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Abstract

Software Maintenance At Commit-Time

Mathieu Louis Nayrolles, Ph.D.

Concordia University, 2018

Software maintenance activities such as debugging and feature enhancement are

known to be challenging and costly, which explains an ever growing line of research in

software maintenance areas including mining software repository, default prevention,

clone detection, and bug reproduction. The main goal is to improve the productivity

of software developers as they undertake maintenance tasks. Existing tools, however,

operate in an offline fashion, i.e., after the changes to the systems have been made.

Studies have shown that software developers tend to be reluctant to use these tools as

part of a continuous development process. This is because they require installation

and training, hindering their integration with developers’ workflow, which in turn

limits their adoption. In this thesis, we propose novel approaches to support software

developers at commit-time. As part of the developer’s workflow, a commit marks the

end of a given task. We show how commits can be used to catch unwanted modifi-

cations to the system, and prevent the introduction of clones and bugs, before these

modifications reach the central code repository. We also propose a bug reproduction

technique that is based on model checking and crash traces. Furthermore, we propose

a new way for classifying bugs based on the location of fixes that can serve as the

basis for future research in this field of study. The techniques proposed in this thesis

have been tested on over 400 open and closed (industrial) systems, resulting in high

levels of precision and recall. They are also scalable and non-intrusive.
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Chapter 1

Introduction

1.1 Problem and Motivations

Software maintenance activities such as debugging and feature enhancement are

known to be challenging and costly [158]. Studies have shown that the cost of software

maintenance can reach up to 70% of the overall cost of the software development life

cycle [70]. This is due to many factors including the increase in software complex-

ity, the lack of traceability between the various artifacts of the software development

process, the lack of proper documentation, and the unavailability of the original de-

velopers of the systems.

The last decades have seen increased attention in research in various software

maintenance fields including mining software repository, default prevention, clone

detection, program comprehension, etc. The main goal is to improve the productivity

of software developers as they undertake maintenance tasks. There exist several tools

to help with important software development tasks that can ease the maintenance

burden. These include tools for clone detection (e.g., [14, 49, 90]), bug prevention

(e.g., [68, 92]), and bug reproduction (e.g., [32, 163, 220]).

Although these tools have been shown to be useful, they operate in an offline

fashion (i.e., after the changes to the systems have been made). Software developers

might be reluctant to use them as part of a continuous development process, unless

they are involved in a major refactoring effort. Johnson et al. [86] showed that one of

the main challenges with these tools lies in their lack of integration with the workflow

of developers. Lewis et al. and Foss et al. [59, 118] added that developers tend to

1



be reluctant to install external tools, which typically require extensive settings and a

high learning curve. Another issue with existing techniques, especially bug prevention

methods, is that they do not provide recommendations to developers on how to fix the

detected bugs. They simply return measurements that are often difficult to interpret

by developers. Finally, developers also expressed concerns regarding the numbers

of warnings, the general heaviness of information provided by software maintenance

tools and the lack of clear corrective actions to fix a given warning.

In this thesis, we propose novel approaches to support software developers at

commit-time. As part of the developer’s workflow, a commit marks the end of a

given task or subtask as the developer is ready to version the source code. We show

how commits can be used to catch unwanted modifications to the system before

these modifications reach the central code repository. By doing so, we do not only

propose solutions that integrate well with developers’ workflow, but also eliminate

the need for software developers to use any other external tools. In addition, shall

these approaches fail at preventing defect introduction, we propose an approach to

reproduce on-field crashes in a controlled environment. Reproducing a bug is the first

step towards fixing it. Finally, we provide a bug classification scheme to help reason

about bugs using the location of fixes.

1.2 Research Contributions

In this thesis, we make the following contributions:

1. A Bug Metarepository for researchers to manipulate millions of bug reports and

fixes (Chapter 4): In this work, we introduce BUMPER (BUg Metarepository

for dEvelopers and Researchers), a web-based infrastructure that can be used

by software developers and researchers to access data from diverse repositories

using natural language queries, regardless of where the data was created and

hosted [137]. The idea behind BUMPER is that it can connect to any bug track-

ing and version control systems and download the data into a single database.

We created a common schema that represents data, stored in various bug track-

ing and version control systems. BUMPER uses a web-based interface to allow

users to search the aggregated database by expressing queries through a single

point of access. This way, users can focus on the analysis itself and not on
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the way the data is represented or located. BUMPER supports many features

including: (1) the ability to use multiple bug tracking and control version sys-

tems, (2) the ability to efficiently search very large data repositories using both

natural language and a specialized query language, (3) the mapping between

the bug reports and the fixes, and (4) the ability to export the search results

in JSON, CSV and XML formats. In addition, BUMPER differs from other

approaches such as Boa [51] because (a) it updates itself every day with the

new closed reports, (b) it proposes a clear and concise JSON API that anyone

can use to support their approaches or tools.

2. Online and incremental clone detection at commit-time (Chapter 5): Code

clones appear when developers reuse code with little to no modification to the

original code. Studies have shown that clones can account for about 7% to 50%

of the code in a given software system [14, 49]. Nevertheless, introduction of

new software clones is to be controlled as they may introduce new bugs in code

[90]. If a bug is discovered in one segment of the code that has been copied

and pasted several times, then the developers will have to remember the places

where this segment has been reused to fix the bug in each place. In this research,

we present PRECINCT (PREventing Clones INsertion at Commit-Time) that

focuses on preventing the insertion of clones at commit-time, i.e., before they

reach the central code repository. PRECINCT is an online clone detection tech-

nique that relies on the use of pre-commit hooks capabilities of modern source

code version control systems.

3. An approach for preventing bug insertion at commit-time using clone detection

and dependency analysis (Chapter 6): We propose an approach for prevent-

ing the introduction of bugs at commit-time. There exist tools that prevent

developers from shipping bad code [76]. Our approach, called BIANCA (Bug

Insertion ANticipation by Clone Analysis at commit-time), is different than ex-

isting approaches because it mines and analyses the change patterns in commits

and matches them against past commits known to have introduced defects in

the code (or that have just been replaced by better implementation).

4. An approach for preventing bug insertion at commit-time using metrics and

code matching (Chapter 7): Clone-based bug detection approaches suffer from
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scalability issues, hindering their application in industrial settings, where sev-

eral repositories receive hundreds of commits per day. We created a two-step

classifier that leverages the performances of metric-based detection and the

expressiveness of clone-based detection and resolution called CLEVER [136].

This work was conducted in collaboration with Ubisoft, one of the largest video

games company in the world.

5. An approach for crash reproduction using crash traces and model checking

(Chapter 8): Crash reproduction is an expensive task because the data pro-

vided by end users is often scarce [33]. It is, therefore, important to invest

in techniques and tools for automatic bug reproduction to ease the mainte-

nance process and accelerate the rate of bug fixes and patches. We propose

an approach, called JCHARMING (Java CrasH Automatic Reproduction by

directed Model checkING) that uses a combination of crash traces and model

checking to reproduce bugs that caused field failures automatically [138, 139].

Unlike existing techniques, JCHARMING does not require instrumentation of

the code. It does not need access to the content of the heap either. Instead,

JCHARMING uses a list of functions outputed when an uncaught exception in

Java occurs (i.e., the crash trace) to guide a model checking engine to uncover

the statements that caused the crash. Such outputs are often found in bug

reports.

6. A classification of bugs based on the location of fixes (Chapter 9): In recent

years, there has been an increase in attention in techniques and tools that mine

large bug repositories to help software developers understand the causes of bugs

and speed up the fixing process. These techniques, however, treat all bugs in

the same way. Bugs that are fixed by changing a single location in the code are

examined the same way as those that require complex changes. After examining

more than 100 thousand bug reports of 380 projects, we found that bugs can

be classified into four types based on the location of their fixes. Type 1 bugs

are the ones that fixed by modifying a single location in the code, while Type 2

refers to bugs that are fixed in more than one location. Type 3 refers to multiple

bugs that are fixed in the exact same location. Type 4 is an extension of Type

3, where multiple bugs are resolved by modifying the same set of locations. This

classification can help companies put the resources where they are needed the
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most. It also provides useful insight into the quality of the code. Knowing, for

example, that a system contains a large number of bugs of Type 4 suggests high

maintenance efforts. This classification can also be used for other tasks such

as predicting the type of incoming bugs for an improved bug handling process.

For example, if a bug is found to be of Type 4, then it should be directed to

experienced developers.

1.3 Thesis Organization

The thesis organization is as follows; in Chapter 2, we provide background information

about the version control systems and project tracking systems. In Chapter 3, we

present the works related to ours. Chapters 4, 5, 6, 7, 8 and, 9 are dedicated to

the main contributions of this thesis we mentioned in the previous section. Finally,

we conclude the thesis in Chapter 10, following with future directions and closing

remarks.

1.4 Related Publications

Earlier versions of the work done in this thesis have been published in the following

papers:

1. Abdelwahab Hamou-Lhadj, Mathieu Nayrolles: A Project on Software De-

fect Prevention at Commit-Time: A Success Story of University-Industry Re-

search Collaboration. Proceeding of the 5th International Workshop on Soft-

ware Engineering Research and Industrial Practice, co-located with the Inter-

national Conference on Software Engineering 2018, pp. 24-25.

2. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj: CLEVER: Combining Code

Metrics with Clone Detection for Just-In-Time Fault Prevention and Resolution

in Large Industrial Projects. Proceeding of the International Conference on

Mining Software Repositories 2018.

3. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj: Towards a Classification of

Bugs to Facilitate Software Maintainibility Tasks. Proceeding of the 1st Interna-

tional Workshop on Software Qualities and Their Dependencies 2018, co-located

5



with the International Conference on Software Engineering 2018, pp. 25-32.

4. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofine Tahar, Alf Larsson: A

bug reproduction approach based on directed model checking and crash traces.

Journal of Software: Evolution and Process 29(3) (2017).

5. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj: BUMPER: A Tool for Cop-

ing with Natural Language Searches of Millions of Bugs and Fixes. International

Conference on Software Analysis, Evolution and Reengineering 2016, pp. 649-

652.

6. Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofine Tahar, Alf Larsson:

JCHARMING: A bug reproduction approach using crash traces and directed

model checking. International Conference on Software Analysis, Evolution and

Reengineering 2015, pp. 101-110. Best Paper Award.

The following papers were published in parallel to the aforementioned publica-

tions. While they are not directly related to this thesis, at the same time, they are

not completely irrelevant, as their topics include crash report handling and quality

oriented refactoring of service based applications.

7. Abdou Maiga, Abdelwahab Hamou-Lhadj,Mathieu Nayrolles, Korosh Kooch-

ekian Sabor, Alf Larsson: An empirical study on the handling of crash reports

in a large software company: An experience report. International Conference

on Software Maintenance and Evolution 2015, pp. 342-351.

8. Mathieu Nayrolles, Eric Beaudry, Naouel Moha, Petko Valtchev, Abdelwa-

hab Hamou-Lhadj: Towards Quality-Driven SOA Systems Refactoring Through

Planning. International Multidisciplinary Conference on e-Technologies 2015,

pp. 269-284.

9. Korosh Koochekian Sabor, Mathieu Nayrolles, Abdelaziz Trabelsi, Abdel-

wahab Hamou-Lhadj: An Approach for Predicting Bug Report Fields Using a

Neural Network Model. Accepted to the International Workshop on Debugging

and Repair (IDEAR) co-located with the International Symposium of Software

Reliability Engineering (ISSRE) 2018.
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In addition, we seized the opportunity to disseminate the best practices discovered

from our extensive investigation of software ecosystems in several books aimed at

practitioners. Appendices of this thesis list the open-source systems that have been

studied for our works.

10. Mathieu Nayrolles (2018). Angular Design Patterns. (pp. 178). Packt Pub-

lishing.

11. Mathieu Nayrolles, Rajesh Gunasundaram, Sridhar Rao (2017). Expert An-

gular. (pp. 454). Packt Publishing.

12. Mathieu Nayrolles (2015). Magento Site Performance Optimization. (pp. 92).

Packt Publishing.

13. Mathieu Nayrolles (2015). Xamarin Studio for Android Programming: A

C# Cookbook. (pp. 298). Packt Publishing.

14. Mathieu Nayrolles (2014). Mastering Apache Solr. Inkstall Publishing.

(pp. 152). Inkstall Publishing.

15. Mathieu Nayrolles (2013). Instant Magento Performance Optimization How-

to. (pp. 56). Packt Publishing.

Finally, the work presented in this thesis also attracted media-coverage for its

impact at Ubisoft, one of the world largest video game publisher. A google search for

“commit+assistant+ubisoft” yields more than 114,000 results at the time of writing.

Here is a curated list of the most interesting press articles.

16. Sinclair, B. (2018). Ubisoft’s “Minority Report of programming” - GamesIn-

dustry. https://www.gamesindustry.biz/articles/2018-02-22-ubisofts

-minority-report-of-programming.

17. Maxime Johnson. (2018). Jeux videos : reunir les chercheurs et les crateurs -

Techno - L’actualite. http://lactualite.com/techno/2018/02/23/jeu-vid

eo-reunir-les-chercheurs-et-les-createurs/

18. Condliffe, J. (2018). AI can help spot coding mistakes before they happen.

- MIT Technology Review. https://www.technologyreview.com/the-downl

oad/610416/ai-can-help-spot-coding-mistakes-before-they-happen/
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19. Matt Kamen. (2018). Ubisoft’s AI in Far Cry 5 and Watch Dogs could change

gaming - WIRED UK.http://www.wired.co.uk/article/ubisoft-commit-a

ssist-ai

20. Kenneth Gibson. (2018). STEM SIGHTS: The Concordian who uses AI to fix

software bugs - Concordia News. http://www.concordia.ca/cunews/main/s

tories/2018/04/10/stem-sights-concordian-who-makes-bug-free-softwa

re.html

21. Ryan Remiorz. (2018). Concordia develops tool with Ubisoft to detect glitches

in gaming software - Financial Post. http://business.financialpost.com/p

mn/business-pmn/concordia-develops-tool-with-ubisoft-to-detect-gli

tches-in-gaming-software

22. The Canadian Press. (2018). Concordia partners with Ubisoft to detect glitches

in gaming software - The Globe and Mail. https://www.theglobeandmail.co

m/business/technology/article-concordia-partners-with-ubisoft-to-d

etect-glitches-in-gaming-software/

23. Cyrille Baron. (2018). Commit Assistant, l’IA qui aide les dveloppeurs de jeux

- iQ France. https://iq.intel.fr/commit-assistant-lia-qui-aide-les-

developpeurs-de-jeux/?sf184907379=1

In these publications, the work presented in this thesis is referred to as commit-

assistant which is the internal implementation of CLEVER (Chapter 7).
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Chapter 2

Background

2.1 Definitions

In this thesis, we use the following definitions that are based on [10, 30, 157, 159,

202].

• Software bug: A software bug is an error, flaw, failure, defect or fault in a com-

puter program or system that causes it to violate at least one of its functional

or non-functional requirement.

• Error: An error is a mistake, misconception, or misunderstanding on the part

of a software developer.

• Fault/defect: A fault (defect) is defined as an abnormal condition or defect at

the component, equipment, or subsystem level which may lead to a failure. A

fault (defect) is not final (the system still works) and does not prevent a given

feature to be accomplished. A fault (defect) is a deviation (anomaly) of the

healthy system that can be caused by an error or external factors (hardware,

third parties, etc.).

• Failure: The inability of a software system or component to perform its required

functions within specified requirements.

• Crash: The software system encountered a fault (defect) that triggered a fatal

failure from which the system could not recover from/overcome. As a result,

the system stops.

• Bug report: A bug report describes a behaviour observed in the field and con-

sidered abnormal by the reporter. Bug reports are submitted manually to bug
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report systems (bugzilla/jira). There is no mandatory format to report a bug.

Nevertheless, a bug report should have the version of the software system, OS,

and platform, steps to reproduce the bug, screen shots, stack trace and anything

that could help a developer assess the internal state of the software system.

• Crash report: A crash report is issued as the last thing that a software system

does before crashing. Crash reports are usually reported automatically (crash

reporting systems are implemented as part of the software application). A crash

report contains data (that can be proprietary) to help developers understand

the causes of the crash (e.g., memory dump,. . . ).

In the remaining of this section, we introduce the two types of software repositories

that are used in this thesis: version control and project tracking systems.

2.2 Version control systems

Version control consists of maintaining the versions of various artifacts such as source

code files [208]. This activity is a complex task and cannot be performed manually

in real world projects. To this end, there exist several tools that have been created

to help practitioners manage the version of their software artifacts. Each evolution of

a software system is considered as a version (also called revision) and each version is

linked to the one before through modifications of software artifacts. These modifica-

tions consist of updating, adding or deleting software artifacts. They can be referred

as diff , patch or commit1. A diff , patch or commit has the following characteristics:

• Number of files: The number of software files that have been modified, added

or deleted

• Number of hunks: The number of consecutive code blocks of modified, added

or deleted lines in textual files. Hunks are used to determine, in each file, how

many different places the developer has modified

• Number of churns: The number of modified lines. However, the churn value for

a line change should be at least two as the line has to be

Modern version control systems also support branching. A branch is a derivation

in the evolution that contains a duplication of the source code so that both versions

1These names are not to be used interchangeably as differences exists.
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can be modified in parallel. Branches can be reconciled with a merge operation that

merges modifications of two or more branches. This operation is completely auto-

mated with the exception of merging conflicts that arise when both branches contain

modifications of the same line. Such conflicts cannot be reconciled automatically and

have to be dealt with by the developers. This allows for greater agility among devel-

opers as changes in one branch do not affect the work of the developers that are on

other branches.

Branching has been used for more than testing hazardous refactoring or testing

framework upgrades. Task branching is an agile branching strategy where a new

branch is created for each task [125]. It is common to see a branch named 123

↪→ implement X where 123 is the #id of task X given by the project tracking system.

Project tracking systems are presented in Section 2.3.1.

In modern versioning systems, when maintainers make modifications to the source

code, they have to commit their changes for the modifications to be effective. The

commit operation versions the modifications applied to one or many files.

Figure 1 presents the data structure used to store a commit. Each commit is

represented as a tree. The root leaf (green) contains the commit, tree and parent

hashes as same as the author and the description associated with the commit. The

second leaf (blue) contains the leaf hash and the hashes of the files of the project.

In this example, we can see that author “Mathieu” has created the file file1 . java

with the message “project init”. Figure 2 represents an external modification. In

this second example, file1 . java is modified while file2 . java is created. The second

commit 98ca9 have 34ac2 as a parent.

Branches point to a commit. In a task-branching environment, a branch is created

via a checkout operation for each task. Tasks can be created to fix the root cause of

a crash or bug report or features to implement. In figure 3, the master branch and

the 1 fix overflow point on commit 98ca9.

Both branches can evolve separately and be merged when the task branch is ready.

In Figure 4, the master branch points on a13ab2 while the 1 fix overflow points on

ahj23k.
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FIXED, DUPLICATE, WONTFIX, WORKSFORME and INVALID [106].

• RESOLVED/FIXED: A modification to the source code has been pushed, i.e.,

a changeset (also called a patch) has been committed to the source code man-

agement system and fixes the root problem described in the report.

• RESOLVED/DUPLICATE: A previously submitted report is being processed.

The report is marked as a duplicate of the original report.

• RESOLVED/WONTFIX: This is applied in the case where developers decide

that a given report will not be fixed.

• RESOLVED/WORKSFORME: If the root problem described in the report can-

not be reproduced on the reported OS/hardware.

• RESOLVED/INVALID: If the report is not related to the software itself.

Finally, the report is CLOSED after it is resolved. A report can be reopened

(sent to the REOPENED state) and then assigned again if the initial fix was not

adequate (the fix did not resolve the problem). The elapsed time between the report

marked as new and the resolved status is known as the fixing time, usually in days.

In case of task branching, the branch associated with the report is marked as ready

to be merged. Then, the person in charge (quality assurance team, manager, ect. . . )

will be able to merge the branch with the mainline. If the report is reopened: the

days between the time the report is reopened and the time it is marked again as

RESOLVED/FIXED are cumulated. Reports can be reopened many times.

Tasks follow a similar life cycle with the exception of the UNCONFIRMED and

RESOLVED states. Tasks are created by management and do not need to be con-

firmed to be OPEN and ASSIGNED to developers. When a task is complete, it will

not go to the RESOLVED state, but to the IMPLEMENTED state. Bug and crash

reports are considered as problems to eradicate in the program. Tasks are considered

as new features or amelioration to include in the program.

Reports and tasks can have a severity associated with them [22]. The severity

indicates the degree of impact on the software system. The possible severities are:

• blocker: blocks development and/or testing work.

• critical: crashes, loss of data, severe memory leak.

• major: major loss of function.

• normal: regular report, some loss of functionality under specific circumstances.
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• minor: minor loss of function, or other problem where easy workaround is

present.

• trivial: cosmetic problems like misspelled words or misaligned text.

The relationship between a report or a task and the actual modification can be

hard to establish, and it has been a subject of various research studies (e.g., [2, 12,

203]). The reason is that they are on two different systems: the version control system

and the project tracking system. While it is considered a good practice to link each

report with the versioning system by indicating the report #id on the modification

message, more than half of the reports are not linked to a modification [203].

2.4 Project Tracking Systems Providers

We have collected data from four different project tracking systems: Bugzilla, Jira,

Github and Sourceforge. Bugzilla belongs to the Mozilla foundation and has first

been released in 1998. Jira, provided by Altassian, has been released 16 years ago, in

2002. Bugzilla is 100% open source and it is difficult to estimate how many projects

use it. However, we can envision that it owns a great share of the market as major

organizations such as Mozilla, Eclipse and the Apache Software Foundation use it.

Jira, on the other hand, is a commercial software tool — with a freemium business

model — and Altassian claims that they have 25,000 customers over the world.

Github and Sourceforge are different from Bugzilla and Jira in a sense that they

were created as source code revision systems and evolved, later on, to add project

tracking capabilities to their software tools. This common particularity has the ad-

vantage to ease the link between bug reports and the source code.
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Chapter 3

Related work

3.1 Clone Detection

Clone detection is an important and difficult task. Throughout the years, researchers

and practitioners have developed a considerable number of methods and tools to

efficiently detect source code clones. In this section, we first describe the classical

clone detection approaches and then present works that focus on local and remote

detection.

3.1.1 Traditional Clone Detection Techniques

Tree-matching and metric-based methods are two sub-categories of syntactic analysis

for clone detection. Syntactic analyses consist in building abstract syntax trees (AST)

and analyze them with a set of dedicated metrics or searching for identical sub-trees.

Many existing AST-based approaches rely on sub-tree comparison to detect clone,

including the work of Baxter et al.[18], Wahleret et al. [196], and the work of Jian et

al. with Deckard [83]. An AST-based approach compares metrics computed on the

AST, rather than the code itself, to identify clones [15, 155].

Text-based techniques use the code and compare sequences of code blocks to each

other to identify potential clones. Johnson was perhaps the first one to use fingerprints

to detect clones [87, 88]. Blocks of code are hashed, producing fingerprints that can

be compared. If two blocks share the same fingerprint, they are considered as clones.

Manber et al. [122] and Ducasse et al. [49] refined the fingerprint technique by using

leading keywords and dot-plots.
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Another approach for detecting clones is to use static analysis and to leverage the

semantics of a program to improve the detection. These techniques rely on program

dependency graphs, where nodes are statements and edges are dependencies. Then,

the problem of finding clones is reduced to the problem of finding identical sub-groups

in the program dependency graph. Examples of existing techniques that fall into this

category are the ones presented by Krinke et al.[108] and Gabel et al. [61].

Many clone detection tools resort to lexical approaches for clone detection. Here,

the code is transformed into a series of tokens. If sub-series repeat themselves, it

means that a potential clone is in the code. Some popular tools that use this technique

include Dup [14], CCFinder [93], and CP-Miner [119].

In 2010, Hummel et al. proposed an approach that is both incremental and scal-

able using index-based clone detection [77]. Incremental clone detection is a technique

where only the changes from one version to another are analysed. Thus, the required

computational time is greatly reduced. Using more than 100 machines in a cluster,

they managed to drop the computation time of Type 1 and 2 to less than a sec-

ond while comparing a new version. The time required to find all the clones on a

73 MLOC system was 36 minute. We reach similar performances, for one revision,

using a single machine. While being extremely fast and reliable, Hummel et al.‘s

approach required an industrial cluster to achieve such performance. In our opinion,

it is unlikely that standard practitioners have access to such computational power.

Moreover, the authors’ approach only targets Type 1 and 2 clones. Higo et al. pro-

posed an incremental clone detection approach based on program dependency graphs

(PDG) [73]. Using PDG is arguably more complex than text comparison and allows

the detection of clone structures that are scattered in the program. They were able

to analyze 5,903 revisions in 15 hours in Apache Ant.

3.1.2 Remote Detection of Clones

Yuki et al. conducted one of the few studies on the application of clone management

to industrial systems [205]. They implemented a tool named Clone Notifier at NEC

with the help of experienced practitioners. They specifically focus on clone insertion

notification, very much like PRECINCT. Unlike PRECINCT however, their approach

uses a remote approach in which the changes are committed (i.e., they reach the

central repository, and anyone can pull them into their machines) and a central server
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analyses the changes. If the committed changes contain newly inserted clones, then

an email notification is sent.

Zhang et al. proposed CCEvents (Code Cloning Events) [212]. Their approach

monitors code repository continuously and allows stakeholders to use a domain specific

language called CCEML to specify which email notifications they wish to receive.

In addition, many commercial tools now include clone detection as part of continu-

ous integration. Codeclimate ˆcodeclimate, Codacy ˆcodacy, Scrutinizer ˆscrutinizer

and Coverallsˆcoveralls are some examples. These tools will perform various tasks

such as executing unit test suites, computing quality metricsm performing clone de-

tection and, provide a report by email.

We argue that remotely detecting clones is not practical because clones can be

synchronized by other team members, which may lead to challenging merges when

the clones are removed. In addition, the authors did not report performance mea-

surements and the longer it takes for the notification to be sent to the developer, the

harder it can be to reconstruct the mind-map required for clone removal.

3.1.3 Local Detection of Clones

Gode and Koschke [63] proposed an incremental clone detector that relies on the

results of analysis from past versions of a system to only analyze the new changes.

Their clone detector takes the form of an IDE plugin that alerts developers as soon

as a clone is inserted into the program.

Zibran and Roy [215, 216] proposed another IDE-based clone management system

to detect and refactor near-miss clones for Eclipse. Their approach uses a k-difference

hybrid suffix tree algorithm. It can detect clones in real-time and propose a semi-

automated refactoring process.

Robert el al. [181] proposed another IDE plugin for Eclipse called CloneDR based

on ASTs that introduced novel visualization for clone detection such as scatter-plots.

IDE-based methods tend to issue many warnings to developers that may interrupt

their work, hence hindering their productivity [104]. In addition, Latoza et al. [113]

found that there exist six different reasons that trigger the use of clones (e.g., copy

and paste of code examples, reimplementations of the same functionality in different

languages, etc. ). Developers are aware that they are creating clones in five out of six

situations. In such cases, warnings provided by IDE-based local detection techniques
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can be quite disturbing.

Nguyen et al. [147] proposed an advanced clone-aware source code management

system. Their approach uses abstract syntax trees to detect, update, and manage

clones. While efficient, their approach does not prevent the introduction of clones,

and it is not incremental. Developers have to run a project-wide detection for each

version of the program. The same teams [146] conducted follow-up study by making

Clever incremental. Their new tool, JSync, is an incremental clone detector that will

only perform the detection of clones on the new changes.

Niko el al. [148] proposed techniques revolving around hashing to obtain a quick

answer while detecting Type 1, Type 2, and Type 3 clones in Squeaksource. While

their approach works on a single system (i.e., detecting clones on one version of one

system), they found that more than 14% of all clones are copied from project to

project, stressing the need for fast and scalable approaches for clone detection to

detect clone across a large number of projects. On the performance side, Niko el al.

were able to perform clone detection on 74,026 classes in 14:45 hours (4,747 class per

hour) with an eight core Xeon at 2.3 GHz and 16 GB of RAM. While these results

are promising, especially because the approach detects clones across projects and

versions, the computing power required is still considerable.

Similarly, Saini et al. [170] and Sajnani et al. [171] proposed an approach, called

SourcererCC. SourcererCC targets fast clone detection on developers’ workstation

(12 GB RAM). SourcererCC is a token-based clone detector that uses an optimized

inverted-index. It was tested on 25K projects cumulating 250 MLOC. The technique

achieves a precision of 86% and a recall of 86%-100% for clones of Type 1, 2 and 3.

Toomey el al. [190] also proposed an efficient token based approach for detecting

clones called ctcompare. Their tokenization is, however, different than most ap-

proaches as they used lexical analysis to produce sequences of tokens that can be

transformed into token tuples. ctcompare is accurate, scalable and fast but does not

detect Type 3 clones.

3.2 Reports and source code relationships

Mining bug repositories is perhaps one of the most active research fields today. The

reason is that the analysis of bug reports (BRs) provides useful insights that can help
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with many maintenance activities such as bug fixing [169, 199] bug reproduction [9,

33, 84], fault analysis [143], etc. This increase of attention can be further justified by

the emergence of many open source bug tracking systems, allowing software teams to

make their bug reports available online to researchers.

These studies, however, treat all bugs as the same. For example, a bug that

requires only one fix is analyzed the same way as a bug that necessitates multiple

fixes. Similarly, if multiple bugs are fixed by modifying the exact same locations in

the code, then we should investigate how these bugs are related in order to predict

them in the future.

Researchers have been studying the relationships between bug and source code

repositories for more than two decades. To the best of our knowledge, the first ones

who conducted this type of study on a significant scale were Perry and Stieg [156]. In

these two decades, many aspects of these relationships have been studied in length.

For example, researchers were interested in improving the bug reports themselves by

proposing guidelines [22], and by further simplifying existing bug reporting models

[72].

Another field of study consists of assigning these bug reports, automatically if

possible, to the right developers during triaging [3, 25, 82, 182]. Another set of

approaches focus on how long it takes to fix a bug [24, 169, 213] and where it should

be fixed [209, 214]. With the rapidly increasing number of bugs, the community

was also interested in prioritizing bug reports [98], and in predicting the severity of

a bug [111]. Finally, researchers proposed approaches to predict which bug will get

reopened [120, 218], which bug report is a duplicate of another one [23, 80, 187] and

which locations are likely to yield new bugs [100, 102].

3.3 Fault Prediction

The majority of previous file/module-level prediction work use code or process met-

rics. Approaches using code metrics only rely on the information from the code itself

and do not use any historical data. Chidamber and Kemerer published the well-known

CK metrics suite [35] for object oriented designs and inspired Moha et al. to publish

similar metrics for service-oriented programs [129]. Another famous metric suite for

assessing the quality of a given software design is Briand’s coupling metrics [26].
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The CK and Briand’s metrics suites have been used, for example, by Basili et

al. [16], El Emam et al. [54], Subramanyam et al. [177] and Gyimothy et al. [65]

for object-oriented designs. Service oriented designs have been far less studied than

object oriented design as they are relatively new, but, Nayrolles et al. [141, 142],

Demange et al. [48] and Palma et al. [153] used Moha et al. metric suites to

detect software defects. All these approaches, proved software metrics to be useful at

detecting software faults for object oriented and service oriented designs, respectively.

In addition, Nagappan et al. [130, 132] and Zimmerman et al. [217, 219] further

refined metrics-based detection by using statical analysis and call-graph analysis.

Other approaches use historical development data, often referred to as process

metrics. Naggapan and Ball [131] studied the feasibility of using relative churn met-

rics to predict buggy modules in Windows Server 2003. Other work by Hassan et al.

and Ostrand et al. used past changes and defects to predict buggy locations (e.g.,

[67], [152]). Hassan and Holt proposed an approach that highlights the top ten most

susceptible locations to have a bug using heuristics based on file-level metrics [67].

They find that locations that have been recently modified and fixed are the most

defect-prone. Similarly, Ostrand et al. [152] predict future crash location by combin-

ing the data from changed and past defect locations. They validate their approach on

industrial systems at AT&T. They showed that data from prior changes and defects

can effectively predict defect-prone locations for open-source and industrial systems.

Kim et al. [102] proposed the bug cache approach, which is an improved technique

over Hassan and Holt’s approach [67]. Rahman and Devanbu found that, in general,

process-based metrics perform as good as or better than code-based metrics [160].

Other work focused on the prediction of risky changes. Kim et al. proposed the

change classification problem, which predicts whether a change is buggy or clean [179].

Hassan [68] used the entropy of changes to predict risky changes. They find that the

more complex a change is, the more likely it is to introduce a defect. Kamei et al.

performed a large-scale empirical study on change classification [92]. The studies

above find that size of a change and the history of the files being changed (i.e., how

buggy they were in the past) are the best indicators of risky changes.
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3.4 Automatic Patch Generation

Pan et al. [154] identified 27 bug fixing patterns that can be applied to fix software

bugs in Java programs. They showed that between 45.7 - 63.6% of the bugs could

be fixed with their patterns. Later, Kim et al. [97] generated patches from human-

written patches and showed that their tool, PAR, successfully generated patches for

27 of 119 bugs. Tao et al. [183] also showed that automatically generated patches can

assist developers in debugging tasks. Other work also focused on determining how

to best generate acceptable and high quality patches, e.g. [43, 115], and determine

what bugs are best fit for automatic patch generation [116].

