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ABSTRACT 

 

Title: Local and regional coexistence can be mediated by the spatial structure of the environment 

 

Author: Louis Donelle 

 

Spatial environmental heterogeneity is widely accepted and cited as a mechanism underlying the 

structure of ecological communities. Most empirical evidence related to the effects of 

environmental heterogeneity comes from assessing how local environments vary in relation to 

one another and how this variation affects community (and metacommunity) structure. However, 

similar levels of environmental variation are often structured differently in space, likely affecting 

species distributions and the ways in which they coexist. Yet, the spatial structure of 

environmental variation received very little attention. In this study, we set out for the first time a 

model to understand the effects of the spatial structure of the environment on metacommunity 

dynamics and its effects on species co-existence at local and regional levels. We built a 

metacommunity model in a spatially explicit landscape with spatially structured environmental 

conditions and a continuum of specialist to generalist species that competed for space.  Dispersal 

mortality was set as a function of species’ environmental tolerances and the environmental 

variation experienced during dispersal. The spatial structure of the environment was found to 

increase local and regional coexistence, while also selecting for more specialist species. In 

landscapes with strong spatial structure, patches with similar environmental values were clustered 

together, thus facilitating the successful colonization of suitable patches by specialist species. 

Conversely, weakly structured landscapes selected for generalist species.  As such, increased 

environmental spatialization fostered niche partitioning, facilitating coexistence and, as a result, 

increasing local and regional diversity.   

 

.   
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INTRODUCTION 

Spatial environmental heterogeneity (resource or non-resource) is widely accepted and 

cited as a mechanism underlying the structure of ecological communities (Chesson 2000, 2018). 

Because species vary in their responses to and abilities to handle spatial variation in their 

environments, heterogeneity is a central mechanism of species coexistence. Most empirical 

evidence related to the effects of environmental heterogeneity comes from assessing how local 

environments vary in relation to one another and how this variation affects community structure 

(e.g., direct gradient analysis, beta-diversity studies, environmental filtering; Whittaker 1967, 

Condit et al. 2002, Lebrija-Trejos et al. 2010, Laliberté et al. 2014). However, similar levels of 

environmental variation are often structured differently in space (where variation occurs) and 

time (when variation occurs), likely affecting species distributions and the ways they coexist. 

Yet, the structure of environmental variation received very little consideration in comparison to 

environmental heterogeneity’s magnitude.  

At local and regional scales, environmental heterogeneity drives community composition. 

At local scales, environmental heterogeneity may stabilize local species coexistence via niche 

partitioning. As postulated by the theory of limiting similarity (Abrams 1983), species that are 

too similar to one another cannot coexist locally. It follows that species’ niches must sufficiently 

differ (e.g., use different environments) to allow species coexistence, which is referred to as niche 

partitioning (MacArthur 1958). However, the relationship between heterogeneity and richness is 

rather unimodal than simply positive. While greater environmental heterogeneity at the local 

scale should harbor greater number of species given that more niches are available, it also 

decreases the relative availability (area for spatial or frequency for temporal) associated to 

different types of environment. Although a greater number of species can coexist in 

heterogeneous environments through mechanisms such as storage effect (spatial or temporal), 

consisting in the ability of storing the “gains” made in favorable environments to compensate for 

the “losses” in unfavorable environments (Chesson 1983), a decrease in the relative frequency of 

favourable environments increase local extinction risk. It follows that generalist species that do 

well in a broader range of environmental conditions can take advantage of these niches left 

unoccupied by specialists that go locally or regionally extinct. As such, increase in environmental 

heterogeneity should first lead to an increase in local richness by hosting additional specialists, 

before a decrease in diversity via allowing greater number of generalist species replacing multiple 
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specialists. At regional scale, environmental heterogeneity (i.e. variation in environmental 

features among patches) allows different local communities to assemble within a metacommunity 

as a result of a shift in competitive dominance driven by changes in environmental conditions 

(Gleason 1926, Clements 1936), a process loosely referred to as environmental filtering even 

though it is often mediated by competition (see Kraft et al. 2015, Cadotte and Tucker 2017). 

Moreover, demographic and/or spatial processes also impact local and regional 

coexistence. Demographic processes such as priority effect (Connell and Slatyer 1977) can give 

rise to multiple alternative stable states in ecological communities (Sutherland 1974, May 1977), 

thus promoting regional coexistence as different combinations of species (i.e., community 

composition) can arise even in the absence of environmental heterogeneity. Demographic 

stochasticity (e.g., when, by chance, population growth is higher or lower than expected), whose 

effect is stronger when population sizes are small, generate path-dependant community assembly 

(i.e., when early stages of community assembly have great impact on the resulting community 

even though the circumstances during early stage are no longer relevant for the community; but 

see Connell and Slatyer 1977) as in neutral dynamic (Hubbell 2001) or in priority effect (Urban 

and De Meester 2009, De Meester et al. 2016). Additionally, spatial processes can lead to local 

and regional coexistence (see Amarasekare 2003) through differences in species life histories 

such as the competition-colonization trade-off (Levins and Culver 1971, Hastings 1980) where 

the better colonizer can rapidly colonize newly available patches, thus producing offspring that 

can disperse before the stronger competitor can successfully colonize any particular patch and 

outcompete the first colonizing species. In addition, dispersal between patches can promote local 

coexistence via source-sink dynamics, in which weaker competitors survive in an unfavourable 

environment (sink) as long as immigration compensates its local negative growth rate (Pulliam 

1988). As such, regional coexistence driven by regional environmental heterogeneity or path-

dependant community assembly can in turn promote local coexistence through source-sink 

dynamics, though it could also lead to species homogenization across communities if dispersal is 

too strong (Loreau and Mouquet 1999, Amarasekare and Nisbet 2001).  

Ecologists have focussed extensively on disentangling environmental and spatial drivers 

of ecological communities, mostly using the variation partitioning framework (Borcard et al. 

1992, Peres-Neto et al. 2006, but see Brown et al. 2017 for discussion), which allows one to 

estimate the relative importance of these drivers in determining variation in species composition 



 3 

across communities (beta-diversity across local communities within a metacommunity). In the 

variation partitioning framework, fraction [a] is the variation explained by environmental 

predictors only, fraction [c] represents the variation explained by spatial predictors only, and 

fraction [b] is the variation jointly explained by space and environment (spatially structured 

environment; Peres-Neto et al. 2012). While ecologists have focussed on the pure environmental 

[a] and pure spatial [c] fractions, the spatially structured fraction of the environment [b] is rarely 

analyzed and interpreted, but rather considered as a confounding effect resulting from the 

collinearity between spatial and environmental predictors. As such, relevant (and well-cited) 

meta-analyses for estimating the relative importance of environmental and spatial factors driving 

species variation within metacommunities have otherwise overlooked the importance of spatially 

structured environmental variation (e.g.,  Cottenie 2005, Soininen 2014, 2016). However, as 

reported by  Cottenie’s (2005) meta-analysis, spatially structured environment (see Appendix I 

for definition) explains on average 10% of community composition, while the total explanation 

of all fractions [a+b+c] sits at 48%.  The strong emphasis on analyzing spatial and environmental 

drivers independently led the spatial structure of the environment to be overlooked as a 

mechanism underlying species coexistence within metacommunities despite the fact that in 

natural systems environmental variation is spatially structured (e.g.,  topography or climatic 

variables such as temperature and precipitation; Legendre 1993). 

 The influence of temporal (Petchey et al. 1997, Heino 1998, Heino et al. 2000, Gonzalez 

and Holt 2002, Wichmann et al. 2003, Schwager et al. 2006, Long et al. 2007, Ruokolainen et al. 

2007, Ruokolainen and Fowler 2008), spatial (Palmqvist and Lundberg 1998, Lande et al. 1999, 

Robert 2009, Massie et al. 2015), or spatiotemporal (Matthews and Gonzalez 2007, Ruokolainen 

et al. 2009) structure of environmental variability (i.e., where the average environmental 

conditions over time is constant over space, but the temporal fluctuations are spatially and/or 

temporally autocorrelated) on extinction risk and species coexistence have been exhaustively 

studied. However, only few theoretical studies have investigated how the spatial structure of 

environmental variation per se underlie species coexistence and patterns of species composition 

across local communities. For instance, based on a two-species simulation model, Snyder (2008) 

found that the spatial structure of the environment promotes greater levels of regional coexistence 

than its temporal structure.  Short-distance dispersal, which foster species aggregation across 

local communities, has been shown relevant to regional coexistence in a spatially structured 
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environment based on a simple two-species system (Snyder and Chesson 2003). Moreover, the 

spatial structure of the environmental features was found to impact species life history traits such 

as dispersal ability (Büchi and Vuilleumier 2012), colonization ability, survival rate (Büchi et al. 

