program. They were able

to analyze 5,903 revisions in 15 hours in Apache Ant.

3.1.2 Remote Detection of Clones

Yuki et al. conducted one of the few studies on the application of clone management
to industrial systems [205]. They implemented a tool named Clone Notifier at NEC
with the help of experienced practitioners. They specifically focus on clone insertion
notification, very much like PRECINCT. Unlike PRECINCT however, their approach
uses a remote approach in which the changes are committed (i.e., they reach the

central repository, and anyone can pull them into their machines) and a central server
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analyses the changes. If the committed changes contain newly inserted clones, then
an email notification is sent.

Zhang et al. proposed CCEvents (Code Cloning Events) [212]. Their approach
monitors code repository continuously and allows stakeholders to use a domain specific
language called CCEML to specify which email notifications they wish to receive.

In addition, many commercial tools now include clone detection as part of continu-
ous integration. Codeclimate “codeclimate, Codacy ~codacy, Scrutinizer “scrutinizer
and Coveralls”coveralls are some examples. These tools will perform various tasks
such as executing unit test suites, computing quality metricsm performing clone de-
tection and, provide a report by email.

We argue that remotely detecting clones is not practical because clones can be
synchronized by other team members, which may lead to challenging merges when
the clones are removed. In addition, the authors did not report performance mea-
surements and the longer it takes for the notification to be sent to the developer, the

harder it can be to reconstruct the mind-map required for clone removal.

3.1.3 Local Detection of Clones

Gode and Koschke [63] proposed an incremental clone detector that relies on the
results of analysis from past versions of a system to only analyze the new changes.
Their clone detector takes the form of an IDE plugin that alerts developers as soon
as a clone is inserted into the program.

Zibran and Roy [215, 216] proposed another IDE-based clone management system
to detect and refactor near-miss clones for Eclipse. Their approach uses a k-difference
hybrid suffix tree algorithm. It can detect clones in real-time and propose a semi-
automated refactoring process.

Robert el al. [181] proposed another IDE plugin for Eclipse called CloneDR based
on ASTs that introduced novel visualization for clone detection such as scatter-plots.

IDE-based methods tend to issue many warnings to developers that may interrupt
their work, hence hindering their productivity [104]. In addition, Latoza et al. [113]
found that there exist six different reasons that trigger the use of clones (e.g., copy
and paste of code examples, reimplementations of the same functionality in different
languages, etc. ). Developers are aware that they are creating clones in five out of six

situations. In such cases, warnings provided by IDE-based local detection techniques
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can be quite disturbing.

Nguyen et al. [147] proposed an advanced clone-aware source code management
system. Their approach uses abstract syntax trees to detect, update, and manage
clones. While efficient, their approach does not prevent the introduction of clones,
and it is not incremental. Developers have to run a project-wide detection for each
version of the program. The same teams [146] conducted follow-up study by making
Clever incremental. Their new tool, JSync, is an incremental clone detector that will
only perform the detection of clones on the new changes.

Niko el al. [148] proposed techniques revolving around hashing to obtain a quick
answer while detecting Type 1, Type 2, and Type 3 clones in Squeaksource. While
their approach works on a single system (i.e., detecting clones on one version of one
system), they found that more than 14% of all clones are copied from project to
project, stressing the need for fast and scalable approaches for clone detection to
detect clone across a large number of projects. On the performance side, Niko el al.
were able to perform clone detection on 74,026 classes in 14:45 hours (4,747 class per
hour) with an eight core Xeon at 2.3 GHz and 16 GB of RAM. While these results
are promising, especially because the approach detects clones across projects and
versions, the computing power required is still considerable.

Similarly, Saini et al. [170] and Sajnani et al. [171] proposed an approach, called
SourcererCC. SourcererCC targets fast clone detection on developers’ workstation
(12 GB RAM). SourcererCC is a token-based clone detector that uses an optimized
inverted-index. It was tested on 25K projects cumulating 250 MLOC. The technique
achieves a precision of 86% and a recall of 86%-100% for clones of Type 1, 2 and 3.

Toomey el al. [190] also proposed an efficient token based approach for detecting
clones called ctcompare. Their tokenization is, however, different than most ap-
proaches as they used lexical analysis to produce sequences of tokens that can be
transformed into token tuples. ctcompare is accurate, scalable and fast but does not

detect Type 3 clones.

3.2 Reports and source code relationships

Mining bug repositories is perhaps one of the most active research fields today. The

reason is that the analysis of bug reports (BRs) provides useful insights that can help
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with many maintenance activities such as bug fixing [169, 199] bug reproduction [9,
33, 84], fault analysis [143], etc. This increase of attention can be further justified by
the emergence of many open source bug tracking systems, allowing software teams to
make their bug reports available online to researchers.