Our work differs from the work on automated patch generation in that we do

not generate patches; rather we use clone detection to determine the similarity of a

modification to a previous risky change and suggest to the developer the fixes of the

prior risky changes.

3.5 Crash Reproduction

In this section, we put the emphasis on how crash traces are used in crash reproduc-

tion tasks. Existing studies can be divided into two distinct categories: (A) on-field

record and in-house replay techniques [9, 134, 163, 176], and (B) on-house crash

understanding [32, 84, 85, 138, 220].

These two categories yield varying results depending on the selected approach

and are mainly differentiated by the need for instrumentation. The first category

of techniques oversees – by means of instrumentation – the execution of the target

system on the field in order to reproduce the crashes in-house, whereas tools and

approaches belonging to the second category only use data produced by the crash

such as the crash stack or the core dump at crash time. In the first category, tools

record different types of data such as the invoked methods [134], try-catch exceptions

[165], or objects [81]. In the second category, existing tools and approaches are aimed

towards understanding the causes of a crash, using data produced by the crash itself,

such as a crash stack [32], previous – and controlled – execution [220], etc.

Tools and approaches that rely on instrumentation face common limitations such

as the need to instrument the source code in order to introduce logging mechanisms

[9, 81, 134], which is known to slow down the subject system. In addition, recording
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system behavior by means of instrumentation may yield privacy concerns. Tools and

approaches that only use data about a crash – such as core dump or exception stack

crashes – face a different set of limitations. They have to reconstruct the timeline of

events that have led to the crash [32, 138]. Computing all the paths from the initial

state of the software to the crash point is an NP-complete problem, and may cause

state space explosion [32, 37].

In order to overcome these limitations, some researchers have proposed to use var-

ious SMT (satisfiability modulo theories) solvers [50] and model checking techniques

[194]. However, these techniques require knowledge that goes beyond traditional

software engineering, which hinders their adoption [195].

It is worth mentioning that both categories share a common limitation. It is

possible for the required condition to reproduce a crash to be purely external such

as the reading of a file that is only present on the hard drive of the customer or the

reception of a faulty network packet [32, 138]. It is almost impossible to reproduce

the bug without this input.

3.5.1 On-field Record and In-house Replay

Jaygarl et al. created OCAT (Object Capture based Automated Testing) [81]. The

authors’ approach starts by capturing objects created by the program when it runs

on-field in order to provide them with an automated test process. The coverage

of automated tests is often low due to lack of correctly constructed objects. Also,

the objects can be mutated by means of evolutionary algorithms. These mutations

target primitive fields in order to create even more objects and, therefore, improve

the code coverage. While not directly targeting the reproduction of a bug, OCAT is

an approach that was used as the main mechanism for bug reproduction systems.

Narayanasamy et al. [134] proposed BugNet, a tool that continuously records

program execution for deterministic replay debugging. According to the authors, the

size of the recorded data needed to reproduce a bug with high accuracy is around

10MB. This recording is then sent to the developers and allows the deterministic

replay of a bug. The authors argued that with nowadays Internet bandwidth the size

of the recording is not an issue during the transmission of the recorded data.

Another approach in this category was proposed by Clause et al. [37]. The

approach records the execution of the program on the client side and compresses
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the generated data. Moreover, the approach keeps compressed traces of all accessed

documents in the operating system. This data is sent to the developers to replay

the execution of the program in a sandbox, simulating the client’s environment. This

special feature of the approach proposed by Clause et al. addresses the limitation

where crashes are caused by external causes. While the authors broaden the scope of

reproducible bugs, their approach records a lot of data that may be deemed private

such as files used for the proper operation of the operating system.

Timelapse [29] also addresses the problem of reproducing bugs using external data.

The tool focuses on web applications and allows developers to browse and visualize

the execution traces recorded by Dolos. Dolos captures and reuses user inputs and

network responses to deterministically replay a field crash. Also, both Timelapse and

Dolos allow developers to use conventional tools such as breakpoints and classical

debuggers. Similar to the approach proposed by Clause et al. [37], private data are

recorded without obfuscation of any sort.

Another approach was proposed by Artzi et al. and named ReCrash. ReCrash

records the object states of the targeted programs [9]. The authors use an in-memory

stack, which contains every argument and object clone of the real execution in order

to reproduce a crash via the automatic generation of unit test cases. Unit test cases

are used to provide hints to the developers about the buggy code. This approach

particularly suffers from the limitation related to slowing down the execution. The

overhead for full monitoring is considerably high (between 13% and 64% in some

cases). The authors propose an alternative solution in which they record only the

methods surrounding the crash. For this to work, the crash has to occur at least

once so they could use the information causing the crash to identify the methods

surrounding it.ReCrash was able to reproduce 100% (11/11) of the submitted bugs.

Similar to ReCrash, JRapture [176] is a capture/replay tool for observation-based

testing. The tool captures the execution of Java programs to replay it in-house. To

capture the execution of a Java program, the creators of JRapture used their own

version of the Java Virtual Machine (JVM) and a lightweight, transparent capture

process. Using a customized JVM allows capturing any interactions between a Java

program and the system including GUI, files, and console inputs. These interactions

can be replayed later with exactly the same input sequence as seen during the capture

phase. However, using a custom JVM is not a practical solution. This is because the
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authors’ approach requires users to install a JVM that might have some discrepancies

with the original one and yield bugs if used with other software applications. In our

view, JRapture fails to address the limitations caused by instrumentation because it

imposes the installation of another JVM that can also monitor other software systems

in addition to the intended ones. RECORE (REconstructing CORE dumps) is a tool

proposed by Robler et al. The tool instruments Java byte code to wrap every method

in a try-catch block while keeping a quasi-null overhead [165]. RECORE starts from

the core dump and tries (with evolutionary algorithms) to reproduce the same dump

by executing the subject program many times. When the generated dump matches

the collected one, the approach has found the set of inputs responsible for the failure

and was able to reproduce 85% (6/7) of the submitted bugs.

The approaches presented at this point operate at the code level. There exist

also techniques that focus on recording user-GUI interactions [71, 163]. Roehm et al.

extract the recorded data using delta debugging [210], sequential pattern mining, and

their combination to reproduce between 75% and 90% of the submitted bugs while

pruning 93% of the actions.

Among the approaches presented here, only the ones proposed by Clause et al.

and Burg et al. address the limitations incurred due to the need for external data at

the cost, however, of privacy. To address the limitations caused by instrumentation,

the RECORE approach proposes to let users choose where to put the bar between

the speed of the subject program, privacy, and bug reproduction efficiency. As an

example, users can choose to contribute or not to improving the software – policy

employed by many major players such as Microsoft in Visual Studio or Mozilla in

Firefox – and propose different types of monitoring where the cost in terms of speed,

privacy leaks, and efficiency for reproducing the bug is clearly explained.

3.5.2 On-house Crash Explanation

On the other side of the picture, we have tools and approaches belonging to the on-

house crash explanation (or understanding), which are fewer but newer than on-field

record and replay tools.

Jin et al. proposed BugRedux for reproducing field failures for in-house debugging

[84]. The tool aims to synthesize in-house executions that mimic field failures. To do

so, the authors use several types of data collected in the field such as stack traces, crash
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stack at points of failure, and call sequences. The data that successfully reproduced

the field crash is sent to software developers to fix the bug. BugRedux relies on several

in-house executions that are synthesized so as to narrow down the search scope, find

the crash location, and finally reproduce the bug. However, these in-house executions

have to be conducted before the work on the bug really begins. Also, the in-house

executions suffer from the same limitation as unit testing, i.e., the executions are

based on the developer’s knowledge and ability to develop exceptional scenarios in

addition to the normal ones. Based on the success of BugRedux, the authors built

F3 (Fault localization for Field Failures) [85] and MIMIC [220]. F3 performs many

executions of a program on top of BugRedux in order to cover different paths that

are leading to the fault. It then generates many pass and fail paths, which can lead

to a better understanding of the bug. They also use grouping, profiling and filtering,

to improve the fault localization process. MIMIC further extends F3 by comparing a

model of correct behavior to failing executions and identifying violations of the model

as potential explanations for failures.

While being close to our approach, BugRedux and F3 may require the call se-

quence and/or the complete execution trace in order to achieve bug reproduction.

When using only the crash traces (referred to as call stack at crash time in their

paper), the success rate of BugRedux significantly drops to 37.5% (6/16). The call

sequence and the complete execution trace required to reach 100% accuracy can only

be obtained through instrumentation and with an overhead ranging from 10% to

1066%. Chronicle [20] is an approach that supports remote debugging by capturing

inputs in the application through code instrumentation. The approach seems to have

a low overhead on the instrumented application, around 10%.

Likewise, Zamfir et al. proposed ESD [207], an execution synthesis approach that

automatically synthesizes failure execution using only the stack trace information.

However, this stack trace is extracted from the core dump and may not always contain

the components that caused the crash.

To the best of our knowledge, the most complete work in this category is the one of

Chen in his PhD thesis [32]. Chen proposed an approach named STAR (Stack Trace

based Automatic crash Reproduction). Using only the crash stack, STAR starts from

the crash line and goes backward towards the entry point of the program. During

the backward process, STAR computes the required condition using an SMT solver
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named Yices [50]. The objects that satisfy the required conditions are generated and

orchestrated inside a JUnit test case. The test is run, and the resulting crash stack is

compared to the original one. If both match, the bug is said to be reproduced. STAR

aims to tackle the state explosion problem of reproducing a bug by reconstructing the

events in a backward fashion and therefore saving numerous states to explore. STAR

was able to reproduce 38 bugs out of 64 (54.6%). Also, STAR is relatively easy to

implement as it uses Yices [50] and potentially Z3 [46] (stated in their future work)

that are well-supported SMT solvers.

Except for STAR, existing approaches that target the reproduction of field crashes

require the instrumentation of the code or the running platform in order to save the

stack call or the objects to successfully reproduce bugs. As we discussed earlier, such

approaches yield good results 37.5% to 100%, but the instrumentation can cause a

massive overhead (1% to 1066%) while running the system. In addition, the data

generated at run-time using instrumentation may contain sensitive information.

3.6 Bugs Classification

Another field of study consists of assigning these bug reports, automatically if possi-

ble, to the right developers during triaging [3, 25, 82, 182]. It also exist approaches

that focus on how long it takes to fix a bug [24, 169, 213] and where it should be

fixed [209, 214]. With the rapidly increasing number of bugs, the community was also

interested in prioritizing bug reports [98], and in predicting the severity of a bug [111].

Finally, researchers proposed approaches to predict which bug will get reopened [120,

218], which bug report is a duplicate of another one [23, 80, 187] and which locations

are likely to yield new bugs [100, 103, 192]. However, to the best of our knowledge,

there are not many attempts to classify bugs the way we present in this paper. In her

PhD thesis [55], Sigrid Eldh discussed the classification of trouble reports concerning

a set of fault classes that she identified. Fault classes include computational faults,

logical faults, ressource faults, function faults, etc. She conducted studies on Ericsson

systems and showed the distributions of trouble reports with respect to these fault

classes. A research paper was published on the topic [55]. Hamill et al. [66] proposed

a classification of faults and failures in critical safety systems. They proposed sev-

eral types of faults and showed how failures in critical safety systems relate to these
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classes. They found that only a few fault types were responsible for the majority of

failures. They also compare on pre-release and post-release faults and showed that the

distributions of fault types differed for pre-release and post-release failures. Another

finding is that coding faults are the most predominant ones.

Our study differs from theses studies in the way that we focus on the bugs and

their fixes across a wide range of systems, programming languages, and purposes. This

is done independently from a specific class of faults (such as coding faults, resource

faults, etc.). This is because our aim is not to improve testing as it is the case in the

work of Eldh [55] and Hamill et al. [66]. Our objective is to propose a classification

that can allow researchers in the filed of mining bug repositories to use the taxonomy

as a new criterion in triaging, prediction, and reproduction of bugs. By analogy, we

can look at the proposed bug taxonomy similarly to the clone taxonomy presented by

Kapser and Godfrey [96]. The authors proposed seven types of source code clones and

then conducted a case study, using their classification, on the file system module of

the Linux operating system. This clone taxonomy continues to be used by researchers

to build better approaches for detecting a given clone type and being able to compare

approaches with each other effectively.
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Chapter 4

An Aggregated Bug Repository for

Developers and Researchers

4.1 Introduction

Program debugging, an important software maintenance activity, is known to be chal-

lenging and labor-intensive. Studies have shown that the cost of software maintenance

can reach up to 70% of the overall cost of the software development process [158].

When facing a new bug, one might want to leverage decades of open source soft-

ware history to find a suitable solution. The chances are that a similar bug or crash

has already been fixed somewhere in another open source project. The problem is

that each open source project hosts its data in a different data repository, using differ-

ent bug tracking and version control systems. Moreover, these systems have different

interfaces to access data. The data is not represented in a uniform way either. This

is further complicated by the fact that bug tracking tools and version control systems

are not necessarily connected. The former follows the life of the bug, while the latter

manages the fixes. As a general practice, developers create a link between the bug

report system and the version control tool by either writing the bug #ID in their

commits message or add a link towards the changeset as a comment in the bug report

system. As a result, one would have to search the version control system repository

to find candidate solutions.

Moreover, developers mainly use classical search engines that index specialized
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sites such as StackOverflow1. These sites are organized in the form of question-

response where a developer submits a problem and receives answers from the com-

munity. While the answers are often accurate and precise, they do not leverage the

history of open source software that has been shown to provide useful insights to help

with many maintenance activities such as bug fixing [169], bug reproduction [138],

fault analysis [143], etc.

In this chapter, we introduce BUMPER (BUg Metarepository for dEvelopers and

Researchers), a web-based infrastructure that can be used by software developers and

researchers to access data from diverse repositories using natural language queries

transparently, regardless of where the data was originally created and hosted.

The idea behind BUMPER is that it can connect to any bug tracking and ver-

sion control systems and download the data into a single database. We created a

common schema that represents data, stored in various bug tracking and version

control systems. BUMPER uses a web-based interface to allow users to search the

aggregated database by expressing queries through a single point of access. This way,

users can focus on the analysis itself and not on the way the data is represented or

located. BUMPER supports many features including: (1) the ability to use multiple

bug tracking and control version systems, (2) the ability to search very efficiently

large data repositories using both natural language and a specialized query language,

(3) the mapping between the bug reports and the fixes, and (4) the ability to export

the search results in Json, CSV and XML formats.

4.2 Approach

4.2.1 Architecture

Figure 6 shows the overall architecture of BUMPER. BUMPER relies on a highly

scalable architecture composed of two Virtual Private Servers (VPS), hosted on a

physical server.

The first server handles the web requests and runs three distinct components:

Pound, Varnish, and NginX. Pound is a lightweight open source reverse proxy program

and application firewall. It also serves to decode https request to http. Translating

an https request to http allows us to save the https decryption time required on each

1http://stackoverflow.com/
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match the query, especially if there is union or disjunction of records.

Unlike a traditional RDBMS, BUMPER relies on Apache Lucene and uses com-

pressed bitsets to store indexes. Bitsets are one of the simplest—and older—data

structure that contains only 0 and 1. BUMPER supports binary operations like in-

tersection, AND, OR and XOR that can be performed in a less than a second even

for millions of records. As an example, if we wish to retrieve bug reports that con-

tain the words null pointer exception and have a changeset containing a try/catch,

a binary intersection will be performed between the two sets of documents, which is

much faster than selecting bug reports that match null pointer exception first and

then checking if they have a changeset containing a try/catch as in the case of an

RDBMS. This technique comes with a high overhead—compared to an RDBMS–for

index update, but, in practice, information retrievals tend to be much faster. In our

case, we want to provide fast access to decades of open source historical data. We

periodically update (at night) our indexes when a sufficient amount of new data has

been downloaded from the bug tracking and version control systems that BUMPER

supports.

4.2.3 Bumper Query Language and API

BUMPER supports two query modes: basic and advanced. The basic query insert

users’ inputs (YOUR TERMS) in the following query:

(type : “BUG” AND report t : “Y OUR TERMS”

AND − churns : 0)
(1)

The first part of the query matches all bug reports (type:”BUG”) that contain

YOUR TERMS in the report t index (report t :”YOUR TERMS”). Finally, it ex-

cludes bug reports that do not have a fix (-churns:0). The result of this subquery will

be merged with the following:

OR ({!parent which = “type : BUG”}type :

“CHANGESET” AND fix t : “Y OUR TERMS”
(2)

This query selects all bugs’ changeset–using a parent-child relationship ({!parent˜

↪→ which=”type:BUG”} type: ”CHANGESET”) – and that contain YOUR TERMS
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in the fix t index ( fix t :”YOUR TERMS”). Finally, the results of the two previous

queries will be added to the following subquery:

OR ({!parent which = “type : BUG”}

{!parent which = “type : CHANGESET”}

type : “HUNKS” AND fix t : “Y OUR TERMS”)

(3)

The query selects all the hunks that are children of changsets and grand-children

of bug report ({!parent which=”type:BUG”} {!parent which=”type:CHANGESET

↪→ ”} type:”HUNKS”) and that contain YOUR TERMS in the fix t index. This

composed query intends to search efficiently for YOUR TERMS in bug reports, com-

mit messages and source code all together. The advanced query mode allows users to

write their own queries using the indexes they want and the unions or disjunctions

they need. As an example, using the advanced query mode, one could write the

following:

(type : “BUG” AND reportt : “Exception”

AND (project : “Axis2” OR project : “ide”)

AND (reporter : “Rich” OR resolution : “fixed”)

AND (severity : “Major” OR fixing time : [10 TO ∗])

AND − churns : 0)

(4)

This query finds all bug reports that contain Exception in the report t index (first

line) and belong to the Axis2 or the ide project (line 2) and have been reported by

someone named Rich or have been fixed as a resolution (third line) and that have a

Major severity or a fixing time greater than 10 days (fourth line) and have a fix (fifth

line).

4.2.4 Bumper Data Repository

Currently, BUMPER supports five bug report management systems, namely, Gnome,

Eclipse, Netbeans and the Apache Software Foundation that are composed of 512,

190, 39 and 349 projects respectively, bringing the total of projects supported by

BUMPER to 1,930. These projects cover 16 years of development from 1999 to 2015.
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Table 1: Resolved/Fixed Bug (R/F BR), Changesets (CS), and projects by dataset

Dataset R/F BR CS Files Projects

Gnome 550,869 1,231,354 367,245 512

Netbeans 53,258 122,632 30,595 39

Apache 49,449 106,366 38,111 349

Eclipse 78,830 184,900 21,712 190

Total 732,406 1,645,252 457,663 1,930

Gnome is a free desktop environment, mainly developed in C and C++. Eclipse and

Netbeans are integrated development environments (IDEs) for developing with many

programming languages, including Java, PHP, and C/C++. Finally, The Apache

Software Foundation (ASF) is a non-profit public charity established in 1999, that

provides services and support for many like-minded software project communities

of individuals who choose to join the ASF. The extracted data is consolidated in

one database where we associate each bug report with its fix. The fixes are mined

from different types of version control systems. Gnome, Eclipse and Apache Software

Foundation projects are based on Git (or have git-based mirrors), whereas Netbeans

uses Mercurial. The characteristics of the five datasets, aggregated in BUMPER, are

presented in Table 1.

As we can see from the table, our consolidated dataset contains 732,406 bugs,

1,645,252 changesets, 457,663 files that have been modified to fix the bugs and 1,930

distinct software projects belonging to four major organizations. We also collected

more than two billions of lines of code impacted by the changesets, identified tens of

thousands of sub-projects and unique contributors to these bug report systems.

4.3 Experimental Setup

An example of a real-life scenario where BUMPER can be useful would be that of

a developer trying to fix a bug. He or she could copy/paste the faulty code, or

the obtained error in the search bar of BUMPER. BUMPER will then return (in

seconds) every bug report that contains references to the error at hand in the report

or in the code developed to fix the bug in our dataset. The developer can then

leverage BUMPER’s search results to either find out that someone already fixed the
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I got the following Exception: Exception in thread “main” java.lang.NullPointer-

Exception at CsvFileUtils.readOneLine(CsvFileUtils.java:22) at Main.main(Main.jav-

a:11). Can you please fix CsvFileUtils ?

The web interface of bumper, presented in Figure 8, was to be used for this task.

One possible solution to this bug is to apply the following diff to the CsvFileUtils

file. Lines preceded by a minus are removed while lines preceded by a plus are added.

public St r ing [ ] readOneLine ( ) throws IOException{

i f ( r eader == null ){

r eader = new BufferedReader (

new Fi leReader ( f i l e )

) ;

}

− St r ing [ ] r e s u l t = reader . readLine ( ) . s p l i t ( ” ; ” ) ;

+ St r ing l i n e = null ;

+ i f ( ( l i n e = reader . readLine ( ) ) != null ) {

+ return l i n e . s p l i t ( ” ; ” ) ;

+ }

− return r e s u l t ;

+ return null

}

4.4 Empirical Validation

Participants were asked to find a code snippet that can be slightly modified in order

to fix a bug using BUMPER and Google. The goal of this preliminary study was to

compare how fast a suitable fix can be found using BUMPER and Google. We send

our survey to 20 participants and received eight responses (40%) and asked them to

report on their experience in terms of the time taken to find a fix and the number of

Web pages that were browsed. Half of the participants began by using Google then

Bumper while the other half did the opposite. Participants reported then when using

Google, it took, on average, 6.94 minutes by examining, in average, 7.57 online sources
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to find a fix. When using BUMPER, however, it only took around 4.5 minutes. The

participants only needed to use BUMPER and not other websites. The feedback we

received from the participants was very encouraging. They mainly emphasized the

ability of BUMPER to group many repositories in one place, making the search for

similar bugs/fixes practical. We intend, in the future, to conduct a large scale (and

more formal) experiment with BUMPER for a thorough evaluation of its effectiveness

to help software developers in fixing bugs.

4.5 Threats to Validity

The main threat to validity is our somewhat limited validation as we only received

eight responses. While the responses from this eight developers are encouraging, a

wider human study could invalidate them.

However, we see also BUMPER as an important tool for facilitating research in

the area of mining bug repositories. Studying software repositories to gain insights

into the quality of the code is a common practice. This task requires time and

skills in order to download and link all the pieces of information needed for adequate

mining. BUMPER provides a straightforward interface to export bugs and their

fixes into CSV, XML and JSON. In short, BUMPER offers a framework that can

be used by software practitioners and researchers to analyse (efficiently) bugs and

their fixes without having to go from one repository to another, worry about the way

data is represented and saved, or create tools for parsing and retrieving various data

attributes. We hope that the community contributes by adding more repositories to

BUMPER. This way, BUMPER can become a unified environment that can facilitate

bug analysis and mining tasks.

4.6 Chapter Summary

In this chapter, we presented a web-based infrastructure, called BUMPER (BUg

Metarepository for dEvelopers and Researchers). BUMPER allows natural language

searches in bugs reports, commit messages and source code all together while sup-

porting complex queries. Currently, BUMPER is populated with 1,930 projects, more
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than 732,406 resolved/fixed and with 1,645,252 changesets from Eclipse, Gnome, Net-

beans and the Apache Software foundation. The speed of BUMPER allows developers

to use it as a way to leverage decades of history scattered over hundreds of software

projects in order to find existing solutions to their problems. There exist tools such

as Codemine [41] and Boa [51] that enable the mining and reporting of code repos-

itories. These tools, however, will require the download of all the data and process

the mining for each installation. To the best of our knowledge, no attempt has been

made towards building unified and online datasets, from multiple sources, where re-

searchers and engineers can easily access all the information related to a bug, or a

fix in order to leverage decades of historical information. Moreover, the feedback we

received from the users of BUMPER in a preliminary study shows that BUMPER

holds real potential in becoming a standard search engine for bugs and fixes in mul-

tiple repositories.

This online dataset and its APIs were extensively used for the remaining of this

thesis.
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Chapter 5

Preventing Code Clone Insertion

At Commit-Time

5.1 Introduction

Code clones appear when developers reuse code with little to no modification to the

original code. Studies have shown that clones can account for up to 50% of code in a

given software system [14, 49]. Developers often reuse code on purpose [99], and code

clones can be considered as a bad practice in software development if they are not

managed. Indeed, if a bug were to be found in one the instance of a clone, without

knowing that this particular piece of code is a clone, it will be challenging to fix the

bug in all the other occurrences without clone-detection and clone-management tools

[90, 95, 119].

In the last two decades, there have been many studies and tools that aim at

detecting clones. They can be grouped into two categories depending on whether

they operate locally on a developer’s workstation (e.g., [171, 215]) or remotely on a

server (e.g., [205, 212]).

Local clone detection approaches are typically implemented as IDE plugins or

external tools. IDE-based methods tend to issue many warnings to developers that

may interrupt their work, hence hindering their productivity [104]. Developers may

be reluctant to use external tools unless they are involved in a major refactoring effort.

These tools cause overhead because of the context switching they provoke [19, 161,

162]. This problem is somehow similar to the problem of adopting bug identification
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tools. Studies have shown that these tools are challenging to use because they do

not integrate well with the day-to-day workflow of developers [11, 59, 86, 114, 118].

The problem with remote approaches is that the detection occurs too late in the

development process. Once the clones reach the central repository, they can be pulled

by other members of the development team, further complicating the removal and

management of clones.

In this chapter, we present PRECINCT (PREventing Clones INsertion at Commit-

Time) that focuses on preventing the insertion of clones at commit-time (i.e., before

they reach the central code repository). PRECINCT is a trade-off between local and

remote approaches. The approach relies on the use of pre-commit hooks capabilities of

modern source code version control systems. A pre-commit hook is a process that one

can implement to receive the latest modification to the source code done by a given

developer just before the code reaches the central repository. PRECINCT intercepts

this modification and analyses its content to see whether a suspicious clone has been

introduced or not. A flag is raised if a code fragment is suspected to be a clone of an

existing code segment. This said, only a fraction of the code is analysed incrementally,

making PRECINCT computationally efficient. In other words, PRECINCT only

operates on parts of the program that changed.

To the best of our knowledge, PRECINCT is the first clone detection technique

that operates at commit-time. In this study, we focus on Type 3 clones as they are

more challenging to detect [21, 94, 105]. Since Type 3 clones include Type 1 and 2

clones, then these types could be detected by PRECINCT as well. We evaluated the

effectiveness of PRECINCT on three systems, written in C and Java. The results

show that PRECINCT prevents Type 3 clones from reaching the final source code

repository with an average accuracy of 97.7%.

5.2 Approach

The PRECINCT approach is composed of six steps. The first and last steps are typical

steps that a developer would do when committing code. The first step is the commit

step where developers send their latest changes to the central repository, and the last

step is the reception of the commit by the central repository. The second step is the

pre-commit hook, which kicks in as the first operation when one wants to commit.
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5.2.2 Pre-Commit Hook

Hooks are custom scripts set to fire off when critical actions occur. There are two

groups of hooks: client-side and server-side. Client-side hooks are triggered by op-

erations such as committing and merging, whereas server-side hooks run on network

operations such as receiving pushed commits. These hooks can be used for all sorts

of reasons such as compliance with coding rules or automatic run of unit test suites.

The pre-commit hook is run first, before one even types in a commit message. It

is used to inspect the snapshot that is about to be committed. Depending on the

exit status of the hook, the commit will be aborted and not pushed to the central

repository. Also, developers can choose to ignore the pre-hook. In Git, for example,

they will need to use the command git commit no −verify instead of git commit.

This can be useful in case of an urgent need for fixing a bug where the code has

to reach the central repository as quickly as possible. Developers can do things like

check for code style, check for trailing white spaces (the default hook does exactly

this), or check for appropriate documentation on new methods.

PRECINCT is a set of bash scripts where the entry point of these scripts lies in

the pre-commit hooks. Pre-commit hooks are easy to create and implement. Note

that even though we use Git as the main version control to present PRECINCT,

the techniques presented in this paper are readily applicable to other version control

systems.

5.2.3 Extract and Save Blocks

A block is a set of consecutive lines of code that will be compared to all other blocks

to identify clones. To achieve this critical part of PRECINCT, we rely on TXL [39],

which is a first-order functional programming over linear term rewriting, developed

by Cordy et al. [39]. For TXL to work, one has to write a grammar describing the

syntax of the source language and the transformations needed. TXL has three main

phases: parse, transform, unparse. In the parse phase, the grammar controls not only

the input but also the output form. The code sample below — extracted from the

official documentation — shows a grammar matching an if-then-else statement in C

with some special keywords: [IN] (indent), [EX] (exdent) and [NL] (newline) that will

be used for the output form.

44



de f i n e i f s t a t emen t

i f ( [ expr ] ) [ IN ] [NL]

[ statement ] [EX]

[ opt e l s e s t a t emen t ]

end de f i n e

d e f i n e e l s e s t a t emen t

else [ IN ] [NL]

[ statement ] [EX]

end de f i n e

Then, the transform phase will, as the name suggests, apply transformation rules

that can, for example, normalize or abstract the source code. Finally, the third phase

of TXL called unparse, unparses the transformed parsed input to output it. Also,

TXL supports what the creators call Agile Parsing [47], which allows developers to

redefine the rules of the grammar and, therefore, apply different rules than the original

ones.

PRECINCT takes advantage of that by redefining the blocks that should be ex-

tracted for the purpose of clone comparison, leaving out the blocks that are out of

scope. More precisely, before each commit, we only extract the blocks belonging to

the modified parts of the source code. Hence, we only process, in an incremental

manner, the latest modification of the source code instead of the source code as a

whole.

We have selected TXL for several reasons. First, TXL is easy to install and to

integrate with the standard workflow of a developer. Second, it was relatively easy to

create a grammar that accepts commits as input. This is because TXL is shipped with

C, Java, C-sharp, Python and WSDL grammars that define all the particularities of

these languages, with the ability to customize these grammars to accept changesets

(chunks of the modified source code that include the added, modified, and deleted

lines) instead of the whole code.

Algorithm 1 presents an overview of the “extract” and “save” blocks operations of

PRECINCT. This algorithm receives as arguments, the changesets, the blocks that

have been previously extracted and a boolean named compare history. Then, from

Lines 1 to 9 lie the for loop that iterates over the changesets. For each changeset
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(Line 1), we extract the blocks by calling the extract blocks(Changeset cs) function.

In this function, we expand our changeset to the left and the right to have a complete

block.

@@ −315 ,36 +315 ,6 @@

in t i n i t p r o c e s s t r e e s y s d e p

( ProcessTree T ∗∗ r e f e r e n c e ) {

mach por t dea l l o ca t e (mytask , task ) ;

}

}

− i f ( t a s k f o r p i d (mytask , pt [ i ] . pid ,

− &task ) == KERN SUCCESS) {

− mach msg type number t count ;

− t a s k b a s i c i n f o d a t a t t a s k i n f o ;

As depicted by above, changesets contain only the modified chunk of code and

not necessarily complete blocks. Indeed, we have a block from Line 2 to Line 6 and

deleted lines from Line 7 to 10. However, in Line 7 we can see the end of a block, but

we do not have its beginning. Therefore, we need to expand the changeset to the left

to have syntactically correct blocks. We do so by checking the block’s beginning and

ending (using { and }) in C for example. Then, we send these expanded changesets

to TXL for block extraction and formalization.

For each extracted block, we check if the current block overrides (replaces) a

previous block (Line 4). A block is a piece of code that contains the opening and

closing attributes of a code-block (i.e. { and } for Java) and is at least 5 lines long. In

such a case, we delete the previous block as it does not represent the current version

of the program anymore (Line 5). Also, we have an optional step in PRECINCT

defined in Line 4. The compare history is a condition to delete overridden blocks.

We believe that deleted blocks have been removed for a good reason (bug, default,

removed features, . . . ) and if a newly inserted block matches an old one, it could be

worth knowing to improve the quality of the system at hand.

In summary, this step receives the files and lines, modified by the latest changes

made by the developer and produces an up to date block representation of the system

at hand in an incremental way. The blocks are analyzed in the next step to discover

potential clones.
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Data: Changeset[] changesets;

Block[] prior blocks;

Boolean compare history;

Result: Up to date blocks of the systems

for i← 0 to size of changesets do

Block[] blocks ← extract blocks(changesets);

for j ← 0 to size of blocks do
if not compare history AND blocks[j] overrides one of prior blocks

then

delete prior block;

end

write blocks[j];

end

end

Function extract blocks(Changeset cs)

if cs is unbalanced right then

cs← expand left(cs);

else if cs is unbalanced left then

cs← expand right(cs);

end

1 return txl extract blocks(cs);
Algorithm 1: Overview of the Extract Blocks Operation
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5.2.4 Compare Extracted Blocks

To compare the extracted blocks and detect potential clones, we can only resort

to text-based techniques. This is because lexical and syntactic analysis approaches

(alternatives to text-based comparisons) would require a complete program to work,

a program that compiles. In the relatively wide-range of tools and techniques that

exist to detect clones by considering code as text [49, 87, 88, 122, 124, 201], we

selected NICAD as the main text-based method for comparing clones [40] for several

reasons. First, NICAD is built on top of TXL, which we also used in the previous

step. Second, NICAD can detect Type 1, 2 and 3 clones.

NICAD works in three phases: Extraction, Comparison and Reporting. During the

Extraction phase all potential clones are identified, pretty-printed, and extracted. We

do not use the Extraction phase of NICAD as it has been built to work on programs

that are syntactically correct, which is not the case for changesets. We replaced

NICAD’s Extraction phase with our own, described in the previous section.