2009), as well as levels of specialization (Büchi and Vuilleumier 2012, 2014) in a multispecies 

simulation model. In addition, Bar-Massada et al. (2014) found that spatialized environments 

reduced the importance of neutral interactions in community assembly. Büchi et al. (2009; 2012; 

2014) report that the effect of the spatial structure of the environment on species coexistence was 

contingent on species’ dispersal abilities and disturbance rate, but because their simulation 

protocol aimed at investigating selection of life-history and/or dispersal traits rather than 

coexistence per se, these studies provide very little understanding of the role of spatial structure 

of the environment on species coexistence and related consequences to community structure.  

 However, despite the fact that the results of these studies (i.e., Snyder and Chesson 2003, 

Snyder 2008, Büchi et al. 2009, Büchi and Vuilleumier 2012, Bar-Massada et al. 2014, Büchi and 

Vuilleumier 2014) were contingent on dispersal, none considered dispersal costs in their 

simulation models, the wide evidence of its prevalence (see Bonte et al. 2012 for a review), 

including its importance to species coexistence (Mouquet and Loreau 2003). In other words, past 

models assumed that individuals emigrating form a given patch would always immigrate in 

another patch, thus removing the ultimate cost of dispersal (i.e., mortality). Dispersal is indeed 

not a risk-free process, having strong implications to fitness (Bonte et al. 2012). In addition to the 

fact that dispersal requires resources and time that would be otherwise allocated to other 

activities, dispersal also comes with mortality risks related to predation, parasitism, and energetic 

costs. Indeed, extreme environmental conditions experienced during dispersal can directly lead to 

dispersal mortality for both active (Bonnet et al. 1999, Winne and Hopkins 2006, Keefer et al. 

2008) and passive (Pechenik 1999, Hiddink et al. 2002, Hiddink and Wolff 2002, Allen and 

McAlister 2007) dispersers. In addition, inhospitable environments may indirectly lead to higher 

mortality as a consequence of increased energy expenditure (Rand and Hinch 1998, Bonnet et al. 

1999, Aarestrup et al. 2005, Rand et al. 2006, Winne and Hopkins 2006) or resource limitation 

(McConaugha 1992, Horvath and Lamberti 1999). It follows that environmental tolerance 

alleviates this source of dispersal mortality, hence increasing dispersal ability across 

heterogeneous landscapes.  
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The links between specialization, dispersal ability and successful colonization is widely 

established (Amarasekare et al. 2004) and are likely to interact strongly with the spatial structure 

of environmental conditions to determine how species coexist. Indeed, while generalist species 

can succeed in a large range of environmental conditions, specialist species have higher fitness at 

their niche optima, thus outcompeting generalist species and constraining them to local 

communities without specialists (Egas et al. 2004). However, depending on the spatial structure 

of the environment, dispersal limitation of specialist species may reduce their ability to reach 

isolated patches due to costs associated to dispersal mortality or to maintain viable populations in 

sub-optimal sites via source-sink dynamic, which may in turn reduce the regional persistence of 

specialists given that sink populations often benefit from recolonization from source populations 

following a disturbance (Frouz and Kindlmann 2001). As such, accounting for species’ dispersal 

abilities is essential to understand how the spatial structure of the environment underlies species 

coexistence.  

Here, we investigate for the first time the effects of the spatial structure of the 

environment on metacommunity dynamics and its effects on species coexistence at the local and 

regional levels, as well as the selection of ecological specialization. This investigation was 

conducted using a metacommunity simulation model that considered mortality as a function of 

the dispersing environment. We used a multispecies model in which selection among species can 

occur, as our focus is not only on species coexistence, but also on how selection of specialization 

levels affects species coexistence. A two-species or “few-species” model is more fitted to study 

coexistence mechanisms, but does not necessarily allow an understanding of how the level of 

spatialization of the environment mediates the coexistence of specialist versus generalist species, 

which ultimately may result in the number of species that can coexist locally and regionally.  

Considering that larger spatial range (i.e., the distance over which environmental values 

are more similar than expected by chance) and stronger spatial autocorrelation lead to smaller 

environmental differences between neighbouring sites (Appendix I), we predict that (1) larger 

spatial ranges and stronger spatial autocorrelation lead to higher specialization because dispersers 

face very little environmental heterogeneity; (2) smaller differences among patches (i.e. larger 

and stronger spatial autocorrelation) should promote connectivity between patches, leading to 

higher local coexistence (i.e., greater number of species) via source-sink dynamics. As a result, 

we predict that (3) stronger spatial autocorrelation should homogenise communities in their 
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species composition, leading to reduced beta diversity among local communities and 

consequently lower regional diversity.  

METHOD 

General simulation framework 

We used a spatially explicit metacommunity model in a lattice landscape of 40 × 40 

patches structured by spatial environmental variability. Our model included a continuum of 

specialist to generalist species that competed for space in a locally (spatially-structured) 

heterogeneous environment based on the matching of their niche with local environmental 

conditions. Individuals dispersed among patches within the landscape and could disperse multiple 

steps within the same dispersal event. Individual dispersal mortality was based on the matching 

between the species niche (that the individual belonged to) and the local environmental 

conditions of the patches visited by the individual during dispersal.  Spatially structured 

environmental variation was simulated based on a spherical variogram model. Ten types of 

spatially structured landscapes determined by two variogram parameters (spatial range and 

nugget) combined against 6 simulation scenarios as a function of dispersal and disturbance (see 

simulation dynamics for details) were replicated 30 times each, leading to a total of 1800 

simulations (30 × 6 × 10; see Table 1 for list of parameters used). The model and analyses were 

implemented in R version 3.5 (R Core Team 2013). 

 

Landscape structure 

We simulated metacommunities consisting of 1600 local communities by considering a 

40 × 40 lattice with periodic boundaries (torus) across all simulations.  For the sake of simplicity, 

we considered a single environmental variable. We investigated nine different spatial structures 

for the environment in which three levels of autocorrelation strength (low, medium, and high) 

combined with three levels of autocorrelation range (short, medium, and long) (see Fig. 1). To 

generate a spatialized environment, we first conditioned a spatial covariance matrix Σ to follow 

the commonly used spherical variogram model with a given range (𝛼 = {3, 10 𝑜𝑟 20}) and a 

given autocorrelation strength (𝐶0 = {0, 0.33 𝑜𝑟 0.66}; i.e., the “nugget effect") as follows: 
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Σ = σ =

1− 𝐶0 ∗ (1−
3𝑑

2𝑎
− 0.5

𝑑

𝑎
), if  0 < 𝑑 ≤ 𝑎

0, if  𝑑 > 𝑎        

1, if  𝑑 = 0        

 (eq. 1) 

where σ  are the elements of the covariance matrix Σ, 𝑑  is the Euclidean distance between 

patches i and j, 𝑎 is the spatial range and 1− 𝐶0 is the strength of the autocorrelation.   

To generate an environmental variable that is a random sample from a given spatial 

covariance matrix, we used a multivariate random normal generator assuming a mean of zero and 

the covariance matrix as Σ (mvrnorm function from the MASS R package). The environmental 

variable was standardized to mean zero and unit variance so that only the spatial structure of the 

environment varied across scenarios and their replicates.  For each simulation replicate within 

and across different spatial structures (variogram models), we generated a new spatialized 

environmental variable.  Although we considered a torus for the dispersal landscape, the 

environmental variable was generated in a finite landscape due to computational constrains in 

using a two-dimensional Gaussian random field generator (used for generating spatialized 

variables in a torus) for such a large lattice across 1800 landscapes.  As such, the method used 

here to generate spatialized environments may induce slight discrepancies in the spatial structure 

of the environment when transported to a torus (i.e., when landscape edges are brought together 

to form the torus).  To measure whether considering a finite landscape for the environment (i.e., 

an edge effect) and a torus landscape for species dispersal affected our results, we also analyzed 

them based on a central lattice of 30 × 30 and found that results were extremely consistent with 

the results based on the original 40 × 40 lattice.  Finally, we also considered a non-spatialized 

environment (10th spatial structure; 𝐶0 = 1 𝑎𝑛𝑑 𝑎 = 0).  The environmental values at each patch 

will serve later on to set the average of intrapatch environmental heterogeneity (see section 

Reproductive phase). 

 

Species 

For each simulation, a total of 250 species was considered as the metacommunity pool 

(i.e., species pool).  Each species j was characterized by its niche optima 𝜇  that determined in 

which environmental values (conditions) the species performed best, and a niche breadth 𝑠 , 

which determined the level of specialization (here a Gaussian density function of environmental 



 8 

values around the niche optima). All species reproduced asexually once before dying 

(semelparous), thus removing competition among generations.  Niche optima and niche breadth 

for each species were drawn from a standard normal distribution 𝑁(0,1) and a lognormal 

distribution 𝑙𝑛(−2.75, 0.75 ), respectively. The distribution of niche optima was designed to 

match the distribution of environmental values, while the lognormal distribution was used for 

niche breadth because it generates a greater number of specialist species relative to generalists. 

Given that specialists have narrower niches, many are needed to fulfill the environmental space 

and avoid gaps. If an equal number of specialists and generalists were created, it would either 

lead to high niche overlap between generalists, or large gaps between specialists’ niches. 

