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Abstract 

 
Enterprise, project, and workforce selection models for Industry 4.0. 

Rupinder Kaur 

 

 
The German federal government first coined industry 4.0 in 2011. Industry 4.0 involves the use of 

advanced technologies such as cyber-physical system, internet of things, cloud computing, and 

cognitive computing with the aim to revolutionize the current manufacturing practices. 

Automation and exchange of big data and key characteristics of Industry 4.0. Due to its numerous 

benefits, industries are readily investing in Industry 4.0, but this implementation is an uphill 

struggle. 

In this thesis, we address three key problems related to Industry 4.0 implementation namely 

Enterprise selection, Project selection and Workforce selection. The first problem involves 

identification of enterprises suitable for Industry 4.0 implementation. The second problem involves 

prioritization and selection of Industry 4.0 projects for the chosen digital enterprises. The third and 

last problem involves workforce selection and assignment for execution of the identified Industry 

4.0 projects. Multicriteria solution approaches based on TOPSIS and Genetic Algorithms are 

proposed to address these problems. Industry experts are involved to prioritize the criteria used for 

enterprise, project and workforce selection. Numerical applications are provided. 

The proposed work is innovative and can be useful to manufacturing and service organizations 

interested in implementing Industry 4.0 projects for performance improvement. 
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Chapter 1: 

Introduction 

 

 

1.1 Context 

 
With the amelioration in technology, there has been a tremendous increase in industrial 

productivity. From mechanization, electricity and information technology, we have reached 

to human robots today. In 2011 at Hannover fair event Germany introduced industry 4.0 

which symbolizes the beginning of the fourth industrial revolution. With the use of internet of 

things and big data, industry 4.0 is approaching. Industry 4.0, a German strategic initiative, is 

aimed at creating intelligent factories where manufacturing technologies are upgraded and 

transformed by cyber-physical systems (CPSs), the internet of things (IOT) and cloud 

computing, (Zhong et al, 2017). According to Qin et al (2016), German engineers realise that 

manufacturing has been developed into a new paradigm shift, so-called ‘Industry 4.0’, where 

products tend to control their own manufacturing process. Since then, Industry 4.0 has become 

one of the most popular manufacturing topics among industry and academia in the world and 

has also been considered as the fourth industrial revolution with extreme impact on 

manufacturing in future. Due to numerous benefits, industries are readily investing in industry 

4.0, but this implementation is an uphill struggle. It involves various factors to be considered 

especially when it is a small and medium scale industry. Following table depicts the different 

phases of development of industrialization: 
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 1st 

industrial 

revolution 

2nd 

industrial 

revolution 

3rd industrial 

revolution 

4th industrial 

revolution 

Time frame 1700’s 1800’s 1900’s 2000’s 

Methods of 
production 

By hand Machine Automation • Self-optimization 

• Self-configuration 

• Self-diagnosis 

Mass production Textiles Steel Electronics • Smart products 

• Smart factories 

• Artificial 
intelligence 

Sources used Water and 
steam 

Electric 
energy 

Transistors and 
microprocessors 

• Cyber-physical 
system 

• internet of things 

Invention Spinning 
jenny 
Cotton gin 

First 
assembly 
belt 

First 
programmable 
logic controller 

• Advanced robot 

• Additive 
manufacturing 

• Autonomous 
production 

• the cloud 

• Big data analytics 
• Augmented reality 

Table 1-1. Industrial evolution 

 

1.2 Thesis objective 

 
The thesis has three main research objectives: 

 
The first objective involves enterprise selection for the implementation of industry 4.0 projects. 

This involves identifying different factors to measure their readiness level industry 4.0 and 

prioritization. 

The second objective involves Industry 4.0 project selection for the digital enterprise identified 

in step 1. 

The third objective involves workforce planning and scheduling for the industry 4.0 project 

chosen in step 2. 