In the Comparison phase, extracted blocks are transformed, clustered and com-

pared to find potential clones. Using TXL sub-programs, blocks go through a process

called pretty-printing where they are stripped of formatting and comments. When

code fragments are cloned, some comments, indentation or spacing are changed ac-

cording to the new context where the new code is used. This pretty-printing process

ensures that all code will have the same spacing and formatting, which renders the

comparison of code fragments easier. Furthermore, in the pretty-printing process,

statements can be broken down into several lines. Table 2 [167] shows how this can

improve the accuracy of clone detection with three for statements, for ( i=0; i<10;

↪→ i++), for ( i=1; i<10; i++) and for (j=2; j<100; j++). The pretty-printing

allows NICAD to detect Segments 1 and 2 as a clone pair because only the initializa-

tion of i is changed. This specific example would not have been marked as a clone

by other tools we tested such as Duploc [49]. In addition to the pretty-printing, the

code can be normalized and filtered to detect different classes of clones and match

user preferences.

Finally, the extracted, pretty-printed, normalized and filtered blocks are marked as

potential clones using a Longest Common Subsequence (LCS) algorithm [78]. Then, a

percentage of unique statements can be computed and, depending on a given threshold

(see Section 5.4), the blocks are marked as clones.
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Table 2: Pretty-Printing Example
Segment 1 Segment 2 Segment 3 S1 & S2 S1 & S3 S2 & S3

for ( for ( for ( 1 1 1

i = 0; i = 1; j = 2; 0 0 0

i >10; i >10; j >100; 1 0 0

i++) i++) j++) 1 0 0

Total Matches 3 1 1

Total Mismatches 1 3 3

The last step of NICAD, which acts as our clone comparison engine, is the re-

porting. However, to prevent PRECINCT from outputting a large amount of data

(an issue that many clone detection techniques face), we implemented our reporting

system, which is also well embedded with the workflow of developers. This reporting

system is the subject of the next section.

As a summary, this step receives potentially expanded and balanced blocks from

the extraction step. Then, the blocks are pretty-printed, normalized, filtered and

fed to an LCS algorithm to detect potential clones. Moreover, the clone detection in

PRECINCT is less intensive than NICAD because we only compare the latest changes

with the rest of the program instead of comparing all the blocks with each other.

5.2.5 Output and Decision

In this final step, we report the result of the clone detection at commit-time on

the latest changes made by the developer. The process is straightforward. Every

change made by the developer goes through the previous steps and is checked for the

introduction of potential clones. For each file that is suspected to contain a clone,

one line is printed to the command line with the following options: (I) Inspect, (D)

Disregard, (R) Remove from the commit. In comparison to this straightforward and

interactive output, NICAD outputs each and every detail of the detection result such

as the total number of potential clones, the total number of lines, the total number

of unique line text chars, the total number of unique lines, and so on. We think

that so many details might make it hard for developers to react to these results. A

problem that was also raised by Johnson et al. [86] when examining bug detection

tools. Then the potential clones are stored in XML files that can be viewed using an

Internet browser or a text editor.
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Table 3: List of Target Systems in Terms of Files and Kilo Line of Code (KLOC) at

current version and Language

SUT Revisions Files KLoC Language

Monit 826 264 107 C

Jhotdraw 735 1984 44 Java

dnsjava 1637 233 47 Java

in which the system is written.

Monit is a small open source utility for managing and monitoring Unix systems.

Monit is used to conduct automatic maintenance and repair and supports the ability

to identify causal actions to detect errors. This system is written in C and composed

of 826 revisions, 264 files, and the latest version has 107 KLoC. We have chosen Monit

as a target system because it was one of the systems NICAD was tested on.

JHotDraw is a Java GUI framework for technical and structured graphics. It

has been developed as a “design exercise”. Its design is largely based on the use of

design patterns. JHotDraw is composed of 735 revisions, 1984 files, and the latest

revision has 44 Kloc. It is written in Java, and researchers often use it as a test bench.

JHotDraw was also used by NICAD’s developers to evaluate their approach.

Dnsjava is a tool for implementing the DNS (Domain Name Service) mechanisms

in Java. This tool can be used for queries, zone transfers, and dynamic updates. It is

not as large as the other two, but it still makes an interesting case subject because it

has been well maintained for the past decade. Consequently, it has a large number of

revisions. Also, this tool is used in many other popular tools such as Aspirin, Muffin

and Scarab. Dnsjava is composed of 1637 revisions, 233 files; the latest revision

contains 47 Kloc. We have chosen this system because we are familiar with it as we

used it before [138, 139].

As our approach relies on commit pre-hooks to detect possible clones during the

development process (more particularly at commit-time), we had to find a way to

replay past commits. To do so, we cloned our test subjects, and then created a new

branch called PRECINCT EXT. When created, this branch is reinitialized at the

initial state of the project (the first commit), and each commit can be replayed as

they have originally been. At each commit, we store the time taken for PRECINCT

to run as well as the number of detected clone pairs. We also compute the size of the
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Figure 12: Monit clone detection over revisions

Type 1 and 2 too, so does NICAD. For the time being, PRECINCT is not designed

to detect Type 4 clones. These clones use different implementations. Detecting Type

4 clones is part of future work.

We assess the performance of PRECINCT in terms of precision, recall, and F1-

measure by using NICAD’s results as ground truth. They are computed using TP

(true positives), FP (false positives), FN (false negatives), which are defined as follows:

• TP: is the number of clones that were properly detected by PRECINCT (again,

using NICAD’s results as baseline)

• FP: is the number of non-clones that were classified by PRECINCT as clones

• FN: is the number of clones that were not detected by PRECINCT

• Precision: TP / (TP + FP)

• Recall: TP / (TP + FN)

• F1-measure: 2.(precision.recall)/(precision+recall)

5.4 Empirical Validation

Figures 12, 13, 14 show the results of our study in terms of clone pairs that are

detected per revision for our three subject systems: Monit, JHotDraw and Dnsjava.

We used as a baseline for comparison the clone pairs detected by NICAD. The blue

line shows the clone detection performed by NICAD. The red line shows the clone

pairs detected by PRECINCT. The brown line shows the clone pairs that have been
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Figure 13: JHotDraw clone detection over revisions
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Figure 14: Dnsjava clone detection over revisions
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Table 4: Overview of PRECINCT’s results in terms of precision, recall, F1-measure,

execution time and output reduction.

Detected Precision Recall F1-measure
NICAD’s Average

Execution Time

PRECINCT’s Average

Execution Time

Overall

Output Reduction

Monit 123 96.1% 100% 98% 2.2s 0.9s 88.3%

JHotDraw 6490 98.3% 100% 99.1% 5.1s 1.7s 70.1%

DnsJava 226 82.8% 100% 90.6% 1.8s 1.1s 88.6%

Total 6839 97.7% 100% 98.8% 3s 1.2s 83.4%

missed by PRECINCT. As we can quickly see, the blue and red lines almost overlap,

which indicates a good accuracy of the PRECINCT approach.

Table 4 summarizes PRECINCT’s results in terms of precision, recall, F1-measure,

execution time and output reduction compared to NICAD for our three subject sys-

tems: Monit, JHotDraw, and Dnsjava. The first version of Monit contains 85 clone

pairs, and this number stays stable until Revision 100. From Revision 100 to 472 the

detected clone pairs vary between 68 and 88 before reaching 219 at Revision 473. The

number of clone pairs goes down to 122 at Revision 491 and increases to 128 in the

last revision. PRECINCT was able to detect 96.1% (123/128) of the clone pairs that

are detected by NICAD with a 100% recall. It took in average around 1 second for

PRECINCT to execute on a Debian 8 system with Intel(R) Core(TM) i5-2400 CPU

@ 3.10GHz, 8Gb of DDR3 memory. It is also worth mentioning that the computer

we used is equipped with SSD (Solid State Drive). This impacts the running time

as clone detection is a file intensive operation. Finally, the PRECINCT was able to

output up to 88.3% fewer lines than NICAD.

JHotDraw starts with 196 clone pairs at Revision 1 and reaches a pick of 2048

at Revision 180. The number of clones continues to go up until Revisions 685 and

686 where the number of pairs is 1229 before picking at 6538 from Revisions 687 to

721. PRECINCT was able to detect 98.3% of the clone pairs detected by NICAD

(6490/6599) with 100% recall while executing on average in 1.7 seconds (compared to

5.1 seconds for NICAD). With JHotDraw, we can see the advantages of incremental

approaches. Indeed, the execution time of PRECINCT is loosely impacted by the

number of files inside the system as the blocks are constructed incrementally. Also,

we only compare the latest change to the remaining of the program and not all the

blocks to each other as NICAD. We also were able to reduce by 70.1% the number of

lines outputted.
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Finally, for Dnsjava, the number of clone pairs starts high with 258 clones and

goes down until Revision 70 where it reaches 165. Another quick drop is observed at

Revision 239 where we found only 25 clone pairs. The number of clone pairs stays

stable until Revision 1030 where it reaches 273. PRECINCT was able to detect 82.8%

of the clone pairs detected by NICAD (226/273) with 100% recall while executing on

average in 1.1 seconds while NICAD took 3 seconds in average. PRECINCT outputs

83.4% fewer lines than NICAD.

Overall, PRECINCT prevented 97.7% of the 7000 clones (in all systems) to reach

the central source code repository while executing more than twice as fast as NICAD

(1.2 seconds compared to 3 seconds in average) and reducing the output in terms of

lines of text output to the developers by 83.4% in average. Note here that we have not

evaluated the usability of the output of PRECINCT compared to NICAD’s output.

We need to conduct user studies for this. We are, however, confident, based on our

experience trying many clone detection tools, that a simpler and a more interactive

way to present the results of a clone detection tool is warranted. PRECINCT aims

to do just that.

The difference in execution time between NICAD and PRECINCT stems from

the fact that, unlike PRECINCT, NICAD is not an incremental approach. For each

revision, NICAD has to extract all the code blocks and then compares all the pairs

with each other. On the other hand, PRECINCT only extracts blocks when they are

modified and only compares what has been changed with the rest of the program.

The difference in precision between NICAD and PRECINCT (2.3%) can be ex-

plained by the fact that sometimes developers commit code that does not compile.

Such commits will still count as a revision, but TXL fails to extract blocks that do

not comply with the target language syntax. While NICAD also fails in such a case,

the disadvantage of PRECINCT comes from the fact that the failed block is saved

and used as a reference until it is changed by a correct one in another commit.

5.5 Threats to Validity

The selection of target systems is one of the common threats to validity for approaches

aiming to improve the analysis of software systems. It is possible that the selected

programs share common properties that we are not aware of and therefore, invalidate
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our results. However, the systems analyzed by PRECINCT are the same as the ones

used in similar studies. Moreover, the systems vary in terms of purpose, size, and

history.

Also, we see a threat to validity that stems from the fact that we only used open

source systems. The results may not be generalizable to industrial systems. We

intend to undertake these studies in future work.

The programs we used in this study are all based on the Java, C, and Python

programming languages. This can limit the generalization of the results. However,

similar to Java, C, Python, if one writes a TXL grammar for a new language — which

can be relatively hard work — then PRECINCT can work since PRECINCT relies

on TXL.

Finally, we use NICAD as the code comparison engine. The accuracy of NICAD

affects the accuracy of PRECINCT. This said, since NICAD has been tested on large

systems, we are confident that it is a suitable engine for comparing code using TXL.

Also, there is nothing that prevents us from using other code comparisons engines, if

need be.

In conclusion, internal and external validity have both been minimized by choosing

a set of three different systems, using input data that can be found in any program-

ming languages and version systems (commit and changesets).

5.6 Chapter Summary

In this chapter, we presented PRECINCT (PREventing Clones INsertion at Commit-

Time), an incremental approach for preventing clone insertion at commit-time that

combines efficient block extraction and clone detection. The approach is meant to

integrate well with the workflow of developers. PRECINCT takes advantage of TXL

and NICAD to create a clone detection tool that runs automatically before each

commit in an average time of 1.2 seconds with an average 97.7% precision and 100%

recall (when using NICAD’s results as a baseline).

Our approach is an efficient trade-off between local and remote approaches for

clone detection, and as such, we believe that it addresses major factors that con-

tribute to the slow adoption of clone detection tools. PRECINCT achieves similar
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performance than remote approaches, which rely on more computational power, with-

out delaying the detection results in asynchronous email notifications. Moreover, we

believe that operating at commit-time makes PRECINCT more appealing to develop-

ers. Using PRECINCT, developers do not have to cope with many warnings and the

problem of context-switching, which are the main limitations of IDE-based methods

and the use of external tools. Finally, our approach can reduce the number of lines

output by a traditional clone detection tool such as NICAD by 83.4% while keep-

ing all the necessary information that would allow developers to decide whether the

detected clone is, in fact, a clone.

In the remaining of this thesis, we build upon BUMPER and PRECINCT to

detect risky commit and propose solutions to improve code at commit-time.
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Chapter 6

Preventing Bug Insertion Using

Clone Detection At Commit-Time

6.1 Introduction

Research in software maintenance has evolved over the year to include areas like

mining bug repositories, bug analytic, and bug prevention and reproduction. The

ultimate goal is to develop better techniques and tools to help software developers

detect, correct, and prevent bugs effectively and efficiently.

One particular (and growing) line of research focuses on the problem of preventing

the introduction of bugs by detecting risky commits (preferably before the commits

reach the central repository). Recent approaches (e.g., [120, 133]) rely on training

models based on code and process metrics (e.g., code complexity, experience of the

developers, etc.) that are used to classify new commits as risky or not. Metrics,

however, may vary from one project to another, hindering the reuse of these models.

Consequently, these techniques tend to operate within single projects only, despite

the fact that many large projects share dependencies, such as the reuse of common

libraries. This makes them potentially vulnerable to similar faults. A solution to

a bug provided by the developers of one project may help fix a bug that occurs in

another (and similar) project. Moreover, as noted by Lewis et al. [118] and Johnson

et al. [86], techniques based solely on metrics are perceived by developers as black

box solutions because they do not provide any insights on the causes of the risky

commits or ways for improving them. As a result, developers are less likely to trust
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the output of these tools.

In this chapter, we present a novel bug prevention approach at commit-time, called

BIANCA (Bug Insertion ANticipation by Clone Analysis at commit time). BIANCA

does not use metrics to assess whether or not an incoming commit is risky. Instead,

it relies on code clone detection techniques by extracting code blocks from incoming

commits and comparing them to those of known defect-introducing commits.

One particular aspect of BIANCA is its ability to detect risky commits not only

by comparing them to commits of a single project but also to those belonging to

other projects that share common dependencies. This is important because com-

plex software systems are not designed monolithically. They have dependencies that

make them vulnerable to similar faults. For example, Apache BatchEE [184] and

GraphWalker [64] both depend on JUNG (Java Universal Network/Graph Frame-

work) [89]. BatchEE provides an implementation of the jsr-352 (Batch Applications

for the Java Platform) specification [36] while GraphWalker is an open source model-

based testing tool for test automation. These two systems are designed for different

purposes. BatchEE is used to do batch processing in Java, whereas GraphWalker

is used to design unit tests using a graph representation of the code. Nevertheless,

because both Apache BatchEE and GraphWalker rely on JUNG, the developers of

these projects made similar mistakes when building upon JUNG. Issue #69 and #44

from Apache BatchEE and Graphwaler, respectively, indicate that the developers of

these projects made similar mistakes when using the graph visualization component

of JUNG. To detect risky commits across projects, BIANCA resorts to project de-

pendency analysis. Note that we do not detect only the bugs resulting from library

usage but rather leverage the fact that if two systems use the same libraries, then

they are likely vulnerable to the same flaws.

Another advantage of BIANCA is that it uses commits that are used to fix pre-

vious defect-introducing commits to guide the developers on how to improve risky

commits. This way, BIANCA goes one step further than existing techniques by pro-

viding developers with a potential fix for their risky commits.

We validated the performance of BIANCA on 42 open source projects, obtained

from Github. The examined projects vary in size, domain and popularity. Our

findings indicate that BIANCA is able to flag risky commits with an average precision,

recall and F-measure of 90.75%, 37.15% and 52.72%, respectively. Although the
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Figure 18: Simplified Dependency Graph for com.badlogicgames.gdx

144], used to detect communities by progressively removing edges from the original

network. Instead of trying to construct a measure that identifies the edges that are the

most central to communities, the Girvan–Newman algorithm focuses on edges that

are most likely “between” communities. This algorithm is very effective at discovering

community structure in both computer-generated and real-world network data [144].

Other clustering algorithms can also be used.

6.2.2 Building a Database of Code Blocks of Defect-Commits

and Fix-Commits

To build our database of code blocks that are related to defect-commits and fix-

commits, we first need to identify the respective commits. Then, we extract the

relevant blocks of code from the commits.

Extracting Commits: BIANCA listens to bug (or issue) closing events happen-

ing in the project tracking system. Every time an issue is closed, BIANCA retrieves

the commit that was used to fix the issue (the fix-commit) as well as the one that in-

troduced the defect (the defect-commit). Retrieving fix-commits, however, is known

to be a challenging task [203]. This is because the link between the project track-

ing system and the code version control system is not always explicit. In an ideal
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situation, developers would add a reference to the issue they work on inside the de-

scription of the commit. However, this good practice is not always followed. To link

fix-commits and their related issues, we turn to a modified version of the back-end of

commit-guru [164]. Commit-guru is a tool, developed by Rosen et al. [164] to detect

risky commits. In order to identify risky commits, Commit-guru builds a statistical

model using change metrics (i.e., amount of lines added, amount of lines deleted,

amount of files modified, etc.) from past commits known to have introduced defects

in the past.

Commit-guru’s back-end has three major components: ingestion, analysis, and

prediction. We reuse the ingestion and the analysis part for BIANCA. The ingestion

component is responsible for ingesting (i.e., downloading) a given repository. Once

the repository is entirely downloaded on a local server, each commit is analysed.

Commits are classified using the list of keywords proposed by Hindle et al. [74].

Commit-guru implements the SZZ algorithm [101] to detect risky changes, where

it performs the SCM blame/annotate function on all the modified lines of code for

their corresponding files on the fix-commit’s parents. This returns the commits that

previously modified these lines of code and are flagged as the defect introducing

commits (i.e., the defect-commits). Prior work showed that commit-guru is effective

in identifying defect-commits and their corresponding fixing commits [92] and the

SZZ algorithm, used by commit-guru, has been shown effective in detecting risky

commits [92, 164]. Note that we could use a simple and established approach such

as Relink [203] to link the commits to their issues and re-implement the classification

proposed by Hindle et al. [74] on top of it. However, commit-guru has the advantage

of being open-source, making it possible to modify it to fit our needs by fine-tuning

its performance.

Extracting Code Blocks: To extract code blocks from fix-commits and defect-

commits, we rely on PRECINCT which has been presented in the previous chapter.

6.2.3 Analysing New Commits Using Pre-Commit Hooks

Each time a developer makes a commit, BIANCA intercepts it using a pre-commit

hook extracts the corresponding code block (in a similar way as in the previous phase),

and compares it to the code blocks of historical defect-commits. If there is a match,

then the new commit is deemed to be risky. A threshold α is used to assess the extent
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beyond which two commits are considered similar. The setting of α is discussed in

the case study section.

BIANCA is based on a set of bash and python scripts, and the entry point of these

scripts lies in a pre-commit hook. These scripts intercept the commit and extract the

corresponding code blocks.

We use pre-commit hook, which kicks in as the first operation when one wants to

commit. The pre-commit hook has access to the changes regarding the files that have

been modified, more specifically, the lines that have been modified. The modified

lines of the files are sent to TXL with our special grammar and algorithm (Algorithm

1 presented in the previous chapter.

Then, the blocks are compared to previously extracted blocks known to introduce

a defect using the comparison engine of NICAD [40].

To compare the extracted blocks to the ones in the database, we use a similar

strategy as the one presented in the previous chapter.

Another important aspect of the design of BIANCA is the ability to provide guid-

ance to developers on how to improve risky commits. We achieve this by extracting

from the database the fix-commit corresponding to the matching defect-commit and

present it to the developer. We believe that this makes BIANCA a practical approach

for the developers as they will know why a given modification has been reported as

risky in terms of code; this is something that is not supported by techniques based

on statistical models (e.g., [92, 164]).

A tool that supports BIANCA should have enough flexibility to allow developers

to enable or disable the recommendations made by BIANCA. Furthermore, because

BIANCA acts before the commit reach the central repository, it prevents unfortunate

pulls of defects by other members of the organization.

6.3 Experimental Setup

In this section, we present the setup of our case study in terms of repository selection,

dependency analysis, comparison process and evaluation measures.
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6.3.1 Project Repository Selection

To select the projects used to evaluate our approach, we followed three simple criteria.

First, the projects need to be in Java and use Maven to manage dependencies. This

way, we can automatically extract the dependencies and perform the clustering of

projects. The second criterion is to have projects that enjoy a large community

support and interest. We selected projects that have at least 2000 followers. We opted

to analyze repositories with a large numbers of followers because we are interested

in finding high impacts faults. The number of followers is a proxy measure of how

many persons would be impacted by a fault on the system. Finally, the projects must

have a public issue repository to be able to mine their past issues and the fixes. We

queried Github with these criteria and retrieved 42 projects (see Table 6 for the list

of projects), including those from some of major open-source contributors such as

Alibaba, Apache Software Foundation, Eclipse, Facebook, Google and Square.

6.3.2 Project Dependency Analysis

Figure 19 shows the project dependency graph. The dependency graph is composed

of 592 nodes divided into five clusters shown in yellow, red, green, purple and blue.

The size of the nodes in Figure 19 is proportional to the number of connections from

and to the other nodes.

As shown in Figure 19, these Github projects are very much interconnected. On

average, the projects composing our dataset have 77 dependencies. Among the 77

dependencies, on average, 62 dependencies are shared with at least one other project

from our dataset.

Table 5 shows the result of the Girvan–Newman clustering algorithm in terms

of centroids and betweenness. Storm dominates the blue cluster from The Apache

Software Foundation. Storm is a distributed real-time computation system. Druid

by Alibaba, the e-commerce company that provides consumer-to-consumer, business-

to-consumer and business-to-business sales services via web portals, dominates the

yellow cluster. In recent years, Alibaba has become an active member of the open-

source community by making some of its projects publicly available. The red cluster

has Hadoop by the Apache Software Foundation as its centroid. Hadoop is an open-

source software framework for distributed storage and distributed processing of very

large datasets on computer clusters built from commodity hardware. The Persistence
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Figure 19: Dependency Graph
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Table 5: Communities in terms of ID, Color code, Centroids, Betweenness and number

of members
#ID Community Centroids Betweenness # Members

1 Blue Storm 24,525 479

2 Yellow Alibaba 24,400 42

3 Red Hadoop 16,709 37

4 Green Openhab 3,504 22

5 Purple Libdx 6,839 12

project of OpenHab dominates the green cluster. OpenHab proposes home automa-

tion solutions, and the persistence project is their data access layer. Finally, the

purple cluster is dominated by Libdx by Badlogicgames, which is a cross-platform

framework for game development.

A review of each cluster shows that this partitioning divides projects in terms of

high-level functionalities. For example, the blue cluster is almost entirely composed of

projects from the Apache Software Foundation. Projects from the Apache Software

Foundation tend to build on top of one another. We also have the red cluster for

Hadoop, which is by itself an ecosystem inside the Apache Software Foundation.

Finally, we obtained a cluster for e-commerce applications (yellow), real-time network

application for home automation (green), and game development (purple).

6.3.3 Building a Database of Defect-Commits and Fix-Commits

for Performances Evaluation

To build the database that we can use to assess the performance of BIANCA, we use

the same process as discussed in Section 7.2.2. We used Commit-guru to retrieve the

complete history of each project and label commits as defect-commits if they appear

to be linked to a closed issue. The process used by Commit-guru to identify commits

that introduce a defect is simple and reliable in terms of accuracy and computation

time [92]. We use the commit-guru labels as the baseline to compute the precision

and recall of BIANCA. Each time BIANCA classifies a commit as risky, we can check

if the risky commit is in the database of defect-introducing commits. The same

evaluation process is used by related studies [24, 54, 107, 117].
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Figure 20: Precision, Recall and F1-measure variations according to α

6.3.4 Process of Comparing New Commits

Because our approach relies on commit pre-hooks to detect risky commits, we had to

find a way to replay past commits. To do so, we cloned our test subjects, and then

created a new branch called BIANCA. When created, this branch is reinitialized at

the initial state of the project (the first commit) and each commit can be replayed

as they have originally been. For each commit, we store the time taken for BIANCA

to run, the number of detected clone pairs, and the commits that match the current

commit. As an example, let’s assume that we have three commits from two projects.

At time t1, commit c1 in project p1 introduces a defect. The defect is experienced by

a user that reports it via an issue i1 at t2. A developer fixes the defect introduced

by c1 in commit c2 and closes i1 at t3. From t3 we known that c1 introduced a defect

using the process described in Section 7.3.3. If at t4, c3 is pushed to p2 and c3 matches

c1 after preprocessing, pretty-printing and formatting, then c3 is classified as risky by

BIANCA and c2 is proposed to the developer as a potential solution for the defect

introduced in c3.

To measure the similarity between pairs of commits, we need to decide on the

value of α. One possibility would be to test for all possible values of α and pick the

one that provides the best accuracy (F1-measure). The ROC (Receiver Operating

Characteristic) curve can then be used to display the performance of BIANCA with

different values of α. α is a measure of dissimilarity between two snippets of code.
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Running experiments with all possible α turned out to be computationally demanding

given the large number of commits. Testing with all the different values of α amounts

to 4e10 comparisons.

To address this, we randomly selected a sample of 1700 commits from our dataset

and checked the results by varying α from 1 to 100%. Figure 20 shows the results.

The best trade-off between precision and recall is obtained when α = 35%.

This threshold is not in line with the findings of Roy et al. [40, 166] who showed

through empirical studies that using NICAD with a threshold of around 70%.

However, Nicad was built for and evaluated on its capacity to detect near-miss

clones (i.e. clones that are almost identical). For this purpose, a very-high similarity

threshold (or low dissimilarity threshold) is desirable. For our purpose, however, one

similar line in a block could be significant. The trivial example being the null check as

exposed in the next section. The same reasoning applies for fixes. For these reasons,

we set α = 35% in our experiments.

6.3.5 Evaluation Measures

Similar to prior work focusing on risky commits (e.g., [92, 179]), we used precision,

recall, and F1-measure to evaluate our approach. They are computed using TP (true

positives), FP (false positives), FN (false negatives), which are defined as follows:

• TP: is the number of defect-commits that were properly classified by BIANCA

• FP: is the number of healthy commits that were classified by BIANCA as risky

• FN: is the number of defect introducing-commits that were not detected by

BIANCA

• Precision: TP / (TP + FP)

• Recall: TP / (TP + FN)

• F1-measure: 2.(precision.recall)/(precision+recall)

It is worth mentioning that, in the case of defect prevention, false positives can

be hard to identify as the defects could be in the code but not yet reported through

a bug report (or issue). To address this, we did not include the last six months of

history. Following similar studies [34, 92, 164, 174], if a defect is not reported within

six months, then it is not considered.
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6.4 Empirical Validation

In this section, we show the effectiveness of BIANCA in detecting risky commits

using clone detection and project dependency analysis. The main research question

addressed by this case study is: Can we detect risky commits using code comparison

within and across related projects, and if so, what would be the accuracy?

Table 6 shows the results of applying BIANCA in terms of the organization,

project name, a short description of the project, the number of classes, the number of

commits, the number of defect-commits, the number of defect-commits detected by

BIANCA, precision (%), recall (%), F1-measure and the average difference, in days,

between detected commit and the original commit inserting the defect for the first

time. A description of each project is available in appendices.

With α= 35%, BIANCA achieves, on average, a precision of 90.75% (13,899/15,316)

commits identified as risky. These commits triggered the opening of an issue and had

to be fixed later on. On the other hand, BIANCA achieves, on average, 37.15% recall

(15,316/41,225), and an average F1 measure of 52.72%.

The relatively low recall is to be expected since BIANCA classifies commits as

risky only if a similar defect-introducing commit happened in one of the 42 open-

source projects.

Also, out of the 15,316 commits BIANCA classified as risky, only 1,320 (8.6%)

were because they were matching a defect-commit inside the same project. This

finding supports the idea that developers of a project are not likely to introduce the

same defect twice while developers of different projects that share dependencies are,

in fact, likely to introduce similar defects. We believe this is an important finding

for researchers aiming to achieve cross-project defect prevention, regardless of the

technique (e.g., statistical model, AST comparison, code comparison, etc.) employed.

It is important to note that we do not claim that 37.15% of issues in open-source

systems are caused by project dependencies. To support such a claim, we would need

to analyse the 15,316 detected defect-commits and determine how many yield defects

that are similar across projects.

Studying the similarity of defects across projects is a complex task and may require

analysing the defect reports manually. This is left as future work. That said, we

showed, in this paper, that software systems sharing dependencies also share common

issues, irrespective of whether these issues represent similar defects or not.
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Table 6: BIANCA results in terms of organization, project name, a short description,

number of class, number of commits, number of defect introducing commits, number

of risky commit detected, precision (%), recall (%), F1-measure (%), the average

similarity of first 3 and 5 proposed fixes with the actual fix.

Organization Project Name NoC #Commits

Bug

Introducing

Commit

Detected Precision Recall F1

Top 5

Fixes

Similarity

Top 3

Fixes

Similarity

Alibaba

druid 3,309 4,775 1,260 787 88.44 62.46 73.21 39.97 46.69

dubbo 1,715 1,836 119 61 96.72 51.26 67.01 60.01 57.14

fastjson 2,002 1,749 516 373 95.71 72.29 82.37 18.19 15.23

jstorm 1,492 215 24 21 90.48 87.50 88.96 22.38 30.48

Apache
hadoop 9,108 14,154 3,678 851 86.84 23.14 36.54 38.94 47.68

storm 2,209 7,208 951 444 86.26 46.69 60.58 53.03 61.10

Clojure clojure 335 2,996 596 46 86.96 7.72 14.18 53.61 59.52

Dropwizard
dropwizard 964 3,809 581 179 96.65 30.81 46.72 47.54 53.56

metrics 335 1,948 331 129 95.35 38.97 55.33 22.53 31.82

Eclipse che 7,818 1,826 169 9 88.89 5.33 10.05 31.01 39.04

Excilys
Android

Annotations
1,059 2,582 566 9 100.00 1.59 3.13 25.60 32.13

Facebook fresco 1,007 744 100 68 92.65 68.00 78.43 64.14 71.03

Gocd gocd 16,735 3,875 499 297 91.58 59.52 72.15 21.62 30.59

Google

auto 257 668 124 95 100.00 76.61 86.76 47.66 55.70

guava 1,731 3,581 973 592 98.48 60.84 75.22 23.74 23.59

guice 716 1,514 605 104 85.58 17.19 28.63 34.77 34.53

iosched 1,088 129 9 6 100.00 66.67 80.00 16.50 24.97

Gradle gradle 11,876 37,207 6,896 1,557 97.50 22.58 36.67 23.58 19.93

Jankotek mapdb 267 1,913 691 440 94.32 63.68 76.03 63.16 72.48

Jhy jsoup 136 917 254 153 87.58 60.24 71.38 46.41 44.59

Libdx libgdx 4,679 12,497 3,514 1,366 87.70 38.87 53.87 57.70 56.31

Netty netty 2,383 7,580 3,991 1,618 89.43 40.54 55.79 63.41 62.67

Openhab openhab 5,817 8,826 28 2 100.00 7.14 13.33 28.46 30.66

Openzipkin zipkin 397 799 176 73 87.67 41.48 56.31 55.92 51.90

Orfjackal retrolambda 171 447 97 35 94.29 36.08 52.19 34.69 42.06

OrientTechnologie orientdb 2,907 13,907 7,441 2,894 86.77 38.89 53.71 62.20 70.00

Perwendel spark 205 703 125 82 97.56 65.60 78.45 21.88 28.00

PrestoDb presto 4,381 8,065 2,112 991 90.62 46.92 61.83 23.34 20.64

RoboGuice roboguice 1,193 1,053 229 70 91.43 30.57 45.82 53.81 56.55

Lombok lombok 1,146 1,872 560 212 91.98 37.86 53.64 58.94 57.49

Scribejava scribejava 218 609 72 16 93.75 22.22 35.93 30.05 38.16

Square

dagger 232 697 144 84 90.48 58.33 70.93 64.29 64.97

javapoet 66 650 163 113 100.00 69.33 81.88 51.04 53.20

okhttp 344 2,649 592 474 93.04 80.07 86.07 29.09 24.91

okio 90 433 40 24 100.00 60.00 75.00 31.51 35.50

otto 84 201 15 15 93.33 100.00 96.55 54.11 49.94

retrofit 202 1,349 151 111 99.10 73.51 84.41 49.88 45.46

StephaneNicolas robospice 461 865 113 39 87.18 34.51 49.45 60.90 65.04

ThinkAurelius titan 2,015 4,434 1,634 527 90.13 32.25 47.51 48.64 50.59

Xetorthio jedis 203 1,370 295 226 92.04 76.61 83.62 25.69 29.45

Yahoo anthelion 1,620 7 0 - - - - - -

Zxing zxing 3,030 3,253 791 123 94.31 15.55 26.70 29.35 37.96

Total 96,003 165,912 41,225 15316 90.75 37.15 52.72 40.78 44.17
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The experiments took nearly three months using 48 Amazon Virtual Private

Servers running in parallel. When deployed, the most time consuming part of BIANCA

was spent on building the model of known bug-introducing commits. Once the model

was built, it took, on average, 72 seconds to analyze an incoming commit on a typical

workstation (quad-core @ 3.2GHz with 8 GB of RAM).