Moreover, the distribution of niche breadths in vertebrates globally follows a distribution very 

similar to a lognormal distribution (Donelle et al., in prep). Note that initial simulations indicated 

that species with mean and variances for niche optima and breadth distributional values outside 

of range considered here rarely, if ever, persisted relative to the environmental variation 

considered in our simulations. This is not a restriction of our simulations per se but rather than 

scaling the distribution of species niche relative to the way environmental variation was 

generated, we used a larger metacommunity pool but kept the distribution of species niche 

constant. 

 

Simulation dynamics 

The simulation dynamics was composed of two distinctive and consecutive life-history 

events –dispersal followed by reproduction – and was run for 500 generations. Local carrying 

capacity (𝐾 = 1000) and maximum reproduction rate (𝑟 = 5) were fixed across scenarios. 

Initial conditions were set so that each species were expected to be present in 25% of the patches, 

and 25% of the species were expected to be present in each patch, while the expected size of each 

community was 𝐾/2.  More precisely, each species in each patch had a 25% probability of 

having an initial population size drawn from a Poisson distribution with mean 8 (for 𝑘 = 1000). 

Note that preliminary results showed no qualitative differences in metacommunity dynamics 

between simulations carried over a on longer number of generations (1000 and 5000 generations) 

or on different 𝑟  (3 and 10) and 𝐾 (100 and 10000 individuals) values or with different initial 

species’ prevalence (all species present in all patches).   
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Dispersal phase 

At the beginning of each generation t, each individual had a probability 𝛿 to leave the 

focal patch (disperse) towards one of the eight nearest (neighbouring) patches. Dispersal success 

𝛿s for a given species j arriving into a given patch i was set as: 

𝛿 = 𝑒  
(eq. 2) 

where 𝐸  is the average environmental value within patch i as generated in the Landscape section; 

remember that 𝜇  is niche optima and 𝑠  is niche breadth for the jth species.  Any individual that 

survived a previous dispersal event could undergo further dispersal events with the same 𝛿 probability 

each time step.  The dispersal phase ended once every individual that dispersed has either settled in a patch 

or died during dispersal.  As such, any given individual can disperse multiple times within the same 

generation (time step).  In our model, the compounded dispersal success of all successive individual 

dispersal events can be interpreted as establishment success.  Therefore, the compounded establishment 

probability 𝛿  (for any given individual) after m dispersal steps is:  

𝛿 = 𝛿 ∗ 𝑒  (eq. 3) 

where 𝐸  (as previously defined) is the average environmental value within patch i at the mth dispersal 

step. We investigated three different levels of dispersal rate (𝛿 = {0.1;  0.25;  0.5}). 

 

Reproductive phase 

Note that every individuals of given species had the same reproductive rate. For simplicity, we 

refer to it as species reproductive rate. The local reproductive rate for each species was based on their 

relative competitive ability based on a Gaussian response to environmental conditions. Note, however, 

that if we were to assume that environmental conditions were homogenous and constant through time 

within any given individual patch, patches would be dominated by a single species (though different 

species among patches).  This dominant specialist would be one whose niche optimum is very close to the 

otherwise constant environmental value, following the competitive exclusion principle (Hardin 1960).  To 

generate local spatio-temporal stochastic environmental heterogeneity (see Model assumptions section for 

further discussion), for each patch i in generation t, we created 10 within patch environmental values 

(𝑘 = [1,10]) drawn from a normal distribution centered around the original environmental value 𝐸  and 

with a variance  of 0.01 (𝐸 ~𝑁(𝐸 , 0.01) ). As such, intrapatch variance (heterogeneity) in 
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environmental conditions was set at 1% of total environmental variance across the entire landscape (i.e., 

variance of the environment was set to unity as described earlier), but note that results (not reported here) 

were qualitatively similar whether local variance was set to 0.1%, 1% or 5% of the total variance.  As 

such, the competitive ability (𝜔) for the jth species within a patch i for the kth intrapatch environmental 

value at time t was: 

𝜔 =
1

𝑠 2𝜋
∗ 𝑒  (eq. 4) 

and its relative competitive ability (𝜔) across all species was: 

𝜔 = 𝑤 𝑁 ∗ 𝜔   (eq. 5) 

where 𝑁  is the abundance of species j at generation t in patch i.  Note that 𝜔  is zero for all species if 

the patch is empty.  Consequently, the relative competitive ability of species i within patch j was: 

𝜔 = 𝜔 10 (eq. 6) 

Defining the local relative competitive ability as the mean of relative competitive ability instead of 

the relative mean competitive ability allowed for niche partitioning (see Fig. 2 for details). Note that 𝜔  

can be interpreted as the proportion of resources (here space set by 𝐾) captured by an individual of species 

j at generation t in patch i. Therefore, reproductive rate of any given individual is the product of 𝜔  and 

the carrying capacity K. However, to avoid excessive reproduction in absence of competition (e.g., after a 

disturbance), the per capita reproductive rate (𝑟 ) was capped at 𝑟  as follow: 

𝑟 = (𝜔 ∗ 𝐾) ∗
𝑟

𝑟 + (𝜔 ∗ 𝐾)
 (eq. 7) 

Finally, the population size at any given next generation (t+1) was drawn from a Poisson distribution with 

a mean given by the product of the reproductive rate and population size:  

𝑁 ( )~𝑃(𝑟 ∗ 𝑁 ) (eq. 8) 

For the scenario in which we considered disturbance, at the end of the reproductive phase, each 

local community (i.e., within a patch) had a probability 𝜏 = 0.01 of being killed by disturbance. Note that 

𝜏 = 0 in the scenario without disturbance.  
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Simulation output  

For each simulation, measures of specialization, diversity and spatial structure was 

recorded at each 100 generations (results reported in Appendix V) and main results were 

generated on the basis of the last generation (t=500). We calculated the average niche breadth of 

the resulting metacommunity (regional level) because it is a driver of niche processes related to 

environment such as interspecific competition and niche partitioning, as well as spatial processes 

given the that greater niche breadths should increase the success of species to disperse (see eq. 2 

on dispersal success). As such, the average niche breath allows us to make a better link between 

the types of species that are selected in any particular spatial structure for the environment and 

the resultant species coexistence dynamics. Average niche breadth 𝑠 of the metacommunity was 

measured as the geometric mean of species’ niche breadth weighted by the (surviving) species’ 

regional abundance.  

ln(𝑠) =  ln (𝑠 ) ∗ N N  (eq. 9) 

where N is the (local) abundance at patch i for the jth species. We used the geometric mean to 

preserve the ratio between niche breadths given that a 0.1 difference in niche breadth is small for 

a species with a niche breadth of 1, but quite large for a species with a niche breadth of 0.1.  

 

Species richness and evenness are intrinsically related (Jost 2010) and metrics that 

consider both in a single index were used here as they directly relate to the capacity of species to 

coexist within patches (alpha diversity) and in entire metacommunities (regional diversity). 

While local and regional coexistence are directly related to the alpha and gamma components of 

diversity (Jost 2007), the interpretation of the beta component in the context of coexistence is less 

straight forward. The beta component can be interpreted as the diversity in community 

composition among patches, which informs on the importance of dispersal to local community 

assembly as high dispersal between communities leads to mass effects and homogenization (low 

beta diversity). Conversely, low dispersal induces variation among community composition as 

some species are not able to reach optimal patches. Note that this interpretation of beta diversity 

is straightforward in our context as the distribution of environmental values and of species’ niche 

parameters (𝜇  and 𝑠 ) were kept constant across simulations (i.e., the expected number of 

optimal patches per species is the same) but this may not be the case in natural metacommunities. 
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Diversity metrics (alpha, beta, and gamma diversity) were measured using the entropy 

approach based on Hill’s number (Hill 1973) as described in Jost (2007). Given that in our 

simulations individuals and species only differed by their niche optima and breadth, we chose the 

second order of Hill’s number (𝑞 = 2), which gives equal weights to all individuals rather than 

giving greater weights to either more rare or common species. Note that in this framework, the 

beta component represents the information gained from individual communities in relation to the 

whole metacommunity(Marcon et al. 2014). The analyses were conducted using the entropart 

package in R (Marcon and Hérault 2015).  

Finally, to investigate the effects of the spatial structure of the environment on diversity 

metrics (i.e., coexistence patterns) and on regional (metacommunity) average niche breadth 𝑠 (eq. 

9), we used an index of spatial structure to serve as predictor of the four response variables 

(alpha, beta, and gamma diversity, as well as metacommunity’s average niche breadth 𝑠). Using a 

single continuous variable as a predictor instead of the 20 fixed parameters (10 landscapes types 

and two variogram parameters – including a non-spatialized variable) simplified the presentation 

of results and analyses but see Appendix VI for boxplots for each of the four response variables 

as a function of the variogram parameters. Moreover, we also expected that SSI would be more 

sensible to the stochasticity in the spatial structure of the environment among replicates and 

variogram models that may be not well captured by their fixed parameters if used as predictors.  

