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Abstract

Interactive and Uncertainty-aware Imitation Learning: Theory and Applications

Manfred Ramon Diaz Cabrera

Living entities have an innate ability to replicate others’ behaviour. As this mechanism helps with

overcoming time, mobility and resources constraints in learning new abilities, it is not surprising then

that the Imitation Learning framework has played a vital role in many AI systems. In the context

of machine learning, Imitation Learning algorithms have been used to infer optimal behaviour for

a task using traces of the execution performed by another expert agent. This paradigm has the

potential to apply to any setting where an expert’s demonstrations are available.

The first part of the present work develops an example of a system where imitation learning

principles were applied to the problem of visually impaired people guidance at intersections. As an

indirect learning method to transfer skills among intelligent agents, imitation learning techniques

helped with capturing the knowledge of sighted individuals into a solution for helping blind individ-

uals with the task of intersection crossing. A system of this kind has the potential to change the

lives of its users as it aids their mobility and exploration capabilities.

However, in order to deploy a system of this kind, it is required to guarantee that a policy

derived from machine learning-based methods can consistently perform in familiar environments

and safely react to the unknown. Hence, the second part of this work is devoted to the development

of a theoretical and experimental framework to improve safety on the Imitation Learning process

through interactivity and uncertainty estimation. Uncertainty-aware Interactive Imitation Learning

algorithms will help the derivation of policies that can guarantee safety in AI systems, thus expanding

the range of areas where they can be applied.
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Chapter 1

Introduction

Imitation plays a significant role in the development of skills in the early stages in the lives of

humans, and animals in general [17, 16]. Learning by imitation is a high-level social ability. Living

entities develop, or have innate, a behavioural skill to replicate others’ behaviour that leads to a

similarity in the ways two or more individuals act in response to a particular stimulus originated

by the world that surrounds them [35]. Copying others is a mechanism that helps with overcoming

time, mobility and resources constraints in learning new abilities. While imitating, self-experiencing

a task is not a precondition to absorb a new set of abilities through the observation and reproduction

of others’ conduct. Thus, learning by imitation is an indirect and efficient mechanism that speeds

up the absorption of a new ability.

Moreover, imitative behavioural skills serve as a medium to decrease the learner ’s uncertainty

while acting under novel or uncertain contexts in the environment, a reduction explained by the

presence of a trusted source of knowledge: the expert, an agent that holds the knowledge to act

optimally (or near-optimally) in a particular task.

IL has proven to be an efficient method to find optimal (or near-optimal) control policies when

a formal specification of a task is challenging to design [3]. Learning behaviour from an expert’s

demonstrations has expedited transferring to autonomous systems the knowledge of tasks that,

although trivial from a human perspective, are particularly difficult to specify in control terms.

While earlier systems relied on mathematically-developed routines [3], the paradigm of deriving

control parameters from raw sensorial inputs has significantly reduced the amount of engineering

behind intelligent systems [83, 13, 63], easing their adoption in an increasing number of domains.

1.1 Contribution

An example of how Imitation Learning applies to real-life problems is presented in Chapter 3,

where the problem of guiding visually impaired individuals while crossing street intersections is

tackled through Imitation Learning techniques. As an indirect learning method to transfer skills

among intelligent agents, imitation learning techniques helped with capturing the knowledge of

sighted individuals into a solution for helping blind individuals with the task of intersection crossing.
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Previous methods rely on geometric assumptions or on the detection of specific features that could

not be reliably guaranteed to exist in all intersections. Also, the results were obtained from single

monocular images from a smartphone’s camera, contrasting with previous approaches to the problem

that used a wide array of sensors and computing capabilities that render those earlier systems

impractical in realistic scenarios. A system of its kind has the potential to change the lives of its

users as it aids their mobility and exploration capabilities in unfamiliar environments.

However, guaranteeing safety while interactively training or deploying systems of this kind, re-

quires ensuring that a policy derived by the machine learning-based method can consistently perform

in familiar environments and safely react to the unknown. This limitation motivates the research

presented in Chapter 4. To successfully disseminate IL approaches, it is necessary to develop of a

theoretical and experimental framework that incorporates safety in the Imitation Learning process.

The Uncertainty-Aware Policy Mixing and Sampling (UPMS) algorithm proposed here is an initial

attempt in this direction. Through interactivity and uncertainty estimation, it is possible to ensure

that training Interactive Imitation Learning algorithms is constrained into safety guarantees de-

fined by the expert’s safety boundaries. Additionally, UPMS reduces the number of required expert

queries (or interventions) when compared with state-of-the-art algorithms, which further alleviates

the burden current IL methods pose over the demonstrator.

It is the position of this work that, Uncertainty-aware Interactive Imitation Learning algorithms

are a fundamental step towards the derivation of policies that can guarantee safety in AI systems not

only during training but also while deployed. This will make them fully applicable in safety-critical

applications.

1.2 Outline

The present work is divided as follow. Chapter 2 provides an overview on the theoretical foundations

of Imitation Learning through the framework of Markov Decision Processes while clearly defining

the problem, the solution methods and challenges IL has faced for his application to intelligent

systems. This chapter also offers an in-depth overview of Direct Policy Derivation methods in

Imitation Learning (Section 2.2), a central body of work required for the understanding of several

applications of IL (like the one presented in Chapter 3), and the UPMS algorithm. Chapter 3

presents a published work [37] submitted to the 5th International Workshop on Assistive Computer

Vision and Robotics at the International Conference on Computer Vision (ICCV) 2017. This work

is an integral part of the research conducted by the author while visiting the Center for Intelligent

Machines at McGill University and developed jointly with Roger Girgis, Jeremy Cooperstock and

Thomas Fevens. Chapter 4 is an unpublished manuscript and constitutes the results of the author’s

work while visiting the Montreal Institute for Learning Algorithms (MILA) under the supervision

of Professor Liam Paull and was developed jointly with Professors Liam Paull and Thomas Fevens.
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Chapter 2

Imitation Learning

Imitative skills as a cognitive mechanism have not always been well understood even in the areas of

ethology and psychology that initially originated the notion of Imitation Learning, and that have

been studying the idea for the past 40 years [36]. Billard [19] shows one of the earliest attempts to

structure the theory behind system specification through imitation learning by the decomposition

into three aspects: attentional, functional and representational. Each of these items defines how and

what the learner should observe, what is the proper level of abstraction for specifying the teacher ’s

behaviour, and which model should be used to represent the mapping from the sensorial stimuli

to the agent actions. It has been this decomposition into a multi-step approach what has allowed

to successfully apply this paradigm to various fields. As an in-depth literature survey is outside

of the scope of this chapter, the reader may find in [13][63] two comprehensive and contemporary

surveys on the state-of-the-art theory and applications of the subject. Both reviews assert how the

field has evolved with the rise of novel machine learning models (e.g., Deep Neural Networks) as

state-of-the-art methods and algorithms have integrated this novel learning paradigms into offering

formal guarantees on the autonomy of the learner.

This chapter formalizes the problem of Imitation Learning (IL) and describes state-of-the-art

models, algorithms, and challenges that Imitation Learning application has faced for the last three

decades.

2.1 Problem Statement

Before establishing a mathematically formal definition of the problem of imitation learning, it is

imperative to disambiguate its use. The term imitation learning has been widely but not evenly

used across the literature [13][63] to refer to the process of extracting optimal behaviour of a task

using traces of the execution performed by another agent. Here, concepts like behavioral cloning

or apprenticeship learning [89] are considered variations of the IL method. Thus, and henceforth,

the term imitation learning encompasses direct and indirect methods of learning control policies

from demonstrations and subsumes under its scope the application of supervised learning and rein-

forcement learning techniques to perform this derivation. More precisely, the reference to imitation

3



learning used in the present work is closer to the notion of learning from demonstrations introduced

by [13] than to any other previously used in the literature. Maybe, the term demonstration empha-

sizes the intentionality behind the expert’s behaviour to demonstrate a task while imitative learning

encompasses learning from the expert whether its sequence of actions is intentionally demonstrating

the task or not.

Similarly, to model the imitation learning problem, two assumptions are necessarily made.

Firstly, both the learner and the expert are decision-making agents observing or interacting with

their environments (usually shared). In the same way, the optimality (near-optimality) of the ex-

pert’s actions: the observed behaviour is the result of the expert trying, but not necessarily succeeding

(non-optimal expert), to maximize a measurement of its efficiency (a reward signal). The problem

of learning to imitate a teacher behaviour requires to establish a mathematical abstraction capable

of modelling the interactions of the agents with the environment. As discussed before, as IL has

mainly been applied to learn robotic control parameters (at different granularity levels) from the

perception pipeline (e.g., cameras, laser scanners, radars) [63][133], a desirable characteristic of a

model for imitative behavior has to be the ability to handle the notions of states (or observations)

and actions at different levels of abstraction.

2.1.1 Markov Decision Processes

Markov Decision Processes (MDP) have played an instrumental role in modelling sequential decision-

making problems when the outcomes are uncertain [102]. As a modelling tool, MDP allows the

representation of a variety of tasks at a level of abstraction that has been flexible enough to be

applied in a variety of domains like finance and investment, epidemics control, or sports, to name a

few [132]. MDP are also extensively used in stochastic optimal control to specify the interaction of a

goal-oriented agent with its environment under uncertainty. Regarding learning algorithms, MDP is

fundamental to the development of the theory of reinforcement learning, where it serves as the basis

to describe the agent-environment interface [125]. Thus, the theoretical formulation that will result

in this section bases its procedure on the specification of Imitation Learning as an MDP structural

estimation problem.

Modelling the expert’s behaviour and its interaction with the environment requires the definition

of the boundaries between these two entities. In a Sequential Decision-making Process (SDP),

decisions are made by an agent after receiving information about the environment state. The points

in time where decisions are made are usually called decision epochs and represented by the variable

t that identifies the decision epoch under analysis. The time in an MDP is usually treated as a

discrete quantity although it can also be considered a continuous one.

The cardinality of the set of decision epochs T defines an essential property: the horizon of

the decision problem. A task is called to have infinite horizon if |T | = ∞ or finite horizon if

|T | = n. Characterizing the horizon plays a significant role in solution methods and their guarantees

of convergence. However, as this property holds no substantial relationship to IL methods, an in-

depth analysis of these methods for infinite and finite horizon tasks is out of the scope of the present

work ([38] [102]). The notion of discrete time induces a stepwise characterization of the interaction

4



between the environment and an agent.

Known in robotics literature as the sense-think-act cycle [121] [127] (Figure 2.1a), the interaction

between an agent and its environment have two major components: states (st) and actions (at). In

MDP, this cycle is generally described by a set that records this interaction through time called

history and that is denoted by Ht [75]. The history constitutes a sufficient statistic to explain

both the agent’s and the environment’s successive behaviour. However, the dimensionality of this

set makes it impractical to use it in the representation of any real-life problem. Hence, a set of

realistic assumptions are required to reduce the complexity of the analysis of any MDP. The history

of the system describes what happens at each decision epoch: the agent senses the environment and

extracts relevant information to make a decision.

An essential component of this interaction is the expression of an agent decision: the action.

Agent actions show the intent an agent has to influence the dynamics of the environment -Definition

2.1-, an intent that is intrinsically related to the agent’s goal. Consequently, the set of possible

actions A expresses the abilities the agent could have to impact the environment.

Definition 2.1. An action at ∈ A is the control signal an agent is capable of emitting to influence

the dynamics of the environment as it evolves.

During this interaction, both the agent and the environment hold internal representations that

ultimately defines its behaviour. The concept of state is introduced to define the data each of

them use to pick their next reactions to changes. In the Markov Decision Process formulation, it is

important to separate the concepts of environment state (set ) and agent state (sat ). The environment

state (set ) defines the internal representation the environment uses to define how it transitions after

the agent executes an action. The decision processes where an agent observation of the environment

is equal to the environment internal state ot = set = sat , the decision processes are commonly called

fully-observable. By contrast, when ot 6= set the decision processes are called partially-observable

decision processes.

Then, an agent’s state sat ∈ S encloses the information an agent perceives from the environment

and it is an abstraction that only contains the relevant information the agent can observe and which

it uses in its interaction with the environment. The agent state representation is usually created

from a function of the history sat+1 = f(Ht) as long as this function constitutes sufficient statistics

for any decision. As mentioned above, as it is usually impractical to maintain the history in its

entirety, some assumptions must be made to reduce the complexity of the SDP. Commonly, the

Markov assumption is used to handle the representation of the states. When a state has sufficient

information to predict the dynamics at the next decision epoch it is called an information state or

Markov state -Definition 2.2.

Definition 2.2. A state st is an information state (a.k.a Markov state) if and only if:

p(st+1|st, at, st−1, at−1, ..., s0, a0) = p(st+1|st, at) (1)

In a nutshell, the Markov property of the history and the agent state implies the future is

independent of the past given the present. This assumption relaxes the complexity of a sequential

decision-making process by reducing it to a more tractable probabilistic model.
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formulation.

Figure 2.1: The percept-act cycle between an agent and its environment.

In this agent-environment interaction, the environment is usually capable of sending the agent an

evaluative measure of its performance. This scalar signal is called the reward (or the cost). Hence,

Direct Learning Methods (Reinforcement Learning) assume that the goal of an agent is to maximize

the cumulative reward it obtains over the horizon of the task [125]:

Gt = R1 +R2 + . . .+RT (2)

where Rt is the return after every decision epoch t. For infinite and continuing tasks, to obtain the

formulation described in Equation 3 a polynomial-based on a discount rate γ is usually introduced

to Equation 3 to weight earlier returns higher than delayed ones:

Gt = R1 + γR2 + γ2R3 + . . .+ γT−1RT (3)

All in all, for any goal-oriented task at hand, the rewards represent the agent behaviour’s objec-

tive. This property makes the reward generation function the most succinct representation of the

task [113].

With all its elements being defined, a Markov Decision Process is a tuple 〈S,A,P,R, γ〉 where

S is a finite set of states and A represents a finite set of actions. The system dynamics are modelled

through P, an state transition probability distribution of the form Pa
sŝ = P[St+1 = ŝ|St = s,At = a].

Also, an MDP includes a reward function R as the expected discounted return Ra
s = E [Rt+1|St =

s,At = a], a discount controlled by γ ∈ [0, 1] the discount factor.

The notion of expected reward at a certain state associates this state with a function known as

a value function of the state defined by:

v(s) = E
[

Gt|St = s
]

(4)

This value defines how good the state is concerning the expected future reward obtained from

the state by following specific behaviour. It is this behaviour that an agent must determine while

learning how to solve an MDP.
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A policy π : S → A is then a decision rule that specifies the actions an agent executes at each

decision epoch. By having v(s) as a measure of the value of the state an agent transitions to, it is

possible to define a partial ordering among the policies over the policy space Π on an MDP. Thus,

a policy π ≥ π′ (is better) if ∀s ∈ S, vπ(s) ≥ vπ′(s). Then, it is guaranteed that there exists in any

MDP a policy π∗ ∈ Π that it better or equal to all other policies in Π. This policy is usually called

an optimal policy and determining its structure is the objective of an MDP solution algorithm.

2.1.2 Learning by Imitation

As discussed in the introduction of this chapter, imitation learning is a problem in which a learner

agent tries to find an optimal or near-optimal control policy for a task given a set of trajectories

of an expert-on-the-task behaviour. From the perspective of MDP, imitation learning attempts to

solve the control problem on an MDP where one or more components of the decision process are not

accessible. From this follows the definition of imitation learning attained for the remainder of this

work:

Definition 2.3. Learning by imitation is the process to derive an optimal or near-optimal control

policy from a provided set of traces (trajectories) of the expert’s policy.

If a finite set T of traces of the expert’s policy π∗ execution is defined by T = {(o0, a0), . . .

