
Geometric Deep Learned Descriptors for 3D Shape Recognition

Lorenzo Luciano

A Thesis

In

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

July 2018

c©Lorenzo Luciano, 2018

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Lorenzo Luciano

 Entitled: Geometric Deep Learned Descriptors for 3D Shape Recognition

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of the University and meets the accepted standards with respect to originality and
quality.

Signed by the final examining committee:

 Chair
 Dr. Abdel R. Sebak

 External Examiner
 Dr. Mohand Said Allili

 External to Program
 Dr. Hassan Rivaz

 Examiner
 Dr. Jamal Bentahar

 Examiner
 Dr. Nizar Bouguila

 Thesis Supervisor
 Dr. Abdessamad Ben Hamza

Approved by

 Dr. Chadi Assi, Graduate Program Director

Monday September 10, 2018
 Dr. Amir Asif, Dean
 Faculty of Engineering and Computer Science

Abstract

Geometric Deep Learned Descriptors for 3D Shape Recognition

Lorenzo Luciano, Ph.D.

Concordia University, 2018

The availability of large 3D shape benchmarks has sparked a flurry of research activity in

the development of efficient techniques for 3D shape recognition, which is a fundamental problem

in a variety of domains such as pattern recognition, computer vision, and geometry processing. A

key element in virtually any shape recognition method is to represent a 3D shape by a concise and

compact shape descriptor aimed at facilitating the recognition tasks.

The recent trend in shape recognition is geared toward using deep neural networks to learn

features at various levels of abstraction, and has been driven, in large part, by a combination of

affordable computing hardware, open source software, and the availability of large-scale datasets.

In this thesis, we propose deep learning approaches to 3D shape classification and retrieval. Our

approaches inherit many useful properties from the geodesic distance, most notably the capture of

the intrinsic geometric structure of 3D shapes and the invariance to isometric deformations. More

specifically, we present an integrated framework for 3D shape classification that extracts discrim-

inative geometric shape descriptors with geodesic moments. Further, we introduce a geometric

framework for unsupervised 3D shape retrieval using geodesic moments and stacked sparse au-

toencoders. The key idea is to learn deep shape representations in an unsupervised manner. Such

discriminative shape descriptors can then be used to compute pairwise dissimilarities between

shapes in a dataset, and to find the retrieved set of the most relevant shapes to a given shape query.

Experimental evaluation on three standard 3D shape benchmarks demonstrate the competitive per-

formance of our approach in comparison with existing techniques.

We also introduce a deep similarity network fusion framework for 3D shape classification using

iii

a graph convolutional neural network, which is an efficient and scalable deep learning model for

graph-structured data. The proposed approach coalesces the geometrical discriminative power of

geodesic moments and similarity network fusion in an effort to design a simple, yet discriminative

shape descriptor. This geometric shape descriptor is then fed into the graph convolutional neural

network to learn a deep feature representation of a 3D shape. We validate our method on Model-

Net shape benchmarks, demonstrating that the proposed framework yields significant performance

gains compared to state-of-the-art approaches.

iv

Acknowledgments

I would like to express my gratitude and appreciation to my supervisor Prof. A. Ben Hamza, you

have been a tremendous mentor for me. I would like to thank you for encouraging my research

and for allowing me to grow as a research scientist. Your advice on both my research as well as on

my career have been invaluable. Also, for giving me the opportunity to work in the exciting field

of machine learning, and always ready to help, being flexible and going out of your way to make

sure I was successful in my journey towards a Ph.D.

I am forever grateful to my wife Shelley, for her constant support and encouragement. For

believing in me and giving me the confidence to continue and push on. Finally, I would like to

express my love and appreciation for my family and thank them for their constant encouragement

and love.

v

Table of Contents

List of Tables ix

List of Figures x

Chapter 1 Introduction 1
1.1 Framework and Motivation . 1

1.2 Problem Statement . 2

1.2.1 Shape Classification . 2

1.2.2 Shape Retrieval . 2

1.3 Objectives . 3

1.4 Literature Review . 3

1.5 Deep Learning Models . 6

1.5.1 Restricted Boltzmann Machines . 6

1.5.2 Deep Belief Networks . 9

1.5.3 Autoencoders . 11

1.5.4 Stacked AutoEncoders . 12

1.5.5 Convolutional neural networks . 15

1.6 Shape Descriptors . 17

1.6.1 Spectral Shape Descriptors . 17

1.6.2 View-based Shape Descriptors . 19

1.6.3 Recognition with Multi-view Representation 20

1.6.4 Convolutional Neural Networks and 3D Shape Analysis 21

1.6.5 Multi-view CNN Descriptor . 21

1.6.6 Generating Multiple Views . 22

1.7 Performance Evaluation Measures . 23

1.8 Overview and Contributions . 25

vi

Chapter 2 Deep Learning with Geodesic Moments for 3D Shape Classification 27
2.1 Introduction . 27

2.2 Background . 29

2.2.1 Laplace-Beltrami Operator . 29

2.2.2 Stacked Sparse Autoencoders . 30

2.3 Method . 31

2.3.1 Geodesic Moments . 31

2.3.2 Discrete Geodesic Moments . 33

2.3.3 Proposed Algorithm . 34

2.4 Experiments . 36

2.4.1 SHREC-2010 dataset . 38

2.4.2 SHREC-2011 dataset . 39

2.4.3 SHREC-2015 dataset . 43

2.4.4 Parameter sensitivity . 45

2.5 Conclusion . 46

Chapter 3 Geodesic Shape Retrieval using Sparse Autoencoders 48
3.1 Introduction . 48

3.2 Method . 50

3.2.1 Geodesic Moments . 51

3.2.2 Proposed Algorithm . 51

3.3 Experiments . 54

3.3.1 Results . 56

3.3.2 Discussion . 65

3.4 Conclusion . 67

Chapter 4 Deep Similarity Network Fusion for 3D Shape Classification 68
4.1 Introduction . 68

4.2 Method . 70

4.2.1 Discrete Geodesic Moments . 71

4.2.2 Similarity Network Fusion . 71

4.2.3 Graph Convolutional Neural Network . 71

4.2.4 Proposed Algorithm . 73

4.3 Experiments . 75

4.3.1 Results . 76

vii

4.3.2 Architecture and Hyper-Parameters . 84

4.4 Conclusion . 84

Chapter 5 Conclusions and Future Work 85
5.1 Contributions of the Thesis . 85

5.1.1 Deep Learning with Geodesic Moments for 3D Shape Classification 85

5.1.2 A Global Geometric Framework for 3D Shape Retrieval using Deep Learning 86

5.1.3 Classification of 3D Shapes using Deep Similarity Network Fusion 86

5.2 Limitations . 86

5.3 Future Work . 87

5.3.1 Variational Autoencoders for 3D Shape Recognition 87

5.3.2 Generative Adversarial Networks for 3D Shape Recognition 87

5.3.3 Pre-Trained Models for 3D Shape Recognition 88

5.3.4 Improvements of Deep Learning Models and Applications 88

5.3.5 Geodesic 3D Shape Clustering . 89

References 90

viii

List of Tables

2.1 Classification accuracy results on the SHREC-2010 dataset. Boldface numbers indi-

cate the best classification performance . 40

2.2 Classification accuracy results on the SHREC-2011 dataset. Boldface numbers indi-

cate the best classification performance . 42

2.3 Classification accuracy results on the SHREC-2015 dataset. Boldface numbers indi-

cate the best classification performance . 45

3.1 Performance comparison results on the real SHREC-2014 dataset. Boldface numbers

indicate the best retrieval performance. 60

3.2 Performance comparison results on the synthetic SHREC-2014 dataset. Boldface num-

bers indicate the best retrieval performance. 60

3.3 Performance comparison results on the SHREC-2015 dataset. Boldface numbers indi-

cate the best retrieval performance. 61

3.4 Performance comparison results on the SHREC-2016 training dataset. Boldface num-

bers indicate the best retrieval performance. 64

3.5 Performance comparison results on the SHREC-2016 validation dataset. Boldface

numbers indicate the best retrieval performance. 64

3.6 Performance comparison results on the SHREC-2016 test dataset. Boldface numbers

indicate the best retrieval performance. 65

4.1 Performance comparison results on the ModelNet 10 dataset. Boldface numbers indi-

cate the best retrieval performance. 77

4.2 Performance comparison results on the ModelNet 40 dataset. Boldface numbers indi-

cate the best retrieval performance. 81

ix

List of Figures

1.1 An RBM with visible units v = (vi) and hidden units h = (hj). 7

1.2 DBN architecture with three RBMs stacked on top of each other. 10

1.3 Basic architecture of a CNN. 15

1.4 Triangular mesh representation (left); Cotangent scheme angles (right). 19

2.1 Graphical diagram of an autoencoder. 30

2.2 Geodesic moment signatures for three shapes (woman, gorilla, and hand) from three

different classes of the SHREC-2011 dataset. 34

2.3 DeepGM learned features for three shapes (woman, gorilla, and hand) from three dif-

ferent classes of the SHREC-2011 dataset. 35

2.4 Sample shapes from SHREC-2010 (top), SHREC-2011 (middle), and SHREC-2015

(bottom). 36

2.5 Graphical diagram of DeepGM architecture using a 2-layer stacked sparse autoencoder. 38

2.6 Confusion matrix for DeepGM on SHREC-2010. 39

2.7 Classification accuracy rates with error bars for DeepGM and baseline methods on

SHREC-2010. 40

2.8 Confusion matrix for DeepGM on SHREC-2011. 41

2.9 Classification accuracy rates with error bars for DeepGM and baseline methods on

SHREC-2011. 42

2.10 DeepGM learned weights from the first layer (left) and second layer (right) on the

SHREC-2011 dataset. 43

2.11 DeepGM learned features for three women models (top) and three gorilla models (bot-

tom) from the SHREC-2011 dataset. 44

2.12 Classification accuracy rates with error bars for DeepGM and baseline methods on

SHREC-2015. 45

2.13 Classification accuracy vs. number of geodesic moments. 46

x

2.14 Two-dimensional t-SNE feature visualization of geodesic moment features (left) and

DeepGM learned features (right) on SHREC-2010 (top), SHREC-2011 (middle) and

SHREC-2015 (bottom). 47

3.1 Triangle mesh (top left); graph geodesic distance matrix (top right); and normalized

vertex area plot (bottom). 52

3.2 Graphical diagram of an autoencoder. 52

3.3 Geodesic features (top) and DeepGM features (bottom) of a 3D table model. 54

3.4 Sample shapes from real SHREC-2014 (top), synthetic SHREC-2014 (second row),

SHREC-2015 (third row), and SHREC-2016 (bottom). 56

3.5 Architecture of a two-layer stacked autoencoder. 57

3.6 DeepGM learned weights from the first layer (top) and second layer (bottom) on the

synthetic SHREC-2014 dataset. 57

3.7 Retrieval rates using standard evaluation metrics for DeepGM and baseline methods

on the SHREC-2015 dataset. 62

3.8 Two-dimensional t-SNE feature visualization of geodesic moments (top) and DeepGM

features (bottom) on the SHREC-2016 dataset (color-coded by class labels). 66

3.9 A 3D face model color-coded by the geodesic (left) and biharmonic distances (right).

Darker blue regions indicate smaller distances, while darker red regions indicate larger

distances. Level sets (isocontours) are displayed as white lines at equally spaced inter-

vals of distance. 67

4.1 Main components of the proposed DeepSNF feature learning method: low-level fea-

tures (geodesic SNF) and high-level features (DeepSNF). 73

4.2 Geodesic SNF signatures of four shapes (bathtub, bed (top), chair and desk (bottom))

from four different classes of the ModelNet10 dataset. 74

4.3 DeepSNF learned features for four shapes (bathtub, bed, chair and desk) from four

different classes of the ModelNet10 dataset. 74

4.4 A sample model from each category of the ModelNet10 dataset. 76

4.5 Classification accuracy rates for DeepSNF and baseline methods on the ModelNet10

dataset. 78

4.6 Confusion matrix for DeepSNF on the ModelNet10 dataset. 79

4.7 Two-dimensional t-SNE feature visualization of GeodesicSNF features (top) and

DeepSNF features (bottom) on the ModelNet10 dataset. 80

xi

4.8 Classification accuracy rates for DeepSNF and baseline methods on the ModelNet40

dataset. 81

4.9 Confusion matrix for DeepSNF on the ModelNet40 dataset. 82

4.10 Two-dimensional t-SNE feature visualization of GeodesicSNF features (top) and

DeepSNF features (bottom) on the ModelNet40 dataset. 83

xii

C
H

A
P

T
E

R

1
Introduction

In this chapter, we present the motivation behind this work, followed by the problem statement, ob-

jectives of the study, literature review, an overview of deep learning models and shape descriptors,

and thesis contributions.

1.1 Framework and Motivation

The continued growth of large 3D shape databases has sparked the need to organize, search and

retrieve the most relevant collections. The main challenge in 3D shape analysis is to compute an

invariant shape descriptor that captures well the geometric and topological properties of a shape.

The recent increase of 3D shape repositories that are easily accessible on-line has led to the bur-

geoning design of a plethora of shape descriptors, which have been the driving force behind the

development of efficient algorithms for 3D shape retrieval and classification.

Shape retrieval is a fundamental problem in a wide range of fields, including computer vision,

geometry processing, medical imaging, and computer graphics. Given a database of shapes, the

goal of shape retrieval is to find the set of most relevant shapes to a query shape. The 3D shape

retrieval problem has been attracting much attention in recent years, fueled primarily by increasing

accessibility to large-scale 3D shape repositories that are freely available on the Internet [1]. On the

other hand, shape classification is an intriguing and challenging problem that lies at the crossroads

of computer vision, geometry processing and machine learning.

Deep learning is an emerging subfield of machine learning that employs multi-layered, non-

linear artificial neural networks to learn features from the input data. Learning with deep neural

1

networks can be supervised, semi-supervised or unsupervised. The performance of deep neural

networks has been quite remarkable in a variety of areas such as speech recognition, image recog-

nition, natural language processing, and geometry processing [2–5]. The trend toward deep neural

networks has been driven, in part, by a combination of affordable computing hardware, the inven-

tion of new algorithms, and the availability of large-scale datasets. One of the limitations of neural

networks has always been the manually intensive procedure of hand picking and coding features

to feed into the network. Some of these handcrafted features work very well for specific domains,

but are not generally transferable to other domains. The procedure must be re-started for each new

domain, resulting in enormous labor and computational costs. To circumvent these limitations, we

will explore in the thesis the application of deep learning to 3D shape retrieval and classification

in an effort to learn simple, yet discriminative shape descriptors that can be transferrable to other

shape analysis tasks.

1.2 Problem Statement

Shape retrieval and classification are fundamental problems in 3D shape analysis. In this thesis,

we introduce discriminative shape descriptors for 3D object retrieval and classification using deep

learning in conjunction with geodesic moments and network similarity fusion.

1.2.1 Shape Classification

Shape classification is all about labeling shapes in a dataset and organizing them into a known

number of classes so they can be found quickly and efficiently, and the goal is to assign new

shapes to one of these classes. In supervised learning tasks, the available data for classification is

usually split into two disjoint subsets: the training set for learning, and the test set for testing. The

training and test sets are usually selected by randomly sampling a set of training instances from

the available data for learning and using the rest of instances for testing. The performance of a

classifier is then assessed by applying it to test data with known target values and comparing the

predicted values with the known values.

1.2.2 Shape Retrieval

Given a database of 3D shapes, the goal of 3D shape retrieval is to find a set of shapes that are

relevant to a query shape. The retrieval accuracy is usually evaluated by computing a pairwise dis-

tance between 3D shapes in the dataset. A good retrieval algorithm should result in few dissimilar

shapes. A commonly used dissimilarity measure for content-based retrieval is the `1-distance, also

2

known as Manhattan or city-block metric, which quantifies the difference between each pair of 3D

shapes. The ranked list for each query shape is a set of other shapes in the dataset ranked from best

to worst according to their computed distance from the query shape. In order to assess the retrieval

performance, several standard evaluation metrics are usually used including the nearest neighbor,

first-tier, second-tier, E-measure, and discounted cumulative gain.

1.3 Objectives

In this thesis, we propose geometric deep learning approaches using geodesic moments and net-

work graph similarity. The objective is to develop discriminative shape descriptors for 3D shape

retrieval and/or classification. More specifically, we use deep sparse auto-encoders and graph con-

volutional neural networks to learn high-level geometric descriptors for 3D shape classification

and retrieval tasks.

The goal of 3D shape retrieval is to search and extract the most relevant shapes to the queries

from a dataset of 3D shapes. By relevant, we mean the objects that belong to the same class.

The retrieval accuracy is usually evaluated by computing a dissimilarity measure between pairs of

3D shapes in the dataset. On the other hand, shape classification is a supervised learning method

that assigns shapes in a dataset to target classes. The objective of 3D shape classification is to

accurately predict the target class for each 3D shape in the dataset.

1.4 Literature Review

The recent trend in shape analysis is geared towards using deep neural networks to learn features

at various levels of abstraction. It is no secret that deep learning is the buzzword of the moment in

both academic and industrial circles, and the performance of deep neural networks has been quite

remarkable in a variety of areas such as speech recognition, image recognition, natural language

processing, and geometry processing [2–5]. The trend toward deep neural networks has been

driven, in part, by a combination of affordable computing hardware, open source software, and the

availability of large-scale datasets.

Although applying deep neural networks to 3D shapes, particularly to mesh data, is not straight-

forward, several deep learning architectures have been recently proposed to tackle various 3D

shape analysis problems in a bid to learn higher level representations of shapes [6–11]. Su et

al. [6] presented a convolutional neural network architecture that combines information from mul-

tiple views of a 3D shape into a single and compact shape descriptor. Wu et al. [7] proposed a deep

learning framework for volumetric shapes via a convolutional deep belief network by representing

3

a 3D shape as a probabilistic distribution of binary variables on a 3D voxel grid. Zhu et al. [8]

introduced a view-based technique by projecting 3D shapes into 2D images and then using an

auto-encoder for feature learning. Brock et al. [12] proposed a voxel-based approach to 3D object

classification using variational autoencoders and deep convolutional neural networks, achieving

improved classification performance on the ModelNet benchmark. Sedaghat et al. [13] showed

that forcing the convolutional neural network to produce the correct orientation during training

yields improved classification accuracy. Bu et al. [10] introduced a deep learning approach to

3D shape classification and retrieval using a shape descriptor represented by a full matrix defined

in terms of the geodesic distance and eigenfunctions of the Laplace-Beltrami operator [14–16].

Bai et al. [11] introduced a real-time 3D shape search engine based on the projective images of

3D shapes. Xie et al. [17] proposed a multi-metric deep neural network for 3D shape retrieval by

learning non-linear distance metrics from multiple types of shape features, and by enforcing the

outputs of different features to be as complementary as possible via the Hilbert-Schmid indepen-

dence criterion. A comprehensive review of deep learning advances in 3D shape recognition can

be found in [18].

Sparse autoencoders [19, 20] are unsupervised learning techniques for learning features auto-

matically. They can be considered as a type of dimensionality reduction, which also show much

promise as methods for automatically detecting features [19]. One or more trained sparse autoen-

coders are strung together along with the input layer of the raw data and a softmax layer for classifi-

cation as a supervised learning technique. These neural networks, consisting of many autoencoder

hidden layers, are useful for solving different classification problems that involve complex data.

One of the many benefits of deep architecture networks is that they offer many layers of non-

linearity, resulting in their ability to represent non-linear data with deep architectural structures.

Each layer of the hidden structure, which is trained in a unsupervised fashion, is able to capture

some aspect or representation of the data. Autoencoders are trained with some constraining fac-

tors and then reconstructed to their original state. These constrained learning structures are strung

together and used to construct a supervised final network for learning.

Convolutional Neural Networks (CNNs) have demonstrated to be state-of-the-art models in ma-

chine learning for vision tasks such as image classification, recognition, segmentation and re-

trieval [21–24]. To a large extend, a considerable portion of the improvements in classification

accuracy can be attributed to the large volume of data available for training, to the elevation in the

depth of the networks used for image classification and to the innovative architectural structures

of the networks being used. This has been made possible by the increased computing power of

modern CPUs, and more importantly by the parallel computing capacity of the modern graphics

4

processing units (GPUs) that have become inexpensive. The pivotal facilitating elements behind

this success have been the ability to scale these networks to an enormous number of layers and

parameters and to the massive number of labeled data available during the learning process. CNNs

started with the seminal papers by LeCun et al. [25, 26]. Since then, CNNs have proven to be

very effective in computer vision tasks and image classification such as digit recognition and face

detection. Much of the improvement has come from scaling up the CNNs and the fundamental

concept behind scaling up is parallelization which is made possible by vectorization [27].

The challenge in computer vision lies in interpreting our 3D world using algorithms and com-

puting power. This is usually done through the processing of 2D images that are captured using

videos or cameras. Much of the research in computer vision has centered around the develop-

ment of algorithms that process 2D images taken from different viewpoints for object recognition

and classification. Recently, 3D object models are more prevalent given the increased computing

power of CPUs and GPUs, and the enormous popularity of video games and virtual reality. Given

3D models, we can now train the computer vision recognition algorithms using the information

derived directly from the voxels and surfaces of the 3D models. For instance, 3D shape classifi-

cation and retrieval are fundamental problems in computer vision and geometry processing, and

often rely on shape descriptors that are generated directly from the voxel grid or polygon mesh

of the actual 3D shape. These descriptors attempt to achieve effective shape representations that

spawn directly from the 3D shape structure [28, 29].

On the other hand, view-based descriptors use rendered images of the 3D shape from various

camera positions to generate effective descriptors. View-based descriptors are capable of using

pre-trained CNN network models such as the VGG network [30] during the training phase. Pre-

trained network models are built on a massive number of images such as ImageNet [31]. Given the

massive number of labeled images available, view-based 3D descriptors can leverage this feature

information from 2D images and then calibrate and tweak them for 3D object models. Using views

garnered from 3D object models has been proven to work exceptionally well in classification and

retrieval tasks [28, 32, 33]. Su et al. [34] introduced a with multi-view CNN framework that take

multiple 2D rendered views of the 3D model from many different angles. The multi-view CNN

descriptor learns to coalesce the many different views rather than simply averaging them, so as

to take advantage of views that are more explanatory and discounting views that are not quite

descriptive in prediction tasks.

5

1.5 Deep Learning Models

Deep learning is a machine learning paradigm that mimics the way the human brain works to

varying degrees. The popularity of deep learning is largely attributed not only to its huge success

in a wide range of tasks such as handwritten character recognition, image and video recognition,

text analysis and speech recognition, but also to tech industry giants such as Google, Apple, IBM,

Microsoft, Facebook, Twitter, PayPal and Baidu that have acquired most of the dominant players

in this field to improve their product offerings and services.

Inspired by the actual structure of the brain, deep learning refers to a powerful class of machine

learning techniques that learn multi-level representations of data in deep hierarchical architectures

composed of multiple layers, where each higher layer corresponds to a more abstract (i.e. higher

level) representation of information. The process of deep learning is hierarchical in the sense that

it takes low-level features at the bottom layer and then constructs higher and higher level features

through the composition of layers

1.5.1 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a two-layer, undirected graphical model that consists of

a visible (input) layer of stochastic binary visible units v = (vi) of dimension I and a hidden layer

of stochastic binary hidden units h = (hj) of dimension J , where vi is the state of visible unit i

and hj is the state of hidden unit j. Each visible unit is connected to each hidden unit, but there are

no intra-visible or intra-hidden connections, as shown in Figure 1.1. The symmetric connections

between the two layers of an RBM are represented by an I × J weight matrix W = (wij), where

wij is a real-valued weight characterizing the relative strength of the undirected edge between

visible unit i and hidden unit j.

