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ABSTRACT 
 

Simultaneous localization and modelling: SLAM for mobile 3D printing 

 
Jinbo Li 

 

 
 
 

Traditional additive  manufacturing is constrained  by the  workspace of the  printer,  i.e. 

printers  can  only print objects  within  the  printer’s  boundary.    Mobile 3D printing is 

developed here to fabricate large-scale objects that extend beyond a printer’s workspace. 

Mobile 3D printing uses a small-size robotic system to build large objects by connecting 

multiple small segments.  A possible example application for this is additive construction on 

extraterrestrial surfaces, using locally sourced material, to minimize the overall need for 

equipment and materials launched from Earth. 

The system is equipped with both a laser total station (range and bearing sensor) and 

3D scanner; measurements from these two sensors are fused to overcome the deficiency of 

each individual sensor.  An Extended Kalman Filter (EKF) based Simultaneous Localization 

And Mapping (SLAM) algorithm is implemented in order to align neighboring segments.   A 

representation for planar patches of the model being printed, with each patch represented by 

2 angles for the normal vector plus a 3D point on the patch, is proposed and shown to be 

particularly suited for this type of task. 

The system achieves sub-millimeter geometric accuracy and avoids the SLAM inconsistency 

problem for well beyond the bounds of odometry error that could be expected to be 

encountered in practice. 
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Chapter 1

INTRODUCTION

Expanding space exploration will generate a need for larger and more permanent bases and

structures on extraterrestrial surfaces [11, 12]. NASA has shown great interest in a practice

called in-situ resource utilization (ISRU) for over 40 years, and two of the major areas of

this practice are related to mobile 3D printing technology: The technique could support

extraterrestrial surface construction, as well as manufacturing and repairing parts of various

structures. A mobile 3D printing technique is developed in this research which uses a small-

size robotic system to build large objects with sub-millimeter precision.

1.1 Large scale printers

There is related work in the literature on large volume construction by 3D printer. Cesaretti

et al [13] present a 3D printing technology called D-shape (Figure 1.1), aiming to build lunar

soil habitats. This method holds sand together by spraying a binding-liquid on the desired

part of each layer. After, the part of the sand that has not been sprayed by the binding-

liquid is removed, and the remaining sand is binded into a model. This method works well

on Earth. However, since D-shape has to use a machine larger than the model to be printed

and sending such large volume equipment to space is extremely expensive, it is not ideal for

extraterrestrial construction.
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Figure 1.1: D-shape 3D printer [1]

Figure 1.2: 3D concrete printer with contour crafting [2]
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Figure 1.3: Digital Construction Platform (DCP) is printing a dome structure [3]

An additive fabrication technology called Contour Crafting is presented by Khoshnevis et

al [14, 15] (Figure 1.2). Their approach also increases the size of the automated additive

fabrication in order to construct structures. Additionally, they mention their future plan

to use a mobile gantry robot building lunar bases [16]. The mobile gantry has two rover

platforms connected by a crossbeam. On the crossbeam there is a nozzle which moves along

the crossbeam and extrudes building materials. Bosscher et al [17] simplifies the Contour

Crafting technology by replacing the gantry robot system with the cable-suspended robot

system, so that the system becomes more portable and inexpensive.

In order to improve the mobility of automated construction system, Keating et al [18] present

the Digital Construction Platform (DCP) which consists of a compound arm system carried

on a tracked mobile platform (Figure 1.3). This platform is able to build on-site with a

radius of 10.1m, and a maximum printable volume of 2786m3. “Printing while driving” and

“print from a stationary position” two strategies are mentioned, but only the later strategy

is conducted as a case study in their work.
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Figure 1.4: MX3D company is using 3D printer to build bridge [4]

A company called MX3D built a bridge in mid-air by printing steel structure segment by

segment separately (Figure 1.4). However, no detail is given on what the process is and how

the localization is done after moving the 3D printer.

1.2 Mobile printing

The biggest challenge for the additive fabrication technique is the size of the machine used

for construction [19, 20]. NASA proposes to mount the Contour Crafting system on the

ATHLETE robot [21] or other mobile robots to achieve construction for large scale models

(Figure 1.5). Their study mentions that for small structures, the positioning precision can

be a few millimeters, but for larger structures, the positioning accuracy cannot achieve

sub-centimeter, therefore 3D visual feedback is needed in order to achieve higher accuracy.

However, no further detail is mentioned about how to implement that, and no other sensor

besides stereo camera is mentioned.

Wilkinson et al [22] present preliminary findings from a workshop using a multi-robot system

to address the problem of large-scale additive construction. They monitor topographical

changes to the build site using a single overhead Kinect 3D scanner, and mention in passing

the use of each robot’s local information about where material has been deposited, but

provide no further detail and do not achieve practical construction.
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Figure 1.5: ATHLETE with printer head [5]

De Sá Bonelli et al [6] developed a mobile 3D printer called the 3&Dbot which can achieve

printing while moving. However, no sensor is applied in this system and the robot is localized

only by the odometry. Therefore, the accuracy it can achieve is low and the error will

continuously accumulate as the printer moves.

As opposed to printing by a mobile robot on the ground, Hunt et al [23] combine 3D printing

technique with aerial robots to build an aerial 3D printer. They demonstrate the feasibility

of aerial 3D printing by bridging gaps in terrain and repairing damaged structures. However,

they also mention that the major limitations of it is the small payload of flying robots and

the flight stability. Dams et al [24] demonstrate the feasibility of aerial building manufac-

turing system using extruded polymers as building materials. They conclude that Reprocell

500 high-density foam has sufficient rheology and shear strength to be the aerial building

material.
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Figure 1.6: 3&Dbot Mobile 3D Printer is able to achieve printing while moving [6]

Labonnote et al [25] makes a summary of the state-of-the-art additive construction in terms

of large scale construction, systematic mapping studies, building materials and building

designs. There is still a general lack of published papers on the implementation of mobile 3D

printing and the study of its potential challenges, so our study has important implications

for future studies in this area.

1.3 Materials and printing methods

Research of the lunar material processing aspect of ISRU additive construction also shows

some important progress. D. Shrunk et al [26] mention that the lunar regolith can be

sintered by using microwaves in order to produce construction materials. Khoshnevis et al

[16] demonstrate the feasibility of Contour Crafting (CC) technology combined with sulfur

concrete and regolith sintering in the lunar environment. In-situ materials of regolith and

sulfur are easy to find on the Moon, could save energy and are recyclable. Regolith can

be sintered into either blocks or molten building material for CC, and it has been proven

to be strong enough for building structures. Along with the research of D-shape printing

technology, Cesaretti et al [13] develop a suitable lunar regolith simulant and prove that

simulant can satisfy the required structural features in a vacuum environment. Krishna
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Balla et al [27] demonstrate that raw lunar regolith can be melted by laser under a low

energy level, and additive fabrication is successfully tested by using lunar regolith simulant.

Mueller, R. P. et al [28] demonstrate the feasibility of using basalt regolith fines, which largely

exist in planetary regolith, as construction materials. Flexural strength testing on samples

made by lunar regolith simulant indicates that the strength of lunar regolith material is even

better than residential concrete.

This research thus presumes the feasibility of using in-situ extraterrestrial materials for

extended (e.g. fused doposition modeling (FDM)) approaches to additive manufacturing,

and focuses on the robotic challenges. The thermo-plastic polylactide (PLA) is used going

forward.

1.4 Printing on existing complex surfaces

Mobile 3D printing requires each new segment of a compound part to be printed onto existing

other segments in a way that joins them together. In order to demonstrate printing onto pre-

existing segments, Bulger et al [7] performs a tension test comparing monolithic to compound

parts (Figure 1.7). The result shows directly printing material onto pre-existing segments of

the structure being built is workable. Tension testing indicates the compound part interface

is at least stronger than the stress concentration introduced at the gripping interface of

the tension testing machine. Choi et al [8] modifies a fused deposition modeling (FDM)

system by reversing the z stage, which normally displaces a mobile print bed up and down,

and attaching the printer nozzle to the bottom of the z stage, which enables the system

to print on any surface within the limit of building chamber. The modified system is used

to print models on a horizontal 3D plate, a vertical wall, and a curved surface in order to

demonstrate the feasibility of 3D printing on pre-existing surfaces (Figure 1.8). Espalin et al

[29] develop a Multi-Material, Multi-Technology FDM System. This system has a pneumatic

slide connecting two FDM machines. The printed model is transported between two FDM

machines through pneumatic slide, controllable with high precision, in order to accomplish

multiple materials printing during the same build.
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Figure 1.7: Result of tension test, the figure shows the failure surfaces of the mono-
lithic (left) and compound (right) test specimens. The breakage did not happen at the

intersection between two pieces but happened at the clip position [7].

Figure 1.8: ABS P400 cylinder built on black PC/ABS plate in the flexible FDM system
[8]
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1.5 General introduction to Kalman Filtering for Si-

multaneous Localization and Mapping

Mobile 3D printing requires precise robot localization to enable placing the nozzle on the in-

terface with a prior segment. Extended Kalman filter (EKF) based simultaneous localization

and mapping (SLAM), is used in robot localization when the system is nonlinear. Kalman

filter is an algorithm for linear systems. It uses multiple measurements, statistical noise

(i.e. Gaussian noise), and odometry prediction, combined with probabilistic calculation, to

give a more precise robot localization result than a single sensor measurement. EKF is an

extension of the Kalman filter, it linearizes a nonlinear function by using partial derivatives

i.e. Jacobian matrix. A SLAM algorithm keeps track of the robot position and orientation,

while also constructing and updating a map. In our study, the “map” is a parameterization

of the 3D-printed model (i.e. the object being built) and SLAM is introduced in order to

get a more accurate absolute and relative position between printer and model. It improves

the alignment of the entire model and decreases drift.

The EKF is a common approach for the SLAM algorithm, and typically it is feature based.

By measuring the change of feature positions, the algorithm makes an estimation of where

the robot (or the object equipped with sensor) is. Meanwhile, many features can be used as

landmarks, such as points, lines, planes and features in images. Williams et al [30] propose

an approach based on the EKF-SLAM algorithm to navigate an undersea vehicle by using

scanning sonar. Sonar targets are deployed at the field test site, acting as point features.

As the underwater vehicle operates, it identifies sonar targets, as well as the reef wall or a

rocky outcropping, then the system builds a feature based underwater map. Similarly, in our

study, prisms are used as point features to help localize where the printer robot is in global

frame. Garulli et al [31] and Smith et al [32] present algorithms extracting line features from

range scans, while simultaneously updating the robot pose and the linear features on the

map. Clemente et al [33] develop a single hand-held camera, which identifies features from

images. Having the measurements from camera, the system can build outdoor closed-loop

maps using EKF-SLAM. Additionally, Leonard et al [34] develop an EKF based localization
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algorithm using points, lines and arcs as landmarks. The robot is equipped with multiple

servo-mounted sonar sensors and the EKF algorithm provides vehicle position updates.

EKF-SLAM has been applied with much success, but it also has some disadvantages. The

EKF-SLAM is very sensitive to outliers in landmark detection. If the correspondence is

not determined correctly, a large error will be introduced to the system. Moreover, the

EKF suffers from a O(K2) complexity where K being the number of landmarks [35, 36].

In addition, consistency is one of the most important criteria to measure if an estimator is

reliable or not; it reflects whether the result of estimation converges to the true value as the

number of data points used increases indefinitely. Unfortunately, EKF-SLAM always has

inconsistency issue when the model is non-linear [30, 37].

There are some other SLAM methods developed to overcome disadvantages of EKF-SLAM.

Sasiadek et al [35] present a comparison between the EKF-SLAM and FastSLAM. The result

shows that FastSLAM gives better performance for non-linear and non-Gaussian conditions.

Sim et al [38] introduce a vision-based SLAM using the Rao-Blackwellised Particle Filter.

This method has a better performance of handling outliers, and meanwhile improves the par-

ticle filter which scales poorly with respect to the dimensionality of the state. Grisettiyz et al

[39] present an improved method to reduce the number of particles in the Rao-Blackwellized

Particle Filter; it also decreases the uncertainty of robot pose in the prediction step. Thrun

et al [40] introduce GraphSLAM, which is a unifying algorithm for the offline SLAM problem.

This method can handle a great number of features, so it is especially suitable for large-scale

mapping problems.

The reason why we choose EKF-SLAM over other SLAM algorithms is that it is easy and

sufficient to use at this stage of our work. Currently, the system is implemented for CAD

models with simple geometry, so that the number of states in the state vector is small

(typically less than 100). Moreover, the total station provides an accurate measurement of

the system’s yaw angle orientation, so it is easy for us to find correspondence by measuring

angles of planes. Even if there are plane patches that lie on the same plane, the algorithm

can distinguish them by their positions. Furthermore, the consistency does not seem to be
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an issue in our work, because even if a large odometry error is introduced into the system,

the printing result still maintains good quality, as will be shown in Section 4.4.

1.6 Plane patches in SLAM

When a stereo camera or a laser scanner is used as a sensor, detected planes are often

extracted from point clouds and work as the feature landmarks, since they have a relatively

large area and can be easily spotted. Several papers propose methods using planar patches

as features in the SLAM algorithm. Zureiki et al [41] present a method using planar patches

as landmarks in SLAM. While exploring the environment, the algorithm localizes the robot

pose and simultaneously updates the plane model. The SLAM algorithm generates a 3D

map showing both the robot track and the planes in the environment. This study represents

planes in the general form. Each plane is given by its normal vector and its distance to the

origin. Meanwhile, Bolle et al [42] represent complex 3D objects by triplets S = (v, p, P )

where v is an orientation vector, p is a location vector, and P is a size scale. For 3D planar

patches, S = (v, p, 0) where v is the normal vector of the plane and p is the vector from

origin point to the center of mass on the plane. Biswas et al [43] present the Fast Sampling

Plane Filtering (FSPF) algorithm, which extracts planes and points corresponding to planes

from 3D point cloud. Then the algorithm down-projects the 3D planes into 2D and finds

the correspondence of them and the points, in order to build a 2D map. Other than that,

Viejo et al [44] mention an Iterative Closest Point (ICP)-like method combined with SLAM.

This method uses the automatic seeded selection algorithm to extract planar patches from

3D point cloud. Having multiple planar patch data from different scanning positions, a

robot can obtain the movement it performed by pose registration. However, only the pose

of the robot is estimated from pose registration, in order to estimate the planes on the

model as well, SLAM algorithm is required. Furthermore, Gee et al [45] describe a real-time

SLAM algorithm discovering planes and lines captured by a hand-held camera in an indoor

environment. Their work represents planes in nine parameters, which include plane origin,

and two orthonormal basis vectors laying on the plane. Weingarten et al [46] develop a SLAM
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algorithm based on planes, namely the Symmetries and Perturbations Model (SPmodel),

which is used to represent planar features. [47] SPmodel is a representation of uncertain

geometric models. It is worth noting that unlike classic probabilistic models which use

different parameters to represent different geometric elements, SPmodel is able to represent

any type of geometric elements and their respective uncertainties.

The comparison of the previously mentioned SLAM algorithms that use planar patches as

landmarks are listed in Table 1.1. As shown in the table, on the one hand, most classical

planar patch representations use normal vectors to indicate the directions of the planes, while

the representations of plane position vary. On the other hand, SPmodel is different from all

of those classical representations; it uses probability theory to represent the imprecision of

any geometric element and symmetries theory to represent the partiality (degrees of freedom

of each individual element and position relationship between different elements) due to the

characteristics of the geometric element.

A novel plane parameterization particularly suited for mobile 3D printing will be introduced

in Section 2.2

1.7 Predictive SLAM

Chang et al [48] present a SLAM algorithm with Environmental-Structure Prediction. This

algorithm predicts the structure inside an unexplored region before the robot actually mea-

sures it. The prediction is based on the surrounding of that unexplored region and compares

it with the explored region in the map. A correct prediction can reduce the processing time of

SLAM. Ström et al [49] propose a similar approach making prediction about the unexplored

surrounding area based on the previously explored area. Chung, S. Y. et al [50] extend the

Simultaneous Localization and Mapping and Moving Object Tracking (SLAMMOT) prob-

lem to simultaneous map prediction and robot trajectory prediction. The robot can at the
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Table 1.1: Comparison of SLAM algorithms that use planar patches as landmarks

point cloud
plane nor-
mal

distance to
origin

center of
mass/ cen-
troid on
the plane

orthonormal
basis vec-
tors on the
plane

three
Cartesian
coordi-
nates and
three roll-
pitch-yaw
angles

General
form [41]
Triplets
S =
[
v p 0

]

[42]
FSPF [43]
automatic
seeded
selection
algorithm
[44]
planar
structure
formed by
3D points
[45]
SPmodel
[46]

same time passively execute SLAMMOT and actively predict the unexplored map. Predic-

tive SLAM is relevant to our formulation of mobile 3D printing, because it is very useful to

predict the ”map” (i.e. parameterization) of the model we are printing based on its CAD.

1.8 Sensor fusion

In order to apply multiple sensors to the system at the same time and overcome the de-

ficiency of any individual sensor, sensor fusion is a necessary technique to use. Ahn et al

[51] propose a practical approach for EKF-SLAM in indoor environment by fusing ultrasonic
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sensors and stereo camera. It has the advantage that “it can resolve the false data asso-

ciation and divergence problem of an ultrasonic sensor-only algorithm and overcome both

the low frequency of SLAM update caused by the computational burden and the weakness

to illumination changes of a vision sensor-only algorithm”. Nützi et al [52] fuse IMU and

vision for absolute scale estimation in monocular SLAM. This fusion helps the system to

get an estimation of the vehicles absolute position and velocity without drift. Zhang et al

[53] present a sensor fusion strategy for monocular camera and laser rangefinder applied for

SLAM in dynamic environment, which “eliminates any pseudo segments that appear from

any momentary pause of dynamic objects in laser data”. As will be presented in the next

chapter, this work fuses a 3D scanner and total station laser range-finder.