, (oN , aN )}, the goal is to find the policy π(at|ot) so that this policy optimally or nearly-optimally

solves a given MDP. It is important to note that, if all components of the MDP were known, the

problem of imitation learning would reduce to a Reinforcement Learning problem. In this scenario,

the optimal policy can directly be recovered by interacting with the environment given that, as

discussed before, the reward is the most succinct representation of the task at hand [113].

Hence, the application of imitation learning methods is relevant when either or both, the reward

or the dynamics (transition model) of the environment are not known [3]. From this, three main sce-

narios can be identified. A Markov Decision Process without Reward (MDP-R), a Markov Decision

Process without Dynamics Model (MDP-P) and a Markov Decision Process without Dynamics and

Reward (MDP-RP). This distinction has characterized the evolution of the solution methods for

imitation learning. Learning algorithms for deriving control policies from trajectories of the optimal

policy can be divided into two major subgroups: direct policy derivation (Figure 2.2a) and indirect

policy derivation (Figure 2.2b) methods.

Direct Policy Derivation methods (DPD) have traditionally used a supervised learning approach

for deriving the optimal policy without taking into account the internal representation of the problem

(MDP-RP). The expert’s policy is recovered directly from the observation space and mapped into

the learner’s action space. Historically, DPD was employed to solve highly-complex tasks, like driving

[101], even though no formal guarantees of their performance were given at the time. This issue

limited their application to real-life, completely autonomous systems, for almost a decade. The work

presented by Ross and Bagnell [107] offered for the first time a formal cost-based analysis of using

purely-supervised learning as a technique to directly derive the expert’s policy. This seminal paper

served as the basis for exploring the range of methods that are referred here as DPD.
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Reinforcement
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(b) Indirect Policy Derivation

Figure 2.2: Direct and Indirect Policy Derivation schemas based on the framework presented in [13].

In contrast, Indirect Policy Derivation (IPD) algorithms focus on the structural estimation of

MDP [113]. IPD find the missing components of the decision process (MDP-R or MDP-P) to solve

the MDP control problem and later uses Reinforcement Learning to recover the expert’s policy.

The first formal definition of Inverse Reinforcement Learning(IRL) is given by Russell [113] and

posteriorly extended by Ng and Russell [89]. Notably, Russell [113] offers an initial argument against

the DPD methods by stating that the reward of an MDP is a more compact, robust, learnable and

transferable representation of the task at hand. However, the exploration of algorithms for Inverse

Reinforcement Learning has shown that even though IRL as a method is a theoretically sound

approach, obtaining the reward function via IRL is not trivial.

From both methods, DPD has been more successfully applied to real intelligent and physical

systems, including the work presented in Chapter 3. Hence, the following section presents an in-

depth analysis of DPD methods, their formal performance guarantees, and the limitations they

present for practical applications.

2.2 Direct Policy Estimation

As discussed earlier, a control policy in an MDP can be a deterministic function in the form π(s) :

S → A that maps each state to an optimal action in such state. If presented with traces of an

optimal policy π∗ in the form of pairs (s, π∗(s)), directly estimating a parametric representation

of such a mapping function is a straightforward approach to estimate a policy given traces of its

execution. In consequence, the application of supervised learning has been one of the most successful

and widely used techniques to learn by imitation.

2.2.1 Imitation via Supervised Learning

The supervised learning setting describes a standard machine learning scenario where the learner

receives a set of training data points D = {(x0, y0), ..., (xN , yN )} such that each pair (xi, yi) contains

an input vector and its corresponding label. The task of a supervised learning algorithm is to find

a function h : X 7→ Y usually called predictor, hypothesis or classifier [20][118] over a hypothesis
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space H of such mapping functions. In this context, X represents a random variable called the input

space, and Y also represents a random variable commonly called the output space. A measure of the

success of a predictor is computed by the accordance of the predictions it yields with respect of the

supervision given signals. Equation 5 defines a 0-1 error function used to measure the performance

of classification tasks that will serve as the basis for future analysis of imitation learning algorithms,

measuring the accordance of the predicted mapping with the expert’s actions.

eh(xi) =







1 if h(xi) = yi

0 if h(xi) 6= yi
(5)

No matter which error measure is used, a supervised learning algorithm should output the hy-

pothesis that minimizes the expected empirical error (or empirical risk E[eh(D)]) over the training

examples. This principle is called Empirical Risk Minimization (ERM) [118] and is given by:

ĥ = argmin
h∈H

Ex∼D[eh(x)] (6)

Posing the imitation learning problem as supervised learning is uncomplicated. For this, the

following equivalences can be stated as in equation 7. Also, the hypothesis space of the predictor

will determine the complexity of the parametrization of the policy space Π, and they will also be

equivalent (H ≡ Π).

D ≡ T (traces dataset equivalent to training dataset)

X ≡ S (state space equivalent to input space)

Y ≡ A (action space equivalent to output space)

(7)

Having established these equivalences, algorithm 2.1 depicts the process of directly deriving

the policy from a set of traces of an optimal policy π∗ using supervised learning. The algorithm

receives as input access to the expert’s policy π∗ and needs to have defined the complexity of the

parametrization of the policy (hypothesis) beforehand. The traces dataset are obtained by unrolling

the optimal policy, and they are later used as input to train a classifier.

Algorithm 2.1 Supervised Learning

Require: π∗ : expert’s policy, H : policy class

1: algorithm Supervised(H)

2: sample T ← 〈s, π∗(s)〉 . Get T ∼ π∗: traces of π∗

3: learn H(T ) : πh = argminπ∈Π Es∼dπ∗
[eπ(s)] . Train H to minimize E[eπ(s)]

4: return πh

The Problem of Distributional Shift

For many years, supervised learning was the de facto algorithm to derive policies from human or other

expert controller demonstrations [13] [63]. However, this approach suffers from known deficiencies

originated by the violation of fundamental assumptions of statistical learning theory. Statistical
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x ∼ 

y ∼ 

(a) Probabilistic view of the distributional shift.

Gray dots represent training samples, black dots

test samples.

s ∼ π ̂ 

s ∼ π

∗

(b) In a driving scenario, a mistake made by a

learned policy induces a distributional shift.

Figure 2.3: The distributional shift problem in supervised learning.

learning methods assume that the samples in the dataset are independent of each other and that the

training and test sets are identically distributed. These assumptions are commonly known as the

i.i.d assumptions [57][59]. Initially noted on the experimental results obtained in [101], the execution

of a supervised-learned policy in a robotics control problem cannot guarantee the independence of

the samples nor the same distribution of the training and test set distributions.

An identifiable scenario of such violation is shown in Figure 2.3b in the context of learning to

drive from demonstrations. If at some time step during the execution of the learned policy π̂ the

predicted action deviates from the one seen during training, the systems could end up in a region

of the state space not previously presented to the algorithm while training. Hence, the underlying

distribution p(A|S) is shifted as the probability distribution of the state space p(S) changes from

train to test phases. This phenomenon is usually referred to in the statistical learning literature as

distributional shift and it is common in plenty of real-life applications of machine learning algorithms

[67] to structured prediction problems (sequential predictions).

A formal analysis of the implication of the distributional shift problem with traditional super-

vised learning techniques applied to imitation learning settings is offered by Ross and Bagnell [107].

Theorem 2.1 supports the empirical findings in earlier works: once the learner makes a mistake, the

changes on the state visitation distribution dπ∗ induced by the optimal policy begin a composition

of errors that grows quadratically in the size of the horizon T of the task at hand.

Theorem 2.1. Let π̂ be such that Es∼dπ∗
[eπ̂(s)] ≤ ε. Then J(π̂) ≤ J(π∗) + T 2ε. [107] 1

The convention proposed in [107] is maintained here as it has been homogeneously used in

derivative work. Hence, J(π) = TEs∼dπ
[eπ(s)] represents the expected cost incurred by the policy

π over the horizon of the task T , having eπ(s) = Ea∼πs
[e(s, a)] where e(s, a) = I(a = π∗(s)) is a 0-1

loss that measures the agreement between the predictor’s and the expert’s actions (imitation loss).

The success of the family of DPD algorithms is significantly due to the incorporation of dis-

tinctive traits that have been collectively applied to deal with the problem of distributional shift

1The proof of this theorem initially offered in [107] is known to have inconsistencies. See [105], Chapter 2, to
find a corrected version of it.
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discussed before. There are at least four identifiable properties that characterize this family of al-

gorithms: interactive learning, policy mixing, on-policy data aggregation and random exploration.

The following section provides a thorough inspection of each of these traits and will try to explain

how each of them has been crucial in obtaining excellent and robust predictors for imitation learning

[105].

2.2.2 Reduction to No-Regret Online Learning

The introduction of online learning is the first of a series of efforts to reduce the impact the i.i.d

assumptions have over statistical learners [105]. Online learning algorithms do not require any

assumptions concerning the order in which the samples are presented to the learner. Instead of

assuming that the data is generated from a stochastic process (distribution), online learning relaxes

any assumptions that maybe be made about the data generating process which could be either

deterministic, stochastic, or adversarial [27] [117].

In contrast with common offline batch learning approaches, online learning is a process where

the training data is streamed to the learner one sample at a timestep. Algorithm 2.2 depicts the

general structure of an online learning algorithm. At each timestep t, the learner receives a sample

xt to predict an output value ŷt. Then, the correct prediction yt is given to the learner from a best-

fixed predictor h∗ ∈ H which usually is in the same hypothesis class of the learner h (realizability

assumption) [117]. From this correct prediction, the learner suffers a loss L(ŷt, yt) accumulated

throughout the horizon of the task.

Algorithm 2.2 Online Learning

Require: H : hypothesis, h∗ ∈ H : best fixed predictor, L : loss function, T : rounds

1: for t = 1...T do

2: receive xt ∈ X . Receive instance for prediction.

3: predict ŷt ∈ Y . Predict value of the instance.

4: receive yt ∈ Y = h∗(xt) . Receive ground truth.

5: suffer L(ŷt, yt) . Incur in a loss.

The sequential nature of this learning process renders notions like Empirical Risk Minimization

or Structural Risk Minimization unusable in this context. Instead, an online learner’s performance

is measured in terms of regret RT (h):

RT (h) =

T
∑

t=1

L(ht(xt), yt)−
T
∑

t=1

L(h∗(xt), yt) (8)

The notion of regret expresses the difference in the exceeding amount of loss when compared with

the loss the best-fixed hypothesis h∗ in his class would have suffered over the same time horizon of

T . Hence, the online learning theory goal is to find low regret algorithms capable of obtaining a

regret that grows sub-linearly to the learning task horizon T .
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Online Imitation Learning

The introduction of online learning as a method to solve policy estimation in imitation learning

does not only help by mitigating the effects of the i.i.d assumptions over supervised policy learning

but, as is discussed in the following sections, allows an interactive setting where the expert and the

learner policy execution can be interwoven during the training regime. Furthermore, the application

of online learning to imitation learning has helped to bound the regret (in terms of the horizon) of

a policy π to the optimal policy π∗ in a particular policy class Π [107].

The main contribution due to [107] to DPD algorithms is the reduction of imitation learning

problems to a no-regret online learning process. Firstly, it is essential to define that the regret of a

policy π accounts for the T-step cost incurred while learning a task with horizon T . The regret for

π is defined by:

RΠ = J(π)− min
π′∈Π

J(π′)

RΠ = J(π)− J(π∗)
(9)

where the optimal policy π∗ ∈ Π regret RT (π
∗) is constant O(1) through the task’s horizon T . Then,

[107] proposed forward training -Algorithm 2.3- as an improvement over basic supervised learning

approaches to policy derivation by bounding the regret to grow linearly in T . This performance is

equal to that expected from supervised learning when applied to non-structured prediction problems.

Algorithm 2.3 Forward Training [107]

Require: π∗ : expert’s policy, T : task horizon, H : classifier

1: algorithm Forward(π∗, T,H)

2: π0 = (π0
1 ∼ π∗, π0

2 ∼ π∗, ..., π0
T ∼ π∗) . Initialize π0

i to query the expert

3: for i← 1...T do

4: sample Ssk
i
∼d

πi−1
=

⋃N

k=1{(s
k
0 , ..., s

k
T )} . Sample N T-step trajectories following πi−1

5: query T ← {(s, π∗(s))} : s ∈ Ssk
i
∼d

πi−1
. All state-action pairs taken by expert

6: learn H(T ) : πh = argminπ∈Π Es∼d
πi−1

[eπ(s)] . Train H to minimize E[eπ(s)]

7: πi = (πi−1
1 , ..., πi

i ∼ πh, ...π
i−1
T )

8: return πT

The reader may notice that the dataset recollection and the learning procedure happen simulta-

neously over the horizon of the tasks. Thus, the policy is derived online, and the classifier is trained

each time over a subset of the input space generated by the execution of the policy πi−1 obtained

in previous iterations. This behaviour is going to be a distinctive trait for all the DPD algorithms

presented from now on.

Interestingly, the guarantees offered by forward training are based on numerous artifacts that are

impractical in most settings. Firstly, the policy obtained is a non-stationary (time-dependent) policy

as the algorithm maintains a solution policy for each timestep through the task’s horizon (steps 2

and 7). This issue has a twofold implication. First, the space complexity of the policy is O(T );

thus this requirement is mostly unsatisfiable for infinite or large-finite horizon tasks. Furthermore,
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a non-stationary policy may introduce instabilities on the system overall performance (e.g., behave

as a bang-bang controller). Also, the T-step cost analysis offered in [107] assumes that the optimal

policy π∗ can quickly recover from an unknown state (stability property).

Those are potentially the main reasons why there are no explicit references in the literature to

any practical applications of forward training as a DPD method. Nevertheless, this method has the

indisputable merit of having introduced two central ideas to the imitation learning theory: online

learning (step 6) and mixed policy execution (steps 2 and 7).

2.2.3 Policy Mixing

The problem of the distributional shift in the application of supervised learning for policy derivation

can be explained in simplest terms by stating that, for most tasks, the expert’s observed behaviour

rarely includes recovery actions from unexplored states, e.g., a human driver rarely departs from

the middle of the lane. Consequently, the derived policy has no training samples from which to

infer the required action under such circumstances. That is why the interwoven execution of the

agent’s policy and the experts’ produces a more robust policy with stronger guarantees. The state

distribution dπ obtained by executing the learner’s non-converged and error-prone policy induces a

non-intentional exploration of the state space as the learner’s erroneous predictions may be out of

the distribution induced by π∗. This makes s ∼ dπ closer to the real distribution s ∼ p(S) of the

task being learned.