In a standard RBM, the visible and hidden units are assumed to be binary, meaning that they can

only be in one of two states {0, 1}, where 1 indicates the unit is “on” and 0 indicates the unit is

“off” (i.e. activated or deactivated, respectively).

The energy of the joint configuration of the visible and hidden units (v,h) is given by

E(v,h) = −
I∑
i=1

J∑
j=1

viwijhj −
J∑
j=1

bjhj −
I∑
i=1

civi = −vᵀWh− b
ᵀ
h− c

ᵀ
v, (1.1)

where and bj is the real-valued bias of hidden unit j and ci is the real-valued bias of visible unit i.

This energy defines a joint probability distribution for configuration (v,h) as follows

p(v,h) =
1

Z
exp(−E(v,h)), (1.2)

6

Hidden units

Visible units

Figure 1.1: An RBM with visible units v = (vi) and hidden units h = (hj).

where Z =
∑

v,h exp(−E(v,h)) is a normalization constant, obtained by summing up the ener-

gies of all possible (v,h) configurations. Therefore, configurations with high energy are assigned

low probability, while configurations with low energy are assigned high probability.

Because there are no intra-visible or intra-hidden connections in an RBM, the visible units are

conditionally independent of one another given the hidden layer, and vice versa. For a simple RBM

with Bernoulli distribution for both the visible and hidden layers (i.e. Bernoulli-Bernoulli RBM),

the probability that hj is activated, given visible unit vector v is

p(hj = 1|v) = σ

(
bj +

I∑
i=1

wijvi

)
, (1.3)

and the probability that vi is activated, given hidden unit vector h is

p(vi = 1|h) = σ

(
ci +

J∑
j=1

wijhj

)
, (1.4)

where σ(x) = 1/(1 + e−x) is the logistic sigmoidal activation function, whose output values lie in

the interval (0, 1). In other words, the probability that a hidden unit is activated is independent of

the states of the other hidden units, given the states of the visible units. Similarly, the probability

that a visible unit is activated is independent of the states of the other visible units, given the states

of the hidden units. This nice property of RBMs makes Gibbs sampling from (1.3) and (1.4)

highly efficient, as one can sample all the hidden units simultaneously and then all the visible units

simultaneously.

Training RBMs: Given a training dataset V of visible vectors, RBMs are trained to maximize

the average log probability (or equivalently minimize the energy) of V over the RBM’s parameters

7

θ = {W,b, c}, i.e.

arg max
θ

∑
v∈V

log p(v), (1.5)

where p(v) is the marginal probability (over the visible vector v) given by

p(v) =
∑
h

p(v,h)

=
1

Z

∑
h

exp(−E(v,h))

=
1

Z
exp(c

ᵀ
v)

J∏
j=1

(
1 + exp

(
bj +

I∑
i=1

wijvi

))
.

(1.6)

Taking the derivative of the log probability with respect to wij yields the following learning rule

that performs stochastic gradient ascent in the log probability of the training data

∆wij = ε(〈vihj〉data − 〈vihj〉model), (1.7)

where ε is a learning rate, and 〈·〉data and 〈·〉model are the expectations under the distributions de-

fined by the data and the model, respectively. Since 〈·〉model is prohibitively expensive to compute,

the single-step version (CD1) of the contrastive divergence (CD) algorithm [35] is often used to

optimize the model parameters (i.e. weights and biases) and it works well in practice. The new

update rule becomes

∆wij = ε(〈vihj〉data − 〈vihj〉recon), (1.8)

where 〈·〉recon is the expectation with respect to the distribution of samples from running the Gibbs

sampler initialized at the data for one full step. The intuition behind the weight update rule is that

the reconstructed data should be as close as possible to the input data. Similar updates rules are

applied to the biases (i.e. bias vectors b and c).

The CD algorithm starts by setting the states of the visible units to a training vector. Given a

randomly selected training example v, a binary vector of hidden units is obtained from sampling

the conditional probability distribution (1.3) and then backpropagated using (1.4), resulting in a

reconstruction of the original input data. After RBM training, hidden units can be considered to

act as feature detectors, as they form a high-level representation of the input data.

Gaussian-Bernoulli RBMs: If the visible units are real-valued, then exponential family distribu-

tions such as the Gaussian distribution are more suitable for modeling real-valued and count data

(e.g., grayscale images and speech signals). Hence, for a Gaussian-Bernoulli RBM with Gaussian

distribution for the visible layer and Bernoulli distribution for the hidden layer (i.e. v ∈ RI and

8

h ∈ {0, 1}J), the energy of the joint configuration (v,h) is defined as

E(v,h) =
I∑
i=1

(vi − ci)2

2σ2
i

−
I∑
i=1

J∑
j=1

wijhj
vi
σi
−

J∑
j=1

bjhj, (1.9)

where σi is the standard deviation associated with the Gaussian visible unit vi, and the conditional

probabilities are given by

p(hj = 1|v) = σ

(
bj +

I∑
i=1

wij
vi
σi

)
, (1.10)

and

p(vi = x|h) = N

(
ci + σi

J∑
j=1

wijhj, σ
2
i

)
, (1.11)

whereN (µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2. In other words, each

visible unit is modeled with a Gaussian distribution given the hidden layer. In practice, it is a good

idea, prior to fitting a deep belief network (DBN) to input data, to standardize each input variable

to have zero mean and unit standard deviation. Therefore, the energy of the joint configuration

(v,h) becomes

E(v,h) =
1

2
‖v − c‖22 − v

ᵀ
Wh− b

ᵀ
h. (1.12)

1.5.2 Deep Belief Networks

A DBN is a probabilistic, generative model consisting of multiple layers of RBMs stacked on top

of each other, starting with the visible (input) layer and first hidden layer that form the first RBM.

It is made up of a visible layer v and R hidden layers hr, r = 1, . . . , R, with the number of RBMs

also equals R, which can be determined empirically to obtain the best model performance. Each

RBM is trained in a greedy layer-wise manner, with the hidden layer of the rth RBM acting as a

visible layer for the (r + 1)th RBM, as shown in Figure 1.2.

A DBN consists of two main learning phases: pre-training and fine-tuning. Pre-training is an

unsupervised phase that learns the weights (and biases) between layers from the bottom-up, i.e.

from one layer at a time using an RBM on each layer. Pre-training treats the current layer as the

hidden units of an RBM and the previous layer as the visible units of the same RBM. The pre-

training starts by training the first RBM to obtain features in the first hidden layer from the training

(input) data. In subsequent layers, the hidden activations of the previous layer are used as input

data, i.e. the learned feature activations of one RBM are used as the input data for training the next

RBM in the stack. Features at different layers contain different information about data with higher-

level features constructed from lower-level features. This greedy, layer-wise training is iteratively

9

RBM

RBM

RBM

Figure 1.2: DBN architecture with three RBMs stacked on top of each other.

performed until reaching the top hidden layer. To speed up the pretraining, it is common practice

to subdivide the input data into mini-batches and the weights are updated after each mini-batch.

The fine-tuning, on the other hand, is a supervised, discriminative phase that fine-tunes the model

parameters (weights and biases) at the top layer by backpropagation error derivatives.

For classification tasks, an output layer y = (yk) of K classes (units) is added on top of the

stacked RBMs learned in the first phase to construct a discriminative model, where each output

node of the softmax layer corresponds to a single unique class. The output (softmax) layer acts

as a classifier and is trained using labeled data. Each output node is represented by the output

probability of each class label, and the probabilities will all sum up to 1. The node with the largest

probability is usually used to predict the class of an instance (example) in the test set, and hence to

compute the classification error/accuracy. More precisely, each output node yk is represented by a

probability pk given by the softmax activation function

pk =
eak

K∑
k=1

eak

, with ak =
∑
j

wjkhj, (1.13)

where h = (hj) is the top hidden layer and W = (wjk) is a weight matrix of symmetric con-

nections between the top hidden layer and the softmax layer. The predicted class k̂ is then given

by

k̂ = arg max
k
pk = arg max

k
ak. (1.14)

It should be noted that the softmax activation function is a generalization of the logistic function

(it reduces to the logistic function when there are only two classes). The purpose of the softmax

10

function is to provide an estimate of the posterior probability of each class, i.e. the probability that

an instance belongs in a particular class, given the data.

Training Algorithm for DBNs: The training algorithm for DBNs proceeds as follows. Let V

be an input data matrix of feature vectors.

1. Train an RBM on V using contrastive divergence to obtain its weight matrix, W. Use this

as the weight matrix for between the lower two layers of the network.

2. Transform V by the RBM to produce new data V′, either by sampling or by computing the

mean activation of the hidden units.

3. Repeat this procedure with V ← V′ for the next pair of layers, until the top two layers of

the network are reached.

1.5.3 Autoencoders

Autoencoders are used to learn a reduced representation of data by restricting the hidden layers of

the autoencoder network. More specifically, suppose that we have an unlabeled training set X =

{x1,x2, . . . ,xn}, where x is an input vector of Rn. An autoencoder network is an unsupervised

learning algorithm in which the output is set equal to the input. Therefore, if y is the output layer,

then we would set yi = xi. The autoencoder then tries to learn a function hW,b, such that the output

is equal to the input, or such that x̂ = x as follows;

x̂ = hW,b(x) ≈ x (1.15)

Where x is the input vector, x̂ is the output vector, W = W1,W2 and b = b1, b2 represent

the weights and biases between layers. By placing constraints on the network through the hidden

layers such as limiting the number of neurons, we can get a compact representation of the data

and discover interesting features. For example, by limiting the number of units in the hidden layer,

say from an input x which is a 28 × 28 image that would give us a 784 dimensional input, to

a hidden layer L2 = 100, then the function would be forced to learn a 100 (10x10 image) unit

representation of the image. If there is correlation between the features in the image, then the

algorithm will be successful in discovering a more compact representation of the image. The first

autoencoder hidden layer takes all features as input (e.g. 28 x 28 image or 784-dimensional vector

for the MNIST dataset), a constrained 100 layer hidden layer and finally the output is set to the

same as input. There are other constraints that can be imposed on the network besides limiting the

11

number of units in the hidden layer and still learn interesting structure from the data. One of these

constraints is sparsity.

Sparsity: A deep neural network architecture consists of many layers, each of which is made up

of one or more units or neurons. When using the sigmoid function as the activation function, then

the resulting neurons will have a value between 0 and 1:

σ(z) =
1

1 + e−z
. (1.16)

The neurons can be thought of as being active when they are close to 1 and as being inactive when

they are close to 0. Sparsity consists of a data representation comprised of a reduced number of

parts. Denote by aj the activation of hidden unit j, and aj(x) the activation of hidden unit j given

input x. Then, the average activation of hidden unit j is given by

ρ̂j =
1

m

m∑
i=1

aj(xi) (1.17)

Denote by ρ the sparsity parameter, which we would normally set to a very small value close to

0. With sparsity constraint ρ, we would like to enforce the following constraint ρj = ρ. In other

words, we would like to have the average activation for each hidden unit to be close to ρ across the

training set. To achieve this, a penalty constraint is added to the cost function. Therefore, we try

to minimize the Kullback-Leibler (KL) divergence between ρ̂j and ρ [19,36]. The sparsity penalty

term can be written as
sl∑
j=1

KL(ρ||ρ̂) =

sl∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, (1.18)

where sl is the number of hidden units in layer l. The penalty term has the following property:

KL(ρ||ρ̂j) = 0; otherwise it increases as ρ̂j diverges from ρ. Anther parameter that is added to

the sparsity penalty function is β, which controls the weight of the sparsity penalty term. With this

sparsity penalty term β, the sparsity penalty function that is added to the overall cost function is as

follows:

JKL(ρ||ρ̂) = β

sl∑
j=1

KL(ρ||ρ̂), (1.19)

where ρ̂ is the average activation, ρ is the sparsity parameter, β is the sparsity penalty term, and sl
is the number of hidden units in layer l

1.5.4 Stacked AutoEncoders

A stacked autoencoder neural network (SAE) is constructed by connecting the unsupervised au-

toencoder layers along with the input and a softmax layer at the end for classification to create

12

the final neural network. The final network is trained (tuned) in a supervised fashion to determine

the final parameters. If we consider a supervised training example with labeled training examples

(xi, yi), a neural network will define a complex non-linear function hW,b(x), with parameters W

(weights) and b (bias) which will best fit our data.

Activation Function: The activation function is used to determine the output values for each unit

in the second layer up to the output layer. If we consider an example with input X = {x1, x2, x3}
and a neural network with 1 hidden layer of 2 units, then the activation function of the first unit in

hidden layer 1 is given by

a1 = σ(W11x1 +W12x2 +W13x3 + b1), (1.20)

where W12 represents the weight between unit 1 in hidden layer 1 and x2, and b1 is the bias for the

first unit. Therefore, the activation function for the second unit in hidden layer 1 would be

a2 = σ(W21x1 +W22x2 +W23x3 + b2) (1.21)

Here the function σ denotes the sigmoid function. Let zi =
∑n

j=1Wijxj +bi, where i is the current

unit and n is the number of units in the previous layer (in this example, it is the number of input

units which is 3). The resulting activation function would be

ai = σ(zi) =
1

1 + e−zi
(1.22)

Cost Function: For a specific training example (xi, yi), the cost function is defined as

J(W, b) =
1

2
‖hW,b(xi)− yi‖2, (1.23)

where,= hW,b(xi) = ai = σ(zi), which is the one-half mean squared error. More generally, given a

training dataset (x1, y1), ..., (xm, ym) of m training examples, the cost function is defined as

J(W, b)SAE =
1

m

m∑
i=1

J(W, b), (1.24)

which is an average sum of squares error term.

Sparsity Term: To achieve a sparse representation of the data, we add the sparsity term to the

overall cost function

J(W, b)SAE_S = J(W, b)SAE + β

sl∑
j=1

KL(p||p̂). (1.25)

13

Regularization Term: A regularization term or weight decay term helps prevent over-fitting of

the representative model to the data. This is done by increasing the cost of units that are highly

active, resulting in reduction of the size of the weights. Adding regularization term to the cost

function yields

J(W, b)SAE_SR = J(W, b)SAE_S +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji)2, (1.26)

where λ is the weight decay parameter that controls the level of decay, nl is the number of layers

in the network, and sl and sl+1 are the size of layers l and l + 1, respectively.

Optimization: To minimize the cost function J(W, b)SAE_SR as a function of parameters W and

b, the batch gradient descent algorithm can be used for optimization. One iteration of gradient

descent works as follows:

W
(l)
ij ⇐ W

(l)
ij − α

∂

∂Wij

J(W, b)SAE_SR (1.27)

b
(l)
i ⇐ b

(l)
i − α

∂

∂bi
J(W, b)SAE_SR, (1.28)

where α is the learning rate, Wij is the weight between unit i in layer l and unit j in layer l − 1, bi
is the bias of unit i in layer l.

Backpropagation: The backpropagation algorithm can be used as an efficient way to compute

the partial derivatives:

∂

∂W
(l)
ij

J(W, b)SAE_SR =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b)SAE

]
+ λW

(l)
ij (1.29)

∂

∂b
(l)
ij

J(W, b)SAE_SR =
1

m

m∑
i=1

∂

∂b
(l)
ij

J(W, b)SAE (1.30)

Softmax Function: The softmax function generalizes logistic regression to a classification prob-

lem, where there can be multiple outcomes (e.g. the MNIST classification problem where the class

labels can be between 0 and 9). The softmax regression model J(W)SM cost function is a super-

vised learning algorithm and can be written as follows:

J(W)SM = − 1

m

m∑
i=1

k∑
j=1

1(yi = j) log
eW

T
j xi∑k

l=1 e
WT

l xi
(1.31)

With regularization, we have

J(W)SM_R = J(W)SM +
λ

2

k∑
i=1

n∑
j=0

W 2
ij. (1.32)

14

The final network is strung together using the input matrix, the 2 hidden layer trained autoencoders,

the softmax layer for classification and finally the output layer.

1.5.5 Convolutional neural networks

Convolutional neural networks are one of the most popular and widely used type of neural networks

for computer vision applications. Unlike regular neural networks, which treat every pixel in the

image with the same degree of importance, a CNN architecture uses a spatial or local structure

to take advantage of the fact that closely distanced pixels will offer more information about the

image than two disparaging pixels [25]. To take advantage of this spatial structure, a CNN will

only connect to a small region of the image or layer before it, unlike in a fully connected or regular

neural network in which all of the neurons are connected to all of the neurons of the preceding

layer. This not only produces spatial structure to improve recognition, but also reduces the number

of paraments in the resulting network, making CNN’s faster to train [37]. CNNs are comprised

of multiple layers that can be categorized into three types: convolutional, subsampling and fully-

connected, as shown in Figure 1.3.

9x9

Input
28x28

Feature maps
6@ 20x20

Feature maps
6@ 10x10

Feature maps
12@ 6x6

Feature maps
12@ 3x3

Convolution

 (9x9)

Subsampling

 (2x2)

Convolution

 (5x5)

Subsampling

 (2x2)

Feature Extraction Classification

Output

Fully connected

0
1
2
:
:
:
8
9

Features
108@ 1x1

Figure 1.3: Basic architecture of a CNN.

Convolutional Layers: In the convolutional layer, each neuron is connected to a small region of

the input volume (image or preceding layer). The region or filter is a small spatially, say a 5 × 5

region, but extends or slides along the full depth of the input volume. As the filter slides across the

input volume, it computes the dot product of the entries of the filter and the input.

Local Receptive Field: The filter region in the input volume is referred to as the local recep-

tive field for the hidden neuron. Each of the connections in the filter learns a weight, which is

representative of the local receptive field of the input image. There is also an overall bias for the

hidden layer. As an example, if we suppose that the input volume is a CIFAR-10 image, which is

15

of dimension (32× 32× 3), and if we use a receptive field (filter) of size 5× 5, then we would end

up with a total of 5 × 5 × 3 = 75 weights. The filter (local receptive field) then takes a stride or

slides (usually of stride 1, but it can be 2 or more also) and the next hidden neuron is calculated.

The filter continues to slide across the input volume until it covers the whole image.

Weights Sharing: In the hidden layer, the neurons share the same weights of the local receptive

field for every neuron. As mentioned earlier, that is why there are only 75 parameters for a CIFAR-

10 image using a filter (kernel) of 5× 5. This is one of the advantages of a convolutional network

in that with the fewer parameters it is able to learn quicker. More formally, if we assume a 5 × 5

filter with a bias b, for the (m,nth) first layer hidden neuron, the activation function am,n is:

am,n = σ

(
5∑
i=1

5∑
j=1

wi,jxm+i,n+j + b

)
, (1.33)

where wi,j is a 5 × 5 matrix of shared weights, xm,n is the input image at position (m,n), and σ

is an activation function such as the sigmoid or ReLU. The intuition behind parameter sharing is

that if a patch feature (filter) is useful in same spatial position (x, y) of an input image then it must

also be useful at the next position (x+ stride, y), and so on, throughout the input volume. In fact,

the neurons of the first hidden layer try to detect the same feature at different positions of the input

image due to the use of shared weights. This allows convolutional networks to be well suited for

image detection even in cases where there is translation, e.g. an upside-down image of a dog is

still a dog.

Feature Maps: The mapping of an input layer to a hidden layer using a filter (kernel) is referred

to as a feature map. A practical convolutional network usually consists of many feature maps at

each convolutional layer. The LeNet-5 network is one of the earliest convolutional networks and it

has a hidden layer of 16 feature maps; it is now common to see hidden convolutional layers with

50 or more feature maps.

Spatial Arrangement: Given an input volume, there are three hyperparameters that control the

output volume of the convolution layer: depth, stride and padding. The depth refers to the

number of neurons of a convolutional network that connect to the same region in the input volume,

each depth will learn a different feature. The stride of a convolutional layer is the step that the

filter takes after each neuron of the output layer, a step of one will cause a lot of overlapping in the

receptive fields. Higher strides cause less overlapping, resulting in an output with less dimensions.

The padding of a convolutional network is a hyperparameter, which pads the input volume with

zeros on the borders and allows to control the spatial size of the resulting outputs.

16

Pooling Layers: Apart from convolutional layers, neural networks also contain pooling layers.

Pooling layers are usually inserted between the convolutional layers and are used to deliberately

decrease the spatial size of the output representation, reducing the number of parameters and help-

ing to control overfitting of the model. In essence, the pooling layer helps simplify the spatial

representation of the output volume from the preceding convolutional layer. The pooling layer

takes each feature map generated by the convolutional layer and applies a function (max-pooling,

average-pooling, L2-norm-pooling, etc...). In max-pooling, the function takes the max value from

within the filter and then takes a stride and does the same. The pooling function is applied to every

feature map of the input volume; hence the number of feature maps will not change. Regardless of

pooling method used, the objective is to optimize the performance of the network and help prevent

over-fitting.

Fully-Connected Layers: The final layer of a convolutional layer is a fully-connected layer. The

neurons in a fully-connected layer are connected to every activation in the previous layer, analogous

to a regular neural network.

ReLU Activation Function: Convolutional networks are created using 3 different types of layers

(convolutional, pooling and fully-connected). It is a common practice to use the activation function

as a layer, which applies a non-linearity function to the neurons. With today’s CNN frameworks,

the activation function is included into the convolutional network as a separate layer. The activation

function normally follows the convolutional and fully connected layers, the activation function

leaves the size of the volume unchanged. Along with the Sigmoid and Tanh functions, the most

commonly used activation function is the Rectified Linear Unit (ReLU), which uses the rectifier

activation function defined as:

σ(x) = max{0, x}. (1.34)

1.6 Shape Descriptors

Shape descriptors seek to capture the maximum amount of information from 3D models for use

in computer vision tasks. Most 3D object recognition and retrieval algorithms use some form of

a shape descriptor prior to feeding the model information is into a machine learning algorithm for

training.

1.6.1 Spectral Shape Descriptors

Spectral geometry is at the core of several state-of-the-art techniques that effectively tackle the

problem of nonrigid 3D shape retrieval, achieving excellent performance on the latest 3D shape

17

retrieval contests [38–42]. Most of these approaches represent a 3D shape by a spectral signature,

which is a concise and compact shape descriptor aimed at facilitating the retrieval tasks. Exam-

ples of spectral shape descriptors include global point signature [43], heat kernel signature [44],

scale-invariant heat kernel signature [45], wave kernel signature [46], spectral graph wavelet sig-

nature [47], improved wave kernel signature [48], and reduced biharmonic distance matrix signa-

ture [49].

Laplace-Beltrami Operator: Given a compact Riemannian manifold M, the space L2(M) of all

smooth, square-integrable functions on M is a Hilbert space endowed with inner product 〈f1, f2〉 =∫
M f1(x)f2(x) da(x), for all f1, f2 ∈ L2(M), where da(x) (or simply dx) denotes the measure from

the area element of a Riemannian metric on M. Given a twice-differentiable, real-valued function

f : M → R, the Laplace-Beltrami operator is defined as ∆Mf = −div(∇Mf), where ∇Mf is

the intrinsic gradient vector field and div is the divergence operator [14]. The LBO is a linear,

positive semi-definite operator acting on the space of real-valued functions defined on M, and it is

a generalization of the Laplace operator to non-Euclidean spaces.

Discretization: A real-valued function f : V → R defined on the mesh vertex set may be

represented as an m-dimensional vector f = (f(i)) ∈ Rm, where the ith component f(i) denotes

the function value at the ith vertex in V . Using a mixed finite element/finite volume method on

triangle meshes [50], the value of ∆Mf at a vertex vi (or simply i) can be approximated using the

cotangent weight scheme as follows:

∆Mf(i) ≈ 1

ai

∑
j∼i

cotαij + cot βij
2

(
f(i)− f(j)

)
, (1.35)

where αij and βij are the angles ∠(vivk1vj) and ∠(vivk2vj) of two faces tα = {vi,vj,vk1}
and tβ = {vi,vj,vk2} that are adjacent to the edge [i, j], and ai is the area of the Voronoi cell

(shaded polygon) at vertex i, as shown in Figure 1.4. It should be noted that the cotangent weight

scheme is numerically consistent and preserves several important properties of the continuous

LBO, including symmetry and positive semi-definiteness.