These studies, however, treat all bugs as the same. For example, a bug that
requires only one fix is analyzed the same way as a bug that necessitates multiple
fixes. Similarly, if multiple bugs are fixed by modifying the exact same locations in
the code, then we should investigate how these bugs are related in order to predict
them in the future.

Researchers have been studying the relationships between bug and source code
repositories for more than two decades. To the best of our knowledge, the first ones
who conducted this type of study on a significant scale were Perry and Stieg [156]. In
these two decades, many aspects of these relationships have been studied in length.
For example, researchers were interested in improving the bug reports themselves by
proposing guidelines [22], and by further simplifying existing bug reporting models
[72].

Another field of study consists of assigning these bug reports, automatically if
possible, to the right developers during triaging [3, 25, 82, 182]. Another set of
approaches focus on how long it takes to fix a bug [24, 169, 213] and where it should
be fixed [209, 214]. With the rapidly increasing number of bugs, the community
was also interested in prioritizing bug reports [98], and in predicting the severity of
a bug [111]. Finally, researchers proposed approaches to predict which bug will get
reopened [120, 218], which bug report is a duplicate of another one [23, 80, 187] and
which locations are likely to yield new bugs [100, 102].

3.3 Fault Prediction

The majority of previous file/module-level prediction work use code or process met-
rics. Approaches using code metrics only rely on the information from the code itself
and do not use any historical data. Chidamber and Kemerer published the well-known
CK metrics suite [35] for object oriented designs and inspired Moha et al. to publish
similar metrics for service-oriented programs [129]. Another famous metric suite for

assessing the quality of a given software design is Briand’s coupling metrics [26].
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The CK and Briand’s metrics suites have been used, for example, by Basili et
al. [16], El Emam et al. [54], Subramanyam et al. [177] and Gyimothy et al. [65]
for object-oriented designs. Service oriented designs have been far less studied than
object oriented design as they are relatively new, but, Nayrolles et al. [141, 142],
Demange et al. [48] and Palma et al. [153] used Moha et al. metric suites to
detect software defects. All these approaches, proved software metrics to be useful at
detecting software faults for object oriented and service oriented designs, respectively.
In addition, Nagappan et al. [130, 132] and Zimmerman et al. [217, 219] further
refined metrics-based detection by using statical analysis and call-graph analysis.

Other approaches use historical development data, often referred to as process
metrics. Naggapan and Ball [131] studied the feasibility of using relative churn met-
rics to predict buggy modules in Windows Server 2003. Other work by Hassan et al.
and Ostrand et al. used past changes and defects to predict buggy locations (e.g.,
[67], [152]). Hassan and Holt proposed an approach that highlights the top ten most
susceptible locations to have a bug using heuristics based on file-level metrics [67].
They find that locations that have been recently modified and fixed are the most
defect-prone. Similarly, Ostrand et al. [152] predict future crash location by combin-
ing the data from changed and past defect locations. They validate their approach on
industrial systems at AT&T. They showed that data from prior changes and defects
can effectively predict defect-prone locations for open-source and industrial systems.
Kim et al. [102] proposed the bug cache approach, which is an improved technique
over Hassan and Holt’s approach [67]. Rahman and Devanbu found that, in general,
process-based metrics perform as good as or better than code-based metrics [160].

Other work focused on the prediction of risky changes. Kim et al. proposed the
change classification problem, which predicts whether a change is buggy or clean [179].
Hassan [68] used the entropy of changes to predict risky changes. They find that the
more complex a change is, the more likely it is to introduce a defect. Kamei et al.
performed a large-scale empirical study on change classification [92]. The studies
above find that size of a change and the history of the files being changed (i.e., how
buggy they were in the past) are the best indicators of risky changes.
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3.4 Automatic Patch Generation

Pan et al. [154] identified 27 bug fixing patterns that can be applied to fix software
bugs in Java programs. They showed that between 45.7 - 63.6% of the bugs could
be fixed with their patterns. Later, Kim et al. [97] generated patches from human-
written patches and showed that their tool, PAR, successfully generated patches for
27 of 119 bugs. Tao et al. [183] also showed that automatically generated patches can
assist developers in debugging tasks. Other work also focused on determining how
to best generate acceptable and high quality patches, e.g. [43, 115], and determine
what bugs are best fit for automatic patch generation [116].

Our work differs from the work on automated patch generation in that we do
not generate patches; rather we use clone detection to determine the similarity of a
modification to a previous risky change and suggest to the developer the fixes of the

prior risky changes.

3.5 Crash Reproduction

In this section, we put the emphasis on how crash traces are used in crash reproduc-
tion tasks. Existing studies can be divided into two distinct categories: (A) on-field
record and in-house replay techniques [9, 134, 163, 176], and (B) on-house crash
understanding [32, 84, 85, 138, 220].