The Spatial Structure Index (SSI) was defined as follows: 

𝑆𝑆𝐼 = −ln 
𝐸 − 𝐸

1600 ∗ 8
 (eq. 10) 

where 𝐸  and 𝐸  are the average environmental values within patch i and h, respectively, and patch h 

is one of the 8 neighbouring patches of patch i. Note that this metric is a transformation of 

Geary’s C (Geary 1954)if we consider that the spatial weights are 1 for the 8 neighbouring 

patches, and 0 otherwise (see Appendix II for a demonstration). As defined here, SSI captures the 

environmental differences that individuals encounter during dispersal. As such, SSI can be also 

related to landscape connectivity, as higher environmental differences between neighbouring 

patches lead to higher dispersal mortality (see eq. 2). As shown in Fig. 3, large values of SSI (one 

single proxy of the strength of the spatial structure of the environment) can be directly related to 

the strength of the spatial structure of the environment which was generated on the basis of two 

parameters (i.e., spatial range and spatial autocorrelation).  
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Data analysis 

Here we fit separate statistical models for each diversity component (alpha, beta and 

gamma) and regional (metacommunity) average niche breadth 𝑠 against the spatial structure of 

the environment (SSI) and dispersal rate.  Each model was fit on the basis of 900 observations 

(i.e., 30 replicates x 10 landscape types x 3 dispersal rates) separately for dynamics with and 

without disturbance. We used a generalized linear model (GLM; McCullagh and Nelder 1989, 

Chambers and Hastie 1992) with a gamma log-link function as it can account for variance that 

increases with the mean found in our simulation results (Figs. 4 and 7). Note that the gamma 

diversity was transformed as 1− 𝑔𝑎𝑚𝑚𝑎 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 to ease the fitting procedure and then 

transformed back (in Fig. 7) to ease interpretation.  Because we were more interested in assessing 

the effect of dispersal rate rather than parameterizing it, we included dispersal rate as a 

categorical variable in the GLM particularly because we detected non-linear (and different) 

effects of dispersal for some response variables.  Note that the interaction between dispersal rate 

(treated as categorical) and SSI was left out to simplify interpretation particularly given that its 

effect was negligible, explaining less than 3% of the deviance across all models. Note also that 

for gamma diversity and regional (metacommunity) average niche breadth 𝑠, the fit of the model 

would have been slightly improved by variable transformation (either response or predictors), but 

for simplicity we considered all models without any additional transformation.  

Subsequently, in order to assess the relative explanatory power of the spatial structure 

(SSI) and dispersal rate, we performed a sequential analysis of deviance (deviance being the 

generalized analog of variance) (McCullagh and Nelder 1989), where we first estimated deviance 

explained by SSI and then the additional deviance explained by adding dispersal rate as a 

predictor into the model (i.e., the semi-partial deviance). This procedure leads to very similar 

results (not shown) to variation partitioning (Borcard et al. 1992, Peres-Neto et al. 2006) because 

our factorial design makes dispersal rate and SSI nearly orthogonal; as such, their collinearity is 

nearly zero.  Note that the residuals of the models showed no meaningful variation as a function 

of the strength or the range of spatial autocorrelation, thus indicating to our SSI index was 

effective in capturing all the spatial variation in the response variables.  

We focused on the results of the analysis of deviance rather than the model coefficients (slopes; 

but see Appendix VII for a table) because we aimed at assessing the independent effects of 

spatial structure on coexistence (measured as patterns of variation in diversity metrics across 
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simulation scenarios). In addition, we do not report any significance as they are not a product of 

independent replication (see White et al. 2014 for a discussion).  Our analysis of deviance based 

on GLM pseudo-R2 (ratio between model with a given predictor – either SSI or dispersal – and its 

null deviance – intercept only model; see Table 2) as is a better indicator of the importance of the 

explanatory variable (White et al. 2014). 

 

RESULTS 

Specialization 

Regional (metacommunity level) average niche breadth 𝑠 (a metric of specialization) at 

the end of the simulation (i.e., only considering the surviving species) decreased as function of 

the strength of the spatial structure (Fig. 4) leading to greater regional prevalence of specialist 

species in landscapes having stronger spatial structures (high SSI).  SSI was a stronger predictor 

of regional average niche breadth under disturbance, explaining 81% of the variation of the 

average niche breadth in contrast to the 34% of the variation explained by the model without 

disturbance (Table 2). Higher dispersal rates led to smaller levels of regional average niche 

breadth only in the absence of disturbance (Fig. 4).  In this case, only 40% of the variation in the 

regional average niche breadth was explained by dispersal rates whereas only 1% of the variation 

was explained in the presence of disturbance (Table 2).  Finally, species at the end of the 

simulation were more specialized (lower regional average niche breadth) in the absence of 

disturbance (contrast between the two panels in Fig. 4 with and without disturbance). 

 

Alpha diversity 

Local (alpha) diversity increased in landscapes with strong spatial structure in the 

environment (Fig. 5). However, the explanatory power of spatial structure (SSI) was lower in the 

absence of disturbance, where it explained 51% of the variation in alpha diversity in contrast with 

the models with disturbance where 81% of the variation was captured by SSI (Table 2). 

Moreover, higher dispersal rates led to an increase in local diversity. As such, dispersal rate 

accounted for 44% and 16% of the variation in alpha diversity for undisturbed and disturbed 

scenarios, respectively (Table1). Finally, disturbance reduced alpha diversity but more so the 

environment had weak spatial structure (contrast between the two panels in Fig. 5 with and 

without disturbance).  
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Beta diversity 

Increasing the strength of the spatial structure led to a decrease in beta diversity (i.e., 

changes in species composition among patches) (Fig. 6). As such, in undisturbed and disturbed 

scenarios, SSI captured 53% and 79% of the deviance in beta diversity, respectively (Table 2). 

Beta diversity also decreased with higher dispersal rates, meaning that local communities were 

more similar when the dispersal rate was high. As such, dispersal rate accounted for an additional 

42% and 17% for scenarios without and with disturbance, respectively (Table 2). Beta diversity 

was higher in the presence of disturbance. Finally, disturbance increased beta diversity but more 

so for weak spatial structures (contrast between the two panels in Fig. 6 with and without 

disturbance). 

 

Gamma diversity 

In presence of disturbance, regional (gamma) diversity increased as a function of the 

strength of the spatial structure of the environment (SSI), explaining 53% of the variation in 

gamma diversity across simulation scenarios (Table 2 and Fig. 7; but note that the y-axis’ scale 

changes between graphs so that effect of SSI in absence of dispersal could be perceptible). 

However, in the absence of disturbance, gamma diversity was found to decrease with SSI and it 

explained 24% of the variation. Hence, stronger spatial structure promotes regional coexistence 

in the presence of disturbance but hinders regional coexistence in its absence. Furthermore, in the 

absence of disturbance, lower dispersal rates led to higher gamma diversity, with dispersal rate 

explaining an additional 21% of the variation in the variation of gamma diversity (Table 2). 

Dispersal rate was negligible in the presence of disturbance. Finally, gamma diversity was lower 

in the presence of disturbance, especially for low values of SSI (contrast between the two panels 

in Fig. 7 with and without disturbance).  

 

DISCUSSION 

In this study we set out for the first time to study the effects of the spatial structure of the 

environment on metacommunity dynamics and its effects on species coexistence at the local and 

regional levels. To uncover the underlying mechanisms by which the spatial structure of the 

environment mediates species coexistence (local – alpha and regional – gamma diversities), we 

also investigated how beta diversity and average niche breadth of the resulting metacommunities 
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varied as a function of spatial structure. Beta diversity measures how local communities are 

homogenized by dispersal, while niche breadth allows us to assess species’ trade-offs between 

local competitivity ability and regional persistence through dispersal.  

As predicted (see Introduction), we found that the spatial structure in environmental 

features strongly shaped local and regional species coexistence.  As we discuss here, these results 

can be explained by the way in which metacommunities in landscapes with strong spatialized 

environmental features select for species with greater levels of specialization (smaller niche 

breadths).  This selection has strong consequences for species coexistence at the local and 

regional levels.  While the effects of the environmental spatial structure were stronger in the 

presence of disturbance (likely the case of most real ecological landscapes), absence of 

disturbance did not change our prediction regarding the directionality of the effects, except for 

regional (gamma) diversity.  Our model demonstrates that spatially structured environments can 

promote ecological specialization by reducing the costs of dispersal of specialists, thus reducing 

the opportunity of generalist species to become locally established and, as a result, specialist 

species increase their local and regional prevalence and abundance. 

 

Specialization 

In agreement with our first hypothesis, metacommunities in landscapes with weak 

environmental spatial structure selected against species with narrow niche breaths (i.e., 

specialists; Fig. 4), either via regional extinction or in lowering their regional abundances, 

particularly under disturbance.  This is because of the large range of environmental conditions 

that dispersing individuals experience within landscapes with weaker spatial structures (i.e., 

shorter range and weaker spatial autocorrelation). As such, generalist species were strongly 

favoured in poorly structured environments, particularly in the presence of disturbance (Fig. 4). 