In the following subsections, we compare BIANCA with a random classifier, an-

alyze the best and worst performing projects and assess the quality of the proposed

fixes.

6.4.1 Baseline Classifier Comparison

Although our average F1 measure of 52.72% may seem low at first glance, achieving

a high F1 measure for unbalanced data is very difficult [128]. Therefore, a common

approach to ground detection results is to compare it to a simple baseline.

To the best of our knowledge, this is the first approach that relies on code similarity

instead of code metrics or process metrics for the detection of risky commits. Com-

paring it to other approaches will not be accurate. In addition, existing metric-based

techniques (e.g., [133]) detect risky commits within single projects only. BIANCA,

on the other hand, operates across projects. We compared BIANCA with a random

classifier to have a baseline and show that we perform better than a simple baseline.

The baseline classifier first generates a random number n between 0 and 1 for

the 165,912 commits composing our dataset. For each commit, if n is greater than

0.5, then the commit is classified as risky and vice versa. As expected by a random

classifier, our implementation detected ˜50% (82,384 commits) of the commits to be

risky. It is worth mentioning that the random classifier achieved 24.9% precision,

49.96% recall and 33.24% F1-measure. Since our data is unbalanced (i.e., there are

many more healthy than risky commits), these numbers are to be expected for a

random classifier. Indeed, the recall is very close to 50% since a commit can take on

one of two classifications, risky or non-risky. While analysing the precision, however,

we can see that the data is unbalanced (a random classifier would achieve a precision

of 50% on a balanced dataset).

It is important to note that the purpose of this analysis is not to say that we

outperform a simple random classifier, rather to shed light on the fact that our dataset

is unbalanced and achieving an average F1 = 52.72% is non-trivial, especially when
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a baseline only achieves an F1-measure of 33.24%.

6.4.2 Performance of BIANCA

In this section, we provide insight on the performance of BIANCA by examining the

projects for which the best and worst results were obtained.

BIANCA performed best when applied to three projects: Otto by Square (100.00%

precision and 76.61% recall, 96.55% F1-measure), JStorm by Alibaba (90.48% pre-

cision, 87.50% recall, 88.96% F1-measure), and Auto by Google (90.48% precision,

87.50% recall, 86.76% F1-measure). It performed worst when applied to Android An-

notations by Excilys (100.00% precision, 1.59% recall, 3.13% F1-measure) and Che by

Eclipse (88.89% precision, 5.33% recall, 10.05% F1-measure), Openhab by Openhab

(100.00% precision, 7.14% recall, 13.33% F1-measure). To understand the perfor-

mance of BIANCA, we conducted a manual analysis of the commits classified as risky

by BIANCA for these projects.

Otto by Square (F1-measure = 96.5%)

At first, the F1-measure of Otto by Square seems surprising given the specific set

of features it provides. Otto provides a Guava-based event bus. While it does have

dependencies that make it vulnerable to defects in related projects, the fact that it

provides specific features makes it, at first sight, unlikely to share defects with other

projects. Through our manual analysis, we found that out of the 16 risky commits de-

tected by BIANCA, 11 (68.75%) matched defect-introducing commits inside the Otto

project itself. This is significantly higher than the average number of single-project

defects (8.6%). Further investigation of the project management system revealed that

very few issues have been submitted for this project (15) and, out of the 11 matches

inside the Otto project, 7 were aiming to fix the same issue that had been submitted

and fixed several times instead of re-opening the original issue.

JStorm by Alibaba (F1-measure = 88.96%)

For JStorm by Alibaba, our manual analysis of the risky commits revealed that, in

addition to providing stream processes, JStorm mainly supports JSON. The commits
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detected as risky were related to the JSON encoding/decoding functionalities of JS-

torm. In our dataset, we have several other projects that support JSON encoding and

decoding such as FastJSON by Alibaba, Hadoop by Apache, Dropwizard by Dropwiz-

ard, Gradle by Gradle and Anthelion by Yahoo. There is, however, only one project

supporting JSON in the same cluster as JStorm, Fastjson by Alibaba. FastJSON has

a rather large history of defect-commits (516) and 18 out of the 21 commits marked

as risky by BIANCA were marked so because they matched defect-commits in the

FastJSON project.

Auto by Google (F1-measure = 86.76%)

Google Auto is a code generation engine. This code generation engine is used by

other Google projects in our database, such as Guava and Guice. Most of the Google

Auto risky commits (79%) matched commits in the Guava and the Guice project.

As Guice and Guava share the same code-generation engine (Auto), it makes sense

that code introducing defects in these projects share the characteristics of commits

introducing defects in Auto.

Openhab by Openhab (F1-measure = 13.33%)

Openhab by Openhab provides bus for home automation or smart homes. This is a

very specific set of feature. Moreover, Openhab and its dependencies are alone in the

green cluster. In other words, the only project against which BIANCA could have

checked for matching defects is Openhab itself. BIANCA was able to detect 2/28

bugs for Openhab. We believe that if we had other home-automation projects in our

dataset (such as HomeAutomation a component based for smart home systems [172])

then we would have achieved a better F1-measure.

Che by Eclipse (F1-measure = 10.05%)

Eclipse Che is part of the Eclipse IDE. Eclipse provides development support for a

wide range of programming languages such as C, C++, Java and others. Despite the

fact that the Che project has a decent amount of defect-commits (169) and that it

is in the blue cluster (dominated by Apache) BIANCA was only able to detect nine

risky commits. After manual analysis of the 169 defect-commits, we were not able

to draw any conclusion on why we were not able to achieve better performance. We
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can only assume that Eclipse’s developers are particularly careful about how they use

their dependencies and the quality of their code in general. Only 2% (169/7,818) of

their commits introduce new defects.

Annotations by Excilys (F1-measure = 3.13%)

The last project we analysed manually is Annotations by Excilys. Similar to Open-

hab by Openhab, it provides a very particular set of features, which consist of Java

annotations for Android projects. We do not have any other project related to Java

annotations or the Android ecosystem at large. This caused BIANCA to perform

poorly.

Our interpretation of the manual analysis of the best and worst performing projects

is that BIANCA performs best when applied to clusters that contain projects that

are similar in terms of features, domain or intent. These projects tend to be inter-

connected through dependencies. In the future, we intend to study the correlation

between the cluster betweenness measure and the performance of BIANCA.

6.4.3 Analysis of the Quality of the Fixes Proposed by BIANCA

One of the advantages of BIANCA over other techniques is that it also proposes fixes

for the risky commits it detects. In order to evaluate the quality of the proposed fixes,

we compare the proposed fixes with the actual fixes provided by the developers. To do

so, we used the same preprocessing steps we applied to incoming commits: extract,

pretty-print, normalize and filter the blocks modified by the proposed and actual

fixes. Then, the blocks of the actual fixes and the proposed fixes can be compared

with our clone comparison engine.

Similar to other studies recommending fixes, we assess the quality of the first three

and five proposed fixes [43, 97, 115, 116, 154, 183]. The average similarity of the first

three fixes is 44.17% while the similarity of the first five fixes is 40.78%. Results are

reported in Table 6.

In the framework of this study, for a fix to be ranked as qualitative it has to

reach α=35% similarity threshold. Meaning that the proposed fixed must be at least

35% similar to the actual fix. On average, the proposed fixes are above the α=35%

threshold. On a per-commit basis, BIANCA proposed 101,462 fixes for the 13,899
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true positives risky commits (7.3 per commit). Out of the 101,462 proposed fixes,

78.67% are above α=35% threshold.

In other words, BIANCA is able to detect risky commits with 90.75% precision,

37.15% recall, and proposes fixes that contain, on average, 40-44% of the actual code

needed to transform the risky commit into a non-risky one.

To further assess the quality of the fixes proposed by BIANCA, we randomly

took 250 BIANCA-proposed fixes and manually compared them with the actual fixes

provided by the developers. For each fix, we looked at the proposed modifications

(i.e., code diff) and the actual modification made by the developer of the system to

fix the bug.

We were able to identify the statements from the proposed fixes that can be reused

to create fixes similar to the ones that developers had proposed in 84% of the cases.

For the remaining cases, it was difficult to understand the changes that the developers

made, mainly because of our lack of familiarity with the systems under study. We

recognize that a better evaluation of the quality of BIANCA-proposed fixes would be

to conduct a user study. We intend to do this as part of future work. In what follows,

we present examples of BIANCA-proposed fixes that were detected as similar to fixes

proposed by developers.

In Figures 21 and 22, we show two commits that belong to the Okhttp and Druid

systems, respectively. In these figures, the statements shown in red are the ones that

triggered the match between the two commits. The Okhttp commit was submitted

in February 2014, while the one from Druid was submitted in April 2016. The Druid

commit was introduced to fix a bug, which was caused by a prior commit, submitted

in March 2016. The bug consisted of invoking a function on a null reference, which

led to a null pointer exception, causing the system to crash. This bug could have

been avoided if the Druid developers had access to the Okhttp commit.

In a second example, we present a case where BIANCA could have been used to

avoid inserting a bug related to race conditions in multi-threaded code.

In Figures 23 and 24, we show two commits that belong to the Netty and Okhttp

systems, respectively. For Figure 23, we present an excerpt of the commit that trig-

gered the match. The whole commit affected 44 files with 1,994 additions and 1,335

deletions. The Netty commit was submitted in June 2014 while the one from OKHttp
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@@ −293 ,7 +293 ,9 @@ pr i va t e Android (

byte [ ] a lpnResu l t = ( byte [ ] )

↪→ getAlpnSe l e c t edProtoco l . invoke ( socket ) ;

i f ( a lpnResu l t != nu l l ) r e turn ByteStr ing . o f (

↪→ a lpnResu l t ) ;

}

− r e turn ByteStr ing . o f ( ( byte [ ] )

↪→ getNpnSe lectedProtoco l . invoke ( socke t ) ) ;

+ byte [ ] npnResult = ( byte [ ] ) getNpnSe lectedProtoco l .

↪→ invoke ( socke t ) ;

+ i f ( npnResult == nu l l ) r e turn nu l l ;

+ return ByteStr ing . o f ( npnResult ) ;

} catch ( Invocat ionTargetExcept ion e ) {

throw new RuntimeException ( e ) ;

} catch ( I l l e g a lAc c e s sExc ep t i on e ) {

Figure 21: okhttp commit #0ca4c82dd1032625831a5814ea2ddcf165029bdc
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@@ −760 ,12 +760 ,14 @@ protec t ed St r ing aliasWrap ( S t r ing name)

↪→ {

Map<Str ing , Str ing> aliasMap = getAliasMap ( ) ;

i f ( al iasMap != nu l l ) {

+ i f ( al iasMap . get (name) == nu l l ) {

+ return nu l l ;

+ }

− i f ( al iasMap . containsKey (name) ) {

+ i f ( al iasMap . containsKey (name)

+ && aliasMap . get (name) != nu l l ) {

r e turn aliasMap . get (name) ;

}

St r ing name lcase = name . toLowerCase ( ) ;

− i f ( name lcase != name && aliasMap . containsKey (

↪→ name lcase ) ) {

+ i f ( name lcase != name && aliasMap . containsKey (

↪→ name lcase )

+ && aliasMap . get ( name lcase ) != nu l l )

↪→ {

r e turn aliasMap . get ( name lcase ) ;

}

Figure 22: Druid commit #1091861bb15876131653191ae409a523aa8ec0c5
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+ try {

+ Object v = threadLocalMap . indexedVar iab le (

↪→ variablesToRemoveIndex ) ;

+ i f ( v != nu l l && v != InternalThreadLocalMap .

↪→ UNSET) {

+ @SuppressWarnings (” unchecked ”)

+ Set<FastThreadLocal<?>> variablesToRemove =

↪→ ( Set<FastThreadLocal<?>>) v ;

+ FastThreadLocal <?>[] variablesToRemoveArray

↪→ =

+ variablesToRemove . toArray (new

↪→ FastThreadLocal [ variablesToRemove . s i z e ( ) ] ) ;

+ f o r ( FastThreadLocal<?> t l v :

↪→ variablesToRemoveArray ) {

+ t l v . remove ( threadLocalMap ) ;

+ }

+ }

+ } catch ( IOException e ) {

+ } catch ( Inter ruptedExcept ion e ) {

+ } f i n a l l y {

+ InternalThreadLocalMap . remove ( ) ;

+ }

Figure 23: netty commit #085a61a310187052e32b4a0e7ae9700dbe926848
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@@ −682 ,16 +682 ,21 @@ pr i va t e void handleWebSocketUpgrade (

↪→ Socket socket ,

Buf fe redSource source , Bu f f e r

re sponse . getWebSocketListener ( ) . onOpen( webSocket ,

↪→ fancyResponse ) ;

S t r ing name = ”MockWebServer WebSocket ” + reques t .

↪→ getPath ( ) ;

webSocket . initReaderAndWriter (name , 0 , streams ) ;

− webSocket . loopReader ( ) ;

−

− // Even i f messages are no l onge r being read we need to

↪→ wait

f o r the connect ion c l o s e s i g n a l .

t ry {

− connect ionClose . await ( ) ;

− } catch ( Inter ruptedExcept ion ignored ) {

− }

+ webSocket . loopReader ( ) ;

− c l o s eQu i e t l y ( s ink ) ;

− c l o s eQu i e t l y ( source ) ;

+ // Even i f messages are no l onge r being read we need

↪→ to wait

f o r the connect ion c l o s e s i g n a l .

+ try {

+ connect ionClose . await ( ) ;

+ } catch ( Inter ruptedExcept ion ignored ) {

+ }

+

+ } catch ( IOException e ) {

+ webSocket . fa i lWebSocket ( e , nu l l ) ;

+ } f i n a l l y {

+ c l o s eQu i e t l y ( s ink ) ;

+ c l o s eQu i e t l y ( source ) ;

+ }

}
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was submitted in January 2017. The bug consisted of resource leakage in a multi-

threaded environment. The similarity between the two commits comes from the try

and catch blocks associated with the used exceptions, more precisely, the fact of

freeing resources in case a thread crashes with a finally block to follow the try and

catch blocks. In the try block, the threads are launched and, in case an exception

happens, the catch block is executed. However, if the developer closes the resources

consumed by the thread at the end of the try block then, in the case of an exception,

the resources would not be freed. Instead of duplicating the resource management

code in the try and catch blocks, a good practice would be to have it in a finally

block that always executes itself, regardless of whether an exception is thrown or not.

In the commit presented by Figure 23, we can see that a large refactoring has been

done in order to prevent crashed threads to keep using resources. This bug could

have been avoided if the Okhttp developers had access to the Netty commit.

Another example is the one depicted in Figures 25 and 26, showing two commits

that belong to the JSoup and Orientdb systems, respectively. The first commit was

submitted in November 2013, while the Orientdb was submitted two years later in

October 2015. The Orientdb commit was used to fix a bug introduced by a commit

that was submitted earlier in October 2015. This bug would have been avoided if

the developer had access to the JSoup commit, that is proposed by BIANCA as the

closest match.

In these fixes, we can see that the developers are working with the StringBuilder

class. According to the Java documentation, the StringBuilder class \textit{provides

an API compatible with StringBuffer, but with no guarantee of synchronization. This

class is designed for use as a drop-in replacement for StringBuffer in places where the

string buffer was being used by a single thread. Where possible, it is recommended

that this class be used in preference to StringBuffer as it will be faster under most

implementations. Developers usually use the StringBuilder class to build strings

using the append and insert methods. Using the StringBuilder class rather than

plain string concatenation (i.e., using the + operator) is known to be a good Java

practice as it improves performance.

In both cases, the code has been modified to avoid the appending of null string.

In JSoup, it is done by the method shouldCollapseAttribute, which checks for

empty values. In Orientdb, the same operation is performed by a simple null check
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@@ −34,7 +35 ,11 @@ public Object j j tAcc ep t ( Or i en tSq lV i s i t o r

↪→ v i s i t o r , Object data ) {

public void t oS t r i ng (Map<Object , Object> params ,

↪→ St r i ngBu i l d e r bu i l d e r ) {

exp r e s s i on . t oS t r i ng ( params , bu i l d e r ) ;

bu i l d e r . append ( ” MATCHES ” ) ;

− bu i l d e r . append ( r i g h t ) ;

+ i f ( r i g h t != nu l l ) {

+ bu i l d e r . append ( r i g h t ) ;

+ } e l s e {

+ rightParam . t oS t r i ng ( params , bu i l d e r ) ;

+ }

}

Figure 25: OrientDB commit #444db817ee9404b17c1208df51781ce9cb6a2666

on the string named right. Note that this kind of bug would not have been spotted

by a static analysis tool such as PMD [44] because it is legal to pass a null string as

a parameter of function expecting a string. In both cases, however, the developers

were tasked to avoid the appending of null strings.

6.5 Threats to Validity

In this section, we propose a discussion on limitations and threats to validity.

We identified three main limitations of our approach, BIANCA, that require fur-

ther studies.

BIANCA is designed to work on multiple related systems. Applying BIANCA on

a single system will most likely be ineffective; it is unlikely to have a large number

of similar bugs within the same system. For single systems, we recommend the use

of statistical models based on process and code metrics for the detection of risky

commits such as the ones developed by Kamei et al. and Rosen et al. [92, 164].

A metric-based solution, however, may turn to be ineffective when applied across

systems because of the difficulty associated with identifying common thresholds that

are applicable to a wide range of systems.
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@@ −100 ,6 +111 ,15 @@ protected void html ( S t r i ngBu i l d e r

↪→ accum , Document . OutputSett ings out ) {

− accum

− . append ( key )

− . append ( ”=\”” )

− . append ( En t i t i e s . escape ( value , out ) )

− . append ( ”\”” ) ;

+ accum . append ( key ) ;

+ i f ( ! shou ldCo l l apseAtt r ibute ( out ) ) {

+ accum . append (”=\””) ;

+ En t i t i e s . e scape (accum , value , out , true , false

↪→ , fa l se ) ;

+ accum . append ( ’ ” ’ ) ;

+ }

}

/∗∗

p ro t e c t ed boo lean i sDa taA t t r i bu t e ( ) {

re turn key . s ta r t sWi th ( A t t r i b u t e s . da taPre f i x ) && key

↪→ . l e n g t h ( )

> At t r i b u t e s . da taPre f i x . l e n g t h ( ) ;

}

+ /∗∗

+ ∗ Co l l a p s i b l e i f i t ’ s a boo lean a t t r i b u t e and va lue i s

↪→ empty or same as name

+ ∗/

+ protected f ina l boolean shou ldCo l l apseAtt r ibute (

↪→ Document . OutputSett ings out ) {

+ return ( ”” . equa l s ( va lue ) | | value . equa l s IgnoreCase (

↪→ key ) )

+ && out . syntax ( ) | | Document . OutputSett ings .

↪→ Syntax . html

+ && Arrays . b inarySearch ( boo leanAttr ibutes ,

↪→ key ) >= 0 ;

+ }

+
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The second limitation is related to scalability of the approach. Because BIANCA

operates on multiple systems, we need to build a model that comprises all their

commits, which is a time consuming process. It took nearly three months using 48

Amazon Virtual Private Servers running in parallel to build and test the model for

our experiments. The cost of bootstrapping the model on existing repositories can

be a deterrent. However, the model can be updated incrementally by adding new

signatures of bugs to our corpus and does not need to be retrained from the start.

The third limitation we identified has to do with the fact that BIANCA is de-

signed to work with Java systems only. It is however common to have a multitude

of programming languages used in an environment with many inter-related systems.

We intend to extend BIANCA to process commits from other languages as well.

The selection of target systems is one of the common threats to validity for ap-

proaches aiming to improve the analysis of software systems. It is possible that the

selected programs share common properties that we are not aware of and therefore,

invalidate our results. However, the systems analyzed by BIANCA were selected from

Github based on their popularity and the ability to mine their past issues and to re-

trieve their dependencies. Any project that satisfies these criteria would be included

in the analysis. Moreover, the systems vary in terms of purpose, size, and history.

In addition, we see a threat to validity that stems from the fact that we only used

open-source systems. The results may not be generalizable to industrial systems. We

intend to undertake these studies in future work.

The programs we used in this study are all based on the Java programming lan-

guage. This can limit the generalization of the results to projects written in other

languages. However, similar to Java, one can write a TXL grammar for a new lan-

guage then BIANCA can work since BIANCA relies on TXL.

Moreover, we use NICAD as the code comparison engine. The accuracy of NICAD

affects the accuracy of BIANCA. This said, since NICAD has been tested on large

systems, we are confident that it is a suitable engine for comparing code using TXL.

Also, there is nothing that prevents from using other text-based code comparisons

engines. Another threat related to the use of NICAD is the use of 35% as a similarity

threshold. A different threshold may affect the results. We chose this threshold

because it resulted in the best trade-off between precision and recall when analysing

a subset of the dataset.
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Finally, part of the analysis of the BIANCA proposed fixes that we did was based

on manual comparison of the BIANCA fixes with those proposed by developers. Al-

though we exercised great care in analyzing all the fixes, we may have misunderstood

some aspects of the commits.

In conclusion, internal and external validity have both been minimized by choosing

a set of 42 different systems, using input data that can be found in any programming

languages and version systems (commit and changesets).

6.6 Chapter Summary

In this chapter, we presented BIANCA (Bug Insertion ANticipation by Clone Analysis

at commit time), an approach that detects risky commits (i.e., a commit that is

likely to introduce a bug) with an average of 90.75% precision and 37.15% recall.

BIANCA uses clone detection techniques and project dependency analysis to detect

risky commits within and across projects. BIANCA operates at commit-time, i.e.,

before the commits reach the central code repository. In addition, because it relies

on code comparison, BIANCA does not only detect risky commits but also makes

recommendations to developers on how to fix them. We believe that this makes

BIANCA a practical approach for preventing bugs and proposing corrective measures

that integrate well with developers workflow through the commit mechanism.

In the next chapter, we present CLEVER, an approach that combines metric and

clone based classifications in order to address the scalability issues of BIANCA.
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Chapter 7

Combining Code Metrics with

Clone Detection for Just-In-Time

Fault Prevention and Resolution

7.1 Introduction

In the previous chapter, we presented BIANCA, an approach that relies on clone-

detection to detect risky commits and propose fixes. While the performances of

BIANCA are satisfactory, it still has major limitations. For instance, it only supports

the Java programming language and building the model supporting it is incredibly

expansive.

There exist techniques that aim to detect risky commits (e.g., [26, 35, 177]), among

which an interesting approach is the one proposed by Rosen et al. [164]. The authors

developed an approach and a supporting tool, Commit-guru, that relies on building

models from historical commits using code and process metrics (e.g., code complexity,

the experience of the developers, etc.) as main features. These models are used to

classify new commits as risky or not. Commit-guru has been shown to outperform

previous techniques (e.g., [92, 107]).

However, Commit-guru and similar tools suffer from some limitations. First, they

tend to generate high false positive rates by classifying healthy commits as risky.

The second limitation is that they do not provide recommendations to developers

on how to fix the detected risky commits. They simply return measurements that

87



are often difficult to interpret by developers. In addition, they tend to be slow,

despite being based on code metrics rather than code comparision because they are

not incremental. Indeed, they require pulling the complete history of a project for

each analysis. On projects with tens of thousands of commit, this is problematic.

Moreover, this tools only support git when the source-code versioning landscape is

diverse. As shown by the 2018 StackOverflow survey, companies use Subversion, Team

Foundation, Mercurial or other tools at 16.6%, 11.3%, 3.7% and, 19.1% respectively.

Our industrial partner for this project uses Git and Mercurial, so we required a

more versatile approach. Another shortcomming of Commit-Guru is that it only

uses the commit-message to determinate if a commit is a fix rather than the issue

control system. This is problematic because developers leverage shortcut hardcoded

in commit-message to close issues automatically. For example, the following commit-

message: “fix #7” would be interpreted by Commit-Guru as a bug-fixing commit

regardless of the fact issue #7, on the issue control system could be categorized as

a feature to implement. In this case, the word fix was merely used to trigger the

automatic closing of the issue.

Finally, they have been mainly validated using open source systems. Their effec-

tiveness, when applied to industrial systems, has yet to be shown.

In this chapter, we propose an approach, called CLEVER (Combining Levels of

Bug Prevention and Resolution techniques), that relies on a two-phase process for

intercepting risky commits before they reach the central repository. The first phase

consists of building a metric-based model to assess the likelihood that an incoming

commit is risky or not. This is similar to existing approaches. The next phase relies

on clone detection to compare code blocks extracted from suspicious risky commits,

detected in the first phase, with those of known historical fault-introducing commits.

This additional phase provides CLEVER with two apparent advantages over Commit-

guru and other similar approaches. First, as we will show in the evaluation section,

CLEVER is able to reduce the number of false positives by relying on code matching

instead of mere metrics only. The second advantage is that, with CLEVER, it is

possible to use commits that were used to fix faults introduced by previous commits

to suggest recommendations to developers on how to improve the risky commits at

hand. This way, CLEVER goes one step further than Commit-guru (and similar

techniques) by providing developers with a potential fix for their risky commits.
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Another important aspect of CLEVER is its ability to detect risky commits not

only by comparing them to commits of a single project but also to those belonging

to other projects that share common dependencies. This is important in the context

of an industrial setting where software systems tend to have many dependencies that

make them vulnerable to the same faults.

CLEVER was developed in collaboration with software developers from Ubisoft

La Forge. Ubisoft is one of the world’s largest video game development companies

specializing in the design and implementation of high-budget video games. Ubisoft

software systems are highly coupled containing millions of files and commits, devel-

oped and maintained by more than 8,000 developers scattered across 29 locations in

six continents.

We tested CLEVER on 12 major Ubisoft systems. The results show that CLEVER

can detect risky commits with 79% precision and 65% recall, which outperforms the

performance of Commit-guru (66% precision and 63% recall) when applied to the

same dataset. In addition, 66.7% of the proposed fixes were accepted by at least one

Ubisoft software developer, making CLEVER an effective and practical approach for

the detection and resolution of risky commits.

7.2 Approach

Figures 27, 28 and 29 show an overview of the CLEVER approach, which consists of

two parallel processes.

In the first process (Figures 27 and 28), CLEVER manages events happening on

project tracking systems to extract fault-introducing commits and commits and their

corresponding fixes. For simplicity reasons, in the rest of this paper, we refer to

commits that are used to fix defects as fix-commits. We use the term defect-commit

to mean a commit that introduces a fault.

The project tracking component of CLEVER listens to bug (or issue) closing

events of Ubisoft projects. Currently, CLEVER is tested on 12 large Ubisoft projects.

These projects share many dependencies. We clustered them based on their depen-

dencies with the aim to improve the accuracy of CLEVER. This clustering step is

important in order to identify faults that may exist due to dependencies, while en-

hancing the quality of the proposed fixes.
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non-risky.

If the commit is classified as non-risky, then the process stops, and the commit

can be transferred from the developer’s workstation to the central repository. Risky

commits, on the other hand, are further analysed in order to reduce the number of

false positives (healthy commits that are detected as risky). We achieve this by first

extracting the code blocks that are modified by the developer and then compare them

to code blocks of known fault-introducing commits.

7.2.1 Clustering Projects

We cluster projects using the same technic as BIANCA (i.e. Newman algorithm [62,

144] on the dependcies) for the same reasons (i.e. projects that share dependencies

are most likely to contain defects caused by misuse of these dependencies).

Within the context of Ubisoft, dependencies can be external or internal depending

on whether the products are created in-house or supplied by a third-party. For confi-

dentiality reasons, we cannot reveal the name of the projects involved in the project

dependency graph. We show the 12 projects in yellow color with their dependencies

in blue color in Figure 30. In total, we discovered 405 distinct dependencies. De-

pendencies can be internal (i.e. library developed at Ubisoft) or external (i.e. library

provided by third parties). The resulting partitioning is shown in Figure 31.

At Ubisoft, dependencies are managed within the framework of a single repository,

which makes their automatic extraction possible. The dependencies could also be

automatically retrieved if the projects use a dependency manager such as Maven.

7.2.2 Building a Database of Code Blocks of Defect-Commits

and Fix-Commits

In order to build of database of code blocks of defect-commits and fix-commits we

use the same technic as for BIANCA. First, we listen to issue closing-events and

extract the blocks of code belonging to incrimated commits (i.e. commit known to

have introduced a bug) using our refined versions of TXL and NICAD.
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7.2.3 Building a Metric-Based Model

We adapted Commit-guru [164] for building the metric-based model. Commit-guru

uses a list of keywords proposed by Hindle et al. [74] to classify commit in terms of

maintenance, feature or fix. Then, it uses the SZZ algorithm to find the defect-commit

linked to the fix-commit. For each defect-commit, Commit-guru computes the follow-

ing code metrics: la (lines added), ld (lines deleted), nf (number of modified files),

ns (number of modified subsystems), nd (number of modified directories), en (dis-

triubtion of modified code across each file), lt (lines of code in each file (sum) before

the commit), ndev (the number of developers that modifed the files in a commit),

age (the average time interval between the last and current change), exp (number of

changes previously made by the author ), rexp (experience weighted by age of files (1

/ (n + 1))), sexp (previous changes made by the author in the same subsystem), loc

(total number of modified LOC across all files), nuc (number of unique changes to the

files). Then, a statistical model is built using the metric values of the defect-commits.

Using linear regression, Commit-guru is able to predict whether incoming commits

are risky or not.

We had to modify Commit-guru to fit the context of this study. First, we used

information found in Ubisoft’s internal project tracking system to classify the purpose

of a commit (i.e., maintenance, feature or fix ). In other words, CLEVER only classifies

a commit as a defect-commit if it is the root cause of a fix linked to a crash or a bug

in the internal project tracking system. Using internal pre-commit hooks, Ubisoft

developers must link every commit to a given task #ID. If the task #ID entered by

the developer matches a bug or crash report within the project tracking system, then

we perform the SCM blame/annotate function on all the modified lines of code for

their corresponding files on the fix-commit’s parents. This returns the commits that

previously modified these lines of code and are flagged as defect-commits. Another

modification consists of the actual classification algorithm. We did not use linear

regression but instead the random forest algorithm [188, 189]. The random forest

algorithm turned out to be more effective as described in Section 7.4. Finally, we had

to rewrite Commit-guru in GoLang for performance and internal reasons.

93



7.2.4 Comparing Code Blocks

Each time a developer makes a commit, CLEVER intercepts it using a pre-commit

hook and classifies it as risky or not. If the commit is classified as risky by the metric-

based classifier, then, we extract the corresponding code block (in a similar way as in

the previous phase), and compare it to the code blocks of historical defect-commits.

If there is a match, then the new commit is deemed to be risky. A threshold α is used

to assess the extent beyond which two commits are considered similar.

Once again, we reuse the comparing method approach created for BIANCA when

it comes to compare blocks of code.

7.2.5 Classifying Incoming Commits

As discussed in Section 7.2.3, a new commit goes through the metric-based model

first (Steps 1 to 4). If the commit is classified as non-risky, we simply let it through,

and we stop the process. If the commit is classified as risky, however, we continue

the process with Steps 5 to 8 in our approach.

One may wonder why we needed to have a metric-based model in the first place.

We could have resorted to clone detection as the main mechanism as exposed in the

previous chapter. The main reason for having the metric-based model is efficiency.

If each commit had to be analysed against all known signatures using code clone

similarity, then, it would have made CLEVER impractical at Ubisoft’s scale. We

estimate that, in an average workday (i.e. thousands of commits), if all commits had

to be compared against all signatures on the same cluster we used for our experiments

it would take around 25 minutes to process a commit with the current processing

power dedicated to CLEVER. In comparison, it takes, on average, 3.75 seconds with

the current two-step approach.

7.2.6 Proposing Fixes

An important aspect in the design of CLEVER is the ability to provide guidance to

developers on how to improve risky commits. We achieve this by extracting from

the database the fix-commit corresponding to the top 1 matching defect-commits

and present it to the developer. We believe that this makes CLEVER a practical

approach. Developers can understand why a given modification has been reported
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as risky by looking at code instead of simple metrics as in the case of the studies

reported in [92, 164].

Finally, using the fixes of past defects, we can provide a solution, in the form of

a contextualised diff, to developers. A contextualised diff is a diff that is modified to

match the current workspace of the developer regarding variable types and names.

In Step 8 of Figure 29, we adapt the matching fixes to the actual context of the

developer by modifying indentation depth and variable name in an effort to reduce

context switching. This is simply done by replacing the abstracted variables and types

from the proposed solution with their matching names and types from the code under

analysis. We believe that this would make it easier for developers to understand the

proposed fixes and see if it applies in their situation.

All the proposed fixes will come from projects in the same cluster as the project

where the risky commit is. Thus, developers have access to fixes that should be easier

to understand as they come from projects similar to theirs inside the company.

7.3 Experimental Setup

In this section, we present the setup of our case study in terms of repository selection,

dependency analysis, comparison process and evaluation measures.