1.9 Outline of remainder of document

This thesis starts by this introduction as Chapter 1, then covers the overview of the mobile 3D

printing system in Chapter 2, which introduces the geometry and state vector of the system.

Later in Chapter 3, the procedure of mobile 3D printing is demonstrated by a flowchart,

then introduced block by block in each section. Chapter 4 shows the experimental results

of mobile 3D printing and demonstrates the importance of each individual implementation.

After that, Chapter 5 gives the conclusion and future work. We also present the measurement

of printing error and sensitivity of the algorithm to the odometry error in Appendix A and

B. The code is attached in Appendix C.

1.10 Contributions

The main contribution of this work is a procedure named mobile 3D printing, which can

fabricate large-scale objects that extend beyond a printer’s workspace. This technique uses

a small-size robotic system to build large objects (Figure 3.1).

14



Aside from the novel procedure itself, key insights that were identified to enable the main

contribution include:

• A determination of the sensors required to achieve mobile 3D printing. Our system

is equipped with total station and 3D scanner as sensors, and by integrating sensor

fusion, the deficiency of each individual sensor is overcome, in order to achieve sub-

millimeter alignment precision. Meanwhile, an EKF based SLAM algorithm is used to

accurately localize the printer pose and printed model, so that the next segment can

be printed at an appropriate position and have a solid connection with the previous

segment. Since we fuse two sensors in the system, there are also two separate parts

of the SLAM algorithm for both total station and 3D scanner. Among them, the

total station SLAM is a standard SLAM which updates landmarks and printer pose

simultaneously, while the 3D scanner SLAM is a predictive SLAM which predicts the

shape of model after printing, before we actually measure it.

• Furthermore, a proposed plane representation that avoids problems related to normal

vector re-normalization and general form plane representations.
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Chapter 2

SYSTEM OVERVIEW

2.1 Geometry of the system

Mobile 3D printing utilizes a robot consisting of a 3D printer equipped with a global landmark

sensor (i.e. total station) and local 3D geometry sensor (i.e. 3D scanner). Figure 2.1 shows

the layout of the Zego delta 3D printer equipped with the Leica TS16 total station and the

GOM Core 3D scanner. The base plate of the 3D printer is removed to enable printing

directly onto the surface below the printer. In addition, it is also assumed that at least three

global landmarks have been placed (e.g. on the perimeter of the construction site).

For the system (Figure 2.2), there is a printer coordinate frame, a scanner coordinate frame,

a total station coordinate frame and a global coordinate frame. The global coordinate frame

is defined with the same origin as the initial printer frame, rotated by −π
2
, and it is fixed once

defined. Transformations from the total station coordinate frame and the scanner coordinate

frame to the printer coordinate frame are required in order to convert measurement from

these two sensors into the printer coordinate frame. Therefore, two calibrations should be

done to the total station and the 3D scanner with respect to the printer, in order to calculate

the relative position between coordinate frames precisely. These will be presented in section

2.2.3.
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Figure 2.1: Configuration of the mobile 3D printer

2.1.1 Model of object to be printed

The model of the object to be printed is designed in CAD (Computer-Aided Design) and

saved in STL format (Standard Triangle Language, a format that stores planes in trian-

gulated surfaces, Figure 2.3). Notice that in this thesis, ‘model’ refers to the whole CAD

model and ‘segment’ refers to the segmented model. An STL file can directly be used for

printing software, and can also be read and converted into vertices and normal vectors of

the triangulated surfaces on models. Those parameters are all defined in an STL coordinate

frame. In order to simplify our work, we define the STL coordinate frame equal to the global

coordinate frame, so no further transformation is required.
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Figure 2.5: Schematic diagram of mobile 3D printing system. All variables expressed in
global frame

[

xp yp θp

]T

, landmark positions
[

xl,1 yl,1 xl,2 yl,2 xl,3 yl,3

]T

, and plane parameters
[

θi ϕi xi
0 yi0 zi0

]T

for i={1, . . . , N} where N is the number of planes in the model of the

3D object being printed. All the state variables are defined in the global frame (Figure 2.5).

The representations chosen for the printer pose and landmark positions are commonly used

angle and position in Cartesian coordinates, but the representation for planes needs to be

discussed further.

The most straightforward way to represent a plane is the general form, which uses normal

vector
[

b1 b2 b3

]T

and distance from plane to origin b4 to represent a plane, i.e. the

commonly used plane representation:

b1x+ b2y + b3z + b4 = 0

However, this representation should not be used in SLAM for mobile 3D printing. There are

two reasons, discussed below.
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Notice that the spherical coordinate system has a singularity at θ = 0 or π, (e.g. top or

bottom of a cube) where ϕ can be undefined and the system can suddenly experience an

instantaneous change in ϕ value. For this reason, horizontal planes, while still added into

the state vector, are not presently updated in the 3D scanner SLAM algorithm since their

normal vectors are too close to the θ = 0 sigularity.

Second, the commonly used general form of planes has an assumption that for an infinite

plane, all the parameters are independent. However, in our work, since we are looking

at only part of the plane, uncertainties added into those parameters make them become

dependent. For example, around a measurement point far from the origin errors in b1 could

not be considered independent of errors in b4; small differences in plane direction could in

fact require large differences in b4 to match the measurement.

Therefore, the centroid of the point cloud
[

x0 y0 z0

]T

is introduced to provide information

about both the position of the plane the along normal vector and the region of the planar

patch in the infinite size plane.

Given
[

θi ϕi

]T

provides plane direction and
[

xi
0 yi0 zi0

]T

provides plane position for planar

patch i, the state variables for a planar patch can be defined as:

[

θi ϕi xi
0 yi0 zi0

]T

As the mobile 3D printing procedure is adding to the overall model segment by segment, the

number of planes on the printed model is incrementing. The number of planes saved in the

plane parameter partition of state vector, N, is increasing as well.

The state vector used throughout the whole algorithm is shown in figure 2.7. Among these

states, the total station part of the SLAM updates printer pose and landmark position,

values in the left bracket. Meanwhile, the 3D scanner part of the SLAM updates printer

pose and plane parameters, the values in the right bracket.
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Figure 2.7: State vector of mobile 3D printing system. i={1,· · ·,N} where N is the
number of planes in the model of the 3D object being printed

2.2.2 STL and plane parameters conversion

In the printing process, a conversion between STL file and state vector plane parameters

is required. The conversion from planes to STL is used to generate an STL file for the

segment to be printed next, and the conversion from STL to planes provides prediction of

plane parameters to the SLAM algorithm in order to update the state vector after a new

segement is printed.

Thus, it is required to calculate all the planes on a segment, given the original model and a

segmenting plane. On the other hand, we must be able to get the STL file of the segment

to be printed next.
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Figure 2.8: one dimensional model segmenting

We are currently segmenting the model in only one dimension (figure 2.8), along Gx-axis,

since the model we design is short in Gy direction and long in Gx direction. The segmenting

angle is 20 degrees to the Gx-axis in the Gx-Gz plane, which makes the segmenting surface to

be a ramp. This angle is implemented to avoid the nozzle of the printer hitting the previous

segment while printing the subsequent segment. An example segment, with segmenting plane

visible, is shown in Figure 2.11.

2.2.2.1 STL to planes

A program is needed to compute all the planes on the model. Those planes are going to be

used to represent the prediction of the model in the state vector for the SLAM algorithm.

Since STL file is a format which saves the model in triangulated surfaces, we can read and

convert it into vertices and normal vectors of those surfaces. The conversion from STL to

infinite size planes is straightforward because we can define any plane in 3D space by having

a normal vector and a point that lies on the plane.

However, throughout this work, the program is actually based on integral planar patches.

Multiple contiguous triangles may be on the same planar patch (e.g. one rectangle planar

patch is made of two triangles, one polygonal planar patch is made of multiple triangles).

Having multiple triangles representing one single planar patch is redundant, so contiguous
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Figure 2.9: planes on the STL model

triangles on one planar patch (i.e. lie on the same plane, and share one or more vertices) are

flagged for elimination until only one remains.

This conversion generates an N×7 matrix (N stands for the number of planes on the model,

while 7 includes four plane parameters in general form and a vertex that lies on the plane

in Cartesian coordinates).

Moreover, only knowing the plane parameters and a vertex on this plane is still not enough,

since they only define an infinite plane without boundary (Figure 2.9), the limits of these

planar patches must be known to determine which of them should be kept after segmenting.

Therefore, the previously mentioned N × 7 matrix should be further extended into a N × 9

matrix, in which the column 5 to 6 store the left and right limits of the plane on Gx-axis

(see figure 2.10). This information can be extracted from vertices saved in STL files.
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Figure 2.10: the matrix saves plane parameters (column 1-4), boundaries of the planes
(column 5-6) and centroids of the planar patches (column 7-9)

Figure 2.11: The model is segmented by a plane 20 degrees to the x-axis, the result is a
60mm length segment with a ramp

By interfacing the segmenting plane with the top and bottom planes, the boundaries of the

segment can be computed. Then, boundaries of all the planar patches in the model are

checked. If the planar patch overlaps with the boundaries of a segment, it will be kept and

the boundaries will be changed based on the intersection, otherwise it will be discarded. In

this way, all the planes on the segment will be computed for initialization of the state vector.

Take the model in Figure 2.11 for example, it has 8 planes in total, so the output of the STL

to planes function is a 8 × 9 matrix (Figure 2.10). In this matrix, column 1 to 4 save the

general form plane parameters, column 5 to 6 save the left and right boundaries of planar

patches on Gx-axis, and column 7 to 9 save one arbitrary vertex on each planar patch.
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As mentioned previously in Section 2.2, directions of planes are saved in spherical coordinate

system in the state vector, so if we want to save those converted planes into the state vector,

the output plane direction
[

bi1 bi2 bi3

]

(column 1-3 of row i) must be transformed into

spherical coordinate at first.







θi = arccos
bi
3√

(bi
1
)
2
+(bi

2
)
2
+(bi

3
)
2

ϕi = arctan
bi
2

bi
1

Having the directions of planar patches in spherical coordinate system, combined with ver-

tices on the planes, plane parameters
[

θi ϕi xi
0 yi0 zi0

]T

can be saved into the state

vector.

2.2.2.2 Planes to STL

Having a program that converts from STL files to planes is not enough. It is also required

to convert inversely, knowing all the plane parameters on the new segment, to generate the

STL file for new printing. This step is done right after the SLAM algorithm gets an updated

estimate of the ramp plane for segmenting, and right before the printing procedure.

This program always reads an STL file of the full CAD model and segments on that STL file

by the current segmenting plane (i.e. the ramp plane). A new STL file of the next segment

to be printed is then generated. The reason for starting with an STL file of the full CAD

model is because a STL file of full CAD model is always able to compensate for previous

printing errors, while using an STL file of remaining CAD model from last segmenting could

run into a problem where part of the useful information has already been discarded.

When writing the STL file, planes are at first saved into a ‘struct’ type then converted into

STL file. The ‘struct’ contains 2 fields: vertices and faces. The vertices provide information

about all the triangulated surfaces of the model, and the faces indicate the order of the

vertices on the triangulated surfaces.
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Figure 2.12: planes to STL

In the process of segmenting, the edges of each polygon in the CAD should be checked to

see if they are to be included in the next segment. Suppose the equation of the segmenting

plane is

b1x+ b2y + b3z + b4 = 0

and the position of a vertex is
[

xi
v yiv ziv

]

A pair of vertices comprise an edge.
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Figure 2.13: generated model without closing the segmenting plane

Then if both vertices of the edge satisfy b1x
i
v + b2y

i
v + b3z

i
v + b4 < 0, this edge is under the

segmenting plane so it is part of a prior segment and should be discarded.

If both vertices satisfy b1x
i
v + b2y

i
v + b3z

i
v + b4 > 0, this edge is above the segmenting plane

so it is part of a new segment and should be saved.

If one vertex satisfies b1x
i
v + b2y

i
v + b3z

i
v + b4 < 0 while the other vertex satisfies b1x

i
v +

b2y
i
v + b3z

i
v + b4 > 0, then the edge is crossing the segmenting plane so a new vertex at the

intersection should be generated.

So far, an STL file with an open face along the segmenting plane has be generated (Figure

2.13), the next step is to close this face.

It is easy to find that the outline of the face is actually composed of all the newly generated

vertices from the previous step. If we sequentially connect all those vertices to get a polygon,

we can use this polygon to close the model.

The polygon used to close the open part of the model after segmenting can have two different

types of shapes, either convex or concave (Figure 2.14).

If it is convex, it is much easier to deal with, because by using convex hull function we can

get the order of vertices on the outline easily. However, if it is concave, convex hull function

will not give us the order of the point in its interior, so triangulating a concave shape is not

trivial.
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Figure 2.14: concave and convex polygons

Figure 2.15: Delaunay triangulation

In order to solve this problem, Delaunay triangulation is used to triangulate complex concave

cases given all the vertices in order. Figure 2.15 shows one example of using Delaunay

triangulation on a concave polygon.

Figure 2.16 shows how the concave surface is generated for the new ramp plane after seg-

menting.

Delaunay triangulation can triangulate a concave polygon easily, but it still requires the

sequential order of the vertices on the outline of polygon as input. For a concave polygon,
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Figure 2.18: The original CAD model (top), the remaining portion of the model to be
built (portion above current segmenting plane) (center), the next segment to be printed

(cut with another segmenting plane) (bottom)

there are vertices that lie within, rather than on, the convex hull. Those vertices must be

connected to the other vertices using information encoded in the STL file.

The open STL model can be closed by the generated polygon (Figure 2.17). The other end

of the model should be segmented in a similar way, but using a parallel plane L(mm) away

on the x-axis, where L is the segmenting length we set. Moreover conversely, planes below

the segmenting plane are kept and above the segmenting plane are discarded. Finally an

STL file of the next segment for printing is generated (figure 2.18).
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Figure 2.19: Geometry of total station calibration procedure. Circles represent lens
target holders. P1 is the printer frame at position1. T i are the total station frames at

position i

2.2.3 Sensor calibration

2.2.3.1 Total station calibration

In order to get total station position and orientation in the printer frame, we use a screw

with through-hole to fix the total station on top of the printer, enabling the leveling laser

light of the total station to project onto the printing surface below. Moreover, a lens with

a target in the center is used, which helps the 3D scanner locate where the laser beam is,

since the laser beam on the printing surface cannot be captured directly by the 3D scanner.

The calibration steps are as following:
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1. Put the printer at one pose, defined as P1. Print two lens holders, at P1(0, 0) and

P1(0, Y )

2. While the printer is at P1, the total station pose is defined as T1. Use the total station

to do a set of measurements to landmarks defined as T1li.

3. Then, move the printer to a new pose such that the laser beam is projected on P1(0, 0).

Do a set of total station measurements to landmarks defined asT2li.

4. After, move the printer to another new pose such that the laser beam is projected on

P1(0, Y ). Again, do a set of total station measurements to landmarks defined as T3li.

There are three unknowns relating T1 to P1 that need to be calculated: offset between total

station and printer position on x-axis P1xT1, on y-axis P1yT1 and angle offset P1θT1.

A geometric relationship can be represented:







T2li =





T2xT3

T2yT3



+




cos T2θT3 − sin T2θT3

sin T2θT3 cos T2θT3



 T3li (2.1a)





T2xT3

T2yT3



 =




cos T2θP1 − sin T2θP1

sin T2θP1 cos T2θP1









P1xT3

P1yT3



 (2.1b)

T1li =





T1xT2

T1yT2



+




cos T1θT2 − sin T1θT2

sin T1θT2 cos T1θT2



 T2li (2.1c)

Substitute equation (b) into equation (a), T2li and T3li are respectively the total station

measurement to the three landmarks at position T2 and T3, so they are known. P1xT3 and

P1yT3 are the position offset between two lens holders, we define this offset to be (0, Y)

by ourselves, so it is also known. Therefore, there are only 2 unknowns remain (T2θP1 and

T2θT3) with 6 equations (2 equations for x and y of each set of landmark measurements), so

we can solve all the unknowns.
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Figure 2.20: bearing and angle error of total station in the datasheet

Similarly, equation (c) has 6 equations with 3 unknowns (T1xT2,
T1yT2 and

T1θT2), so all the

unknowns can be solved.

Since P1 and T2 are at the same position, there is

T1xP1 =
T1 xT2

T1yP1 =
T1 yT2

In addition, there is

T1θP1 =
T1 θT2 +

T2 θP1

Finally, the transformation matrix between total station and printer is:

T1TP1 =








cos T1θP1 − sin T1θP1
T1xP1

sin T1θP1 cos T1θP1
T1yP1

0 0 1








The laser total station has a very high accuracy if measured landmarks are in a leveled

condition. Figure 2.20 shows the errors of angular and distance measurement in the total

station datasheet. However, in this work, the total station is mounted on top of the 3D

printer in order to achieve automation and cannot be calibrated after each printer motion.

Due to a non-level printing surface, the total station is always working in an uncalibrated

condition. This uncalibrated condition increases the total station measurement error.
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For example, if the angle offset due to tilt is 1 degree, since the height of the 3D printer is

about 70 cm, the offset of relative position would be

sin 1◦ × 700mm = 12.2mm

This is much larger compare to the accuracy of total station itself.

Therefore, the total station measurement error (specifically for the range error) should be

set to a number much larger than the measurement error given by the datasheet. Here we

suppose the total station measurement error covariance matrix is:

QT =




10 0

0 4.7124e− 06





I.e. 10mm range error and 4.7124e-06 rad bearing error.

2.2.3.2 3D scanner calibration

The first step of 3D scanner calibration is to print a small cuboid oriented 45 degrees around

z-axis relative to the printer at the center of the print bed. Next, the 3D scanner gets a 3D

point cloud of the cuboid. The scanning result is saved in a PLY file. (PLY file is a polygon

file format used to store 3D data from the 3D scanner)

The Computer Vision System Toolbox in Matlab is used to process the point cloud. An

ROI region is set and the point cloud outside this region is discarded, as the only interesting

part to us is the cuboid. The point cloud result after cropping is shown in figure 2.21. Then

the point cloud is downsampled in order to reduce the processing time. By using a plane

fitting function (based on M-estimator SAC (MSAC) algorithm, a variant of the Random

sample consensus (RANSAC) algorithm) three outputs are obtained, the plane parameters,

the linear indices of inlier points and the linear indices of outlier points.