It can be seen that these three objectives are inter-related and complementary to each other in 

successful implementation of industry 4.0. 
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1.3 Thesis outline 

 
The rest of the thesis is organised as follows: 

 
Chapter 2 presents the literature review on industry 4.0. Different evaluation criteria and 

models for enterprise selection, project selection and workforce selection are covered. 

Chapter 3 presents the solution approaches. TOPSIS and GA based approaches are provided. 

Chapter 4 presents the numerical application of the proposed approaches. 

Chapter 4 provides the conclusions and gives directions for future studies. 
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Chapter 2: 

Literature Review 

 

 

 

2.1 Introduction 

 
Introduction of industry 4.0 by Germany has completely driven the manufacturing phase to a 

new level. In this transformation interconnected systems with the help of sensors and automatic 

machines will enable the industry to accumulate the data at a single point so that they can utilize 

it in the best way. Consequently, it increases the productivity and profits of the companies. 

Many industries after visualizing the success of industry 4.0 in Germany are enthusiastically 

ready to implement industry 4.0. But the important question is how? What kind of factors is 

most important to them? This literature review is aimed towards industries with the help of 

which they can find out the important indicators for industry 4.0. Digital technology is the 

fundamental driving force for the fourth industrial revolution (Guoping et al., 2017). Following 

is the structural representation of this literature review. 

 

 
Figure 2-1. Structural representation of literature review. 
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2.2 Nine pillars of Industry 4.0 

 
The criteria for enterprise selection are based on nine pillars of industry 4.0 which were 

proposed by Lorenz et al (2015),will completely change the manufacturing scenario. The 

individual parts will come together as an integrated, automated, and optimized production flow 

which in turn will increase the efficiency, productivity and will change the traditional 

production system. Lorenz et al (2015) proposed the nine pillars of industry 4.0 and their 

industrial and economic benefits for the manufacturers and production equipment suppliers. 

The importance given by an enterprise to these nine pillars is the key source to decide whether 

it is ready to implement industry 4.0. Various authors have described the nine pillars in their 

own way. Following are the nine pillars for industry 4.0: 

 

Figure 2-2. Nine pillars for industry 4.0 (Source: Markus Lorenz, 2015). 
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PwC’s global industry 4.0 survey (2016) provides the detailed framework and contributing 

digital technologies in aerospace, defence and security. Due to internet of things (IOT) and 

cyber-physical system, there has been an exponential growth in data volume. Although there 

are many tools in market to solve the big data handling issues, but due to their complexities 

industries are resistant to use the tools. Kayabay et al (2016) presented a conceptual framework 

which offers higher level of abstraction to increase the adoption of big data techniques for 

industry 4.0. With this framework, organizations can implement industry 4.0 with ease. The 

internet transformation of the digital industry is still in progress, but artificial intelligence, big 

data and connectivity indicate the certainty of a new round of digital revolution (Roblek et al., 

2016). Celaschi (2017) also described various technologies associated with the implementation 

of industry 4.0. Wittenberg (2016) discusses the effects of industry 4.0 on mobile applications 

for supporting service and maintenance technicians under the influence of the CPS/smart 

factories/industry 4.0. Gorecky et al (2014) described the introduction of new technologies like 

context-sensitive system and context-broker systems, due to the use of cyber-physical system 

in any industry. Also, change in human responsibilities due to the introduction of these new 

technologies are presented. Digital manufacturing incorporates technologies for the virtual 

representation of factories, buildings, machine systems equipment, labour staff and their skills, 

as well as for closer integration of product and process development through modelling and 

simulation (Mavrikios et al., 2009). SME’s are the sector which needs to be developed using 

industry 4.0 concepts, especially in Europe so that it could be competitive to the global market 

(Nowotarski and Paslawski, 2017). Roughly 5% of SME’s have adopted already the new 

disruptive technologies. However, just a third of them are creating strategies towards its full 

adoption as it takes the network of various IT systems and the infrastructure (Pereshybkina et 

al., 2017). Industry 4.0 involves the main technological innovations applied to production 
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processes in the field of automation, control and information technologies. The way people 

interact with organizations, the data produced by organization’s day by day activities and the 

rate at which the transactions occurs may create unprecedented challenges in data collection, 

storage, processing and analysis. This is also due to advancement in cloud computing, internet, 

mobile devices and embedded sensors (Santos et al., 2017). 