Algorithm 2.4 SMILe: Stochastic Mixing Iterative Learning [107]

Require: π∗ : expert’s policy, N : iterations, H : classifier, α: mixing coefficient

1: algorithm Smile(π∗, N,H, α)

2: π0 ∼ π∗ . Initialize π0 to query the expert

3: for i← 1...N do

4: sample Ss∼d
πi−1

= {(s0, ..., sT )} . T-step trajectories following πi−1

5: query T ← {(s, π∗(s))} : s ∈ Ssk
i
∼d

πi−1
. All state-action pairs taken by expert

6: learn H(T ) : πh = argminπ∈Π Es∼d
πi−1

[eπ(s)] . Train H to minimize E[eπ(s)]

7: mix πi
h = (1− α)iπ∗ + α

∑i

j=1(1− α)j−1πj
h . πi is stochastically mixed

8: remove π∗ : πN =
πN
h −(1−α)Nπ∗

1−(1−α)N
. Remove expert’s query from final policy

9: return πN

Algorithm 2.4 describes the steps of SMILe (Stochastic Mixing Interactive Learning): the first

DPD algorithm that takes full advantage of the strategy of policy mixing initially presented in

[107], and it is an immediate derivation from forward training. The immediate benefit it offers over

forward training is due to the replacement of the non-stationary policy by one that stochastically

mixes the expert’s policy execution and a weighted average of the policies learned in past iterations

with probabilities (1 − α)i and α respectively (step 7). If α ∈ O( 1
T 2 ) and the number of iterations

N ∈ O(T 2 log T ) then SMILe formally guarantees that the regret of the learner is bound by J(πN ) ∈

O(T ) ([107], Theorem 4.1).
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Although interesting from the perspective as an improvement over forward training, SMILe is

considered to have two main limitations, both related to the mixture of policies obtained as a final

result. In an approximately similar setting to the one offered by foward training, the weighted

mixture of policies space complexity is in the order of O(N). Given that the formal guarantees

of linear regret are offered when N ∈ O(T 2 log T ) then, a space complexity that is linear on the

number of iterations grows approximately quadratically on the task’s horizon T and may render this

approach prohibitively costly for infinite or large-finite horizon tasks. Similarly, regarding stability,

as the policies in the mixtures are weighted as a function of the iteration step, they are trained

on and not a function of the predictive performance, there may exist highly weighted policies with

inferior performance than some with lower weight and better performance in the mixture. This

situation has an impact in the final policy πN stability, a situation that can be observed from the

graphical evidence referred in [107] 2.

On-Policy Data Aggregation

Among the benefits of mixing the learner’s policy with the expert’s policy during training has

brought to the imitation learning theory is the notion of dataset aggregation. The expert-learner

policy mixing presented in SMILe was not initially considered as a data acquisition strategy in [107].

Nevertheless, as its advantages were numerous, mixing the learner and the expert policy execution

in a setting that resembles that of active learning [116] -where the learner can influence the state

distribution explored during training- has been the cornerstone for Dataset Aggregation (DAgger)

[110].

Algorithm 2.5 DAgger: Dataset Aggregation [110]

Require: π∗ : expert’s policy, N : iterations, H : classifier, α: mixing coefficient

1: algorithm Dagger(π∗,H, N, α)

2: T ← ∅, π1 ∈ Π

3: for i← 1...N do

4: πi = αiπ
∗ + (1− αi)πi . αi = pi−1: π∗ execution decays over time.

5: sample Ti ← {s, π
∗(s)} : s ∼ dπi

6: aggregate T ← T ∪ T ′
i

7: learn H(T ) : πh = argminπ∈Π Es∼dπi
[eπ(s)]

8: return πh best on validation.

Dataset Aggregation -Algorithm 2.5- is the first DPD algorithm that implicitly exploits learner’s

prediction errors as a method for extensive exploration on the boundaries of the state space that

are not induced by the expert policy. DAgger iteratively refines the learner’s policy (an online-

trained classifier) by composing an on-policy dataset through the aggregation of pairs {s, π∗(s)}

(step 5) where the state space distribution dπi
is induced by a mixture of policies between π∗

and πi at every time step (step 4). The analysis of performance for DAgger presented in [110]

2There exist a supplementary video of a SMILe learned policy for Super Tux Kart game that shows the controller

instability.
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is based on the guarantees offered by no-regret online learning algorithms like Follow-The-Leader

[117]. Assuming that eπ(s) is convex with respect to the parametrization of the classifier πh, DAgger

formally guarantees a linear regret of O(T ) over the task’s horizon T after N iterations in the order

of O(T 2).

Theorem 2.2. For DAgger if N is O(u2T 2 log(1/δ)) and m is O(1) then with probability 1 there

exist a policy π̂ ∈ π̂1:N s.t. J(π̂) ≤ J(π∗) + uT ε̂N +O(1) [110].

The convex loss assumption limited the validity of this finding when the cost functions used to

train state of the art machine learning models (e.g., neural networks) are rarely convex with respect

to their parameters [15]. Nevertheless, DAgger has been successfully applied to real-life problems

like in [93, 111].

2.2.4 Explicit Exploration

The DPD algorithms presented so far have offered an implicit exploration step as part of the policy

mixing strategy directed and provoked by potential mistakes in the learner’s policy that can induce a

different state distribution than the one offered by the expert’s policy. However, implicit exploration

is not a particularly good strategy under the context that while the learner’s policy performance

becomes closer to that of the expert’s, the exploration stages become more and more sparse. The

benefit of exploration steps as part of learning for optimal control has been extensively studied in

Reinforcement Learning [125] as a method for discovering novel information about the environment

in which an agent acts. This exploration strategy is what potentially enables an IL agent to surpass

a non-optimal demonstrator performance.

Algorithm 2.6 AggreVaTe: Aggregate Values to Imitate [109]

Require: π∗ : expert’s policy, N : iterations, H : classifier, α: mixing coefficient

1: algorithm AggreVaTe(π∗,H, N, α)

2: T ← ∅, π1 ∈ Π

3: for i← 1...N do

4: πi = αiπ
∗ + (1− αi)πi . αi = pi−1: π∗ execution decays over time.

5: sample Ti = AggreVateSampling() . see Algorithm 2.7

6: aggregate T ← T ∪ Ti

7: train H(T ) : cost-sensitive or train H(Ti): online learner.

8: return πi best on validation.

Aggregate Values To Imitate (AggreVaTe) [109] -Algorithm 2.6- is the first DPD method to

suggest the incorporation of an explicit exploration as part of its trajectory sampling methodology.

Built incrementally over the basis of DAgger, AggreVaTe defines in explicit terms a strategy to

interleave the learner’s policy execution, an explicit exploration step and the expert’s policy as

shown in Algorithm 2.7 (steps 3-6). By uniformly sampling an instant t in the task’s horizon during

training, AggreVaTe induces the learner’s to potentially unexplored parts of the state space from

which to learn recovery actions from the expert’s corrective behaviour afterwards.
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Algorithm 2.7 AggreVateSampling: Sampling

1: D ← ∅

2: for m← 1..M do

3: sample t ∼ U(1, T )

4: execute πi from 1..t− 1

5: explore (st, at)

6: execute π∗ from t+ 1...T and get cost-to-go Q̂

7: D ← D ∪ 〈s, t, a, Q̂〉

8: return D

This algorithm also leverages the notion of cost-to-go Q̂ to characterize how difficult is for the

expert to recover from the states induced by implicit and explicit exploration mechanisms. Hence,

the dataset it constructs afterwards is formed by tuples (s, t, a, Q̂) suitable for learning with a cost-

sensitive classifier (one that is aware of the cost of its decisions) [41]. An alternative to a cost-sensitive

classifier –as the measurements of the cost of actions and states may not be available for some tasks–

is the application of any incremental no-regret online learning algorithm over the each Ti dataset

with no cost incorporated.

As in DAgger, the formal guarantees obtained for AggreVaTe bound its regret linearly to the task

horizon [109] (Theorem 2.1, page 4). The assumption of the use of convex loss as a training signal

for the classifier was also one limitation inherited from DAgger, an issue that has been addressed

by the work of Sun et al. [124]. Sun et al. [124] offers an end-to-end differentiable improvement

of AggreVaTe called Differentiable AggreVaTe (AggreVaTeD) that introduces structural changes to

the initial algorithm presented in [109] to add a gradient-based policy estimation [125] for what the

authors called differentiable imitation learning. This addition represents an exciting modernization

of DPD algorithms by bringing them into the spectrum of deep neural networks and deep learning

creating a sub-field usually referred to as Deep Imitation Learning.

Most modern applications of DPD algorithms to robotics [23, 34, 37, 82, 93, 97, 136] now rely

on implementing parametric and gradient-optimized representations of the learner’s policy by the

introduction of neural networks as a representationally more powerful model to cope with the Direct

Policy Derivation problem. This class of hypotheses has broadened the spectrum of problems to

which Imitation Learning can be applied to, but has also brought a different set of challenges that

compromises the traditional guarantees of performance.

One of these challenges is interpretability. Interpretability has been an issue in Machine Learning

algorithms well before the rise of DNN [39]. However, the non-linearity and the dimension of the

number of parameters current models employ to solve any problem have increased the awareness

over this particular issue as DNN has been applied to an increasing number of problems. Hence,

when a DNN model is selected as policy parametrization for DPD algorithms this decision not only

increases the complexity of the policy space that can be explored but also significantly decreases

the opportunity to verify the correctness of the derived policy formally. This deficiency leads to a

second issue: safety.
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As it will be discussed in Chapter 4, the algorithmic solutions to the DPD discussed earlier impose

some concerns over the safeness of the learning process. Solving safety issues during learning is a

first step towards ensuring IL systems can be confidently trained and probably a foundational stone

for future research that could guarantee safety at test time for IL algorithms. If this is achieved, IL

algorithms will become more widespread than they are nowadays as the number of the task from

which expert (human) demonstrations can be recovered are numerous.
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Chapter 3

Intersection Crossing from

Experts’ Demonstrations

Contribution of Authors

Originally published as Diaz, M., Girgis, R., Fevens, T., and Cooperstock, J. To Veer or

Not to Veer: Learning from Experts How to Stay Within the Crosswalk. In Proceedings - 2017 IEEE

International Conference on Computer Vision Workshops, ICCVW 2017 (2018), vol. 2018-Janua,

this work constitutes the result of Manfred Diaz (M.D) collaboration with Roger Girgis (R.G), Prof.

Jeremy R. Cooperstock and Prof. Thomas Fevens while visiting the Centre for Intelligent Machines

at McGill University.

M. D and R. G. conceived of the presented idea. R. G. performed the state of the art research.

M. D. developed the theory under the framework of Learning from Demonstrations. M.D performed

training data recollection and M.D, and R.G performed testing data recollection. M. D. developed

the annotation tool. M. D and R. G annotated data for training and testing. R. G trained CNN

models. M. D and R. G. designed the prototype application. M. D took the lead in developing the

prototype application. M. D and R. G conceived, planned and carried out the experiments.

M.D and R.G took the lead in writing the manuscript. All authors provided critical feedback

and helped shape and improve the final manuscript.

3.1 Introduction

Independent navigation of a city is a significantly challenging task for individuals with visual impair-

ment. This challenge is further exacerbated when the environment they are navigating is unknown.

For this reason, they tend to remain in known environments [77], as they learn the intersection

characteristics of those routes. Some of the problems they face include determining whether the

intersection is one- or two-way, orienting to the correct direction for crossing, obtaining the status

of the pedestrian signal, and detecting veering during the crossing phase. With regard to the last
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of these, mobility training focuses on techniques to keep the individual walking as straight as pos-

sible while maintaining a safe distance from parallel traffic, i.e., remaining within the marked lines

designating pedestrian crossings. Unfortunately, even after training, detection of veering remains

difficult [58]. It has been noted that regardless of visual impairment, in the absence of environmental

cues, humans tend to walk in circles [122], with diameters as small as 20 meters. This has obvious

implications to crossing at intersections, which can be of similar length.

Various assistive devices are available to help the visually impaired explore a city, including

talking GPS systems, and those providing information about points of interest around the user [94].

However, these do not solve the problem of safe crossing at intersections, which is generally agreed

to be the most difficult and risky aspects of independent travel for visually impaired individuals

[119].

Accessible pedestrian signal (APS) systems provide indications of when it is safe to cross [114],

and in certain cases, offer auditory cues that help the user determine orientation. Unfortunately,

these auditory cues are often masked by background noise. More problematically, due to their

high cost, estimated at over $25k per new installation, and approximately $8k at intersections

with existing poles [91], APS deployment remains limited. For example, according to the Montreal

Association for the Blind, the city of Montreal, Canada, with 1875 intersections [43], reportedly has

only 133 installed APS systems [1].

A potential alternative, explored by several research efforts, considers the use of embedded sen-

sors, such as accelerometers or gyroscopes found in typical smartphones [95, 104, 58] to provide

the feedback necessary to prevent veering. However, sensor instability and the potential need for

frequent re-calibration pose obstacles to such efforts. Furthermore, while these solutions may reduce

veering behavior, they do not help with the initial alignment of the user in the correct direction at

the start of crossing.

Relying instead on visual information provided by the smartphone camera represents an at-

tractive alternative. This is especially the case considering that non-visual understanding of the

environment is not only less effective and efficient, but also potentially dangerous, compared to

scanning the surrounding using vision [11]. However, processing of the wide variety of street scenes

to extract the appropriate features, if present, needed for such guidance has long been a daunting

challenge. Fortunately, the recent explosion of capability of deep learning systems offers a poten-

tial solution. In particular, the convolutional neural network (CNN) architecture has been shown

to outperform all other methods for image recognition and classification tasks [61, 33, 62, 65, 80].

Previous work [134] has shown that the features these CNN models learn can be transfered to tackle

a different problem. In this paper, we combine such pre-trained models with Learning from Demon-

strations [64] techniques to provide real-time feedback to visually impaired individuals before and

during the crossing of an intersection, helping both initial alignment and maintenance of a straight

path.
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3.2 Related Work

Many systems have been developed in an attempt to tackle the veering and intersection crossing

problem encountered by the visually impaired community. While some of these systems are com-

mercially available, many systems remain limited to an academic setting, and are still either in

the experimental phase or would be too expensive for widespread commercial deployment. These

systems typically lie within two main categories of systems: sensor-based and vision-based systems.

In this Section, we present some of these systems and how they motivated the approach presented

in this work.

3.2.1 Sensor-Based Systems

The first category of systems focuses on employing sensors typically mounted on the user. One such

orientation and way-finding interface system was proposed in [104] where they explore three different

interfaces. The system is comprised of a computer placed in a backpack, to be worn by the user, with

an array of speakers placed against the back used to vibrate the direction to follow, a digital compass

mounted either on the shoulder or in a hat, and a pair of ear buds mounted on the hat providing

stereo audio beeping. The authors found a 31% significant improvement in veering performance

when compared to the baseline veer. It is important to note that the authors initially attempted

to augment the orientation signal from the digital compass by installing a pedestrian signal system

at test intersections which would communicate with the backpack computer. However, this could

not be accomplished due to state laws and difficulties with the installation and maintenance of such

a system. This further demonstrates the difficulty that one would face in deploying such a system

at intersections in a given city. Another drawback with this system is the need to recalibrate the

digital compass after every intersection. This makes such an application highly impractical for the

intended user group. Finally, the system also assumes that the user is properly oriented at the onset

of crossing.

Guth [58] proposes the Anti-Veering Training Device (AVTD) which employs a solid state gy-

roscope to measure the user’s cumulative rotation as they walk along a path. The gyroscope also

provides tilt and temperature compensation adding robustness to the system. The user is presented

with veering correction speech cues and feedback about performance. However, it is not apparent

how the system’s effectiveness and accuracy were evaluated. Paneels et al. [95] build on this work

with their Walking Straight application which also uses the gyroscope to measure body sway and

orientation. This work also focuses on the feedback modality based on typical mobility training

for the blind. The experiment consisted of walking in a straight line towards a 15 m target after

initially being positioned in the correct orientation. It was conducted in a controlled outdoor envi-

ronment, and not at an actual intersection. They find that the system reduced veering to half that

encountered during the control condition. Another important result from their experiment was that

the most effective method for providing veering feedback was a continuous beep rendered in the ear

opposite to the veering direction. As such, the current proposed application uses a continuous beep

stimulus.
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While these systems can be effective in an ideal setting, sensor stability can prove problematic

when the system is continuously used. This is due to the need of recalibrating the sensors, making

such systems risky in the intersection crossing task. Additionally, these systems assume that the user

was initially properly oriented. However, this can be a difficult task when taking into account the

complex sound environment at typical intersections, as discussed in [11]. Moreover, neither of these

systems has the capability of providing information regarding the pedestrian signalization status.

3.2.2 Vision-Based Systems

In recent years, many systems have been proposed that instead employ computer vision techniques.