Indeed, generalist species can better resist the negative effects of greater environmental variation 

during dispersal and find patches that are non-occupied by competitively superior specialists.  In 

these cases, generalist species are able to reproduce and disperse before individuals from 

specialist species can colonize the patch, thus persisting regionally. Conversely, in our model, 

specialist species dominated spatially structured environments (i.e., larger range and stronger 

autocorrelation regardless of the presence of disturbance. Indeed, specialist species are better able 

to find optimal conditions because: 1) the costs of dispersal mortality is lower in these landscapes 
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in contrast to weakly spatially structured landscapes; and 2) patches with similar environmental 

conditions are clustered together, decreasing the dispersal mortality while tracking suitable 

patches.   Note, however, that the relative advantage of generalists over specialists in weakly 

spatially structured landscapes is much greater with disturbance as it generates greater temporal 

opportunities for these species (i.e., unoccupied patches where generalists are able to reproduce 

before being occupied by a specialist with stronger competitive abilities). As such, in the absence 

of disturbance, opportunities for generalist species is limited to a stochastic decrease in specialist 

populations either caused by temporal environmental stochasticity (i.e., within patch 

environmental variability experienced by a given generation reduce the reproductive rate of 

specialists for that generation) or by demographic stochasticity (i.e., species reproduced less than 

expected by chance alone; eq. 8). Furthermore, in the absence of disturbance, we found regional 

(metacommunity) average niche breadth to decrease slightly in scenarios where dispersal rate 

was higher because specialist species (which dominate local patches) could invest greater number 

of individuals to dispersal, while such dispersal losses exposed generalists to local (and 

potentially regional) extinctions as they were restricted to low abundances given the absence of 

open niche. As such, our model was able to reproduce the well-known colonization-competition 

trade-off in which colonizers (generalists) benefit from unoccupied patches before being 

displaced by specialist competitors (Yu and Wilson 2001, Cadotte et al. 2006, Calcagno et al. 

2006).   

Given that the study of Büchi and Vuilleumier (2014) also focussed on  selection of 

specialization levels as a function of dispersal rates and of the spatial structure of the 

environment, it is worth comparing their results with ours at some length. Note that their 

simulation model did not consider dispersal mortality, while ours included mortality as a function 

of the environmental variation experienced during dispersal. In agreement with our results, Büchi 

and Vuilleumier (2014) also found specialization to increase with dispersal and to decrease with 

disturbance.  Yet, in their model, the effect of spatial structure on specialization was found to be 

contingent on the dispersal rate. As such, their results match ours only at low dispersal rates as 

individuals seldom dispersed beyond neighbouring patches, thus be subject to potential 

inhospitable environments in their dispersal pathways, which was detrimental to specialist 

species in weakly spatially structured environment. Under low dispersal rates, both model 

dynamics (ours and theirs) selected for more for specialist species (i.e., low average niche 
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breadth) as a function of the strength of the spatial structure of the environment. However, at 

medium and high dispersal rates, Büchi and Vuilleumier (2014)  found that environments with 

stronger spatial structure should select for species that are slightly more generalists (i.e., greater 

average niche breadth) than weaker ones.  Conversely, our model predicts that more specialist 

species should be selected by metacommunity dynamics in landscapes even at medium and high 

dispersal rates.  Given that in Büchi and Vuilleumier (2014) did not consider dispersal costs via 

mortality, individuals could effectively disperse to distant favourable patches and outcompete any 

weaker competitors (i.e., generalist species). While specialist species dominated even in spatially 

random landscapes, they were outcompeted by species with slightly larger niches in landscapes 

with increased spatial structure as a result of dispersal mass effects (i.e., when dispersal impacts 

population dynamics). As such, contrary to our model, species with slightly wider niches were 

advantaged as they could achieve higher average population growth (in contrast to specialist 

species) across a well-connected cluster of neighbouring patches. However, species with very 

narrow niche breadths (e.g., only able to thrive in a single or very few patches, but not in 

neighboring patches) would eventually go locally extinct as its local competitive advantage 

would be overcome by an imbalance in migration (i.e., specialist species would lose many 

individuals due to emigration, while a more generalist competitor would receive many 

individuals through immigration). 

 The conflicting results between  the study of Büchi and Vuilleumier (2014) and ours can 

be explained by the fact that we considered dispersal mortality, thus preventing specialists to 

dominate poorly structured landscapes.  Furthermore, it is worth noting that their simulation 

framework gave an unfair advantage to specialist species as they benefited from having more 

dispersers (see Appendix III for an explanation), contrary to what is expected by the well-known 

competition-colonization trade-off (Amarasekare et al. 2004, Kneitel and Chase 2004, Cadotte et 

al. 2006, Nurmi and Parvinen 2011, Livingston et al. 2012).  In agreement with our conclusions, 

empirical evidence supports that small-scale environmental homogeneity (i.e., among 

neighbouring patches) – as it is the case for landscapes that have a strong spatial structure – 

promotes evolution of specialization.  Moreover, specialists are particularly at risk (e.g., local 

extinction and lowering abundance at regional scales) in landscapes with lower interpatch 

connectivity (Tischendorf and Fahrig 2000), which can be equated to weaker spatial structures in 

our model as similar environments are less connected.  
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Species coexistence  

As predicted, stronger spatial structure led to an increase in alpha diversity and a decrease 

in beta diversity. However, our prediction in which gamma diversity would decrease as a 

function of the strength of the spatial structure was not fully supported as its effects depended on 

whether metacommunity dynamics underwent disturbance or not. 

 

Alpha diversity  

Alpha diversity increased with the strength of the environmental spatial structure (Fig. 5) 

as a result of increased connectivity among patches with similar environmental conditions, thus 

promoting niche partitioning through a rescue effect. In strongly spatially structured landscapes, 

patches with similar environmental conditions are more clustered together, a case that mostly 

benefits specialist species as dispersers were more likely to find themselves in a hospitable 

environment while also reducing dispersal mortality caused by adverse environmental conditions 

experienced during dispersal. For instance, assume a specialist species in its most optimal patch 

(i.e., greatest matching between species’ niche and patch’s environmental value); this species will 

also have a strong competitive ability in nearby patches given their environmental similarity 

among neighbouring patches. However, as this specialist species moves further away from its 

niche optimum towards marginal environments, its local population decreases, thus becoming 

vulnerable to stochastic environmental variation and local extinction. While sub-optimal 

environments should prevent this specialist species to succeed, strong spatial structure connects 

optimal and sub-optimal patches together by exchanging individuals that periodically rescue 

small local populations of specialist species or even recolonize marginal patches following a 

stochastic extinction (Brown and Kodric-Brown 1977, Eriksson et al. 2014). In contrast, in 

weakly spatially structured landscapes, optimal patches are not well-connected with sub-optimal 

patches as distance and dispersal mortality caused by environmental variation impedes the flow 

of migrant specialists between optimal and sub-optimal patches. As a result, these small 

populations of specialists undergo extinction more often, thereby leaving opened niche spaces for 

generalist species. It follows that (in our model), strongly spatially structured landscapes lead to 

increased local niche partitioning is promoted as specialist’s extinction in sub-optimal (marginal) 

patches is prevented by rescue effect from nearby patches, allowing greater number of species 

(alpha diversity) to coexist locally. In contrast, weakly spatially structured landscape inhibits 
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rescue effect as dispersal between similar environment is hampered. This leads to the local 

extirpation of multiple specialist species at the benefit of one or few generalists, thus reducing 

local coexistence (lower alpha diversity). Moreover, disturbance exacerbated this process since 

that specialists were sometimes unable to recolonize their optimal patches following a 

disturbance, leaving generalist species with greater niche space. As such, alpha diversity 

decreased more rapidly in weakly spatially structured landscapes in the presence of disturbance. 

Conversely, higher dispersal rates promoted rescue effect, explaining the increase in alpha 

diversity with greater dispersal rates (Fig. 5). Note that while the rescue effect could be 

interpreted a as a source-sink dynamic though given that there is no “sink” per se in our model, 

but only competitive sinks (i.e., where a species have negative growth rate because of 

competition), we preferred not discussing our results in terms of the source-sink dynamics. 