Shape descriptors work directly with the object model representation such as the polygon mesh

and voxels. Most 3D shape descriptors use some form of manually crafted feature extraction, usu-

ally derived from the geometric shape, surface or volume of the 3D model. A recent departure

from this manual feature extraction method is the voxel-based representation [28], which achieves

this through the use of 3D convolutional nets. Some of the commonly used manually crafted fea-

tures are derived by using the following methods: representing shapes with the use of histograms,

bag-of-features models that are composed from the surface normals and curvatures of the model,

18

(a) (b)

1

Figure 1.4: Triangular mesh representation (left); Cotangent scheme angles (right).

distances or angles of the triangular areas or volumes at given points of the 3D model [51], spher-

ical properties determined by the volumetric grids [33], shape diameters that are measured on the

surface points [52], heat kernel signatures from the polygon meshes [45, 53], SIFT and SURF fea-

tures descriptors [54]. Once 3D descriptors are created, there are many challenges that arise in

the development and implementation of machine learning algorithms using these descriptors. The

number of labeled 3D shapes is quite limited compared to the large number of labeled 2D images.

For example, the ImageNet database contains more than 14 million images [31], while the popular

3D database ModelNet only contains about 150 thousand shapes. Therefore, we have less labeled

training data available when using 3D shape descriptors as opposed to when using view-based

descriptors, but we can take advantage of the available pre-trained networks. Another challenge

that can arise with 3D descriptors is that they tend to be of high dimensionality, which not only

drastically increases training time but can also lead to overfitting of the machine learning models.

1.6.2 View-based Shape Descriptors

View-based descriptors generate 2D or image-based descriptors from the 3D object model, nor-

mally taken from different camera angles. View-based descriptors are comparatively low in di-

mensionality, economical to process, and are relatively robust to 3D representative imperfections

such as holes, noisy surface and errors in the polygon mesh structure. Also, the rendered 2D im-

age views developed for the 3D models can directly be compared with other images including ones

drawn by hand such as sketches, allowing us to retrieve 3D models based and hand drawn sketches.

One early example of view-based descriptor was developed by Murase et al. [55], which used a

compact representation to obtain a large set of images by varying pose and illumination. These

images were then compressed in eigenspace and represented as a manifold. Another popular ap-

19

proach in computer graphics is a model developed by Chaudhuri and Koltun [52], which pulls a

series of geometric and Fourrier descriptors from the 3D model shapes from different viewpoints.

In shock graphs [56], a 2D silhouette is decomposed into a set of qualitative parts represented by

a directed acyclic graph. Cyr and Kimia [57] employ an aspect-graph structure formed using a

notion of shape similarity between views. Koenderink and Doorn [58] use the qualitative nature of

singularities (isolated points and folds and cusps) to generate characteristics. Schneider and Tuyte-

laars [59] developed a method for sketch classification based on Fisher vectors. Most of these

view-based descriptors are manually engineered features, which is great for a specific application

domain, but do not normally scale to a higher general space.

1.6.3 Recognition with Multi-view Representation

In this section, we describe the use of multiple views to generate a descriptor for each 2D image.

Generating a descriptor for each image is the most elementary method to making use of multiple

views in 3D representation. The downside to this approach is that it generates multiple descriptors

for each 3D shape, one for each 2D view. The challenge here is in developing a technique that

would incorporate all generated view descriptors into a one all-encompassing 3D descriptor. Two

techniques can be used on the multi-view CNN framework. The two 2D image descriptors are

manually crafted: The first one is based on Fisher vectors [60], whereas the second one is based

on the activation features of a CNN network [61].

Fisher Image Descriptor: The Fisher image descriptor is implemented in VLFeat [62], which is

an open source library of popular computer vision algorithms. The SIFT descriptors are extracted

for each image, and then projected to 80 dimensions using principal component analysis (PCA),

followed by Fisher vector pooling technique using a Gaussian model and l2 normalization.

CNN Image Descriptor: The VGG-M network [30] is used to extract the CNN features, and

incorporates five convolutional networks C1...5, followed by three fully-connected layers FC6...8,

and finally a softmax layer for classification purposes. The layer that is used as the CNN image

descriptor is the fully-connected layer 7 (FC7). The FC7 follows a ReLu activation function and

contains 4096 features. The VGG-M network is pre-trained on the ImageNet [22] database of

images consisting of 1000 different categories. Starting with the pre-trained network, it is fine-

tuned using 2D images that were generated from the 3D shapes. The fine-tuning process adjusts

a given amount of the final layers of the network to account for the additional images and for the

change in output expected and significantly improves performance.

Both the Fisher image descriptor and the CNN image descriptor achieve very respectable results

20

in classification and retrieval tasks when compared to popular 3D image descriptors such as SPH

[33] , LFD [32], and even 3D ShapeNets [28].

Classification: For classification of 3D shapes using a specific image descriptor, a linear support

vector machine (SVM) is used, where each view is treated as a separate training sample. The SVM

decision values are summed up over all of the views and the class with the highest value is returned

as the class during testing.

Retrieval: In order to carry out retrieval tasks on a dataset of 3D shapes, some form of distance

or similarity measurement is required for comparison purposes. Given a shape x with nx image

descriptors and shape y with ny image descriptors, the distance measurement can be expressed as

follows:

d(x, y) =

∑
j mini ||xi − yj||2

2ny
+

∑
i minj ||xi − yj||2

2nx
, (1.36)

where ‖ · ‖2 denotes the `2 distance between the feature vectors. This definition follows the

following logic: first, we define the distance between a 2D image xi and a 3D shape yj as

d(xi,y) = minj ‖xi − yj‖2. Then, given all nx distances between x’s 2D projections and y,

an average is computed to determine the distance between the the two shapes. This logic is applied

in both directions to ensure symmetry.

1.6.4 Convolutional Neural Networks and 3D Shape Analysis

CNNs, which are trained on large datasets of images such as ImageNet, have been shown to learn

good general-purpose image descriptors that can be applied to many domains. In particular, these

pre-trained CNN networks such as VGGNet [30] can be applied to a variety of computer vision

tasks such as classification and retrieval. Su et al. [34] used multi-view CNN to take this further

and apply deep pre-trained networks on 3D object models using a multi-view descriptor. The

authors claim that this results in superior performance compared to other view-based descriptors

and to 3D based descriptors. Su et al. [34] looked at combining multiple view based descriptors

using CNNs, their multi-view CNN architecture learns to recognize 3D shapes by using an image

based CNN architecture and an innovative view-pooling layer. The multi-view CNN effectively

creates a single compact view-based shape descriptor from the multiple views inputted.

1.6.5 Multi-view CNN Descriptor

There are several issues that arise with having multiple shape descriptors for each 3D object as is

the case when using multiple rendered views from a 3D object. For example, using the distance

21

given by (1.36) all nx × ny pairwise distances would have to be computed between images to

compute the distance between two objects.

The multi-view CNN (MVCNN) is constructed on top of an image-based CNN architecture. In

the first part of the MVCNN architecture, each image is rendered from the 3D shape’s polygon

mesh (multi-view representation) and is passed through the CNN network separately. In the sec-

ond part, the representations created in the first part (CNN1) are aggregated in a pooling layer and

then continue on through the rest of the CNN network. As in a regular CNN, all views will share

the same parameters in CNN1, in essence they are looking for the same features in all views. The

view-pooling layers uses an element wise maximum operation to aggregate all inputs received. As

with regular CNN pooling layers, the view-pooling layers can be placed at any point in the CNN

architecture. The view-pooling layer in the MVCNN is very closely related to the max-pooling

layers and maxout layers of regular CNN architectures, the only difference is the space in which

the operations are carried out. The MVCNN network is considered as a directed acyclic graph

(DAG) and can be trained and fine-tuned using stochastic gradient descent and the backpropaga-

tion algorithm. As the aggregated shape descriptor for the 3D object, the MVCNN architecture

uses the fully-connected layer 7 (fc7). This aggregated MVCNN shape descriptor attains better

performance in classification and retrieval tasks when compared to using the separate image-based

CNN descriptors. Secondly and possibly more importantly, the aggregated descriptor is readily

available and can be easily used in a variety of tasks such as classification and retrieval and offers

performance and ease of use over using multiple view-based descriptors for each 3D object.

1.6.6 Generating Multiple Views

In geometry processing, 3D models are usually created and stored using polygonal or triangular

meshes, which are constructed by interconnecting points with edges. These interconnections form

faces that are the building blocks of 3D models. The rendered views are generated using Phong

reflection model [63] on the polygonal meshes. 3D shapes are uniformly scaled to fit into a set

viewing area and the polygonal meshes are rendered under a perspective projection with the color

determined by interpolating the intensity of the vertices. To create multiple view image repre-

sentations of the 3D model, viewpoints or camera angles need to be determined for rendering the

polygonal mesh. Two camera setups are commonly used: the first setup renders 12 views and the

second one renders 80 views.

First camera setup (12 views): The first camera setup assumes that the model is upright along a

determined and consistent axis (e.g. z-axis). This assumption is already followed by most modern

3D databases and is also used by other previously published recognition and retrieval methods [28].

22

In this first instance, 12 views are rendered by placing a camera at every 30◦ of the object. All

cameras are positioned at 30◦ off the plane and are pointed towards the centroid of the model

polygon mesh. The centroid of the polygon mesh is calculated as a weighted average of the centers

of all faces, weighted the face areas.

Second camera setup (80 views): The second camera setup does not assume an upright position

along an axis as does the first model. In this case, a lot more views are taken due to the fact that it

is unknown as to which viewpoints will yield the most informative views. To render the 80 views

from the polygon mesh, the shape is enclosed in a icosahedron polygon, and 20 cameras are placed

at the 20 vertices of the icosahedron polygon encasing the polygon mesh. All of the cameras are

pointed towards the centroid of the shape, as described in the first camera setup. For each camera, 4

rendered views are captured using the angles 0◦, 90◦, 180◦, 270◦ along the axis passing through the

camera and shape centroid. Changing the illumination and shading coefficients of the 3D model

did not alter the resulting view descriptors given the invariance of the learned filters to illumination

and shading. This invariance to illumination has also been observed in other image-based CNN

architectural models [22, 61]. Adding more cameras is a negligible exercise as the number of

cameras described here was enough to achieve very high performance levels for recognition and

retrieval. The rendering of the many different camera views described here is exceptionally quick

given today’s high performing graphics hardware.

1.7 Performance Evaluation Measures

In this section, we discuss in detail the measures that are commonly used to evaluate the perfor-

mance of nonrigid 3D shape retrieval and classification. We first discuss the evaluation metrics for

3D shape retrieval which are precision-recall curve, nearest neighbor (NN), first-tier (FT), second-

tier (ST), E-measure (E), discounted cumulative gain (DCG), and mean average precision (mAP).

Precision-Recall Graph: A precision-recall graph demonstrates the behavior of precision and

recall in a ranked list of retrieved shapes. Assume the category that query shape belongs to has C

members including query shape itself and we retrieve top K matches. Recall is the ratio of shapes

in query’s category that are retrieved among top K matches, while precision is the ratio of top K

matches that belong to the query’s category. The perfect retrieval results must give the highest

precision (i.e. 100%) for all recall which may be illustrated by a horizonal line at the top of the

plot (i.e. precision = 1.0). Hence, a precision-recall graph that is shifted upwards and to the right

indicates superior performance.

23

Nearest Neighbor: The NN metric is the percentage of the closest matches that belong to the same

category of query’s, i.e. for each shape in the dataset, the second best result (obviously, the best

result is a match with query itself) is verified wether it is a member of the same category that the

query shape belongs to. The ideal score is definitely 100% and the higher score indicates the better

results.

First-Tier and Second-Tier: The FT metric is the percentage of the shapes belong to the query’s

category that are retrieved in the top C − 1 matches, where query’s category has C members. The

recall for ST metric is twice as big as for ST metric, i.e. the percentage of the shapes belong to

the query’s category that are retrieved in the top 2(C − 1) matches. Obviously, the ideal score

for both metrics are 100% and the higher values represents better results, while the higher score is

more likely to appear for ST metric as the members of query’s category have more chance to be

retrieved among top matches.

E-measures: This metric is obtained when precision and recall are calculated for the first 32

matches in the ranked list (i.e. K = 32). The E-measure is defined as:

E =
2

1

P
+

1

R

, (1.37)

where P and R are precision and recall, respectively. The maximum value for this metric is 1.0 (or

equivalently 100% in terms of percentages) and the higher scores indicates the better results.

Discounted Cumulative Gain: This metric weighs relevant results on the top of ranked list more

than the relevant results at the bottom of the ranked list. The intuition is that the query results of

the first pages are more of interest to a user of a search engine than those of the later pages. This

metric have scores ranging from 0% to 100% and the higher score indicates the better retrieval

performance.

Mean Average Precision: The mean average precision (mAP) metric is defined as:

mAP =
∑
K

Precision(K)Recall(K), (1.38)

where precision and recall are calculated for all values of K. Intuitively, mAP is the area under the

precision-recall graph. A perfect retrieval algorithm has mAP = 100% and a higher value indicates

better results.

Confusion Matrix: The performance of a classifier is usually evaluated via the confusion matrix,

which displays the number of correct and incorrect predictions made by the classifier compared

with the actual classifications in the test set. The confusion matrix shows how the predictions are

24

made by the model. The rows correspond to the actual (true) class of the data (i.e., the labels in the

data), while the columns correspond to the predicted class (i.e., predictions made by the model).

When an instance is classified, it is the same as making a prediction that the instance is correctly

classified. The elements of the confusion matrix for binary (two-class) classification problem are

• TP (true positives) is the number of positive instances correctly classified

• FP (false positives) is the number of negative instances incorrectly classified as positive

• FN (false negatives) is the number of positive instances incorrectly classified as negative

• TN (true negatives) is the number of negative instances correctly classified

The value of each element in the confusion matrix is the number of predictions made with the class

corresponding to the column for instances (examples) with the correct value as represented by the

row. Thus, the diagonal elements show the number of correct classifications made for each class,

and the off-diagonal elements show the errors made.

Classification Accuracy: Another intuitively appealing measure is the classification accuracy,

which is a summary statistic that can be easily computed from the confusion matrix as the total

number of correctly classified instances (i.e. diagonal elements of confusion matrix) divided by

the total number of test instances. Alternatively, the accuracy of a classification model on a test set

may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases

=
|z : z ∈ Ztest ∧ ŷ(z) = y(z)|

|z : z ∈ Ztest|
,

(1.39)

where y(z) is the actual (true) label of z, and ŷ(z) is the label predicted by the classification

algorithm. A correct classification means that the learned model predicts the same class as the

original class of the test case.

1.8 Overview and Contributions

The organization of this thesis is as follows:

• Chapter 1 begins with the basic concepts which we refer to throughout the thesis, gives our

motivations and goals for this research, followed by the problem statement, the objective of

this study, a literature review, and a brief discussion of some theoretical background relevant

to 3D shape analysis.

25

• In Chapter 2, we introduce a deep learning approach, dubbed DeepGM [64], to 3D shape

retrieval. The proposed technique combines modern trends in machine learning and geome-

try processing to effectively represent and analyze 3D shapes at various levels of abstraction

in an effort to design a compact yet discriminative shape representation in an unsupervised

way. More specifically, we use stacked sparse autoencoders to learn deep shape descriptors

from geodesic moments of 3D shapes. The geodesic moments are geometric feature vectors

defined in terms of the geodesic distance on a 3D shape, while stacked sparse autoencoders

are deep neural networks consisting of multiple layers of sparse autoencoders that attempt to

enforce a constraint on the sparsity of the output from the hidden layer.

• In Chapter 3, we present a deep learning framework for unsupervised 3D shape retrieval with

geodesic moments [65, 66]. The proposed method learns deep shape representations using

stacked sparse autoencoders in an unsupervised manner. Such discriminative shape descrip-

tors can then be used to compute the pairwise dissimilarities between shapes in a dataset,

and to find the retrieved set of the most relevant shapes to a given shape query. Experimental

evaluation on four standard 3D shape benchmarks demonstrate the competitive performance

of our approach, showing that it leads to improved retrieval results in comparison with state-

of-the-art techniques.

• In Chapter 4, we propose a novel deep learning approach to 3D shape classification [67] that

harnesses recent developments in feature fusion and geodesic moments to develop a geo-

metric descriptor for 3D shapes. This geometric descriptor is then fed into a convolutional

neural network [68] using spectral graph theory to learn high-level features, resulting in a

highly informative and discriminative 3D descriptor.

• Chapter 5 presents a summary of the contributions of this thesis, limitations, and outlines

several directions for future research in this area of study.

26

C
H

A
P

T
E

R

2
Deep Learning with Geodesic Moments for 3D Shape

Classification

In this chapter, we present a deep learning framework for efficient 3D shape classification using

geodesic moments. Our approach inherits many useful properties from the geodesic distance, most

notably the capture of the intrinsic geometric structure of 3D shapes and the invariance to isometric

deformations. Moreover, we show the similarity between the convergent series of the geodesic

moments and the inverse-square eigenvalues of the Laplace-Beltrami operator in the continuous

setting. The proposed algorithm uses a two-layer stacked sparse autoencoder to learn deep features

from geodesic moments by training the hidden layers individually in an unsupervised fashion,

followed by a softmax classifier. Experimental results on three standard 3D shape benchmarks

demonstrate superior performance of the proposed approach compared to existing methods.

2.1 Introduction

The availability of large 3D shape benchmarks has sparked a flurry of research activity in the

development of efficient approaches for nonrigid shape analysis, including clustering, classification

and retrieval [42, 69–71]. Shape classification is a well-researched and fundamental problem in

various domains, including pattern recognition, computer vision, and geometry processing. It

basically refers to the process of organizing a database of shapes into a known number of classes,

and the task is to assign new shapes to one of these classes.

Much of the recent work in 3D shape classification uses spectral shape descriptors, which repre-

27

sent a shape via a concise and compact signature aimed at facilitating the classification task. These

shape representations are the building blocks of many shape classification algorithms, and may

be broadly categorized into local and global descriptors. Local descriptors are usually defined on

each point of the shape, while global descriptors are defined on the entire 3D shape. The category

of Local descriptors include the global point signature include (GPS) [43], heat kernel signature

(HKS) [44], wave kernel signature (WKS) [46], and spectral graph wavelet signature (SGWS) [72].

On the other hand, many global descriptors can be obtained from point signatures by integrating

over the entire shape. One of the simplest global descriptors is Shape-DNA [73], which is defined

as a truncated sequence of the eigenvalues of the Laplace-Beltrami (LBO) arranged in increasing

order of magnitude. Chaudhari et al. [74] introduced a new version of the GPS signature by setting

the LBO eigenfunctions to unity. Gao et al. [75] developed a variant of Shape-DNA, referred to

as compact Shape-DNA (cShape-DNA), which is an isometry-invariant signature resulting from

applying the discrete Fourier transform to the area-normalized eigenvalues of the LBO. A compre-

hensive list of spectral descriptors can be found in [76, 77].

More recently, deep learning has seen a rapid growth in popularity due largely to its great suc-

cess in a variety of applications, including speech recognition, natural language processing, and

image classification [2, 4]. Inspired by information-processing in human nervous systems, deep

learning extracts high-level features from data using multilayered neural networks. The success

of deep neural networks has been greatly accelerated by using graphics processing units (GPUs),

which have become the platform of choice for training large, complex learning systems [6, 8–10].

Deep learning models such as convolutional neural networks, deep belief networks, and stacked

autoencoders have recently been applied to 3D shape analysis to learn high-level features from 3D

shapes. Bu et al. [10] introduced a deep belief networks based approach for 3D shape classifica-

tion using a shape descriptor represented by a full matrix defined in terms of the geodesic distance

and eigenfunctions of the LBO. Su et al. [6] proposed a 3D shape classification framework using

multi-view convolutional neural networks by combining information from multiple 2D rendered

images of a 3D shape into a single descriptor. Qi et al. [9] introduced a multiresolution filtering

strategy with the aim at improving the performance of multi-view convolutional neural networks

on 3D shape classification.

In this chapter, we propose a deep learning framework, called deep geodesic moment (DeepGM)

classifier, for 3D shape classification using geodesic moments and stacked sparse autoencoders.

The geodesic moments are feature vectors derived from the integral of the geodesic distance on a

shape, while stacked sparse autoencoders are deep neural networks consisting of multiple layers

of sparse autoencoders that attempt to enforce a constraint on the sparsity of the output from

28

the hidden layer. The proposed DeepGM approach learns deep discriminative features via deep

learning with geodesic moments. It harnesses the geometric information from 3D shapes and then

uses unsupervised autoencoders to extract high-level features from the geodesic moments. These

high-level features are then fed into a supervised stacked sparse autoencoder architecture to learn

a classification model from a training dataset of 3D shapes. We show that our model incorporates

geometric features from shapes with the aim of designing a highly discriminative shape descriptor

that yields better classification accuracy compared to existing methods.

The contributions of this chapter are twofold: (1) We present an integrated framework for 3D

shape classification that extracts discriminative geometric shape descriptors with geodesic mo-

ments. (2) We propose a classification approach that harnesses the power of deep learning to gen-

erate high-level features, which are in turn used within a stacked sparse autoencoder architecture

with two hidden layers in an effort to accurately classify shapes in a database. Our experimental

results show superior performance of the proposed framework over existing classification methods

on several 3D shape benchmarks.

The rest of this chapter is organized as follows. In Section 2.2, we briefly overview the Laplace-

Beltrami operator and stacked sparse autoencoders. In Section 2.3, we propose a deep learning

approach with geodesic moments for 3D shape classification using a two-layer stacked sparse

autoencoder, and we discuss its main algorithmic steps. Experimental results for 3D shape classi-

fication are presented in Section 2.4. Finally, we conclude in Section 2.5.

2.2 Background

In this section, we succinctly review the Laplace-Beltrami operator and stacked sparse autoen-

coders.

2.2.1 Laplace-Beltrami Operator

Given a compact Riemannian manifold M, the space L2(M) of all smooth, square-integrable func-

tions on M is a Hilbert space endowed with inner product 〈f1, f2〉 =
∫
M f1(x)f2(x) da(x), for

all f1, f2 ∈ L2(M), where da(x) (or simply dx) denotes the measure from the area element of

a Riemannian metric on M. Given a twice-differentiable, real-valued function f : M → R, the

Laplace-Beltrami operator is defined as ∆Mf = −div(∇Mf), where ∇Mf is the intrinsic gradient

vector field and div is the divergence operator [14]. The LBO is a linear, positive semi-definite

operator acting on the space of real-valued functions defined on M, and it is a generalization of the

Laplace operator to non-Euclidean spaces.

29

2.2.2 Stacked Sparse Autoencoders

An autoencoder is a neural network that learns to reproduce its input as its output. It is an un-

supervised learning algorithm that learns features from unlabeled data using backpropagation via

stochastic gradient descent, and has typically an input layer representing the original data, one

hidden layer and an output layer. An autoencoder is comprised of an encoder and a decoder, as

illustrated in Fig. 3.2.

Input Output

Encoder Decoder

Figure 2.1: Graphical diagram of an autoencoder.