These two categories yield varying results depending on the selected approach
and are mainly differentiated by the need for instrumentation. The first category
of techniques oversees — by means of instrumentation — the execution of the target
system on the field in order to reproduce the crashes in-house, whereas tools and
approaches belonging to the second category only use data produced by the crash
such as the crash stack or the core dump at crash time. In the first category, tools
record different types of data such as the invoked methods [134], try-catch exceptions
[165], or objects [81]. In the second category, existing tools and approaches are aimed
towards understanding the causes of a crash, using data produced by the crash itself,
such as a crash stack [32], previous — and controlled — execution [220], etc.

Tools and approaches that rely on instrumentation face common limitations such
as the need to instrument the source code in order to introduce logging mechanisms

9, 81, 134], which is known to slow down the subject system. In addition, recording
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system behavior by means of instrumentation may yield privacy concerns. Tools and
approaches that only use data about a crash — such as core dump or exception stack
crashes — face a different set of limitations. They have to reconstruct the timeline of
events that have led to the crash [32, 138]. Computing all the paths from the initial
state of the software to the crash point is an NP-complete problem, and may cause
state space explosion [32, 37].

In order to overcome these limitations, some researchers have proposed to use var-
ious SMT (satisfiability modulo theories) solvers [50] and model checking techniques
[194]. However, these techniques require knowledge that goes beyond traditional
software engineering, which hinders their adoption [195].

It is worth mentioning that both categories share a common limitation. It is
possible for the required condition to reproduce a crash to be purely external such
as the reading of a file that is only present on the hard drive of the customer or the
reception of a faulty network packet [32, 138]. It is almost impossible to reproduce

the bug without this input.

3.5.1 On-field Record and In-house Replay

Jaygarl et al. created OCAT (Object Capture based Automated Testing) [81]. The
authors’ approach starts by capturing objects created by the program when it runs
on-field in order to provide them with an automated test process. The coverage
of automated tests is often low due to lack of correctly constructed objects. Also,
the objects can be mutated by means of evolutionary algorithms. These mutations
target primitive fields in order to create even more objects and, therefore, improve
the code coverage. While not directly targeting the reproduction of a bug, OCAT is
an approach that was used as the main mechanism for bug reproduction systems.
Narayanasamy et al. [134] proposed BugNet, a tool that continuously records
program execution for deterministic replay debugging. According to the authors, the
size of the recorded data needed to reproduce a bug with high accuracy is around
10MB. This recording is then sent to the developers and allows the deterministic
replay of a bug. The authors argued that with nowadays Internet bandwidth the size
of the recording is not an issue during the transmission of the recorded data.
Another approach in this category was proposed by Clause et al. [37]. The

approach records the execution of the program on the client side and compresses
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the generated data. Moreover, the approach keeps compressed traces of all accessed
documents in the operating system. This data is sent to the developers to replay
the execution of the program in a sandbox, simulating the client’s environment. This
special feature of the approach proposed by Clause et al. addresses the limitation
where crashes are caused by external causes. While the authors broaden the scope of
reproducible bugs, their approach records a lot of data that may be deemed private
such as files used for the proper operation of the operating system.

Timelapse [29] also addresses the problem of reproducing bugs using external data.
The tool focuses on web applications and allows developers to browse and visualize
the execution traces recorded by Dolos. Dolos captures and reuses user inputs and
network responses to deterministically replay a field crash. Also, both Timelapse and
Dolos allow developers to use conventional tools such as breakpoints and classical
debuggers. Similar to the approach proposed by Clause et al. [37], private data are
recorded without obfuscation of any sort.

Another approach was proposed by Artzi et al. and named ReCrash. ReCrash
records the object states of the targeted programs [9]. The authors use an in-memory
stack, which contains every argument and object clone of the real execution in order
to reproduce a crash via the automatic generation of unit test cases. Unit test cases
are used to provide hints to the developers about the buggy code. This approach
particularly suffers from the limitation related to slowing down the execution. The
overhead for full monitoring is considerably high (between 13% and 64% in some
cases). The authors propose an alternative solution in which they record only the
methods surrounding the crash. For this to work, the crash has to occur at least
once so they could use the information causing the crash to identify the methods
surrounding it.ReCrash was able to reproduce 100% (11/11) of the submitted bugs.