Although we are not aware of any study that explicitly investigated how the spatial 

structure of the environment affects metacommunity dynamics and the resulting patterns of local 

and regional coexistence, there is a large body of literature across various ecological systems that 

support our conclusions.  Both connectivity (Bornette et al. 1998, Tockner et al. 1999, Cottenie 

and De Meester 2003, Luoto et al. 2003) and source-sink dynamics (Amarasekare and Nisbet 

2001, Codeco and Grover 2001, Mouquet and Loreau 2003) were found to promote local 

diversity, while higher dispersal mortality impaired it (Mouquet and Loreau 2003, Amarasekare 

et al. 2004). The study of Bar-Massada et al. (2014) which relies on processes similar to the one 

described here (i.e., greater connectivity among patches with similar environments), showed that 

neutral processes are less prevalent in spatially structured environments. As a corollary, one 

could argue that (quasi) neutral dynamics in spatially unstructured landscapes are more likely 

because they should be made of more generalist species that overlap in their niches (i.e., species 

have more equivalent niches).  In addition, as it is the case in our study, higher specialization 

levels are associated with more diverse (meta) communities (i.e., locally and regionally) 

(MacArthur et al. 1966, Kolasa and Li 2003, Carnicer et al. 2008, Ravigné et al. 2009, Weiner 

and Xiao 2012). In our model, local patches in strongly spatially structured landscape are 

occupied by multiple specialist species, thus promoting niche partitioning which leads to greater 

local diversity in contrast to weakly structured landscapes. 
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Beta and Gamma diversity 

We initially predicted that environments with stronger spatial structure would lead to the 

homogenization of ecological communities (i.e., lower beta diversity), in turn leading to a lower 

regional (gamma) diversity.  Although beta-diversity indeed decreased with the strength of the 

environmental spatial structure, gamma diversity only decreased with a decrease in beta-diversity 

under the absence of disturbance.  In the presence of disturbance, weakly spatially structured 

landscapes benefited some generalists to have really large abundances at the expense of lowering 

specialists’ abundances as discussed in the Alpha diversity section above. This benefit decreased 

gamma diversity given the unevenness in regional abundances between generalist and specialist 

species. However, in the absence of disturbance, generalists had reduced opportunities to increase 

their abundances. As such, weakly spatially structured landscapes allowed generalists to do well 

without them becoming dominant, while highly spatially structured landscapes led to the (quasi) 

exclusion of generalists, thus explaining the slight reduction in gamma diversity as the spatial 

structure of the environment increased (Fig. 7). Note, however, that total absence of disturbance 

is ecologically unrealistic, and that even weak levels of disturbance lead to an inversion of the 

relationship. Moreover, in agreements with our simulations under disturbance, empirical evidence 

indirectly supports the idea that spatially unstructured landscapes reduce gamma diversity. As 

such, reduced connectivity, as it is the case in weakly spatially structured landscapes, favours 

generalists and better disperser species (Devictor et al. 2008, Öckinger et al. 2010, Nordén et al. 

2013), leading to lower regional diversity (Helm et al. 2006, Krauss et al. 2010, Staddon et al. 

2010). Note, however, that regional richness decreased in strongly spatially structured landscapes 

as a result of exclusion of generalist species (see Fig. 8). However, we do not discuss species 

richness any further as it is a poor metric of diversity in the context of our simulation framework 

in comparison to gamma diversity given that species richness relies on the slow accumulation of 

extinction events which results from the random component of stochastic demographic events 

(i.e., the expected reproduction is never zero, but realized reproduction can be). Note that 

diversity metrics often consider species abundances (as we did here) as they respond rapidly to 

the deterministic portion of demographic processes (reproduction, competition and dispersal 

rate). As such, Hill’s number based diversity metrics allow a closer link between metacommunity 

dynamics and demographic processes.   
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As the strength of the spatial structure of the environmental decreased, populations of 

specialists in marginal sub-optimal patches (see Alpha diversity section) were extirpated to the 

benefit of few generalists. In general, local patch abundances of specialist populations in optimal 

patches were unchanged by the spatial structure, except for some cases in which the specialists 

were unable to recolonize following a disturbance, which benefited generalists (results not shown 

here). As such, species abundances varied more across patches in weakly structured landscapes 

and, as a consequence, as most sub-optimal populations were extirpated, specialists either 

achieved high abundances or went locally extinct. In addition, local populations of generalist 

species also varied across patches depending on the ability of a specialist species with greater 

fitness potential to recolonize. On the basis of the entropy-based definition of beta diversity (i.e., 

the amount of information gained by considering individual communities in comparison to the 

whole metacommunity), increased variation among local populations led to higher beta diversity 

among patches. Because environmental heterogeneity was fixed in our model, such an increase in 

beta diversity in landscapes that were weakly spatially structured indicates stronger isolation of 

local communities due to dispersal limitation, which is consistent with the lower beta diversity 

observed in the scenario with higher dispersal rate (Fig. 6). The reduction in beta-diversity as a 

function of the strength of the spatial structure of the environment supports our interpretation that 

the lack of spatial connectivity in weakly spatially structured environments reduce local (alpha) 

and (regional) gamma diversity. Empirical studies tend to support the conclusion that beta-

diversity decreases as a function of spatial connectivity (Tockner et al. 1999, Forbes and Chase 

2002, Pardini et al. 2005, Soininen et al. 2007). 

 

CONCLUSION 

We have shown that the spatial structure of environmental variation can have a strong impact on 

diversity across scales, as well as on species’ specialization. This effect results from a change in the 

connectivity between environmentally similar patches. In strongly spatially structured landscape, niche 

partitioning is promoted as populations in optimal patches can rescue populations in sub-optimal patches 

via dispersal, thus leading to local communities composed of multiple specialist species. As the strength of 

the spatial structure decreases, successful dispersal of specialist species is hindered, thus impeding the 

rescue of sub-optimal patches. Generalists are therefore favoured in poorly structured landscapes as they 

can use a wider range of environments and are more likely to survive dispersal events, thus allowing them 
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to take advantage of opened niche spaces resulting from specialists’ dispersal limitations. The prevalence 

of generalists led to a decrease in local (alpha) and regional (gamma) diversity, but increased change in 

community composition among local communities (beta diversity). In the absence of disturbance, the 

effect of spatial structure is drastically reduced.  

Despite the large body of literature in ecology focussing on spatial and environmental variation, 

their links received very little attention (but see Büchi et al. (2009; 2012; 2014), Bar-Massada et al. 2014).  

Our model can be expanded in several ways. For instance, while we only investigated three levels of range 

and three levels strength due to computational limitations, the coverage of the parameter space could be 

extended to investigate, for instance, how range and strength of autocorrelation interact to mediate 

coexistence.  Instead, we combined both range and strength of autocorrelation into a single s index (SSI), 

which was a strong predictor of diversity metrics and specialization level. Yet, as shown in Fig. 3, 

different combinations of range and strength can yield to very similar SSI values.  

Our model shows that the spatial structure in environmental features mediates the selection of 

specialist species versus generalists largely due to their differential advantages related to dispersal 

mortality. In our model, all species were equally prone to dispersal, yet species that experienced severe 

dispersal mortality in a given landscape would likely evolve to reduce their dispersal rates to lessen this 

source of mortality (Henriques-Silva et al. 2015, Karisto and Kisdi 2017). As such, one could assume that 

stronger spatial structure leads to weaker covariation between specialization and propensity to disperse 

because the specialists’ costs of dispersal are alleviated in strongly autocorrelated environments. Previous 

studies have looked into the effects of landscape structure on the evolution of dispersal, but they focussed 

on a single species and/or did not consider species specialization (North et al. 2011, Büchi and 

Vuilleumier 2012, Wickman et al. 2017).  

In spatially structured environments, all of the intrapatch environmental variability was occupied 

by specialists as a result of rescue effects from nearby patches that were environmentally similar yet 

slightly different. One could argue that such selection for increased specialization would lead to more 

efficient resource use, thus producing higher levels of ecosystem functioning. Although in our framework 

community productivity (i.e., total reproduction per generation) was set to be independent of community 

composition, our model can provide some insights on this issue. An increase in ecosystem productivity 

with the strength of the spatial structure of environment would be consistent with the spatial insurance 

hypothesis (Loreau et al. 2003), as connectivity would promote the maintenance of higher levels of 

ecosystem functioning following disturbances.   
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Finally, our model leads to testable predictions in which generalist species should dominate 

weakly structured environments and specialists should dominate environments that are strongly 

structured.  These differences in dominance between specialists versus generalists should then 

lead to differences in local and regional diversity.  Note, however, that testing this prediction 

empirically may be complicated by the fact that different landscapes have different 

environmental values and may select differently for specialist versus generalist species and 

associated diversity patterns.  
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FIGURES 

 

Figure 1: Examples (one single simulation) of environmental values for each of the nine 

different spatially structured landscapes used in the model. Autocorrelation strength 

(columns) increases from left to right, while autocorrelation range (rows) increases from top to 

bottom. Landscapes were generated as described in the Landscape structure section.  
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Figure 2: Illustration of competition and determination of the mean relative competitive 

ability (𝝎𝒊𝒋𝒕) in our simulation framework. In both panels, the black line represents the local 

environmental distribution (i.e., intrapatch environmental heterogeneity; this is the expected 

distribution of 𝐸  ). In panel A, the green and purple lines represent the niche of two specialists 

(the competitive ability as a function of environmental values; eq. 4), while the red line represents 

the niche of a generalist species. In panel B, the green, purple, and red lines represent relative 

competitive ability as a function of environmental values for each species of panel A. Note that 

we here constrained the relative competitive ability to consider the local frequency of 

environmental values, so that the area under the curve in panel B represents the expected mean 

relative competitive ability 𝜔  (eq. 6; but the actual value of 𝜔  depends on the value of 𝐸  that 

are drawn). As such, overlaps between specialists and generalists’ niches have little impact on the 

specialist’s relative competitive ability, but great impact on the generalists’ relative competitive ability. 