Shen et al. [119] developed a prototype on a Nokia 6681 mobile phone, utilizing the camera for

detection. The system detected zebra-crossings using segmentation of the edges of strips in the

pattern. However, the authors explain that the algorithm performed worse than an earlier version

that was implemented using a desktop computer and higher resolution camera. With the advances

in mobile devices, Ahmetovic et al. build on the work in [119] by building a two-part system

comprising of a Zebralocalizer [5] and ZebraRecognizer [4]. The former is used to interface between

the user and an iOS application while the latter uses a 5-step process, computing the position of

the zebra-crossing by using a combination of the camera and the device accelerometer as inputs.

Furthermore, they transform the problem into three stages: an approaching stage, an aligning stage

and a crossing stage. The user detects and crosses an intersection by holding the mobile phone (an

iPhone 4) parallel to the ground, with the camera ”looking” for the zebra-crossing. The results were

positive, with all the subjects successfully capable of crossing a 6-meter road in an average three to

five seconds.

One of the major limitations of these systems is the need for a zebra-crossing pattern, as its

presence is infrequent in many cities. As a result, users would still lack the ability to fully and

autonomously navigate through an unknown area. Later work by Ahmetovic et al. [6] has been

done to address the zebracrossing scarcity. In this work, the researchers designed a system that

mines existing image databases (e.g. Google Street View images) to plan a route that ensures

all intersections have zebracrossings. While this method offers an elegant solution, it still doesn’t

provide users with an independent experience. Another limitation of such a system is its inability

to deal with occlusions. As a result, these can cause users to move in wrong directions leading to

potentially dangerous situations.

Ivanchenko et al. [66] proposed a system that detects the more common two-stripe crosswalk

instead of zebra-crossings, removing the reliance on this pattern. The authors develop the Crosswatch

application running on a Nokia N95 mobile phone. Additionally, they use accelerometer readings to

estimate the direction of gravity, making it easier to position the camera in the correct orientation.

In addition, they utilize a 3D analysis technique as an attempt to ensure the subject remains within

the two-stripes. To perform this analysis, they use the focal length of the camera lens and estimate

an average height of 1.5-m for adults. Finally, the system used high-pitched tones to inform the user

if their feet were inside the two-lane corridor. The preliminary experiments required that the blind

user correctly identify the location of a crosswalk. However, the experiments did not include task of
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crossing the intersection and, therefore, does not allow for evaluation in effectiveness. Additionally,

it not clear how such a system would handle partially or fully occluded stripes.

Moreover, Poggi et al. [100, 99] proposed the use of a pocket-sized device with and embedded

CPU, coupled with a custom RGBD camera attached to wearable glasses. This device uses the dense

disparity map from the RGBD camera to determine the ground plane, which serves as a reliable way

to discriminate between the ground and the rest. Furthermore, they train a CNN model, similar to

[80], which takes as input a wrapped image of the ground and, if a crosswalk is present, determines

its orientation. The authors report a near-perfect accuracy on their test set, testimonial to the

power of these models. However, it is important to note that this system uses custom hardware (e.g.

custom RGBD camera) designed by the authors. It is not clear how it would be deployed for the

general public in an efficient and cost-effective manner. In addition, the authors only report testing

results on a computer in an off-line setting. Thus, it is not clear how this system would perform

in a real world experiment with blind participants. Finally, this system was designed for the initial

orientation part of the intersection crossing task. We are not aware if it can easily be adapted to

provide users with real-time veering feedback.

Both of these types of systems rely on the presence of a zebra-crossing or a two-stripe crosswalk.

However, as we have experienced through our investigation of the problem, zebra-crossings are not

always present at intersections and the lines in the two-lane corridors are, in many cases, faded or

obscured. In such intersections, these systems would be incapable of assisting users in their everyday

travels. The system proposed in the present work does not depend on any particular structure at

intersection crosswalks as it utilizes recent advances in machine learning to detect veering problems.

3.3 Street Crossing from Demonstrations

Despite the recent surge of work in intelligent robotics, to our knowledge, the results from this

research have scarcely been applied to alleviate sensorial, motor and cognitive impairments in humans

[12]. We believe that such research, in particular, the technique of Learning from Demonstration, is

well suited to addressing the problem of veering during street crossing.

3.3.1 Motivation

Learning from Demonstration (LfD) is based on the idea of transferring human behavior to intelligent

agents [64] [14]. An agent’s policy is a function π : S → A that maps every state s ∈ S to an action

a ∈ A. Conceptually, algorithms in the LfD domain aim to acquire the optimal policy π∗ for a task

from a series of demonstrations D = {d1, d2, ..., dm} that can guide an agent while autonomously

performing the task. Following this methodology, we can gather the knowledge of sighted ”experts”

on the intersection-crossing task, and transfer these to an intelligent assistive agent for the visually

impaired.

To completely formulate an LfD solution, one must establish the structure of the world states

s ∈ S that the agent may reach, the actions a ∈ A that the agent is capable of performing, and

a transition function T (s′|s, a) that expresses the probability of landing in s′ ∈ S given that the
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agent executes action a from state s. In most real-life scenarios, the state is not fully observable.

Most LfD models handle this uncertainty by relying on the agent’s observations of the world, z ∈ Z,

instead of the complete representation of its internal structure [14]. Therefore, our LfD method

must determine the optimal policy, π∗ : Z → A using demonstrations di = (zi, ai) ∈ D : Z ×A. We

now describe the application of this approach to the street crossing domain.

3.3.2 Action Space Design

In LfD, a transition t ∈ T between states occurs when an agent executes the actions specified by

its policy. We choose to discretize the space of possible actions by dividing the agent’s field of

view into 12 evenly spaced vertical bins as presented in Figure 3.1, following a similar approach

taken in previous research [108, 24, 73]. Each bin, v ∈ V ,V = {v1, v2, ..., v12}, is an action in A an

expert would recommend to execute given an observed state in the street crossing task. The bins

are intended to capture the heading of the goal relative to the expert’s field of view, with bin v1

corresponding to the agent having to veer maximally to the left, and bin v12 representing having to

veer maximally to the right.

For situations where an expert could not identify the bin including the goal, for example, in

the scenario shown in Figure 3.2a, our problem model also included an action unknown ∈ A. As

we will discuss in Section 3.4, this representation allowed us to experiment with different levels of

granularity for the action space.

3.3.3 Task Demonstrations

Once the problem design space was defined, the structure of the demonstration set had to be specified.

We divided our collection of demonstrations into two steps: (i) demonstrations acquisition and (ii)

expert’s knowledge extraction.

Each demonstrator was asked to stand at the corner of an intersection, holding a smartphone at

chest level, and capture, from a first-person perspective, the sequence of actions required to cross

the intersection. The motivation for this particular position of the smartphone is the outcome of

previous experiments carried out with visually impaired users [94, 95]. As our interpretation of the

street crossing task also included an initial orientation phase to the correct direction towards the

goal, demonstrators were asked to record the procedure of rotating within a range of ±45o about

the appropriate heading from the starting corner to the goal corner.

Furthermore, as suggested by previous work [101, 129, 108], the high sensitivity of LfD techniques

to the quality of demonstrations greatly impacts their generalization ability. A comprehensive set

of samples (z, a) ∈ D should capture not only the optimal behavior of the task, but also states that

could only be reachable by some suboptimal action sequence. To ensure that this was the case,

the demonstrators were asked to include suboptimal behaviors in their crossings, along with the

corresponding corrective actions.

Our demonstrators recorded 215 videos of approximately 25 s each from street intersections in

downtown Montreal, Canada, registering the sequence of states transitioned by sighted individuals

performing the task. As a compromise between data quantity and a desire to minimize redundancy
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of frames at a high framerate of 30 frames per seconds (fps), we extracted frames from the collected

videos at a rate of 2 fps, which resulted in a total of 8125 observations.

Figure 3.1: Action space discretization into vertical bins V = {v1, .., v12} from left to right.

3.3.4 Experts’ Knowledge Extraction

As our method did not incorporate a technique to capture the demonstrators’ actions on-site, we

relied on three experts’ knowledge to extract optimal behavior from those observations, in a post-

demonstrations procedure. For this, each expert was presented with frames randomly sampled from

the observations, in a structure similar to the one depicted on Figure 3.1. They were then asked to

select the bin v ∈ V that contained the position of the goal.

To ensure some resiliency to occlusions in the derived policy, we instructed the experts to choose

the bin closest to the presumed goal position in scenarios in which the goal was occluded or otherwise

not visible, provided that its location could be assumed (e.g., Figure 3.2b). We expected that under

most conditions, a sighted individual could quickly estimate the relative orientation towards the goal

from a single observation. For those exceptional cases where it was not possible to infer the target

position, the experts were asked to assign unknown as the recommended action (e.g., Figure 3.2a).

By virtue of symmetry, we were able to mirror each image around its central vertical axis and

associate the flipped image with the corresponding inverse action (i.e., swapping left-to-right with

right-to-left). This allowed us to create a set of synthetic observations which, combined with the

demonstration examples gathered, doubled the size of D and ensured a balance between the states

explored and the optimal behavior observed.

3.3.5 Policy Derivation Technique

The literature on LfD suggests the existence of three categories of policy derivation methods: direct

learning, indirect learning, and execution plans, only differentiated by how much understanding of

the environment each algorithm requires while inferring a policy [64, 14]. The algorithms contained

in the Direct Learning category are mostly independent of beliefs about the internal state of the

environment, thus easier to implement. Then, the family of direct policy learning algorithms was

our preference to solve the street crossing veering problem.
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(a) total occlusion of the environment (b) optimal actions inferred even if the goal is

not visible

Figure 3.2: Examples of demonstrations’ frames including corner cases in our dataset.

Based on the discretization of our actions space and the reduction of the observations to fea-

tures, we choose to implement our policy extraction strategy as an image classification problem. A

classification problem is one where a classifier c(x) : X → Y is used to predict the class y of an

instance x, having y ∈ Y , Y = {y1, y2, ..., ym} a discrete set of classes. Usually, x ∈ X is a vector

~f = {f1, f2, ..fn} of features that reduce the dimensionality of the samples in X. In a supervised

learning setting, the classifier is trained using a dataset N of samples in the form (~fi, yi). Thus,

we established the equivalence: D ≡ N ,Z ≡ X,Y ≡ A where the classifier c(x) : Z → A, a CNN

model, was trained to infer our policy π∗ directly from samples on D.

CNN for Classification Tasks

As an image usually contains irrelevant and redundant information for the resolution of visual tasks,

it is better to deal with a condensed representation of such knowledge. Computer Vision techniques

often rely on the extraction of salient attributes as a way to minimize the dimensionality of the

information contained in an image. Manual extraction of those features requires a comprehensive

understanding of the environment and the task at hand. The appearance of Convolutional Neu-

ral Networks (CNN) has come to alleviate this need while achieving human-level performance on

computer-assisted visual tasks.

Notably, CNN architectures have eliminated the prerequisite of hand-crafted feature extraction

algorithms by learning the required features and the task at hand, simultaneously [18]. Since Im-

ageNet Large Scale Visual Recognition Challenge 2012 [112], CNN have obtained state of the art

results [76] on benchmark datasets in image classification, segmentation or object detection like

ImageNet or PASCAL Visual Object Classes Challenge (VOC) [42].

Yosinksi et al. [135] analyzed why CNN has performed remarkably well on visual tasks and con-

cluded that the way convolutional filters are organized explains this success in part. In a CNN,

each convolutional filter learns to search for specific patterns in an image. Filters on first layers of

these models learn to detect low-level characteristics (e.g., edges), while filters in deeper layers are

fine-tuned to compose the low-level patterns into high-level features (e.g., the shape of a flower),

25



according to a hierarchical structure. Therefore, we used CNN architectures to convert our z com-

ponent of the demonstrations di = (zi, ai) to a vector z : ~f = {f1, f2, ..., fn} of features and to map

these features into our discrete action space A, thus generating an optimal policy π∗.

Transfer Learning

Training a CNN for classification using randomly initialized filters, or even with traditional heuristics

[56], is usually a challenging and time-consuming task as the space of the models’ hyper-parameters

has to be explored. Moreover, our dataset had significantly fewer instances that the ImageNet dataset

(8725 vs. 1.2 million instances) and the dimensionality of the classification task is significantly lower

(13 vs. 1000 classes). Consequently, the direct application of models designed for ImageNet could

lead to overfitting our dataset and to the loss of generality on the predicted actions.

In this regard, the notion of transfer learning helped us to overcome those obstacles. The theory

of transfer learning establishes that the knowledge on a source problem space Ps of a learned task

Ts could help improve the learning of a target task Tt on a target problem space Pt. How much

knowledge is transferable from one domain/task to the another is directly associated with the amount

of overlap between the problem areas in both [92].

Therefore, there exists a proven transferability property between features of a CNN trained on

different visual tasks [134]. Although the overlapping between our demonstrations and the training

samples on the ImageNet dataset is not clear, we still relied on models pre-trained on the latter as a

starting point for fine-tuning different classifiers. Consequently, the high-level features of our problem

were built upon the low-level features in the pre-trained models by re-training the appropriate deeper

layers in each model.

Interestingly, the derivation of policies with supervised learning has presented some weakness in

the past when the independence and identical distribution of the samples collected on D cannot be

guaranteed (i.i.d principle)[108]. To guarantee such independence, each frame and the corresponding

expert’s action was considered a self-contained demonstration. Recent applications of LfD and CNN

to navigation problems in robotics [24, 55, 73] have disregarded the sequential interpretation of a

go-to-goal process thus inferring a stationary (time independent) policy. Moreover, the observations

presented to the experts for labeling were randomized, ensuring their action (class) recommendation

was independent of a sequential analysis of the frames.

3.4 Results and Discussion

3.4.1 Training the Agent

The accuracy of CNN models has significantly improved in recent years relative to their compu-

tational complexity [26]. However, state of the art results remain dependent on models relying on

high-performance hardware, especially Graphics Processing Units (GPUs) to carry out their inference

within adequate time constraints for real-life or real-time applications. Recent work [65, 62, 103, 96]

has explored CNN architectures that aim to achieve a balance between the human-level accuracy
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results of their predecessors and the prediction time, thus making the application of deep learning

techniques to a real-time problem, such as street crossing, feasible.

In this work, we experimented with four state of the art CNN architectures. Firstly, Resnet50 [61]

and Xception [33] have a reported top-5 accuracy over 90% on the ImageNet dataset. This moti-

vated our exploration of their potential as policy extractors. Moreover, we were curious to investigate

the performance of network models that have been designed specifically to achieve a balance be-

tween classification accuracy and training/inference time. Thus, we selected Squeezenet [65] and

Mobilenet [62] as our testbed for a mobile deployable solution.

Our transfer learning approach was based on the fine-tuning of each model by removing the

latest layers, containing high-level features, and training our custom structure from scratch. In the

cases of Xception, Mobilenet and Squeezenet, after removing those high-level-feature layers from

each model, we added a 3× 3× 32 convolutional layer, followed by a 1× 1× |A| convolutional layer,

both activated with ReLUs [88]. Finally, we added a softmax activation layer with a size of |A|.

Because of the particular structure of residual networks [61], we could only add to Resnet50 an extra

fully connected layer converging to the number of actions and, similarly to the models above, this

layer was followed by a softmax activation layer.

After introducing these modifications, we fine-tuned the models, while holding the pre-trained

layers constant, and only trained the final layers we added. Each model was trained with a small

learning rate (0.0002), using the RMSprop optimizer [128] (ρ = 0.9, ε = 1 × 10−8, δ = 0.0) and a

categorical cross-entropy loss. The values of these hyper-parameters were selected empirically. With

this configuration, we aimed to ensure the stability of the pre-trained values of each model.