2.3 Digital maturity assessment of enterprises 

 
Industry 4.0 is a new concept for various organizations. Many organizations are hesitant to 

implement it t due to complexity and budget issues. However, some of the industries are highly 

advanced in the area and need not implement new strategies. There are various maturity models 

presented to measure the digitization level for any industry. One such example is SIMMI 4.0- 

System Integration Maturity Model Industry 4.0. In this model, Leyh et al (2016) used various 

interrogation techniques to figure out which information and enterprise systems are used in 

business (especially in SMEs) and in what shape the IT-infrastructure of the company may 

appear. In their research paper, they present the design of an IT landscape so that a company 

can “move” in the field of industry 4.0. Following figure presents their requirements for IT 

systems in the context of industry 4.0: 

 

 
Figure 2-3. Requirements for IT systems (Source: Leyh et al., 2016) 
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These requirements are presented in detail as follows: 

 
a) Digital Continuity: 

 
Jin et al (2014) conducted a large-scale survey in U.S and analysed that IT enabled 

infrastructures provide various benefits like supply chain flexibility, production flexibility, 

logistics flexibility and supplier’s flexibility. They analysed that with the help of IT systems, 

performance of any industry can be improved. Gunasekaran et al (2017) reviewed that IT has 

revolutionised traditional logistics and supply chains to achieve numerous benefits such as 

increased efficiency and responsiveness. With the help of the model they provided, the role of 

IT for competitive advantage within supply chains can be tested. 

b) Horizontal and vertical integration: 

 
With the help of IT in industry 4.0 we can visualize numerous benefits. Horizontal and vertical 

integration is one of those. With the help of IT, information is shared among each level. This 

vanish the boundaries and makes information available to every department and level. Supply 

chain integration is also the result of horizontal (external) and vertical (internal) integration. In 

Internal integration, the organization information sharing occurs across the various hierarchical 

levels of organization to enable joint planning and decision making (Wong et al., 2017). In 

external integration, information is shared across external members of an organization. They 

can be the suppliers, customers, distributors and retailers. It enables members to develop a good 

understanding of customer requirements which reduces design errors. A manufacturer can thus 

provide the customer with the reliable products (Zhang et al., 2017). Using IIoT or industrial 

internet of things, the product, the machine that manipulates it and the system of suppliers 

upstream and downstream of the production process interact and interfere, exchanging 

information useful for the improvement of the process itself. This is called vertical integration 



9 
 

of information and is largely entrusted in the future to the so called “Cloudification” of the 
 

production process (Celaschi, 2017). 

 
c) Service oriented architecture: 

 
Zhiting et al (2017) propose that Servitization, when integrated into traditional manufacturing 

practices produces a new manufacturing technique called service-oriented manufacturing. With 

the advancement in horizontal and vertical integration due to industry 4.0, there has been 

tremendous increase in service-oriented manufacturing. Various technologies have ushered in 

service-oriented manufacturing phenomenon like cyber physical system, wireless sensor 

networks, cloud computing, internet of things and big data. 

d) Cloud computing: 