The encoder, denoted by fθ, maps an input vector x ∈ Rq to a hidden representation (referred

to as code, activations or features) a ∈ Rr via a deterministic mapping

a = fθ(x) = σ(Wx + b), (2.1)

parameterized by θ = {W,b}, where W ∈ Rr×q and b ∈ Rr are the encoder weight matrix

and bias vector, and σ is a nonlinear element-wise activation function such as the logistic sigmoid

or hyperbolic tangent. The decoder, denoted by gθ′ , maps back the hidden representation h to a

reconstruction x̂ of the original input x via a reverse mapping

x̂ = gθ′(a) = σ(W′a + b′), (2.2)

parameterized by θ′ = {W′,b′}, where W′ ∈ Rq×r and b′ ∈ Rq are the decoder weight matrix

and bias vector, respectively. The encoding and decoding weight matrices W and W′ are usually

constrained to be of the form W′ = Wᵀ, which are referred to as tied weights. Assuming the

tied weights case for simplicity, the parameters {W,b,b′} of the network are often optimized by

minimizing the squared error
∑N

i=1‖xi − x̂i‖22, where N is the number of samples in the training

set, xi is the ith input sample and x̂i is its reconstruction.

To penalize large weight coefficients in an effort to avoid over-fitting the training data and also

to encourage sparsity of the output from the hidden layer, the following objective function is min-

imized instead

L(W,b,b′) =
1

2

N∑
i=1

‖xi − x̂i‖22 +
λ

2
‖W‖2F + β

N∑
j=1

KL(ρ‖ρ̂j), (2.3)

30

where λ is a regularization parameter that determines the relative importance of the sum-of-squares

error term and the weight decay term, and β is the weight of the sparsity regularization term. This

sparsity regularizer is the Kullback-Leibler divergence KL(ρ‖ρ̂j), which is a dissimilarity measure

between ρ and ρ̂j , and it is defined as

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, (2.4)

where ρ̂j is the average activation value of the hidden unit j and ρ is its desired value which is

typically small.

An autoencoder with multiple hidden layers is referred to as a stacked or deep autoencoder.

A stacked sparse autoencoder is a deep neural network consisting of multiple layers of stacked

encoders from several sparse autoencoders. This stacked network is pre-trained layer by layer in a

unsupervised fashion, where the output from the encoder of the first autoencoder is the input of the

second autoencoder, the output from the encoder of the second autoencoder is the input to the third

autoencoder, and so on. After pre-training, the entire stacked sparse autoencoder can be trained

using backpropagation to fine-tune all the parameters of the network. For classification purposes,

the final hidden layer of the stacked sparse autoencoder is linked to the softmax layer. The latter is

trained in a supervised manner using labels for the training data.

2.3 Method

In this section, we describe in detail the proposed deep learning approach to 3D shape classifica-

tion. We start by defining the continuous geodesic moments on a Riemannian manifold. We show

that the second geodesic moment reduces to the integral of the geodesic distance [78], while the

third geodesic moment is related to the heat kernel [44]. Then, we build the geodesic moments in

the discrete setting, and we provide the main algorithmic steps of our classification framework.

2.3.1 Geodesic Moments

Let M be a connected, compact Riemannian manifold, without boundary. For a fixed (source)

point y in M, we define the kth order geodesic central moment (or simply kth geodesic moment)

about y as

µk(y) =

∫
M
dk(x, y)∆Md(x, y)da(x), (2.5)

where d(x, y) is the geodesic distance starting from point y [79]. Note that the geodesic distance

function f(x) = d(x, y) is a solution to the Eikonal equation ‖∇Mf‖ = 1 on M, with the initial

31

condition f(y) = 0. In other words, f is the geodesic distance function from a source point y to

the remaining points on the manifold. The first two moments are

µ0 =

∫
M

∆Mf da = −
∫
M

div(∇Mf) da = 0

and

µ1 =

∫
M
f∆Mf da =

∫
M
‖∇Mf‖2 da =

∫
M
da = a,

respectively, where a = area(M). Note that µ0 = 0 and µ1 do not depend on the source point y.

Theorem 2.3.1 For all k ∈ N, the kth geodesic moment is given by

µk(y) = k

∫
M
dk−1(x, y)da(x), for all y ∈M. (2.6)

Proof: Denote by f the geodesic distance function. For all k ∈ N, we have

∆Mf
k+1 = −div(∇Mf

k+1) = −div((k + 1)fk∇Mf)

= (k + 1)fk∆Mf − 〈(k + 1)∇Mf
k,∇Mf〉

= (k + 1)fk∆Mf − 〈k(k + 1)fk−1∇Mf,∇Mf〉

= (k + 1)fk∆Mf − k(k + 1)fk−1〈∇Mf,∇Mf〉

= (k + 1)fk∆Mf − k(k + 1)fk−1‖∇Mf‖2

= −(k + 1)fk−1(−f∆Mf + k‖∇Mf‖2)

= (k + 1)fk∆Mf − k(k + 1)fk−1‖∇Mf‖2

= (k + 1)fk∆Mf − k(k + 1)fk−1.

Integrating and applying the divergence theorem, we obtain

µk(y) = k

∫
M
fk−1(x)da(x), (2.7)

which concludes the proof. �

It is worth pointing out that (M, d) equipped with the geodesic distance d is a metric space,

and the quantity
∫
M d

k−1(x, y)da(x) is often referred to as the (k − 1)th central moment in metric

spaces.

Using (2.6), it can readily be shown that the kth geodesic moments are positive and satisfy the

following inequality

0 = µ0 < µk(y) ≤ kaρk−1, k ≥ 1, (2.8)

where ρ = supx,y∈M d(x, y) is the diameter of M. The mesh diameter is the longest distance

between two vertices in the mesh, and is invariant under global isometries. It is a measure of mesh

32

compactness in the sense that it measures the dissimilarity between the most dissimilar pair of

vertices in the mesh. If ρ < 1, then the series
∑

k≥1 µk(y) is convergent for all y ∈M.

Since ∆M is a positive semi-definite operator, its eigenvalues are nonnegative and may be written

in increasing order as 0 = λ0 < λ1 ≤ λ2 ≤ . . . with λk ↗ ∞ as k ↗ ∞. Moreover, the series∑
k≥1 1/λ2k is convergent. Notice the similarity between the convergent series of the geodesic

moments and inverse-square eigenvalues of the LBO.

For a fixed source point y, if d(x, y) ≥ 1 for all x, then the geodesic moments are nonnegative

and may be written in increasing order as 0 = µ0(y) < µ1(y) ≤ µ2(y) ≤ . . .

Relation to integral of geodesic distance: The second geodesic moment is given by

µ2(y) = 2

∫
M
d(x, y)dx, (2.9)

which is proportional to the aggregated geodesic distance from y to the remaining points on the

manifold. The aggregated geodesic distance (also called global geodesic function) is invariant to

isometric transformations, and has been used successfully in generating robust Reeb graphs for

shape matching and classification [78]. A small value of µ2(y) indicates that a distance from y to

arbitrary points on M is relatively small (i.e., the point y is closer to the center of the object).

Relation to heat kernel: Using Varadhan’s formula [14], we may express the third geodesic

moment as

µ3(y) = 3

∫
M
d2(x, y)dx = lim

t→0
−12t

∫
M

log ht(x, y)dx, (2.10)

where ht(x, y) is called the heat kernel, which measures the amount of heat that is propagated or

transferred from point x to point y in time t.

2.3.2 Discrete Geodesic Moments

Let M be a 3D shape represented by a triangle mesh with m vertices. In the discrete setting, we

may write the kth geodesic moment in (2.6) as

µk(j) ≈ k

m∑
i=1

dk−1ij ai, (2.11)

where ai is the area of the Voronoi cell at vertex i, and dij is the geodesic distance between mesh

vertices i and j. We refer to the p-dimensional vector µj = (µ1(j), . . . , µp(j)) consisting of the

first p moments as the geodesic moment point signature at vertex j. Hence, we may represent the

shape M by anm×p geodesic moment matrix M = (µ1, . . . ,µm)ᵀ ofm signatures, each of which

is of length p. In other words, the rows of M are data points and the columns are features.

33

As the number of mesh vertices differs from one shape to another in a dataset of shapes, the

geodesic moments matrix may not be a convenient representation for shape analysis tasks such as

retrieval and classification. To circumvent this limitation, we represent the shape M by the p × p
matrix S = MᵀM, which we refer to as the geodesic moment descriptor of the shape. This matrix

may be regarded as an uncentered scatter matrix. In addition to being independent of the number of

mesh vertices, the geodesic moment descriptor enjoys a number of desirable properties including

simplicity, compactness, invariance to isometric deformations, and computational feasibility.

2.3.3 Proposed Algorithm

The goal of 3D shape classification is to accurately predict the target class for each 3D shape in a

dataset. This is typically done by extracting discriminative features from 3D shapes, followed by

using a learning technique to classify these shapes. The available data X for shape classification

is usually split into two disjoint subsets: the training set Xtrain for learning, and the test set Xtest for

testing. The training and test sets are customarily selected by randomly sampling a set of training

instances from X for learning and using the rest of instances for testing.

Our proposed DeepGM approach to 3D shape classification consists of two major steps. In

the first step, we compute the p × p matrix Si = Mᵀ
iMi for each shape Mi in the dataset

D = {M1, . . . ,Mn}, where Mi is the geodesic moment matrix and p is the number of geodesic

moments. Then, each matrix Si is reshaped into a p2-dimensional feature vector xi by stacking

its columns one underneath the other. Subsequently, all feature vectors xi of all n shapes in the

dataset are arranged into a n × p2 data matrix X = (x1, . . . ,xn)ᵀ. Fig. 2.2 displays the geodesic

moment matrices of three shapes (woman, gorilla, and hand) from three different classes of the

SHREC-2011 dataset.

Figure 2.2: Geodesic moment signatures for three shapes (woman, gorilla, and hand) from three
different classes of the SHREC-2011 dataset.

In the second step, we use a 2-layer SSAE to learn deep features by training the hidden layers

individually in an unsupervised manner. Then, we train a softmax layer to classify the deep features

34

learned by the second autoencoder. Finally, the final network is trained (tuned) in a supervised

fashion to determine the optimal parameters. Fig. 2.3 displays the step plots of DeepGM learned

features of three shapes from three different classes of the SHREC-2011 dataset.

Figure 2.3: DeepGM learned features for three shapes (woman, gorilla, and hand) from three
different classes of the SHREC-2011 dataset.

The task in multiclass classification is to assign a class label to each input example. More pre-

cisely, given a training data of the form Xtrain = {(xi, yi)}, where xi ∈ Rp2 is the ith example and

yi ∈ {1, . . . , K} is its ith class label, we aim at finding a learning model that contains the opti-

mized parameters from the SSAE algorithm. Then, the trained deep learning model is applied to a

test data Xtest, resulting in predicted labels ŷi of new data. These predicted labels are subsequently

compared to the labels of the test data to evaluate the classification accuracy of the model.

To assess the performance of the proposed framework, we employed two commonly used eval-

uation criteria, the confusion matrix and accuracy, which will be discussed in more detail in the

next section. Algorithm 2 summarizes the main algorithm steps of our DeepGM approach.

Algorithm 1 DeepGM Classifier

Input: Dataset D = {M1, . . . ,Mn} of n shapes
1: for i = 1 to n do
2: Compute the m × p geodesic moment matrix Mi for each 3D shape Mi, where m is the

number of vertices
3: Compute the p× p matrix Si = Mᵀ

iMi, and reshape it into a p2-dimensional vector xi
4: end for
5: Arrange all the feature vectors xi into a n× p2 data matrix X = (x1, . . . ,xn)
6: Apply a 2-layer stacked sparse autoencoder with a softmax classifier on X to find the n-

dimensional vector ŷ of predicted class labels.
Output: n-dimensional vector ŷ containing predicted class labels for each 3D shape

35

2.4 Experiments

In this section, we conduct extensive experiments to assess the performance of the proposed

DeepGM approach in 3D shape classification. The effectiveness of our approach is validated by

performing a comprehensive comparison with several shape classifications methods.

Datasets: The effectiveness of the proposed framework is evaluated on three standard and pub-

licly available 3D shape benchmarks [41,80,81]: SHREC-2010, SHREC-2011 and SHREC-2015.

Sample shapes from these datasets are shown in Fig. 2.4.

Figure 2.4: Sample shapes from SHREC-2010 (top), SHREC-2011 (middle), and SHREC-2015
(bottom).

Performance evaluation measures: The performance of a classifier is usually assessed by ap-

36

plying it to test data with known target values and comparing the predicted values with the known

values. One important way of evaluating the performance of a classifier is to compute its confusion

matrix, which is aK×K matrix that displays the number of correct and incorrect predictions made

by the classifier compared with the actual classifications in the test set, where K is the number of

classes.

Another intuitively appealing measure is the classification accuracy, which is a summary statistic

that can be easily computed from the confusion matrix as the total number of correctly classified

instances (i.e., diagonal elements of confusion matrix) divided by the total number of test instances.

Alternatively, the accuracy of a classification model on a test set may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases

=
|x : x ∈ Xtest ∧ ŷ(x) = y(x)|

|x : x ∈ Xtest|
,

(2.12)

where y(x) is the actual (true) label of x, and ŷ(x) is the label predicted by the classification

algorithm. A correct classification means that the learned model predicts the same class as the

original class of the test case. The error rate is equal to one minus accuracy.

Baseline methods: Using the aforementioned 3D shape benchmarks, we carry out a compre-

hensive comparison between the proposed DeepGM framework and several baseline methods, in-

cluding Shape-DNA [73], compact Shape-DNA [75], GPS embedding [74], and F1-, F2-, and

F3-features [82]. In order to show the power of deep learning in further improving the classifica-

tion accuracy results, we also compared DeepGM to the shallow geodesic moment (GM) approach,

which employs a one-vs-all SVM classifier (i.e., using SVM in Step 6 of Algorithm 1).

Implementation details: All experiments were conducted on a Dell Optiplex 9020 Windows

desktop computer with an Intel Core i7 running 3.4 GHz and 32 GB RAM; and all the algorithms

were implemented in MATLAB. For training, we used the p2-h1-h2-K architecture for a stacked

sparse autoencoder with two layers as illustrated in Fig. 2.5, where p2 is the size of the input, h1
is the size of the hidden layer for the first autoencoder, h2 is the size of the hidden layer for the

second autoencoder, and K is the number of classes in the dataset. We used the logistic sigmoid

function as an activation function for both autoencoders. We also set the regularization parameter

to λ = 0.0001, and the weight of the sparsity regularization term to β = 3.

The length of a shape descriptor is usually domain specific and often chosen empirically through

experimentation. As will be discussed later, our extensive experiments reveal that a number of

geodesic moments between 20 and 30 gives better classification accuracy. In particular, we set the

number of geodesic moments to 20 for SHREC-2010 and SHREC-2011, and to 30 for SHREC-

2015. In other words, each shape in the SHREC-2010 and SHREC-2011 datasets is represented

37

Input Output

Encoder Encoder Softmax Layer

Figure 2.5: Graphical diagram of DeepGM architecture using a 2-layer stacked sparse autoencoder.

by a 400-dimensional geodesic feature vector, while each shape in SHREC-2015 is described by a

900-dimensional geodesic feature vector.

The sizes of the hidden layers for the first and second autoencoders are set to h1 = 200 and h2 =

100, respectively. In our DeepGM approach, we use the features learned by the second autoencoder

to perform shape classification. More specifically, we classify the 100-dimensional deep feature

vectors by training a softmax layer in a supervised fashion using labels for the training data. In all

our experiments, we selected a 70%/30% split between training and testing, respectively.

For the baseline methods shape-DNA, GPS embedding, F1-, F2-, and F3-features, we set the

number of retained eigenvalues to 10. For cShape-DNA, the dimension of the signature was set to

33 as suggested in [75].

2.4.1 SHREC-2010 dataset

The SHREC-2010 database consists of 200 nonrigid 3D models, which are classified into 10 cate-

gories. The models are represented as watertight triangle meshes [80]. Each category contains 20

objects in a different posture. The 10 categories that make up the dataset are: ants, crabs, hands,

humans, octopus, pliers, snakes, spectacle, spiders and teddy bear.

Performance evaluation: The SHREC-2010 dataset is randomly divided into 70% for training

and 30% for testing, yielding a test set of 60 samples. We first train the model using the training

data to learn the classification model. Then, the resulting model is used on the test data to derive

classification results. The confusion matrix displayed in Fig. 2.6 shows that the proposed DeepGM

approach was able to classify most of the objects correctly, except for one instance of the spider

model which was misclassified as a crab, indicating that DeepGM is able to capture discriminate

features to distinguish between various 3D shapes.

Results: In our DeepGM approach, each 3D shape in the SHREC-2010 dataset is represented

using 20 geodesic moments, resulting in a data matrix X of size 400× 200 .

We compare the proposed DeepGM method to shape-DBA, compact shape-DNA, GPS embed-

ding, F1-, F2-, F3-features, and the GM approach. For each method, we followed the standard

38

6

6

1

6

6

6

6

6

6

5

6

a
n
ts

c
ra

b
s

h
a
n
d

s

h
u
m

a
n

s

o
c
to

p
u
s

p
lie

rs

s
n
a
k
e
s

s
p
e
c
ta

c
le

s
p
id

e
rs

te
d
d

y

ants

crabs

hands

humans

octopus

pliers

snakes

spectacle

spiders

teddy

Figure 2.6: Confusion matrix for DeepGM on SHREC-2010.

practice of running the algorithm 10 times with different randomly selected training and testing

datasets, and then we recorded the mean and standard deviation for each method. Table 2.1 dis-

plays the classification accuracy rates for all methods. As can be seen, DeepGM achieves better

performance than Shape-DNA, cShape-DNA, GPS embedding, F1-, F2-, F3-features, and the GM

classifier. The classification accuracy of DeepGM is 96.33%, which shows improvements of 4.16%

and 9.16% over the best performing classifiers GM approach and GPS embedding, respectively.

In addition to plotting the average classification accuracy rates, Fig. 2.7 shows the error bars of

DeepGM and the baseline methods on the SHREC-2010 dataset. Error bars are a graphical rep-

resentation of the variability of data. Each error bar in Fig. 2.7 represents the distance of the

measurement of the standard deviation below or above the average classification accuracy. As can

be seen, the error bar of DeepGM is the smallest, indicating a much better performance than the

baseline methods.

2.4.2 SHREC-2011 dataset

SHREC 2011 is a large-scale dataset of 600 nonrigid 3D objects from 30 classes, where each class

contains an equal number of objects. The models are represented as watertight triangular meshes

and are obtained by transforming 30 original object models [80]. These 30 classes are: alien, ant,

39

Table 2.1: Classification accuracy results on the SHREC-2010 dataset. Boldface numbers indicate
the best classification performance

Method Average accuracy %
F1-features 76.83± 2.77
F2-features 77.17± 4.01
F3-features 75.83± 3.95
Shape-DNA 82.67± 1.96
cShape-DNA 78.50± 5.58
GPS-embedding 87.17± 3.60
GM 92.17± 4.17
DeepGM 96.33 ± 1.05

F1-
fe

at
ur

es

F1-
fe

at
ur

es

F1-
fe

at
ur

es

Sha
pe

-D
N
A

cS
ha

pe
-D

N
A

G
PS-e

m
be

dd
in
g

G
M

D
ee

pG
M

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Figure 2.7: Classification accuracy rates with error bars for DeepGM and baseline methods on
SHREC-2010.

armadillo, bird1, bird2, camel, cat, centaur, dino_skel, dinosaur, dog1, dog2, flamingo, glasses,

gorilla, hand, horse, lamp, man, octopus, paper, pliers, rabbit, santa, scissor, shark, snake, spider,

twoballs and woman.

Performance evaluation: We randomly selected 30% of the SHREC-2011 benchmark for test-

ing and the rest for training the classifier, resulting in training and test sets of 420 and 180 shapes,

40

respectively. Following a similar procedure as in the previous experiment, we represent SHREC-

2011 by a data matrix X of size 400 × 600. The training data is used to learn the classification

model, which is in turn used on the test data to predict the class labels. As shown in Fig. 2.8, our

DeepGM approach was able to correctly classify approximately 98% of the shapes in the test data,

except for one instance of the spider model which was misclassified as an ant.

6

6

1

6

6
1

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

5

6

6

a
lie

n
a
n

t
a
rm

a
d

ill
o

b
ir
d

1
b
ir
d

2
c
a
m

e
l

c
a
t

c
e
n

ta
u
r

d
in

o
_

s
k
e
l

d
in

o
s
a

u
r

d
o

g
1

d
o

g
2

fl
a
m

in
g

o
g
la

s
s
e
s

g
o

ri
lla

h
a

n
d

h
o

rs
e

la
m

p
m

a
n

o
c
to

p
u
s

p
a

p
e

r
p
lie

rs
ra

b
b

it
s
a
n

ta
s
c
is

s
o
r

s
h
a

rk
s
n
a

k
e

s
p
id

e
r

tw
o
b

a
lls

w
o
m

a
n

alien
ant

armadillo
bird1
bird2

camel
cat

centaur
dino_skel
dinosaur

dog1
dog2

flamingo
glasses

gorilla
hand

horse
lamp
man

octopus
paper
pliers
rabbit
santa

scissor
shark
snake
spider

twoballs
woman

Figure 2.8: Confusion matrix for DeepGM on SHREC-2011.

Results: To obtain reliable results, the experiments were repeated 10 times with different randomly

selected datasets for training and testing. Then, the mean and standard deviation of the resulting

accuracy for each method were recorded, and the results are reported in Table 2.2. We also display

in Fig. 2.9 the classification accuracy rate for each method along with the associated error. As can

41

be seen, DeepGM outperforms all baseline methods, including the GM approach which uses a one-

vs-all multiclass SVM classifier. The average accuracy of DeepGM is 97.89% with performance

improvements of 9.12% and 12.50% over cShape-DNA and Shape-DNA, respectively. DeepGM

also yields a 3.78% accuracy improvement over the GM using classifier, indicating the advantage

of using deep learning models over shallow ones.

Table 2.2: Classification accuracy results on the SHREC-2011 dataset. Boldface numbers indicate
the best classification performance

Method Average accuracy %
F1-features 83.78± 3.03
F2-features 80.83± 2.24
F3-features 80.33± 2.15
Shape-DNA 85.39± 2.36
cShape-DNA 88.77± 1.77
GPS-embedding 83.22± 1.88
GM 94.11± 1.28
DeepGM 97.89 ± 0.57

F1-
fe

at
ur

es

F1-
fe

at
ur

es

F1-
fe

at
ur

es

Sha
pe

-D
N
A

cS
ha

pe
-D

N
A

G
PS-e

m
be

dd
in
g

G
M

D
ee

pG
M

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Figure 2.9: Classification accuracy rates with error bars for DeepGM and baseline methods on
SHREC-2011.

42

The learned weights from the first and second autoencoders are shown in Fig. 2.10. The features

learned by the second autoencoder are depicted in Fig. 2.11. As can be shown, the features are quite

similar for shapes from the same class, meaning that DeepGM is robust to nonrigid deformations.

Figure 2.10: DeepGM learned weights from the first layer (left) and second layer (right) on the
SHREC-2011 dataset.

2.4.3 SHREC-2015 dataset

The SHREC 2015 dataset consists of 1200 3D watertight triangle meshes, which are classified into

50 categories. The models in each category are obtained by transforming the original 3D meshes

of the same category.

Performance evaluation: We randomly selected 30% shapes in the SHREC-2015 dataset to

hold out for the test set, and the remaining shapes for training. That is, the training and test sets

consist of 840 and 160 shapes, respectively. First, we train a stacked sparse autoencoder with two

hidden layers on the training data to learn the deep classification model. Then, we use the resulting,

trained model on the test data to predict the class labels.

Results: Each 3D shape in the SHREC-2015 dataset is represented by a 900-dimensional fea-

ture vector, resulting in a data matrix X of size 900 × 1200. In a bid to obtain reliable results,

we repeated the experiments 10 times for the proposed DeepGM approach as well as for each of

the baseline methods, and we recorded the resulting classification accuracy rates. The average

accuracy results along with the standard deviations are shown in Table 2.3. Fig. 2.12 displays the

43

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Figure 2.11: DeepGM learned features for three women models (top) and three gorilla models
(bottom) from the SHREC-2011 dataset.