We then experimented with reducing the dimensionality of the action space. Starting from the

arrangement of 12 bins, we generated the following three configurations:

• 4-actions space: V1, by combining {v1, ..., v4}, {v5, ..., v8} and {v9, ..., v12} into {vleft, vstraight, vright}

respectively, plus the unknown action, as shown in 3.3a.

• 8-actions space: V2, by combining {v2, v3}, {v4, v5},..., {v10, v11}, reserving bins {v1} and {v12}

for those situations when the goal is not visible but its position can be inferred, as shown in

Figure 3.3b

• 13-actions space: V3, retaining the full configuration of as shown in Figure 3.3c

For each of these configurations, we modified the associated Softmax layer to accord with the

sizes of A1 = V1,A2 = V2,A3 = V3, and added v0 = unknown. We then trained the CNN classifiers

and evaluated their performance.

3.4.2 Testing the Agent

To evaluate the generalization of the learned policy, we created a second demonstration dataset

from different intersections that were not included in the training set. Following the procedures

described in Section 3.3, a supplementary collection of 51 videos was acquired, resulting in a new

set O : Zo × Ao of 1170 observations. The optimal action for those samples was crowd-sourced
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(a) 4-actions configuration (b) 8-actions configuration (c) 13-actions configuration

Figure 3.3: All actions-space configurations experimented while training and testing the agent.

to another ten experts who labeled each sample at least five times. The conditions described for

labeling the initial set D were also followed here.

Table 1 presents the accuracy of the derived policy, applied over the observations on O. These

results are computed based on the best-predicted action of the classifier compared to the action that

received the most votes from our experts. However, we note that best-action accuracy metrics are

not meaningfully indicative of the model’s actual performance on a practical task. Instead, Table 2

presents the mean absolute error in the agent’s predicted action, a measurement computed by taking

the absolute difference between the index of the action inferred by the policy from an observation

and the index of the winning vote from the experts. Considering that our distribution of the action

space is dependent on the spatial arrangement of the bins, we excluded the results of the action

unknown in this calculation.

Model 4-Action 8-Action 13-Action

ResNet-50 0.746 0.635 0.503

Xception 0.822 0.615 0.526

Squeezenet 0.775 0.483 0.393

Mobilenet 0.822 0.599 0.467

Table 1: Accuracy of each model in predicting the correct action, compared to the experts’ optimal

action.

Model 4-Action 8-Action 13-Action

ResNet-50 0.27± 0.03 0.61± 0.07 1.14± 0.12

Xception 0.20± 0.03 0.59± 0.07 1.05± 0.12

Squeezenet 0.26± 0.03 0.83± 0.07 1.37± 0.12

Mobilenet 0.20± 0.03 0.71± 0.08 1.24± 0.12

Table 2: Each model’s mean absolute difference between predicted action and the experts’ optimal

action, presented with the corresponding 95% confidence margin.

As can be seen, relying solely on the accuracy metric would suggest that the agent exhibits poor
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performance. However, given the mean absolute error reported—typically within a difference of a

single bin—the average performance of the system is actually satisfactory across all model types and

action space configurations. This can be verified by analysis of the confusion matrix for each action-

space configuration. One can observe in Figure 3.5 a strong tendency around the diagonal in all four

models, indicating that errors in the agent’s prediction are most often the result of confusion with

an adjacent, i.e., very similar, action. Thus, a mean absolute error metric is more appropriate than a

simple correctness percentage score to characterize the performance of the model. Although we only

present here the 8-actions configuration, similar behavior was exhibited for the other action-spaces

tested.

(a) expert’s prediction (b) agent’s prediction (c) activation maps

Figure 3.4: Mobilenet top-3 predictions (blue, green, red) vs. experts’ predictions on the 8-action-

space. A missing bin corresponds to unknown. (c) shows the CNN activation maps [115].

It is also interesting to note that for situations where the experts’ optimal action was unknown

(i.e., the correct label is 0), the agent would most often confuse it with the extreme veering conditions

(i.e., actions 1 and 7). This suggests that when the expert is unsure of the required action, the

agent’s predictions recommend rotation. We suspect that this behavior is related to the way experts

chose the optimal action in the training demonstrations; when the goal was not seen, the expert

would choose the edge column that they guessed was the best direction to which one should rotate.

Figures 3.4 and 3.5 make it evident that the agent has also learned this behavior. Although some

perfect agreements between the policy and the expert’s judgment are represented in the first row of

Figure 3.6, there are still scenarios in which the goal is occluded and the policy is not capable of

inferring the correct behavior, as shown in the third row of Figure 3.6.

3.4.3 Mobile Prototype

To evaluate the potential of our solution, we developed a prototype application, initially for the

Android platform, presuming our users would possess nothing more than a smartphone and bone-

conduction headphones as an aid to complete the task. While designing this prototype, we decided

not to pursue an evaluation of factors such as energy efficiency, traffic data, or inference times.

Instead, we implemented a mobile-only approach to gauge the feasibility of such an implementation

empirically.

Our prototype performs three high-level tasks. First, using the front-facing camera of the smart-

phone, the system captures and pre-processes video frames. Next, a batch of these frames is fed into

the pre-trained network for inference, based on Google’s Tensorflow API for Android [2], and the
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(a) expert’s prediction (b) agent’s prediction (c) activation maps

Figure 3.6: Mobilenet top-3 predictions (blue, green, red) vs. experts’ predictions on the 8-action-

space. A missing bin corresponds to unknown. (c) shows the CNN activation maps [115].

However, as the analysis of the results showed, a lot of work still remains. Firstly, our method

would greatly benefit from the collection of a larger number of demonstrations for both the training

and testing processes. This increase in amount of data would undoubtedly help the generation of

a robust agent, more capable of handling usual roads configurations. Another interesting problem

would be to explore human-computer interaction aspect.

That is, how should one render the agent’s outputs with each of the action-space configurations we

presented. To answer this question, future work should aim at developing a smartphone application,

built on these trained models. A user study with visually impaired individuals should then be

conducted to evaluate the effectiveness of the various rendering possibilities. Moreover, it would be

interesting to benchmark each model’s battery consumption statistics and inference times.
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Chapter 4

Interactive Imitation Learning via

Uncertainty-aware Direct Policy

Derivation

4.1 Introduction

The use of machine learning algorithms in robotics is becoming mainstream with applications in a

rich and an increasing number of domains. As initially discussed in Chapter 2, safety is a critical

component in the expansion of the domains to which imitation learning techniques can be applied.

Today, there are numerous examples of learning algorithms controlling a self-driving car [23], helping

people with disabilities [37], aiding in diagnosis and healthcare treatments [31], among many others

areas. As this list keeps expanding the need for safety guarantees in learning algorithms continues

growing.

A summary of the potential threats of the application of learning algorithms, and AI in general,

to a real-life problem is presented by Amodei et. al. [10] where the authors identify at least five

major sources of failure in AI methods and their underlying assumptions: negative side effects,

reward hacking, scalable oversight, safe exploration, and robustness to distributional shift.

Chapter 2 presented a general overview of the problem of imitation learning, state of the art

algorithms and its performance guarantees (contrasted with the expert’s). The methods presented

there provided solutions to the known limitations of the reduction of imitation learning to supervised

learning: distributional shift. These algorithms introduced learning a policy interactively through

the strategies of policy mixing, data aggregation and randomized exploration to solve the problem of

the distributional shift, a process from that will be called from now on Interactive Imitation Learning

(IIL) [105]. To clarify what the scope of IIL is, Algorithm 4.1 serves as a template for describing

the general steps of IIL as it summarizes each of the strategies mentioned before.

Despite the formal guarantees offered by the algorithmic analysis presented in [107, 109, 110, 124],

from the perspective of safety one can question whether the stochasticity added by implicit or explicit
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execution of the learner’s policy in earlier stages of training introduces safety concerns in an imitation

learning algorithm. For instance, both DAgger [110] and AggreVaTe [109] analysis have assumed

that π∗ is able to recover from the change in the state space visitation distribution dπi
induced by

executing πi ([107] Section 2.2 and [109] Section 2.2). Thus, it remains unclear whether random

policy mixing and exploration strategies -like the one presented in Algorithm 4.2- could guarantee

the safeness of an IIL learning procedure. As a thought exercise one may question what would

happen in large-finite or infinite horizon tasks when uniformly sampling a time step (Algorithm 4.2,

step 3) for exploiting a non-converged learner’s policy or for execution of an exploration step that

gives an amount of execution time t to any of those steps that disregard the global status of learning

procedure.

Algorithm 4.1 General Interactive Imitation Learning

Require: π∗ : expert’s policy, N : iterations, H : classifier, α: mixing coefficient

1: algorithm GIIL(π∗,H, N, α)

2: T ← ∅, π1 ∈ Π

3: for i← 1...N do

4: mix πi = αiπ
∗ + (1− αi)πi . αi = pi−1: π∗ execution decays over time.

5: sample Ti = RandomSampling() . see Algorithm 4.2

6: aggregate T ← T ∪ Ti . optionally, if use a cost-sensitive classifier

7: learn H(T ) : πi = argminπ∈Π Es∼dπi
[eπ(s)] . H(T ) cost-sensitive or H(Ti) online

learner.

8: return πi best on validation.

Algorithm 4.2 Random Sampling on Interactive Imitation Learning

1: D ← ∅

2: for m← 1..M do

3: sample t ∼ U(1, T ) . randomly sample a time step t.

4: execute πi from 1..t− 1 . execute in-training policy πi.

5: explore (st, at) . random exploration step.

6: execute π∗ from t+ 1...T . use expert’s policy π∗ to recover.

7: D ← D ∪ 〈s, a〉

8: return D

Consequently, this chapter aims to establish the impact of considering safety issues over the

Interactive Imitation Learning setting.

4.2 Related Work

The problem of safety in Sequential Decision Processes (SDP) has attracted a significant amount of

research over the years [49]. This research characterizes the fundamental safety issue on SDP solution
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algorithms: the ergodicity assumption. Most methods assume that the state space of the decision

problem is ergodic: any state is reachable from another after a finite number of decision epochs.

Regarding system safety, ergodicity implies that there are no regions or subsets of the state space

from which an expert agent cannot recover. Particularly, common exploration techniques encourage

inspection of infrequent regions (or subsets) of the state space as a method for policy improvement.

Assuming ergodicity is impractical (and dangerous) in real physical systems [87]. While the literature

agrees on the dangers of the ergodicity assumption, it disagrees over the approaches that could be

implemented to prevent a learning system from reaching dangerous regions of the state space.

4.2.1 Safety on MDP

The work in [53, 52, 7, 44] proposes to ensure safety by performing a reachability analysis of the

system state space (or its transition probabilities). This method assumes that it is possible to com-

pute safe regions of the state space (reachability sets) to where the system can be kept constrained

during execution. An issue with applying reachability analysis in many real systems is that it suffers

from the curse of dimensionality: it is impractical to be applied to those systems where the dimen-

sionality of the state (or observation) space is high. Nevertheless, the fundamental disagreement

in literature relies on the argument of whether reachability sets are sufficient to ensure safety in

an MDP. In the framework of Markov Decision Processes (MDP), guaranteeing safety constraints

over exploration and exploitation strategies has been reflected by work in [50, 87, 48, 131, 130]. For

instance, Moldovan and Abbeel [87] present an example of an MDP where finding safe regions using

the partitions of the state space (visited states) –like in [53]– fails to guarantee safety. Instead,

the solution Moldovan and Abbeel propose the use of the frequency of those visitations to ensure

safety, a strategy equivalent to ensuring safety over the policy space. Interestingly, this perspective

seems to be a consequence of the one-step lookahead characteristic of Reinforcement Learning (RL)

algorithms.

It remains unclear then where either strategy can thoroughly ensure the safety of MDP-formulated

machine learning systems. However, despite its MDP formulation, ensuring safety in Imitation

Learning algorithms provides a different context. In an SDP (or an MDP), the learning agent starts

with no knowledge of the task and it has to execute while learning and exploring. Having no pre-

vious knowledge implies the agent operates with no prior over which state-action pairs are safe or

unsafe. Garćıa and Fernández [48] relates the introduction of demonstrations of expert behaviour

as a method to bootstrap and control safe exploitation and exploration in RL, a proposition that

further validates that ensuring safety on the IL framework is a more constrained problem: the expert

offers an optimally-safe behaviour as it demonstrates a task as long as it can be considered rational

and non-adversarial.

4.2.2 Safety on Imitation Learning

As a subset of the general SDP problem, the literature on safety guarantees in Imitation Learning is

not as ample as it is for other solution methods. Probably, the Confident Execution framework by
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Chernova & Veloso [29] is one of the earliest attempts to circumvent safety issues around IL. Confi-

dent Execution is a general purpose method that requires that the parametrization of the learner’s

policy to be any classifier capable of providing -along with the classification- a measurement of its

confidence in the predicted value. Then, it requires an autonomy threshold value that defines when

the control of the system is transferred from the learner to the expert and vice-versa. Although

initially stated as a method for Active Imitation Learning [120, 68], introducing the learner’s uncer-

tainty into the framework ensures an adjustable autonomy setting where it was possible to alternate

between autonomous and supervised execution safely.

In derivative work, Chernova and Veloso [30] extended the Confident Execution framework to

consider a multi-thresholded approach as single threshold was deemed insufficient for classifiers

of higher complexity (Support Vector Machines, k-Nearest Neighbors, and others) than the one

initially used in [29] (Gaussian Mixture Model). Remarkably, the analysis of why a single threshold

is insufficient reveals that in an interactive setting, as the decision boundaries of the classifiers are

being defined while the training progresses, it is difficult to determine a single threshold for the

uncertainty of the classifier for all classes in the problem. Furthermore, it is important to note

that the selection of a unique threshold is also impacted by the separability of training samples

on the state space and the representational capacity of the classifier. The multi-threshold solution

proposed required a threshold value for each decision boundary provided one can extract the decision

boundaries for each classifier.

Probably, the most comprehensive solution to safety in an Imitation Learning setting has been

given by the Confidence-Based Autonomy framework proposed by Chernova & Veloso [28]. This

algorithm extends the Confident Execution framework by explicitly incorporating the teacher’s in-

tervention at any decision epoch in the learning process. These interventions are considered Cor-

rective Demonstrations and are fed to the classifier as part of the training procedure. The authors

found that this technique, in the evaluated settings, was more effective than negative reinforcement

while it made the learning agent correct its mistakes faster. One of the goals of the present work

is to conciliate the Confidence-Based Autonomy framework with recent developments in Interactive

Imitation Learning algorithms as recent developments in this area [72, 136, 86] are considered here

as derivations of the Confident Execution framework, and that do not thoroughly ensure the safety

of the learning process.

The work in [72, 136, 86] explores metrics for establishing the boundaries between the teacher

and the learner agent. For instance, Kim & Pineau [72] (Maximum Mean Discrepancy-IL) establish

a bound over the discrepancy between the learner and the expert policy predictions during training

and uses a single threshold to determine how to mix these policies during training with DAgger

[106]. Meanwhile, Zhang & Cho [136] (SafeDAgger) trained a binary safety classifier that predicts

0 when the error of the learner policy prediction compared to the expert’s input is above a certain

threshold and 1 when it is below. Then, the learner’s non-converged policy is executed when the

safety classifier predicts a safe scenario, otherwise, the expert is asked for demonstrations. Finally,

Menda et al. [86] (DropoutDAgger) improved over [136] by discarding the safety classifier and

estimating the uncertainty of the learner’s policy parametrization using Monte Carlo Dropout [47]
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as a Bayesian approximation. As will be discussed in the next sections, it will be interesting to

analyze if these learner-centric algorithms are robust enough to overcome overconfident predictions

of the classifiers and misspecification of the uncertainty threshold.