Running this plane fitting function repeatedly, both the top (figure 2.23) and side plane

(figure 2.24) of the cuboid can be isolated.
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Figure 2.21: point cloud of the segment used for calibration

Figure 2.22: the point cloud without bottom plane
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Figure 2.23: the point cloud of the top plane

The average of all the points in the top planar patch estimates the centroid of the rectangle

itself, and then the coordinate of bottom center can be calculated by projecting the top

center along normal vector to intersect with base plane. The bottom center is the origin of

3D printer in the 3D scanner frame.

Finally, the direction of the 3D scanner needs to be determined. The intersection of side

plane and bottom plane can indicate the direction of the segment. The structure of the 3D

printer is the delta shape equilateral (i.e. triangle), and the 3D scanner is installed at the

center of one delta edge, so the angle between the scanner and printer should be 120 degree

as designed. However, due to possible angular error between 3D scanner and 3D printer,

there is an offset. Instead, the measured direction of the side plane patch is used to cancel

out any angular error of the mounted 3D scanner.

From previous steps, both the origin and the direction can be calculated and used to build

the transformation matrix, which is able to transform scan results from scanner frame to
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Figure 2.24: the point cloud of the side plane

printer frame.
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Chapter 3

MOBILE 3D PRINTING

PROCEDURE

3.1 Procedure introduction

In this section, the procedure of the whole printing process will be introduced briefly with

pseudo code (Algorithm 1) and a printing procedure flowchart (Figure 3.2). Further detail

will be explained in the following sections for each individual step.

Algorithm 1 Mobile 3D printing

1: Landmark initialization

2: 1st print

3: while printing is not finished do

4: 3D scanner (1)

5: Move the printer

6: Total station

7: 3D scanner (2)

8: Next print

9: end while

10: return
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updated since two sets of total station measurements are required for the total station

SLAM. Therefore, it only adds the landmark positions in global frame into the state

vector.

µ1 =


























xp

yp

θp

xl,1

yl,1

xl,2

yl,2

xl,3

yl,3


























The covariance matrix is expanded as well. The landmark part of the covariance, Σl,

is initialized with a small error

Σl = 0.1I6×6

(0.1mm for both x and y). In future, it is recommended that the landmark covariance

be initialized based on the total station range and bearing errors.

3. 1st print

Next, the printer prints the first segment of the model. After printing, predictions of

all the planes on the first segment (STL to planes in Section 2.2.2.1) are added into

the state vector. The size of the state vector is expanded to (9 + 5 × N), where N is
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the number of planes currently on the model.

µ2 =















































xp

yp

θp

xl,1

yl,1

xl,2

yl,2

xl,3

yl,3
...

βi

ϕi

xi
0

yi0

zi0
...















































The covariance matrix is expanded as well to (9 + 5×N)× (9 + 5×N). Each plane

parameter part of the covariance matrix Σi
p is initialized by the printing error. The

error of the printer can be estimated by printing one model with simple geometry and

then using the 3D scanner and its inspection software to check the deviation value

(Appendix A). The printing error, and thus planar patch covariance, is:

Σi
p = δ =














0.015 0 0 0 0

0 0.015 0 0 0

0 0 0.2 0 0

0 0 0 0.2 0

0 0 0 0 0.2













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I.e. 0.015 rad (0.8594 degree) for angular error and 0.2 mm for position error. At this

moment, the covariance matrix is:

Σ2 =














0 0 · · · 0 · · ·
0 Σl · · · 0 · · ·
...

...
. . .

0 0 Σi
p

...
...

. . .














(3.1)

4. 3D scanner (1)

In the first 3D scanning step, 3D scanner SLAM is run, so planes on the model, the

printer pose and the corresponding covariance are updated simultaneously.

5. Move the printer

The printer is relocated to a position convenient to print the next segment. Printer pose

estimate is updated with odometry data, and the printer pose estimation covariance is

updated as well.

6. Total station

The total station is run again to get another set of measurements. Total station SLAM

is run, so printer pose, landmark positions and the corresponding covariance is updated

simultaneously.

7. 3D scanner (2)

3D scanner SLAM is run again. Planes on the model, printer pose and the correspond-

ing covariance is updated.

8. Next print

The result of the previous two SLAM algorithms provides an accurate estimate of the

printer pose and plane parameters of the model. Therefore, the next segment can be

printed, connected to the previous one. Right after printing, a prediction of planes on

the model is made before the measurement.
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Repeat step 4 to step 8 until the whole model is printed.

3.2 Landmark initialization

The total station (1) step only does measurement and initialization of the landmark positions

in the global frame. The printer pose stays the same as it has not been moved.

The transformation matrix between the total station frame and the 3D printer frame is

already known ( mentioned in the total station calibration step 2.2.3.1), so the measured

landmark positions can be converted into the printer frame, then converted into the global

frame. The landmarks in the global frame are added into the state vector, so the state vector

is updated from µ0 to µ1.

Figure 3.3 shows a plot of landmarks and printer pose in the global frame. The blue dots

represent landmark positions in the global frame, and the green circle represents the printer

pose, which has not been moved yet.

3.3 1st print

A large model is segmented into a smaller segment to be printed. The segmenting plane

is selected such that the size of the segment is a fixed length L, (in our case 60mm) along

the Gx-direction. This step is a plane to STL conversion as described in section 2.2.2.2,

knowing the CAD model and segmenting plane, the algorithm will generate a new STL file

for the first print, and at the same time, planes on the printed segment is added into the

state vector. The state vector is updated from µ1 to µ2.

3.4 3D scanner (1)

The 3D scanner is used to perform feature-based SLAM, with planar patches as the features.
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Figure 3.3: original printer pose (green circle) and landmark positions (blue dots) from
the first set of total station measurements (in mm)

3.4.1 Correspondence

A crucial part of the feature-based SLAM is to find the correspondence between predicted

features and observed features. In our work, since planes are used as features in the 3D

scanner part of SLAM, the correspondence between predicted planes in the global frame (G

represents parameters in the global frame) Gµ̄bi and measured planes in the printer local

frame (P represents parameters in the printer frame) P bj should be determined.

Measured planes are first transformed from local frame to global frame in order to compare

with the predicted planes within the same coordinate system.

Note that for this step, general form is used for the plane patches because this is the form

that is output by the plane fitting function and the disadvantages of general form are not

applicable if the parameters are not being modified, as is the case in this step.
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The transformation matrix of planes from global to local is discussed, since it is more straight-

forward, then the inverse of this matrix is the transformation from local to global. This

transformation matrix is combined from two parts. One part is a rotation of the normal

vector
[

Gb
j
1,

Gb
j
2,

Gb
j
3

]T

to printer local frame. The rotation matrix is shown as below:








P b
j
1

P b
j
2

P b
j
3







=








cos θp − sin θp 0

sin θp cos θp 0

0 0 1















Gb
j
1

Gb
j
2

Gb
j
3








The other part is a translation with regard to the position of printer, the equation is

P b
j
4 =

G b
j
1xp +

G b
j
2yp +

G b
j
4

Combining these two equations and inverting, the transformation matrix for planes from

local to global is:











Gb
j
1

Gb
j
2

Gb
j
3

Gb
j
4











= inv





















cos θp − sin θp 0 0

sin θp cos θp 0 0

0 0 1 0

xp yp 0 1































P b
j
1

P b
j
2

P b
j
3

P b
j
4











Gµ̄bi are simply each plane i from the state vector converted to general form. Now, both the

prediction Gµ̄bi and the measurement Gbj are in the global frame. Next, correspondence that

gives a value of i for each j (i.e. a planar patch in the state vector corresponding to each

measurement) is determined by the directions and the centroid positions of planar patches.

At first, the algorithm searches a closest match in terms of plane direction of Gµ̄bi for each

Gbj (the number of measured planes should always be less than predicted planes because

some parts of the model are occluded). However, for the case that multiple predicted planes

Gµ̄bi have very similar directions, there can be confusion while matching, so their centroid

positions are also compared to determine the correspondence.

Meanwhile, if there are multiple measured planes Gbj having very similar directions, it is
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possibly due to printing error. It is possible that at the interface of two segments, one

side plane is detected to be two separated patches. In this case, a Gµ̄bi will be assigned

correspondence to multiple Gbj. If this happens, the tolerance of the plane fitting function

for the measurement is relaxed and the plane fitting function is run again, until the number

of planes detected decreases and this correspondence error is eliminated.

Additionally, the plane fitting function assigns a direction of the normal vector (i.e. inside or

outside) randomly to the detected planes from point cloud. It gives either inside or outside

randomly. Meanwhile, the inside and outside direction of predicted planes are specified in

STL file, meaning normal vectors that actually correspond could be pointed in opposite

directions.

In order to determine the directions of measured planes, the algorithm unifies the direction

of top, bottom and ramp planes to positive direction of z-axis. And for the side planes, the

SLAM algorithm checks the relative position of side planes and top planes in the y direction,

so that whether they are facing towards positive or negative Gy direction can be determined.

3.4.2 3D scanner SLAM algorithm

After determining the correspondence, the next step is to run the 3D scanner SLAM in order

to further correct the printer pose and meanwhile update the planes on the printed model,

based on the 3D scanner measurement (Algorithm 2). Each mi refers to a planar patch

isolated from the 3D scanner measurement point cloud, with correspondence established to

a particular planar patch i in the state vector.

At the start of this step, the state vector µ2 contains the original printer pose, the landmark

positions measured in “total station (1)”. In addition, we have the predicted model planes

as described in “1st print”. Due to the inclusion of these newly predicted elements, we label

the intermediate state vector at this stage µ̄, and the covariance Σ̄.
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Algorithm 2 3D scanner SLAM algorithm (µ2,Σ2,m
i)

1: µ̄ = µ2

2: Σ̄ = Σ2

3: for all mi do

4: m̂i =









θ̂i

ϕ̂i

x̂i
0

ŷi
0

ẑi
0









=











µ̄θi

µ̄ϕi − µ̄θp

sin µ̄θp

(

µ̄xi
0

− µ̄xp

)

− cos µ̄θp

(

µ̄yi
0

− µ̄yp

)

cos µ̄θp

(

µ̄xi
0

− µ̄xp

)

+ sin µ̄θp

(

µ̄yi
0

− µ̄yp

)

µ̄zi
0











5: Fx,i =














1 0 0 0 · · · 0 0 · · · 0 0 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 · · · 0 0 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 · · · 0 0 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0 1 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0 0 1 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0 0 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0 0 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0

︸ ︷︷ ︸
6

0 · · · 0
︸ ︷︷ ︸

5i−5

0 0 0 0 1
︸ ︷︷ ︸

5

0 · · · 0
︸ ︷︷ ︸

5N−5i














6: Hi = hiFx,i =










0 0 0
0 0 −1

− sin µ̄θp cos µ̄θp cos µ̄θp

(

µ̄xi
0

− µ̄xp

)

+ sin µ̄θp

(

µ̄yi
0

− µ̄yp

)

− cos µ̄θp − sin µ̄θp − sin µ̄θp

(

µ̄xi
0

− µ̄xp

)

+ cos µ̄θp

(

µ̄yi
0

− µ̄yp

)

0 0 0

1 0 0 0 0
0 1 0 0 0
0 0 sin µ̄θp − cos µ̄θp 0

0 0 cos µ̄θp sin µ̄θp 0

0 0 0 0 1









7:
[
e1 e2

]
= eigenvector(Σ̄xp,yp )

8: Rz =

[
cos(mi

ϕ −
π
2
) −sin(mi

ϕ −
π
2
)

sin(mi
ϕ −

π
2
) cos(mi

ϕ −
π
2
)

]

9: u = α1e1 + α2e2
. Use eigenvectors of the error ellipse to represent the intersection line between the plane landmark and the xy plane

10: σcut = uT Σ̄xp,ypu

11: Q′
x0,y0 =

[
σcut 0
0 0.1

]

12: Qx0,y0 = RzQ
′
x0,y0R

T
z

13: Qs =







Qθ 0 0 0
0 Qϕ 0 0
0 0 Qx0,y0 0

0 0 0 Qz0







14: Ki = Σ̄HiT
(

HiΣ̄HiT +Qs

)
−1

15: µ̄ = µ̄+Ki
(
mi

− m̂i
)

16: Σ̄ =
(
I −KiHi

)
Σ̄

17: end for

18: µ3 = µ̄

19: Σ3 = Σ̄
20: return
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The predicted plane parameters in the printer frame for each detected plane i are:

m̂i =
[

θ̂i ϕ̂i x̂i
0 ŷi0 ẑi0

]T

and calculated by the current estimated states: plane parameters in the global frame, as well

as the printer pose in global frame. The equations are as follows:














θ̂i

ϕ̂i

x̂i
0

ŷi0

ẑi0














=














µ̄θi

µ̄ϕi − µ̄θp

sin µ̄θp

(

µ̄xi
0
− µ̄xp

)

− cos µ̄θp

(

µ̄yi
0
− µ̄yp

)

cos µ̄θp

(

µ̄xi
0
− µ̄xp

)

+ sin µ̄θp

(

µ̄yi
0
− µ̄yp

)

µ̄zi
0














For updating the printer pose, the Jacobian is a matrix of partial differentials of predicted

plane parameters m̂i with respect to printer pose
[

xp yp θp

]

(i.e.
[

µ̄xp
µ̄yp µ̄θp

]

).














∂θ̂i

∂xp

∂θ̂i

∂yp

∂θ̂i

∂θp

∂ϕ̂i

∂xp

∂ϕ̂i

∂yp

∂ϕ̂i

∂θp

∂x̂i
0

∂xp

∂x̂i
0

∂yp

∂x̂i
0

∂θp

∂ŷi
0

∂xp

∂ŷi
0

∂yp

∂ŷi
0

∂θp

∂ẑi
0

∂xp

∂ẑi
0

∂yp

∂ẑi
0

∂θp














For updating the plane parameters, Jacobian is a partial differential of state vector with

respect to plane parameters
[

θ ϕ x0 y0 z0

]

(i.e.
[

µ̄θi µ̄ϕi µ̄xi
0

µ̄yi
0

µ̄zi
0

]

).














∂θ̂i

∂θ
∂θ̂i

∂ϕ
∂θ̂i

∂x0

∂θ̂i

∂y0

∂θ̂i

∂z0

∂ϕ̂i

∂θ

∂ϕ̂i

∂ϕ

∂ϕ̂i

∂x0

∂ϕ̂i

∂y0

∂ϕ̂i

∂z0

∂x̂i
0

∂θ

∂x̂i
0

∂ϕ

∂x̂i
0

∂x0

∂x̂i
0

∂y0

∂x̂i
0

∂z0

∂ŷi
0

∂θ

∂ŷi
0

∂ϕ

∂ŷi
0

∂x0

∂ŷi
0

∂y0

∂ŷi
0

∂z0

∂ẑi
0

∂θ

∂ẑi
0

∂ϕ

∂ẑi
0

∂x0

∂ẑi
0

∂y0

∂ẑi
0

∂z0














51



The full Jacobian matrix hi is a horizontal concatenation of the two parts, and is computed

as:














0 0 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

− sin µ̄θp cos µ̄θp cos µ̄θp

(

µ̄xi
0
− µ̄xp

)

+ sin µ̄θp

(

µ̄yi
0
− µ̄yp

)

0 0 sin µ̄θp − cos µ̄θp 0

− cos µ̄θp − sin µ̄θp − sin µ̄θp

(

µ̄xi
0
− µ̄xp

)

+ cos µ̄θp

(

µ̄yi
0
− µ̄yp

)

0 0 cos µ̄θp sin µ̄θp 0

0 0 0 0 0 0 0 1














Moreover, a binding matrix Fx,i is defined to select which plane among all those planes

in state vector is going to be updated during each individual loop of SLAM algorithm.

The appropriate set of plane parameters is already identified in the correspondence step, as

described in section 3.4.1.

Fx,i =
























1 0 0 0 · · · 0 0 · · · 0 0 0 0 0 0 0 · · · 0

0 1 0 0 · · · 0 0 · · · 0 0 0 0 0 0 0 · · · 0

0 0 1 0 · · · 0 0 · · · 0 0 0 0 0 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0 1 0 0 0 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0 0 1 0 0 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0 0 0 1 0 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0 0 0 0 1 0 0 · · · 0

0 0 0 0 · · · 0
︸ ︷︷ ︸

6

0 · · · 0
︸ ︷︷ ︸

5i−5

0 0 0 0 1
︸ ︷︷ ︸

5

0 · · · 0
︸ ︷︷ ︸

5N−5i
























H i is the Jacobian matrix selected by Fx,i. It is the final Jacobian matrix used in the SLAM

algorithm.