 
Cloud computing is a general term that refers to delivering computational services through 

visualized and scalable resources over the internet. Cloud manufacturing refers to an advanced 

manufacturing model under the support of cloud computing, virtualization and service-oriented 

technologies that convert manufacturing into services and resources which can be 

comprehensively shared and circulated, Xu et al (2017). Cloud-based manufacturing (CBM) is 

another rising paradigm that will significantly contribute to the success of industry 4.0. It can 

be described as networked manufacturing model that exploits on-demand access to a shared 

collection of diversified and distributed manufacturing resources to form temporary, 

reconfigurable, cyber physical production line which enhances efficiency, reduces product 

lifecycle costs, and allows for optimal resource allocation in response to variable-demand 

customer generated tasking (Thames et al, 2017). Additionally, in cloud manufacturing various 

production resources and capacities can be intelligently sensed and connected to the cloud, IoT 

technologies such as RFID and bar codes can be used to automatically manage and control 
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these resources so that they can be digitalized for sharing. Service oriented technologies and 

cloud computing are the underpinning support for this concept (Xu et al., 2017). 

e) IT security: 

 
With the introduction of industry 4.0, a huge amount of data is shared and created. Thus, this 

data need to be secured in every form. There has been tremendous effort in recent years to cope 

with the security issues in the IOT paradigm. Some of these approaches target security issues 

at a specific layer, where as other approaches aim at providing end to end security for IoT 

(Salah et al, 2018). Othman et al (2017) described that to extensively adopt the IOT; the security 

issue should be addressed to provide user confidence in terms of privacy and control of personal 

information. The development of IoT greatly depends on addressing security concerns. They 

survey a wide range of existing works in IoT security that uses different techniques and 

presented a security taxonomy based on the current security threats in the context of 

application, architecture and communication. A new security scenario for the IoT structure and 

analysis of the possible threats and attack to the IOT environment was provided. 

With the help of literature analysis, they derived four dimensions of SIMMI 4.0 based on the 

requirements mentioned above. 

 

 
Figure 2-4. Dimensions of SIMMI 4.0 (Source: Othman et al., 2017). 
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Additionally, SIMMI can be achieved in 5 stages. Following are the five stages: 
 
 

Stages Achievement Loop-holes 

Stage 1: Basic digitization 
level 

• With  specially 
implemented   and 
complex interfaces, 
integration is achieved 

• Processes are not or 
partially digitized. 

• Does not pursue service- 
oriented and cloud-based 
approaches. 

• Data is not protected. 

• Continuous availability 
of data is not ensured. 

Stage 2: Cross-departmental 
digitization 

• Digitization 
implemented across 
departments. 

• Information can be 
partially exchanged 
automatically. 

• Instead of cloud solutions 
production plants are 
connected through paper- 
based methods, email, 
FTP, etc. 

• The company starts to 
implement an SOA. 

Stage 3: Horizontal and 
vertical digitization 

• Establishment of an 
SOA. 

• Implementation of cloud 
principles to exchange 
information within the 
enterprise. 

• Advanced data security 
model and data 
encryption within the 
enterprise. 

• Cloud-based platform to 
offer service across the 
company border. 

Stage 4: full digitization • Industry 4.0 approaches 
are actively followed and 
anchored within the 
corporate strategy. 

• Cloud-based platform. 

• Beginning collaboration 
with companies within 
the value networks for 
end-to-end solutions and 
the optimization of 
information flows. 

Stage 5: optimized full 
digitization 

• Each step inside and 
outside is digitized. 

• IT security adjusts 
promptly to new risks. 

• No loop-holes. 

Table 2-1. Stages of SIMMI 4.0 (Source: Othman et al, 2017). 

 

Industry 4.0 is the latest industry revolution that is completely transforming the manufacturing 

processes with the use of cyber-physical systems and internet of things (IOT). Consequently, 

academics and researchers have shown keen interest in working practices of industry 4.0, 

establishing the design principles for implementation of industry 4.0, understanding the key 
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components and characteristics for analysing industry 4.0 readiness in emerging economies 

(Samaranayake et al, 2017). In 2014, Brettel et al proposed modular simulation and cluster 

analysis to measure the relevance of industry 4.0. The results reveal the reasons for the adaption 

and refusal of industry 4.0 from a managerial point of view. Modularization: it is an accepted 

mean to increase the variety of products by decoupling the architecture of the product in the 

subsystems but with little interdependencies so that the combinations of standardized modules 

can be adjusted flexibly. This in turn will increase the speed of development of new product 

and time to market can be reduced. Using cluster analysis, they analysed the following sub- 

topics from literature: 