SHREC-2015 classification accuracy rate for each method along with the associated error. As can

be seen, DeepGM outperforms all the baseline methods. The average accuracy of DeepGM is

93.03%, with performance improvements of 18.23% and 29.63% over the best performing base-

line methods of cShape-DNA and GPS-embedding, respectively. DeepGM also yields a 9.69%

accuracy improvement over the GM approach, which uses a one-vs-all multiclass SVM classifier.

These substantial improvements in accuracy rates over the baseline methods dataset demonstrate

the robustness of DeepGM in 3D shape classification.

44

Table 2.3: Classification accuracy results on the SHREC-2015 dataset. Boldface numbers indicate
the best classification performance

Method Average accuracy %
F1-features 56.03± 4.46
F2-features 50.86± 3.54
F3-features 62.66± 1.90
Shape-DNA 61.17± 3.38
cShape-DNA 74.80± 1.41
GPS-embedding 63.40± 1.73
GM 83.34± 1.88
DeepGM 93.03 ± 0.64

F1-
fe

at
ur

es

F1-
fe

at
ur

es

F1-
fe

at
ur

es

Sha
pe

-D
N
A

cS
ha

pe
-D

N
A

G
PS-e

m
be

dd
in
g

G
M

D
ee

pG
M

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Figure 2.12: Classification accuracy rates with error bars for DeepGM and baseline methods on
SHREC-2015.

2.4.4 Parameter sensitivity

We tested the performance of the proposed DeepGM approach using different values for the num-

ber of geodesic moments. Our experiments show that a number of geodesic moments in the range

of 20 to 30 is usually sufficient to capture the discriminative features from 3D shapes for better

classification accuracy, as depicted in Fig. 2.13 for all the three benchmarks used in experimenta-

45

tion.

20 30 40 50 60 70 80
60

80

100
SHREC-2010

20 30 40 50 60 70 80
90

95

100

C
la

s
s
if
ic

a
ti
o
n

 a
c
c
u
ra

c
y
 (

%
)

SHREC-2011

20 30 40 50 60 70 80

Number of geodesic moments

85

90

95
SHREC-2015

Figure 2.13: Classification accuracy vs. number of geodesic moments.

2.5 Conclusion

In this chapter, we introduced a discriminative classifier using deep learning with geodesic mo-

ments. The proposed approach uses stacked sparse autoencoders with two hidden layers to learn

high-level features, which were shown to offer a higher discrimination power for 3D shape classi-

fication. We showed through extensive experiments on several 3D shape benchmarks that our deep

learning based approach substantially outperforms existing methods not only in terms of classifi-

cation accuracy rates, but also in terms of standard error rates.

46

Figure 2.14: Two-dimensional t-SNE feature visualization of geodesic moment features (left) and
DeepGM learned features (right) on SHREC-2010 (top), SHREC-2011 (middle) and SHREC-2015
(bottom).

47

C
H

A
P

T
E

R

3
Geodesic Shape Retrieval using Sparse Autoencoders

Shape representations provide compact, parsimonious shape descriptions that are often used in ob-

ject recognition and retrieval tasks. In light of the increased processing power of graphics cards

and the availability of large-scale datasets, deep neural networks have shown a remarkable per-

formance in numerous computer vision and geometry processing applications. In this chapter, we

present a deep learning framework for unsupervised 3D shape retrieval with geodesic moments.

The proposed method learns deep shape representations using stacked sparse autoencoders in an

unsupervised manner. Such discriminative shape descriptors can then be used to compute the pair-

wise dissimilarities between shapes in a dataset, and to find the retrieved set of the most relevant

shapes to a given shape query. Experimental evaluation on four standard 3D shape benchmarks

demonstrate the competitive performance of our approach, showing that it leads to improved re-

trieval results in comparison with state-of-the-art techniques.

3.1 Introduction

Shape retrieval is a fundamental problem in a wide range of fields, including computer vision,

geometry processing, medical imaging, and computer graphics. Given a database of shapes, the

goal of shape retrieval is to find the set of most relevant shapes to a query shape. The 3D shape

retrieval problem, for instance, has been attracting much attention in recent years, fuelled primarily

by increasing accessibility to large-scale 3D shape repositories that are freely available on the

Internet [1].

Spectral geometry is at the core of several state-of-the-art techniques that effectively tackle the

48

problem of nonrigid 3D shape retrieval, achieving excellent performance on the latest 3D shape

retrieval contests [38–42]. Most of these approaches represent a 3D shape by a spectral signature,

which is a concise and compact shape descriptor aimed at facilitating the retrieval tasks. Exam-

ples of spectral shape descriptors include global point signature [43], heat kernel signature [44],

scale-invariant heat kernel signature [45], wave kernel signature [46], spectral graph wavelet sig-

nature [83], improved wave kernel signature [48], and reduced biharmonic distance matrix signa-

ture [49].

The recent trend in shape analysis is geared towards using deep neural networks to learn features

at various levels of abstraction. It is no secret that deep learning is the buzzword of the moment in

both academic and industrial circles, and the performance of deep neural networks has been quite

remarkable in a variety of areas such as speech recognition, image recognition, natural language

processing, and geometry processing [2–5]. The trend toward deep neural networks has been

driven, in part, by a combination of affordable computing hardware, open source software, and the

availability of large-scale datasets.

Although applying deep neural networks to 3D shapes, particularly to mesh data, is not straight-

forward, several deep learning architectures have been recently proposed to tackle various 3D

shape analysis problems in a bid to learn higher level representations of shapes [6, 7, 9–11]. Su et

al. [6] presented a convolutional neural network architecture that combines information from mul-

tiple views of a 3D shape into a single and compact shape descriptor. Wu et al. [7] proposed a deep

learning framework for volumetric shapes via a convolutional deep belief network by representing

a 3D shape as a probabilistic distribution of binary variables on a 3D voxel grid. Brock et al. [12]

proposed a voxel-based approach to 3D object classification using variational autoencoders and

deep convolutional neural networks, achieving improved classification performance on the Model-

Net benchmark. Sedaghat et al. [13] showed that forcing the convolutional neural network to pro-

duce the correct orientation during training yields improved classification accuracy. Bu et al. [10]

introduced a deep learning approach to 3D shape classification and retrieval using a shape descrip-

tor represented by a full matrix defined in terms of the geodesic distance and eigenfunctions of the

Laplace-Beltrami operator [14, 15]. Bai et al. [11] introduced a real-time 3D shape search engine

based on the projective images of 3D shapes. Xie et al. [17] proposed a multi-metric deep neural

network for 3D shape retrieval by learning non-linear distance metrics from multiple types of shape

features, and by enforcing the outputs of different features to be as complementary as possible via

the Hilbert-Schmidt independence criterion. A comprehensive review of deep learning advances

in 3D shape recognition can be found in [18].

In this chapter, we present a deep geodesic moments (DeepGM) approach to 3D shape retrieval

49

using deep learning. A preliminary work on DeepGM was presented in [64]. The proposed tech-

nique leverages recent developments in machine learning and geometry processing to effectively

represent and analyze 3D shapes at various levels of abstraction in an effort to design a compact

yet discriminative shape representation in an unsupervised way. More specifically, we use stacked

sparse autoencoders to learn deep shape descriptors from geodesic moments of 3D shapes. The

geodesic moments are geometric feature vectors defined in terms of the geodesic distance on a 3D

shape, while stacked sparse autoencoders are deep neural networks consisting of multiple layers

of sparse autoencoders that attempt to enforce a constraint on the sparsity of the output from the

hidden layer.

We show that our proposed framework unsupervisedly learns geometric features from shapes

with the aim of designing a highly discriminative shape descriptor that yields better retrieval results

compared to existing methods, including supervised learning techniques. The main contributions

of this chapter may be summarized as follows:

• We present a geometric framework for 3D shape retrieval using geodesic moments.

• We propose an unsupervised approach for learning deep shape descriptors using stacked

sparse autoencoders.

• We show through extensive experiments the competitive performance of the proposed ap-

proach in comparison to existing shape retrieval techniques on several 3D shape benchmarks

using various evaluation metrics.

The rest of this chapter is organized as follows. In Section 3.2, we present a deep learning

framework with geodesic moments for 3D shape retrieval using stacked sparse autoencoders, and

we discuss the main components of our proposed algorithm. Experimental results on both synthetic

and real datasets are presented in Section 3.3 to demonstrate the competitive performance of our

approach. Finally, we conclude in Section 3.4.

3.2 Method

In this section, we present a deep learning approach to 3D shape retrieval using geodesic moments

and stacked sparse autoencoders. We start by defining the geodesic moments, and then we describe

in detail the key steps of our proposed algorithm.

50

3.2.1 Geodesic Moments

A 3D shape is usually modeled as a triangle mesh M whose vertices are sampled from a Rieman-

nian manifold. A triangle mesh M may be defined as a graph G = (V , E) or G = (V , T), where

V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges, and T is the set of triangles.

Each edge eij = [vi,vj] connects a pair of vertices {vi,vj} (or simply {i, j}). We define the kth

geodesic moment at a mesh vertex j as

µk(j) = k

m∑
i=1

dk−1ij ai, (3.1)

where ai is the area of the Voronoi cell at vertex i, and dij is the geodesic distance between mesh

vertices i and j. Hence, we may represent the shape M by an m × p geodesic moment matrix

M = (µ1, . . . ,µm)ᵀ, where µj = (µ1(j), . . . , µp(j)) is a p-dimensional vector consisting of the

first p moments (i.e. arranged in increasing order of magnitude) at vertex j. Figure 3.1 illustrates

a triangle mesh consisting of m = 689 vertices, as well as the graph geodesic distance matrix

between all mesh vertices, and the normalized vertex area plot.

3.2.2 Proposed Algorithm

The objective of 3D shape retrieval is to search and extract the most relevant shapes to a query

shape from a dataset of 3D shapes. The retrieval accuracy is usually evaluated by computing a

pairwise dissimilarity measure between shapes in the dataset. A good retrieval algorithm should

result in few dissimilar shapes. A commonly used dissimilarity measure for content-based retrieval

is the `1-distance, which quantifies the difference between each pair of 3D shapes.

Our proposed DeepGM approach to 3D shape retrieval consists of two major steps. In the

first step, we compute the p × p matrix Si = Mᵀ
iMi for each shape Mi in the dataset D =

{M1, . . . ,Mn}, where Mi is the geodesic moment matrix and p is the number of geodesic mo-

ments. Then, each matrix Si is reshaped into a p2-dimensional feature vector xi by stacking its

columns one underneath the other. Subsequently, all feature vectors xi of all n shapes in the dataset

are arranged into a p2 × n data matrix X = (x1, . . . ,xn).

In the second step, we use stacked sparse auto-encoders to learn deep features by training the

hidden layers of the network individually in an unsupervised way. An autoencoder is comprised of

an encoder and a decoder, as depicted in Fig. 3.2.

The encoder maps an input vector to a hidden representation and the decoder maps back the hid-

den representation to a reconstruction of the original input. More precisely, The encoder, denoted

by fθ, maps an input vector x ∈ Rq to a hidden representation (referred to as code, activations or

51

100 200 300 400 500 600

100

200

300

400

500

600

0 100 200 300 400 500 600 700

0

0.05

0.1

0.15

0.2

Figure 3.1: Triangle mesh (top left); graph geodesic distance matrix (top right); and normalized
vertex area plot (bottom).

Input Output

Encoder Decoder

Figure 3.2: Graphical diagram of an autoencoder.

features) a ∈ Rr via a deterministic mapping

a = fθ(x) = σ(Wx + b), (3.2)

parameterized by θ = {W,b}, where W ∈ Rr×q and b ∈ Rq are the encoder weight matrix

and bias vector, and σ is a nonlinear element-wise activation function such as the logistic sigmoid

or hyperbolic tangent. The decoder, denoted by gθ′ , maps back the hidden representation h to a

52

reconstruction x̂ of the original input x via a reverse mapping

x̂ = gθ′(a) = σ(W′a + b′), (3.3)

parameterized by θ′ = {W′,b′}, where W′ ∈ Rq×r and b′ ∈ Rq are the decoder weight matrix

and bias vector, respectively. The encoding and decoding weight matrices W and W′ are usually

constrained to be of the form W′ = Wᵀ, which are referred to as tied weights. Assuming the

tied weights case for simplicity, the parameters {W,b,b′} of the network are often optimized by

minimizing the squared error
∑N

i=1‖xi − x̂i‖22, where N is the number of samples in the training

set, xi is the ith input sample and x̂i is its reconstruction.

To penalize large weight coefficients in an effort to avoid over-fitting the training data and also

to encourage sparsity of the output from the hidden layer, the following objective function is min-

imized instead

L(W,b,b′) =
1

2

N∑
i=1

‖xi − x̂i‖22 +
λ

2
‖W‖2F + β

N∑
j=1

KL(ρ‖ρ̂j), (3.4)

where λ is a regularization parameter that determines the relative importance of the sum-of-squares

error term and the weight decay term, and β is the weight of the sparsity regularization term. This

sparsity regularizer is the Kullback-Leibler divergence KL(ρ‖ρ̂j), which is a dissimilarity measure

between ρ and ρ̂j , and it is defined as

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, (3.5)

where ρ̂j is the average activation value of the hidden unit j and ρ is its desired value which is

typically small.

A stacked sparse autoencoder is a deep neural network consisting of multiple layers of stacked

encoders from several sparse autoencoders. This stacked network is pre-trained layer by layer in a

unsupervised fashion, where the output from the encoder of the first autoencoder is the input of the

second autoencoder, the output from the encoder of the second autoencoder is the input to the third

autoencoder, and so on. After pre-training, the entire stacked sparse autoencoder can be trained

using backpropagation to fine-tune all the parameters of the network.

The geodesic vectors xi of all n shapes in the dataset are arranged into a κ × n data ma-

trix X = (x1, . . . ,xn) on which a deep auto-encoder is performed, resulting in an rL × n ma-

trix A = (a
(1)
L , . . . , a

(n)
L) whose columns are deep learned shape representations (referred to as

DeepGM descriptors), where rL is the total number of units in the last hidden layer of the net-

work. The geodesic feature vector of a 3D table model is displayed in Figure 3.3(top), while

Figure 3.3(bottom) shows the DeepGM descriptor of a 3D table model.

53

50 100 150 200 250 300 350

-0.2

-0.1

0

0.1

0.2

0.3

0.4

G
e

o
d

e
s
ic

 f
e

a
tu

re
s

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

D
e

e
p

G
M

 f
e

a
tu

re
s

Figure 3.3: Geodesic features (top) and DeepGM features (bottom) of a 3D table model.

Finally, we compare a query shape to all shapes in the dataset using the `1-distance between

the DeepGM descriptors to measure the dissimilarity between each pair for 3D shape retrieval.

Algorithm 2 summarizes the main algorithm steps of our DeepGM approach to 3D shape retrieval.

It is important to note that while other distances can be used in our algorithm to quantify the

differences between pairs of shapes, we chose the `1-distance for its simplicity and robustness to

outliers.

3.3 Experiments

In this section, we conduct extensive experiments to assess the performance of the proposed

DeepGM approach in 3D shape retrieval. We apply the proposed model on four datasets. The

effectiveness of our approach is validated by performing a comprehensive comparison with sev-

eral shape retrieval methods using standard performance evaluation metrics that are widely used

in retrieval tasks. We first present the datasets used and then describe the implementation details,

54

Algorithm 2 DeepGM Retrieval

Input: Dataset D = {M1, . . . ,Mn} of n shapes, and p geodesic moments.
1: for i = 1 to n do
2: Compute the m × p geodesic moment matrix Mi for each 3D shape Mi, where m is the

number of vertices.
3: Compute the p× p matrix Si = Mᵀ

iMi, and reshape it into a p2-dimensional vector xi
4: end for
5: Arrange all the feature vectors xi into a p2 × n data matrix X = (x1, . . . ,xn)

6: Apply a stacked sparse auto-encoder on X to find the rL × n matrix A = (a
(1)
L , . . . , a

(n)
L) of

deepGM descriptors, where rL is the number of units in the last hidden layer.
7: Compute the `1-distance between the DeepGM vector of the query and all DeepGM vectors in

the dataset, and find the closest shape(s).
Output: Retrieved set of most relevant shapes to the query.

including the experimental setup and the model’s hyperparameters.

Datasets: The effectiveness of the proposed shape retrieval framework is evaluated on four stan-

dard and publicly available 3D shape benchmarks [1, 38]: synthetic SHREC-2014, real SHREC-

2014, SHREC-2015 [41], and SHREC-2016 [1]. Sample shapes from these widely-used datasets

are displayed in Fig. 3.4.

Implementation details: All the experiments were carried out on a desktop computer with a

CPU Core i7 processor running at 3.4 GHz and 32 GB RAM; and all the algorithms were imple-

mented in MATLAB. For feature extraction, we employed a stacked sparse autoencoder with two

layers, as illustrated in Figure 3.5. We used the logistic sigmoid function as an activation func-

tion for both autoencoders. The sizes of the hidden layers for the first and second autoencoders

are set to h1 = 1000 and h2 = 500, respectively. In the objective function of the stacked sparse

autoencoder, we set the regularization parameter to λ = 0.0001, and the weight of the sparsity reg-

ularization term to β = 3. We also set the number of geodesic moments to p = 20 for all datasets.

In other words, each shape in the synthetic SHREC-2014, real SHREC-2014, SHREC-2015 and

SHREC-2016 datasets is represented by an input geodesic feature vector of dimension p2 = 400.

In our DeepGM approach, we used the features learned by the second autoencoder to perform

3D shape retrieval. That is, we used the 500-dimensional deep feature vectors of the second hidden

layer to compute the `1-distance matrix.

The learned weights from the first and second autoencoders on the synthetic SHREC-2014

dataset are shown in Fig. 3.6.

55

Figure 3.4: Sample shapes from real SHREC-2014 (top), synthetic SHREC-2014 (second row),
SHREC-2015 (third row), and SHREC-2016 (bottom).

3.3.1 Results

In this section, we report the retrieval results of our approach and the baseline techniques on the

synthetic SHREC-2014, real SHREC-2014 and SHREC-2016 datasets.

56

Input Output

Encoder Encoder Softmax Layer

Figure 3.5: Architecture of a two-layer stacked autoencoder.

Figure 3.6: DeepGM learned weights from the first layer (top) and second layer (bottom) on the
synthetic SHREC-2014 dataset.

SHREC-2014 dataset

The SHREC-2014 benchmark [38] consists of two datasets: real and synthetic. The real SHREC-

2014 dataset is composed of 400 shapes made from 40 human subjects in 10 different poses.

57

Half of the human subjects are male, and half are female. The poses of each subject are built

using a data-driven deformation technique, which can produce realistic deformations of articulated

meshes [84].

The synthetic SHREC-2014 dataset, on the other hand, consists of 15 different human models,

each of which has its own unique body shape. Five human models are male, five are female, and

five are child body shapes. Each of these models exists in 20 different poses, resulting in a total

of 300 shapes. The same poses are used for each body shape, and objects are considered from the

same class if they share the same body shape.

Evaluation metrics: The proposed approach is evaluated in comparison to existing state-of-

the-art methods using several standard evaluation metrics [85], including Nearest Neighbor (NN),

First-tier (FT) and Second-tier (ST), E-Measure (E), and Discounted Cumulative Gain (DCG).

The DCG is a statistic that weights correct results near the front of the list more than correct

results later in the ranked list, under the assumption that a user is less likely to consider elements

near the end of the list. The DCGk at a particular rank position k is computed recursively as

follows:

DCGk =

Gk if k = 1

DCGk−1 +
Gk

log2 k
otherwise

= G1 +
k∑
`=2

G`

log2 `
, (3.6)

where Gk is a gain (usefulness) value that depends on the relevance of the kth retrieved shape

(1 if the shape that is the kth closest match to the query shape in the query shape’s class, and 0

otherwise). The gain is accumulated starting at the top of the ranking and may be reduced, or

discounted, at lower ranks. Basically, DCGk is the total gain accumulated at a particular rank k,

and it represents the relevance of the top-k results. Intuitively, the DCG associate a cumulative

gain score to each position in the result. The gains, however, are discounted by the logarithm of

the position because gains at ranks closer to 1 are generally assumed to be more important that the

gains at ranks that are higher. Thus, the DCG score reflects the performance of the algorithm when

correct results that are retrieved earlier are weighted higher than those retrieved later. Unlike AP

which only takes into account binary relevance ratings, the DCG can handle different numbers of

relevant levels (i.e., multi-graded relevance). The DCG may have values that can be quite high if

there are many highly relevant shapes, and hence it should be normalized. The normalized DCG

at rank k is defined as

NDCGk =
1

Zk
DCGk, (3.7)

where Zk is a normalization factor, called the ideal DCG at position k. The ideal DCG is the

maximum achievable (ideal) DCG at the same rank for a given set of queries, and can be easily

58

found by calculating the DCG of a ranked list that places all the highest-graded shapes above all

the second-graded shapes and so on.

Baseline methods: We carried out a comprehensive comparison between the proposed DeepGM

framework and several state-of-the-art methods, including histograms of area projection transform

(HAPT) [86], heat kernel signature based on time serial (HKS-TS) [38], Euclidean distance based

canonical forms (EDBCF) [87], supervised dictionary learning (supDLtrain) [39], reduced bihar-

monic distance matrix (R-BiHDM) [49], and high-level feature learning using deep belief networks

(3D-DL) [10]. These baselines are the best performing methods on the SHREC-2014 datasets.

Performance evaluation: To compute the pairwise distance matrix between all pairs of shapes in

the real and synthetic SHREC-2014 datasets, we represent each shape by a 500-dimensional deep

feature vector that is learned by the second autoencoder. More specifically, a 1000-dimensional

feature representation is learned from the 400-dimensional geodesic feature vector using the first

autoencoder. Then, the second autoencoder is employed to learn a reduced shape representation of

500 dimensions.

Results: In the first step of our DeepGM approach, each shape in the real and synthetic SHREC-

2014 datasets is represented by a 400-dimensional geodesic feature vector (i.e. p = 20). Hence,

the data matrix X for the real SHREC-2014 dataset is of size 400 × 400, while the data matrix

for the synthetic SHREC-2014 datasetand is of size 400 × 300. Training the stacked sparse auto-

encoder yields a DeepGM matrix A of size 500 × 400 for real SHREC-2014, and 500 × 300 for

synthetic SHREC-2014.

Table 3.1 shows the retrieval rates for all methods on the real SHREC-2014 dataset, which

consists of 400 shapes. A distance matrix of size 400 × 400 is constructed by computing the `1-

distance between each pair of the 500-dimensional deep feature vectors. Finally, a retrieval test on

this distance matrix is conducted and the scores for the evaluation metrics are computed. As can

be seen, comparing with the state-of-the-art supervised approach supDLtrain, our unsupervised

DeepGM approach performs relatively well and gives the second best results for all the evaluation

metrics except for NN and DCG.