H i = hiFx,i =














∂θ̂i

∂xp

∂θ̂i

∂yp

∂θ̂i

∂θp

∂θ̂i

∂θ
∂θ̂i

∂ϕ
∂θ̂i

∂x0

∂θ̂i

∂y0

∂θ̂i

∂z0

∂ϕ̂i

∂xp

∂ϕ̂i

∂yp

∂ϕ̂i

∂θp

∂ϕ̂i

∂θ

∂ϕ̂i

∂ϕ

∂ϕ̂i

∂x0

∂ϕ̂i

∂y0

∂ϕ̂i

∂z0

∂x̂i
0

∂xp

∂x̂i
0

∂yp

∂x̂i
0

∂θp

∂x̂i
0

∂θ

∂x̂i
0

∂ϕ

∂x̂i
0

∂x0

∂x̂i
0

∂y0

∂x̂i
0

∂z0

∂ŷi
0

∂xp

∂ŷi
0

∂yp

∂ŷi
0

∂θp

∂ŷi
0

∂θ

∂ŷi
0

∂ϕ

∂ŷi
0

∂x0

∂ŷi
0

∂y0

∂ŷi
0

∂z0

∂ẑi
0

∂xp

∂ẑi
0

∂yp

∂ẑi
0

∂θp

∂ẑi
0

∂θ

∂ẑi
0

∂ϕ

∂ẑi
0

∂x0

∂ẑi
0

∂y0

∂ẑi
0

∂z0














Fx,i
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Figure 3.4: error ellipse of point landmark (left) and plane landmark (left)

Qs is the 3D scanner measurement error on planes. In fact, the point measurement error is

given in the datasheet of 3D scanner, but using planes as landmarks is different from using

point landmarks. For instance, in the direction parallel to the normal vector of a plane, the

measurement uncertainty is as small as the 3D scanner point measurement error, while in

the direction perpendicular to the normal vector of a plane, the measurement uncertainty

is much larger, as even a large amount of movement in that direction would not have any

impact on the representation of that plane. (Figure 3.4)

Therefore, the uncertainty of a plane landmark is an ellipse with major axis along the plane

and minor axis perpendicular to the plane. In most cases, that ellipse is not axis-aligned.

The direction of that ellipse is related to the direction of the plane in local frame. Therefore,

we at first define an x-axis aligned ellipse Q′ as:

Q′ =




σcut 0

0 0.1





σcut is determined by a cut of the printer position error ellipse with a line defined as:

u = α1e1 + α2e2
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Where α1 and α2 are the coefficients, e1 and e2 are the eigenvectors of the printer position

covariance matrix Σ̄xp,yp . The length of the intersection is calculated as:

σcut = uT Σ̄xp,ypu

Then the final ellipse Qx0,y0 can be generated by rotating Q′

x0,y0 by
(
µ̄ϕi − π

2

)
radians, the

rotation matrix is as follows.

Qx0,y0 = RzQ
′

x0,y0R
T
z

Finally, the covariance of planar patch can be defined as follows.

Qs =











Qθ 0 0 0

0 Qϕ 0 0

0 0 Qx0,y0 0

0 0 0 Qz0











mi is the actual measurement of 3D scanner. It is mentioned in the section 3.4.1 that

mi saves planes with their general form and the centroids of the planar patches. In order

to match the format of state vector, the directions of planes need to be converted from

Cartesian coordinate normal vector
[

bi1 bi2 bi3

]

into spherical coordinate angles
[

θi ϕi

]

.

The equations are as follows:

θi = arccos

(

bi3

(bi1)
2
+ (bi2)

2
+ (bi3)

2

)

ϕ = arctan

(
bi2
bi1

)

Recall that bi here are in the printer frame.

Finally, Kalman gain Ki, updated state and its covariance, µ and Σ respectively, can be

calculated. The equations are as follows:

Ki = Σ̄H iT
(

H iΣ̄H iT +Qs

)
−1
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Figure 3.5: scan direction

µ3 = µ̄+Ki
(
mi − m̂i

)

Σ3 =
(
I −KiH i

)
Σ̄

3.5 Move the printer

In this step, the printer is moved to an appropriate pose for scanning side planes and ramp

planes, the state vector is updated from µ3 to µ4. Note that the planned motion may need

to take into account the suitability of the 3D scanner orentation; automation of this may be

fruitful future work. For example, as shown in Figure 3.5, the red arrow shows the current

scanning direction, and the blue arrow shows the optimal scan direction. Scanning from the

current direction will result in a bad scan quality on the side planes. Therefore, the printer

should be rotated to get a better scan result.
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After motion, the printer pose
[

xp yp θp

]

in the state vector is updated by odometry,

giving µ4. The covariance of the printer pose is updated as well, according to the motion

model of EKF algorithm:

Σ4:xp,yp,θp = GΣt−1G
T +R

G is the Jacobian for motion model. Since the printer is not yet integrated with a mobile

robot, the printer is actually moved by hand. Therefore, G does not exist in our case. On the

other hand, R is a 3× 3 matrix representing odometry error, but here it actually represents

the position and angle uncertainty of putting the printer at desired pose by hand. This

matrix of uncertainty is defined as:

R =








10 0 0

0 10 0

0 0 3◦








I.e. 10mm for position error and 0.0524 rad (3 degrees) for angular error.

3.6 Total station (2)

The total station (2) step is used to estimate the pose of the printer in global frame by total

station right after it has been moved. A commonly implemented EKF-SLAM algorithm

using point landmarks (in our case, optical prisms) is applied in this process (Algorithm 3).

At the start of this step, the state vector µ̄ contains the predicted printer pose after moving,

the landmark position estimates from the prior “total station” step, and the estimated planes

from the prior “3D scanner” step. With new total station measurements, the EKF-SLAM

algorithm can update the printer pose and the landmark positions simultaneously.

A polar coordinate system is used in this SLAM, since we have different confidence for

bearing and range measurements from total station. Therefore, a conversion from Cartesian
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Algorithm 3 Total station SLAM algorithm (µ4, σ4,m
i)

1: µ̄ = µ4

2: Σ̄ = Σ4

3: for all observed landmarks mi do

4: m̂i =

[
r̂i

β̂i

]

=

[ √

(µ̄i,x − µ̄x)2 + (µ̄i,y − µ̄y)2

atan2 (µ̄i,y − µ̄y, µ̄i,x − µ̄x)− µ̄θ

]

5: Fx,i =









1 0 0 0 . . . 0 0 0 0 . . . 0
0 1 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 0 . . . 0

︸ ︷︷ ︸
2i−2

0 1
︸︷︷︸

2

0 . . . 0
︸ ︷︷ ︸

2N−2i









6: q = (µ̄i,x − µ̄x)
2 + (µ̄i,y − µ̄y)

2

7: δx = µ̄i,x − µ̄x

8: δy = µ̄i,y − µ̄y

9: H i = 1
q
hiFx,i =

1
q

[
−√

qδx −√
qδy 0

√
qδx

√
qδy

δy −δx −q −δy δx

]

Fx,i

10: Ki = Σ̄H iT
(

H iΣ̄H iT +QT

)
−1

11: µ̄ = µ̄+Ki (mi − m̂i)
12: Σ̄ = (I −KiH i) Σ̄
13: end for
14: µ5 = µ̄

15: Σ5 = Σ̄
16: return

coordinate system to polar coordinate system is needed, as shown below.

ri =

√

(xi)2 + (yi)2

βi = tan−1 y
i

xi

Then, the observed features from the total station, given as
[

xi yi
]

can be represented by:

mi =
[

ri βi

]T

According to the predicted landmark positions in global frame
[

µ̄i,x µ̄i,y

]

and predicted

printer pose in global frame
[

µ̄x µ̄y µ̄θ

]

, landmarks in total station frame can be estimated
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as m̂i

m̂i =




r̂i

β̂i



 =





√

(µ̄i,x − µ̄x)2 + (µ̄i,y − µ̄y)2

atan2 (µ̄i,y − µ̄y, µ̄i,x − µ̄x)− µ̄θ





hi is the Jacobian matrix for estimated measurements m̂i, i.e. the partial differential of m̂i

with regards to the printer pose and landmark positions.

hi =





∂r̂i

∂xp

∂r̂i

∂yp

∂r̂i

∂θp

∂r̂i

∂xi
∂r̂i

∂yi

∂β̂i

∂xp

∂β̂i

∂yp

∂β̂i

∂θp

∂β̂i

∂xi

∂β̂i

∂yi





The matrix Fx,i is introduced to map the low-dimentional matrix hi into a matrix H i with

dimension of 2N + 3, N is the number of landmarks, which is 3 in our work.

Fx,i =















1 0 0 0 . . . 0 0 0 0 . . . 0

0 1 0 0 . . . 0 0 0 0 . . . 0

0 0 1 0 . . . 0 0 0 0 . . . 0

0 0 0 0 . . . 0 1 0 0 . . . 0

0 0 0 0 . . . 0
︸ ︷︷ ︸

2i−2

0 1
︸︷︷︸

2

0 . . . 0
︸ ︷︷ ︸

2N−2i















H i =
1

q
hiFx,i =

1

q




−√

qδx −√
qδy 0

√
qδx

√
qδy

δy −δx −q −δy δx



Fx,i

Where

q = (µ̄i,x − µ̄x)
2 + (µ̄i,y − µ̄y)

2

δx = µ̄i,x − µ̄x

δy = µ̄i,y − µ̄y

QT is the total station measurement error. It is mentioned in Section 2.2.3 that due to a po-

tentially unleveled condition the position measurement error (with respect to its calibration

to the printer frame) is much larger than the number in the total station datasheet, but the
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angle measurement is not affected, so QT is defined as:

QT =




10 0

0 4.7124e− 06





Ki is the gain of EKF algorithm.

Ki = Σ̄H iT
(

H iΣ̄H iT +QT

)
−1

µ5 = µ̄+Ki
(
mi − m̂i

)

Σ5 =
(
I −KiH i

)
Σ̄

This algorithm updates both printer pose and landmark positions. The updated printer

pose and its zoomed-in view are shown in Figure 3.6. The blue circle represents the original

printer pose, the red circle represents the predicted printer pose (from odometry), the green

circle represents the updated printer pose, and the green dots show the updated landmark

positions.

3.7 3D scanner (2)

Printer position estimation is not accurate enough from total station SLAM alone, and needs

a further correction from the 3D scanner.

The “3D scanner (2)” step is similar to the previously described “3D scanner (1)” step, so

the algorithm will not be repeated. The only difference is at “3D scanner (2)” step, the

input is µ5 and the output is µ6.

Error ellipse is introduced to visualize the confidence interval of a 2D Gaussian distribution,

which in our case is the printer position (xp and yp) part of the covariance matrix (2 × 2).

The confidence of the error ellipse is set to be 95%, which defines the region that contains

95% of all samples that can be drawn from the Gaussian distribution N (µxp,yp , Σxp,yp).
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Figure 3.6: The figure at the top shows the map of global frame, filled dots represent
landmarks and circles represent printer poses. A zoomed in image is shown at the bottom,
where blue circle represents the original printer pose, red circle represents the odometry
printer pose, and the green circle represents the printer pose result of total station SLAM

The top part of Figure 3.7 shows the changes of error ellipse following 3D scanner SLAM

steps, and the bottom of the figure shows a zoomed in view of the same. By running the

algorithm on the first plane (in this case, the ramp plane), the error ellipse gets narrow

in the x direction but not much different in the y direction, since the plane does not help

decrease the uncertainty perpendicular to the normal vector. By running the algorithm on a

side plane perpendicular to the ramp plane, the error ellipse gets narrow in the y direction.

Eventually, the overall error ellipse gets very close to the anticipated printer position which
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is shown by the green cross.

3.8 Next print

According to the updated state vector from the last step µ6, the printer pose is given and

an STL file for the next model can also be generated based on the current updated estimate

of the ramp plane. The maximum and minimum limits of the segment in x and y directions

in global frame can be easily acquired from the STL model, so the center of the segment in

global frame can be calculated as:

(
xmin + xmax

2
,
ymin + ymax

2
)

Next, the relative position and angle between the next segment and the printer pose are

computed. This relative position and orientation comprise the segment pose in printer

frame. This pose is entered into the 3D printing software, and the next segment is printed.

After that, the algorithm makes a prediction of plane parameters of the current printed

model. The prediction is made based on the ramp plane in the current state vector µ6 and

the segmenting length we set. Since it is made before measurement, the next SLAM, in a

way, is actually a predictive SLAM.

The process of updating planes on the model based on the prediction is as follows:

1. At first, an STL to planes function based on the post-printing ramp plane (i.e. pre-

dicted ramp plane) is run, so we get a list of planes p1.

2. Then, another STL to planes function based on the pre-printing ramp plane (i.e. cur-

rent ramp plane in the current state vector) is run, so we get another list of planes

p2.

3. The result of the STL to planes function contains directions, positions and boundaries

of planar patches on the segmented CAD model, it is easy for us to compare those
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characters and obtain the intersection and difference between the results of two STL

to planes function (p1 and p2). Those planes that do not exist in p2 but exist in p1 or

those planes whose boundaries have prolonged from p1 to p2 are regarded as updated

planes, the other planes are regarded as non-updated planes.

4. After that, the current plane parameter part of the state vector is saved as p3 for later

use and then totally replaced by p1 and covariance of this part is given by a large

number as

Σi
p = δ′ =














0.015 0 0 0 0

0 0.05 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0.2














I.e. 0.015 rad for θ angular error, 0.05 rad for ϕ angular error, 1 mm for x direction

position error, 1 mm for y direction position error, 0.2 mm for z direction position

error.

Since both the printing error and the uncertainty of printer pose is introduced in the

newly printed planes.

5. Finally, the state and covariance are replaced by those non-updated planes in p3, so

updated planes are initialized with large uncertainty and non-updated planes are kept

the same.

The output of this step is again the updated state vector µ2 and the previous process is

repeated until the whole model is printed.
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Chapter 4

RESULTS AND DISCUSSION

To evaluate and compare print quality results, the procedure for deviation analysis is intro-

duced here. Observations are then presented regarding the effects of sensor fusion, planar

patch representation, and odometry error on print quality.

4.1 Deviation analysis

Deviation analysis compares the final geometry of the part achieved using mobile 3D printing

to the originally planned CAD model. This gives us a measure of the final print quality. The

Deviation analysis can be done in the GOM inspection software. The steps are as follows:

• Import both the nominal element (CAD model, blue) and actual element (3D scanning

result, grey) into the inspection software and clear the unwanted parts (e.g. table

surface) in the scanning result (Figure 4.1).

• Align the imported two models in order to compare (Figure 4.2).

• Do the surface comparison on the actual element (Figure 4.3 4.4). Deviation is defined

as the distance from a point on the printed model to the closest point on the CAD

model surface.
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Figure 4.1: imported nominal element (CAD model, blue) and actual element (3D scan-
ning result, grey)

Figure 4.2: Alignment result of the nominal element (blue) and the actual element (grey)

Figure 4.3: Surface comparison 1: green parts indicate low deviation parts, red and blue
parts indicate high deviation parts
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Figure 4.4: Surface comparison 2: labels can be placed on any point on the model. The
highest deviation in this example is 0.74mm

Figure 4.5: Surface comparison of a rectangle model.

An example rectangular model is printed and analyzed by the GOM software (Figure 4.5).

The largest deviation between actual printed model and CAD model is 0.78mm, whereas the

total geometric extent of the full model is 240mm.

4.2 Importance of fusing global and local sensors

It is important to evaluate if both global (total station) and local (3D scanner) sensors are

required to achieve satisfactory printing. It turns out that the 3D scanner is required to

66





function takes an average plane at a middle position between them. This means there

is no full recovery from any drift.

Models number 3 and 4 show the printing results when setting the total station angular

measurement error to be an incorrectly large number. In this case, we replaced the angular

measurement error 0.3 mgon (0.0000047 rad) in the total station datasheet with 3◦ (0.052

rad). The print results show that the models also drift when the printer gets away from origin

position, which demonstrates the necessity of trusting total station angular measurements.

The reasons for setting small angular measurement error for total station are as follows:

1. The total station has very accurate angular measurements. If we don’t use these

measurements to make significant adjustments to θp (because we incorrectly don’t

trust the measurement) there is little added value to using the total station. Compare

these results to the result of model 6, discussed above.

2. Any (relatively small) angular error due to an unleveled condition (e.g. from tilt of

table) has minimal, if any, affect the yaw of total station angular measurements.

3. At each new individual position, the total station repeatedly measures against land-

marks that are stationary in the global frame, so that the error will not accumulate

like they do when relative measurements against surfaces that could be drifting due to

print errors.

Models number 1 and 2 show the printing result when using both the total station and 3D

scanner, with all the correct error parameters set. The results have much better overall

quality.

In addition, printing without the 3D scanner is also tested in our study, but since the total

station gives a large position measurement error, the next printed segment has an obvious

drift from the very beginning, such that the first two segments often do not even connect

(Figure 4.7).
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Figure 4.7: The printing result if 3D scanner measurement is skipped. The drift of the
next segment is too large to even connect with the first segment.

4.3 3D plane patch representation

The reason for using 5 parameters (2 angles in spherical coordinates to indicate the direction

of planes and 1 point in 3D Cartesian coordinates to indicate the centroid of planar patches)

for plane representation instead of 4 parameters (general form: 1 vector in 3D Cartesian

coordinates to indicate the direction of planes and 1 distance from plane to origin indicates

position of infinite planes) is explained in detail in Section 2.2.

The following experiment demonstrates that if the odometry error is relatively large (in this

example, the odometry error is set to be 30 mm) using general form for plane representation

results in a bad position estimation. As shown in Figure 4.8, the error ellipse of the printer

position gets smaller through each SLAM algorithm loop, but the final result (the smallest

ellipse) is still about 4 mm away from the expected position (i.e. ground truth green cross).

This offset is too large; printing the next segment with this estimation will result in an overlap

or gap between two segments. Compare Figure 4.9, showing print results using general form,
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to Figure 4.13, showing results with the same odometry error using the proposed 5-parameter

3D plane patch representation. There is 0.75mm deviation using general form (Figure 4.10),

compared to 0.31mm deviation using the proposed 5-parameter form (Figure 4.14), after

segmenting a 100mm model into just 2 segments.

4.4 Sensitivity to odometry error

With the sensor fusion mentioned in the section 4.2 and the 5-parameter representation

mentioned in the section 2.2, the algorithm can reach millimeter localization accuracy. Even

if we introduce large odometry error, the SLAM algorithm can still adjust the printer to the

correct position.

The results of error ellipses with large odometry error are shown in the plots 4.11 and 4.12.

Plot 4.11 shows the result when the odometry error is 30mm, and plot 4.12 is the same

result after zooming in. The largest yellow circle and its center represents the odometry

error ellipse and its mean position, the green ellipse and its center represents the error ellipse

and its mean position after total station SLAM, and the smaller ellipses and their centers

represent error ellipses and their mean positions after running 3D scanner SLAM for each

plane captured (top and bottom planes don’t participate in the SLAM algorithm). The final

position estimate is very close to the expected (ground truth) position (green cross).