4.3 Uncertainty-Aware Interactive Imitation Learning

The problem of approximating a control policy π̂ from a set of traces T of an expert policy π∗

execution can be stated as the unconstrained minimization problem of finding the policy in a policies

space Π that minimizes a cost function C that measures the agreement between the expert’s and

the learner’s decisions at every state on S:

π̂ = arg min
π ∈ Π

C(π(s), π∗(s)) s ∼ dπ (10)

At first glance, the problem of imitation learning reduces to a supervised offline learning clas-

sification or regression problem. In this non-interactive formulation, the expert policy execution

generates a distribution of visited states dπ and defines a region So of the state space that can be

considered safe assuming the expert is always non-adversarial and rational. Thus, it is feasible to

consider that offline non-interactive methods are less prone to present safety issues induced by a

non-optimal policy execution. However, as discussed in Chapter 2, staying within the boundaries of

this region does not yield the best performance results.

State-of-the-art IIL methods propose an interactive setting where the learner’s and the expert’s

policies execution are interwoven and in which exploration steps are encouraged. However, leaving

the expert-induced region imposes safety issues on this process. These issues are not only provoked

by exploration steps but also by the unbounded execution of a frequently non-optimal and often

non-converged policy parametrization.

4.3.1 Safety Boundaries on the State Space

An unusual characteristic of IIL algorithms during training is the distributions of the tasks state

space S (e.g., all images of 128 × 128 × 3 pixels) they induce. A detailed analysis of the General

Interactive Imitation Learning (GIIL) framework -Algorithms 4.1 and 4.2- results in the division of

the input space into at least three major safety regions or subsets of the state space. Each of these

sets can be explained by (1) the agent that induces the state visitation distribution of the region

and (2) which agent guarantees the safety in the region.

First, an optimality region So -Definition 4.4- is the region defined by all the samples of the state

space visited as a product of the execution of the expert’s optimal policy π∗ and characterized by

the state visitation distribution dπ∗ .

Definition 4.4. The optimality region So ⊂ S is a region of the state space where ∀st ∈ So =

{s0, s1, ..., sN}, st is induced by the execution of the optimal policy π∗.

Second, there exist a recoverability region Sr –Definition 4.5– containing samples induced by the

mixture of policy απ∗+(1−α)π̂ and the uniformly sampled timestep strategy. The excess of samples
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in Sr (compared to So) originate from those instances of the state space visited as a consequence of

mistakes made by executing the learner’s policy or by random exploration steps (implicit or explicit

exploration).

Definition 4.5. The recoverability region Sr ⊂ S is a region of the state space where ∀s ∈ Sr there

exist a finite number t of steps such that if we follow π∗ for t timesteps then st ∈ So.

Moreover, finally, the region defined by all the samples outside the boundaries of the recoverability

region Sr but inside the perceptual state space S is from now on called uncertainty or novelty region

Su. These samples define the boundaries of the expert knowledge of the task (optimal or near

optimal states) and constitute final error states from which the task cannot, or is not advisable to,

be recovered.

Definition 4.6. The uncertainty region Su is composed by all state space samples such that ∀s ∈

Su, s 6∈ Sr and it is also given by the expression Su = S \ Sr.

Even if initially supervised learning approaches tried to estimate the underlying expert policy by

only observing traces of execution inside the boundaries of So, the introduction of the traits discussed

in Chapter 2 increased the exhaustiveness of the state space visitation. This analysis highlights an

important issue: IIL algorithms have solved the distributional shift by pushing the boundaries of

the subset of the state space where the distributional shift occurs. While these traces have indeed

increased the robustness and performance of the learner’s policy (knows how to react to a significant

number of instances of the state space), this improvement has come at the expense of sacrificing the

safety of the learning process.

4.3.2 Safe Interactive Imitation Learning

The existence of an uncertainty region is sufficient evidence that the problem of distributional shift

persists for GIIL. The reachability of the state space instances inside Su is not currently bounded

by any of the learning techniques discussed despite being stochastically and implicitly encouraged

by policy mixing, random sampling and exploration strategies in this framework.

Hence, it is essential to guarantee that the steps of policy mixing and random sampling induce

ergodic traces in τ ∈ T. The ergodicity of the traces has to comply with either the expert’s or the

learner’s knowledge. A recoverability trace – Definition 4.7 – crosses the boundaries of the optimal

region So into the recoverability region Sr and back, provided the implicit or explicit exploration

steps selected at random can guarantee the learner remains inside Sr, a situation for which no formal

guarantees have been given.

Definition 4.7. A trace (in state space) τ = {s0, s1, ..., sN} is a recoverable finite subset of the state

space induced by an imitation learning algorithm if s0, sN ∈ So then ∃st ∈ τ where st ∈ Sr.

Furthermore, there is a significant issue with the learner’s execution at learning and testing

phases: the traces of π∗ from which the learner derives π̂ almost never contain the expert decisions

in the uncertainty region Su. In simpler words, the state distribution dπ̂ induced by learning π̂ does
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not exhaustively cover the full perceptual state S, and it is far from the real underlying distribution

p(S) for high-dimensional perception inputs. Consequently, robustness to distributional shift is not

an inherent property of GIIL or any policy derivation technique that uses a finite number of policy

traces over optimal or near-optimal states. Thus, in order to guarantee the safety of a decision-

making system where its policy has been derived from demonstrations it is necessary to construct

exhaustive policies:

Definition 4.8. A learned policy π̂ is considered exhaustive if and only if ∀s ∈ S, ∃a such that

π̂(a|s) > 0

Creating an exhaustive policy by solely using traces of the optimal policy is not trivial. There

are at least two significant steps that need to be taken for creating such type of policy: (1) to detect

samples outside (inside) the recoverability region Sr and (2) to define a suitable action for out-of-

distribution samples at test time. Probably, the complexity of both steps is one of many factors

making distributional shift a pervasive problem on the application of machine learning algorithms

[10], not only in the GIIL setting. Then, it is possible to define the safety requirements for the GIIL

framework formally:

Definition 4.9. A General Interactive Imitation Learning process is safe if and only if it is possible

to guarantee that:

(a) Recoverability: for all τ = {s0, s1, ..., sN} ∈ T, the start and final states {sτ0 , s
τ
N} are in

So and should exits sτt ∈ τ such that sτt ∈ Sr.

(b) Exhaustiveness: ∃π̂ ∈ Π that guarantees that ∃a so that π̂(a|s) > 0 for all s ∈ S.

4.3.3 Safe Imitation Learning via Uncertainty Estimation

One of the strategies that has been successfully employed to guarantee safety in an otherwise utterly

stochastic exploration processes is bounded exploration. Bounded exploration refers to the set of

techniques that constrains the execution of an agent into a region of the state space where even the

worst outcomes are recoverable [10]. By its nature, GIIL reduces the bounded exploration task to

defining the partition {So, Sr, Su} of the state space induced during the learning and testing phases

and by guaranteeing that the traces generated during these phases are, at least, recoverability traces.

In GIIL, bounded exploration setting is slightly different to a general MDP learning approach (rein-

forcement learning) while the expert’s knowledge of π∗ and the induced state visitation distribution

could define the recoverability set Sr of the state space. Furthermore, the term exploration does not

only refer to implicit exploration steps included in the framework but also to the execution of the

non-converged learner’s policy.

Recent literature [8, 32, 69, 86, 81] has proposed uncertainty as a measure for modelling an

agent’s knowledge (or lack of it) in an IIL process. Generally, the learner’s policy is parametrized

by machine learning models with sufficient capacity for the task at hand (e.g., neural networks).

Hence, referring to the uncertainty of the learner’s policy reduces to estimate the uncertainty of

the underlying model used to parametrize the policy. Numerous sources can cause uncertainty in
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a model prediction: noisy measurements, misspecification of the hypothesis class (inductive bias),

uncertainty in the hypothesis parameters, or -at test time- out-of-distribution samples [46].

The uncertainty of a machine learning model (or any parametric estimation of a phenomenon)

is further divided into two major types according to the factors that origin them: aleatoric and

epistemic [90, 47, 46]. Aleatoric uncertainty describes the inherent variability associated with the

physical system or the environment under consideration. Epistemic uncertainty is a potential inaccu-

racy in any phase or activity of the modelling process that is due to the lack of knowledge. Although

this distinction is customary in general machine learning settings, in GIIL, of more relevance to

estimate are: (1) the uncertainty of the teacher Uπ∗(s) and (2) the uncertainty of the learner Uπi
(s)

over a particular state of the environment. With access to any function of the form U(s) : S 7→ R≥0,

it is feasible to pose the Safe GIIL as a minimization problem. Bounding the states visited during

the learning process with the expert’s and the learner’s uncertainty constraints the subset of policies

Πsafe the optimization process can find.

Then, it is possible to devise at least three different optimization problems constrained by the

uncertainties available during learning time. Firstly, it is desirable to design a Safe Interactive

Imitation Learning with Expert Uncertainty minimization problem where, for all visited states of

the state space S and having the expert’s uncertainty is below certain threshold δ∗ the process of

deriving a safe policy πsafe is defined by:

π̂safe = arg min
π ∈ Πsafe

C(π(s), π∗(s)) s ∼ dπ

s.t. Uπ∗(s) < δ∗, s ∼ dπ

(11)

Similarly, the converse problem, Safe Interactive Imitation Learning with Learner Uncertainty is

the minimization problem that uses the learner’s uncertainty to define the constrained region of the

state space where the uncertainty function Uπi
at timestep i is bounded by a user-defined value δ

and it is defined by the expression:

π̂safe = arg min
π ∈ Πsafe

C(π(s), π∗(s)) s ∼ dπ

s.t. Uπi
(s) < δ, i = 1 . . . N, s ∼ dπ

(12)

Also, it is desirable to devise a third problem inspired by the notion of shared trust: shared

uncertainty. In this setting, Safe Interactive Imitation Learning with Shared Uncertainty merges

the expert’s and the learner’s uncertainty estimation functions such that:

π̂safe = arg min
π ∈ Πsafe

C(π(s), π∗(s)) s ∼ dπ

s.t. Uc(s) < δc, i = 1 . . . N, s ∼ dπ

(13)

where Uc = α Uπ∗(s)+(1−α) Uπi
(s). Then, the problem is to incorporate these constraints into the

GIIL framework described by Algorithm 4.1 and to investigate how each of the strategies of policy

mixing and random sampling are affected by those changes.
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(b) Behavior of Preferential Policy Mixing

(PPM) αpπp + (1 − αp)πs. As Up(s) → 0

the primary policy πp takes control, conversely

Up(s) → ∞ cedes control.

Figure 4.1: Uncertainty-aware policy mixing.

4.3.4 Uncertainty-Aware Policy Mixing

As explained before, the policy mixing step is one of the most distinctive characteristics of the GIIL

framework:

mix πi = αiπ
∗ + (1− αi)πi (αi = pi−1)

That is one of the reasons why algorithms like MMD-IL [72], SafeDAgger [136] or DropoutDAg-

ger [86] have implemented their uncertainty-aware safety mechanism around this decision rule by

enforcing the execution of π∗ only when Uπ̂ is above a certain threshold. These types of meth-

ods are related to the problem Safe Interactive Imitation Learning with Learner Uncertainty and

they are (along with the expert’s uncertainty variant) special cases of the formal specification of

Uncertainty-aware Preferential Policy Mixing (UPPM).

Uncertainty-Aware Preferential Policy Mixing

Generally, UA-IIL systems design requires to express in the policy mixing (or the IIL system in

general) a preference for either Uπ∗ or Uπ̂ as the measurement of uncertainty driving the system. In

order not to lose generality, πp denotes the policy our system expresses preference for and Up(s) :

S 7→ R
+ a function that assigns to each state (or decision) an estimate of πp’s uncertainty. The

problem is to find a mixing coefficient αp : f(Up), 0 ≥ αp ≥ 1 expressed as a function of the Up that

ensures preference over πp. It is required then that αp guarantees the following conditions:

1. πp asymptotically takes full-control of the if Uπp
→ 0.

2. πp asymptotically transfers control to a secondary policy πs as Up →∞.
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3. πp and πs are executed at random with probability αp and 1− αp respectively.

This implicates that, for a linear interpolation αpπp+(1−αp)πs the preferential policy πp would

be executed with probability 1 when Up reaches its minimum or would not be executed at all when

it reaches a maximum (or a saturation point). This can be mathematically stated as in Equation

14, and presented in Figure 4.1b:

lim
Up→0+

αpπp + (1− αp)πs = πp

lim
Up→∞

αpπp + (1− αp)πs = πs

(14)

Hence, if preference (or access to Uπ̂) over the learner’s uncertainty must be expressed while

designing a system, it is possible to clearly state the form of the mixture with the following expression:

πi = (1− αp)π
∗ + αpπi (15)

If rather, one must express a preference (or access to Uπ∗) over the expert’s uncertainty, the

policy mixture would take the form of:

πi = αpπ
∗ + (1− αp)πi (16)

Equation 15 encases the preference expressed by algorithms like MMD-IL [72], SafeDAgger [137]

or DropoutDAgger [86] where the system control policy is selected by following values of the learner’s

uncertainty function. As discussed, uncertainty-aware learner-driven systems have the potential

to be exposed to overconfident predictions or under(over)estimation of the uncertainty and do not

explicitly offer the expert’s an opportunity to intervene in such cases. Hence, this form of preferential

mixing with learner’s uncertainty does not completely guarantee the Recoverability property

enunciated in Section 4.3.2. On the other hand, there is no previous reference in the literature of

algorithms that implement preferential policy mixing with expert’s uncertainty -Equation 16. Even

if the strategy of expressing a preference over the expert policy does permit the teacher intervention

at any time t, it would also be hard to offer any safety guarantees that are not correlated to determine

expert attention over the horizon of the task.

Nevertheless, both approaches fail to guarantee the rational selection of a policy under uncer-

tainty as they do not take into account the uncertainty of the secondary policy πs to transfer control,

– e.g., what if the expert is not attentive, what if the learner is uncertain, or both cases happen.

This problem violates the principle of Exhaustiveness asserted in Section 4.3.2 that establishes

that a secure IIL system must guarantee safe execution across the state space of the task.

Uncertainty-Aware Rational Policy Mixing

Having analyzed the UA-PPM framework before, a desirable property of an IIL system is then

it should not express in its design preference for either the learner’s or the expert’s uncertainty

estimation. Instead, it should establish a collaborative approach where the level of autonomy is

adjustable by alternating autonomous execution with an expert demonstration. This proposition is
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aligned with the framework of Confidence-Based Autonomy proposed in [30] that was discussed in

the Related Work (Section 4.2).

For the design of this system, it is required to assume that πp, πq (and to ensure the generality

of the analysis) are the policies in the mixture, and that it is possible to obtain access to both

Uπp
, Uπq

: S 7→ R≥0 as uncertainty estimation functions for each policy. Furthermore, to express

the neutrality of the system απp
: f(Uπp

), απq
: f(Uπq

) are used as mixing coefficients for each

policy and a function of their respective uncertainties. As before, the problem is to find the mixing

coefficients απp
, απp

as a function of uncertainty estimation such that the behavior of mixture of

policies with the form πRM = απp
πp + απq

πq ensures the following conditions are met:

1. Consistency or the ability to maintain probabilistic consistent coefficients απp
+ απp

= 1.

2. Rationality or the ability to asymptotically select the best policy under uncertainty.

3. Neutrality or the ability to asymptotically assign equal probabilities to equally uncertain

policies.

4. Impossibility or the ability to detect an impossible decision under uncertainty where no

policy can be confidently selected.