7.3.1 Project Repository Selection

In collaboration with Ubisoft developers, we selected 12 major software projects (i.e.,

systems) developed at Ubisoft to evaluate the effectiveness of CLEVER. These sys-

tems continue to be actively maintained by thousands of developers. Ubisoft projects

are organized by game engines. A game engine can be used in the development of

many high-budget games. The projects selected for this case study are related to

the same game engine. For confidentiality and security reasons, neither the names

nor the characteristics of these projects are provided. We can, however, disclose that

the size of these systems altogether consists of millions of files of code, hundreds of

millions of lines of code and hundreds of thousands of commits. All 12 systems are

AAA videos games.
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Figure 32: Process of Comparing New Commits

7.3.2 Project Dependency Analysis

Figure 30 shows the project dependency graph. As shown in Figure 30, these projects

are highly interconnected. A review of each cluster shows that this partitioning divides

projects in terms of their high-level functionalities. For example, one cluster is related

to a given family of video games, whereas the other cluster refers to another family.

We showed this partitioning to 11 experienced software developers and ask them to

validate it. They all agreed that the results of this automatic clustering are accurate

and reflects well the various project groups of the company. The clusters are used

for decreasing the rate of false positive. In addition, fixes mined across projects but

within the cluster are qualitative as shown in our experiments.

7.3.3 Building a Database of Defect-Commits and Fix-Commits

To build the database that we can use to assess the performance of CLEVER, we use

the same process as discussed in Section 7.2.2. We retrieve the full history of each

project and label commits as defect-commits if they appear to be linked to a closed

issue using the SZZ algorithm [101]. This baseline is used to compute the precision

and recall of CLEVER. Each time CLEVER classifies a commit as risky ; we can

check if the risky commit is in the database of defect-introducing commits. The same

evaluation process is used by related studies [24, 54, 92, 107, 117].
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7.3.4 Process of Comparing New Commits

Similarly to PRECINCT and CLEVER, the repository if cloned, rewinded and re-

played commit by commit in order to evaluate the performances of CLEVER.

While figure 32 explains the processes of CLEVER it does not encompasse all

the cases. Indeed, the user that experiences the defect can be internal (i.e. another

developer, a tester, . . . ) or external (i.e. a player). In addition, many other projects

receive commits in parallel and they are all to be compared with all the known

signatures.

7.4 Empirical Validation

In this section, we show the effectiveness of CLEVER in detecting risky commits

using a combination of metric-based models and clone detection. The main research

question addressed by this case study is: Can we detect risky commits by combining

metrics and code comparison within and across related Ubisoft projects, and if so,

what would be the accuracy?

The experiments took nearly two months using a cluster of six 12 3.6 Ghz cores

with 32GB of RAM each. The most time consuming part of the experiment consists

of building the baseline as each commit must be analysed with the SZZ algorithm.

Once the baseline was established, the model built, it took, on average, 3.75 seconds

to analyse an incoming commit on our cluster.

In the following subsections, we provide insights on the performance of CLEVER

by comparing it to Commit-guru [164] alone, i.e., an approach that relies only on

metric-based models. We chose Commit-guru because it has been shown to outper-

form other techniques (e.g., [92, 107]). Commit-guru is also open source and easy to

use.

7.4.1 Performance of CLEVER

When applied to 12 Ubisoft projects, CLEVER detects risky commits with an average

precision, recall, and F1-measure of 79.10%, a 65.61%, and 71.72% respectively. For

clone detection, we used a threshold of 30%. This is because Roy et al. [166] showed

through empirical studies that using NICAD with a threshold of 30% provides good
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Table 7: Workshop results
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

P1 Accepted Rejected Accepted Accepted Unsure Accepted Unsure Rejected Rejected Accepted Accepted Unsure

P2 Accepted Rejected Accepted Unsure Unsure Accepted Unsure Rejected Rejected Accepted Accepted Unsure

P3 Accepted Rejected Accepted Unsure Unsure Accepted Unsure Rejected Rejected Accepted Accepted Unsure

P4 Accepted Rejected Accepted Unsure Unsure Accepted Unsure Accepted Rejected Accepted Accepted Unsure

P5 Accepted Rejected Accepted Accepted Unsure Accepted Unsure Rejected Rejected Accepted Accepted Unsure

P6 Accepted Rejected Accepted Unsure Unsure Accepted Unsure Accepted Rejected Accepted Accepted Unsure

results for the detection of Type 3 clones. In addition, we performed the same exper-

iment discussed in section 7.3.4 and found that α = 30% was the best setting for this

new dataset. When applied to the same projects, Commit-guru achieves an average

precision, recall, and F1-measure of 66.71%, 63.01% and 64.80%, respectively.

We can see that with the second phase of CLEVER (clone detection) there is con-

siderable reduction in the number of false positives (precision of 79.10% for CLEVER

compared to 66.71% for Commit-guru) while achieving similar recall (65.61% for

CLEVER compared to 63.01% for Commit-guru).

7.4.2 Analysis of the Quality of the Fixes Proposed by CLEVER

In order to validate the quality of the fixes proposed by CLEVER, we conducted an

internal workshop where we invited a number of people from Ubisoft development

team. The workshop was attended by six participants: two software architects, two

developers, one technical lead, and one IT project manager. The participants have

many years of experience at Ubisoft.

The participants were asked to review 12 randomly selected fixes that were pro-

posed by CLEVER. These fixes are related to one system in which the participants

have excellent knowledge. We presented them with the original buggy commits, the

original fixes for these commits, and the fixes that were automatically extracted by

CLEVER. We asked them the following question “Is the proposed fix applicable in the

given situation?” for each fix.

The review session took around 50 minutes. This does not include the time it took

to explain the objective of the session, the setup, the collection of their feedback, etc.

We asked the participants to rank each fix proposed by CLEVER using this

scheme:

• Fix Accepted: The participant found the fix proposed by CLEVER applicable
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to the risky commit.

• Unsure: In this situation, the participant is unsure about the relevance of the

fix. There might be a need for more information to arrive to a verdict.

• Fix Rejected: The participant found the fix is not applicable to the risky com-

mit.

Table 7 shows answers of the participants. The columns refer to the fixes proposed

by CLEVER, whereas the rows refer to the participants that we denote using P1, P2,

. . . , P6. As we can see from the table, 41.6% of the proposed fixes (F1, F3, F6, F10

and F12) have been accepted by all participants, while 25% have been accepted by

at least one member (F4, F8, F11). We analysed the fixes that were rejected by some

or all participants to understand the reasons.

F2 was rejected by our participants because the region of the commit that trig-

gered a match is a generated code. Although this generated code was pushed into the

repositories as part of bug fixing commit, the root cause of the bug lies in the code

generator itself. Our proposed fix suggests to update the generated code. Because the

proposed fix did not apply directly to the bug and the question we ask our reviewers

was “Is the proposed fix applicable in the given situation?” they rejected it. In this

occurrence, the proposed fix was not applicable.

F4 was accepted by two reviewers and marked as unsure by the other participants.

We believe that this was due the lack of context surrounding the proposed fix. The

participants were unable to determine if the fix was applicable or not without knowing

what the original intent of the buggy commit was. In our review session, we only

provided the reviewers with the regions of the commits that matched existing commits

and not the full commit. Full commits can be quite lengthy as they can contain asset

descriptions and generated code, in addition to the actual code. In this occurrence,

the full context of the commit might have helped our reviewers to decide if F4 was

applicable or not. F5 and F7 were classified as unsure by all our participants for the

same reasons.

F8 was rejected by four of participants and accepted by two. The participants

argued that the proposed fix was more a refactoring opportunity than an actual fix.

F12 was marked as unsure by all the reviewers because the code had to do with

a subsystem that is maintained by another team and the participants felt that it was

out of the scope of this session.
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After the session, we asked the participants two additional questions: Will you

use CLEVER in the future? and What aspects of CLEVER need to be improved?

All the participants answered the first question favourably. They also proposed

to embed CLEVER with Ubisoft’s quality assurance tool suite. The participants

reported that the most useful aspects of CLEVER are:

• Ability to leverage many years of historical data of inter-related projects, hence

allowing development teams to share their experiences in fixing bugs.

• Easy integration of CLEVER into developers’ work flow based on the tool’s

ability to operate at commit-time.

• Precision and recall of the tool (79% and 65% respectively) demonstrating

CLEVER’s capabilities to catch many defects that would otherwise end up

in the code repository.

For the second question, the participants proposed to add a feedback loop to

CLEVER where the input of software developers is taken into account during clas-

sification. The objective is to reduce the number of false negatives (risky commits

that are flagged as non-risky) and false positives (non-risky commits that are flagged

as risky). The feedback loop mechanism would work as follows: When a commit

is misclassified by the tool, the software developer can choose to ignore CLEVER’s

recommendation and report the misclassified commit. If the fix proposition is not

used, then, we would give that particular pattern less strength over other patterns

automatically.

We do not need manual input from the user because CLEVER knows the state of

the commit before the recommendation and after. If both versions are identical then

we can mark the recommendation as not helpful. This way, we can also compensate for

human error (i.e., a developer rejecting CLEVER recommendation when the commit

was indeed introducing a defect. We would know this by using the same processes

that allowed us to build our database of defect-commits as described in Section 7.2.2.

This feature is currently under development.

It is worth noting that Ubisoft developers who participated to this study did

not think that CLEVER fixes that were deemed irrelevant were a barrier to the

deployment of CLEVER. In their point of view, the performance of CLEVER in
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terms of classification should make a significant impact as suspicious commits will

receive extended reviews and/or further investigations.

We are also investigating the use of adaptive learning techniques to improve the

classification mechanism of CLEVER. In addition to this, the participants discussed

the limitation of CLEVER as to its inability to deal with automatically generated

code. We are currently working with Ubisoft’s developers to address this limitation.

7.5 University-Industry Research Collaboration

In this section, we describe the lessons learned during this industrial collaboration.

7.5.1 Deep understanding of the project requirements

Throughout the design of CLEVER, it was important to have a close collaboration

between the research team and the Ubisoft developers. This allowed the research

team to understand well the requirements of the project. Through this collabora-

tion, both the research and development teams quickly realized that existing work in

the literature was not sufficient to address the project’s requirements. In addition,

existing studies were mainly tested using open source systems, which may be quite

different in structure and size from large industrial systems. In our case, we found

that a deep understanding of Ubisoft ecosystem was an important enabler for many

decisions we made in this project including the fact that CLEVER operates on multi-

ple systems and that it uses a two-phases mechanism. It was also important to come

up with a solution that integrates well with the workflow of Ubisoft developers. This

required the development of CLEVER in a way it integrates well with the entire suite

of Ubisoft’s version control systems. The key lesson here is to understand well the

requirements of a project and its complexity.

7.5.2 Understanding the benefits of the project to both par-

ties

Understanding how the project benefits the company and the university helps both

parties align their vision and work towards a common goal and set of objectives. From

Ubisoft’s perspective, the project provides sound mechanisms for building reliable
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systems. In addition, the time saved from detecting and fixing defects can be shifted

to the development of new functionalities that add value to Ubisoft customers. For the

university research team, the project provides an excellent opportunity for gaining

a better understanding of the complexity of industrial systems and how research

can provide effective and practical solutions. Also, working closely with software

developers helps uncover the practical challenges they face within the company’s

context. Companies vary significantly in terms of culture, development processes,

maturity levels, etc. Research effort should be directed to develop solutions that

overcome these challenges, while taking into account the organizational context.

7.5.3 Focusing in the Beginning on Low-Hanging Fruits

Low-hanging fruits are quick fixes and solutions. We found that it is a good idea to

showcase some quick wins early in the project to show the potential of the proposed

solutions. At the beginning of the project, we applied the two-phase process of

CLEVER to some small systems with a reasonable number of commits. We showed

that the approach improved over the use of metrics alone. We also showed that

CLEVER was able to make suggestions on how to fix the detected risky commits.

This encouraged us to continue on this path and explore additional features. We

continued to follow an iterative and incremental process throughout the project where

knowledge transition between the University and Ubisoft teams is done on a regular

basis. Building a Strong Technical Team: Working on industrial projects requires all

sort of technical skills including programming in various programming languages, the

use of tools, tool integration, etc. The strong technical skills of the lead student of

this project were instrumental in the success of this project. It should be noted that

Ubisoft systems are programmed using different languages, which complicated the

code matching phase of CLEVER. In addition, Ubisoft uses multiple bug management

and version control systems. Downloading, processing, and manipulating commits

from various environment requires excellent technical abilities.
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7.5.4 Communicating effectively

During the development of CLEVER, we needed to constantly communicate the steps

of our research to developers and project owners. Adopting a communication strat-

egy suitable to each stakeholder was important. For example, in our meetings with

management, we focused more on the ability of CLEVER to improve code quality and

reduce maintenance costs instead of the technical details of the proposed approach.

Developers, on the other hand, were interested in the potential of CLEVER and its

integration with their work environment.

In this talk, we share our experience conducting a research project at Ubisoft. The

project consists of developing techniques and a tool for detecting defects before they

reach the code repository. Our approach, called CLEVER, achieves this in two phases

using a combination of metric-based machine learning models and clone detection.

CLEVER is being deployed at Ubisoft.

7.5.5 Managing change

Any new initiate brings with it important changes to the way people work. Man-

aging these changes from the beginning of the project increases the chances for tool

adoption. To achieve this, we used a communication strategy that involved all the

stakeholders including software developers and management to make sure that poten-

tial changes that CLEVER would bring are thoroughly and smoothly implemented,

and that the benefits of change are long-lasting.

7.6 Threats to Validity

We identified two main limitations of our approach, CLEVER, which require further

studies.

CLEVER is designed to work on multiple related systems. Applying CLEVER

to a single system will most likely be less effective. The two-phases classification

process of CLEVER would be hindered by the fact that it is unlikely to have a large

number of similar bugs within the same system. For single systems, we recommend

the use of metric-based models. A metric-based solution, however, may turn to

be ineffective when applied across systems because of the difficulty associated with
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identifying common thresholds that are applicable to a wide range of systems.

The second limitation we identified has to do with the fact that CLEVER is

designed to work with Ubisoft systems. Ubisoft uses C#, C, C++, Java and other

internally developed languages. It is however common to have other languages used

in an environment with many inter-related systems. We intend to extend CLEVER

to process commits from other languages as well.

The selection of target systems is one of the common threats to validity for ap-

proaches aiming to improve the analysis of software systems. It is possible that the

selected programs share common properties that we are not aware of and therefore,

invalidate our results. Because of the industrial nature of this study, we had to work

with the systems developed by the company.

The programs we used in this study are all based on the C#, C, C++ and Java

programming languages. This can limit the generalization of the results to projects

written in other languages, especially that the main component of CLEVER is based

on code clone matching.

Finally, part of the analysis of the CLEVER proposed fixes that we did was based

on manual comparisons of the CLEVER fixes with those proposed by developers with

a focus group composed of experienced engineers and software architects. Although,

we exercised great care in analysing all the fixes, we may have misunderstood some

aspects of the commits.

In conclusion, internal and external validity have both been minimized by choosing

a set of 12 different systems, using input data that can be found in any programming

languages and version systems (commits and changesets).

7.7 Chapter Summary

In this chapter, we presented CLEVER (Combining Levels of Bug Prevention and

Resolution Techniques), an approach that detects risky commits (i.e., a commit that

is likely to introduce a bug) with an average of 79.10% precision and a 65.61% recall.

CLEVER combines code metrics, clone detection techniques, and project dependency

analysis to detect risky commits within and across projects. CLEVER operates at

commit-time, i.e., before the commits reach the central code repository. Also, because

it relies on code comparison, CLEVER does not only detect risky commits but also
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makes recommendations to developers on how to fix them. We believe that this makes

CLEVER a practical approach for preventing bugs and proposing corrective measures

that integrate well with the developer’s workflow through the commit mechanism.

CLEVER is still in its infancy and we expect it to be available this year to thousands

of developers.

In the next chapter, we present JCHARMING, an approach for reproducing bugs

using stack traces. JCHARMING is meant to be used by developers when the commit-

time approaches presented in Chapters 5, 6 and 7 did not manage to prevent the

introduction of defects.
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Chapter 8

Bug Reproduction Using Crash

Traces and Directed Model

Checking

8.1 Introduction

In previous chapters, we presented three approaches (PRECINCT, BIANCA and,

CLEVER) that aim to improve code quality by performing maintenance operations

at commit-time. While these approaches have shown good performances, they never

will be 100% accurate in preventing defects from reaching the customers and on-field

crashes will happen.

The first (and perhaps main) step in understanding the cause of a field crash is to

reproduce the bug that caused the system to fail. A survey conducted with developers

of major open source software systems such as Apache, Mozilla and Eclipse revealed

that one of the most valuable piece of information that can help locate and fix the

cause of a crash is the one that can help reproduce it [22].

Bug reproduction is, however, a challenging task because of the limited amount

of information provided by the end users. There exist several bug reproduction tech-

niques. They can be grouped into two categories: (a) On-field record and in-house

replay [9, 81, 134], and (b) In-house crash explanation [31, 123]. The first category

relies on instrumenting the system in order to capture objects and other system com-

ponents at run-time. When a faulty behavior occurs in the field, the stored objects,
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as well as the entire heap, are sent to the developers along with the faulty methods

to reproduce the crash. These techniques tend to be simple to implement and yield

good results, but they suffer from two main limitations. First, code instrumentation

comes with a non-negligible overhead on the system. The second limitation is that

the collected objects may contain sensitive information causing customer privacy is-

sues. The second category is composed of tools leveraging proprietary data in order

to provide hints on potential causes. While these techniques are efficient in improving

our comprehension of the bugs, they are not designed with the purpose of reproducing

them.

JCHARMING (Java CrasH Automatic Reproduction by directed Model check-

ING) [138] is a hybrid approach that uses a combination of crash traces and model

checking to reproduce bugs that caused field failures automatically. Unlike existing

techniques, JCHARMING does not require instrumentation of the code. It does not

need access to the content of the heap either. Instead, JCHARMING uses the list

of functions, i.e., the crash trace, that are output when an uncaught exception in

Java occurs to guide a model checking engine to uncover the statements that caused

the crash. Note that a crash trace is sometimes referred to as a stack trace. In this

chapter, we use these two terms interchangeably.

Model checking (also known as property checking) is a formal technique for auto-

matically verifying a set of properties of finite-state systems [13]. More specifically,

this technique builds a graph where each node represents one state of the program

and the set of properties that need to be verified in each state. For real-world pro-

grams, model checking is often computationally impracticable because of the state

explosion problem [13]. To address this challenge and apply model checking on large

programs, we direct the model checking engine towards the crash using program slic-

ing and the content of the crash trace, and hence, reduce the search space. When

applied to reproducing bugs of seven open source systems, JCHARMING achieved

85% accuracy.

The accuracy of JCHARMING, when applied to 30 bugs, is 80%.
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program. For example, in a typical environment, the program heap or other memory

spaces cannot be modified. Without this constraint, all programs could be tagged

as buggy since we could, for example, destroy objects in memory while the program

continues its execution. As we are interested in verifying the absence of unhandled

exceptions in the SUT, we aim to verify that for all possible combinations of states and

transitions there is no path leading towards a crash. Note that we might find other

potential crashes while analyzing the SUT. We only report our findings, however,

when we found a crash that matches the one we are trying to reproduce. That is:

∀x.(SUT, x) |= ¬c (8)

If there exists a contradicting path (i.e., ∃x such that (SUT, x) |= c) then the

model checker engine will output the path x (known as the counter-example), which

can then be executed. The resulting Java exception crash trace is compared with

the original crash trace to assess if the bug is reproduced. While being accurate

and exhaustive in finding counter-examples, model checking suffers from the state

explosion problem, which hinders its applicability to large software systems.

To show the contrast between testing and model checking, we use the hypothetical

example of Figures 34, 35 and 36 and sketch the possible results of each approach.

These figures depict a toy program where from the entry point, unknown calls are

made (dotted points) and, at some points, two methods are called. These methods,

called Foo.Bar and Bar.Foo, implement a for loop from 0 to loopCount. The

only difference between these two methods is that the Bar.Foo method throws an

exception if i becomes larger than two. Hereafter, we denote this property as pi>2.

Figure 34 shows the program statements that could be covered using testing ap-

proaches. Testing software is a demanding task where a set of techniques is used to

test the SUT according to some input. Software testing depends on how well the

tester understands the SUT in order to write relevant test cases that are likely to

find errors in the program. Program testing is usually insufficient because it is not

exhaustive. In our case, using testing will mean that the tester knows what to look

for in order to detect the causes of the failure. We do not assume this knowledge in

JCHARMING.

Model checking, on the other hand, explores each and every state of the pro-

gram (Figure 35), which makes it complete, but impractical for real-world and large
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Figure 34: A toy program under testing

Figure 35: A toy program under model checking

Figure 36: A toy program under directed model checking
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systems. To overcome the state explosion problem of model checking, directed (or

guided) model checking has been introduced [52, 53]. Directed model checking uses

insights — generally heuristics — about the SUT in order to reduce the number of

states that need to be examined. Figure 36 explores only the states that may lead to

a specific location, in our case, the location of the fault. The challenge, however, is to

design techniques that can guide the model checking engine. As we will describe in

the next section, we use crash traces and program slicing to overcome this challenge.

Unlike model checking, directed model checking is not complete. In this work, our

objective is not to ensure absolute correctness of the program, but to use directed

model checking to “hunt” for a bug within the program.

8.3 Approach

Figure 37 shows an overview of JCHARMING. The first step consists of collecting

crash traces, which contain raw lines displayed to the standard output when an un-

caught exception in Java occurs. In the second step, the crash traces are preprocessed

by removing noise (mainly calls to Java standard library methods). The next step is

to apply backward slicing using static analysis to expand the information contained

in the crash trace while reducing the search space. The resulting slice along with

the crash trace are given as input to the model checking engine. The model checker

executes statements along the paths from the main function to the first line of the

crash trace (i.e., the last method executed at crash time, also called the crash loca-

tion point). Once the model checker finds inconsistencies in the program leading to

a crash, we take the crash stack generated by the model checker and compare it to

the original crash trace (after preprocessing). The last step is to build a JUnit test,

to be used by software engineers to reproduce the bug in a deterministic way.

8.3.1 Collecting Crash Traces

The first step of JCHARMING is to collect the crash trace caused by an uncaught

exception. Crash traces are usually included in crash reports and can, therefore,

be automatically retrieved using a simple regular expression. Figure 38 shows an

example of a crash trace that contains the exception thrown when executing the

program depicted in Figures 34 to 36. More formally, we define a Java crash trace T
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1.javax.activity.InvalidActivityException:loopTimes

should be < 3

2. at Foo.bar(Foo.java:10)

3. at GUI.buttonActionPerformed(GUI.java:88)

4. at GUI.access$0(GUI.java:85)

5. at GUI$1.actionPerformed(GUI.java:57)

6. caused by java.lang.IndexOutOfBoundsException : 3

7. at jsep.Foo.buggy(Foo.java:17)

8. and 4 more ...

Figure 38: Java InvalidActivityException is thrown in the Bar.Foo loop if the control

variable is greater than 2.

example of nested try-catch blocks.

8.3.2 Preprocessing

In the preprocessing step, we first reconstruct and reorganize the crash trace in order

to address the problem of nested exceptions. Nested exception refers to the following

structure in Java.
1 java.io.IOException: Spill failed

...

14 Caused by: java.lang.IllegalArgumentException

...

28 Caused by: java.lang.NullPointerException

In such a case, we want to reproduce the root exception (line 28) that led to the

other two (lines 14 and 1). This said, we remove the lines 1 to 14. Then, with the

aim to guide the directed model checking engine optimally, we remove frames that

are beyond our control. These refer to Java library methods and third party libraries.

In Figure 38, we can see that Java GUI and event management components appear

in the crash trace. We assume that these methods are not the cause of the crash;

otherwise, it means that there is something wrong with the JDK itself. If this is the

case, we will not be able to reproduce the crash. Note that removing these unneeded

frames will also reduce the search space of the model checker.
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frames represent k, i, h, d, b and a, respectively. In the crash trace, f3 is a corrupt

frame and no longer matches a location inside the SUT. This can be the result of

a copy-paste error or a deliberate modification made by the reporter of the bug as

shown in the case study (see Section 8.5). In such a situation, Algorithm 2 will begin

by computing the backward static slice between f0 (k) and f1 (i), then between f1

(i) and f2 (h). At this point, we passed through the for loop (lines 5 to 12) two

times, and in both cases the backward static slice was not empty. Consequently,

the if statement was equal to true and we combined both backward static slices in

the bSlice variable. bSlice is equal to {k, j, i, h}. Then, we want to compute the

backward static slice between f2 (h) and f3 (d). Unfortunately, f3 is corrupted and

does not point towards a valid location in the SUT. As a result, the slice between f2

(h) and f3 (d) will be empty, and we will go to the else statement (line 10). Here, we

simply increment offset by one in order to compute the backward static slice from

f2 (h) and f4 (b) instead of f2 (h) and f3 (d). f4 is valid and the backward static slice

from f2 (h) and f4 (b) can be computed and merged to bSlice. Finally, we compute

the last slice between f4 (b) and f5 (a). The final backward static slice is k, i, h, d, b

and a.

Data: Crash Stack, BCode, Entry Point

Result: BSolve

Frame[] frames ← extract frames from crash stack;

Int n ← size of frames;

Int offset ← 1;

Bslice bSlice ← ∅;

for i ← 0; (i < n && offset < n - 1); i++ do

BSlice currentBSlice ← backward slice from frames[i] to frames[i + offset];

if currentBSlice 6= ∅ then

bSlice ← bSlice ∪ currentBSlice;

offset ← 1;

else

offset ← offset +1;

end

end
Algorithm 2: High-level algorithm computing the union of the slices
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following expression:

SlicedSUT =













⋃entry

i=0 bslice[fi+1←fi] ⊆ SUT,

S0,

T.
⋃entry

i=0 bslice[fi+1←fi] ⊆ T.SUT,

L













(11)

Where
⋃entry

i=0 bslice[fi+1←fi] ⊆ SUT is the subset of states that can be reached in

the computed backward slice, S0 the set of initial states, T.
⋃entry

i=0 bslice[fi+1←fi] the

subset of transitions relations between states that exist in the computed backward

slice and L the labeling function which labels a state with a set of atomic properties.

Then, in the sliced SUT, we try to find:

(SlicedSUT , x) |= pi>2 (12)

That is, there exists a sequence of state transitions x that satisfies pi>2. The only

frame that needs to be valid for the backward static slice to be meaningful is f0. In

Figure 38, f0 is at Foo.bar(Foo.java : 10). If this line of the crash trace is corrupt,

then JCHARMING cannot perform the slicing because it does not know where to

start the backward slicing. The result is a non-directed model checking, which is

likely to fail.

8.3.4 Directed Model Checking

The model checking engine we use in this chapter is called JPF (Java PathFinder)

[195], which is an extensible JVM for Java byte code verification. This tool was first

created as a front-end for the SPIN model checker [75] in 1999 before being open-

sourced in 2005. The JPF model checker can execute all the byte code instructions

through a custom JVM — known as JVMJPF . Furthermore, JPF is an explicit state

model checker, very much like SPIN [75]. This is contrasted with a symbolic model

checker based on binary decision diagrams [126]. JPF designers have opted for a

depth-first traversal with backtracking because of its ability to check for temporal

liveness properties.

More specifically, JPF’s core checks for defects that can be checked without defin-

ing any property. These defects are called non-functional properties in JPF and

cover deadlock, unhandled exceptions, and assert expressions. In JCHARMING,
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we leverage the non-functional properties of JPF as we want to compare the crash

trace produced by unhandled exceptions to the crash trace of the bug at hand. In

other words, we do not need to define any property ourselves. This said, in JPF, one

can define properties by implementing listeners — very much like what we did in

Section˜8.3.6 — that can monitor all actions taken by JPF, which enables the veri-

fication of temporal properties for sequential and concurrent Java programs. One of

the popular listeners of JPF is jpf-ltl. This listener supports the verification of

method invocations or local and global program variables. jpf-ltl can verify tem-

poral properties of method call sequences, linear relations between program variables,

and the combination of both. We intend to investigate the use of jpf-ltl and the

LTL logic to check multi-threaded related crashes as part of future work.

JPF is organized around five simple operations: (i) generate states, (ii) forward,

(iii) backtrack, (iv) restore state and (v) check. In the forward operation, the model

checking engine generates the next state st+1. Each state consists of three distinct

components:

• The information of each thread. More specifically, a stack of frames correspond-

ing to method calls.

• The static variables of a given class.

• The instance variables of a given object.

If st+1 has successors, then it is saved in a backtrack table to be restored later. The

backtrack operation consists of restoring the last state in the backtrack table. The

restore operation allows restoring any state. It can also be used to restore the entire

program as it was the last time we chose between two branches. After each forward,

backtrack and restore state operation the check properties operation is triggered.

In order to direct JPF, we have to modify the generate states and the forward

steps. The generate states is populated with the states in
⋃entry

i=0 bslice[fi+1←fi] ⊂ SUT

and we adjust the forward step to explore a state if the target state si + 1 and the

transition x to pass from the current state si to si+1 are in
⋃entry

i=0 bslice[fi+1←fi] ⊂ SUT

and x.
⋃entry

i=0 bslice[fi+1←fi] ⊂ x.SUT .

In other words, JPF does not generate each possible state for the system under

test. Instead, JPF generates and explores only the states that fall inside the backward

static slice we computed in the previous step. As shown in figure 41, our backward

static slice can greatly reduce the space search and is able to compensate for corrupted
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frames. In short, the idea is that instead of going through all the states of the program

as a complete model checker would do, the backward slice directs the model checker

to explore only the states that might reach the targeted frame.

8.3.5 Validation

To validate the result of directed model checking, we modify the check properties step

that checks if the current sequence of state transition x satisfies a set of properties.

If the current state transition x can throw an exception, we execute x and compare

the exception thrown to the original crash trace (after preprocessing). If the two

exceptions match, we conclude that the conditions needed to trigger the failure have

been met and the bug is reproduced.

However, as argued by Kim et al. in [97], the same failure can be reached from

different paths of the program. Although the states executed to reach the defect

are not exactly the same, they might be useful to enhance the understanding of the

bug by software developers and speed up the deployment of a fix. Therefore, in this

chapter, we consider a defect to be partially reproduced if the crash trace generated

from the model checker matches the original crash trace by a factor of t, where t

is a threshold specified by the user. The threshold, t, represents the percentage of

identical frames between both crash traces.

For our experiments (see Section 8.5), we set the value of t to 80%. The choice of t

should be guided by the need to find the best trade-off between the reproducibility of

the bug and the relevance of the generated test cases (the tests should help reproduce

the on-field crash). To determine the best t, we made several incremental attempts,

starting from t = 10%. For each attempt, we increased t with a factor of 5% and ob-

served the number of bugs reproduced and the quality of the generated tests. Having

t = 80% provided the best trade-off. This said, we anticipate that the tool that imple-

ments our technique should allow software engineers to vary t depending on the bugs

and the systems under study. Based on our observations, we recommend, however,

to set t to 80% as a baseline. It should also be noted that we deliberately prevented

JCHARMING to perform directed model checking with a threshold below 50%. This

is because the tests generated with such a low threshold during our experiments did

not yield qualitative results.
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8.3.6 Generating Test Cases for Bug Reproduction

To help software developers reproduce the crash in a lab environment, we automati-

cally produce the JUnit test cases necessary to run the SUT to cause the bug.

To build a test suite that reproduces a defect, we need to create a set of objects

used as arguments for the methods that will enable us to travel from the entry point

of the program to the defect location. JPF has the ability to keep track of what

happens during model checking in the form of traces containing the visited states and

the value of the variables. We leverage this capability to create the required objects

and call the methods leading to the failure location.

During the testing of the SUT, JPF emits a trace that is composed of the executed

instructions. For large systems, this trace can contain millions of instructions. It is

stored in memory and therefore can be queried while JPF is running. However,

accessing the trace during the JPF execution considerably slows down the checking

process as both the querying mechanism and the JPF engine compete with each other

for resources. In order to allow JPF to use 100% of the available resources and still

be able to query the executed instructions, we implemented a listener that listens

to the JPF trace emitter. Each time JPF processes a new instruction, our listener

catches it and saves it into a MongoDB database to be queried in a post-mortem

fashion. Figure 43 presents a high-level architecture of the components of the JUnit

test generation process.

When the validate step triggers a crash stack with a similarity larger than a

factor t, the JUnit generation engine queries the MongoDB database and fetches

the sequence of instructions that led to the crash of interest. Figure 43 contains

a hypothetical sequence of instructions related to the example of Figures 34, 35,

36, which reads : new jsme.Bar, invokespecial jsme.Bar(), astore 1 [bar], aload 1

[bar], iconst 3, invokevirtual jsme.Bar.foo(int), const 0, istore 2 [i], goto, iload 2 [i],

iconst 2, if icmple iinc 2 1, new java.lang.Exception. From this sequence we know

that, to reproduce to crash of interest, we have to (1) create a new object jsme.Bar

(new jsme.Bar, invokespecial jsme.Bar()), (2) store the newly created object in a

variable named bar ( astore 1 [bar]), (3) invoke the method jsme.Bar.foo(int) of the

bar object with 3 as value ( aload 1 [bar], iconst 3, invokevirtual jsme.Bar.foo(int)).