Figure 4.13 shows the print result of introducing 30mm odometry error. There is no drift or

gap between two segments, the connection between them is very solid.

Another experiment is conducted to test as the odometry error gets larger, at what point

the algorithm starts to diverge. To test this, the printer is moved to a known new position,
[

xtrue ytrue

]T

. Then, position estimate updates with increasing odometry error are made

to see if the algorithm can correct the estimate back to the true position. For each of 9

odometry errors, R, ranging from 15mm to 1500mm, the odometry estimates are sampled

from a normal distribution with mean
[

xtrue ytrue

]T

and covariance matrix




R 0

0 R



. Ten
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Figure 4.8: The figure at the top shows result of error ellipses if general form is used
as plane representation. The figure at the bottom shows the zoomed in image, the SLAM

algorithm is not able to adjust the printer close enough to the expected position
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Figure 4.9: The print result of using general form as plane representation with 30mm
odometry error

Figure 4.10: The deviation analysis of printing result using 4-parameter (general form)
as plane representation
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Figure 4.11: The print result of 30mm odometry error

samples are taken for each R, and the total station SLAM and 3D printer SLAM are run

on each odometry sample. The distances between the final estimated printer positions (i.e.

post-SLAM) and the true printer location (measured by hand), d, are calculated for each

sample, provided in Appendix B.

Table 4.1 shows the average d̄ and standard deviation σ, versus each odometry error, R.

When the odometry error is within 100mm, d̄ is kept smaller than 2mm, but if the odometry

error continues getting larger, d̄ starts to diverge.

The result of this experiment is satisfying. Considering the size of each segment we are

trying to print is about 60mm, from a practical perspective, our algorithm converges when

the odometry error is within a reasonable range. When moving a rover 60mm to position

for the next print, an odometry error over 100mm would never be reasonably expected.
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Figure 4.12: zoomed in plot of odometry error set to be 30mm

Table 4.1: Table of distance between final estimate and groud-truth expected position
(mm) vs. odometry error (mm)

Odometry error R 15 30 45 60 100 200 500 1000 1500

Average d̄ 1.8388 1.74455 1.57119 1.7866 1.85843 3.17622 5.51937 12.66657 12.62124

Standard deviation σ 0.3195 0.4023 0.6667 0.3300 0.3536 2.7432 3.4512 11.0354 10.3417
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Chapter 5

CONCLUSIONS AND FUTURE

WORK

The major conclusions of this work are summarized as follows:

EKF-SLAM algorithm for mobile 3D printing

In contrast to commonly used forms of Simultaneous Localization And Mapping (SLAM),

we propose a novel algorithm for predictive SLAM where the printer is building the physical

features that are then mapped/modeled. Since we have knowledge of what we are going to

build from a CAD model, we can directly add the predicted new planes into the state vector

right after printing, before we measure them. On the other hand, it is not only complicated

but also unnecessary to measure all the planes newly added to the model, since it needs

a 3D scanner to scan model from multiple directions. Therefore, using predictive SLAM

in simultaneous localization and modelling algorithm is a feasible approach. Furthermore,

according to the experiment testing the sensitivity of the algorithm to the odometry error,

the algorithm starts to diverge only if σ2
x = σ2

y is around 100mm, while the length of each

segment is only 60mm. This experiment demonstrates the algorithm has the ability to adjust

printer position correctly for odometry uncertainty that is within what could reasonably be

expected.
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Sensor fusion

Through the printing process, the algorithm updates printer pose, landmark position and

planes on the model as the states. We use both total station and 3D scanner as our sensors.

These two sensors are fused to overcome the deficiency of each individual sensor. The total

station helps to get the printer pose (especially its angle) in the global frame when the

printer is moved to a new location. The total station has a large range and a very accurate

angle measurement. However, since the total station is mounted on top of the 3D printer,

it requires a transformation from total station to printer. Due to the height of the printer

and thus distance between these two frames, the position measurement accuracy is affected

by any tilted angle of the print bed. On the other hand, the 3D scanner has a much smaller

measurement area and its angle measurements are less accurate than the total station, but it

has better position measurements in the local frame. Therefore, we can get an accurate angle

estimation but rough position estimation from the total station, and the 3D scanner is able

to further correct the position of the printer. The experiments in Chapter 4 demonstrated

the necessity of this implementation. Using only a 3D scanner or using a 3D scanner with

a total station with large angle measurement errors will both generate obvious drift as the

printer moves away from the origin position, while the fused implementation shows higher

quality print results.

Novel plane parameterization

We compared approaches to represent planar patches, and finally decided to present a rep-

resentation of 3D planes that is particularly suited for updating planar patches located far

from the origin. General form is a commonly used plane representation, but it is not feasi-

ble for this study. The general form represents infinite planes by their normal vectors and

the distances of planes to the origin. However, if the plane on the model is far away from

the origin, even a little bit of angle uncertainty will give rise to greatly varying distance

between plane and origin [42]. This will result in the error of planes increasing as the printer

moves far away from the origin. In order to solve this issue, we represent planes by their

normal vectors in a spherical coordinate system (polar angle, and azimuthal angle) and the

centroids of the planar patches. This representation is similar to [45], but representing the
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normal vectors in spherical coordinate system helps to keep the normal vectors normalized

during the algorithm. So instead of dealing with infinite planes, by this way, we only deal

with planar patches on the planes. The experiment shows the new approach to represent

planes gives improved results.

Future work

Since our current method only prints models extending along one direction, our future work

involves developing a method that can deal with mobile 3D printing all three x-y-z three

directions. In addition, it would be interesting to compare our current plane representation to

the SPmodel in the future. With SPmodel, the algorithm can use other symmetric geometric

shapes as landmarks instead of planes only. And for the moment, we are still moving the

printer by hand and all the measurements are still done manually. Eventually, the 3D

printer should be mounted on top of a mobile robot to achieve automatic mobile 3D printing.

Moreover, our current method for find correspondence between scanning measurement and

states is not using any probabilistic algorithm. In the future, finding correspondence should

be in a probabilistic framework.
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Appendix A

Printing error

Printing error is used to initialize the plane parameters on the printed segment. This value

is measured by the GOM inspection software. A cube with 15mm length edge is at first

printed. Then, it is scanned by the 3D scanner and compared with the nominal (CAD)

model. After that, both position deviation (Figure A.1) and angle deviation (Figure A.2)

can be measured by the GOM software. Finally, the printing error is determined to be:

δ =














0.015 0 0 0 0

0 0.015 0 0 0

0 0 0.2 0 0

0 0 0 0.2 0

0 0 0 0 0.2













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Figure A.1: The measurement of plane flatness gives plane position deviation as 0.2mm
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Figure A.2: The measurement of plane angle gives plane angle deviation as 0.015rad
(0.87◦)
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Appendix B

Sensitivity of the algorithm to the

odometry error

Table B.1: Table of distance between final estimate and groud-truth expected position
(mm) vs. odometry error (mm)

Test number

σ2

x = σ2

y 15 30 45 60 100 200 500 1000 1500

1 2.1076 1.9528 1.6733 1.8024 2.1078 2.0881 0.3095 11.5363 8.5024

2 1.8313 2.2715 2.6824 2.0016 1.3589 1.6204 8.6602 1.8049 2.2065

3 1.694 2.3785 1.5156 1.2833 1.7678 2.4269 1.0542 2.3246 8.137

4 1.863 1.7256 2.5495 2.1075 2.3465 8.8335 3.235 27.2307 1.0348

5 1.3241 1.6492 0.8819 1.5791 1.2523 8.8118 1.7489 9.7706 15.9704

6 2.5255 1.9046 0.4134 1.695 2.3309 2.2317 8.7373 8.903 12.5067

7 1.991 1.3223 0.7387 1.6112 1.4458 1.9762 9.5555 8.3795 11.4375

8 1.8452 1.0723 1.9758 1.6913 1.9523 1.5396 3.8255 39.8142 13.3116

9 1.3217 1.9972 1.662 1.5144 1.9871 0.2936 9.4922 1.8257 10.8146

10 1.8846 1.1715 1.6193 2.5802 2.0349 1.9404 8.5754 15.0762 42.2909

Average d̄ 1.8388 1.74455 1.57119 1.7866 1.85843 3.17622 5.51937 12.66657 12.62124

Standard deviation 0.3195 0.4023 0.6667 0.3300 0.3536 2.7432 3.4512 11.0354 10.3417
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Appendix C

Code

C.1 Main

clc

clear

close all

%%%%%%%%%%%%%%%%define the involved file names%%%%%%%%%%%%%%%%%

%STL file name

name_stl=’thin_curve’;

%total station measurement file name

name_data=’landmark test’;

%3D scanner measurement file name

ReadName=’p6_1.ply’;

%min point number in isolated planes (isolated planes with less point will be regarded as redundency and be

eliminated)

cloudpointnum=500;

%result of total station calibration (calculated from totalstationcalibration() program)

x_t1_p1=80.4517;

y_t1_p1=-37.9460;

R_t1_p1=-2.0834;

%total station to printer transformation matrix

trans_total_printer=[cos(R_t1_p1),-sin(R_t1_p1),x_t1_p1;

sin(R_t1_p1),cos(R_t1_p1),y_t1_p1;0,0,1];

%introduced odometry error (for the experiment testing sensitivity of the algorithm to odometry error)

R=10;

%odometry: printer pose (x_p(mm), y_p(mm), theta_p(rad) measured by hand)

bot_pos=[

0 0 degtorad(90);
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80 20 degtorad(225);

80 20 degtorad(225);

120 30 degtorad(225);

120 30 degtorad(225);

160 50 degtorad(225);

160 50 degtorad(225);

200 50 degtorad(225);

200 50 degtorad(225);

240 65 degtorad(225);

% 240 60 degtorad(225);

% 280 0 degtorad(225);

% 280 0 degtorad(225);

% 320 0 degtorad(225);

% 320 0 degtorad(225);

];

%introduce the odometry error only after moving the printer

if size(bot_pos,1)>1

figure(5)

hold on

scatter(bot_pos(end,1),bot_pos(end,2),’x’,’g’);

hold off

bot_pos(end,1:2)=bot_pos(end,1:2)+[normrnd(0,R),normrnd(0,R)];

end

%check if the filename of 3D scanning matches the odometry line number

pos_num=str2double(ReadName(2));

test_num=str2double(ReadName(end-4));

if pos_num==1

row_num=1;

else

row_num=pos_num*2+test_num-3;

end

if row_num~=size(bot_pos,1)

error(’error:odometry and point cloud filename doesnt match’);

end

%read total station measurement

[ ts_mea_2,ts_mea_1 ] = total_station_2(name_data);

%define the name of txt file for reading mu and sigma from last loop

[ mu_read_name, sigma_read_name ] = reading_file_name( bot_pos );

%define the initial sigma for printer pose, landmark position and plane parameters

sigma_planes_p1=diag([0.1,0.1,degtorad(0.1),0.1,0.1,0.1,0.1,0.1,0.1]);

sigma_planes_mov=diag([3+R,3+R,degtorad(3),0.1,0.1,0.1,0.1,0.1,0.1]);

printing_error=[0.015,0.015,0.2,0.2,0.2];

printing_error_ramp=[0.015,0.015,0.5,0.2,0.2];

sz=100;

%p1_n: initial printer pose
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if pos_num==1

%STL to planes

ramp_plane=[0.3420,0,0.9397,-20.5200]’;

[ cad_segment_post_print ] = stltoplanes(name_stl,ramp_plane’);

cad_num=size(cad_segment_post_print,1);

%add landmark positions into mu

printer_mea_1=trans_total_printer*ts_mea_1;

mu=[bot_pos(end,:)’;printer_mea_1(1:2,1);printer_mea_1(1:2,2);printer_mea_1(1:2,3)];

mu=[mu;zeros(cad_num*5,1)];

%add measured planes into mu

for i=1:cad_num

mu(5*i+5:5*i+9,1) = [acos(cad_segment_post_print(i,3))/sqrt(cad_segment_post_print(i,1)^2+

cad_segment_post_print(i,2)^2+cad_segment_post_print(i,3)^2),atan2(cad_segment_post_print(i,2),

cad_segment_post_print(i,1)),cad_segment_post_print(i,7:9)]’;

if i==cad_num

mu(5*i+7)=mu(5*i+7);

end

end

%initialize sigma for each planes

error_plane=diag(printing_error);

ACell = repmat({error_plane}, 1, cad_num);

ACell{1,end}=diag(printing_error_ramp);

error_plane_small = blkdiag(ACell{:});

%expand sigma

sigma=[sigma_planes_p1,zeros(size(sigma_planes_p1,1),cad_num*5);

zeros(cad_num*5,size(sigma_planes_p1,1)),error_plane_small];

length=sqrt(abs(tan(mu(3)))^2+0.6^2);

%plot printer pose and landmark positions in global frame

figure(1)

hold on

if wrapToPi(mu(3))<pi/2&&wrapToPi(mu(3))>-pi/2

plot([mu(1),(mu(1)+80/length)],[mu(2),(mu(2)+80/length*tan(mu(3)))],’g’);

elseif wrapToPi(mu(3))==pi/2||wrapToPi(mu(3))==-pi/2

plot([mu(1),mu(1)],[mu(2),(mu(2)+80)],’g’);

else

plot([mu(1),(mu(1)-80/length)],[mu(2),(mu(2)-80/length*tan(mu(3)))],’g’);

end

scatter(mu(1),mu(2),sz,’g’);

scatter([mu(4),mu(6),mu(8)],[mu(5),mu(7),mu(9)],’filled’);

hold off

%pn_1: right after moving the priner

elseif test_num==1

%the first scan right after moving printer

mu=dlmread(mu_read_name);

mu(1:3)=bot_pos(end,:)’;
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sigma=dlmread(sigma_read_name);

sigma(1:3,1:3)=sigma_planes_mov(1:3,1:3);

%initialize sigma

ramp_plane=[sin(mu(end-4))*cos(mu(end-3));sin(mu(end-4))*sin(mu(end-3));cos(mu(end-4));abcxyz2abcd( sin(mu

(end-4))*cos(mu(end-3)), sin(mu(end-4))*sin(mu(end-3)), cos(mu(end-4)), mu(end-2), mu(end-1), mu(end) )

’];

[ cad_segment_post_print ] = stltoplanes(name_stl,ramp_plane’);

%plot the error ellipse of printer position in the global frame

figure(5)

axis equal

hold on

scatter(mu(1),mu(2),’.’,’b’);

error_ellipse(sigma(1:2,1:2)^2,mu(1:2),’conf’,0.95);

hold off

%ts_mea_1 is the first set of total station measurements

%ts_mea_2 is the last set of total station measurements

%both of them are required to transform into the printer frame

printer_mea_1=trans_total_printer*ts_mea_1;

printer_mea_2=trans_total_printer*ts_mea_2;

%plot robot position and landmark positions in the global frame

figure(2)

title(’Global frame’)

xlabel(’mm’)

ylabel(’mm’)

hold on

tmpAspect=daspect();

%keep x&y axes in same scale

daspect(tmpAspect([1 2 2]))

scatter(bot_pos(1,1),bot_pos(1,2),sz,’b’);

%plot direction of printer

length=sqrt(abs(tan(bot_pos(1,3)))^2+0.6^2);

if bot_pos(1,3)<pi/2

plot([bot_pos(1,1),(bot_pos(1,1)+80/length)],[bot_pos(1,2),(bot_pos(1,2)+80/length*tan(bot_pos(1,3)))

],’b’);

elseif bot_pos(1,3)>pi/2

plot([bot_pos(1,1),(bot_pos(1,1)-80/length)],[bot_pos(1,2),(bot_pos(1,2)-80/length*tan(bot_pos(1,3)))

],’b’);

elseif bot_pos(1,3)==pi/2||bot_pos(1,3)==-pi/2

plot([bot_pos(1,1),bot_pos(1,1)],[bot_pos(1,2),(bot_pos(1,2)+80)],’b’);

end

scatter(printer_mea_1(1,1:3),printer_mea_1(2,1:3),’filled’);

%define total station measurement error

m_error=diag([20,4.7124e-06]);
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%SLAM1: total station SLAM

[ mu, sigma ] = SLAM1( printer_mea_2, mu, sigma, m_error );

sigma=abs(sigma);

%plot printer pose after SLAM1

length=sqrt(abs(tan(mu(3)))^2+0.6^2);

if wrapToPi(mu(3))<pi/2&&wrapToPi(mu(3))>-pi/2

plot([mu(1),(mu(1)+80/length)],[mu(2),(mu(2)+80/length*tan(mu(3)))],’g’);

elseif wrapToPi(mu(3))==pi/2||wrapToPi(mu(3))==-pi/2

plot([mu(1),mu(1)],[mu(2),(mu(2)+80)],’g’);

else

plot([mu(1),(mu(1)-80/length)],[mu(2),(mu(2)-80/length*tan(mu(3)))],’g’);

end

scatter(mu(1),mu(2),sz,’g’);

%plot printer pose from odometry

if bot_pos(end,3)<pi/2&&wrapToPi(bot_pos(end,3))>-pi/2

plot([bot_pos(end,1),(bot_pos(end,1)+80/length)],[bot_pos(end,2),(bot_pos(end,2)+80/length*tan(bot_pos

(end,3)))],’r’);

elseif wrapToPi(bot_pos(2,3))==pi/2||wrapToPi(bot_pos(2,3))==-pi/2

plot([bot_pos(end,1),bot_pos(end,1)],[bot_pos(end,2),(bot_pos(end,2)+80)],’r’);

else

plot([bot_pos(end,1),(bot_pos(end,1)-80/length)],[bot_pos(end,2),(bot_pos(end,2)-80/length*tan(bot_pos

(end,3)))],’r’);

end

scatter(bot_pos(end,1),bot_pos(end,2),sz,’r’);