However, the generalists benefit from environment unoccupied by specialists to increase their mean 

relative competitive ability.  
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Figure 3: Spatial Structure Index (SSI) as a function of autocorrelation range across 

different levels of autocorrelation strength. The landscapes have been generated as described 

in the method section on a 40 × 40 lattice. For each level of autocorrelation strength, 30 

landscapes were generated for each of the 20 different autocorrelation ranges. Each line 

represents a LOESS regression for a given level of autocorrelation strength. The three levels of 

autocorrelation strength (1− 𝐶0) used in our study ( 1, 0.66, 0.33 ) are represented by the solid, 

dashed, and dotted line respectively. SSI increases with autocorrelation range and strength.  
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Figure 4: Niche breadth (specialization) as a function of the spatial structure of the 

environment (SSI) with and without disturbance. Each point (in grey) represents the regional 

(metacommunity) mean niche breadth of one simulation as a function of the landscape SSI. 

Larger values of SSI are associated with stronger spatial structure (greater ranges and stronger 

autocorrelations). Small values of average niche breadth indicate greater specialization. The line 

represents the fitted model for each level of dispersal rate. Low, medium, and high dispersal 

(𝛿 = {0.1, 0.25; 0.5}) are represented in red, blue, and green, respectively.  
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Figure 5: Alpha diversity as a function of the spatial structure of the environment (SSI) 

with and without disturbance. Each point (in grey) represents the regional (metacommunity) 

alpha diversity of each simulation (900 per panel) as a function of the SSI of its landscape. Larger 

values of SSI are associated with stronger spatial structure (greater ranges and stronger 

autocorrelations). Large values of alpha diversity indicate greater local species coexistence. The 

line represents the fitted model for each level of dispersal rate. Low, medium, and high dispersal 

rate (𝛿 = {0.1, 0.25; 0.5}) are in red, blue, and green, respectively.  
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Figure 6: Beta diversity as a function of the spatial structure of the environment (SSI) with 

and without disturbance. Each point (in grey) represents the regional (metacommunity) beta 

diversity of each simulation (900 per panel) as a function of the SSI of its landscape. Larger 

values of SSI are associated with stronger spatial structure (greater ranges and stronger 

autocorrelations).  Large values of beta diversity indicate greater changes among local 

communities. The line represents the fitted model for each level of dispersal rate. Low, medium, 

and high dispersal rate (𝛿 = {0.1, 0.25; 0.5}) are in red, blue, and green, respectively.  
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Figure 8: Regional species richness as a function of the spatial structure of the environment 

(SSI) with and without disturbance. Each point (in grey) represents the regional 

(metacommunity) species richness of each simulation (900 per panel) as a function of the SSI of 

its landscape. Larger values of SSI are associated with stronger spatial structure (greater ranges 

and stronger autocorrelations. The line represents the LOESS regression model for each level of 

dispersal rate. Low, medium, and high dispersal rate (𝛿 = {0.1, 0.25; 0.5}) are in red, blue, and 

green, respectively. 
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TABLES 

Table 1: Parameters used in the simulation model 

Section Parameter Values 

Landscape 

Autocorrelation 

range (𝛼) 

0*; 3; 10; 20 

Autocorrelation 

strength (1− 𝐶0) 

0*; 0.33; 0.66; 1 

Simulation 

dynamics  

Dispersal (𝛿) 0.1; 0.25; 0.5 

Disturbance (𝜏) 0; 0.01 

*Those two values generated the random landscape (i.e., the 10th spatial structure) and were not 

combined with the other values of landscape parameter.   

 

Table 2: Results of the analysis of deviance for the four response variables with and without 

disturbance 

Response 

variable 

Disturbance 

regime 

Deviance 

explained by 

SSI 

Deviance 

explained by 

dispersal 

Null deviance 

Specialization 
Undisturbed 34% 40% 2.08 

Disturbed 81% 1% 32.10 

Alpha diversity 
Undisturbed 51% 44% 3.39 

Disturbed 81% 16% 19.90 

Beta 

diversity 

Undisturbed 53% 42% 10.89 

Disturbed 79% 17% 22.46 

Gamma 

diversity 

Undisturbed 24% 21% 4.35 

Disturbed 53% 0% 242.01 
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APPENDIX I - SPATIAL STRUCTURE 

A common way to describe spatial structure is spatial autocorrelation, which is “the correlation 

among values of a single variable strictly attributable to the proximity of those values in 

geographic space” (Griffith 2003). Unless otherwise specified, in this work, the term 

autocorrelation refers to positive autocorrelation, and we use spatial autocorrelation and spatial 

structure interchangeably. Range and strength are the two parameters characterizing the 

autocorrelated structure. Autocorrelation range is the distance after which values are not spatially 

correlated, whereas autocorrelation strength refers to the magnitude of the spatial correlation 

between neighbouring values. In other words, weaker spatial autocorrelation leads to greater error 

around the patterns of autocorrelation, increasing small-scale heterogeneity. Autocorrelated 

landscapes can be conceptualized as a topographic map of hills and valleys (see Fig. 1). Large 

ranges of autocorrelation result in few large hills with smooth slopes, whereas short ranges result 

in many hills and valleys with steeper slopes. In this analogy, the steepness of the slope 

represents the average patch to patch environmental differences.  
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APPENDIX II – SPATIAL STRUCTURE INDEX AND GEARY’S C 

Here we show that the spatial structure index used in this study is in fact an inverse function of 

Geary’s C: 

𝐶 =  
𝑛 − 1

2𝑊 ∗ (𝐸 − 𝐸)
∗ 𝑤 ∗ (𝐸 − 𝐸 )  (eq. S1) 

where n is the total number of patches, 𝑤  is the spatial weights matrix, W is the sum of all 𝑤 ,  

𝐸  and 𝐸  are the average environmental value within patch i and j respectively, and 𝐸 is the average 

environmental value across all 𝐸 .  

Assuming that 𝑤 = 1 if patches i and j are neighbours, and 𝑤 = 0 if they are not, we 

can rewrite C as follow:  

𝐶 =  
𝑛 − 1

2𝑊 ∗ (𝐸 − 𝐸)
∗ 𝐸 − 𝐸  (eq. S2) 

where patch h is one of the 8 neighbouring patches of patch i. Given that distribution of 

environmental values was standardized to mean 0 and unit variance, (𝐸 − 𝐸) = 1  and 

moving  𝑊 inside the double summation, C becomes: 

𝐶 =  
𝑛 − 1

2
∗

𝐸 − 𝐸

𝑊
 (eq. S3) 

Now, considering that every landscape was composed of 1600 patches (n=1600) that each had 8 

neighbours, then 𝑊 = 1600 ∗ 8, C becomes: 

𝐶 =  
1600− 1

2
∗

𝐸 − 𝐸

1600 ∗ 8
 (eq. S4) 

By transforming C, we can then obtain our SSI as follow: 

 
2 ∗ 𝐶

1599
=

𝐸 − 𝐸

1600 ∗ 8
 (eq. S5) 

 

−𝑙𝑛
2 ∗ 𝐶

1599
= −𝑙𝑛

𝐸 − 𝐸

1600 ∗ 8
= 𝑆𝑆𝐼 (eq. S6) 
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APPENDIX III: BÜCHI ET AL. (2014) SIMULATION FRAMEWORK  

By revisiting Büchi et al.’s (2014), we found that their simulation framework relies on an 

odd combination of assumptions that gives an unfair dispersal advantage to specialists. First, they 

implemented the specialist-generalist fitness trade-off through the reproduction parameter (𝑟) as 

follows: 

𝑟 (𝐸) = 10 ∗
1

𝜎 2𝜋
∗ 𝑒  (eq. S7) 

where the subscript j refers to the jth species, while 𝜇 and 𝜎 refers r to niche optima and breadth, 

respectively, and E to the environmental value of a particular patch, with 10 being a scaling 

factor. As such, specialists would produce more offspring at niche optima than generalists, but 

generalists would produce offspring over a wider range of environment. The idea behind this 

trade-off is that the expected total number of offspring across all possible values of E (i.e., the 

indefinite integral of 𝑟 𝐸 ) will always be 10 (i.e., the scaling factor) regardless of the species 

niche. Then, juveniles were randomly selected to bring the local community to carrying capacity. 

While there might be very little empirical evidence suggesting that specialist reproduction to be 

higher and juvenile settlement to be neutral, these two processes together would still lead to very 

similar local dynamics as in our simulation model. 