Then, the jsme.Bar.foo(int) method will execute the for − loop from i = 0 until

i = 3 and throw an exception at i = 3 (const 0, istore 2 [i], goto, iload 2 [i], iconst 2,
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public class {% SUT %} {% BUG %} extends TestCase {

private stat ic f ina l St r ing f a i l u r e = {% CRASH STACK

↪→ %};

private stat ic f ina l int th r e sho ld = {% THRESHOLD %};

private stat ic int d i f f e r e n c e s = In t eg e r .MAXVALUE;

private stat ic f ina l Str ingToken i ze r t o k en i z e rFa i l u r e

↪→ =

new Str ingToken i ze r ( f a i l u r e , ”\n” ) ;

@Test

public t e s t{% SUT %}() {

try {

{% STEPS %}

} catch ( Exception e ) {

// Count the d i f f e r e n c e s

}

asse r tTrue ( d i f f e r e n c e s <=

↪→ t o k en i z eO r i g i n a lFa i l u r e

. countTokens ( ) / 100 ∗ ( thresho ld

↪→ −100) ) ;

}

}

Figure 44: Simplified Unit Test template

8.4 Experimental Setup

In this section, we show the effectiveness of JCHARMING to reproduce bugs in ten

open source systems. The case studies aim to answer the following question: Can we

use crash traces and directed model checking to reproduce on- field bugs in a reasonable

amount of time?
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Table 8: List of target systems in terms of Kilo line of code (KLoC), number of classes

(NoC) and Bug # ID

SUT KLOC NoC Bug #ID

Ant 265 1,233 38622, 41422

ArgoUML 58 1,922 2603, 2558, 311, 1786

dnsjava 33 182 38

jfreechart 310 990 434, 664, 916

Log4j 70 363 11570, 40212, 41186, 45335, 46271, 47912, 47957

MCT 203 1267 440ed48

pdfbox 201 957 1,412, 1,359

Hadoop 308 6,337 2893, 3093, 11878

Mahout 287 1,242 486, 1367, 1594, 1635

ActiveMQ 205 3,797 1054, 2880, 2880

Total 1,517 17,348 30

8.4.1 Targeted Systems

Table 8 shows the systems and their characteristics in terms of Kilo Line of Code

(KLoC) and Number of Classes (NoC).

Apache Ant [4] is a popular command-line tool to build Makefiles. While it is

mainly known for Java applications, Apache Ant also allows building C and C++

applications. We choose to analyze Apache Ant because other researchers in similar

studies have used it.

ArgoUML [38] is one of the major players among the open source UML modeling

tools. It has many years of bug management and, similar to Apache Ant, it has been

extensively used as a test subject in many studies.

Dnsjava [200] is a tool for the implementation of the DNS mechanisms in Java.

This tool can be used for queries, zone transfers, and dynamic updates. It is not

as large as the other two, but it still makes an interesting case subject because it

has been well maintained for the past decade. Also, this tool is used in many other

popular tools such as Aspirin, Muffin and Scarab.

JfreeChart [150] is a well-known library that enables the creation of professional

charts. Similar to dnsjava, it has been maintained over a very long period of time.
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JfreeChart was created in 2005. It is a relatively large application.

Apache Log4j [185] is a logging library for Java. This is not a very large library,

but thousands of programs extensively use it. As other Apache projects, this tool is

well maintained by a strong open source community and allows developers to submit

bugs. The bugs that are in the bug reporting system of Log4j are generally well

documented. In addition, the majority of bugs contain crash traces, which makes

Log4j a good candidate system for this study.

MCT [135] stands for Mission Control technologies and was developed by the

NASA Ames Research Center (the creators of JPF) for use in spaceflight mission

operation. This tool benefits from two years of history and targets a very critical

domain, Spacial Mission Control. Therefore, this tool has to be particularly and

carefully tested and, consequently, the remaining bugs should be hard to discover

and reproduce.

PDFBox [5] is another tool supported by the Apache Software Foundation since

2009 and was created in 2008. PDFBox allows the creation of new PDF documents

and the manipulation of existing documents.

Hadoop [7] is a framework for storing and processing large datasets in a distributed

environment. It contains four main modules: Common, HDFS, YARN and MapRe-

duce. In this chapter, we study the Common module that contains the different

libraries required by the other three modules.

Mahout [8] is a relatively new software application, built on top of Hadoop. We

used Mahout version 0.11, which was released in August 2015. Mahout supports

various machine learning algorithms with a focus on collaborative filtering, clustering,

and classification.

Finally, ActiveMQ [175] is an open source messaging server that allows applica-

tions written in Java, C, C++, C#, Ruby, Perl or PHP to exchange messages using

various protocols. ActiveMQ has been actively maintained since it became an Apache

Software Foundation project in 2005.

8.4.2 Bug Selection and Crash Traces

In this study, we have selected the reproduced bugs randomly in order to avoid the

introduction of any bias. We selected a random number of bugs ranging from 1 to

10 for each SUT containing the word “exception” and where the description of the
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Table 9: Effectiveness of JCHARMING using directed model checking (DMC) in

minutes, length of the generated JUnit tests (CE length) and model checking (MC)

in minutes
SUT Bug #ID Reprod. Time DMC CE length Time MC

Ant
38622 Yes 25.4 3 -

41422 No 42.3 - -

ArgoUML

2558 Partial 10.6 3 -

2603 Partial 9.4 3 -

311 Yes 11.3 10 -

1786 Partial 9.9 6 -

DnsJava 38 Yes 4 2 23

jFreeChart

434 Yes 27.3 2 -

664 Partial 31.2 3 -

916 Yes 26.4 4 -

Log4j

11570 Yes 12.1 2 -

40212 Yes 15.8 3 -

41186 Partial 16.7 9 -

45335 No 3.2 - -

46271 Yes 13.9 4 -

47912 Yes 12.3 3 -

47957 No 2 - -

MCT 440ed48 Yes 18.6 3 -

PDFBox
1412 Partial 19.7 4 -

1359 No 7.5 - -

Mahout

486 Partial 34.5 5 -

1367 Partial 21.1 7 -

1594 No 14.8 - -

1635 Yes 31.0 14 -

Hadoop

2893 Partial 7.4 3 32

3093 Yes 13.1 2 -

11878 Yes 17.4 6 -

ActiveMQ

1054 Yes 38.3 11 -

2880 Partial 27.4 6 -

5035 No 1 - -
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bug contains a match to a regular expression designed to find the pattern of a Java

exception.

8.5 Empirical Validation

Table 9 shows the results of JCHARMING in terms of Bug #ID, reproduction status,

and execution time (in minutes) of directed model checking (DMC), length of the

counter-example (statements in the JUnit test), and execution time (in minutes) for

Model Checking (MC). The experiments have been conducted on a Linux machine (8

GB of RAM and using Java 1.7.0 51).

• The result is noted as “Yes” if the bug has been fully reproduced, meaning that

the crash trace generated by the model checker is identical to the crash trace

collected during the failure of the system.

• The result is “Partial” if the similarity between the crash trace generated by the

model checker and the original crash trace is above t=80% and below t=100%.

Given an 80% similarity threshold, we consider partial reproduction as success-

ful. A different threshold could be used.

• Finally, the result of the approach is reported as “No” if either the similarity is

below t < 80% or the model checker failed to crash the system given the input

we provided.

As we can see in Table 9, we were able to reproduce 24 out of 30 bugs either

completely or partially (80% success ratio). The average time to reproduce a bug

was 19 minutes. The average time in cases where JCHARMING failed to reproduce

the bug was 11 minutes. The maximum fail time was 42.3 minutes, which was the

time required for JCHARMING to fill all the available memory and stop and a −

denotes that JCHARMING reached a sixty-minute timeout. Finally, we report the

number of statements in the produced JUnit test, which represents the length of

the counter-example. While reproducing a bug is the first step in understanding the

cause of a field crash, the steps to reproduce the bug should be as few as possible.

It is important for counter-examples to be short to help the developers provide a

fix effectively. In average, JCHARMING counter-examples were composed of 5.04

Java statements, which, in our view, is considered reasonable for our approach to be
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adopted by software developers. This result demonstrates the effectiveness of our ap-

proach, more particularly, the use of backward slicing to create a manageable search

space that guides the model checking engine adequately. We also demonstrated that

our approach is usable in practice since it is also time efficient. Among the 30 different

bugs we have tested, we will describe two bugs (chosen randomly) for each category

(successfully reproduced, partially reproduced, and not reproduced) for further anal-

ysis. The bug report presented in the following sections are the original reports as

submitted by the reporter. As such, they contain typos and spelling mistakes that

we did not correct.

8.5.1 Successfully Reproduced

The first bug we describe in this discussion is the bug #311 belonging to ArgoUML.

This bug was submitted in an earlier version of ArgoUML. This bug is very simple

to manually reproduce thanks to the extensive description provided by the reporter,

which reads: I open my first project (Untitled Model by default). I choose to draw

a Class Diagram. I add a class to the diagram. The class name appears in the left

browser panel. I can select the class by clicking on its name. I add an instance variable

to the class. The attribute name appears in the left browser panel. I can’t select the

attribute by clicking on its name. Exception occurred during event dispatching: The

reporter also attached the crash trace presented in Figure 45 that we used as input

for JCHARMING:

The cause of this bug is that the reference to the attribute of the class was lost

after being displayed on the left panel of ArgoUML and therefore, selecting it through

a mouse click throws a null pointer exception. In the subsequent version, ArgoUML

developers added a TargetManager to keep the reference of such object in the program.

Using the crash trace, JCHARMING’s preprocessing step removed the lines between

lines 11 and 29 because they belong to the Java standard library and we do not want

either the static slice or the model checking engine to verify the Java standard library

but only the SUT. Then, the third step performs the static analysis following the

process described in Section IV.C. The fourth step performs the model checking on

the static slice to produce the same crash trace. More specifically, the model checker

identifies that the method setTargetInternal(Object o) could receive a null object that

will result in a Null pointer exception.
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1. java.lang.NullPointerException:

2. at

3. uci.uml.ui.props.PropPanelAttribute .setTargetInternal (PropPanelAttribute.java)

4. at uci.uml.ui.props.PropPanel. setTarget(PropPanel.java)

5. at uci.uml.ui.TabProps.setTarget(TabProps.java)

6. at uci.uml.ui.DetailsPane.setTarget (DetailsPane.java)

7. at uci.uml.ui.ProjectBrowser.select (ProjectBrowser.java)

8. at uci.uml.ui.NavigatorPane.mySingleClick (NavigatorPane.java)

9. at uci.uml.ui.NavigatorPane$Navigator MouseListener.mouse

Clicked(NavigatorPane.java)

10.at java.awt.AWTEventMulticaster.mouseClicked (AWTEventMulticas-

ter.java:211)

11. at java.awt.AWTEventMulticaster.mouseClicked (AWTEvent Multicast

er.java:210)

12.at java.awt.Component.processMouseEvent (Component.java:3168)

...

19. java.awt.LightweightDispatcher .retargetMouseEvent (Container.java:2068)

22. at java.awt.Container .dispatchEventImp l(Container.java:1046)

23. at java.awt.Window .dispatchEventImpl (Window.java:749)

24. at java.awt.Component .dispatchEvent (Component.java:2312)

25. at java.awt.EventQueue .dispatchEvent (EventQueue.java:301)

28. at java.awt.EventDispatchThread.pumpEvents

(EventDispatch Thread.java:90)

29. at java.awt.EventDispatchThread.run(EventDispatch Thread.java:82)

Figure 45: Crash trace reported for bug ArgoUML #311
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The second reproduced bug we describe in this section is Bug #486 belonging

to MAHOUT. The submitter (Robin Anil) named the bug entry as Null Pointer

Exception running DictionaryVectorizer with ngram=2 on Reuters dataset. He simply

copied the crash stack presented in Figure 46 without further explanation.

Drew Farris2, who was assigned to fix this bug, commented Looks like this was

due to an improper use of the Gram default constructor that happened as a part of

the 0.20.23 refactoring work. While this quick comment, made only two and a half

hours after the bug submission, was insightful as shown in our generated test case4,

the fix happened in the CollocCombiner class that is one of the Reducer 5 available

in Mahout. The fix (commit #f13833) involved creating an iterator to combine the

frequencies of the Gram and a null check of the final frequency.

JCHARMING’s preprocessing step removed the lines between lines 1 to 14 because

they belong to the second thrown exception since java.lang.NullPointerException oc-

curred when writing in a ByteArrayOutputStream. JCHARMING aims to reproduce

the root exceptions and not the exceptions that derive from other exceptions. This

said, the java.io.IOException: Spill failed was ignored, and our directed model check-

ing engine focused, with success, on reproducing the java.lang.NullPointerException.

8.5.2 Partially Reproduced

As an example of a partially reproduced bug, we explore Bug #664 of the Jfreechart

program. The description provided by the reporter is: In ChartPanel.mouseMoved

there’s a line of code which creates a new ChartMouseEvent using as first parameter

the object returned by getChart(). For getChart() is legal to return null if the chart

is null, but ChartMouseEvent’s constructor calls the parent constructor which throws

an IllegalArgumentException if the object passed in is null.

The reporter provided the crash trace containing 42 lines and then replaced an

unknown number of lines by the following statement <$deleted entry$>. While

JCHARMING successfully reproduced a crash yielding almost the same trace as the

original trace, the <$deleted entry$> statement – which was surrounded by calls to

2https://issues.apache.org/jira/browse/MAHOUT-486
3Farris certainly meant 0.10.2 which was the last refactor of the incriminated class, and the

current version of Mahout is 0.11
4As a reminder, the generated test cases are made available at research.mathieu-

nayrolles.com/jcharming
5As in Map/Reduce
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1 java.io.IOException: Spill failed

2 at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect

(MapTask.java:860)

...

14 Caused by: java.lang.NullPointerException

15 at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:86)

16 at java.io.DataOutputStream.write(DataOutputStream.java:90)

17 at org.apache.mahout.utils.nlp.collocations.llr.Gram.write(Gram.java:181)

18 at org.apache.hadoop.io.serializer.WritableSerialization$WritableSerializer.serialize

...

19 at org.apache.hadoop.io.serializer.WritableSerialization$WritableSerializer.serialize

...

20 at org.apache.hadoop.mapred.IFile$Writer.append(IFile.java:179)

21 at org.apache.hadoop.mapred.Task$CombineOutputCollector.collect

(Task.java:880)

22 at org.apache.hadoop.mapred.Task$NewCombinerRunner$OutputConverter.write

...

23 at org.apache.hadoop.mapreduce.TaskInputOutputContext.write ...

24 at org.apache.mahout.utils.nlp.collocations.llr.CollocCombiner

.reduce(CollocCombiner.java:40)

25 at org.apache.mahout.utils.nlp.collocations.llr.CollocCombiner

.reduce(CollocCombiner.java:25)

26 at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:176)

27 at org.apache.hadoop.mapred.Task$NewCombinerRunner.combine(Task.java:1222)

28 at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.

sortAndSpill(MapTask.java:1265)

29 at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.

access$1800(MapTask.java:686)

30 at org.apache.hadoop.mapred.MapTask$MapOutputBuffer

$SpillThread.run(MapTask.java:1173)

Figure 46: Crash trace reported for bug Mahout #486
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1. java.lang.IllegalArgumentException: null source

2. at java.util.EventObject.¡init¿( EventObject.java:38)

3. at

4 org.jfree.chart.ChartMouseEvent.¡init¿ (ChartMouseEvent.java:83)

5. at org.jfree.chart.ChartPanel .mouseMoved(ChartPanel.java:1692)

6. <deleted entry>

Figure 47: Crash trace reported for bug JFreeChart #664

the standard Java library – was not suppressed and stayed in the crash trace. That is,

JCHARMING produced only the 6 (out of 7) first lines and reached 83% similarity,

and thus a partial reproduction.

The second partially reproduced bug we present here is Bug #2893 belonging

to Hadoop. This bug, reported in February 2008 by Lohit Vijayarenu, was titled

checksum exceptions on trunk and contained the following description: While running

jobs like Sort/WordCount on trunk I see few task failures with ChecksumException.

Re-running the tasks on different nodes succeeds. Here is the stack

1 Map output l o s t , r e s ch edu l i ng : getMapOutput (

↪→ task 200802251721 0004 m 000237 0 , 2 9 ) f a i l e d :

2 org . apache . hadoop . f s . ChecksumException : Checksum e r r o r : /

↪→ tmps/4/ apred−t t /mapred−l o c a l /

↪→ task 200802251721 0004 m 000237 0 / f i l e . out at 2085376

3 at org . apache . hadoop . f s . FSInputChecker . veri fySum (

↪→ FSInputChecker . java : 276 )

4 at org . apache . hadoop . f s . FSInputChecker . readChecksumChunk (

↪→ FSInputChecker . java : 238 )

5 at org . apache . hadoop . f s . FSInputChecker . read1 ( FSInputChecker

↪→ . java : 189 )

6 at org . apache . hadoop . f s . FSInputChecker . read ( FSInputChecker .

↪→ java : 157 )

7 at java . i o . DataInputStream . read ( DataInputStream . java : 132 )

8 at org . apache . hadoop . mapred . TaskTracker$MapOutputServlet .

↪→ doGet ( TaskTracker . java : 2299 )

. . .
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23 at org . mortbay . u t i l . ThreadPool$PoolThread . run ( ThreadPool .

↪→ java : 534 )

Similarly to the first partially reproduced bug, the crash traces produced by our

directed model checking engine and the related test case did not match 100% of

the attached crash stack. While JCHARMING successfully reproduced the bug, the

crash stack contains timestamps information (e.g., 200802251721), that was logically

different in our produced stack trace as we ran the experiment years later.

In all bugs that were partially reproduced, we found that the differences between

the crash trace generated from the model checker and the original crash trace (after

preprocessing) consist of a few lines only.

8.5.3 Not Reproduced

To conclude the discussion on the case study, we present a case where JCHARMING

was unable to reproduce the failure. For the bug #47957, belonging to LOG4J and

reported in late 2009 the author wrote: Configure SyslogAppender with a Layout class

that does not exist; it throws a NullPointerException. Following is the exception trace:

and attached the following crash trace:

1 . 10052009 01 : 36 : 46 ERROR [ Defau l t : 1 ]

s t r u t s . CPExceptionHandler . execute

RID [ ( null ; 25KbxlK0voima4h00ZLBQFC;236Al8E60000045C3A

7D74272C4B4A61) ]

2 . Wrapping Exception in ModuleException

3 . java . lang . Nul lPo interExcept ion

4 . at org . apache . l o g 4 j . net . SyslogAppender

. append ( SyslogAppender . java : 250 )

5 . at org . apache . l o g 4 j . AppenderSkeleton

. doAppend ( AppenderSkeleton . java : 230 )

6 . at org . apache . l o g 4 j . h e lpe r . AppenderAttachableImpl

. appendLoopOnAppenders ( AppenderAttachableImpl

. java : 6 5 )

7 . at org . apache . l o g 4 j . Category . ca l lAppenders

( Category . java : 203 )
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8 . at org . apache . l o g 4 j . Category

. forcedLog ( Category . java : 388 )

9 . at org . apache . l o g 4 j . Category . i n f o

( Category . java : 663 )

The first three lines are not produced by the standard execution of the SUT but by

an ExceptionHandler belonging to Struts [6]. Struts is an open source MVC (Model

View Controller) framework for building Java web applications. JCHARMING exam-

ined the source code of Log4J for the crash location struts.CPExceptionHandler.execute

and did not find it since this method belongs to the source base of Struts – which

uses log4j as a logging mechanism. As a result, the backward slice was not produced,

and we failed to perform the next steps. It is noteworthy that the bug is marked as

a duplicate of the bug #46271 which contains a proper crash trace. We believe that

JCHARMING could have successfully reproduced the crash if it was applied to the

original bug.

The second bug that we did not reproduce and that we present in this section

belongs to Mahout. Jaehoon Ko reported it on July 2014. Bug #1594 is titled Exam-

ple factorize-movielens-1M.sh does not use HDFS and reads It seems that factorize-

movielens-1M.sh does not use HDFS at all. All paths look local paths, not HDFS. So

the example crashes because it cannot find input data from HDFS:

1 Exception in thread $$main ’ ’ org . apache . hadoop . mapreduce .

↪→ l i b . input . Inva l id InputExcept ion : Input path does not

↪→ e x i s t : /tmp/mahout−work−hoseog . l e e /movie lens / r a t i n g s .

↪→ csv

2 at org . apache . hadoop . mapreduce . l i b . input . Fi leInputFormat .

↪→ s i ng l eThreadedL i s tS ta tu s . . .

3 at org . apache . hadoop . mapreduce . l i b . input . Fi leInputFormat .

↪→ l i s t S t a t u s . . .

. . .

31 at org . apache . hadoop . u t i l . RunJarm . thea in (RunJar . java : 212 )

This entry was marked as Not A Problem / WONT FIX meaning that the re-

ported bug was not a bug in the first place. The resolution of this bug6 involved the

6https://github.com/apache/mahout/pull/38#issuecomment-51436303
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modification of a bash script that Ko (the submitter) was using to query Mahout. In

other words, the cause of the failure was external to Mahout itself, and this is why

JCHARMING could not reproduce it.

8.6 Threats to Validity

The selection of SUTs is one of the common threats to validity for approaches aiming

to improve the understanding of a program’s behavior. It is possible that the selected

programs share common properties that we are not aware of and therefore, invalidate

our results. However, the SUTs analyzed by JCHARMING are the same as the ones

used in similar studies. Moreover, the SUTs vary in terms of purpose, size and history.

Another threat to validity lies in the way we have selected the bugs used in this

study. We selected the bugs randomly to avoid any bias. One may argue that a better

approach would be to select bugs based on complexity or other criteria (severity, etc.).

We believe that a complex bug (if complexity can at all be measured) may perhaps

have an impact on the running time of the approach, but we are not convinced that

the accuracy of our approach depends on the complexity or the type of bugs we use.

Instead, it depends on the quality of the produced crash trace. This said, in theory,

we may face situations where the crash trace is completely corrupted. In such cases,

there is nothing that guides the model checker. In other words, we will end up running

a full model checker. It is difficult to evaluate the number of times we may face this

situation without conducting an empirical study on the quality of crash traces. We

defer this to future work.

In addition, we see a threat to validity that stems from the fact that we only used

open source systems. The results may not be generalizable to industrial systems.

Field failures can also occur due to the running environment in which the program

is executed. For instance, the failure may have been caused by the reception of a

network packet or the opening of a given file located on the hard drive of the users.

The resulting failures will hardly be reproducible by JCHARMING.

Finally, the programs we used in this study are all written in the Java program-

ming language and JCHARMING leverages the crash traces produced by the JVM

to reproduce bugs. This can limit the generalization of the results. However, simi-

lar to Java, .Net, Python and Ruby languages also produce crash traces. Therefore,
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JCHARMING could be applied to other object-oriented languages.

In conclusion, internal and external validity have both been minimised by choosing

a relatively large set of different systems and using input data that can be found in

other programming languages.

8.7 Chapter Summary

In this chapter, we presented JCHARMING (Java CrasH Automatic Reproduction

by directed Model checking), an automatic bug reproduction technique that combines

crash traces and directed model checking. JCHARMING relies on crash traces and

backward program slices to direct a model checker. This way, we do not need to

visit all the states of the subject program, which would be computationally taxing.

When applied to thirty bugs from ten open source systems, JCHARMING was able

to successfully reproduce 80% of the bugs. The average time to reproduce a bug was

19 minutes, which is quite reasonable, given the complexity of reproducing bugs that

cause field crashes. Given that in most open-source systems, reported bugs are fixed

several days after they are reported [198], we thin that our solution is application

despite the wait-time.

This said, JCHARMING suffers from three main limitations. The first one is that

it cannot reproduce bugs caused by multi-threading. We can overcome this limitation

by using advanced features of the JPF model checker such as the jpf-ltl listener. The

jpf-ltl listener was designed to check temporal properties of concurrent Java programs.

The second limitation is that JCHARMING cannot be used if external inputs cause

the bug. We can always build a monitoring system to retrieve this data, but this

may lead to privacy concerns. Finally, the third limitation is that the performance

of JCHARMING relies on the quality of the crash traces. This limitation can be

addressed by investigating techniques that can improve the reporting of crash traces.

For the time being, the bug reporters simply copy and paste (and modify) the crash

traces into the bug description. A better practice would be to automatically append

the crash trace to the bug report, for example, in a different field than the bug

description.
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Chapter 9

Towards a Classification of Bugs

Based on the Location of the

Corrections: An Empirical Study

9.1 Introduction

In previous chapters, we showed how to prevent clones and defects, proposes fixes

at commit-time. We also introduced a technique to reproduce on-field crashes [121,

136–140]). These techniques, however, treat all bugs as the same. This is also the

case for other studies in the literature (e.g., [199, 213]). For example, a bug that

requires only one fix is analyzed the same way as a bug that necessitates multiple

fixes. Similarly, if multiple bugs are fixed by modifying the exact same locations in

the code, then we should investigate how these bugs are related in order to predict

them in the future. By a fix, we mean a modification (adding or deleting lines of

code) to an existing file that is used to solve the bug. Note here that we do not refer

to duplicate bugs. Duplicate bugs are marked as duplicate (and not fixed) and only

the master bug is fixed.

As a motivating example, consider Bugs #AMQ-5066 and #AMQ-5092 from the

Apache Software Foundation bug report management system (used to build one of

the datasets in this paper). Bug #AMQ-5066 was reported on February 19, 2014

and solved with a patch provided by the reporter. The solution involves a relatively

complex patch that modifies MQTTProtocolConverter.java, MQTTSubscription.java
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and MQTTTest.java files. The description of the bug is as follows:

“When a client sends a SUBSCRIBE message with the same Topic/Filter as a

previous SUBSCRIBE message but a different QoS, the Server MUST discard the

older subscription, and resend all retained messages limited to the new Subscription

QoS.”

A few months later, another bug, Bug #AMQ-5092 was reported:

“MQTT protocol converters does not correctly generate unique packet ids for re-

tained and non-retained publish messages sent to clients. [. . . ] Although retained

messages published on creation of client subscriptions are copies of retained messages,

they must carry a unique packet id when dispatched to clients. ActiveMQ re-uses the

retained message’s packet id, which makes it difficult to acknowledge these messages

when wildcard topics are used. ActiveMQ also sends the same non-retained message

multiple times for every matching subscription for overlapping subscriptions. These

messages also re-use the publisher’s message id as the packet id, which breaks client

acknowledgment.”

This bug was assigned and fixed by a different person than the one who fixed bug

#AMQ-5066. The fix consists of modifying slightly the same lines of the code in the

exact files used to fix Bug #AMQ-5066. In fact, Bug #5092 could have been avoided

altogether if the first developer provided a more comprehensive fix to #AMQ-5066 (a

task that is easier said than done). These two bugs are not duplicates since, according

to their description, they deal with different types of problems and yet they can be

fixed by providing a similar patch. The failures are different while the root causes

(faults in the code) are more or less the same. From the bug handling perspective, if

we can develop a way to detect such related bug reports during triaging then we can

achieve considerable time saving in the way bug reports are processed, for example,

by assigning them to the same developers. We also conjecture that detecting such

related bugs can help with other tasks such as bug reproduction. We can reuse the 2

reproduction of an already fixed bug to reproduce an incoming and related bug.

With this in mind, the relationship between bugs and fixes can be modelled using

the UML diagram in Figure 48. The diagram only includes bug reports that are

fixed and not, for example, duplicate reports. From this figure, we can think of four

instances of this diagram, which we refer to as bug taxonomy or simply bug types

(see Figure 49).
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• RQ1: Are T4 bug predictable at submission time? In this research question, we

investigate if and how to predict the type of a bug report at submission time.

Being able to build accurate classifiers predicting the bug type at submission

time will allow improving the triaging and the bug handling process.

• RQ2: What are the best predictors of T4 bugs ? This second research question

aims to investigate what are the markups that allow for accurate prediction of

T4 bugs.

Our objective is to propose a classification that can allow researchers in the field of

mining bug repositories to use the taxonomy as a new criterion in triaging, prediction,

and reproduction of bugs. By analogy, we can look at the proposed bug taxonomy

similarly as the clone taxonomy presented by Kapser and Godfrey [96]. The authors

proposed seven types of source code clones and then conducted a case study, using

their classification, on the file system module of the Linux operating system. This

clone taxonomy continues to be used by researchers to build better approaches for

detecting a given clone type and being able to compare approaches with each other

effectively. Moreover, we build upon this proposed classification and predict the type

of incoming bugs with a 65.40% precision 94.16% recall, and an f1 measure of 77.19%.

9.2 Experimental Setup

In this section, we present our datasets and quantify the proportion of each type of

bugs as well as the complexity of each type.

9.2.1 Context Selection

The context of this study consists of the change history of 388 projects belonging to

two software ecosystems, namely, Apache and Netbeans. Table 10 reports, for each

of them, (i) the number of resolved-fixed reports, (ii) the number of commits, (iii)

the overall number of files, and (iv) the number of projects analysed.

All the analysed projects are hosted in Git or Mercurial repositories and have

either a Jira or a Bugzilla issue tracker associated with them. The Apache ecosystem

consists of 349 projects written in various programming languages (C, C++, Java,

Python, . . . ) and uses Git with Jira. These projects represent the Apache ecosystem
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Dataset R/F BR CS Files Projects

Netbeans 53,258 122,632 30,595 39

Apache 49,449 106,366 38,111 349

Total 102,707 229,153 68,809 388

Table 10: Datasets

in its entirety. We did not exclude any system from our study. The complete list can

be found online1. The Netbeans ecosystem consists of 39 projects, mostly written in

Java. Similar to the Apache ecosystem, we selected all the projects belonging to the

Netbeans ecosystem. The Netbeans community uses Bugzilla with Mercurial.

The choice of these two ecosystems is driven by the motivation to consider projects

are having (i) different sizes, (ii) different architectures, and (iii) different development

bases and processes. Apache projects vary significantly in terms of the size of the

development team, purpose and technical choices [17]. On the other side, Netbeans

has a relatively stable list of core developers and a common vision shared by the 39

related projects [197].

Cumulatively, these datasets span from 2001 to 2014. In summary, our consol-

idated dataset contains 102,707 closed issues, 229,153 changesets, 68,809 files that

have been modified to fix the bugs, 462,848 comments, and 388 distinct systems.

We also collected 221 million lines of code modified to fix bugs, identified 3,284 sub-

projects, and 17,984 unique contributors to these bug reports and source code version

management systems. The cumulated opening time for all the bugs reaches 10,661

working years (3,891,618 working days). The raw size of the cloned source code alone,

excluding binaries, images, and other non-text files, is 163 GB.

To assign commits to issues, we used the regular expression based approach pro-

posed by Fischer et al. [57], which matches the issue ID in the commit note to the

commit. Using this technique, we were able to link almost 40% (40,493 out of 102,707)

of our resolved/fixed issues to 229,153 commits. Note that an issue can be fixed using

several commits.

1https://projects.apache.org/projects.html?name
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Table 11: Contingency table and Pearson’s chi-squared tests
Ecosystem T1 T2 T3 T4 Pearson’s chi-squared p-Value

Apache 1968 (14.3 %) 1248 (9.1 %) 3101 (22.6 %) 7422 ( 54 %)

Netbeans 776 (2.9 %) 240 (0.9 %) 8372 (31.3 %) 17366 (64.9 %) <0.01

Overall 2744 (6.8 %) 1488 (3.7 %) 11473 (28.3 %) 24788 (61.2 %)

9.2.2 Dataset Analysis

Using our dataset, we extracted the files fi impacted by each commit ci for each one

of our 388 projects. Then, we classified the bugs according to each type, which we

formulate as follows:

• Type 1: A bug is tagged T1 if it is fixed by modifying a file fi, and fi is not

involved in any other bug fix.

• Type 2: A bug is tagged T2 if it is fixed by modifying by n files, fi..n, where

n > 1, and the files fi..n are not involved in any other bug fix.

• Type 3: A bug is tagged T3 if it is fixed by modifying a file fi and the file fi

is involved in fixing other bugs.

• Type 4: A bug is tagged T4 if it is fixed by modifying several files fi..n and the

files fi..n are involved in any other bug fix.

Table 11 presents the contingency table and the results of the Pearson’s chi-

squared tests we performed on each type of bug. We can see that the proportion of

T4 (61.2%) largely higher than that of T1 (6.8%), 2 (3.7%) and 3 (28.3%) and that

the difference is significant according to the Pearson’s chi-squared test.

Pearson’s chi-squared independence test is used to analyse the relationship be-

tween two qualitative data, in our study the type bugs and the studied ecosystem.

The results of Pearson’s chi-square independence tests are considered statistically sig-

nificant at = 0.05. If p-value ≤ 0.05, we can conclude that the proportion of each

type is significantly different.

We analyse the complexity of each bug with respect to duplication, fixing time,

number of comments, number of times a bug is reopened, files impacted, severity,

changesets, hunks, and chunks.

Complexity metrics are divided into two groups: (a) process and (b) code metrics.

Process metrics refer to metrics that have been extracted from the project tracking

system (i.e., fixing time, comments, reopening and severity). Code metrics are directly
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computed using the source code used to fix a given bug (i.e., files impacted, changesets

required, hunks and chunks). We acknowledge that these complexity metrics only

represent an abstraction of the actual complexity of a given bug as they cannot

account for the actual thought process and expertise required to craft a fix. However,

we believe that they are an accurate abstraction. Moreover, they are used in several

studies in the field to approximate the complexity of a bug [3, 131, 133, 169, 199].