These four conditions can be expressed in terms of the behaviour of the mixture through the

asymptotic limits of each uncertainty estimation function Up, Uq and can be described with the

following mathematical expressions:

απp
+ απq

= 1 (consistency)

lim
Up→0, Uq→∞

πRM = πp (rationality)

lim
Up→∞, Uq→0

πRM = πq (rationality)

lim
Up→0, Uq→0

πRM =
1

2
πp +

1

2
πq (neutrality)

lim
Up→∞, Uq→∞

πRM : undefined (impossibility)

(17)

Under these conditions, a rational mixture of policies πRM guarantees that a more certain policy

has a higher probability of being selected (rationality), a behaviour that ensures the system can

consistently respond over any state, at any decision epoch (Exhaustiveness). For those cases

when no policy can be rationally selected (impossibility) an undefined scenario is created and left

open to the algorithm designer to determine how to act. Another important feature is that any

reasonable selection of the policy must not show, across the IIL training phase, any preference

(neutrality) for any of the policies involved (π∗, π̂). The neutrality of the mixture typically allows a

level of cooperation equal to the one presented in the Confidence-Based Autonomy framework.

4.3.5 Uncertainty-Aware Rational Sampling

Random sampling -Algorithm 4.2- is another characteristic of GIIL algorithms that needs to be

analyzed from the optics of its impact on safety issues. Generally, this strategy is used to collect
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demonstrations from the expert’s policy by randomly (uniformly) sampling a timestep t between

the beginning and horizon of the task t ∼ U(1, T ). This time step defines three partitions of the

sampling procedure where:

1. From 1..t− 1, the system exploits πi.

2. At timestep t, the system explores (s, a).

3. From t+ 1...T , the system executes π∗ (receives corrective demonstrations).

This sampling strategy does not match the mixed iterative control objective of a Safe Interactive

Imitation Learning algorithm. When t ∼ U(1, T ) results in values of t ≥ T/2, it is impossible to

control the system at early stages of training as the non-converged policy receives an amount of

time that is not proportional to its uncertainty (or training error). This phenomena could happen

with probability U(t ≥ T/2) = 0.5, rendering the learning system unsafe if πi parametrization is

non-converged. If executing πi guarantees expert’s intervention at any time -e.g., using Uncertainty-

Aware Rational Policy mixing, it is possible to remove the corrective step (π∗ execution) in the

random sampling procedure. Then, it is only required to find a function t : f(U) of the learner’s

uncertainty Uπ̂ such that balances the exploitation (execution of πi) and exploration (execution of

an exploration strategy E). Such a function should guarantee:

Rationality or the ability to asymptotically select exploitation or exploration under uncer-

tainty.

In this context, rationality enforces that the exploration strategy E is only executed in low

uncertainty contexts and that the execution of the mixture policy πi is under high uncertainty

contexts. This behaviour can be stated as:

lim
Uπ̂→0

t = 0 (explore)

lim
Uπ̂→∞

t = T (exploit)
(18)

After each time step, this strategy now partitions the horizon T into segments for exploitation

and exploration:

1. From 1..t− 1, the system executes πi.

2. From t..T , the system executes E .

For this to work, it is necessary to re-compute t = f(Uπi
) on every step as the uncertainty

estimation of the learner evolves through training. Another way to present this trade-off between

the execution of πi and E is by representing the uncertainty-aware partition of the sampling as

Uncertainty-Aware Preferential Policy Mixture (PPM) πa between πi and E expressing a preference

for πi:

πa = απi
πi + (1− απi

)E , (απi
= f(Uπ̂)) (19)
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From this expression, it is easier to detect a significant drawback of this method: it is highly

susceptible to underestimation of the learner’s uncertainty. In such cases, the exploration strategy E

would be probably selected more frequently. This behaviour would impede the expert’s intervention

through πi. Hence, it is desirable to express E in a way that can allow expert’s policy execution

during exploration. A straightforward solution to this problem could be to formulate an exploration

strategy E ′ through a PPM with the expert policy π∗, and that expresses preference over π∗:

E ′ = απ∗π∗ + (1− απ∗)E (20)

This analysis completes the formalization of the Uncertainty-Aware Rational Sampling mecha-

nism that can now be re-stated as:

πRS = απi
πi + (1− απi

)E ′, (απi
= f(Uπ̂)) (21)

4.3.6 Uncertainty-aware Rational Policy Mixing and Sampling

Having established a mechanism to incorporate uncertainty measurement into the steps of policy

mixing and random sampling, it is possible to devise modification to the GIIL framework that

can guarantee safety during the learning process. Algorithm 4.3 depicts Uncertainty-Aware Policy

Mixing and Sampling (UPMS), a method that by modifying the mixing and sampling strategies

introduces expert-bounded safety into the GIIL framework.

Algorithm 4.3 Uncertainty-Aware Policy Mixing and Sampling

Require: π∗ : expert’s policy, N : iterations, T : horizon, H : classifier, f(Uπ∗) : expert’s uncer-

tainty, f(Uπ̂) : learner’s uncertainty, E : exploration strategy

1: algorithm UPMS(π∗,H, N, f(Uπ∗), f(Uπ̂))

2: D ← ∅, π1 ∈ Π

3: for i← 1...N do . Execute algorithm through N iterations.

4: compute απ∗ ← f(Uπ∗), απ̂ ← f(Uπ̂)

5: mix πRM = απ∗π∗ + απ̂π̂ . Mix learner’s and expert’s policies.

6: sample Di = RationalSampling() . see Algorithm 4.4

7: aggregate D ← D ∪Di . optionally, aggregate data for offline learning.

8: learn H(D) : π̂ = argminπ∈Π Es∼dπRM
[eπ(s)] . H(D) or H(Di) online.

9: return π̂ best on validation.

Following the discussion in the preceding sections, this algorithm does guarantee expert interven-

tion during the complete execution of the learning system. As it is composed by rationally mixing

and sampling, Algorithm 4.3 can ensure that the Recoverability, and Exhaustiveness require-

ments enunciated in Section 4.3.2 are maintained throughout the training phase. However, yet to

be proved are the practical applications of the changes introduced.
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Algorithm 4.4 Uncertainty-Aware Rational Sampling

1: D ← ∅

2: for m← 1..T do . executes Rational Sampling through the horizon T .

3: απi
← f(Uπ̂) . compute mixing coefficient.

4: execute πRS = απi
πi + (1− απi

)E ′

5: D ← D ∪ (s, a∗) . add (s, a∗) pairs when π∗ is executed.

6: return D

Consequently, it is de rigueur to experimentally verify if these modifications impact the learning

procedure of the GIIL framework and if they indeed guarantee safety in the process. By contrasting

UPMS with previous methods on tasks for which they have excelled before, it would be possible to

the determine the reach of these changes and how to possibly mitigate negative impacts they may

have over the training phase.

4.3.7 Uncertainty Estimation

The applicability of uncertainty-aware algorithms to IIL is highly conditioned on the methods used

to estimate the uncertainty of the learner’s (e.g., DropoutDAgger) and also the teacher’s (like in

UPMS). Hence, it is essential to define how to compute the uncertainty functions Uπ̂ and Uπ∗ .

Estimate the expert’s uncertainty when the expert is human is a difficult task. In the case of the

lane following task, the uncertainty of a human driver could be related to different factors including

attention, confidence in the learner’s autonomy, confidence in self-ability, and several others. As

modelling, such a complex behaviour may prove to be challenging, here a simplified version of this

function is implemented. For these experiments, it is safe to assume that the following function

measures the expert’s uncertainty:

Uπ∗ =







0 (if providing input)

∞ (otherwise)
(22)

provided the expert is always attentive during the learning process. Although simple, this function

suffices for the analysis of UPMS -the only of the algorithms investigated that requires teacher’s

uncertainty- and it would be left to future work to investigate whether a more complex specification

of this function improves the overall performance of UPMS.

An Overview of Model Uncertainty

The selection of a CNN as the policy parametrization has the undisputed advantage of increasing the

complexity of the policy space that can be explored. However, the representational power they bring

comes attached with the difficulty of estimating the uncertainty of these type of models. Learning

a parametrization of a policy πθ(a|s) from a set of traces T : S × A can be computed by posing

learning as an optimization process of the form:
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θ̂ = arg min
θ ∈ Θ

C(π, π∗; θ) (23)

where θ̂ is the best fixed point estimate of the parameters. However, this fixed point estimate alone

does not suffice for computing the uncertainty of a model. Instead, it is possible to formulate the

learning process as inference in a Bayesian setting [46] by treating the parameters θ as a random

variable and establishing a prior assumption over its distribution p(θ):

p(θ|s, a) =
p(a|s, θ)p(θ)

p(a|s)
(24)

The distribution p(θ|s, a) represents the most probable parameters for the state and action pairs

given as input to our model. In Equation 24, p(θ) represent our prior assumption over the parameters

and p(a|s) is a probability distribution given by the observation of the traces T. Then, if one aims to

compute the uncertainty of any parametrization, it is necessary to compute the posterior proposed

in Equation 24. As this posterior cannot be computed analytically [46, 51], another parametrized

distribution qω(θ) is used to approximate it, given the following optimization procedure:

q∗ω(θ) = argmin
qω(θ)

KLD(qω(θ)||p(θ|s, a)) (25)

whereKLD is the Kullback-Leibler divergence (relative entropy) and serves as a asymmetric measure

of how a probability distribution diverges from another. Even the value of KLD(qω(θ)||p(θ|s, a)) in

Equation 25 is not tractable by analytic methods as it depends on the joint probability of p(s, a). To

solve this equation, a set of techniques called variational inference [22] is usually employed. There

are at least three major groups of methods to solve the variational inference problem: mean-field

and stochastic variational inference, stochastic gradients of the Evidence Lower BOund (ELBO) and

non-field methods. As a detailed analysis of the algorithms of these groups is outside the scope of

the present work, the reader may find in [21] a recent survey in this literature.

Unobtrusive Uncertainty Estimation

Even if Bayesian Machine Learning (BML) models are ideal candidates to learn tasks where the

estimation of the uncertainty of the model is crucial, there are several shortcomings of these methods

that need to be addressed. Firstly, state-of-the-art BML models do not scale well. When the

dimensionality of the parameter space Θ is high (the curse of dimensionality), just imposing a

Gaussian distribution of the form N (µ, σ; θ) as a prior over the parameters of a model would increase

their memory consumption and reduce their inference performance. Furthermore, changes of this

type would affect existing models that have already obtained significant performance gains by using

a large number of parameters (e.g., DNN, CNN). These are probably the main reasons why most

uncertainty estimation methods developed to date that can demonstrate practical applications try

to find approximations to the Bayesian modelling framework from an unobtrusive perspective.

This unobtrusive perspective has been implemented through the design of methods that leverage

techniques already used in Deep Learning. To date, it is possible to account for modifications intro-

duced on stochastic regularization techniques [47], ensembles of networks [78], weight perturbation
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through optimization methods [71], and batch normalization [126] to be used to estimate uncertainty

unobtrusively over DNN. These algorithms aim to simulate the behaviour of Bayesian models by

introducing a reduced and manageable number of modifications to existing architectures.

From all these methods, uncertainty estimation via stochastic regularization techniques is prob-

ably the most widely applied method with demonstrated success in practical applications. The

method -presented first in [47]- proposes a connection between Gaussian Processes and the use of

Dropout [123] in Neural Networks by placing this stochastic regularizer after every layer of a DNN.

Stochastic regularization is commonly used in learning DNN with the aim to regularize these highly

parametrized models, that tend to overfit the training data. Thus, Monte Carlo Dropout -as this

method is also known- allows the computation of the predictive mean and variance of a parametrized

hθ model evidence p(y|x) by reducing its computation to T stochastic (with dropout probability less

than 1 at test time) forward computations of its prediction [47]:

p(y|x) =
1

T

T
∑

t=1

ht
θ(x)

σ(y|x) =
1

T

T
∑

t=1

ht
θ(x)

2 −

( T
∑

t=1

ht
θ(x)

)2

+
1

T

T
∑

t=1

σ(x)

(26)

In the initial work and subsequent contributions, the authors have demonstrated the applicability

of this method to Convolutional Neural Networks and Recurrent Neural Networks [45] architectures.

Furthermore, the method has been successfully implemented in practical applications to estimating

uncertainty in computer vision models (classification, semantic segmentation) [70] or as an un-

certainty method for autonomous driving pipelines (semantic segmentation, object detection) [85].

Here, due to these properties and along with its use in DropoutDAgger, Monte Carlo Dropout is

the method selected to compute the learner’s policy parametrization uncertainty Uπ̂. To obtain the

results described in the next section, the predictive mean and variance were estimated with T = 16

forward passes of the CNN with a Dropout probability of 0.5.

4.4 Experiments

This section presents the application of UPMS to the problem of lane following to explore the

impact of using Uncertainty-aware Policy Mixing and Sampling (UPMS) in the autonomous driving

domain. Using a single monocular camera as input and a simulated environment, the experiments

also develop a comparative analysis of the safety, performance and learning efficiency of UPMS

against other state-of-the-art IIL algorithms.

4.4.1 Duckietown OpenAI Gym Environments

The Duckietown OpenAI Gym Environments (DOGE)[84] is an OpenAI Gym[25]-style simulation

platform for autonomous driving. It provides a toolkit for developing and benchmarking autonomous

driving solutions in a simulated world that closely resembles the structure of a real Duckietown [98]

configuration. The iterative process of training and testing algorithms in this simulator makes
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been exploited to reach their formal guarantees of performance. It could be hypothesized then that

this in part due to a poorly defined control boundary between the expert’s and the learner’s shared

control during learning. In the experiments configuration presented here, a fully interactive learning

procedure is implemented for all evaluated algorithms with the following rules:

1. The expert policy π∗ has control over the first training episode: αiπ
∗+(1−αi)πi = π∗ (α0 =

1)

2. Starting the second episode, the expert intervenes only as per the requirement of the algo-

rithms.

It is important to state that the requirements of the algorithms in (2) refer to either labelling

requirements or input of teacher’s uncertainty given to each algorithm accordingly.

Also, to ensure fairness and minimize the impact of humans demonstrations in this setting [79],

the training process was repeated over 3 iterations and the results obtained were averaged for

each algorithm performance. Furthermore, to reduce stochasticity in the environment and improve

reproducibility of the experiments, all the random generators were initialized using a precomputed

seed that was kept constant across algorithms in the same iteration (e.g., seed = 1234 for all

algorithms in iteration 1).

The learning samples were feed to the learner’s policy parametrization through online batch

learning. Online batch learning is a method proposed in [109] where after finishing each training

episode –approximately 512 samples in our setting– the state-action pairs collected are used to

train the CNN. This method helps alleviate the noise in the gradient used to optimize this model.

Regarding the optimization method implemented, it was empirically determined that AdaGrad [40]

with an initial learning rate of 0.001 obtained the best results during online training while compared

with other optimizers like Adam [74].

4.4.3 Results and Discussion

The experimental setting described in Section 4.4.2 helped to evaluate the impact of the integration

of uncertainty measures in the GIIL framework. The evaluation is based on the implementation of

Supervised, DAgger [110], AggreVaTe [109] algorithms as IIL baselines that do not incorporate un-

certainty measures into their training procedure. The experiments also included an implementation

of DropoutDAgger [86] as a baseline for the incorporation of uncertainty in IIL. The uncertainty

threshold (predictive variance) σ2 was empirically computed for the task and set to σ2 = 0.1. This

selection also impacted the mixture coefficients in UPMS. To ensure fairness and to make make the

threshold point close to the saturation point of 1− tanh(σ2) ≈ 3 — see Appendix A.1 for a formal

proof that 1− tanh(σ2) is a correct choice for f(Uπ)–, the uncertainty values was multiplied by 30

units.