%plot updated landmarks

scatter([mu(4),mu(6),mu(8)],[mu(5),mu(7),mu(9)],’filled’);

disp(’SLAM1 robot pose (mm)’)

disp([mu(1:3)’])

%pn_2: right after printing

else

%the scan right after printing

mu_old=dlmread(mu_read_name);

mu_old_matrix=[];

for i=1:(size(mu_old,1)-9)/5

%previous plane parameters

mu_old_matrix=[mu_old_matrix;[sin(mu_old(5*i+5))*cos(mu_old(5*i+6));sin(mu_old(5*i+5))*sin(mu_old(5*i

+6));cos(mu_old(5*i+5));abcxyz2abcd( sin(mu_old(5*i+5))*cos(mu_old(5*i+6)), sin(mu_old(5*i+5))*sin(mu_old

(5*i+6)), cos(mu_old(5*i+5)), mu_old(5*i+7), mu_old(5*i+8), mu_old(5*i+9) )]’];

end

sigma_old=dlmread(sigma_read_name);
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ramp_plane=[sin(mu_old(end-4))*cos(mu_old(end-3));sin(mu_old(end-4))*sin(mu_old(end-3));cos(mu_old(end-4))

;abcxyz2abcd( sin(mu_old(end-4))*cos(mu_old(end-3)), sin(mu_old(end-4))*sin(mu_old(end-3)), cos(mu_old(

end-4)), mu_old(end-2), mu_old(end-1), mu_old(end) )’];

%new mu is new cad_segment + previous cad_segment

[ cad_segment_pre_print ] = stltoplanes(name_stl,ramp_plane’);

%predicted plane parameters

[ cad_segment_post_print ] = stltoplanes(name_stl,[ramp_plane(1:3);ramp_plane(4)-40*ramp_plane(1)]’);

%distinguish out updated planes and non-updated planes

[C2,ia2,ib2] = intersect(round(cad_segment_post_print(:,1:6),5),round(cad_segment_pre_print(:,1:6),5),’

rows’,’stable’);

all_planes=1:size(cad_segment_post_print,1);

%’1’=changed planes, ’0’=unchanged planes

changed_planes=~ismember(all_planes,ia2);

mu=mu_old(1:9);

cad_num=size(cad_segment_post_print,1);

error_large=[];

for i=1:cad_num

if changed_planes(i)==1;

error_large = [error_large,0.015,0.05,1,1,0.2];

else

error_large = [error_large,[0.005,sigma_old(3,3),sigma_old(1,1),sigma_old(2,2),0]+printing_error];

end

end

error_diag=diag(error_large);

sigma=[abs(sigma_old(1:9,1:9)),zeros(9,cad_num*5);

zeros(cad_num*5,9),error_diag];

%combinations of all not updated planes

c_a = combnk(ia2,2);

c_b = combnk(ib2,2);

j=1;

if isempty(c_a)||isempty(c_b)

sigma(5+5*ia2:9+5*ia2,5+5*ia2:9+5*ia2)=sigma_old(5+5*ib2:9+5*ib2,5+5*ib2:9+5*ib2);

sigma(1:5,5+5*ia2:9+5*ia2)=sigma_old(1:5,5+5*ib2:9+5*ib2);

sigma(5+5*ia2:9+5*ia2,1:5)=sigma_old(5+5*ib2:9+5*ib2,1:5);

else

for i=1:size(c_a,1)

sigma(5+5*c_a(i,1):9+5*c_a(i,1),5+5*c_a(i,2):9+5*c_a(i,2))=sigma_old(5+5*c_b(i,1):9+5*c_b(i,1)

,5+5*c_b(i,2):9+5*c_b(i,2));

sigma(1:5,5+5*c_a(i,1):9+5*c_a(i,1))=sigma_old(1:5,5+5*c_b(i,2):9+5*c_b(i,2));

sigma(5+5*c_a(i,2):9+5*c_a(i,2),1:5)=sigma_old(5+5*c_b(i,1):9+5*c_b(i,1),1:5);

end

end

for i=1:size(cad_segment_post_print,1)

%changed planes

if changed_planes(i)==1
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mu=[mu;abcd2abcxyz(cad_segment_post_print(i,:))];

%unchanged planes

else

mu=[mu;mu_old(5*ib2(j)+5:5*ib2(j)+9)];

j=j+1;

end

end

end

%%%%%%%%%%%%%%%%point cloud process%%%%%%%%%%%%%

check_error=1;

same_plane_error=0;

%if there are multiple side planes with simiar angle

while check_error==1

%clear plot

clf(figure(3))

clf(figure(4))

%pcfitplane tolerance is increased

same_plane_error=same_plane_error+0.05;

if same_plane_error>0.2

warning(’with large pcfitplane tolerance, there are still planes with similar directions’);

break;

end

%fit planes from the 3D scanner measurement, and the output is measured planes in printer frame

[ para ] = point_cloud_process( ReadName, mu, cloudpointnum,same_plane_error);

%find correspondence between measured planes and corresponding planes in the state vector

[order_para, check_error]=plane_correspondence( mu, bot_pos, para );

end

% #test program# calculate distance between planes and orgin point as a reference

if size(bot_pos,1)~=1

for i=1:size(order_para,1)

if round(abs(order_para(i,3)),2)<0.97&&round(abs(order_para(i,3)),2)>0.3

[I1,~]=plane_line_intersect(order_para(i,1:3),[-order_para(i,4)/order_para(i,1)

,0,0],[0,0,0],[-1,-1,0]);

elseif round(abs(order_para(i,3)),2)<0.5

[I2,~]=plane_line_intersect(order_para(i,1:3),[-order_para(i,4)/order_para(i,1)

,0,0],[0,0,0],[-1,1,0]);

end

end

sqrt(I1(1)^2+I1(2)^2)

sqrt(I2(1)^2+I2(2)^2)

figure(4)

hold on

plot3([0,50],[0,50],[0,0],’r’);

scatter3(I1(1),I1(2),I1(3),’filled’,’k’);

hold off
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end

%plot error ellipse of printer position before running SLAM algorithm

figure(5)

title(’Error ellipses in global frame’)

axis equal

hold on

scatter(mu(1),mu(2),’.’,’b’);

error_ellipse(sigma(1:2,1:2)^2,mu(1:2),’conf’,0.95);

hold off

%SLAM2

plane_num=(size(mu,1)-9)/5;

[ mu, sigma ] = SLAM2_thetaphi2( plane_num, order_para, mu, sigma, bot_pos);

%Pn_1 right after moving the printer

if test_num==1

%generate STL file for printing the next piece based on the updated ramp plane

%convert mu to mu2 in order to represent it in the previous way

%convert ramp plane into general form

i=(size(mu,1)-9)/5;

ramp_para=[sin(mu(5*i+5))*cos(mu(5*i+6));sin(mu(5*i+5))*sin(mu(5*i+6));cos(mu(5*i+5));abcxyz2abcd( sin(mu

(5*i+5))*cos(mu(5*i+6)), sin(mu(5*i+5))*sin(mu(5*i+6)), cos(mu(5*i+5)), mu(5*i+7), mu(5*i+8), mu(5*i+9) )

’];

%ramp plane for segmenting the whole CAD model

center_piece=stl_generate_polygon(ramp_para,name_stl);

%plot the center of next piece to be printed

figure(2)

hold on

sz=10;

scatter(center_piece(1),center_piece(2),sz,’b’,’filled’)

hold off

%calculate the pose of the next piece to be printed in the local frame

%bearing

rho=sqrt((center_piece(1)-mu(1))^2+(center_piece(2)-mu(2))^2);

%range

theta=mu(3)+atan2(center_piece(2)-mu(2),center_piece(1)-mu(1));

%position of next segment in robot frame

[x_print,y_print] = pol2cart(theta,rho);

%direction of next segment in robot frame

theta_print=-mu(3)-3*pi/2;

%the number that need to be imported into printing software

print_pose=[x_print,y_print,theta_print,radtodeg(theta_print)+360];

disp(’ x(mm) y(mm) theta degree’)

disp(print_pose)

end
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%save mu and sigma value for next mobile 3D printing block

s1=’mu_file_’;

C=strsplit(ReadName,’.’);

s2=C(1);

s3=’.txt’;

name_mu=char(strcat(s1,s2,s3));

s4=’sigma_file_’;

name_sigma=char(strcat(s4,s2,s3));

dlmwrite(name_mu,mu,’delimiter’,’\t’,’precision’,10);

dlmwrite(name_sigma,sigma,’delimiter’,’\t’,’precision’,10);

C.2 Point cloud process

function [ para ] = point_cloud_process( ReadName, mu, cloudpointnum, same_plane_error)

%POINT_CLOUD_PROCESS Summary of this function goes here

% Detailed explanation goes here

strPath = ’C:\Users\georgeli\Desktop\project’;

strFull = fullfile(strPath,ReadName);

cap = pcread(strFull);

%plot pre-processing point cloud

figure(3)

hold on

subplot(3,3,9)

xlabel(’X’)

ylabel(’Y’)

zlabel(’Z’)

pcshow(cap)

%down sample the point cloud

gridStep = 0.2;

downsampled = pcdownsample(cap,’gridAverage’,gridStep);

[model1,inlierIndices,outlierIndices] = pcfitplane(downsampled,0.6);

bot_plane = select(downsampled,inlierIndices); %select bottom pc

rem1 = select(downsampled,outlierIndices);

rem_bot = select(downsampled,inlierIndices);

[model2,inlierIndices,outlierIndices] = pcfitplane(rem1,0.4);

top_plane = select(rem1,inlierIndices); %select top pc

rem2 = select(rem1,outlierIndices);
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[model3,inlierIndices,outlierIndices] = pcfitplane(rem2,0.2);

ramp_plane = select(rem2,inlierIndices); %select ramp pc

%ROI is defined by the boundary of top pc

roi=[top_plane.XLimits(1)-10,top_plane.XLimits(2)+20;

top_plane.YLimits(1)-10,top_plane.YLimits(2)+10;

-inf,inf];

%crop an ROI from the current pc

indices = findPointsInROI(cap, roi);

downsampled = select(cap,indices);

if model1.Normal(3)<0

normaltobottom = -model1.Normal;

else

normaltobottom = model1.Normal;

end

%%%%%%%%%%%%%translate%%%%%%%%%%%%%

%3D scanner calibration function, gives position offset and angle offset of the 3D scanner as output

[center_printer,angle_error] = center_evaluate_function;

disp(’position offset’);

disp(center_printer);

disp(’angle offset’);

disp(angle_error);

if abs(angle_error)>2

error(’Error. Angle error from 3D scanner calibration too large’)

end

angle_error=120+angle_error;

tranz=[1 0 0 0;0 1 0 0; 0 0 1 0; -center_printer(1) -center_printer(2) -center_printer(3) 1];

rottranf = affine3d(tranz);

ptCloudTranslated = pctransform(downsampled,rottranf);

%%%%%%%%%%%%rotate around x and y axis%%%%%%%%%%

xaxis = [1 0 0];

yaxis = [0 1 0];

a = atan2(norm(cross(normaltobottom,xaxis)), dot(normaltobottom,xaxis));

b = atan2(norm(cross(normaltobottom,yaxis)), dot(normaltobottom,yaxis));

tranx = [

1 0 0 0;

0 cos(b-degtorad(90)) -sin(b-degtorad(90)) 0;

0 sin(b-degtorad(90)) cos(b-degtorad(90)) 0;

0 0 0 1;

];% matrix to rotate about x axis
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trany = [

cos(a-degtorad(90)) 0 -sin(a-degtorad(90)) 0;

0 1 0 0;

sin(a-degtorad(90)) 0 cos(a-degtorad(90)) 0;

0 0 0 1;

];% matrix to rotate about y axis

angtransf = affine3d(tranx);

ptCloudTformed_1 = pctransform(ptCloudTranslated,angtransf);

angtransf = affine3d(trany);

ptCloudTformed = pctransform(ptCloudTformed_1,angtransf);

%%%%%%%%%%%%rotate around z axis%%%

theta = deg2rad(angle_error); %%camera angle isn’t exact 120 degree as designed

tranz = [

cos(theta) -sin(theta) 0 0;

sin(theta) cos(theta) 0 0;

0 0 1 0

0 0 0 1;

];% matrix to transform about z axis

rottranf = affine3d(tranz);

ptCloudTformed = pctransform(ptCloudTformed,rottranf);

%final adjust, move bottom plane to z=0 plane

%there is confusion between top and bottom, so we need to make sure we

%adjust z based on bottom plane

[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloudTformed,0.4,[0,0,1]);

in1 = select(ptCloudTformed,inlierIndices); %select TOP ground pc

rem = select(ptCloudTformed,outlierIndices); %select TOP ground pc

[model2,inlierIndices,outlierIndices] = pcfitplane(rem,0.4,[0,0,1]);

in2 = select(rem,inlierIndices); %select TOP ground pc

if abs(model1.Parameters(4))>abs(model2.Parameters(4))

model1=model2; %always adjust by bottom plane

end

model1.Parameters %pre-adjustment bottom plane

tranz=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 -abs(model1.Parameters(4)) 1];

rottranf = affine3d(tranz);

ptCloudTformed2 = pctransform(ptCloudTformed,rottranf);

[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloudTformed2,0.4);

model1.Parameters %post-adjustment bottom plane

%%%%%%%%%%%%%%%%%%%isolate planes%%%%%%%%%%%%%%%%%%

r_angle=radtodeg(mu(3));

x_dist=mu(1);
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y_dist=mu(2);

%%%%%%%%%%%%%%%

i=1;

lock_top=0;

lock_ramp=0;

para=zeros(10,7);

while(1)

[model,inlierIndices,outlierIndices,meanError] = pcfitplane(ptCloudTformed2,0.4);

%if the remaining pc number is less than cloudpointnum, break from the loop

if size(inlierIndices,1)<cloudpointnum

break;

end

remain_pc = select(ptCloudTformed2,outlierIndices);

choice = select(ptCloudTformed2,inlierIndices);

ptCloudTformed2=remain_pc;

A = [cosd(r_angle-90) sind(r_angle-90) 0 0; ...

-sind(r_angle-90) cosd(r_angle-90) 0 0; ...

0 0 1 0; ...

x_dist y_dist 0 1];

tform = affine3d(A);

ptCloudA = pctransform(choice,tform);

ptCloudB = pcdenoise(choice,’Threshold’,1);

%if plane is too small or get bottom plane once again, ignore and stop searching

para(i,1:4)=model.Parameters;

figure(3)

hold on

subplot(3,3,i)

pcshow(choice)

centroid_allp=[mean(ptCloudB.Location),mean(ptCloudB.Location),mean(ptCloudB.Location)];

centroid_pc=[mean(ptCloudB.XLimits),mean(ptCloudB.YLimits),mean(ptCloudB.ZLimits)];

centroid_adj=plane_line_intersect([model.Parameters(1),model.Parameters(2),model.Parameters(3)],[0,0,-

model.Parameters(4)/model.Parameters(3)],centroid_pc,centroid_pc+[model.Parameters(1),model.Parameters(2)

,0]);

%plot each planar patches and their centroids

if round(abs(para(i,3)),2)<0.98&&round(abs(para(i,3)),2)>0.3

figure(4)

hold on

title(’ramp analyse’)

pcshow(choice)

y=10:.1:30;

z=0:.1:7.3;

[Y,Z] = meshgrid(y,z);

a1=model.Parameters(1); b1=model.Parameters(2); c1=model.Parameters(3); d1=-model.Parameters(4);

X=(d1- b1 * Y - c1 * Z)/a1;

shading flat
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xlabel(’x’); ylabel(’y’); zlabel(’z’)

scatter3(centroid_allp(1),centroid_allp(2),centroid_allp(3),’filled’,’m’);

end

%subplot planar patches in different

figure(3)

hold on

title([’plane ’ num2str(i)])

hold off

para_pos_g(i,1:2)=ptCloudA.XLimits;

para(i,5:7)=centroid_adj;

i=i+1;

if abs(round(model.Parameters(3),3))>0.95&&abs(round(model.Parameters(4),3))>0.5&&lock_top==0

save_top=choice;

lock_top=1;

elseif i-1>2&&abs(round(model.Parameters(3),3))<1&&abs(round(model.Parameters(3),3))>0.5&&lock_ramp==0

save_ramp=choice;

lock_ramp=1;

end

end

%transform top point cloud into global

A = [cosd(r_angle-90) sind(r_angle-90) 0 0; ...

-sind(r_angle-90) cosd(r_angle-90) 0 0; ...

0 0 1 0; ...

x_dist y_dist 0 1];

tform = affine3d(A);

save_top_g = pctransform(save_top,tform);

save_ramp_g = pctransform(save_ramp,tform);

element_segment=find(ismember(para(:,1:4), [0,0,0,0], ’rows’),1);

para(element_segment:end,:)=[];

%transform plane from local to global

para_g=[cosd(r_angle-90) -sind(r_angle-90) 0 0; ...

sind(r_angle-90) cosd(r_angle-90) 0 0; ...