Tables 12, 13 and 14 present descriptive statistics about each metric for each bug

type per ecosystem and for both ecosystems combined. The descriptive statistics used

are µ:mean,
∑

:sum, x̂:median, σ:standard deviation and %:percentage. We also show

the results of Mann-Whitney test for each metric and type. We added the Xsymbol

to the Mann-Whitney tests results columns when the value is statistically significant

(e.g. α<0.05) and 7otherwise.

Duplicate

The duplicate metric represents the number of times a bug gets resolved using the

duplicate label while referencing one of the resolved/fixed bug of our dataset. The

process metric is useful to approximate the impact of a given bug on the community.

For a bug to be resolved using the duplicate, it means that the bug has been reported

before. The more a bug gets reported by the community, the more people are impacted

enough to report it. Note that, for a bug a to be resolved using the duplicate label

and referencing bug b, bug b does not have to be resolved itself. Indeed, bug b could

be under investigation (i.e. unconfirmed) or being fixed (i.e. new or assigned).

Automatically detecting duplicate bug report is a very active research field [23, 80,

145, 168, 178, 187] and a well-known measure of bug impact.

Overall, the complexity of bug types in terms of the number of duplicates is as

follows: T41dup � T13dup > T32dup � T24dup.

Fixing time

The fixing time metric represents the time it took for the bug report to go from the

new state to the closed state. If the bug report is reopened, then the time it took for

the bug to go from the assigned state to the closed state is added to the first time. A

bug report can be reopened several times and all the times are added. In this section,

the time is expressed in days [199, 211, 213].

144



Table 12: Apache Ecosystem Complexity Metrics Comparison and Mann-whitney

test results. µ:mean,
∑

:sum, x̂:median, σ:standard deviation, %:percentage
Types Metric µ

∑

x̂ σ % T1 T2 T3 T4

Dup. 0.026 51 0 0.2 14.8 n.a 7(0.53) X(<0.05) 7(0.45)

Tim. 91.574 180217 4 262 21.8 n.a X(<0.05) X(<0.05) X(<0.05)

Com. 4.355 8571 3 4.7 9.5 n.a X(<0.05) 7(0.17) X(<0.05)

Reo. 0.062 122 0 0.3 13.8 n.a 7(0.29) X(<0.05) X(<0.05)

T1 Fil. 0.991 1950 1 0.1 3.7 n.a X(<0.05) 7(0.28) X(<0.05)

Sev. 3.423 6737 4 1.3 13.2 n.a 7(0.18) X(<0.05) X(<0.05)

Cha. 1 1968 1 0 1.9 n.a X(<0.05) X(<0.05) X(<0.05)

Hun. 3.814 7506 3 2.4 0 n.a X(<0.05) X(<0.05) X(<0.05)

Chur. 18.761 36921 7 48.6 0 n.a X(<0.05) 7(0.09) X(<0.05)

Dup. 0.022 28 0 0.1 8.1 7(0.53) n.a 7(0.16) 7(0.19)

Tim. 115.158 143717 8 294.1 17.4 X(<0.05) n.a X(<0.05) X(<0.05)

Com. 5.041 6291 4 4.7 7 X(<0.05) n.a X(<0.05) X(<0.05)

Reo. 0.071 89 0 0.3 10.1 7(0.29) n.a X(<0.05) 7(0.59)

T2 Fil. 4.381 5468 2 20.4 10.5 X(<0.05) n.a X(<0.05) X(<0.05)

Sev. 3.498 4365 4 1.2 8.6 7(0.18) n.a X(<0.05) X(<0.05)

Cha. 4.681 5842 2 20.4 5.5 X(<0.05) n.a X(<0.05) X(<0.05)

Hun. 561.995 701370 14 13628.2 3.9 X(<0.05) n.a X(<0.05) X(<0.05)

Chur. 14184.869 17702716 88 400710.2 8 X(<0.05) n.a X(<0.05) X(<0.05)

Dup. 0.016 50 0 0.1 14.5 X(<0.05) 7(0.16) n.a X(<0.05)

Tim. 35.892 111300 1 151.8 13.5 X(<0.05) X(<0.05) n.a X(<0.05)

Com. 4.422 13712 3 4.4 15.2 7(0.17) X(<0.05) n.a X(<0.05)

Reo. 0.033 101 0 0.2 11.5 X(<0.05) X(<0.05) n.a X(<0.05)

T3 Fil. 0.994 3081 1 0.1 5.9 7(0.28) X(<0.05) n.a X(<0.05)

Sev. 3.644 11300 4 1.1 22.2 X(<0.05) X(<0.05) n.a X(<0.05)

Cha. 1 3101 1 0 2.9 X(<0.05) X(<0.05) n.a X(<0.05)

Hun. 4.022 12472 3 3.4 0.1 X(<0.05) X(<0.05) n.a X(<0.05)

Chur. 16.954 52573 6 49.8 0 7(0.09) X(<0.05) n.a X(<0.05)

Dup. 0.029 216 0 0.2 62.6 7(0.45) 7(0.19) X(<0.05) n.a

Tim. 52.76 391586 4 182.2 47.4 X(<0.05) X(<0.05) X(<0.05) n.a

Com. 8.313 61701 5 10.2 68.3 X(<0.05) X(<0.05) X(<0.05) n.a

Reo. 0.077 570 0 0.3 64.6 X(<0.05) 7(0.59) X(<0.05) n.a

T4 Fil. 5.633 41805 3 14 79.9 X(<0.05) X(<0.05) X(<0.05) n.a

Sev. 3.835 28466 4 1 56 X(<0.05) X(<0.05) X(<0.05) n.a

Cha. 12.861 95455 4 52.2 89.7 X(<0.05) X(<0.05) X(<0.05) n.a

Hun. 2305.868 17114149 30 58094.7 96 X(<0.05) X(<0.05) X(<0.05) n.a

Chur. 27249.773 202247816 204 320023.5 91.9 X(<0.05) X(<0.05) X(<0.05) n.a
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Table 13: Netbeans Ecosystem Complexity Metrics Comparison and Mann-whitney

test results. µ:mean,
∑

:sum, x̂:median, σ:standard deviation, %:percentage
Types Metric µ

∑

x̂ σ % T1 T2 T3 T4

Dup. 0.086 67 0 0.4 2.5 n.a 7(0.39) 7(0.24) 7(0.86)

Tim. 92.759 71981 10 219.1 2.3 n.a X(<0.05) 7(0.15) X(<0.05)

Com. 4.687 3637 3 4.1 2.4 n.a X(<0.05) 7(0.83) X(<0.05)

Reo. 0.054 42 0 0.3 1.9 n.a 7(0.1) 7(0.58) X(<0.05)

T1 Fil. 1.735 1346 1 13.2 0.8 n.a X(<0.05) X(<0.05) X(<0.05)

Sev. 4.314 3348 3 1.5 3.1 n.a 7(0.66) X(<0.05) X(<0.05)

Cha. 1.085 842 1 0.4 2 n.a 7(0.99) 7(0.26) X(<0.05)

Hun. 4.405 3418 3 7 0.5 n.a X(<0.05) 7(0.13) X(<0.05)

Chur. 5.089 3949 2 12.5 0.3 n.a X(<0.05) X(<0.05) X(<0.05)

Dup. 0.067 16 0 0.3 0.6 7(0.39) n.a 7(0.73) 7(0.39)

Tim. 111.9 26856 16 308.6 0.9 X(<0.05) n.a X(<0.05) 7(0.41)

Com. 4.433 1064 3 4 0.7 X(<0.05) n.a X(<0.05) X(<0.05)

Reo. 0.079 19 0 0.3 0.9 7(0.1) n.a 7(0.11) 7(0.97)

T2 Fil. 8.804 2113 2 42.7 1.3 X(<0.05) n.a X(<0.05) X(<0.05)

Sev. 4.362 1047 3 1.5 1 7(0.66) n.a X(<0.05) X(<0.05)

Cha. 1.075 258 1 0.3 0.6 7(0.99) n.a 7(0.5) X(<0.05)

Hun. 21.887 5253 8 62.7 0.7 X(<0.05) n.a X(<0.05) X(<0.05)

Chur. 32.263 7743 8 125.8 0.7 X(<0.05) n.a X(<0.05) X(<0.05)

Dup. 0.074 620 0 0.4 23.3 7(0.24) 7(0.73) n.a X(<0.05)

Tim. 87.033 728642 9 233.6 23.8 7(0.15) X(<0.05) n.a X(<0.05)

Com. 4.73 39599 3 4.3 26.5 7(0.83) X(<0.05) n.a X(<0.05)

Reo. 0.06 499 0 0.3 22.7 7(0.58) 7(0.11) n.a X(<0.05)

T3 Fil. 1.306 10932 1 5.1 6.8 X(<0.05) X(<0.05) n.a X(<0.05)

Sev. 4.021 33666 3 1.4 31.4 X(<0.05) X(<0.05) n.a X(<0.05)

Cha. 1.065 8917 1 0.3 21 7(0.26) 7(0.5) n.a X(<0.05)

Hun. 5.15 43115 3 12.4 5.8 7(0.13) X(<0.05) n.a X(<0.05)

Chur. 6.727 56317 2 22 4.9 X(<0.05) X(<0.05) n.a X(<0.05)

Dup. 0.113 1959 0 0.7 73.6 7(0.86) 7(0.39) X(<0.05) n.a

Tim. 128.833 2237319 13 332.8 73 X(<0.05) 7(0.41) X(<0.05) n.a

Com. 6.058 105202 4 6.7 70.4 X(<0.05) X(<0.05) X(<0.05) n.a

Reo. 0.094 1639 0 0.4 74.5 X(<0.05) 7(0.97) X(<0.05) n.a

T4 Fil. 8.408 146019 4 25.1 91 X(<0.05) X(<0.05) X(<0.05) n.a

Sev. 3.982 69159 3 1.4 64.5 X(<0.05) X(<0.05) X(<0.05) n.a

Cha. 1.871 32494 2 1.2 76.4 X(<0.05) X(<0.05) X(<0.05) n.a

Hun. 40.195 698022 13 98.3 93.1 X(<0.05) X(<0.05) X(<0.05) n.a

Chur. 61.893 1074830 15 178.6 94 X(<0.05) X(<0.05) X(<0.05) n.a

146



Table 14: Apache and Netbeans Ecosystems Complex-

ity Metrics Comparison and Mann-whitney test results.

µ:mean,
∑

:sum, x̂:median, σ:standard deviation, %:percentage
Types Metric µ

∑

x̂ σ % T1 T2 T3 T4

Dup. 0.043 118 0 0.3 3.9 n.a 7(0.09) 7(0.16) X(<0.05)

Tim. 91.909 252198 6 250.6 6.5 n.a X(<0.05) X(<0.05) X(<0.05)

Com. 4.449 12208 3 4.5 5.1 n.a X(<0.05) X(<0.05) X(<0.05)

Reo. 0.06 164 0 0.3 5.3 n.a 7(0.07) X(<0.05) X(<0.05)

T1 Fil. 1.201 3296 1 7 1.5 n.a X(<0.05) X(<0.05) X(<0.05)

Sev. 3.675 10085 4 1.4 6.4 n.a 7(0.97) 7(0.17) X(<0.05)

Cha. 1.024 2810 1 0.2 1.9 n.a X(<0.05) X(<0.05) X(<0.05)

Hun. 3.981 10924 3 4.3 0.1 n.a X(<0.05) X(<0.05) X(<0.05)

Chur. 14.894 40870 5 42.2 0 n.a X(<0.05) X(<0.05) X(<0.05)

Dup. 0.03 44 0 0.2 1.5 7(0.09) n.a X(<0.05) X(<0.05)

Tim. 114.632 170573 9 296.4 4.4 X(<0.05) n.a X(<0.05) 7(0.15)

Com. 4.943 7355 3 4.6 3.1 X(<0.05) n.a 7(0.72) X(<0.05)

Reo. 0.073 108 0 0.3 3.5 7(0.07) n.a X(<0.05) 7(0.47)

T2 Fil. 5.095 7581 2 25.4 3.6 X(<0.05) n.a X(<0.05) X(<0.05)

Sev. 3.637 5412 4 1.3 3.4 7(0.97) n.a 7(0.44) 7(0.1)

Cha. 4.099 6100 2 18.7 4.1 X(<0.05) n.a X(<0.05) X(<0.05)

Hun. 474.881 706623 12 12481.7 3.8 X(<0.05) n.a X(<0.05) X(<0.05)

Chur. 11902.19 17710459 62 366988 8 X(<0.05) n.a X(<0.05) X(<0.05)

Dup. 0.058 670 0 0.4 22.3 7(0.16) X(<0.05) n.a X(<0.05)

Tim. 73.21 839942 6 215.8 21.6 X(<0.05) X(<0.05) n.a X(<0.05)

Com. 4.647 53311 3 4.3 22.2 X(<0.05) 7(0.72) n.a X(<0.05)

Reo. 0.052 600 0 0.3 19.5 X(<0.05) X(<0.05) n.a X(<0.05)

T3 Fil. 1.221 14013 1 4.4 6.6 X(<0.05) X(<0.05) n.a X(<0.05)

Sev. 3.919 44966 3 1.4 28.4 7(0.17) 7(0.44) n.a X(<0.05)

Cha. 1.048 12018 1 0.3 8.1 X(<0.05) X(<0.05) n.a X(<0.05)

Hun. 4.845 55587 3 10.7 0.3 X(<0.05) X(<0.05) n.a X(<0.05)

Chur. 9.491 108890 3 32.3 0 X(<0.05) X(<0.05) n.a X(<0.05)

Dup. 0.088 2175 0 0.6 72.3 X(<0.05) X(<0.05) X(<0.05) n.a

Tim. 106.056 2628905 9 297.9 67.6 X(<0.05) 7(0.15) X(<0.05) n.a

Com. 6.733 166903 4 8 69.6 X(<0.05) X(<0.05) X(<0.05) n.a

Reo. 0.089 2209 0 0.4 71.7 X(<0.05) 7(0.47) X(<0.05) n.a

T4 Fil. 7.577 187824 3 22.4 88.3 X(<0.05) X(<0.05) X(<0.05) n.a

Sev. 3.938 97625 3 1.3 61.8 X(<0.05) 7(0.1) X(<0.05) n.a

Cha. 5.162 127949 2 29 85.9 X(<0.05) X(<0.05) X(<0.05) n.a

Hun. 718.58 17812171 16 31804.5 95.8 X(<0.05) X(<0.05) X(<0.05) n.a

Chur. 8202.463 203322646 28 175548.3 91.9 X(<0.05) X(<0.05) X(<0.05) n.a
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When combined, both ecosystem amounts in the following order T24time > T41time �

T13time � T32time. These findings contradict the finding of Saha et al., however, they

did not study the Netbeans ecosystem in their paper [169].

Comments

The “number of comments” metric refers to the comments that have been posted by

the community on the project tracking system. This third process metric evaluates

the complexity of a given bug in a sense that if it takes more comments (explanation)

from the reporter or the assignee to provide a fix, then the bug must be more complex

to understand. The number of comments has been shown to be useful in assessing

the complexity of bugs [211, 213]. It is also used in bug prediction approaches [24,

42].

When combining both ecosystems, the results are: T41comment � T24comment >

T32comment � T13comment.

Bug Reopening

The bug reopening metric counts how many times a given bug gets reopened.If a bug

report is reopened, it means that the fix was arguably hard to come up with or the

report was hard to understand [120, 173, 218].

When combined, however, the order does change: T41reop > T24reop > T13reop �

T32reop.

Severity

The severity metric reports the degree of impact of the report on the software. Pre-

dicting the severity of a given report is an active research field [69, 111, 127, 186, 193]

and it helps to prioritization of fixes [204]. The severity is a textual value (blocker,

critical, major, normal, minor, trivial) and the Mann-Whitney test only accepts nu-

merical input. Consequently, we had to assign numerical values to each severity.

We chose to assign values from 1 to 6 for trivial, minor, normal, major, critical and

blocker severities, respectively.

The bug type ordering according to the severity metrics is: T41sev � T32sev �

T24sev > T13sev, T2
4
sev > T13sev � T32sev � T41sev and T41sev � T32sev > T13sev > T24sev

for Apache, Netbeans, and both combined, respectively.
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Files impacted

The number of files impacted measures how many files have been modified for the

bug report to be closed.

Overall, T4 impacts more files than T2 while T1 and T2 impacts only 1 file

(T41files � T23files � T32files <=> T14files).

Changesets

The changeset metrics registers how many changesets (or commits/patch/fix) have

been required to close the bug report. In the project tracking system, changesets

to resolve the bug are proposed and analysed by the community, automated quality

insurance tools and the quality insurance team itself. Each changeset can be either

accepted and applied to the source code or dismissed. The number of changesets

(or versions of a given changeset) it takes before integration can hint us about the

complexity of the fix. In case the bug report gets reopen, and new changesets pro-

posed, the new changesets (after the reopening) are added to the old ones (before the

reopening).

Overall, T4 bugs are the most complex bugs regarding the number of submitted

changesets (T41changesets � T23changesets � T32changesets � T14changesets).

While results have been published on the bug-fix patterns [154], smell introduction

[56, 192], to the best of our knowledge, no one interested themselves in how many

iterations of a patch was required to close a bug report beside us.

Hunks

The hunks metric counts the number of consecutive code blocks of modified, added

or deleted lines in textual files. Hunks are used to determine, in each file, how many

different places a developer has modified. This metric is widely used for bug insertion

prediction [91, 100, 164] and bug-fix comprehension [154]. In our ecosystems, there

is a relationship between the number of files modified and the hunks. The number of

code blocks modified is likely to rise as to the number of modified files as the hunks

metric will be at least 1 per file.

We found that T2 and T4 bugs, that require many files to get fixed, are the

ones that have significantly higher scores for the hunks metric; Apache ecosystem:
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T41hunks � T22hunks � T33hunks � T14hunks, Netbeans ecosystem: T41hunks � T23hunks �

T32hunks � T14hunks, and overall T41hunks � T22hunks � T14hunks � T33hunks.

Churns

The last metric, churns, counts the number of lines modified. The churn value for a

line change should be at least two as the line has to be deleted first and then added

back with the modifications. Once again, this is a widely used metric in the field [91,

100, 154, 164].

Once again, T4 and T2 are the ones with the most churns; Apache ecosystem

T41churns � T22churns � T14churns > T33churns, Netbeans ecosystem: T41churns �

T23churns � T32churns � T14churns and overall : T41churns � T22churns � T14churns �

T33churns.

To determine which type is the most complex, we counted how many times each

bug type obtained each position in our nine rankings and multiply them by 4 for the

first place, 3 for the second, 2 for the third and 1 for the fourth place.

We did the same simple analysis of the rank of each type for each metric, to take

into account the frequency of bug types in our calculation, and multiply both values.

The complexity scores we calculated are as follows: 1330, 1750, 2580 and 7120 for

T1, T2, T3 and T4 bugs, respectively.

Considering that Type 4 bugs are (a) the most common, (b) the most complex

and (c) not a type we intuitively know about; we decided to kick start our research

into the different type of bugs and their impact by predicting whether an incoming

bug report type 4 or not.

9.3 Empirical Validation

In this section, we present the results of our experiences and interpret them to answer

our two research questions.

9.3.1 Are T4 bug predictable at submission time?

To answer this question, we used as features the words in the bug description con-

tained in a bug report. We removed he stopwords (i.e. the, or, she, he) and truncated

the remaining words to their roots (i.e. writing becomes write, failure becomes fail
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and so on). We experimented with 1-gram, 2-gram, and 3-gram words weighted using

tf-idf. To build the classifier, we examined three machine learning techniques that

have shown to yield satisfactory results in related studies: SVM, Random forest and

linear regression [1, 133, 199].

To answer RQ1, we analyse the accuracy of predictors aiming at determining the

type of a bug at submission time (i.e. when someone submits the bug report).

Tables 15, 16, 17, 18, 19, 20, 21, 22 and 23 presents the results obtained while

building classifiers for the most complex type of bug. According to the complexity

analysis conducted in section 9.2.2, the most complex type of bug, in terms of du-

plicate, time to fix, comments, reopening, files changed, severity, changesets, churns,

and hunks is T4.

To answer our research question, we built nine different classifiers using three

different machine learning techniques: Linear regression, support vector machines

and random forest for ten different projects (5 from each ecosystem).

We selected the top 5 projects of each ecosystem with regard to their bug report

count (Ambari, Cassandra, Flume, HBase and Hive for Apache; Cnd, Editor, Java,

JavaEE and Platform for Netbeans). For each machine learning techniques, we built

classifiers using the text contained in the bug report and the comment of the first 48

hours as they are likely to provide additional insights on the bug itself. We eliminate

the stop-words of the text and trim the words to their semantical roots using wordnet.

We experimented with 1-gram, 2-gram, and 3-gram words, weighted using tf/idf.

The feature vectors are fed to the different machine learning techniques in order

to build a classifier. The data is separated into two parts with a 60%-40% ratio. The

60% part is used for training purposes while the 40% is used for testing purposes.

During the training process we use the ten-folds technique iteratively and, for each

iteration, we change the parameters used by the classifier building process (cost, mtry,

etc). At the end of the iterations, we select the best classifier and exercise it against

the second part of 40%. The results we report in this section are the performances of

the nine classifiers trained on 60% of the data and classifying the remaining 40%. The

performance of each classifier are examined in terms of true positive, true negative,

false negative and false positive classifications. True positives and negative numbers

refer to the cases where the classifier correctly classify a report. The false negative

represents the number of reports that are classified as non-T4 while they are and false
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positive represents the number of reports classified as T4 while they are not. These

numbers allow us to derive three common metrics: precision, recall and f 1 measure.

precision =
TP + FN ∩ TP + FP

TP + FP
(13)

recall =
TP + FN ∩ TP + FP

TP + FN
(14)

f1 =
2TP

2TP + FP + FN
(15)

The performance of each classifier is compared to a tenth classifier. This last

classifier is a random classifier that randomly predicts the type of a bug. As we are

in a two classes system (T4 and non-T4), 50% of the reports are classified as T4 by

the random classifier. The performance of the random classifier itself are presented

in table 24.

Finally, we compute the Cohen’s Kappa metric [58] for each classifier. The Kappa

metric compares the observed accuracy and the expected accuracy to provide a less

misleading assessment of the classifier performance than precision alone.

kappa =
(observedaccuracy − expectedaccuracy)

1− expectedaccuracy
(16)

The observed accuracy represents the number of items that were correctly classi-

fied, according to the ground truth, by our classifier. The expected accuracy repre-

sents the accuracy obtained by a random classifier.

For the first three classifiers (SVM, linear regression and random forest with a

1-gram grouping of stemmed words) the best classifier the random forest one with

77.63% F1 measure. It is followed by SVM (77.19%) and, finally, linear regression

(76.31%). Regardless of the technique used to classify the report, there is no signif-

icant difference between ecosystems. Indeed, the p-values obtained with chi-square

tests are above 0.05, and a p-value below 0.05 is a marker of statistical significance.

While random forest emerges as the most accurate classifier, the difference between

the three classifiers is not significant (p-value = 0.99).

For the second three classifiers (SVM, linear regression and random forest with

2-grams grouping of stemmed words) the best classifier is once again random forest

with 77.34% F1 measure. It is followed by SVM (76.91%) and, finally, linear regression
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Table 15: Support Vector Machine classifier performances while using 1 gram.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Support Vector Machine

Ambari 829 540 539 4 1 285 65.41% 99.81% 79.03%

Cassandra 340 199 193 5 6 136 58.66% 96.98% 73.11%

Flume 133 80 79 9 1 44 64.23% 98.75% 77.83%

HBase 357 215 213 4 2 138 60.68% 99.07% 75.27%

Hive 272 191 191 0 0 81 70.22% 100.00% 82.51%

Cnd 1105 805 753 25 52 275 73.25% 93.54% 82.16%

Editor 666 478 455 16 23 172 72.57% 95.19% 82.35%

Java 1090 693 676 37 17 360 65.25% 97.55% 78.20%

JavaEE 585 287 258 52 29 246 51.19% 89.90% 65.23%

Platform 969 573 467 110 106 286 62.02% 81.50% 70.44%

Total 6346 4061 3824 262 237 2023 65.40% 94.16% 77.19%

Table 16: Linear Regression classifier performances while using 1 gram.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Linear Regression

Ambari 829 540 514 14 26 275 65.15% 95.19% 77.35%

Cassandra 340 199 194 5 5 136 58.79% 97.49% 73.35%

Flume 133 80 60 17 20 36 62.50% 75.00% 68.18%

HBase 357 215 212 5 3 137 60.74% 98.60% 75.18%

Hive 272 191 103 40 88 41 71.53% 53.93% 61.49%

Cnd 1105 805 762 26 43 274 73.55% 94.66% 82.78%

Editor 666 478 459 16 19 172 72.74% 96.03% 82.78%

Java 1090 693 683 13 10 384 64.01% 98.56% 77.61%

JavaEE 575 287 271 30 16 258 51.23% 94.43% 66.42%

Platform 969 573 486 102 87 294 62.31% 84.82% 71.84%

Total 6336 4061 3744 268 317 2007 65.10% 92.19% 76.31%
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Table 17: Random Forest classifier performances while using 1 gram.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Random Forest

Ambari 829 540 514 13 26 276 65.06% 95.19% 77.29%

Cassandra 337 199 191 12 8 126 60.25% 95.98% 74.03%

Flume 133 80 76 8 4 45 62.81% 95.00% 75.62%

HBase 357 215 212 9 3 133 61.45% 98.60% 75.71%

Hive 272 191 190 3 1 78 70.90% 99.48% 82.79%

Cnd 1105 805 803 4 2 296 73.07% 99.75% 84.35%

Editor 666 478 476 3 2 185 72.01% 99.58% 83.58%

Java 1090 693 682 26 11 371 64.77% 98.41% 78.12%

JavaEE 575 287 252 59 35 229 52.39% 87.80% 65.63%

Platform 969 573 437 154 136 242 64.36% 76.27% 69.81%

Total 6333 4061 3833 291 228 1981 65.93% 94.39% 77.63%

Table 18: Support Vector Machine classifier performances while using 2 grams.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Support Vector Machine

Ambari 829 540 525 12 15 277 65.46% 97.22% 78.24%

Cassandra 323 199 189 11 10 113 62.58% 94.97% 75.45%

Flume 133 80 74 15 6 38 66.07% 92.50% 77.08%

HBase 357 215 205 23 10 119 63.27% 95.35% 76.07%

Hive 272 191 171 15 20 66 72.15% 89.53% 79.91%

Cnd 1105 805 731 34 74 266 73.32% 90.81% 81.13%

Editor 666 478 455 30 23 158 74.23% 95.19% 83.41%

Java 1090 693 664 58 29 339 66.20% 95.82% 78.30%

JavaEE 575 287 238 69 49 219 52.08% 82.93% 63.98%

Platform 969 573 461 110 112 286 61.71% 80.45% 69.85%

Total 6319 4061 3713 377 348 1881 66.37% 91.43% 76.91%
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Table 19: Linear Regression classifier performances while using 2 grams.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Linear Regression

Ambari 829 540 510 19 30 270 65.38% 94.44% 77.27%

Cassandra 340 199 140 55 59 86 61.95% 70.35% 65.88%

Flume 142 89 59 23 30 30 66.29% 66.29% 66.29%

HBase 357 215 90 100 125 42 68.18% 41.86% 51.87%

Hive 272 191 176 8 15 73 70.68% 92.15% 80.00%

Cnd 1105 805 745 26 60 274 73.11% 92.55% 81.69%

Editor 666 478 453 27 25 161 73.78% 94.77% 82.97%

Java 1090 693 606 106 87 291 67.56% 87.45% 76.23%

JavaEE 575 287 245 70 42 218 52.92% 85.37% 65.33%

Platform 815 573 449 121 124 121 78.77% 78.36% 78.57%

Total 6191 4070 3473 555 597 1566 68.92% 85.33% 76.25%

Table 20: Random Forest based classifier performances while using 2 grams.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Random Forest

Ambari 829 540 511 20 29 269 65.51% 94.63% 77.42%

Cassandra 340 199 176 22 23 119 59.66% 88.44% 71.26%

Flume 133 80 72 21 8 32 69.23% 90.00% 78.26%

HBase 351 215 208 12 7 124 62.65% 96.74% 76.05%

Hive 272 191 190 0 1 81 70.11% 99.48% 82.25%

Cnd 1105 805 794 9 11 291 73.18% 98.63% 84.02%

Editor 666 478 471 6 7 182 72.13% 98.54% 83.29%

Java 1099 702 673 43 29 354 65.53% 95.87% 77.85%

JavaEE 575 287 238 86 49 202 54.09% 82.93% 65.47%

Platform 1002 606 444 163 162 233 65.58% 73.27% 69.21%

Total 6372 4103 3777 382 326 1887 66.68% 92.05% 77.34%
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Table 21: Support Vector Machine classifier performances while using 3 grams.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Support Vector Machine

Ambari 829 540 520 15 20 274 65.49% 96.30% 77.96%

Cassandra 340 199 193 11 6 130 59.75% 96.98% 73.95%

Flume 133 80 74 8 6 45 62.18% 92.50% 74.37%

HBase 357 215 208 24 7 118 63.80% 96.74% 76.89%

Hive 272 191 175 14 16 67 72.31% 91.62% 80.83%

Cnd 1105 805 725 34 80 266 73.16% 90.06% 80.73%

Editor 666 478 454 22 24 166 73.23% 94.98% 82.70%

Java 1090 693 662 61 31 336 66.33% 95.53% 78.30%

JavaEE 575 287 256 45 31 243 51.30% 89.20% 65.14%

Platform 969 573 461 111 112 285 61.80% 80.45% 69.90%

Total 6336 4061 3728 345 333 1930 65.89% 91.80% 76.72%

(76.25%). As for the first three classifiers, the difference between the classifiers and

the ecosystems are not significant. Moreover, the difference in performances between

1 and 2 grams are not significant either.

Finally, the last three classifiers (SVM, linear regression and random forest with 3-

grams grouping of stemmed words) the best classifier is once again random forest with

77.12% F1-measure. It is followed by SVM (76.72%) and, finally, linear regression

(75.89%). Again, the difference between the classifiers and the ecosystems are not

significant. Neither are the differences in results between 1, 2 and 3 grams.

Each one of our nine classifiers improves upon the random one on all projects and

by a large margin ranging from 20.73% to 22.48% regarding F-Measure.

The last measure of performance for our classifier is the computation of the Co-

hen’s Kappa metric presented in table 25.

The table presents the results of the Cohen’s kappa metric for each of our nine

classifiers. The metric is computed using the observed accuracy and the expected

accuracy. The observed accuracy, in our bi-class system (i.e. T4 or not), is the

number of correctly classified type 4 added to the number of correctly classified non-

T4 bugs over the total of reports. The expected accuracy follows the same principle

but using the classification from the random classifier. The expected accuracy is
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Table 22: Linear Regression classifier performances while using 3 grams.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Linear Regression

Ambari 829 540 505 26 35 263 65.76% 93.52% 77.22%

Cassandra 340 199 176 21 23 120 59.46% 88.44% 71.11%

Flume 133 80 68 18 12 35 66.02% 85.00% 74.32%

HBase 357 215 91 99 124 43 67.91% 42.33% 52.15%

Hive 272 191 185 5 6 76 70.88% 96.86% 81.86%

Cnd 1105 805 747 22 58 278 72.88% 92.80% 81.64%

Editor 666 478 448 31 30 157 74.05% 93.72% 82.73%

Java 1090 693 667 55 26 342 66.11% 96.25% 78.38%

JavaEE 575 287 256 51 31 237 51.93% 89.20% 65.64%

Platform 969 573 468 102 105 294 61.42% 81.68% 70.11%

Total 6336 4061 3611 430 450 1845 66.18% 88.92% 75.89%

Table 23: Random Forest classifier performances while using 3 grams.

TP: True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Random Forest

Ambari 829 540 500 22 40 267 65.19% 92.59% 76.51%

Cassandra 340 199 188 14 11 127 59.68% 94.47% 73.15%

Flume 133 80 70 23 10 30 70.00% 87.50% 77.78%

HBase 357 215 206 24 9 118 63.58% 95.81% 76.44%

Hive 272 191 189 1 2 80 70.26% 98.95% 82.17%

Cnd 1105 805 755 27 50 273 73.44% 93.79% 82.38%

Editor 666 478 453 32 25 156 74.38% 94.77% 83.35%

Java 1090 693 665 77 28 320 67.51% 95.96% 79.26%

JavaEE 575 287 241 73 46 215 52.85% 83.97% 64.87%

Platform 969 573 443 132 130 264 62.66% 77.31% 69.22%

Total 6336 4061 3710 425 351 1850 66.73% 91.36% 77.12%
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Table 24: Random classifier.