Similar to ReCrash, JRapture [176] is a capture/replay tool for observation-based
testing. The tool captures the execution of Java programs to replay it in-house. To
capture the execution of a Java program, the creators of JRapture used their own
version of the Java Virtual Machine (JVM) and a lightweight, transparent capture
process. Using a customized JVM allows capturing any interactions between a Java
program and the system including GUI, files, and console inputs. These interactions
can be replayed later with exactly the same input sequence as seen during the capture

phase. However, using a custom JVM is not a practical solution. This is because the
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authors’ approach requires users to install a JVM that might have some discrepancies
with the original one and yield bugs if used with other software applications. In our
view, JRapture fails to address the limitations caused by instrumentation because it
imposes the installation of another JVM that can also monitor other software systems
in addition to the intended ones. RECORE (REconstructing CORE dumps) is a tool
proposed by Robler et al. The tool instruments Java byte code to wrap every method
in a try-catch block while keeping a quasi-null overhead [165]. RECORE starts from
the core dump and tries (with evolutionary algorithms) to reproduce the same dump
by executing the subject program many times. When the generated dump matches
the collected one, the approach has found the set of inputs responsible for the failure
and was able to reproduce 85% (6/7) of the submitted bugs.

The approaches presented at this point operate at the code level. There exist
also techniques that focus on recording user-GUI interactions [71, 163]. Roehm et al.
extract the recorded data using delta debugging [210], sequential pattern mining, and
their combination to reproduce between 75% and 90% of the submitted bugs while
pruning 93% of the actions.

Among the approaches presented here, only the ones proposed by Clause et al.
and Burg et al. address the limitations incurred due to the need for external data at
the cost, however, of privacy. To address the limitations caused by instrumentation,
the RECORE approach proposes to let users choose where to put the bar between
the speed of the subject program, privacy, and bug reproduction efficiency. As an
example, users can choose to contribute or not to improving the software — policy
employed by many major players such as Microsoft in Visual Studio or Mozilla in
Firefox — and propose different types of monitoring where the cost in terms of speed,

privacy leaks, and efficiency for reproducing the bug is clearly explained.

3.5.2 On-house Crash Explanation

On the other side of the picture, we have tools and approaches belonging to the on-
house crash explanation (or understanding), which are fewer but newer than on-field
record and replay tools.

Jin et al. proposed BugRedux for reproducing field failures for in-house debugging
[84]. The tool aims to synthesize in-house executions that mimic field failures. To do

so, the authors use several types of data collected in the field such as stack traces, crash
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stack at points of failure, and call sequences. The data that successfully reproduced
the field crash is sent to software developers to fix the bug. BugRedux relies on several
in-house executions that are synthesized so as to narrow down the search scope, find
the crash location, and finally reproduce the bug. However, these in-house executions
have to be conducted before the work on the bug really begins. Also, the in-house
executions suffer from the same limitation as unit testing, i.e., the executions are
based on the developer’s knowledge and ability to develop exceptional scenarios in
addition to the normal ones. Based on the success of BugRedux, the authors built
F3 (Fault localization for Field Failures) [85] and MIMIC [220]. F3 performs many
executions of a program on top of BugRedux in order to cover different paths that
are leading to the fault. It then generates many pass and fail paths, which can lead
to a better understanding of the bug. They also use grouping, profiling and filtering,
to improve the fault localization process. MIMIC further extends F3 by comparing a
model of correct behavior to failing executions and identifying violations of the model
as potential explanations for failures.

While being close to our approach, BugRedux and F3 may require the call se-
quence and/or the complete execution trace in order to achieve bug reproduction.
When using only the crash traces (referred to as call stack at crash time in their
paper), the success rate of BugRedux significantly drops to 37.5% (6/16). The call
sequence and the complete execution trace required to reach 100% accuracy can only
be obtained through instrumentation and with an overhead ranging from 10% to
1066%. Chronicle [20] is an approach that supports remote debugging by capturing
inputs in the application through code instrumentation. The approach seems to have
a low overhead on the instrumented application, around 10%.

Likewise, Zamfir et al. proposed ESD [207], an execution synthesis approach that
automatically synthesizes failure execution using only the stack trace information.
However, this stack trace is extracted from the core dump and may not always contain
the components that caused the crash.

To the best of our knowledge, the most complete work in this category is the one of
Chen in his PhD thesis [32]. Chen proposed an approach named STAR (Stack Trace
based Automatic crash Reproduction). Using only the crash stack, STAR starts from
the crash line and goes backward towards the entry point of the program. During

the backward process, STAR computes the required condition using an SMT solver

27



named Yices [50]. The objects that satisfy the required conditions are generated and
orchestrated inside a JUnit test case. The test is run, and the resulting crash stack is
compared to the original one. If both match, the bug is said to be reproduced. STAR
aims to tackle the state explosion problem of reproducing a bug by reconstructing the
events in a backward fashion and therefore saving numerous states to explore. STAR
was able to reproduce 38 bugs out of 64 (54.6%). Also, STAR is relatively easy to
implement as it uses Yices [50] and potentially Z3 [46] (state<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>