0 0 1 0; ...

x_dist y_dist 0 1]*para(:,1:4)’;

para_g=para_g’;

%if measured planes have very close angle, then one of them will be removed

flag=0;

before_para_size=size(para,1);

for i=4:size(para,1)-1

for j=1:size(para,1)-i

abs(para(i,1)-para(i+j,1))
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if abs(para(i,1)-para(i+j,1))<same_plane_error

if para(i,1)<para(i+j,1)

para(i,:)=[];

flag=1;

break

else

para(i+j,:)=[];

flag=1;

break

end

end

end

if flag==1

break

end

end

after_para_size=size(para,1);

if after_para_size<before_para_size

warning(’two similar planes have been combined’);

else

warning(’no similar planes have been combined’);

end

%%%%%%%%%%%%%%%%%%unify plane direction%%%%%%%%%%%%%%%%%%%%%%%

%top, bottom and ramp planes normal vector z>0

%side planes normal vector points outside of model

if exist(’save_top’,’var’)==0

error(’Error. No top planes detected. height error too big’)

end

save_area=[];

save_top_ds = pcdownsample(save_top_g,’random’,0.01);

save_ramp_ds = pcdownsample(save_ramp_g,’random’,0.01);

for i=1:1:size(para,1)

p_direction=0;

if i>3

if abs(abs(para(i,1))-1)<0.01

if para(i,1)>0

para(i,1:4)=-para(i,1:4);

end

else

%check most of the points in point cloud is above plane or under plane

if (para_pos_g(i,1)+para_pos_g(i,2))/2<save_ramp_ds.XLimits(1)

%compare top

for j=1:1:size(save_top_ds.Location,1)

if abs(save_top_ds.Location(j,1)-(para_pos_g(i,1)+para_pos_g(i,2))/2)<1

save_area=[save_area;save_top_ds.Location(j,1:2)];
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end

end

else

%compare ramp

for j=1:1:size(save_ramp_ds.Location,1)

if abs(save_ramp_ds.Location(j,1)-(para_pos_g(i,1)+para_pos_g(i,2))/2)<1

save_area=[save_area;save_ramp_ds.Location(j,1:2)];

end

end

end

for j=1:size(save_area,1)

if save_area(j,2)>(-para_g(i,1)/para_g(i,2))*save_area(j,1)-para_g(i,4)/para_g(i,2)

p_direction=p_direction+1;

else

p_direction=p_direction-1;

end

end

end

elseif para(i,3)<0

para(i,1:4)=-para(i,1:4);

end

if abs(para(i,3))>0.5

if para(i,3)<0

para(i,1:4)=-para(i,1:4);

end

elseif (p_direction<0&&para_g(i,2)<0)||(p_direction>0&&para_g(i,2)>0)

para(i,1:4)=-para(i,1:4);

end

end

end

C.3 STL to planes

function [ save_segment ] = stltoplanes(name_stl,slice_plane)

%STLTOPLANES_F Summary of this function goes here

filename=strcat(’C:\Users\georgeli\Desktop\project\’,name_stl,’.stl’);

[F,V,N] = stlread(filename);

num=size(N,1);

save_plane=zeros(num,10);

for i=1:1:num
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d=-N(i,1)*V(i*3,1)-N(i,2)*V(i*3,2)-N(i,3)*V(i*3,3);

plane_para=[round(N(i,1),4),round(N(i,2),4),round(N(i,3),4),round(d,4),V(3*i-2,:)];

plane_limit=[min([V(i*3-2,1),V(i*3-1,1),V(i*3,1)]),max([V(i*3-2,1),V(i*3-1,1),V(i*3,1)])];

save_plane(i,1:4)=plane_para(1:4);

save_plane(i,5:6)=plane_limit;

save_plane(i,7:9)=plane_para(5:7);

if N(i,2)>0

save_plane(i,10)=1;

elseif N(i,2)<0

save_plane(i,10)=-1;

end

end

[~,ia,~]=unique(save_plane(:,1:4),’rows’);

save_plane=save_plane(ia,:);

%%%%%%slice%%%%%

model_length=max(V(:,1));

left=0;

p1=planeModel(slice_plane’);

p2=planeModel([0,0,1,0]);

p4=planeModel([0,0,1,-7.3]);

%calculate intersection on positive direction side and negative direction side

for i=1:size(save_plane,1)

p3=planeModel(save_plane(i,1:4));

if save_plane(i,end)==-1

intersect_r_neg=three_plane_intersect_y(p1,p2,p3);

if intersect_r_neg(1)<=save_plane(i,6)&&intersect_r_neg(1)>=save_plane(i,5)

x_r_neg=intersect_r_neg;

end

intersect_l_neg=three_plane_intersect_y(p1,p4,p3);

if intersect_l_neg(1)<=save_plane(i,6)&&intersect_l_neg(1)>=save_plane(i,5)

x_l_neg=intersect_l_neg;

end

elseif save_plane(i,end)==1

intersect_r_pos=three_plane_intersect_y(p1,p2,p3);

if intersect_r_pos(1)<=save_plane(i,6)&&intersect_r_pos(1)>=save_plane(i,5)

x_r_pos=intersect_r_pos;

end

intersect_l_pos=three_plane_intersect_y(p1,p4,p3);

if intersect_l_pos(1)<=save_plane(i,6)&&intersect_l_pos(1)>=save_plane(i,5)

x_l_pos=intersect_l_pos;

end

end

end

save_segment=zeros(num,10);
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unit=zeros(1,6);

%while right<model_length+segment_length

n=1;

%%%%%%%segment bottom and top planes

save_segment(n,:)=-save_plane(find(ismember(save_plane(:,1:3), [0,0,-1], ’rows’),1),:); %’-’in order to

match scan

save_segment(n,5:6)=[0,max([x_r_neg,x_r_neg])]; %’-’in order to match scan

n=n+1;

save_segment(n,:)=save_plane(find(ismember(save_plane(:,1:3), [0,0,1], ’rows’),1),:);

save_segment(n,5:6)=[0,max([x_l_neg,x_l_neg])];

n=n+1;

%%%%%%%segment side planes

for i=1:1:size(save_plane,1)

if save_plane(i,3)==0

if save_plane(i,end)<=0&&(save_plane(i,5)<x_r_neg(1)||save_plane(i,6)<x_r_neg(1))

save_segment(n,:)=save_plane(i,:);

if save_segment(n,6)>x_r_neg(1)

save_segment(n,5:6)=[save_plane(i,5),x_r_neg(1)];

end

n=n+1;

elseif save_plane(i,end)>=0&&(save_plane(i,5)<x_r_pos(1)||save_plane(i,6)<x_r_pos(1))

save_segment(n,:)=save_plane(i,:);

if save_segment(n,6)>x_r_pos(1)

save_segment(n,5:6)=[save_plane(i,5),x_r_pos(1)];

end

n=n+1;

end

end

end

%%%%%%%segment right side plane

if x_r_pos(1)>=model_length||x_r_neg(1)>=model_length

save_segment(n,:)=save_plane(find(ismember(save_plane(:,1:3), [1,0,0], ’rows’),1),:);

n=n+1;

else

%find side cross right end

[M,I]=max([zeros(2,1);save_segment(3:end,6)]);

p1=planeModel(save_segment(I,1:4));

%find top or bottom plane

for i=1:1:find(ismember(save_segment(:,1:4), [0,0,0,0], ’rows’),1)-1

if save_segment(i,1:3)==[0,0,1]

p2=planeModel(save_segment(i,1:4));

break

end

end

%find ramp plane
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p3=planeModel(slice_plane);

if p1.Parameters(1)~=0

I=three_plane_intersect_x(p3,p2,p1);

elseif p1.Parameters(3)~=0

I=three_plane_intersect_z(p3,p2,p1);

elseif p1.Parameters(2)~=0

I=three_plane_intersect_y(p3,p2,p1);

end

save_segment(n,:)=[slice_plane’,min([x_l_neg(1),x_l_pos(1)]),max([x_r_neg(1),x_r_pos(1)]),I,0];

end

save_segment(find(ismember(save_segment(:,1:4), [0,0,0,0], ’rows’),1):end,:)=[];

end

C.4 Planes to STL

function [center_print] = stl_generate_polygon( ramp_para, name_stl )

%consider surface as polygon and use Delaunay instead of using triangle

slice_normal=[ramp_para(1),ramp_para(2),ramp_para(3)];

length_set=60;

right_1=[];

left_1=[];

% fv = stlread(’C:\Users\georgeli\Desktop\project\George-01.stl’);

filename=strcat(’C:\Users\georgeli\Desktop\project\’,name_stl,’.stl’);

fv = stlread(filename);

right_end=max(fv.vertices(:,1));

figure(4)

subplot(3,1,1)

title(’original model’)

xlabel(’millimeters’)

ylabel(’millimeters’)

hold on

patch(fv,’FaceColor’, [0.8 0.8 1.0], ...

’EdgeColor’, ’none’, ...

’FaceLighting’, ’gouraud’, ...

’AmbientStrength’, 0.15);

% Add a camera light, and tone down the specular highlighting

camlight(’headlight’);

material(’dull’);

% Fix the axes scaling, and set a nice view angle
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axis(’image’);

view([-135 35]);

fvsave=[];

for i=1:6:size(fv.vertices,1)

combine_tri=unique(fv.vertices(i:i+5,:),’rows’);

fvsave=[fvsave;0,0,0;combine_tri];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%left side slicing%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

check_end=0;

for loop=1:2

%saved last outline surface

if exist(’IO1’,’var’)==1

last_p_all=p_all;

end

%for the second loop para and end should be changed

if loop==2

if abs((ramp_para(4)-length_set*ramp_para(1))/sqrt(1-ramp_para(3)^2))>right_end

ramp_para=[ramp_para(1),0,sqrt(1-ramp_para(1)^2),ramp_para(4)];

check_end=1;

end

ramp_para=[ramp_para(1),0,sqrt(1-ramp_para(1)^2),ramp_para(4)-length_set*ramp_para(1)];

else

ramp_para=[ramp_para(1),0,sqrt(1-ramp_para(1)^2),ramp_para(4)];

end

if check_end==0

save_size=size(fv.vertices,1);

bottom_i=[];

top_i=[];

if loop==1;

side_i=[];

end

%distinguish top bot and side

for i=1:3:save_size

%bottom

if unique(fv.vertices(i:i+2,3),’rows’)==0

bottom_i=[bottom_i,i];

%top

elseif unique(fv.vertices(i:i+2,3),’rows’)==max(fv.vertices(:,3))

top_i=[top_i,i];

%side

else

if loop==1

side_i=[side_i,i];
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end

end

end

%update bottom order

picked=1;

i=2;

all_triangles=fv.vertices(bottom_i(picked):bottom_i(picked)+2,:);

while size(picked,2)~=size(bottom_i,2)

check1=any(ismember(sum(ismember(all_triangles(:,1:2),fv.vertices(bottom_i(i),1:2)),2),2));

check2=any(ismember(sum(ismember(all_triangles(:,1:2),fv.vertices(bottom_i(i)+1,1:2)),2),2));

check3=any(ismember(sum(ismember(all_triangles(:,1:2),fv.vertices(bottom_i(i)+2,1:2)),2),2));

if (check1+check2+check3>1)&&sum(ismember(picked,i))==0

all_triangles=[all_triangles;fv.vertices(bottom_i(i):bottom_i(i)+2,:)];

picked=[picked,i];

end

i=i+1;

if i>size(bottom_i,2)

i=2;

end

end

fv.vertices(bottom_i(1):bottom_i(1)+size(all_triangles,1)-1,:)=all_triangles;

%update top order

picked=1;

i=2;

all_triangles=fv.vertices(top_i(picked):top_i(picked)+2,:);

while size(picked,2)~=size(top_i,2)

check1=any(ismember(sum(ismember(all_triangles(:,1:2),fv.vertices(top_i(i),1:2)),2),2));

check2=any(ismember(sum(ismember(all_triangles(:,1:2),fv.vertices(top_i(i)+1,1:2)),2),2));

check3=any(ismember(sum(ismember(all_triangles(:,1:2),fv.vertices(top_i(i)+2,1:2)),2),2));

if (check1+check2+check3>1)&&sum(ismember(picked,i))==0

all_triangles=[all_triangles;fv.vertices(top_i(i):top_i(i)+2,:)];

picked=[picked,i];

end

i=i+1;

if i>size(top_i,2)

i=2;

end

end

fv.vertices(top_i(1):top_i(1)+size(all_triangles,1)-1,:)=all_triangles;

%%%%%%%%%%%%%

new_fv=[];

p_all=[];

%generate triangles for bottom

[~,~,poly_vertex]=combine_triangle(fv.vertices(min(bottom_i):max(bottom_i)+2,:));

if loop==1
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[new_poly,IO,connect_order,p1,p2]=polygon_slice(poly_vertex,ramp_para,1);

else

[new_poly,IO,connect_order,p1,p2]=polygon_slice(poly_vertex,ramp_para,2);

end

if isempty(p1)==0&&isempty(p2)==0

new_poly(find(ismember(new_poly,p1,’rows’),1),:)=round(new_poly(find(ismember(new_poly,p1,’rows’),1)

,:),5);

new_poly(find(ismember(new_poly,p1,’rows’),2),:)=round(new_poly(find(ismember(new_poly,p1,’rows’),2)

,:),5);

end

p_all=[p_all;p1;p2];

for i=1:size(IO,1)

if IO(i)==1

new_fv=[new_fv;new_poly(connect_order(i,1),:);new_poly(connect_order(i,2),:);new_poly(

connect_order(i,3),:)];

end

end

%generate triangles for top

[~,~,poly_vertex]=combine_triangle(fv.vertices(min(top_i):max(top_i)+2,:));

if loop==1

[new_poly,IO,connect_order,p1,p2]=polygon_slice(poly_vertex,ramp_para,1);

else

[new_poly,IO,connect_order,p1,p2]=polygon_slice(poly_vertex,ramp_para,2);

end

if isempty(p1)==0&&isempty(p2)==0

new_poly(find(ismember(new_poly,p1,’rows’),1),:)=round(new_poly(find(ismember(new_poly,p1,’rows’),1)

,:),5);

new_poly(find(ismember(new_poly,p1,’rows’),2),:)=round(new_poly(find(ismember(new_poly,p1,’rows’),2)

,:),5);

end

p_all=[p_all;p1;p2];

for i=1:size(IO,1)

if IO(i)==1

new_fv=[new_fv;[new_poly(connect_order(i,1),:);new_poly(connect_order(i,2),:);new_poly(

connect_order(i,3),:)]];

end

end

%generate triangles for side

new_side_i=[size(new_fv,1)+1];

previous_size=size(new_fv,1)+1;

if loop==1

side_save=[];

for i=1:size(side_i,2)

if mod(side_i(i),2)==1

side_save=[side_save,side_i(i)];
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end

end

side_i=side_save;

side_i=[side_i,side_i(end)+6];

end

for i=1:size(side_i,2)-1

[~,~,poly_vertex]=combine_triangle(fv.vertices(side_i(i):side_i(i+1)-1,:));

if loop==1

[new_poly,IO,connect_order,p1,p2]=polygon_slice(poly_vertex,ramp_para,1);

else

[new_poly,IO,connect_order,p1,p2]=polygon_slice(poly_vertex,ramp_para,2);

end

if isempty(p1)==0&&isempty(p2)==0

new_poly(find(ismember(new_poly,p1,’rows’),1),:)=round(new_poly(find(ismember(new_poly,p1,’rows’)

,1),:),5);

new_poly(find(ismember(new_poly,p1,’rows’),2),:)=round(new_poly(find(ismember(new_poly,p1,’rows’)

,2),:),5);

end

p_all=[p_all;p1;p2];

new_side_i=[new_side_i,previous_size+nnz(IO)*3];

previous_size=previous_size+nnz(IO)*3;

for j=1:size(IO,1)

if IO(j)==1

new_fv=[new_fv;new_poly(connect_order(j,1),:);new_poly(connect_order(j,2),:);new_poly(

connect_order(j,3),:)];

end

end

end

new_side_i=[new_side_i,previous_size+nnz(IO)*3];

side_i=unique(new_side_i(1:end-1));

%slicing surface

p_all=unique(round(p_all,5),’rows’);

if isempty(p_all)==1

p_all=[p_all;];

else

if size(unique(p_all(:,1:2),’rows’),1)==size(p_all,1)

k=convhull(p_all(:,1),p_all(:,2));

else

k=convhull(p_all(:,2),p_all(:,3));

end

save_insert=[];

%if slicing surface is concave

if size(k,1)-1~=size(p_all,1)

for i=1:size(p_all,1)

if sum(ismember(k,i))==0
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concave_p=i;

insert_row=p_all(concave_p,:);

end

end

concave_num=find(ismember(round(new_fv,4),round(p_all(concave_p,:),4),’rows’));

close_p=[];

for i=1:size(concave_num,1)

for j=1:size(side_i,2)-1

if concave_num(i)>=side_i(j)&&concave_num(i)<side_i(j+1)

if concave_num(i)-1>=side_i(j)&&concave_num(i)-1<side_i(j+1)

close_p=[close_p;concave_num(i)-1];

else

close_p=[close_p;side_i(j+1)-1];

end

if concave_num(i)+1>=side_i(j)&&concave_num(i)+1<side_i(j+1)

close_p=[close_p;concave_num(i)+1];

else

close_p=[close_p;side_i(j)];

end

end

end

end

p_all=p_all(k(1:end-1),:);

p_all=[p_all;p_all(1,:)];

between_p=unique(new_fv(close_p,:),’rows’);

for i=1:size(between_p,1)

save_insert=[save_insert;find(ismember(round(p_all,4),round(between_p(i,:),4),’rows’))];

end

save_insert=[save_insert;save_insert(1)];

for i=1:size(save_insert,1)-1

if abs(save_insert(i)-save_insert(i+1))==1

insert_position=min([save_insert(i),save_insert(i+1)]);

end

end

p_all=[p_all(1:insert_position,:);insert_row;p_all(insert_position+1:end-1,:)];

else

%is convex

p_all=p_all(k(1:end-1),:);

end

end

%saved last outline surface

if exist(’IO1’,’var’)==1

last_connect_order=connect_order1;

last_IO=IO1;

end
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if size(unique(p_all(:,1:2),’rows’),1)==size(p_all,1)

[IO1,connect_order1]=delaunay_slice(p_all(:,[1,2]));

else

[IO1,connect_order1]=delaunay_slice(p_all(:,[2,3]));

end

%close the open outline

if loop==1

for i=1:size(IO1,1)

if IO1(i)==1

new_fv=[new_fv;[p_all(connect_order1(i,3),:);p_all(connect_order1(i,2),:);p_all(connect_order1

(i,1),:)]];

end

end

else

for i=1:size(IO1,1)

if IO1(i)==1

new_fv=[new_fv;[p_all(connect_order1(i,1),:);p_all(connect_order1(i,2),:);p_all(connect_order1

(i,3),:)]];

end

end

for i=1:size(last_IO,1)

if last_IO(i)==1

new_fv=[new_fv;[last_p_all(last_connect_order(i,3),:);last_p_all(last_connect_order(i,2),:);

last_p_all(last_connect_order(i,1),:)]];

end

end

end

%replace

fv.vertices=new_fv;

nn=1;

%edit faces

fv.faces=[];

for i=1:1:size(fv.vertices,1)/3

for j=1:1:3

fv.faces(i,j)=nn;

nn=nn+1;

end

end

end

if loop==1

%save remaining

stlwrite(’C:\Users\georgeli\Desktop\project\remaining.stl’,fv) % Save to binary .stl

fv = stlread(’C:\Users\georgeli\Desktop\project\remaining.stl’);

figure(4)

if loop==1
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subplot(3,1,2)

else

subplot(3,1,3)

end

title(’remaining part’)

xlabel(’millimeters’)

ylabel(’millimeters’)

patch(fv,’FaceColor’, [0.8 0.8 1.0], ...