Table 3.2 summarizes the retrieval rates for all methods on the synthetic SHREC-2014 dataset,

which consists of 300 shapes. A distance matrix of size 300 × 300 is obtained by computing the

`1-distance between each pair of the 400-dimensional deep feature vectors. Finally, a retrieval test

on this distance matrix is conducted and the scores for the evaluation metrics are computed. As

can be seen, DeepGM is the top performing method in terms of the NN measure at 99.3%, with

a performance improvement of 3.3% over supDLtrain. Again, although our approach is unsuper-

vised, it still outperforms supDLtrain in terms of NN and E measures, and gives the second best

59

Table 3.1: Performance comparison results on the real SHREC-2014 dataset. Boldface numbers
indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

HAPT [86] 84.5 53.4 68.1 35.5 79.5
HKS-TS [41] 24.5 25.9 46.1 31.4 54.8
EDBCF [87] 1.0 1.2 4.0 4.3 27.9
supDLtrain [39] 79.3 72.7 91.4 43.2 89.1
R-BiHDM [49] 68.5 54.1 74.2 38.7 78.1
3D-DL [10] 22.5 19.3 37.4 26.2 50.4
DeepGM 72.5 53.6 82.7 41.2 78.2

results in terms of the other evaluation metrics. Even in the case of ST and DCG, we are very close

to the best reported performance with a thin 0.8% margin. A key advantage of unsupervised ap-

proaches is the possibility to learn larger and more complex models than with supervised methods.

Supervised learning may be susceptible to over-fitting the training data and requires a large body of

labeled data. Another advantage of unsupervised approaches is the ability to discover meaningful

structure in the data.

Table 3.2: Performance comparison results on the synthetic SHREC-2014 dataset. Boldface num-
bers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

HAPT [86] 97.0 73.3 92.7 65.5 93.6
HKS-TS [41] 46.7 47.6 74.3 50.4 72.9
EDBCF [87] 11.3 18.2 33.3 21.7 50.7
supDLtrain [39] 96.0 88.7 99.1 72.1 97.5
R-BiHDM [49] 79.3 57.2 76.0 53.3 83.6
3D-DL [10] 92.3 76.0 91.1 64.1 92.1
DeepGM 99.3 81.4 98.3 72.3 96.7

SHREC-2015 dataset

The SHREC 2015 dataset is comprised of 1200 3D watertight triangle meshes, which are derived

and equally classified into 50 categories. The models in each category are obtained by trans-

forming the original 3D meshes of the same category and are selected from the publicly available

60

repositories, including McGill database [88], TOSCA shapes [15], and SHREC-2011 non-rigid

dataset [81].

Performance evaluation: For the SHREC-2015 dataset, a stacked sparse autoencoder consist-

ing of two hidden layers is used to generate the high level features for each of the 1200 shapes

in the dataset. The input to the autoencoder network is the 400-dimension geodesic vector (i.e.

using 20 geodesic moments). A 1000-dimensional feature representation is learned from the 400-

dimensional geodesic feature vector using the first autoencoder. Then, the second autoencoder is

employed to learn a reduced shape representation of 500 dimensions.

Table 3.3: Performance comparison results on the SHREC-2015 dataset. Boldface numbers indi-
cate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

HAPT [86] 99.8 96.6 98.2 81.5 99.2
HKS-TS [41] 6.5 6.4 12.4 7.4 39.1
EDBCF [87] 97.8 79.1 88.4 70.8 94.3
DeepGM 99.7 94.0 97.2 80.1 98.8

Results: We compare the proposed DeepGM method for 3D shape retrieval to (HAPT) [86],

HKS-TS [38, 41], and (EDBCF) [87]. SHREC-2015 retrieval results are not available for (supDL-

train) [39], (R-BiHDM) [49], and (3D-DL) [10]. The retrieval rates for all methods for the real

SHREC-2015 dataset are summarized in Table 3.3. As can be seen, DeepGM performs consistently

well using all retrieval evaluation measures, indicating its competitive performance in comparison

with baseline methods. In terms of the NN measure, the top performing method is HAPT with a

retrieval rate of 99.8%, while DeepGM is a one-tenth of a percentage point lower at 99.7%; for

the FT measure the top performing method is HAPT at 96.6% and DeepGM at 94.0%; and for the

DCG measure the top performing method is HAPT at 99.2% and DeepGM at 98.8%. To provide

additional insight into the performance of the proposed framework on SHREC-2015, we show

in Figure 3.7 a bar plot displaying the retrieval results for all baseline methods and our DeepGM

model. As can be seen, DeepGM yields comparable performance to HAPT, and surpasses HKS-TS

and EDBCF by significant performance gains in terms of all evaluation metrics.

61

H
APT

H
KS-T

S

ED
BC

F

D
ee

pG
M

0

10

20

30

40

50

60

70

80

90

100

R
e

tr
ie

v
a

l
ra

te
 (

%
)

NN

FT

ST

E

DCG

Figure 3.7: Retrieval rates using standard evaluation metrics for DeepGM and baseline methods
on the SHREC-2015 dataset.

SHREC-2016 dataset

The ShapeNet Core55 (SHREC-2016) is a subset of the ShapeNet dataset [1]. The ShapeNetCore

contains about 51, 300 models of over 55 common categories. Each of these common categories

may be subdivided into several further subcategories. The SHREC-2016 dataset is split into a 70%

training set, a 10% validation set, and a 20% test set.

Baseline methods: Using the SHREC-2016 shape benchmark, we carried out an extensive com-

parison between the proposed DeepGM framework and several state-of-the-art methods, including

Multi-view Convolutional Neural Networks (MVCNN) [6], Graphics Processing Unit acceleration

and Inverted File Twice (GIFT) [11], View Aggregation (VA) [42], Channel-wise CNN for Mul-

titask Learning by Triplet (CCMLT) [42], and DB-FMCD-FUL-LCDR which is an appearance-

based 3D shape feature extraction approach using pre-trained convolutional neural networks [42].

These baselines are the best performing approaches on the SHREC-2016 dataset.

Evaluation metrics: The DeepGM approach is evaluated on the SHREC-2016 dataset using

several standard evaluation metrics [42], including Precision and Recall (P@N and R@N), F-score

(F1@N), Mean Average Precision (mAP), and Normalized Discounted Cumulative Gain (NDCG).

Precision is the fraction of the models retrieved that are relevant to the query, while recall is the

62

fraction of the models that are relevant to the query that are actually retrieved. The F-score Fk at

rank position k is defined as the harmonic mean of precision and recall

Fk =
2PkRk

Pk +Rk

. (3.8)

The harmonic mean is more intuitive than the arithmetic mean when computing a mean of ratios.

The F-score will only be high if both precision and recall have high values. This is due to that fact

that the harmonic mean of two numbers is always closer to their minimum.

The average precision (AP) for a single query q is computed based on the precision at each

relevant shape in the ranking

AP =
1

K

K∑
k=1

rel(k)× Pk, (3.9)

whereK is the number of relevant shapes for query q, and rel(k)=1 if the shape at rank k is relevant

and 0 if it not. A higher value of AP indicates that more relevant shapes are in the heading of the

retrieval list. The AP represents the area under the precision-recall curve.

Given a set of queries, the mean over the AP of all queries is called the mean average precision

(mAP), which corresponds to the average area under the precision-recall curve. The mean average

precision for a set of queries is the mean of the average precision scores for each of these queries.

The maximum mAP value is equal to 1.

All normalized DCG calculations are relative values in the interval [0, 1], making the NDCG

more appropriate for averaging over queries. The NDCG values for all queries can be averaged

to obtain a measure of the average performance of a retrieval algorithm. Higher values of NDCG

indicate better retrieval performance.

These evaluation metrics are used in macro and micro averaged versions. The macro version

gives an unweighed average over the entire dataset (all models are averaged with equal weight). In

the micro version, the query and retrieval results are treated equally across categories.

Performance evaluation: The SHREC-2016 dataset is divided into three distinct sets: a training

set containing 36, 147 models, a validation set containing 5, 165 models, and a test set composed

of 10, 366 models. For each of these three sets, we used a two-layer stacked sparse autoencoder to

learn high-level feature descriptors for each shape. We first compute a 400-dimensional geodesic

feature representation for each shape and then use it as input to the proposed DeepGM neural

network model, resulting in a 500-dimensional deep shape descriptor for each shape.

Results: Following the same setup as in the previous experiments, the data matrices of geodesic

feature vectors for the SHREC-2016 training, validation, and test datasets are of size 400×36, 147,

63

400× 5, 165 and 400× 10, 366, respectively. The results on the SHREC-2016 dataset are summa-

rized in Tables 3.4, 3.5 and 3.6. As can be seen, DeepGM outperforms the best performing method

on the SHREC-2016 training dataset by a margin of 5.4% (resp. 8.6%) in terms of P@N using

microALL (resp. macroALL). DeepGM also performs better than MVCNN on both the SHREC-

2016 validation and test datasets in terms of P@N and NDCG. On the SHREC-2016 validation

dataset, DeepGM has an NDCG score of 97.2 with microALL compared to just 93.8 for MVCNN.

In terms of NDCG, DeepGM comes out way ahead with a score of 95.8 with macroALL versus

88.0 for MVCNN on the SHREC-2016 test dataset. It is also worth pointing out that DeepGM per-

forms consistently better than the baseline methods using three evaluation metrics, namely P@N,

mAP and NDCG. Overall, DeepGM delivers robust retrieval performance.

Table 3.4: Performance comparison results on the SHREC-2016 training dataset. Boldface num-
bers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

microALL macroALL

Method P@N R@N F1@N mAP NDCG P@N R@N F1@N mAP NDCG

MVCNN [6] 93.9 94.4 94.1 96.4 92.3 90.9 93.5 92.1 96.4 94.7
GIFT [11] 84.1 57.1 62.0 90.7 91.2 63.4 45.2 47.2 81.5 89.1
VA [42] 82.7 99.6 86.4 99.0 97.8 37.4 99.7 46.0 98.2 98.6
CCMLT [42] 88.4 26.0 36.3 91.7 89.1 58.6 49.7 42.8 77.5 86.3
DeepGM 99.3 60.0 67.6 99.7 98.1 99.5 88.4 91.1 99.9 98.6

Table 3.5: Performance comparison results on the SHREC-2016 validation dataset. Boldface num-
bers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

microALL macroALL

Method P@N R@N F1@N mAP NDCG P@N R@N F1@N mAP NDCG

MVCNN [6] 80.5 80.0 79.8 91.0 93.8 64.1 67.1 64.2 87.9 92.0
GIFT [11] 74.7 74.3 73.6 87.2 92.9 50.4 57.1 51.6 81.7 88.9
VA [42] 34.3 92.4 44.3 86.1 93.0 8.70 87.3 13.2 74.2 85.4
CCMLT [42] 68.2 52.7 48.8 81.2 88.1 24.7 64.3 26.6 57.5 71.2
DB-FMCD-FUL-LCDR [42] 30.6 76.3 37.8 72.2 88.6 9.60 82.8 14.0 60.1 80.1
DeepGM 83.3 77.2 74.5 95.6 97.2 88.6 48.7 55.6 94.0 96.4

64

Table 3.6: Performance comparison results on the SHREC-2016 test dataset. Boldface numbers
indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

microALL macroALL

Method P@N R@N F1@N mAP NDCG P@N R@N F1@N mAP NDCG

MVCNN [6] 77.0 77.0 76.4 87.3 89.9 57.1 62.5 57.5 81.7 88.0
GIFT [11] 70.6 69.5 68.9 82.5 89.6 44.4 53.1 45.4 74.0 85.0
VA [42] 50.8 86.8 58.2 82.9 90.4 14.7 81.3 20.1 71.1 84.6
CCMLT [42] 71.8 35.0 39.1 82.3 88.6 31.3 53.6 28.6 66.1 82.0
DB-FMCD-FUL-LCDR [42] 42.7 68.9 47.2 72.8 87.5 15.4 73.0 20.3 59.6 80.6
DeepGM 78.4 73.2 69.6 93.6 96.5 85.4 45.9 52.3 92.2 95.8

Feature visualization: The high-level features learned by our proposed DeepGM can be visual-

ized using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [89], which is a dimension-

ality reduction technique that is particularly well-suited for embedding high-dimensional data into

a space of two or three dimensions. Figure 3.8 displays the t-SNE embeddings, color-coded by

class labels, of the shapes in the SHREC-2016 dataset using the 400-dimensional geodesic feature

vectors (top) and the 500-dimensional deep features (bottom) generated by our DeepGM approach.

As can be seen, the two-dimensional embeddings corresponding to DeepGM are more separable

than the ones corresponding to geodesic feature vectors. With geodesic features, the points are not

discriminated very well, while with DeepGM features, the points are discriminated much better. In

other words, DeepGM learns more discriminative features for 3D shape retrieval tasks, indicating

the superior performance of deep features over shallow ones. Moreover, Figure 3.8 shows that the

unsupervised DeepGM approach is exploratory in nature in the sense it can discover patterns and

meaningful sub-groups in a dataset.

3.3.2 Discussion

While our proposed model is flexible and general enough to be applied to any problem involving

comparisons between shapes, it is, however, sensitive to topological noise, which may adversely

impact the performance results. This is due primarily to the fact that the geodesic distance is

sensitive to topological changes of the shape. A viable remedy to this shortcoming is to replace the

geodesic distance with distances that are less sensitive to topological noise such as the biharmonic

distance, which has been shown to be robust to noise and small topological changes, as well as

globally shape-aware and smooth [90]. As shown in Figure 3.9, the level sets of the biharmonic

65

Figure 3.8: Two-dimensional t-SNE feature visualization of geodesic moments (top) and DeepGM
features (bottom) on the SHREC-2016 dataset (color-coded by class labels).

distance are much smoother than those of the geodesic distance. Notice that the source point is

displayed as a small green sphere, located in the vicinity of the mouth of the 3D face model. Both

distances are computed from the source point to all the remaining points of the 3D face model.

66

Figure 3.9: A 3D face model color-coded by the geodesic (left) and biharmonic distances (right).
Darker blue regions indicate smaller distances, while darker red regions indicate larger distances.
Level sets (isocontours) are displayed as white lines at equally spaced intervals of distance.

3.4 Conclusion

In this chapter, we introduced an efficient geometric approach to 3D shape retrieval using geodesic

moments and stacked sparse autoencoders. The proposed approach learns deep shape descriptors

in an unsupervised way by leveraging the hierarchical representations in a discriminatively trained

deep learning model. We showed that our DeepGM approach provides a comparable performance

on the real and synthetic SHREC-2014 datasets, even against supervised techniques. Although our

approach is unsupervised, it still outperforms supDLtrain in terms of several measures on synthetic

SHREC-2014. In addition, DeepGM outperforms the state of the art on the more recent SHREC-

2016 dataset by a comfortable margin of 7.8% on the test dataset using the NDCG metric. The two-

dimensional visualization of shape representations demonstrates the discriminative power of deep

features compared to the shallow ones. It is important to point out that the retrieval performance

of DeepGM yields consistent retrieval results across all datasets used for experimentation, while

baselines perform less coherently from one dataset to another. This consistent performance is

largely attributed to the fact that features learned via deep learning are transferable to other learning

tasks, and even to other modalities and datasets.

67

C
H

A
P

T
E

R

4
Deep Similarity Network Fusion for 3D Shape

Classification

In this chapter, we introduce a deep similarity network fusion framework for 3D shape classifica-

tion using a graph convolutional neural network, which is an efficient and scalable deep learning

model for graph-structured data. The proposed approach coalesces the geometrical discrimina-

tive power of geodesic moments and similarity network fusion in an effort to design a simple, yet

discriminative shape descriptor. This geometric shape descriptor is then fed into the graph convo-

lutional neural network to learn a deep feature representation of a 3D shape. Experimental results

on two standard 3D shape benchmarks demonstrate the better performance of the proposed method

in comparison with existing state-of-the-art classification approaches.

4.1 Introduction

With the increased use of 3D models in various application domains such as medical imaging,

computer vision, geometry processing, pattern recognition and computer graphics [42, 49, 69–

71], there is a growing research interest in developing efficient 3D shape classification methods

using deep learning. This is largely attributed to the increased availability of large-scale 3D shape

repositories and the incredible performance of deep learning models such as convolutional neural

networks (CNNs) in image classification [26].

Deep learning is a burgeoning field of machine learning using artificial neural networks that

seeks to emulate roughly how the brain works, and has been responsible for big improvements

68

in recent years in image and speech recognition, self-driving cars and other applications. A large

body of literature on 3D shape classification has centered around the use of CNNs to efficiently

learn high-level features. Su et al. [6] showed that training a CNN on multiple 2D views of a

3D shape yields great classification performance rates. They exploited the power of a pretrained

network trained on the large-scale ImageNet dataset [91]. Pretrained networks on large-scale image

datasets have been shown to learn rich feature representations for a wide range of images. These

features can then be transferred to other similar tasks using only a smaller number of training

images.

The recent developments in deep learning have moved the performance of computer vision ap-

plications such as self-driving cars [92] to new levels of capabilities. The use of deep learning

models has seen a tremendous growth in terms of usage in domain areas such as natural language

processing, speech recognition and image classification. It is no different with 3D shape ana-

lysis, as the current trend is to use these powerful techniques at various levels of abstraction due

to the incredible performance exhibited by the deep neural network architectures. Zanuttigh and

Minto [93] constructed a set of ‘depth maps’ by rendering the input 3D shape from different view-

points, which are in turn fed into a multi-branch CNN. Each branch of the network takes as input

one of the depth maps and produces a classification vector. The various classification vectors are

then combined to produce the final classification. Simonovsky and Komodakis [94] generalized

the convolution operator from regular grids to arbitrary graphs, allowing the handling of graphs

of varying sizes and connectivity. Filter weights are conditioned on the specific edge labels in

the neighborhood of a vertex, allowing the construction of deep neural networks for graph clas-

sification, especially point cloud classification. Sfikas et al. [95] proposed a shape classification

approach based on the PANORAMA descriptor and CNNs, where 3D models are pose normalized

using the SYMPAN method and then the PANORAMA representation is used to train a CNN. The

training is based on an augmented view of the extracted panoramic representation views. Xu and

Todorovic [96] formulated CNN learning as a beam search aimed at identifying an optimal CNN

architecture, namely the number of layers, nodes, and their connectivity in the network. Each state

of the beam search corresponds to a candidate CNN. Two types of actions are defined to add new

convolutional filters or layers to a parent CNN, and thus transition to children states. Sinha et

al. [97] represented a 3D shape as a geometry image so that standard CNNs can directly be used to

learn deep representations of shapes. Geometry images are created using authalic parametrization

on a spherical domain. A spherically parameterized shape is then projected and cut to convert

the original 3D shape into a flat, regular geometry image, which encodes suitable features. Wu et

al. [98] generated 3D objects from a probabilistic space by leveraging volumetric convolutional

69

networks and generative adversarial nets. They used an adversarial criterion instead of traditional

heuristic criteria, enabling the generator to capture object structure implicitly and to synthesize

high-quality 3D objects. Shi et al. [99] converted each 3D shape into a panoramic view, which is a

cylinder projection around its principle axis. A variant of CNN is specifically designed for learn-

ing the deep representations directly from such views. A row-wise max-pooling layer is inserted

between the convolution and fully-connected layers. Wu et al. [100] represented a geometric 3D

shape as a probability distribution of binary variables on a 3D voxel grid using a convolutional

deep belief network. This approach learns the distribution of complex 3D shapes across different

object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional

part representations automatically.

In this chapter, we propose a novel deep learning approach to 3D shape classification that har-

nesses recent developments in feature fusion to develop a geometric descriptor for 3D shapes

based on geodesic moments. This geometric descriptor is then fed into a graph convolutional neu-

ral network to learn high-level features, resulting in a highly informative and discriminative shape

descriptor. The main contributions of this chapter may be summarized as follows:

• We introduce a feature-based framework for computing discriminative shape descriptors us-

ing geodesic moments and similarity network fusion.

• We present a deep learning approach to 3D shape classification using graph convolutional

neural networks to learn high-level features.

• Our experimental results show superior performance of the proposed framework over exist-

ing classification methods on the ModelNet shape benchmarks.

The remainder of this chapter is organized as follows. In Section 4.2, we propose a deep learn-

ing framework for 3D shape classification using geodesic moments and similarity network fusion

in conjunction with graph convolutional neural networks. We discuss the key components of the

proposed approach along with its main algorithmic steps. Experimental results for 3D shape clas-

sification are presented in Section 4.3 to demonstrate the efficiency of our approach. Finally, we

conclude in Section 4.4.

4.2 Method

In this section, we present a deep learning framework for 3D shape classification using geodesic

moments and similarity network fusion. The core idea is to use a graph convolutional neural

70

network to learn a high-level feature representation of a 3D shape. We start by describing the

building blocks of our approach, and then describe in detail the key steps of the proposed algorithm.

4.2.1 Discrete Geodesic Moments

In geometry processing, a 3D shape is usually modeled as a triangle mesh M whose vertices are

sampled from a Riemannian manifold. A triangle mesh M may be defined as a graph G = (V , E)

or G = (V , T), where V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges, and

T is the set of triangles. Each edge eij = [vi,vj] connects a pair of vertices {vi,vj} (or simply

{i, j}). We define the kth geodesic moment at a mesh vertex j as

µk(j) = k

m∑
i=1

dk−1ij ai, (4.1)

where ai is the area of the Voronoi cell at vertex i, and dij is the geodesic distance between mesh

vertices i and j. Hence, we may represent the shape M by an m × p geodesic moment matrix

M = (µ1, . . . ,µm)ᵀ, where µj = (µ1(j), . . . , µp(j)) is a p-dimensional vector consisting of the

first p moments (i.e. arranged in increasing order of magnitude) at vertex j.

4.2.2 Similarity Network Fusion

Similarity network fusion (SNF) [101] is a computational method of fusing or integrating multi-

ple types of data. It combines multiple sources of data to create a comprehensive descriptor of

the underlying data by first constructing a sample-similarity network for each data type and then

integrating these networks into a single similarity network via a nonlinear combination method.

Network graphs are becoming more attractive for data representation because they store the

relationships between data as graphs, enabling applications to quickly query these relationships. As

data are gathered from more than one source, we usually end up with multiple network datasets for

each particular sample or object. To tackle this issue, SNF finds the common underlying network

structure of the multiple sources of data by developing a network of samples (models) for each

data source and then integrates the data sources into one network using a fusion methodology. By

combining the data in a nonlinear fashion, SNF is able to take advantage of the commonalities in

different types of data, resulting in a better performance than single data source predictions.

4.2.3 Graph Convolutional Neural Network

Graph convolutional neural network (GraphCNN) was recently introduced by Hechtlinger et

al. [102] as a generalization of convolutional neural networks to graph-structured data. The al-

gorithm utilizes a random walk to discover hidden relations in the input data and can be used on

71

different graph structured data, by discovering hidden relations in the data. Unlike a regular CNN

convolutional layer which works on the neighboring pixels of a given pixel and calculates the in-

ner product to get the convolution, GraphCNN performs a random walk on the graph to determine

its closest neighbors for each given node. The graph convolution is then calculated with the or-

dered closest neighbors by computing the dot product. The model uses shared weights for each

convolution, capturing the relations between the respective node and its closest neighbors.

Transition Matrix: GraphCNN employs a transition matrix P = (pij) to select the local neigh-

bors of a given node, where pij is the transition probability from node i to node j. The transition

matrix P of a graph over a set of N feature vectors is given by

P = D−1S, (4.2)

where S = (sij) is a similarity matrix whose entry si,j ≥ 0 is the weight of edge [i, j], and

D = diag(d1, . . . , dN) is the degree matrix with di =
∑

j sij , the degree of node i. In other words,

the transition matrix is obtained by normalizing rows of the similarity matrix to sum to one.

Similarity Measure: Denote by Q(k) =
∑k

i=0 P
k the finite power series of the transition matrix

P, with Q(0) = I. Each element
[
Pk
]
ij

of Pk is the probability of moving from node i to node j

in k steps, while each element
[
Q(k)

]
ij

of Q(k) is the expected number of visits to node j starting

from node i in k steps. Further, the ith row of Q(k) can be viewed as a similarity measure between

node i and its neighbors by considering a random walk on the graph. In other words, the ith row

of Q(k) can be used to find the closest neighbors of a node i.