Also, to isolate the impact of the changes introduced by UPMS, the evaluation procedure included

three variations to the original definition of UPMS. UPMS-NE performs no explicit exploration, hav-

ing E = π̂ that continued exploiting instead executing a random exploration mechanism implemented
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for UPMS. Meanwhile, UPMS-SL tries to address a possible data starvation problem in UPMS by

aggregating π̂(s) predictions to the training dataset. A data starvation problem may exist in the

original definition of UPMS as its sampling method only aggregates (s, a∗) when an expert inter-

vention happens (except on the first iteration of training). Finally, UPMS-NE-SL accounted for a

combination of the strategies explained above.

Algorithms Training Reward Penalties Out of Bounds Queries

Supervised (baseline) 3434.85± 8.67 9.06± 0.36 2 5120

DAgger (α1 = 0.99) [110] 3175.94± 14.63 32.88± 4.47 1 2924

AggreVaTe (α1 = 0.99) [109] 3154.63± 67.03 252.63± 43.58 13 4440

DropoutDAgger [86] (σ2 > 0.1) 3574.55± 10.75 17.87± 0.51 5 2826

UPMS (α = 1− tanh(30 · σ2)) 3807.29± 10.83 10.18± 0.78 1 994

UPMS-NE (no exploration) 3813.60± 11.20 9.18± 0.54 1 931

UPMS-SL (self-learning) 3517.04± 22.41 12.74± 0.62 0 1175

UPMS-NE-SL 3948.06± 25.58 3.53± 0.34 0 1100

Table 3: Training reward, penalties, outs of world bounds, and number of queries to the expert

(interventions) originated from the training phase of each IIL algorithm in DOGE.

Table 3 reflects the results obtained during the training phase of each algorithm on the lane

following task in DOGE. As stated earlier, DOGE reward shape and control flags allow a fine-grain

analysis of safety issues in the learning process. The training reward reflects the performance of the

entire system -teacher and expert mixture of policies- over the total number of episodes (10) it was

executed during training. Here, the reward has been re-normalized to exclude the out of bounds

negative penalty (-1000) given by the simulator in such cases (out of bounds column). Also, it is

reasonable to notice the distinction between the positive and negative reward (penalties) received

by the system during training. In DOGE simulations, negative values of reward are given by the

environment when the learning system invades the opposite lane or moves contrary to the lane

direction. That negative signal along with the occurrence of out of bounds events constitute the

primary measure of safety for an IIL algorithm in our evaluation.

The analysis of the results presented in Table 3 evidences that uncertainty-aware IIL algorithms

(DropoutDAgger and UPMS variants) offer better safety guarantees to learning system while re-

quiring fewer interventions/queries to the expert’s policy, a result that reaffirms the findings in [86].

It is also interesting to note that both DropoutDAgger and UPMS and its variants improve the

learning system behaviour where these shared control strategies outperform a supervised learning

baseline containing only human input. Furthermore, UPMS and its variants significantly exceed

DropoutDAgger (and traditional IIL baselines) performance across all the evaluation parameters

over the full training steps (5120). As discussed before, one of the main drawbacks of DropoutDAg-

ger -and any leaner-based Preferential Policy Mixing strategy in general- is that it does not entirely

address the safety issues in the learning system. Failures in the uncertainty estimation function or

misspecification of the uncertainty threshold may provoke the overconfident execution of the learner’s
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Figure 4.4: Normalized (pure) reward obtained by each algorithm over training episodes.

policy. This phenomenon is reflected by the penalties and out of bounds quantities for this method

entry in Table 3.

Most importantly, it is also essential to corroborate the consistency of these results from the per-

spective of how the learning system evolves over training episodes. Consequently, Figures 4.4, 4.5

display per-episode values of cumulative normalized reward and total number of queries/interventions

for all algorithms over the 10 episodes they were executed. Regarding training reward, the perfor-

mance drop in DAgger and AggreVaTe towards the end of training empirically solidifies the analysis

that hypothesis these algorithms suffer from safety issues. This situation arises when the mixture of

policies becomes preferential towards the learner’s non-converged policy, making the learning system

harder to control by expert’s input.

An unintended effect of incorporating uncertainty estimation in the ILL framework is the re-

duction of the number of queries (or interventions) of the expert policy. This effect was first ob-

served in [136] and posteriorly corroborated in [86]. As displayed in Figure 4.5, the number of

queries/interventions in DropoutDAgger –which surpasses SafeDAgger [136] in this regard– decreases

linearly with the number of episodes. The uncertainty-based shared control strategy proposed here

(UPMS and variants) has significantly improved this behaviour. After two episodes, the number of

expert’s interventions are reduced to less than a 20% of the horizon size and remains approximately

constant to the end of training.

Figures 4.6, 4.7 display the values of the penalties received and the number of out of bounds

events in each training episode. As discussed before, the value of these parameters corroborate the

analysis on the normalized reward: IIL algorithms suffer safety issues toward the end of training

when the learner’s policy is not converged. This behaviour is observed in DAgger and AggreVaTe

as the amount of negative reward and out of bounds events increases toward the end of train-

ing. Uncertainty-aware IIL algorithms seem to be less affected by this phenomenon. As discussed,

DropoutDAgger still presents some issues in this regard that may be directly related to the selection

of the uncertainty threshold, issues in the uncertainty estimation method, or that the shared control
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Figure 4.5: Expert’s queries/interventions required by each algorithm over training episodes.
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Figure 4.6: Penalty values obtained by each algorithm over training episodes.

strategy is deficient (it was empirically observed that DropoutDAgger does not define a consistent

mechanism to share control with a non-algorithmic expert). UPMS and its variants seem to per-

form consistently in this aspect as the values for penalties remain approximately constant through

training and do not incur in out of bounds events.

4.5 Conclusion and Future Work

This chapter presented an analysis of the incorporation of safety in Interactive Imitation Learning

processes through uncertainty estimation. Here, Uncertainty-Aware Policy Mixing and Sampling

(UPMS) is introduced as an algorithm that can guarantee expert-bounded safety and a higher level

of interactivity than its predecessors during IIL training phase. Experimental results validate these

claims as UPMS performance was contrasted under several safety criteria on the lane following tasks.
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Figure 4.7: Total number of out of bounds events (discrete quantity) for each algorithm over training

episodes and iterations.

Future work should include an analysis to determine if these changes in the learning procedure

have an impact on the learned policy performance at test time, and if any of the policy mixing

procedure described here can aid increasing safety on the IIL policies on real physical systems. Also,

it would be essential to evaluate the algorithms proposed in a closer to real scenario (e.g., Duckietown

instances [98]).
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Chapter 5

Conclusions and Future Work

Imitation Learning (IL) has proven to be an efficient method to find optimal (or near-optimal)

control policies when a formal specification of a task is challenging to design. Learning behaviour

from an expert’s demonstrations has expedited transferring to autonomous systems the knowledge

of tasks that, although trivial from a human perspective, are particularly difficult to specify in

control terms. While earlier systems relied on mathematically-developed routines [3], the paradigm

of deriving control parameters from raw sensorial inputs has significantly reduced the amount of

engineering behind intelligent systems [83, 13, 63], easing their adoption in an increasing number of

domains.

Here, an example of how IL applies to real-life problems was presented in Chapter 3, where the

problem of guiding visually impaired individuals while crossing street intersections is tackled through

IL techniques. As previous methods rely on geometric assumptions or the detection of specific

features, the method presented here proposed a solution closer to realistic deployment scenarios

contrasting with those assumptions that could not be reliably guaranteed to hold in all intersections.

The IL method implemented effectively eliminated the need for extracting specific features, such as

zebra stripes, sidewalks, among others, from the environment. Instead, it uses the advances in CNN

to extract the necessary features to derive an assistive policy.

A system of its kind has the potential to change the lives of its users as it aids their mobility and

exploration capabilities in unfamiliar environments. However, as the analysis of the obtained results

showed, there exist areas that still require further improvements. For instance, the method presented

would greatly benefit from the collection of a more significant number of demonstrations for both the

training and testing processes. This increased dataset would undoubtedly help the generation of a

robust agent, more capable of handling roads configurations. Also, uncertainty estimation techniques

should be included to guarantee that the overconfident predictions of the trained classifier do not

impact the overall system safety. Another interesting problem would be to explore the Human-

Computer Interaction aspect of the system. A user study with visually impaired individuals should

be conducted to evaluate the effectiveness of the various rendering signal to communicate to the

users the system output.

Another critical aspect of Imitation Learning was discussed in this manuscript. Guaranteeing
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safety while interactively training or deploying systems with critical implications to their users,

requires ensuring that a policy derived by the machine learning-based method can consistently per-

form in familiar environments and safely react to the unknown. This limitation motivated the

research presented in Chapter 4 that incorporates safety in the IL training process. Through the

analysis of the different traits of state-of-the-art Interactive Imitation Learning (IIL) algorithms,

an Uncertainty-Aware Policy Mixing and Sampling (UPMS) algorithm that can guarantee expert-

bounded safety and a higher level of interactivity than its predecessors during the IIL training phase.

Additionally, UPMS reduces the number of required expert queries (or interventions) when com-

pared with state-of-the-art algorithms, which further alleviates the burden that current IIL methods

pose over the demonstrator. Experimental results validate these claims as UPMS performance was

contrasted under several safety criteria on the lane following tasks. It is the position of this work

that, Uncertainty-aware IIL algorithms are a fundamental step towards the derivation of policies

that can guarantee safety in AI systems not only during training but also while deployed. This

improvement will make IIL fully applicable in safety-critical applications.

Future work in this area should include an analysis to determine if these changes in the learning

procedure have an impact on the learned policy performance at test time, and if any of the policy

mixing procedure described here can aid increasing safety on the IIL policies on real physical systems.

Also, it would be essential to evaluate the algorithms proposed in a closer -to-real scenario (e.g.,

Duckietown instances [98]). This research also opens up the possible exploration of avenues on the

intersection of Imitation Learning with other areas of Machine Learning research like active learning,

continual learning or curiosity-driven learning.
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Appendix A

Mathematical Proofs and

Derivations

A.1 Hyperbolic Tangent for Uncertainty-Aware Preferential

Policy Mixing

If we select αp = 1 − tanh(Uπp
), we can guarantee the following conditions, initially stated in

Equation 14:

lim
Up→0+

αpπp + (1− αp)πs = πp

lim
Up→∞

αpπp + (1− αp)πs = πs

Proof. We need to analyze the asymptotic behavior of 1 − tanh(Uπp
) when Uπp

→ 0 (minimum

uncertainty - maximum certainty) and when Up →∞ (maximum uncertainty - minimum certainty):

lim
Up→0

αpπp + (1− αp)πs = lim
Up→0

(1− tanh(Up))πp + tanh(Up)πs

= lim
Up→0

πp + lim
Up→0

−tanh(Up)πp + lim
Up→0

tanh(Up)πs

= πp + 0 + 0

= πp (requirement 1)

lim
Up→∞

αpπp + (1− αp)πs = lim
Up→∞

(1− tanh(Up))πp + tanh(Up)πs

= lim
Up→∞

πp + lim
Up→∞

−tanh(Up)πp + lim
Up→∞

tanh(Up)πs

= πp − πp + πs

= πs (requirement 2)

Hence, this proves that 1 − tanh(Uπp
) guarantees that πp asymptotically takes full control of the

learning system as its uncertainty Uπp
asymptotically approaches its minimum. Meanwhile, when
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Uπp
asymptotically approaches its maximum the secondary policy πs πp cedes control of the system

to πs.

A.2 Hyperbolic Tangent for Uncertainty-Aware Rational Pol-

icy Mixing

If we select απp
= 1− tanh(Uπp

), απq
= 1− tanh(Uπq

), we need to prove that selection guarantees

the following four conditions of rationality in the system behavior:

απp
+ απq

= 1 (consistency)

lim
Up→0, Uq→∞

πRM = πp (rationality)

lim
Up→∞, Uq→0

πRM = πq (rationality)

lim
Up→0, Uq→0

πRM =
1

2
πp +

1

2
πq (neutrality)

lim
Up→∞, Uq→∞

πRM : undefined (impossibility)

(28)

Proof. Here, we investigate how the coefficients’ selection satisfies each condition:

1. Consistency: as 0 ≤ απp
≤ 1 and 0 ≤ απp

≤ 1, then, we need to re-normalize their values

such that απp
+ απq

= 1:

α′
πp

=
απp

απq
+ απp

α′
πq

=
απq

απq
+ απp

2. Rationality: we need to prove that our selection of function guarantees the selection of the

best policy in the mixture under uncertainty:

lim
Up→0, Uq→∞

α′
πp
πp + α′

πq
πq =

1− tanh(Uπp
)

2− tanh(Uπp
)− tanh(Uπq

)
πp +

1− tanh(Uπq
)

2− tanh(Uπp
)− tanh(Uπq

)
πq

=
1

2− 1− 0
πp +

0

2− 1− 0
πq

= πp

lim
Up→∞, Uq→0

α′
πp
πp + α′

πq
πq =

1− tanh(Uπp
)

2− tanh(Uπp
)− tanh(Uπq

)
πp +

1− tanh(Uπq
)

2− tanh(Uπp
)− tanh(Uπq

)
πq

=
0

2− 0− 1
πp +

1

2− 0− 1
πq

= πq

3. Neutrality: we need to prove the learning system show no preference for equally uncertainty
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policies:

lim
Up→0, Uq→0

α′
πp
πp + α′

πq
πq =

1− tanh(Uπp
)

2− tanh(Uπp
)− tanh(Uπq

)
πp +

1− tanh(Uπq
)

2− tanh(Uπp
)− tanh(Uπq

)
πq

=
1

2− 0− 0
πp +

1

2− 0− 0
πq

=
1

2
πp +

1

2
πq

4. Impossibility: we need to prove the system is able to detect an impossible decision under

uncertainty where both policy asymptotically approach their maximum:

lim
Up→∞, Uq→∞

α′
πp
πp + α′

πq
πq =

1− tanh(Uπp
)

2− tanh(Uπp
)− tanh(Uπq

)
πp +

1− tanh(Uπq
)

2− tanh(Uπp
)− tanh(Uπq

)
πq

=
0

2− 1− 1
πp +

0

2− 1− 1
πq

=
0

0
πp +

0

0
πq

does not exist

A.3 Hyperbolic Tangent for Uncertainty-Aware Rational Sam-

pling

If we make t = bT tanh(Uπ̂)c, it is possible to demonstrate the system has the ability to asymptoti-

cally trade-off exploitation and exploration steps under the learner’s uncertainty values:

Proof. Rationality:

lim
Uπ→0

t = 0 (explore when certain)

lim
Uπ→0

bT tanh(Uπ̂)c = bT0c

= 0

lim
Uπ→∞

t = T (exploit when uncertain)

lim
Uπ→∞

bT tanh(Uπ̂)c = bT1c

= T
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[49] Garćıa, J., and Fernández, F. A Comprehensive Survey on Safe Reinforcement Learning.

Journal of Machine Learning Research 16 (2015), 1437–1480.

[50] Geibel, P., and Wysotzki, F. Risk-sensitive Reinforcement Learning Applied to Control

Under Constraints. J. Artif. Int. Res. 24, 1 (jul 2005), 81–108.

[51] Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521 (2015),

452–459.

[52] Gillula, J. H., and Tomlin, C. J. Reducing Conservativeness in Safety Guarantees by

Learning Disturbances Online: Iterated Guaranteed Safe Online Learning. In Robotics: Science

and Systems (Sydney, Australia, 2012).

[53] Gillulay, J. H., and Tomlin, C. J. Guaranteed safe online learning of a bounded system.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (sep 2011),

pp. 2979–2984.

64



[54] Giusti, A., Guzzi, J., Cirean, D. C., He, F.-L., Rodŕıguez, J. P., Fontana, F.,
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