True positive, TN: True Negative, FN: False Negative, FP: False Positive

Project Reports T4 Reports TP TN FN FP Precision Recall F1

Ambari 828 540 249 158 291 131 65.53% 46.11% 54.13%

Cassandra 339 199 111 68 88 73 60.33% 55.78% 57.96%

Flume 132 80 32 31 48 22 59.26% 40.00% 47.76%

HBase 356 215 105 68 110 74 58.66% 48.84% 53.30%

Hive 271 191 85 40 106 41 67.46% 44.50% 53.63%

Cnd 1104 805 393 159 412 141 73.60% 48.82% 58.70%

Editor 665 478 230 94 248 94 70.99% 48.12% 57.36%

Java 1089 693 365 205 328 192 65.53% 52.67% 58.40%

JavaEE 574 287 122 148 165 140 46.56% 42.51% 44.44%

Platform 968 573 277 194 296 202 57.83% 48.34% 52.66%

Total 6335 4061 1969 1165 2092 1110 63.95% 48.49% 55.15%

Table 25: Cohen’s Kappa for each classifier

Type Gram TP T4 TN T4
Observed

Accuracy

Expected

Accuracy
Kappa Interpretation

1 3824 262 0.64 0.49 0.30 Fair

SVM 2 3713 377 0.64 0.49 0.30 Fair

3 3728 345 0.64 0.49 0.29 Fair

1 3744 268 0.63 0.49 0.27 Fair

Linear Regression 2 3473 555 0.63 0.49 0.28 Fair

3 3611 430 0.64 0.49 0.28 Fair

1 3833 291 0.65 0.49 0.31 Fair

Random Forest 2 3777 382 0.66 0.49 0.32 Fair

3 3710 425 0.65 0.49 0.31 Fair
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constant as the random classifier predicts 50% of the reports as T4 and 50% as non-

T4. Finally, the obtained Cohen’s Kappa measures range from 0.27 to 0.32. While

there is no unified way to interpret the result of the Cohen’s kappa statistic, Landis

and Koch considers 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80

as substantial, and 0.81-1 as almost perfect [112]. Consequently, all of our classifiers

show a fair improvement over a random classification regarding accuracy and a major

improvement regarding F1-measure.

9.3.2 What are the best predictors of type 4 bugs?

In this section, we answer our second research question: What are the best predictors

of type 4 bugs. To do so, we extracted the best predictor of type 4 bugs for each one

of the extracted grams (1, 2 and 3) for each of our ten test projects (Five Apache,

Five Netbeans). Then, we manually investigated the source code and the reports of

these ten software projects to determine why a given word is a good predictor of type

4 bug. In the remaining of this section, we present our findings by project and then

provide a conclusion on the best predictors of type 4 bugs.

Ambari

Ambari is aimed at making Hadoop management simpler by developing software for

provisioning, managing, and monitoring Apache Hadoop clusters. One of the most

acclaimed features of Ambari is the ability to visualise clusters’ health, according to

user-defined metric, with heat maps. These heat maps give a quick overview of the

system.

Figure 50 shows a screenshot of such a heat map.

At every tested gram (i.e. 1, 2 and 3) the word “heat map” is a strong predictor

of type 4 bugs. The heat map feature is a complex feature as it heavily relies on

the underlying instrumentation of Hadoop and the consumption of many log format

too, for example, extracts the remaining free space on a disk or the current load on

a CPU.

Another word that is a strong predictor of type 4 bug is “nagio”. Nagio is a log

monitoring server belonging to the Apache constellation. It is used as an optional

add-on for Ambari and, as for the heat map, is very susceptible to log format change

and API breakage.
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Figure 50: Ambari heatmap

Versions of the “nagio” and “heatmap” keywords include: “heatmap displai”,

“ambari heatmap”, “fix nagio”, “nagio test”, “ambari heatmap displai”, “fix nagio

test”.

Cassandra

Cassandra is a database with high scalability and high availability without compro-

mising performance. While extracting the unique word combinations from the report

of Cassandra, one word which is a strong predictor of type 4 bug is “snapshot”.

As described in the documentation, in Cassandra terms, a snapshot first flushes

all in-memory writes to disk, then makes a hard link of the SSTable files for each

keyspace. You must have enough free disk space on the node to accommodate making

snapshots of your data files. A single snapshot requires little disk space. However,

snapshots can cause your disk usage to grow more quickly over time because a snapshot

prevents old obsolete data files from being deleted. After the snapshot is complete, you

can move the backup files to another location if needed, or you can leave them in place.

The definition gives the reader an insight into how complex this feature used

regarding integration with the host system and how coupled it is to the Cassandra,

data model.

Other versions of the “snapshot” keyword include “snapshot sequenti”, “make

snapshot”, “snapshot sequenti repair”, “make snapshot sequenti”.
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Flume

Flume is a distributed, reliable, and available service for efficiently collecting, aggre-

gating, and moving large amounts of log data.

One word which is a good predictor of type 4 in flume is “upgrad” and the 2-

grams (upgrad flume) and the 3-grams (“upgrad flume to”) versions. Once again for

the Apache dataset, a change in the software that induce a change in the underlying

data model or data store, which is often the case when you upgrade flume to a new

version, is a good indicator of the report complexity and the impact of said report on

the sourcecode in terms of number of locations fixed.

On the reports manually analysed, Flume’s developers and users have a hard

time upgrading to new versions in a sense that logs and dashboard get corrupted or

disappear post-upgrade. Significant efforts are then made to prevent such losses in

the subsequent version.

HBase

HBase is a Hadoop database, a distributed, scalable, big data store provided by

Apache. The best predictor of type 4 bug in HBase is “bloom” as in “bloom filters”.

Bloom filters are a probabilistic data structure that is used to test whether an element

is a member of a set [27]. Such a feature is hard to implement and hard to test

because of its probabilistic nature. Much feature commits (i.e. commit intended to

add a feature) and fix commits (i.e. commit intended to fix a bug) belonging to the

HBase source code are related to the bloom filters. Given the nature of the feature,

it is not surprising to find the word “bloom” and its 2-, 3-grams counterparts (“on

Bloom”, “Bloom filter”, “on Bloom filter”) as a good predictor of type 4 bug.

Hive

Hive is a data warehouse software facilitates reading, writing, and managing large

datasets residing in distributed storage using SQL. Hive is different from its Apache

counterpart as the words that are the best predictors of type 4 bugs do not translate

into a particular feature of the product but are directly the name of the incriminated

part of the system: thrift. Thrift is a software framework, for scalable cross-language

services development, combines a software stack with a code generation engine to
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build services that work efficiently and seamlessly between C++, Java, Python, PHP,

Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, OCaml and

Delphi and other languages. While Thrift is supposed to solve many compatibility

issues when building clients for a product such as Hive, it is the cause of many major

problems in Hive. The top predictors for type 4 bugs in Hive are “thrifthttpcliservic”

and “thriftbinarycliservic”.

As Hive, and its client, are built on top of Thrift it makes sense that issues

propagating from Thrift induce major refactoring and fixed across the whole Hive

source code.

Cnd

The CND projects is a part of the Netbeans IDE and provide support for C/C++.

The top two predictors of type 4 bugs are (1) parallelism and (2) observability of

c/c++ code. In each gram, we can find reference to the parallel code being prob-

lematic while developed and executed via the Netbeans IDE: “parallel comput”,

“parallel”, “parallel comput advis”. The other word, related to the observability of

c/c++ code inside the Netbeans IDE is “Gizmo”. “Gizmo” is the codename for the

C/C++ Observability Tool built on top of D-Light Toolkit. We can find occurrences

of “Gizmo” in each gram: “gizmo” and “gizmo monitor” for example.

Once again, a complex cross-concern feature with a high impact on the end-user

(i.e., the ability to code, execute and debug parallel code inside Netbeans) is the cause

of most of the type 4 bugs and mention of said feature in the report is a bug predictor

of types of the bug.

Editor

The Editor component of Netbeans is the component which is handling all the textual

edition, regardless of the programming language, in Netbeans. For this component,

the type 4 bugs are most likely related to the “trailing white spaces” and “spellcheck”

features.

While these features do not, at first sight, be as complex as, for example, par-

allelism debugging, they have been the cause of the majority of type 4 bugs. Upon
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manual inspection of the related code2 in the Editor component of Netbeans the com-

plexity of these feature becomes evident. Indeed, theses features behave differently

for almost each type of text-file and textboxes inside Netbeans. For example, the end-

user expects the spellchecking feature of the IDE to kick in while typing a comment

inside a code file but not on the code itself. A similar example can be described for

the identification and removing of trailing white spaces where users wish the trailing

white spaces to be deleted in c/c++ code but not, for example, while typing HTML

or a commit message.

Each new language supported or add-on supported by the Netbeans IDE and

leveraging the features of the Editor component is susceptible to be the cause of a

major refactoring to have a coherent behaviour regarding “trailing white spaces” and

“spell checking”.

Java

The Java component of Netbeans is responsible for the Java support of Netbeans

in the same fashion as CND is responsible for c/c++ support. For this particular

component, the set of features that are a good predictor of type 4 are the ones related

to the Java autocompletion and navigation optimisation. The autocompletion has to

be able to provide suggestions in a near-instantaneous manner if it is to be useful to the

developer. To provide near-instantaneous suggestion on modest machines and despite

the depth of the Java API, Netbeans developers opted of a statistical autocompletion.

The autocompletion remembers which of its suggestions you used before and only

provide the ones you are the most likely to want to be based on your previous usage.

Also, each suggestion is companioned with a percentage which describes the number

of time you pick a given a suggestion over the other. One can envision a such a system

can be tricky to implement on new API being added in the Java language at each

upgrade. Indeed, when a new API comes to light following a Java upgrade on the

developer’s machine, then, the autocompletion has to make these new API appears

in the autocompletion despite their 0% chosen rate. The 0% being linked to the fact

that this suggestion was not available thus far and not to the fact that the developer

never picked it. When the new suggestion, related to the new API, has been ignored

a given number of time, then, it can be safely removed from the list of suggestions.

2https://netbeans.org/projects/editor/
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Implementation of optimisations related to autocompletion and navigations are

the root causes of many type 4 bugs, and we can find them in the gram extracted

words that are good predictor: “implement optim”, “move otim”, “optim import

implement”, “call hierarchy implement”.

JavaEE

The JavaEE component of Netbeans is responsible for the support of the JavaEE in

Netbeans. This module is different from the CND and JAVA module in a sense that

it uses and expands many functionalities from the JAVA component. For the JavaEE

component, the best predictor of type 4 bugs is the hibernate and webscoket features

which can be found in many gram forms: “hibern revers”, “websocket endpoint”,

“hibern”, “websocket”, “implement hibern revers”, “hibern revers engin”.

Hibernate is an ORM that enables developers to write applications whose data out-

lives the application process more easily. As an Object/Relational Mapping (ORM)

framework, Hibernate is concerned with data persistence as it applies to relational

databases (via JDBC).

The shortcoming of Netbeans leading to most of the type 4 bugs is related to the

annotation based persistence of Hibernate where developers can annotate their class

attributes with the name of the column they wish the value of the attribute to be

persisted. While the annotation mechanism is supported by Java, it is not possible

compile annotation and makes sure that their statically sound. Consequently, much

tooling around annotation has to be developed and maintained accordingly to new

databases updates. Such tooling, for example, is responsible for querying the database

model to make sure that the annotated columns exists and can store the attribute

data type-wise.

Platform

The last netbeans component we analyzed is the one named Platform. The NetBeans

Platform is a generic framework for Swing applications. It provides the “plumbing”

that, before, every developer had to write themselves—saving state, connecting actions

to menu items, toolbar items and keyboard shortcuts; window management, and so

on. (https://netbeans.org/features/platform/)

The best predictor of type 4 bug in the platform component is the “filesystem”
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word which refers to the ability of any application built atop of Platform to use the

filesystem for saves and such.

What we can conclude for this second research question is that the best predic-

tor of type 4 bugs is the mention of a cross-concern, complex, widely used feature

in the targeted system. Reports mentioning said feature are likely to create a type

4 structure with many bugs being fixed in the same set of files. One noteworthy

observation is that the 2- and 3-grams extraction do not add much to the precision

about the 1-gram extraction as seen the first research question. Upon the manual

analysis required for this research question, we can deduct why. Indeed, the prob-

lematic features of a given system are identified with a single word (i.e. hibernate,

filesystem, spellcheck, . . . ). While the 2- and 3-grams classifiers do not provide an

additional performance in the classification process, they still become handy when

trying to target which part of the feature a good predictor of type 4 (“implement

optim”, “gizmo monitor”, “heatmap displai”, . . . ).

9.4 Threats to Validity

The selection of target systems is one of the common threats to validity for approaches

that perform qualitative and quantitative analyses.

While is it possible the selected programs share common properties that we are

not aware of and therefore, invalidate our results, this is highly unlikely. Indeed, our

dataset is composed of 388 open source systems.

In addition, we see a threat to validity that stems from the fact that we only used

open-source systems. The results may not be generalizable to industrial systems. We

intend to undertake these studies in future work.

9.5 Chapter Summary

In this chapter, we proposed a taxonomy of bugs and performed an empirical study

on two large open source datasets: the Netbeans IDE and the Apache Software Foun-

dation’s projects. Our study aimed to analyse: (1) the proportion of each type of

bugs; (2) the complexity of each type in terms of severity, reopening and duplica-

tion; and (3) the required time to fix a bug depending on its type. The key findings
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are that Type 4 account for 61% of the bugs and have a bigger impact on software

maintenance tasks than the other three types.

In the next chapter, we start a discussion covering several topics ranging from

challenges sourrounding the adoption of tools to our advice for university-industry

research collaboration.
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Chapter 10

Conclusion and Future Work

In this chapter, we present the conclusion of this thesis and future work that remain

to be done.

Software maintenance activities such as debugging and feature enhancement are

known to be challenging and costly [158]. Studies have shown that the cost of soft-

ware maintenance can reach up to 70% of the overall cost of the software development

life cycle [70]. Much of this is attributable to several factors including the increase in

software complexity, the lack of traceability between the various artifacts of the soft-

ware development process, the lack of proper documentation, and the unavailability

of the original developers of the systems.

In this thesis, we presented three approaches that perform software maintenance at

commit-time (PRECINCT, BIANCA and, CLEVER). We also presented JCHARM-

ING that can reproduce on field crash when commit-time approaches did not catch

the defect before its release. Finally, we also propose a taxonomy of bugs that could

be used by researchers to categorize the research in many areas related to software

maintenance.

10.1 Summary of the Findings

• We created BUMPER, an aggregated, searchable bug-fix repository that con-

tains 1,930 projects, 732,406 resolved/fixed, 1,645,252 changesets from Eclipse,

Gnome, Netbeans and the Apache Software foundation.

• We proposed PRECINCT, an incremental, online clone-detection approach that
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operates at commit-time. It was able to achieve an average 97.7% precision and

100% recall while requiring a fraction of the time thanks to its incremental

approach.

• We presented BIANCA, that detects risky commits and proposes potential fixes

using clone-detection and dependency clustering. It was able to detect risky-

commit with an average of 90.75% precision and 37.15% recall at commit-time.

In addition, 78% of the proposed fixes were automatically classified as qualita-

tive using a similarity threshold with the actual fix.

• Out of the 15,316 commits BIANCA classified as risky, only 1,320 (8.6%) were

because they were matching a defect-commit inside the same project. This

supports the idea that within the same project, developers are not likely to

introduce the same defect twice. Over similar projects, however, similar bugs

are introduced.

• We manually reviewed 250 fixes proposed by BIANCA. We were able to identify

the statements from the proposed fixes that can be reused to create fixes similar

to the ones that developers had proposed in 84% of the cases.

• We built upon BIANCA with CLEVER that combines clone- and metric-based

detection of risky commits and proposes potential fixes. It significantly reduced

to scalability concerns of BIANCA while obtaining an average of 79.10% preci-

sion and a 65.61% recall.

• 66% of the fixes proposed by CLEVER were accepted by software developers

within Ubisoft.

• We introduced JCHARMING, an automatic bug reproduction technique that

combines crash traces and directed model checking. When applied to thirty bugs

from ten open source systems, JCHARMING was able to successfully reproduce

80% of the bugs. The average time to reproduce a bug was 19 minutes, which

is quite reasonable, given the complexity of reproducing bugs that cause field

crashes.

• Finally, we proposed a taxonomy of bugs and performed an empirical study.

The key findings are that Type 4 account for 61% of the bugs and have a bigger

168



impact on software maintenance tasks than the other three types.

10.2 Future Work

10.2.1 Current Limitations

We should acknowledge that the most notable shortcoming of this thesis is the fact

that we did not incorporate developers’ opinions enough in our studies. Indeed, we

only gathered developers opinions’ in two separate occasions (BUMPER, Chapter 4

and CLEVER, Chapter 7). While their opinions were positives, we should continue

to ask practitioners for their feedbacks on our work.

Another limitation of our work is that most of the approaches (BUMPER, BIANCA

and, CLEVER) will most likely be ineffective if applied to a single-system. Indeed,

these approaches rely on the large amount of data acquired from multiple software

ecosystems.

This leads to the scalability issues of our work. The model required to operate

BIANCA took nearly three months using 48 Amazon Virtual Private Servers running

in parallel to be built and tested. While CLEVER addresses some of the scalability

issues with its two-step classifier, the search of a potential solutions is still computa-

tionally expansive.

10.2.2 Other Possible Opportunities for Future Research

To build on this work, we need to conduct experiment with additional (and larger)

systems with the dual aim of fine-tuning the approach, and assessing the scalability

of our approach when applied to even larger systems could be conducted. Also, we

want to improve PRECINCT to support Type 4 clones, which will be a significant

advantage over other clone-detectors. In addition, conducting user studies with de-

velopers to assess the concrete effectiveness of PRECINCT compared to remote and

local clone detection techniques.

Conducting user studies with developers in order to gather their feedback on

BIANCA and CLEVER would also be beneficial. The feedback obtained could help

fine-tune the approaches. In addition, examining the relationship between project

cluster measures (such as betweenness) and the performance of BIANCA. Finally,
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another improvement to BIANCA would be to support Type 4 clones.

For BIANCA, building a feedback loop between the users and the clusters of

known buggy commits and their fixes could be a major improvement. For example,

if a fix is never used by end-users, then we could remove it from the clusters and

improve our accuracy.

For JCHARMING’s, more experiments with more (and complex) bugs with the

dual aim to (a) improve and fine tune the approach, and (b) assess the scalability

of our approach when applied to even larger (and proprietary) systems. Finally,

comparing JCHARMING to STAR [32], which is the closest approach to ours by

running both methods on the same set of systems and bugs, could yield interesting

results. This comparative study can provide insights into the differences in the use of

symbolic analysis as it is in STAR and directed model checking, the core mechanism

of JCHARMING.

10.3 Closing Remarks

In this thesis, we proposed many approaches to help software developers build high

quality software systems. We chose to focus on techniques that operate at commit-

time. By doing so, this thesis’ contributions adhere to the broader concept of just-in-

time software quality improvement methods that promote the integration of software

maintenance and quality assurance tasks with day-to-day development [92, 191, 206].

Today’s software systems are becoming ultra large, composed of many components

that interact with each other in a complex way. It is often challenging for software

developers to apply existing methods for improving software quality such as clone

detection, refactoring after the system in its entirety has been built. This is because

the mental models and thought processes that led to these changes or design decisions

are long gone and forgotten. Just-in-time software improvement techniques encourage

an agile and lean process in which improvements are made as soon as changes happen

in the system, while the decisions motivating the changes are still fresh in the mind of

practitioners. Agility and lean thinking are not new concepts. They date back to the

seventies where Toyota, the car manufacturer, proposed just-in-time manufacturing

techniques to produce high quality products that meet customers’ needs [180].

Just-in-time manufacturing relies on several management philosophies and tools:

170



continuous improvement (product-oriented layout of plants, division of systems, sim-

plicity), elimination of waste (overproduction, waiting time, inventory waste, trans-

portation, product defects), Hausukipingu (clean workspaces), Kabans (pulling the

right number of items from the right shelves at just the right time), Jidoka (au-

tonomous machines with judgment capabilities) and Andons (signal problems for

corrective action).1

One of the cornerstones of the just-in-time manufacturing philosophy of the sev-

enties and the agile manifesto of the 2000’s is continuous improvement [60]. Other

notions cross the gap between just-in-time manufacturing and just-in-time software

improvement. For example, integrated development environments (IDEs) are Jidokas

in a sense that they auto-complete us and auto-correct us based on past behavior

and, unit tests, bug report management systems and quality assurance (QA) bots are

Andons.

PRECINCT, BIANCA, and CLEVER are designed to support just-in-time soft-

ware quality improvement and maintenance techniques by continuously checking de-

veloper’s code before its integration into a larger software system.

We believe that commit-time software maintenance is the appropriate time to

perform just-in-time software maintenance as commits mark the end of a task or

sub-task that is ready to be versioned.

JCHARMING adds value by proposing a mechanism for reproducing and fixing

the remaining defects. We hope that software engineering researchers and practition-

ers find this work useful either as a starting point for exciting new research.

1We kept the Japanese version of most of the words as they are used without translation in the
literature.
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Appendices

Lists of the top-level open-source projects

Lists all the top-level open-source projects we analysed for our work.

Parsers

• Mime4j: Apache James Mime4J provides a parser, MimeStreamParser, for e-

mail message streams in plain rfc822 and MIME format

• Xerces: XML parsers for c++, java and perl

• Xalan:XSLT processor for transforming XML documents into HTML, text, or

other XML document types.

• FOP:Print formatter driven by XSL formatting objects (XSL-FO) and an out-

put independent formatter.

• Droids: intelligent standalone robot framework that allows to create and extend

existing droids (robots).

• Betwit: XML introspection mechanism for mapping beans to XML

Databases

• Drill: Schema-free SQL Query Engine for Hadoop, NoSQL and Cloud Storage

• Tez: Frameword for complex directed-acyclic-graph of tasks for processing data.built

atop Apache Hadoop YARN.

• HBase: Apache HBase is the Hadoop database, a distributed, scalable, big data

store.

• Falcon: Falcon is a feed processing and feed management system aimed at

making it easier for end consumers to onboard their feed processing and feed
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management on hadoop clusters.

• Cassandra: Database with high scalability and high availability without com-

promising performance

• Hive: Data warehouse software facilitates reading, writing, and managing large

datasets residing in distributed storage using SQL

• Sqoop: Tool designed for efficiently transferring bulk data between Apache

Hadoop and structured datastores such as relational databases.

• Accumulo: Sorted, distributed key/value store is a robust, scalable, high per-

formance data storage and retrieval system.

• Lucene: Full-featured text search engine library written entirely in Java. It is

a technology suitable for nearly any application that requires full-text search,

especially cross-platform.

• CouchDB: Store your data with JSON documents. Access your documents and

query your indexes with your web browser, via HTTP.

• Phoenix: OLTP and operational analytics in Hadoop for low latency applica-

tions

• OpenJPA: Java persistence project that can be used as a stand-alone POJO

persistence layer or integrated into any Java EE

• Gora: Provides an in-memory data model and persistence for big data

• Optiq: framework that allows efficient translation of queries involving hetero-

geneous and federated data.

• HCatalog: Table and storage management layer for Hadoop that enables users

with different data processing tools

• DdlUtils: Component for working with Database Definition (DDL) files

• Derby: Relational database implemented entirely in Java

• DBCP: Supports interaction with a relational database

• JDO: Object persistence technology

Web and Services

• Wicket: Server-side Java web framework

• Service Mix: The components project holds a set of JBI (ava Business Integra-

tion) components that can be installed in both the ServiceMix 3 and ServiceMix

4 containers.
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• Shindig: Apache Shindig is an OpenSocial container and helps you to start

hosting OpenSocial apps quickly by providing the code to render gadgets, proxy

requests, and handle REST and RPC requests.

• Felix: Implement the OSGi Framework and Service platform and other inter-

esting OSGi-related technologies under the Apache license.

• Trinidad: JSF framework including a large, enterprise quality component li-

brary.

• Axis: Web Services / SOAP / WSDL engine.

• Synapse: Lightweight and high-performance Enterprise Service Bus

• Giraph: Iterative graph processing system built for high scalability.

• Tapestry: A component-oriented framework for creating highly scalable web

applications in Java.

• JSPWiki: WikiWiki engine, feature-rich and built around standard JEE com-

ponents (Java, servlets, JSP).

• TomEE: Java EE 6 Web Profile certified application server extends Apache

Tomcat.

• Knox: REST API Gateway for interacting with Apache Hadoop clusters.

• Flex: Framework for building expressive web and mobile applications

• Lucy: Search engine library provides full-text search for dynamic programming

languages

• Camel: Define routing and mediation rules in a variety of domain-specific lan-

guages, including a Java-based Fluent API, Spring or Blueprint XML Configu-

ration files, and a Scala DSL.

• Pivot: Builds installable Internet applications (IIAs)

• Celix: Implementation of the OSGi specification adapted to C

• Traffic Server: Fast, scalable and extensible HTTP/1.1 compliant caching proxy

server.

• Apache Net: Implements the client side of many basic Internet protocols. The

purpose of the library is to provide fundamental protocol access, not higher-level

abstractions.

• Sling: Innovative web framework

• Axis: Implementation of the SOAP (“Simple Object Access Protocol”) submis-

sion to W3C.
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• Shale: Web application framework, fundamentally based on JavaServer Faces.

• Rave: web and social mashup engine that aggregates and serves web widgets.

• Tuscany: Simplifies the task of developing SOA solutions by providing a com-

prehensive infrastructure for SOA development and management that is based

on Service Component Architecture (SCA) standard.

• Pluto: Implementation of the Java Portlet Specification.

• ODE: Executes business processes written following the WS-BPEL standard

• Muse: Java-based implementation of the WS-ResourceFramework (WSRF),

WS-BaseNotification (WSN), and WS-DistributedManagement (WSDM) spec-

ifications.

• WS-Commons: Web Services Commons Projects

• Geronimo: Server runtime that integrates the best open source projects to

create Java/OSGi

• River: Network architecture for the construction of distributed systems in the

form of modular co-operating services

• Commons FileUpload: Makes it easy to add robust, high-performance, file up-

load capability to your servlets and web applications.

• Beehive: Java Application Framework that was designed to simplify the devel-

opment of Java EE based applications.

• Aries: Java components enabling an enterprise OSGi application programming

model.

• Empire Db: Relational database abstraction layer and data persistence compo-

nent

• Commons Daemon: Java based daemons or services

• Click: JEE web application framework

• Stanbol: Provides a set of reusable components for semantic content manage-

ment.

• CXF: Open-Source Services Framework

• Sandesha2: Axis2 module that implements the WS-ReliableMessaging specifi-

cation published by IBM, Microsoft, BEA and TIBCO

• Neethi: Framework for the programmers to use WS Policy

• Rampart: Provides implementations of the WS-Sec* specifications for Apache

Axis2.
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• AWF: web server

• Nutch: Web crawler

• HttpAsyncClient: Designed for extension while providing robust support for

the base HTTP protocol

• Portals Bridges: Portlet development using common web frameworks like Struts,

JSF, PHP, Perl, Velocity and Scripts such as Groovy, JRuby, Jython, BeanShell

or Rhino JavaScript.

• Stonehenge: set of example applications for Service Oriented Architecture that

spans languages and platforms and demonstrates best practices and interoper-

ability.

Cloud and Big data

• Whirr: Set of libraries for running cloud services

• Ambari: Aimed at making Hadoop management simpler by developing software

for provisioning, managing, and monitoring Apache Hadoop clusters.

• Karaf: Karaf provides dual polymorphic container and application bootstrap-

ping paradigms to the Enterprise.

• Hadoop: Software for reliable, scalable, distributed computing.

• Hama: framework for Big Data analytics which uses the Bulk Synchronous

Parallel (BSP) computing model.

• Twill: Abstraction over Apache Hadoop YARN that reduces the complexity of

developing distributed applications

• Hadoop MapReduce and Framework for easily writing applications which pro-

cess vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters

(thousands of nodes) of commodity hardware in a reliable, fault-tolerant man-

ner.

• Tajo: Big data relational and distributed data warehouse system for Apache

Hadoop

• Sentry: System for enforcing fine grained role based authorization to data and

metadata stored on a Hadoop cluster.

• Oozie: Workflow scheduler system to manage Apache Hadoop jobs.

• Solr: Provides distributed indexing, replication and load-balanced querying,

automated failover and recovery, centralized configuration
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• Airavata: Software framework that enables you to compose, manage, execute,

and monitor large scale applications

• JClouds: Multi-cloud toolkit for the Java platform that gives you the freedom to

create applications that are portable across clouds while giving you full control

to use cloud-specific features.

• Impala: Native analytic database for Apache Hadoop.

• Libcloud: Python library for interacting with many of the popular cloud service

providers using a unified API.

• Slider: deploy existing distributed applications on an Apache Hadoop YARN

cluster

• MRUNIT: Java library that helps developers unit test Apache Hadoop map

reduce jobs.

• Stratos: Framework that helps run Apache Tomcat, PHP, and MySQL appli-

cations and can be extended to support many more environments on all major

cloud infrastructures

• Mesos: Abstracts CPU, memory, storage, and other compute resources away

from machines

• Helix: A cluster management framework for partitioned and replicated dis-

tributed resources

• Argus: Centralized approach to security policy definition and coordinated en-

forcement

• DeltaCloud: API that abstracts differences between clouds

• MRQL: Query processing and optimization system for large-scale, distributed

data analysis, built on top of Apache Hadoop, Hama, Spark, and Flink.

• Provisionr: create and manage pools of virtual machines on multiple clouds

• Curator: A ZooKeeper Keeper.

• ZooKeeper: Open-source server which enables highly reliable distributed coor-

dination

• Bigtop: Infrastructure Engineers and Data Scientists looking for comprehen-

sive packaging, testing, and configuration of the leading open source big data

components.

• Yarn: split up the functionalities of resource management and job scheduling/-

monitoring into separate daemons.
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Messaging and Logging

• Activemq: Messaging queue

• Qpid: Messaging queue

• log4cxx: Logging framework for C++

• log4j: Logging framework for Java

• log4net: Logging framework for .Net

• Flume: Distributed, reliable, and available service for efficiently collecting, ag-

gregating, and moving large amounts of log data.

• Samza: The project aims to provide a near-realtime, asynchronous computa-

tional framework for stream processing.

• Pig: Analyzing large data sets that consists of a high-level language for express-

ing data analysis programs.

• Chukwa: Data collection system for monitoring large distributed systems

• BookKeeper: Replicated log service which can be used to build replicated state

machines.

• Apollo: Faster, more reliable, easier to maintain messaging broker built from

the foundations of the original ActiveMQ.

• S4: Processes continuous unbounded streams of data.

Graphics

• Commons Imaging: Pure-Java Image Library

• PDFBox: Java tool for working with PDF documents.

• Batik: Java-based toolkit for applications or applets that want to use images

in the Scalable Vector Graphics (SVG)

• XML Graphics Commons: consists of several reusable components used by

Apache Batik and Apache FOP

• UIMA: UIMA frameworks, tools, and annotators, facilitating the analysis of

unstructured content such as text, audio and video.

Dependency Management and build systems

• Tentacles: Downloads all the archives from a staging repo, unpack them and

create a little report of what is there.
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• Ivy: Transitive dependency manager

• Rat: Release audit tool, focused on licenses.

• Ant: drive processes described in build files as targets and extension points

dependent upon each other

• EasyAnt: Improved integration in existing build systems

• IvyIDE: Eclipse plugin which integrates Apache Ivy’s dependency management

into Eclipse

• NPanday: Maven for .NET

• Maven: software project management and comprehension tool

Networking

• Mina:100% pure java library to support the SSH protocols on both the client

and server side.

• James:Delivers a rich set of open source modules and libraries, written in Java,

related to Internet mail communication which build into an advanced enterprise

mail server.

• Hupa:Rich IMAP-based Webmail application written in GWT (Google Web

Toolkit).

• Etch:cross-platform, language and transport-independent framework for build-

ing and consuming network services

• Commons IO: Library of utilities to assist with developing IO functionality.

File systems and repository

• Tika: detects and extracts metadata and text from over a thousand different

file types

• OODT: Apache Object Oriented Data Technology (OODT) is a smart way to

integrate and archive your processes, your data, and its metadata.

• Commons Virtual File System: Provides a single API for accessing various

different file systems.

• Jackrabbit Oak: Scalable and performant hierarchical content repository

• Directory: Provides directory solutions entirely written in Java.

• SANDBOX: Subversion repository for Commons committers to function as an
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open workspace for sharing and collaboration.

Misc

• Harmony: Modular Java runtime with class libraries and associated tools.

• Mahout: Machine learning applications.

• OpenCMIS: Apache Chemistry OpenCMIS is a collection of Java libraries,

frameworks and tools around the CMIS specification.

• Apache Commons: Apache project focused on all aspects of reusable Java com-

ponents

• Shiro: Java security framework

• Cordova: Mobile apps with HTML, CSS & JS

• XMLBeans: Technology for accessing XML by binding it to Java types

• State Chart XML: Provides a generic state-machine based execution environ-

ment based on Harel State Tables

• excalibur: lightweight, embeddable Inversion of Control

• Commons Transaction: Transactional Java programming

• Velocity: collection of POJO

• BCEL: analyze, create, and manipulate binary Java class files

• Abdera: Functionally-complete, high-performance implementation of the IETF

Atom Syndication Format

• Commons Collections: Data structures that accelerate development of most

significant Java applications.

• Java Caching System: Distributed caching system written in Java

• OGNL: Object-Graph Navigation Language; it is an expression language for

getting and setting properties of Java objects, plus other extras such as list

projection and selection and lambda expressions.

• Anything To Triples: library that extracts structured data in RDF format from

a variety of Web documents.

• Axiom: provides an XML Infoset compliant object model implementation which

supports on-demand building of the object tree

• Graft: debugging and testing tool for programs written for Apache Giraph

• Hivemind: Services and configuration microkernel

• JXPath: defines a simple interpreter of an expression language called XPath

199