Graph Convolution: The convolution over a graph with nodes x = (x1, ..., xN)ᵀ ∈ RN and

weights w ∈ Rr is defined as

conv(x) =

x
π
(k)
1 (1)

... x
π
(k)
1 (r)

x
π
(k)
2 (1)

... x
π
(k)
2 (r)

...

x
π
(k)
N (1)

... x
π
(k)
N (r)

w1

w2

...

wr

 , (4.3)

where r is the number of nearest neighbors of node x, and π(k)
1 denotes the permutation order of

the ith row of Q(k) in decreasing order.

Power Selection: The power value k of Q(k) should be chosen relatively small to avoid smooth-

ing out the local information, but large enough to detect a considerable number of neighbors of

each node in order to capture sufficient features.

72

4.2.4 Proposed Algorithm

The objective of 3D shape classification is to predict the target class for each 3D shape in a dataset.

This is typically done by extracting discriminative features from 3D shapes, followed by using a

machine learning model to classify these shapes. The available data X for shape classification is

usually split into two disjoint subsets: the training set Xtrain for learning, and the test set Xtest for

testing. The training and test sets are customarily selected by randomly sampling a set of training

instances from X for learning and using the rest of instances for testing.

Our proposed DeepSNF approach to 3D shape classification consists of two major steps, as

illustrated in Figure 4.1. In the first step, we compute the m × p geodesic moment matrix Mi for

each 3D shape Mi in a given a dataset D = {M1, . . . ,Mn} of n shapes, where m is the number

of vertices and p is the number of geodesic moments. Applying the SNF algorithm [101] to the

geodesic moment matrix Mi yields a p× p similarity matrix Wi for each shape Mi in the dataset

D. We refer to this similarity matrix as geodesic SNF matrix or status matrix. The geodesic SNF

matrix captures the full information about the similarity between each data point and all others.

Figure 4.2 displays the geodesic SNF matrices of four 3D shapes (bathtub, bed, chair and desk)

from four different classes of the ModelNet10 dataset.

GraphCNN

G
rp

ah
C

on
v

R
eL

U

M
ax

 P
oo

lin
g

G
ra

ph
C

on
v

R
eL

U

M
ax

 P
oo

lin
g

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

DeepSNFGeodesic SNF

Figure 4.1: Main components of the proposed DeepSNF feature learning method: low-level fea-
tures (geodesic SNF) and high-level features (DeepSNF).

In the second step, we use GraphCNN to learn deep features of the 3D model by using as an

input the p × p geodesic SNF matrix Wi. The architecture of the CNN is based on LeNet [103],

where the two regular convolutional layers are replaced by graph convolutional layers. The last

fully-connected layer of the CNN architecture is set to 100 neurons, which makes up the DeepSNF

learned feature vector. A softmax layer is then used for classification. Figure 4.3 displays the stem

plots of DeepSNF learned features of four 3D shapes from four different classes of the ModelNet10

dataset. Finally, the output of GraphCNN is a vector of predicted class labels.

The task in multiclass classification is to assign a class label to each input example. More

precisely, given a training data of the form Xtrain = {(xi, yi)}, where xi ∈ Rd is the ith example

and yi ∈ {1, . . . , K} is its ith class label, we aim at finding a learning model that contains the

73

Figure 4.2: Geodesic SNF signatures of four shapes (bathtub, bed (top), chair and desk (bottom))
from four different classes of the ModelNet10 dataset.

0 20 40 60 80 100
0

1

2

3

4

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.3: DeepSNF learned features for four shapes (bathtub, bed, chair and desk) from four
different classes of the ModelNet10 dataset.

74

optimized parameters from GraphCNN. Then, the trained deep learning model is applied to a test

data Xtest, resulting in predicted labels ŷi of new data. These predicted labels are subsequently

compared to the labels of the test data to evaluate the classification accuracy of the model.

To assess the performance of the proposed framework, we employed two commonly used eval-

uation criteria, the confusion matrix and accuracy, which will be discussed in more detail in the

next section. Algorithm 3 summarizes the main algorithm steps of our DeepSNF approach to 3D

shape classification.

Algorithm 3 DeepSNF Classifier

Input: Dataset D = {M1, . . . ,Mn} of n shapes, and number p of geodesic moments.
1: for i = 1 to n do
2: Compute the m × p geodesic moment matrix Mi for each 3D shape Mi, where m is the

number of vertices.
3: Compute the p× p similarity matrix Wi using the SNF algorithm.
4: end for
5: Apply GraphCNN on all Wi’s to learn DeepSNF feature vectors, followed by a softmax clas-

sifier.
Output: Vector ŷ containing predicted class labels.

4.3 Experiments

In this section, we conduct extensive experiments to assess the performance of the proposed Deep-

SNF approach in 3D shape classification. The effectiveness of our approach is validated by per-

forming a comprehensive comparison with several shape classifications methods.

Datasets: The effectiveness of the proposed framework is evaluated on two standard and publicly

available 3D shape benchmarks [100], namely ModelNet10 and ModelNet 40, which are widely

used in computer vision, geometry processing and other disciplines requiring 3D models with

labels. Sample shapes from these datasets are shown in Figure 4.4. The ModelNet shapes are

acquired from the Princeton ModelNet project [100], which is a collection of 3D CAD models of

common real-world objects. These 3D models were collected by scraping the Internet for various

object categories in an effort to build up a dataset of objects for each category. The label of each

model was determined by a human worker, with quality control added. Figure 4.4 displays a

sample model from each of the 10 categories of the ModelNet10 dataset.

Implementation details: All the experiments were carried out on a desktop computer with a

CPU Core i7 processor running at 3.4 GHz and 32 GB RAM; all algorithms were implemented

in Python. For all datasets used in the experiments, we set the number of geodesic moments to

75

Figure 4.4: A sample model from each category of the ModelNet10 dataset.

p = 29. Applying SNF algorithm yields a geodesic SNF matrix of size 29 × 29, which is then

fed into GraphCNN. For the SNF algorithm, we set both the number of neighbors and number of

iterations to 20. For the GraphCNN architecture we used LeNet [103] for simplicity purposes.

Performance evaluation measures: The performance of a classifier is usually assessed by ap-

plying it to test data with known target values and comparing the predicted values with the known

values. One important way of evaluating the performance of a classifier is to compute its confusion

matrix, which is aK×K matrix that displays the number of correct and incorrect predictions made

by the classifier compared with the actual classifications in the test set, where K is the number of

classes.

Another intuitively appealing measure is the classification accuracy, which is a summary statistic

that can be easily computed from the confusion matrix as the total number of correctly classified

instances (i.e., diagonal elements of confusion matrix) divided by the total number of test instances.

Alternatively, the accuracy of a classification model on a test set may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases

=
|x : x ∈ Xtest ∧ ŷ(x) = y(x)|

|x : x ∈ Xtest|
,

(4.4)

where y(x) is the actual (true) label of x, and ŷ(x) is the label predicted by the classification

algorithm. A correct classification means that the learned model predicts the same class as the

original class of the test case. The error rate is equal to one minus accuracy.

4.3.1 Results

In this section, we demonstrate the performance of our proposed classification framework on two

standard and publicly available 3D shape benchmarks: ModelNet10 and ModelNet40.

Baseline methods: For both benchmarks, ModelNet10 and Model40, we carried out a compre-

hensive comparison between the proposed DeepSNF framework and several state-of-the-art meth-

76

ods, including Depth Maps [93], ECC [94], PANORAMA-NN [95], Beam Search [96], Geometry

Image [97], 3D-GAN [98], DeepPano [99], and 3DShapeNets [100].

ModelNet10 Dataset

The ModelNet10 benchmark consists of 10 popular object categories [100]. The 3D models are

cleaned and the orientation is manually aligned. The dataset consists of 4891 models divided

between a training set of 3991 shapes and a test set of 908 shapes.

Table 4.1 reports the classification accuracy rates of all methods on the ModelNet10 dataset. A

geodesic SNF matrix of size 29× 29 is constructed by fusing the geodesic moment features using

the SNF algorithm. Then, the geodesic SNF matrix is fed into GraphCNN, and the classification

accuracy rate is computed. As can be seen, our DeepSNF approach outperforms all baseline meth-

ods with an accuracy rate of 93.70%. The highest accuracy rate for the baseline methods is 90.70%

which is achieved by PANORAMA-NN. Our approach bests this method by 3%. The results are

also visually displayed in Figure 4.5, which shows that DeepSNF achieves the best performance.

Table 4.1: Performance comparison results on the ModelNet 10 dataset. Boldface numbers indicate
the best retrieval performance.

Method Accuracy (%)

Depth Maps [93] 87.80
ECC [94] 83.20
PANORAMA-NN [95] 90.70
Beam Search [96] 81.26
Geometry Image [97] 83.90
3D-GAN [98] 83.30
DeepPano [99] 77.63
3DShapeNets [100] 77.00
DeepSNF 93.70

Figure 4.6 displays the confusion matrix for the ModelNet10 predictions on the test data. This

10 × 10 matrix shows the results for predictions made by the model. Its rows correspond to the

actual (true) class of the data (i.e. the labels in the data), while its columns correspond to the

predicted class (i.e. predictions made by the DeepSNF model). The value of each element in the

confusion matrix is the number of predictions made with the class corresponding to the column for

instances with the correct value as represented by the row. The diagonal elements show the number

of correct classifications made for each class, and the off-diagonal elements show the errors made.

77

Accuracy %

Depth Maps

ECC

PANORAMA-NN

Beam Search

Geometry Image

3D-GAN

DeepPano

3DShapeNets

DeepSNF

87.80

83.20

90.70

81.26

83.90

83.30

77.63

77.00

93.70

Figure 4.5: Classification accuracy rates for DeepSNF and baseline methods on the ModelNet10
dataset.

The strong performance strongly suggests that DeepSNF captures the discriminative features of

the shapes very well.

Feature visualization: The high-level features learned by DeepSNF can be visualized using the

t-Distributed Stochastic Neighbor Embedding (t-SNE) [89], which is a dimensionality reduction

technique that is particularly well-suited for embedding high-dimensional data into a space of two

or three dimensions. Figure 4.7 displays the t-SNE embeddings of the shapes in the ModelNet10

dataset using the vectorized geodesic SNF matrix (top) and the 100-dimensional DeepSNF features

(bottom) generated by our DeepSNF approach. As can be seen, the two-dimensional embeddings

corresponding to DeepSNF are more separable than the ones corresponding to geodesic SNF. With

geodesic SNF features, the points are not discriminated very well, while with DeepSNF features,

the points are discriminated much better. In other words, DeepSNF learns more discriminative

features for 3D shape classification tasks, indicating the superior performance of deep features

over shallow ones. Moreover, Figure 4.7 shows that the DeepSNF approach is exploratory in

nature in the sense that it can discover patterns and meaningful sub-groups in a dataset.

ModelNet40 Dataset

The ModelNet40 benchmark consists of 40 popular object categories [100]. The 3D models are

cleaned and the orientation is manually aligned. The dataset consists of 12311 models divided

78

ba
th

tu
b

be
d

ch
ai

r

de
sk

dr
es

se
r

m
on

ito
r

ni
gh

t_
st

an
d

so
fa

ta
bl

e

to
ile

t

bathtub

bed

chair

desk

dresser

monitor

night_stand

sofa

table

toilet

97 1 1 1

1 47 1 1

1 97 1 1

2 1 95 2

2 2 81 1

2 82 2

3 1 95 1

1 1 1 2 81

1 2 3 1 92 1

1 99

Figure 4.6: Confusion matrix for DeepSNF on the ModelNet10 dataset.

between training set of 9843 shapes and a test set of 2468 shapes.

Table 4.2 shows the classification accuracy rates for all methods on the ModelNet40 dataset.

Similar to the previous experiment, a geodesic SNF matrix of size 29× 29 is constructed by fusing

the geodesic moment features using the SNF algorithm. Then, the geodesic SNF matrix is fed into

GraphCNN, and the classification accuracy rate is computed. As can be seen, compared to the

baseline methods, our DeepSNF approach achieves the best performance with an accuracy rate of

91.67%. The highest accuracy rate for baseline methods is 91.50%, which is achieved by Depth

Maps. Our approach outperforms Depth Maps by 0.17%.

Figure 4.8 displays a bar plot of the accuracy results for all baseline methods and our proposed

DeepSNF method. As can be seen, DeepSNF achieves the best result of 91.67%.

Figure 4.9 displays the confusion matrix for the ModelNet40 predictions on the test data. This

79

class
0
1
2
3
4
5
6
7
8
9

class
0
1
2
3
4
5
6
7
8
9

Figure 4.7: Two-dimensional t-SNE feature visualization of GeodesicSNF features (top) and Deep-
SNF features (bottom) on the ModelNet10 dataset.

40× 40 confusion matrix shows the results for predictions made by the model. Its rows correspond

to the actual (true) class of the data (i.e. the labels in the data), while its columns correspond to the

predicted class (i.e. predictions made by the model). The value of each element in the confusion

matrix is the number of predictions made with the class corresponding to the column for instances

with the correct value as represented by the row. The diagonal elements show the number of

correct classifications made for each class, and the off-diagonal elements show the errors made.

80

Table 4.2: Performance comparison results on the ModelNet 40 dataset. Boldface numbers indicate
the best retrieval performance.

Method Accuracy (%)

Depth Maps [93] 91.50
ECC [94] 90.00
PANORAMA-NN [95] 91.10
Beam Search [96] 88.00
Geometry Image [97] 88.40
3D-GAN [98] 91.00
DeepPano [99] 85.45
3DShapeNets [100] 83.50
DeepSNF 91.67

Accuracy %

Depth Maps

ECC

PANORAMA-NN

Beam Search

Geometry Image

3D-GAN

DeepPano

3DShapeNets

DeepSNF

91.50

90.00

91.10

88.00

88.40

91.00

85.45

83.50

91.67

Figure 4.8: Classification accuracy rates for DeepSNF and baseline methods on the ModelNet40
dataset.

The strong performance strongly suggests that DeepSNF captures the discriminative features of

the shapes very well.

Feature visualization: The high-level features learned by our proposed DeepSNF can be visu-

alized using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [89], which is a dimen-

sionality reduction technique that is particularly well-suited for embedding high-dimensional data

into a space of two or three dimensions. Figure 3.8 displays the t-SNE embeddings of the shapes

81

ai
rp

la
ne

ba
th

tu
b

be
d

be
nc

h
bo

ok
sh

el
f

bo
ttl

e
bo

w
l

ca
r

ch
ai

r
co

ne
cu

p
cu

rta
in

de
sk

do
or

dr
es

se
r

flo
w

er
 p

ot
gl

as
s

bo
x

gu
ita

r
ke

yb
oa

rd
la

m
p

la
pt

op
m

an
te

l
m

on
ito

r
ni

gh
t s

ta
nd

pe
rs

on
pi

an
o

pl
an

t
ra

di
o

ra
ng

e
ho

od
si

nk
so

fa
st

ai
rs

st
oo

l
ta

bl
e

te
nt

to
ile

t
tv

 s
ta

nd
va

se
w

ar
dr

ob
e

xb
ox

airplane
bathtub

bed
bench

bookshelf
bottle
bowl

car
chair
cone
cup

curtain
desk
door

dresser
flower pot
glass box

guitar
keyboard

lamp
laptop
mantel

monitor
night stand

person
piano
plant
radio

range hood
sink
sofa

stairs
stool
table
tent

toilet
tv stand

vase
wardrobe

xbox

17 1 2
100

42 1 1 1 1 1 3
90 1 1 1 1 2 1 2 1

18 1 1
89 1 2 1 2 3 2

90 2 4 1 3
17 3

96 1 2 1
96 1 3

17 1 1 1
14 1 5

1 14 1 1 1 2
1 1 70 1 2 1 1 2 3 4

18 1 1
81 1 3 1

14 1 1 1 3
98 1 1

99 1
19 1

18 1 1
1 17 1 1
1 98 1
2 1 90 1 3 3
1 1 2 79 1 1 1

1 19
3 1 1 1 89 2 1 2
3 2 1 1 89 3 1
2 1 16 1
1 1 96 2

1 18 1
2 1 1 2 89 1 1 3

1 1 17 1
20

1 1 2 1 95
1 16 2 1
1 94 5

2 1 1 1 4 1 1 84 5
1 3 1 1 1 1 1 1 5 1 84

1 1 1 1 16

Figure 4.9: Confusion matrix for DeepSNF on the ModelNet40 dataset.

in the ModelNet40 dataset using the 29 × 29 matrix of GeodesicSNF features (top) and the 100-

dimensional DeepSNF features (bottom) generated by our DeepSNF approach. As can be seen,

the two-dimensional embeddings corresponding to DeepSNF are more separable than the ones

corresponding to GeodesicSNF feature matrix. With GeodesicSNF features, the points are not

discriminated very well, while with DeepSNF features, the points are discriminated much better.

In other words, DeepSNF learns more discriminative features for 3D shape classification tasks,

indicating the superior performance of deep features over shallow ones. Moreover, Figure 4.10

82

shows that the DeepSNF approach is exploratory in nature in the sense it can discover patterns and

meaningful sub-groups in a dataset.

Figure 4.10: Two-dimensional t-SNE feature visualization of GeodesicSNF features (top) and
DeepSNF features (bottom) on the ModelNet40 dataset.

83

4.3.2 Architecture and Hyper-Parameters

We tested the performance of the proposed DeepSNF approach to 3D shape classification using

different values for the number of geodesic moments extracted from each 3D model. Our exper-

iments show that a number of geodesic moments in the range of 20 to 30 is usually sufficient

to capture the discriminative features from 3D shapes for better classification accuracy. We also

used LeNet [103] for simplicity purposes of the CNN architecture as the intent was to explore the

powerful discriminative power of fused geodesic moments in conjunction with GraphCNN.

4.4 Conclusion

In this chapter, we introduced an efficient geometric approach to 3D shape classification using

fused geodesic moments. Using similarity network fusion and a graph convolutional neural net-

work, the proposed approach leverages fused geodesic moments in order to learn deep features,

which are shown to offer a higher discrimination power for 3D shape classification. We showed

through extensive experiments on two 3D shape benchmarks that our deep learning based approach

substantially outperforms existing methods in terms of classification accuracy rates.

84

C
H

A
P

T
E

R

5
Conclusions and Future Work

This thesis has presented an efficient geometric approach to 3D shape classification and retrieval

using geodesic moments and stacked sparse autoencoders. We also presented an efficient geomet-

ric approach to 3D shape classification using fused geodesic moments and a graph-based CNN

architectural neural network. We have demonstrated through extensive experiments the superior

performance of the proposed methods in comparison with existing techniques in the literature.

In Section 5.1, the contributions made in each of the previous chapters and the concluding results

drawn from the associated research work are presented. The limitations of the proposed approaches

are discussed in Section 5.2. Suggestions for future research directions related to this thesis are

also provided in Section 5.3.

5.1 Contributions of the Thesis

5.1.1 Deep Learning with Geodesic Moments for 3D Shape Classification

In Chapter 2, we presented a discriminative classifier using deep learning with geodesic moments.

The proposed approach uses stacked sparse autoencoders with two hidden layers to learn high-

level features, which were shown to offer a higher discrimination power for 3D shape classifica-

tion. We showed through extensive experiments on several 3D shape benchmarks that our deep

learning-based approach substantially outperforms existing methods not only in terms of classifi-

cation accuracy rates, but also in terms of standard error rates.

85

5.1.2 A Global Geometric Framework for 3D Shape Retrieval using Deep Learning

In Chapter 3, we introduced an efficient geometric approach to 3D shape retrieval using geodesic

moments and stacked sparse autoencoders. The proposed approach learns deep shape descriptors

in an unsupervised way by leveraging the hierarchical representations in a discriminatively trained

deep learning model. The two-dimensional visualization of shape representations demonstrates

the discriminative power of deep features compared to the shallow ones. It is important to point

out that the retrieval performance of DeepGM yields consistent retrieval results across all datasets

used for experimentation, while baselines perform less coherently from one dataset to another.

This consistent performance is largely attributed to the fact that features learned via deep learning

are transferable to other learning tasks, and even to other modalities and datasets.

5.1.3 Classification of 3D Shapes using Deep Similarity Network Fusion

In Chapter 4, we introduced an efficient geometric approach to 3D shape classification using fused

geodesic moments and a graph-based CNN architectural neural network. The proposed approach

uses fused geodesic moments, which were shown to offer a higher discrimination power for 3D

shape classification. It also uses the power of a graph-based CNN neural network to further ex-

tract higher-level features offering a powerful discriminative classifier for 3D models. We showed

through extensive experiments on two popular 3D shape benchmarks that our deep learning-based

approach substantially outperforms existing methods in terms of classification accuracy rates.

5.2 Limitations

A key advantage of the proposed deep geometric frameworks, namely DeepGM and DeepSNF, for

3D shape recognition described in this thesis is their ability to exploit discriminative information

by learning several deep hierarchical nonlinear mappings, resulting in improved classification and

retrieval performance. While deep learning models encode features more efficiently than shallow

models, they are, however, prone to over-fitting due largely to the added layers of abstraction. In

addition, the features learned by deep learning methods are in most situations not easily inter-

pretable, as is the case with most neural networks. This lack of insight into the features may be

considered one of the main disadvantages that the proposed deep shape descriptors have in com-

parison with traditional methods. Another limitation of the deep geometric methods we presented

in Chapters 2 and 3 is the computational resource necessary for optimizing the model, although

the use of graphics processing units (GPUs) can significantly mitigate this obstacle. Furthermore,

the geodesic distance is sensitive to topological changes (e.g. 3D models with missing parts). To

86

overcome this issue, we used methods that combine or fuse the geodesic moments from all vertices

of the model.

5.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

5.3.1 Variational Autoencoders for 3D Shape Recognition

We plan to explore the use of Variational Autoencoders (VAEs) [104] in our DeepGM framework

for 3D model shape analysis in place of the traditional autoencoder. Over the past few years,

VAEs have emerged as one of the most popular approaches to unsupervised learning. Variational

autoencoder models inherit the traditional autoencoder architecture, but make strong assumptions

concerning the distribution of latent variables. VAEs are appealing because they are built on top

of neural networks and can be trained with stochastic gradient descent. They use a variational

approach for latent representation learning, which results in an additional loss component and

specific training algorithm called Stochastic Gradient Variational Bayes (SGVB) [104]. VAEs

have shown promise in generating many kinds of complicated data, including handwritten digits,

faces, images, scenes, and segmentation [105–109].

5.3.2 Generative Adversarial Networks for 3D Shape Recognition

We also plan to investigate other deep neural network architectures in an effort to further improve

the quality of shape analysis such as Generative Adversarial Networks (GANs). CNNs have long

been used as supervised learning methods, whereas relatively little work has been done with CNNs

as unsupervised learning methods. A GAN is a machine learning method that uses deep learn-

ing techniques in an unsupervised fashion, and is composed of two competing neural networks:

one discriminative and one generative [110]. GANs are often used to generate images that look

very similar to a given set of images. Deep convolutional generative adversarial networks (DC-

GANs) [111] is a class of CNNs with certain architectural constraints placed on the network and

have demonstrated strong unsupervised learning capabilities. We would like to explore the possi-

bility of using the described geometrical framework in this thesis along with a deep convolutional

generative adversarial networks.

87

5.3.3 Pre-Trained Models for 3D Shape Recognition

In the previous chapters, we presented discriminative classifiers using deep learning with geodesic

moments. Going forward, we plan to explore the use of pre-trained deep learning models as part of

our deep geometric approaches. Although we have seen a dramatic increase in the availability of

3D shape data, 2D images are still more prolific and huge datasets of 2D images are more readily

available. This prevalence can best be seen when it comes to pre-trained deep models, where all of

them have been trained using images as input. These learned models are usually trained using an

enormous quantity of images in order to capture as many different patterns as possible that exist

within them. Pre-trained models can be used as feature extractors for other data without having to

re-run the training, which usually takes a substantial amount of time. We would like to incorporate

the power of these re-trained models in our proposed frameworks.