 However, in Büchi et al.’s (2014) simulation framework, dispersal occurred at the 

juvenile stage, therefore advantaging specialists because they produce more juveniles. Indeed, 

let’s assume that one specialist (𝜎 = 0.05) and one generalist (𝜎 = 0.25) each dominate one patch 

at their niche optima.  Then, each specialist would produce 80 offspring while the generalist would 

produce 16 offspring. Given that the dispersal rate was the same for all individuals, the specialists 

would have 5 times more dispersers than the generalist despite the fact that each of these species 

dominated a single patch each. As such, the specialist species would have a probability 5 times 

greater to successfully disperse to any given patch despite having the same per capita dispersal 

capacity. Moreover, if these two patches were equally connected, the specialist would exclude the 

generalist even if the specialist could not produce a single offspring in the generalist’s patch. This 

would not be the case if dispersal occurred after selection, in which case both species would have 

equal dispersers, and both species would continue to dominate in their optimal patches.  

 



 45 

APPENDIX IV - MODEL ASSUMPTIONS AND DECISIONS 

Like every simulation model, ours relies on a series of simplifications and assumptions 

about ecological processes. For instance, some parameters were held constant across patches 

(e.g., carrying capacity, disturbance rate) or across species (e.g., dispersal rate, maximum 

reproductive rate), while they ought to vary in natural communities. Yet, allowing these 

parameters to vary within a simulation would generate noise in the results, as well as unfair 

advantages if not coupled with appropriate trade-offs (e.g., there is no drawback in having a 

higher maximum reproductive rate). Also, our study considers a single environmental variable, 

which is a simplification of the ecological reality. In addition, we assumed dispersal to be 

isotropic (i.e., dispersal in every direction is equiprobable) and dispersers to be naïve (i.e., 

dispersers do not decide where they go) and future models could be used to investigate these 

more complex dispersal behaviours.  However, here, we wish to further discuss some decisions 

that have not or rarely been made by previous   metacommunity models (e.g., Loreau and 

Mouquet 1999, Amarasekare and Nisbet 2001, Mouquet and Loreau 2003, Büchi et al. 2009, 

North et al. 2011, Büchi and Vuilleumier 2012, Büchi and Vuilleumier 2014, Henriques-Silva et 

al. 2015).  

 First, our simulation framework relies on the relative local competitive ability to 

determine species’ reproductive rates, thus assuming that only interspecific competition decrease 

reproductive success.  As such, in the absence of interspecific competition, a species would 

always numerically increase (up to carrying capacity) regardless of difference between niche 

optima and the patch’s environmental value. While this assumption could have benefited early 

immigrants following a disturbance as they could reproduce in a patch despite the environment 

value being well out of their niche given the absence of absence of competition, it would take 

four generations or more for a single individual to reach half of the carrying capacity as 

reproductive rate was capped at 5 (𝑟 ), by which time competitors would likely have 

immigrated, thus limiting if not stopping population growth. Therefore, this process would have 

very low impact on the overall metacommunity dynamics, especially given that disturbance was 

rather rare (i.e., expected to occur once every hundredth generations). Moreover, alternatives to 

implement a generalist-specialist fitness trade-off also have their limits. For instance, some 

studies have used the species Gaussian response to environment (eq. 4) to determine reproductive 

rate, and then bring the community to carrying capacity by selecting juveniles randomly (Büchi et 
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al. 2009, Büchi and Vuilleumier 2012, 2014). Although this would seems like a fair trade-off 

between specialists and generalists as the area under the curve is constant, a reproductive rate 

smaller than one converges toward extinction in absence of immigration, which would likely 

favour specialists given that they have a lesser proportion of their niche where reproductive rate 

is lower than one, thus questioning the equitability of such trade-off. Moreover, in total absence 

of competition (inter and intraspecific; i.e., infinite carrying capacity) specialists would rise to 

much larger abundances, as reproduction rate is compounded over multiple generations. As such, 

the area under the curve of reproduction rate in function of the environmental values is only 

constant for reproduction rate of one generation but is not for the compounded reproduction rate 

of multiple. Consequently, despite our assumption being a simplification of ecological reality, it 

seems to be a fairer trade-off than its alternatives, at least in the context of our study. In addition, 

change in species abundances over an environmental gradient is often mediated by competition 

rather than by negative effect of abiotic factor of species demography per se (see Kraft et al. 

(2015), and Cadotte and Tucker 2017), thus providing some basis to our assumption. 

 Second, given that environmental homogeneity and heterogeneity are respectively 

recognized as major driver of species specialization and generalization (Futuyma and Moreno 

1988, Van Tienderen 1991, Brown and Pavlovic 1992), assuming complete local homogeneity is 

unreasonable when specialization level is part your study object. As such, we decided to 

implement a small level of environmental heterogeneity to avoid local domination by specialists 

and allow for niche partitioning, as described in the Reproductive phase section. Also, by doing 

so, generalist species can thrive on portions on local environment that was not used by the 

specialist (see Fig. 2). While previous simulation studies (Büchi et al. 2009, Büchi and 

Vuilleumier 2012, 2014) that assumed complete local homogeneity reported rapid loss of 

generalist at the beginning of the simulation as each patch was dominated by a single specialist, 

we only recorded extinction of generalist in highly structured landscape (see Diversity patterns 

section for more details). Despite being the exception rather than the norm in metacommunity 

model, including local heterogeneity in the model definitely improve the realism in the context of 

our study.  

 Third, dispersal mortality was implemented as a function of environmental values of 

patches visited during dispersal and species niche (eq. 2). As such, dispersal mortality was 

consistent with the species niche. Yet, whether or not species have similar environmental 
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tolerance when they disperse than when they compete to thrive in a patch probably depends on 

the ecology of the species considered, but we assumed that it is for simplicity. However, despite 

dispersal mortality being consistent with species niche, we implicitly assume the strength of 

dispersal mortality. Indeed, equation 2 could be rewritten as: 

𝛿 = 𝑒
∗

 
(eq. S8) 

where 𝜃 is the strength of dispersal mortality. As such, in our study we assume 𝜃 to be 1, but this value is 

as arbitrary as any. In absence of dispersal mortality, 𝜃 would take the value of zero as in previous studies 

(i.e., Snyder and Chesson 2003, Snyder 2008, Büchi et al. 2009, Büchi and Vuilleumier 2012, 

Bar-Massada et al. 2014, Büchi and Vuilleumier 2014). Though we did not explicitly examined how 

this parameter would impact the results of our study, we can infer that lower strength of dispersal 

mortality values would advantage specialists as it would alleviate their dispersal limitations without 

compromising their competitive advantage. Conversely, increased strength of dispersal mortality values 

would further impair specialists’ dispersal abilities, thus advantaging generalists. Nonetheless, given that 

dispersal rate had no impact on the spatial structure of environment’s effect as it only changed the 

intercept of the models, we are confident that change in the strength of dispersal mortality would not 

change our conclusion qualitatively although we would expect it to change the magnitude of the effect of 

the spatial structure of environment, with greater magnitude at stronger dispersal mortality. Even in 

absence of dispersal mortality, the spatial structure of environmental variable should have an impact, 

because connectivity between patches is not only hampered by dispersal mortality, but also by distance 

between patches. Still, future research should investigate how the strength of dispersal mortality affects 

our general conclusion that the spatial structure of the environment mediates coexistence via a 

change in connectivity between environmentally similar patches. 
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APPENDIX VI – RESULTS (BOXPLOT) AS A FUNCTION OF THE TEN DIFFERENT 

LANDSCAPES 

Here, we present the same results as in Figs. 4-7, but as a function of the ten different 

combinations of variogram parameters (i.e., spatial structure) instead of the spatial structure index 

(SSI). For each figure, the response variable is identified on the y-axis, while the scenario is 

identified over the panel. The range of autocorrelation (𝛼) is on the x-axis, and levels of 

autocorrelation strengths (1− 𝐶0) are nested within the levels of autocorrelation range. Note that 

for regional average niche breadth and for gamma diversity, the y-axis changes scale as it would 

otherwise be impossible to appreciate the differences. 

 

Figure S5: Niche breadth (specialization) as a function of the spatial structure 
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Figure S6: Alpha diversity as a function of the spatial structure 

 

 

 

Figure S7: Beta diversity as a function of the spatial structure 
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Figure S8: Gamma diversity as a function of the spatial structure 
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APPENDIX VII – COEFFICIENTS OF THE GLM 

Here we present a table with the coefficients of each GLM. Note that the parameter for 

“Dispersal 0.1” is included in the intercept of the model. 

Table S1: Coefficients of the GLM 

Response 

variable 

Disturbance 

regime 
Intercept SSI Dispersal 0.25 Dispersal 0.5 

Specialization Undisturbed -2.62 -0.05 -0.04 -0.07 

Disturbed -2.28 -0.29 -0.02 -0.04 

Alpha   

diversity 

Undisturbed -0.52 0.08 0.06 0.1 

Disturbed -0.8 0.23 0.08 0.14 

Beta 

diversity 

Undisturbed -0.92 -0.14 -0.1 -0.17 

Disturbed -0.63 -0.24 -0.09 -0.16 

Gamma 

diversity 

Undisturbed -4.92 0.06 0.04 0.08 

Disturbed -4.25 -0.6 0.04 0.04 

 

  