’EdgeColor’, ’none’, ...

’FaceLighting’, ’gouraud’, ...

’AmbientStrength’, 0.15);

% Add a camera light, and tone down the specular highlighting

camlight(’headlight’);

material(’dull’);

% Fix the axes scaling, and set a nice view angle

axis(’image’);

view([-135 35]);

else

%calculate the center of the piece

biggest_x=-inf;

smallest_x=inf;

biggest_y=-inf;

smallest_y=inf;

for i=1:size(fv.vertices,1)

if fv.vertices(i,1)<smallest_x

smallest_x=fv.vertices(i,1);

end

if fv.vertices(i,1)>biggest_x

biggest_x=fv.vertices(i,1);

end

if fv.vertices(i,2)<smallest_y

smallest_y=fv.vertices(i,2);

end

if fv.vertices(i,2)>biggest_y

biggest_y=fv.vertices(i,2);

end

end

center_print=[(smallest_x+biggest_x)/2,(smallest_y+biggest_y)/2];

%save next_piece

stlwrite(’C:\Users\georgeli\Desktop\project\next_piece.stl’,fv) % Save to binary .stl

fv = stlread(’C:\Users\georgeli\Desktop\project\next_piece.stl’);

figure(4)

subplot(3,1,3)
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title(’next segment’)

xlabel(’millimeters’)

ylabel(’millimeters’)

patch(fv,’FaceColor’, [0.8 0.8 1.0], ...

’EdgeColor’, ’none’, ...

’FaceLighting’, ’gouraud’, ...

’AmbientStrength’, 0.15);

% Add a camera light, and tone down the specular highlighting

camlight(’headlight’);

material(’dull’);

% Fix the axes scaling, and set a nice view angle

axis(’image’);

view([-135 35]);

end

end

end

C.5 Polygon slcing

function [new_poly_vertex,IO,connect_order,p1,p2] = polygon_slice( poly_vertex,ramp_para,check )

%POLYGON_SLICE Summary of this function goes here

% Detailed explanation goes here

save_i=[];

slice_normal=[ramp_para(1),ramp_para(2),ramp_para(3)];

slice_point=[0,0,-ramp_para(4)/ramp_para(3)];

poly_vertex=[poly_vertex;poly_vertex(1,:)];

%slice the polygon, if there is intersection put into save_i

for i=1:size(poly_vertex,1)-1

v1=ramp_para(1)*poly_vertex(i,1)+ramp_para(2)*poly_vertex(i,2)+ramp_para(3)*poly_vertex(i,3)+ramp_para(4);

v2=ramp_para(1)*poly_vertex(i+1,1)+ramp_para(2)*poly_vertex(i+1,2)+ramp_para(3)*poly_vertex(i+1,3)+

ramp_para(4);

if (v1<0&&v2>0)||(v1>0&&v2<0)

save_i=[save_i,i];

end

if i==1

if check==1

if v1>0

direction_i=1;

else

direction_i=0;
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end

else

if v1>0

direction_i=0;

else

direction_i=1;

end

end

end

end

%if there is intersection update the new shape

if isempty(save_i)==0

p1=plane_line_intersect(slice_normal,slice_point,poly_vertex(save_i(1),:),poly_vertex(save_i(1)+1,:));

p2=plane_line_intersect(slice_normal,slice_point,poly_vertex(save_i(2),:),poly_vertex(save_i(2)+1,:));

if direction_i==0

new_poly_vertex=[p1;poly_vertex(save_i(1)+1:save_i(2),:);p2];

else

new_poly_vertex=[poly_vertex(1:save_i(1),:);p1;p2;poly_vertex(save_i(2)+1:end-1,:)];

end

%distinguish both are valid or invalid

elseif (check==1&&v1<0)||(check==2&&v1>0)

p1=[];

p2=[];

new_poly_vertex=[];

IO=[];

connect_order=[];

return

else

poly_p=poly_vertex(1:end-1,:);

%poly_p has to be rounded, sometimes instead of 0 there is a very small

%number

p1_n=find(ismember(round(poly_p(:,1),5),0));

if size(p1_n,1)==2

p1=poly_p(p1_n(1),:);

p2=poly_p(p1_n(2),:);

else

p1=[];

p2=[];

end

new_poly_vertex=poly_vertex(1:end-1,:);

end

%use delaunay triangulate the polygon

if size(unique(new_poly_vertex(:,3)),1)==1

[IO,connect_order]=delaunay_slice(new_poly_vertex(:,[1,2]));

for i=1:size(connect_order,2)-1
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for j=1:size(connect_order,1)

if IO(j)==1&&abs(connect_order(j,i)-connect_order(j,i+1))==1&&(connect_order(j,i)>connect_order(j,

i+1))

connect_order=fliplr(connect_order);

return

end

end

end

elseif size(unique(new_poly_vertex(:,1)),1)==1

[IO,connect_order]=delaunay_slice(new_poly_vertex(:,[2,3]));

for i=1:size(connect_order,2)-1

for j=1:size(connect_order,1)

if IO(j)==1&&abs(connect_order(j,i)-connect_order(j,i+1))==1&&(connect_order(j,i)>connect_order(j,

i+1))

connect_order=fliplr(connect_order);

return

end

end

end

else

[IO,connect_order]=delaunay_slice(new_poly_vertex(:,[1,3]));

for i=1:size(connect_order,2)-1

for j=1:size(connect_order,1)

if IO(j)==1&&abs(connect_order(j,i)-connect_order(j,i+1))==1&&(connect_order(j,i)>connect_order(j,

i+1))

connect_order=fliplr(connect_order);

return

end

end

end

end

end

C.6 SLAM1: total station SLAM

function [ mu, sigma ] = SLAM1( printer_mea_2, mu, sigma, Q )

%SLAM1 Summary of this function goes here

% Detailed explanation goes here

for i=1:3

%convert landmark measurement in local frame from Cartesian to polar

[theta,rho] = cart2pol(printer_mea_2(1,i),printer_mea_2(2,i));

%z_m is measurement in total station part of SLAM.First row is
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%distance, second row is angle

z_m(:,i) = [rho,wrapTo2Pi(theta)]’;

%z_hat is predicted measurement from odometry data. First row is

%distance, second row is angle

delta = mu(2*i+2:2*i+3)-mu(1:2);

q = delta’*delta;

z_hat(:,i) = [sqrt(q);wrapTo2Pi(wrapTo2Pi(atan2(delta(2),delta(1)))-(wrapTo2Pi(mu(3))-pi/2))];

%F is used to extend matrix dimension

F = [eye(3),zeros(3,2*i-2),zeros(3,2),zeros(3,2*3-2*i),zeros(3,size(mu,1)-9);

zeros(2,3),zeros(2,2*i-2),eye(2),zeros(2,2*3-2*i),zeros(2,size(mu,1)-9)];

%Jacobian matrix

H = 1/q*[-sqrt(q)*delta(1),-sqrt(q)*delta(2),0,sqrt(q)*delta(1),sqrt(q)*delta(2);

delta(2),-delta(1),-q,-delta(2),delta(1)]*F;

%Kalman gain

K = sigma*H’*inv(H*sigma*H’+Q);

%accumulated mu and sigma change

mu=mu+K*(z_m(:,i)-z_hat(:,i));

sigma=(eye(size(mu,1))-K*H)*sigma;

end

end

C.7 SLAM2: 3D scanner SLAM

function [ mu, sigma ] = SLAM2_thetaphi2( plane_num, order_para, mu, sigma, bot_pos)

%SLAM2 3D scanner SLAM algorithm

%This algorithm updates robot pose and plane parameters

state_num=plane_num*5+9;

%save plane parameter part of the state vector into matrix

for i=1:(size(mu,1)-9)/5

mu_matrix(i,:)=[sin(mu(5+5*i))*cos(mu(6+5*i)),sin(mu(5+5*i))*sin(mu(6+5*i)),cos(mu(5+5*i)),-sin(mu(5+5*i))

*cos(mu(6+5*i))*mu(7+5*i)-sin(mu(5+5*i))*sin(mu(6+5*i))*mu(8+5*i)-cos(mu(5+5*i))*mu(9+5*i),mu(7+5*i:9+5*i

)’];

end

syms x_0 y_0 z_0 x_r y_r theta_r phi_g theta_g

for i=3:size(order_para,1)

%plane parameters from 3D scanner (has been transformed into robot frame) is used as measurement

order_para_g=[cos(mu(3)-pi/2),-sin(mu(3)-pi/2),0;sin(mu(3)-pi/2),cos(mu(3)-pi/2),0;0,0,1]*order_para(i

,1:3)’;

[z_m_theta_g,z_m_phi_g]=abc2tp(order_para_g(1)/norm(order_para_g),order_para_g(2)/norm(order_para_g),

order_para_g(3)/norm(order_para_g));

[z_m_theta,z_m_phi]=abc2tp(order_para(i,1),order_para(i,2),order_para(i,3));
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%plane parameters from CAD model (still in global frame) need to be transformed into robot frame is used

as prediction

[mu_theta,mu_phi]=abc2tp(mu_matrix(order_para(i,end),1),mu_matrix(order_para(i,end),2),mu_matrix(

order_para(i,end),3));

z_hat_1_4=[cos(mu(3)-pi/2) sin(mu(3)-pi/2) 0 0;-sin(mu(3)-pi/2) cos(mu(3)-pi/2) 0 0;0 0 1 0;mu(1) mu(2) 0

1]*mu_matrix(order_para(i,end),1:4)’;

z_hat_local(:,i)=[z_hat_1_4(1:3)’,sin(mu(3))*(mu_matrix(order_para(i,end),5)-mu(1))-cos(mu(3))*(mu_matrix(

order_para(i,end),6)-mu(2)),cos(mu(3))*(mu_matrix(order_para(i,end),5)-mu(1))+sin(mu(3))*(mu_matrix(

order_para(i,end),6)-mu(2)),mu_matrix(order_para(i,end),7)]’;

%F is used to extend matrix

F = [eye(3),zeros(3,6),zeros(3,5*order_para(i,end)-5),zeros(3,5),zeros(3,5*plane_num-5*order_para(i,end));

zeros(5,3),zeros(5,6),zeros(5,5*order_para(i,end)-5),eye(5),zeros(5,5*plane_num-5*order_para(i,end))];

%point cloud center

x0=order_para(i,7);

y0=order_para(i,8);

z0=order_para(i,9);

b=[x0,y0,z0,1]’;

% closest point from centroid to the plane in state vector

[I2,check]=plane_line_intersect([z_hat_local(1,i),z_hat_local(2,i),z_hat_local(3,i)],z_hat_local(4:6,i)’,b

(1:3)’,b(1:3)’+[z_hat_local(1,i),z_hat_local(2,i),0]);

% replace b with another point closest to origin

[I1,check]=plane_line_intersect([z_hat_local(1,i),z_hat_local(2,i),z_hat_local(3,i)],b(1:3)’,[0,0,b(3)

],[0,0,b(3)]+[z_hat_local(1,i),z_hat_local(2,i),0]);

z_m(:,i) = [z_m_theta,z_m_phi,I1(1:3)]’;

% intersection of reference point and plane in state vector

[I,check]=plane_line_intersect([z_hat_local(1,i),z_hat_local(2,i),z_hat_local(3,i)],z_hat_local(4:6,i)’,I1

(1:3),I1(1:3)+[z_hat_local(1,i),z_hat_local(2,i),0]);

z_hat(:,i)=[acos(z_hat_local(3,i))/sqrt(z_hat_local(1,i)^2+z_hat_local(2,i)^2+z_hat_local(3,i)^2);

atan2(z_hat_local(2,i),z_hat_local(1,i));

I(1);

I(2);

I(3)];

% plot planes, measured and estimated centroid of planes

figure(6)

hold on

axis equal

y=b(2)-10:.1:b(2)+10;

z=0:.1:7.3;

[Y,Z] = meshgrid(y,z);

a1=z_hat_1_4(1); b1=z_hat_1_4(2); c1=z_hat_1_4(3); d1=-z_hat_1_4(4);

X=(d1- b1 * Y - c1 * Z)/a1;

surf(X,Y,Z)

shading flat

xlabel(’x’); ylabel(’y’); zlabel(’z’)

pts1=[I1;I];
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plot3(pts1(:,1), pts1(:,2), pts1(:,3));

pts2=[b(1:3)’;I2];

plot3(pts2(:,1), pts2(:,2), pts2(:,3));

scatter3(b(1),b(2),b(3),’filled’,’r’,’LineWidth’,3)

scatter3(I(1),I(2),I(3),’filled’,’k’,’LineWidth’,3)

scatter3(I1(1),I1(2),I1(3),’filled’,’k’,’LineWidth’,3)

scatter3(I2(1),I2(2),I2(3),’filled’,’r’,’LineWidth’,3)

scatter3(z_hat_local(4,i),z_hat_local(5,i),z_hat_local(6,i),’filled’,’b’,’LineWidth’,3)

I_g=[cos(mu(3)-pi/2),-sin(mu(3)-pi/2),0,mu(1);

sin(mu(3)-pi/2),cos(mu(3)-pi/2),0,mu(2);

0,0,1,0;

0,0,0,1]*[I,1]’;

ja1=[0,0,0;

0,0,-1;

-sin(theta_r),cos(theta_r),cos(theta_r)*(x_0-x_r)+sin(theta_r)*(y_0-y_r);

-cos(theta_r),-sin(theta_r),-sin(theta_r)*(x_0-x_r)+cos(theta_r)*(y_0-y_r);

0,0,0];

tform_xyr=double(subs(ja1, [theta_g,phi_g,x_0,y_0,z_0,x_r,y_r,theta_r], [mu_theta,mu_phi,I_g(1),I_g(2),I_g

(3),mu(1),mu(2),mu(3)]));

ja2=[1,0,0,0,0;

0,1,0,0,0;

0,0,sin(theta_r),-cos(theta_r),0;

0,0,cos(theta_r),sin(theta_r),0;

0,0,0,0,1];

tform_b=double(subs(ja2, [theta_g,phi_g,x_0,y_0,z_0,x_r,y_r,theta_r], [mu_theta,mu_phi,I_g(1),I_g(2),I_g

(3),mu(1),mu(2),mu(3)]));

% H is combined with tform_xyr and tform_b since this part of SLAM is updating both robot pose and plane

parameters simultaneously

H = [tform_xyr,tform_b]*F;

error_measurement=diag([0.001,0.001,1,1,0.01]);

r=wrapTo2Pi(z_m(2,i))-wrapTo2Pi(mu(3));

% eigenvector of x_p y_p part of covariance matrix

[V,D]=eig(sigma(1:2,1:2));

syms a b

eqns=[V(1,1)*a+V(2,1)*b==cos(mu(6+5*order_para(i,end))+pi/2),V(1,2)*a+V(2,2)*b==sin(mu(6+5*order_para(i,

end))+pi/2)];

S=solve(eqns,[a b]);

alpha1=round(double(S.a),3);

alpha2=round(double(S.b),3);

%plot

figure(9)

title(’eigenvector (red) and cutting plane (blue)’)

120



hold on

axis equal

error_ellipse(sigma(1:2,1:2)^2,[0;0],’conf’,0.68);

line([0,V(1,1)*D(1,1)],[0,V(2,1)*D(1,1)],’color’,’r’)

line([0,V(1,2)*D(2,2)],[0,V(2,2)*D(2,2)],’color’,’r’)

line([0,S.a*V(1,1)+S.b*V(2,1)],[0,S.a*V(1,2)+S.b*V(2,2)],’color’,’b’)

hold off

%

u=alpha1*[V(1,1);V(2,1)]+alpha2*[V(1,2);V(2,2)];

sigma_cut=u’*sigma(1:2,1:2)*u;

R=[cos(r-pi/4),-sin(r-pi/4);sin(r-pi/4),cos(r-pi/4)];

xy_error=R*diag([sigma_cut,0.1])*R’;

error_measurement(3:4,3:4)=xy_error;

% Kalman gain

K = sigma*H’*inv(H*sigma*H’+error_measurement);

% accumulated mu and sigma change

z_diff=z_m(:,i)-z_hat(:,i);

if abs(z_diff(1))>pi

if z_diff(1)>0

z_diff(1)=z_diff(1)-2*pi;

else

z_diff(1)=z_diff(1)+2*pi;

end

elseif abs(z_diff(2))>pi

if z_diff(2)>0

z_diff(2)=z_diff(2)-2*pi;

else

z_diff(2)=z_diff(2)+2*pi;

end

end

check_add=K*z_diff;

print_adj=check_add(1:3)

side_adj=check_add(25:29)

ramp_adj=check_add(35:39)

if i~=1&&i~=2

sqrt(z_diff(3)^2+z_diff(4)^2)

mu=mu+K*z_diff;

sigma=(eye(state_num)-K*H)*sigma;

end

%plot

figure(5)

hold on

axis equal

%adjust x&y in same scale

tmpAspect=daspect();
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daspect(tmpAspect([1 2 2]))

scatter(mu(1),mu(2),’.’);

%plot error ellipse

error_ellipse(sigma(1:2,1:2)^2,mu(1:2),’conf’,0.95);

end

end
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