5.3.4 Improvements of Deep Learning Models and Applications

Deep learning is part of a broader family of machine learning methods based on learning repre-

sentations of data, where an observation such as a 3D model can be represented by a vector of

geodesic moments. Some representations are better than others at learning a simplified, yet still

informative vector. One of the allures of deep learning is to replace handcrafted features with ef-

ficient algorithms for unsupervised feature learning and feature extraction. Research in this area

attempts to make better representations and create models to learn these representations from large

unlabeled data.

Various deep learning architectures such as convolutional neural networks, deep belief networks

and recurrent neural networks have been successfully applied to a variety of fields, including com-

puter vision, speech recognition, natural language processing, and self-driving cars, where they

have been shown to produce state-of-the-art results on various tasks. He et al. [112] proposed a

modified deep convolutional neural network by introducing a new pooling strategy called spatial

pyramid pooling to be able to choose the size of the input image. Diffusion-convolutional neural

network (DCNN) [113] uses a diffusion process rather than the standard convolution operation by

scanning a square of parameters across the input. DCNN has been shown to improve the accuracy,

flexibility, and the speed. Replacing the deep models used in this thesis by newer models can be

another future research plan in order to improve the performance of 3D shape retrieval and classifi-

cation. We plan to apply the proposed approaches to other 3D shape analysis problems using novel

deep learning techniques. In addition to exploring pre-trained deep learning models on larger 3D

shape benchmarks, we also plan to investigate other deep neural network architectures in an effort

to further improve the classification and retrieval results. Also, it would be interesting to apply the

88

aforementioned deep learning methods to other types of data, such as point clouds.

5.3.5 Geodesic 3D Shape Clustering

Unlike classification in which objects are labeled with predefined classes, clustering is different in

the sense that labels or the class the model belongs to is not known in advance. The purpose of 3D

shape clustering is to organize a dataset of 3D shapes into homogeneous subgroups or clusters in

an unsupervised manner using some sort of similarity or distance metric. The formed clusters are

derived in such a manner that shapes in the same cluster are more similar than shapes in other clus-

ters. The proposed deep shape descriptors in this thesis can also be used in other 3D shape analysis

applications, such as 3D shape clustering using, for instance, the K-means [114] algorithm, which

is arguably one of the simplest and most popular clustering methods in the literature [115,116]. In

future work, we plan to apply clustering algorithms on the DeepGM and DeepSNF shape descrip-

tors in a bid to assess their performance on the 3D shape clustering problem.

89

References

[1] A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,

S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet: An information-rich 3D model repos-

itory,” arXiv:1512.03012, 2015.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,

vol. 61, pp. 85–117, 2015.

[3] K. Noda, Y. Yamaguchi, K. Nakadai, H. Okuno, and T. Ogata, “Audio-visual speech recog-

nition using deep learning,” Applied Intelligence, vol. 42, no. 4, pp. 722–737, 2015.

[4] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine Learn-

ing, vol. 2, no. 1, pp. 1–127, 2009.

[5] M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep learn-

ing: going beyond Euclidean data,” arXiv:1611.08097, 2016.

[6] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural

networks for 3D shape recognition,” in Proc. ICCV, pp. 945–953, 2015.

[7] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep

representation for volumetric shapes,” in Proc. CVPR, pp. 1912–1920, 2015.

[8] Z. Zhu, X. Wang, S. Bai, C. Yao, and X. Bai, “Deep learning representation using autoen-

coder for 3D shape retrieval,” Neurocomputing, 2016.

[9] C. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas, “Volumetric and multi-view CNNs

for object classification on 3D data,” in Proc. CVPR, 2016.

[10] S. Bu, Z. Liu, J. Han, J. Wu, and R. Ji, “Learning high-level feature by deep belief networks

for 3-D model retrieval and recognition,” IEEE Trans. Multimedia, vol. 24, no. 16, pp. 2154–

2167, 2014.

90

[11] S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. J. Latecki, “Gift: A real-time and scalable 3d

shape search engine,” in Proc. CVPR, pp. 5023–5032, 2016.

[12] A. Brock, T. Lim, J. Ritchie, and N. Weston, “Generative and discriminative voxel modeling

with convolutional neural networks,” arXiv:1608.04236, 2016.

[13] N. Sedaghat, M. Zolfaghari, and T. Broxn, “Orientation-boosted voxel nets for 3d object

recognition,” arXiv:1604.03351, 2016.

[14] S. Rosenberg, The Laplacian on a Riemannian Manifold. Cambridge University Press,

1997.

[15] A. Bronstein, M. Bronstein, and R. Kimmel, Numerical Geometry of Non-rigid Shapes.

Springer, 2008.

[16] H. Krim and A. Ben Hamza, Geometric methods in signal and image analysis. Cambridge

University Press, 2015.

[17] J. Xie, G. Dai, and Y. Fang, “Deep multi-metric learning for shape-based 3D model re-

trieval,” IEEE Trans. Multimedia, 2017.

[18] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep learning advances

in computer vision with 3D data: A survey,” ACM Computing Surveys, 2017.

[19] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for visual area v2,” in

Proc. NIPS 20, MIT Press, 2008.

[20] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, pp. 1–19, 2011.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc.

CVPR, 2016.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Proc. NIPS, pp. 1097–1105, 2012.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proc. CVPR, pp. 1–9, 2015.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” CoRR, vol. abs/1409.1556, 2014.

91

[25] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

“Handwritten digit recognition with a back-propagation network,” in Proc. NIPS, 1990.

[26] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,

“Backpropagation applied to handwritten zip code recognition,” Neural Computation, vol. 1,

no. 4, pp. 541–551, 1989.

[27] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards ai,” Large-scale kernel ma-

chines, MIT Press, vol. 34, no. 5, 2007.

[28] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep

representation for volumetric shapes,” in Proc. CVPR, pp. 1912–1920, 2015.

[29] I. Kokkinos, M. Bronstein, R. Litman, and A. Bronstein, “Intrinsic shape context descriptors

for deformable shapes,” in Proc. CVPR, pp. 159–166, 2012.

[30] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in the details:

Delving deep into convolutional nets,” Proc. BMVC, 2014.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in Proc. CVPR 2009, pp. 248–255, 2009.

[32] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoun, “On visual similarity based 3D model

retrieval,” Computer Graphics Forum, vol. 22, no. 3, pp. 223–232, 2003.

[33] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation invariant spherical harmonic

representation of 3D shape descriptors,” in Proc. Eurographics/ACM SIGGRAPH Symp.

Geometry Processing, pp. 156–164, 2003.

[34] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, “Multi-view convolutional neural

networks for 3D shape recognition,” in Proc. ICCV, 2015.

[35] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” Neural

Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[36] V. Nair and G. E. Hinton, “3-D object recognition with deep belief nets,” in Proc. NIPS 22,

2009.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

92

[38] D. Pickup, X. Sun, P. Rosin, R. Martin, Z. Cheng, Z. Lian, M. Aono, A. Ben Hamza,

A. Bronstein, M. Bronstein, S. Bu, U. Castellani, S. Cheng, V. Garro, A. Giachetti, A. Godil,

J. Han, H. Johan, L. Lai, B. Li, C. Li, H. Li, R. Litman, X. Liu, Z. Liu, Y. Lu, A. Tatsuma,

and J. Ye, “SHREC’14 track: Shape retrieval of non-rigid 3D human models,” in Proc.

Eurographics Workshop on 3D Object Retrieval, pp. 1–10, 2014.

[39] R. Litman, A. Bronstein, M. Bronstein, and U. Castellani, “Supervised learning of bag-of-

features shape descriptors using sparse coding,” Computer Graphics Forum, vol. 33, no. 5,

pp. 127–136, 2014.

[40] S. Biasotti, A. Cerri, M. Abdelrahman, M. Aono, A. Ben Hamza, M. El-Melegy, A. Farag,

V. Garro, A. Giachetti, D. Giorgi, A. Godil, C. Li, Y.-J. Liu, H. Martono, C. Sanada, A. Tat-

suma, S. Velasco-Forero, and C.-X. Xu, “SHREC’14 track: Retrieval and classification on

textured 3D models,” in Proc. Eurographics Workshop on 3D Object Retrieval, pp. 111–120,

2014.

[41] J. Z. Z. Lian, S. Choi, H. ElNaghy, J. El-Sana, T. Furuya, A. Giachetti, R. G. L. Isaia,

L. Lai, C. Li, H. Li, F. Limberger, R. Martin, R. Nakanishi, A. N. L. Nonato, R. Ohbuchi,

K. Pevzner, D. Pickup, P. Rosin, A. Sharf, L. Sun, X. Sun, S. Tari, G. Unal, and R. Wilson,

“SHREC’15 track: Non-rigid 3D shape retrieval,” in Proc. Eurographics Workshop on 3D

Object Retrieval, pp. 1–14, 2015.

[42] M. Savva, F. Yu, H. Su, M. Aono, B. Chen, D. Cohen-Or, W. Deng, H. Su, S. Bai, X. Bai,

J. H. N. Fish, E. Kalogerakis, E. Learned-Miller, Y. Li, M. Liao, S. Maji, Y. Wang, N. Zhang,

and Z. Zhou, “SHREC’16 track: Large-scale 3D shape retrieval from ShapeNet Core55,” in

Proc. Eurographics Workshop on 3D Object Retrieval, 2016.

[43] R. Rustamov, “Laplace-Beltrami eigenfunctions for deformation invariant shape represen-

tation,” in Proc. Symp. Geometry Processing, pp. 225–233, 2007.

[44] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative multi-scale

signature based on heat diffusion,” Computer Graphics Forum, vol. 28, no. 5, pp. 1383–

1392, 2009.

[45] M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for non-rigid shape

recognition,” in Proc. CVPR, pp. 1704–1711, 2010.

93

[46] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature: A quantum me-

chanical approach to shape analysis,” in Proc. Computational Methods for the Innovative

Design of Electrical Devices, pp. 1626–1633, 2011.

[47] C. Li and A. Ben Hamza, “A multiresolution descriptor for deformable 3D shape retrieval,”

The Visual Computer, vol. 29, pp. 513–524, 2013.

[48] F. Limberger and R. Wilson, “Feature encoding of spectral signatures for 3D non-rigid shape

retrieval,” in Proc. BMVC, 2015.

[49] J. Ye and Y. Yu, “A fast modal space transform for robust nonrigid shape retrieval,” The

Visual Computer, vol. 32, no. 5, pp. 553–568, 2015.

[50] M. Meyer, M. Desbrun, P. Schröder, and A. Barr, “Discrete differential-geometry operators

for triangulated 2-manifolds,” Visualization and mathematics III, vol. 3, no. 7, pp. 35–57,

2003.

[51] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distributions,” ACM Trans.

Graphics, vol. 21, no. 4, pp. 807–832, 2002.

[52] S. Chaudhuri and V. Koltun, “Data-driven suggestions for creativity support in 3d model-

ing,” ACM Trans. Graphics, vol. 29, no. 6, p. 183, 2010.

[53] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov, “Shape google: Geo-

metric words and expressions for invariant shape retrieval,” ACM Trans. Graphics, vol. 30,

no. 1, p. 1, 2011.

[54] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool, “Hough transform and 3D

surf for robust three dimensional classification,” in Proc. ECCV, pp. 589–602, 2010.

[55] H. Murase and S. K. Nayar, “Visual learning and recognition of 3-d objects from appear-

ance,” International Journal of Computer Vision, vol. 14, no. 1, pp. 5–24, 1995.

[56] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker, “View-based 3D

object recognition using shock graphs,” in Proc. ICPR, vol. 3, pp. 24–28, 2002.

[57] C. M. Cyr and B. B. Kimia, “A similarity-based aspect-graph approach to 3D object recog-

nition,” International Journal of Computer Vision, vol. 57, no. 1, pp. 5–22, 2004.

[58] J. J. Koenderink, “The structure of images,” Biological cybernetics, vol. 50, no. 5, pp. 363–

370, 1984.

94

[59] R. G. Schneider and T. Tuytelaars, “Sketch classification and classification-driven analysis

using fisher vectors,” ACM Trans. Graphics, vol. 33, no. 6, p. 174, 2014.

[60] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification with the fisher

vector: Theory and practice,” International Journal of Computer Vision, vol. 105, no. 3,

pp. 222–245, 2013.

[61] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf:

A deep convolutional activation feature for generic visual recognition.,” in Proc. ICML,

pp. 647–655, 2014.

[62] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable library of computer vision

algorithms,” in Proc. International Conference on Multimedia, pp. 1469–1472, 2010.

[63] B. T. Phong, “Illumination for computer generated pictures,” Communications of the ACM,

vol. 18, no. 6, pp. 311–317, 1975.

[64] L. Luciano and A. Ben Hamza, “Deep learning with geodesic moments for 3D shape clas-

sification,” Pattern Recognition Letters, vol. 105, pp. 182–190, 2018.

[65] L. Luciano and A. Ben Hamza, “Geodesic-based 3d shape retrieval using sparse autoen-

coders,” in Proc. 11th Euro-graphics Workshop on 3D Object Retrieval, 2018.

[66] L. Luciano and A. Ben Hamza, “A global geometric framework for 3D shape retrieval using

deep learning,” Submitted to Computers & Graphics (special issue), 2018.

[67] L. Luciano and A. Ben Hamza, “Deep similarity network fusion for 3D shape classification,”

Submitted to Information Fusion, 2018.

[68] H. Ghodrati, L. Luciano, and A. Ben Hamza, “Convolutional shape-aware representation

for 3D object classification,” Neural Processing Letters, 2018.

[69] W. Shen, Y. Wang, X. Bai, H. Wang, and L. Latecki, “Shape clustering: Common structure

discovery,” Pattern Recognition, vol. 46, no. 2, pp. 539–550, 2013.

[70] C. Li, A. Stevens, C. Chen, Y. Pu, Z. Gan, and L. Carin, “Learning weight uncertainty with

stochastic gradient MCMC for shape classification,” in Proc. CVPR, 2016.

[71] D. Pickup, X. Sun, P. Rosin, R. Martin, Z. Cheng, Z. Lian, M. Aono, A. Ben Hamza,

A. Bronstein, M. Bronstein, S. Bu, U. Castellani, S. Cheng, V. Garro, A. Giachetti, A. Godil,

L. Isaia, J. Han, H. Johan, L. Lai, B. Li, C. Li, H. Li, R. Litman, X. Liu, Z. Liu, Y. Lu,

95

L. Sun, G. Tam, A. Tatsuma, and J. Ye, “Shape retrieval of non-rigid 3d human models,”

International Journal of Computer Vision, vol. 120, no. 2, pp. 169–193, 2016.

[72] M. Masoumi and A. Ben Hamza, “A spectral graph wavelet approach for nonrigid 3D shape

retrieval,” Pattern Recognition Letters, vol. 83, pp. 339–348, 2016.

[73] M. Reuter, F. Wolter, and N. Peinecke, “Laplace-Beltrami spectra as ‘Shape-DNA’ of sur-

faces and solids,” Computer-Aided Design, vol. 38, no. 4, pp. 342–366, 2006.

[74] A. Chaudhari, R. Leahy, B. Wise, N. Lane, R. Badawi, and A. Joshi, “Global point signature

for shape analysis of carpal bones,” Physics in Medicine and Biology, vol. 59, pp. 961–973,

2014.

[75] Z. Gao, Z. Yu, and X. Pang, “A compact shape descriptor for triangular surface meshes,”

Computer-Aided Design, vol. 53, pp. 62–69, 2014.

[76] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué,

H. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets,

P. Suetens, H. Tabia, and D. Vandermeulen, “A comparison of methods for non-rigid 3D

shape retrieval,” Pattern Recognition, vol. 46, no. 1, pp. 449–461, 2013.

[77] C. Li and A. Ben Hamza, “Spatially aggregating spectral descriptors for nonrigid 3D shape

retrieval: A comparative survey,” Multimedia Systems, vol. 20, no. 3, pp. 253–281, 2014.

[78] D. Aouada and H. Krim, “Squigraphs for fine and compact modeling of 3D shapes,” IEEE

Trans. Image Processing, vol. 19, no. 2, pp. 306–321, 2010.

[79] O. Calin and D.-C. Chang, Gemetric Mechanics on Riemannian Manifolds: Applications to

Partial Differential Equations. Birkhäuser, 2005.

[80] Z. Lian, A. Godil, T. Fabry, T. Furuya, J. Hermans, R. Ohbuchi, C. Shu, D. Smeets,

P. Suetens, D. Vandermeulen, and S. Wuhrer, “SHREC’10 track: Non-rigid 3D shape re-

trieval,” in Proc. Eurographics/ACM SIGGRAPH Sympo. 3D Object Retrieval, pp. 101–108,

2010.

[81] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué,

H. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets,

P. Suetens, H. Tabia, and D. Vandermeulen, “SHREC’11 track: Shape retrieval on non-

rigid 3D watertight meshes,” in Proc. Eurographics/ACM SIGGRAPH Symp. 3D Object

Retrieval, pp. 79–88, 2011.

96

[82] M. Khabou, L. Hermi, and M. Rhouma, “Shape recognition using eigenvalues of the Dirich-

let Laplacian,” Pattern Recognition, vol. 40, pp. 141–153, 2007.

[83] C. Li and A. Ben Hamza, “Intrinsic spatial pyramid matching for deformable 3d shape

retrieval,” International Journal of Multimedia Information Retrieval, vol. 2, no. 4, pp. 261–

271, 2013.

[84] Y. Chen, Y.-K. Lai, Z.-Q. Cheng, R. R. Martin, and S.-Y. Jin, “A data-driven approach to

efficient character articulation,” in Proc. Computer-Aided Design and Computer Graphics,

pp. 32–37, 2013.

[85] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton shape benchmark,” in

Proc. SMI, pp. 167–178, 2004.

[86] A. Giachetti and C. Lovato, “Radial symmetry detection and shape characterization with the

multiscale area projection transform,” Computer Graphics Forum, vol. 31, no. 5, pp. 1669–

1678, 2012.

[87] D. Pickup, X. Sun, P. Rosin, and R. Martin, “Geometry and context for semantic correspon-

dences and functionality recognition in manmade 3D shapes,” Pattern Recognition, vol. 48,

no. 8, pp. 2500–2512, 2015.

[88] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson, “Retrieving

articulated 3-d models using medial surfaces,” Machine vision and applications, vol. 19,

no. 4, pp. 261–275, 2008.

[89] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine

Learning Research, vol. 9, pp. 2579–2605, 2008.

[90] Y. Lipman, R. Rustamov, and T. Funkhouser, “Biharmonic distance,” ACM Trans. ics,

vol. 29, no. 3, pp. 1–11, 2010.

[91] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolu-

tional neural networks,” in NIPS, pp. 1097–1105, 2012.

[92] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for

autonomous driving,” in IEEE CVPR, vol. 1, p. 3, 2017.

[93] P. Zanuttigh and L. Minto, “Deep learning for 3d shape classification from multiple depth

maps,” in Proceedings of IEEE International Conference on Image Processing (ICIP), 2017.

97

[94] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convolutional

neural networks on graphs,” in Proc. CVPR, 2017.

[95] K. Sfikas, T. Theoharis, and I. Pratikakis, “Exploiting the panorama representation for con-

volutional neural network classification and retrieval,” in Eurographics Workshop on 3D

Object Retrieval, 2017.

[96] X. Xu and S. Todorovic, “Beam search for learning a deep convolutional neural network

of 3d shapes,” in Pattern Recognition (ICPR), 2016 23rd International Conference on,

pp. 3506–3511, IEEE, 2016.

[97] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3d shape surfaces using geometry images,”

in European Conference on Computer Vision, pp. 223–240, 2016.

[98] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a probabilistic latent

space of object shapes via 3d generative-adversarial modeling,” in Advances in Neural In-

formation Processing Systems, pp. 82–90, 2016.

[99] B. Shi, S. Bai, Z. Zhou, and X. Bai, “Deeppano: Deep panoramic representation for 3-d

shape recognition,” IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2339–2343, 2015.

[100] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep

representation for volumetric shapes,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 1912–1920, 2015.

[101] B. Wang, A. M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains, and

A. Goldenberg, “Similarity network fusion for aggregating data types on a genomic scale,”

Nature methods, vol. 11, no. 3, p. 333, 2014.

[102] Y. Hechtlinger, P. Chakravarti, and J. Qin, “A generalization of convolutional neural net-

works to graph-structured data,” arXiv preprint arXiv:1704.08165, 2017.

[103] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[104] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[105] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,”

arXiv preprint arXiv:1511.05644, 2015.

98

[106] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond

pixels using a learned similarity metric,” arXiv preprint arXiv:1512.09300, 2015.

[107] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “Draw: A recurrent

neural network for image generation,” arXiv preprint arXiv:1502.04623, 2015.

[108] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, “Im-

proved variational inference with inverse autoregressive flow,” in NIPS, pp. 4743–4751,

2016.

[109] X. Yan, J. Yang, K. Sohn, and H. Lee, “Attribute2image: Conditional image generation from

visual attributes,” in Proc. ECCV, pp. 776–791, Springer, 2016.

[110] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing

systems, pp. 2672–2680, 2014.

[111] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[112] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional

networks for visual recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 37, no. 9, pp. 1904–1916, 2015.

[113] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Proc. NIPS, 2016.

[114] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters, vol. 31,

no. 8, pp. 651–666, 2010.

[115] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recog-

nition and clustering,” in Proc. CVPR, pp. 815–823, 2015.

[116] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science,

vol. 344, no. 6191, pp. 1492–1496, 2014.

99

	List of Tables
	List of Figures
	Introduction
	Framework and Motivation
	Problem Statement
	Shape Classification
	Shape Retrieval

	Objectives
	Literature Review
	Deep Learning Models
	Restricted Boltzmann Machines
	Deep Belief Networks
	Autoencoders
	Stacked AutoEncoders
	Convolutional neural networks

	Shape Descriptors
	Spectral Shape Descriptors
	View-based Shape Descriptors
	Recognition with Multi-view Representation
	Convolutional Neural Networks and 3D Shape Analysis
	Multi-view CNN Descriptor
	Generating Multiple Views

	Performance Evaluation Measures
	Overview and Contributions

	Deep Learning with Geodesic Moments for 3D Shape Classification
	Introduction
	Background
	Laplace-Beltrami Operator
	Stacked Sparse Autoencoders

	Method
	Geodesic Moments
	Discrete Geodesic Moments
	Proposed Algorithm

	Experiments
	SHREC-2010 dataset
	SHREC-2011 dataset
	SHREC-2015 dataset
	Parameter sensitivity

	Conclusion

	Geodesic Shape Retrieval using Sparse Autoencoders
	Introduction
	Method
	Geodesic Moments
	Proposed Algorithm

	Experiments
	Results
	Discussion

	Conclusion

	Deep Similarity Network Fusion for 3D Shape Classification
	Introduction
	Method
	Discrete Geodesic Moments
	Similarity Network Fusion
	Graph Convolutional Neural Network
	Proposed Algorithm

	Experiments
	Results
	Architecture and Hyper-Parameters

	Conclusion

	Conclusions and Future Work
	Contributions of the Thesis
	Deep Learning with Geodesic Moments for 3D Shape Classification
	A Global Geometric Framework for 3D Shape Retrieval using Deep Learning
	Classification of 3D Shapes using Deep Similarity Network Fusion

	Limitations
	Future Work
	Variational Autoencoders for 3D Shape Recognition
	Generative Adversarial Networks for 3D Shape Recognition
	Pre-Trained Models for 3D Shape Recognition
	Improvements of Deep Learning Models and Applications
	Geodesic 3D Shape Clustering

	References