▪ Mass customization 
 

▪ Modularization 
 

▪ Flexible and reconfigurable manufacturing systems 
 

▪ Distributed control 
 

▪ Self- optimization 
 

▪ Rapid manufacturing 
 

▪ Cloud computing 

 
Bley et al (2016) proposed a maturity model based on self –assessment of 239 companies 

regarding digitization and number of implemented enterprise systems. Many companies over 

estimate themselves in terms of information and communication technology or level of 

digitization. They designed the questionnaire to measure the self-perceived and actual level of 

digitization of companies. These misjudgements can be seen especially in the field of SMEs. 

They also provided the studies conducted by Deloitte (2013) showing the level of digitization 

of 41 SMEs and derived possible trends in this field. To determine the causes and effects of the 

digital transformation of German industries, the BDI in cooperation with Roland Berger (BDI 

and Roland Berger 2015) conducted different studies and concluded that companies realize the 
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Chen et al (2017) represented that ultimate goal of industry 4.0 can be achieved by the 

realization of digital factory which emphasizes on total integration with cyber-physical system 

as its core technology, via internet of things to realize the operational environment of human 

machine interaction and the utilization of big data for decision making. They described the 

sequence of machine movements controlled by programmable logic controller (PLC). The 

primary objective of this study was to determine the key elements of industry 4.0 and to 

investigate the role PLC played in digital factory to establish smart technologies. Future 

manufacturing processes will include more flexible production lines and faster machines that 

are more accurate, efficient, smarter, and offer a greater IT connectivity to ERP systems and 

manufacturing execution systems (Masdefiol and Stavmo, 2016). 

Samaranayake et al (2017) identified the importance of key enabling factors for the 

implementation of industry 4.0 in enterprises from the technological readiness perspective. 

They prioritize the dimensions using the AHP technique. This research methodology is 

conducted using two stages. 

• For the first stage, they determine the factors which reflect the technological readiness 

perspective using the literature review. Potential factors for the implementation of 

industry 4.0 can vary depending upon the size of the organization 

• In the second stage, Q-sort techniques are used for the validation of the factors obtained 

in stage 1. 

• Based on the systematic review, a review panel of eight experts selected from industry 

found the potential factors for the implementation of industry 4.0 and grouped them 

into following dimensions: 
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Technological readiness Enabling factors for implementation of industry 4.0 

Dimension   1(D1): Improve 
develop the internet system 

and Stability of internet 

Promote business online 

Develop and improve online communication 

Dimension 2(D2): Knowledge of 
human in technology and how to use 
it 

Develop skill and ability in simulation systems 

Develop skill and ability of staff to use new technology 
and knowledge 
Improve knowledge, skills and abilities of data scientists 

Help technology development researchers 

Applying other knowledge to be used together e.g. 
science, technology, innovation, etc. 
Motivate staff in organisations to gain new knowledge 

Dimension 3(D3): Improve ability 
of machine and device in connecting 
internet 

Develop machine ability in order to use high technology 
e.g. connect with internet 

Develop low energy wireless sensors 

Develop receiving and sending data systems on device 
e.g. microchip or smart devices 

Improve and develop automation 

Dimension 4(D4): 
manage the big data 

Ability to Online data storage 

Storing complex data and big data 

Education about data management 

Dimension 5(D5): Data sharing 
between or within organization 

Cross-organisational cooperation 

Data sharing in value chain 

Promote industry 
association 

4.0 in manufacturing and trade 

Dimension 6(D6): Develop the data 
security system 

Develop comprehensive security systems which cover 
human, data and environment 

Table 2-2. Dimensions including the potential factors for the implementation of industry 4.0 

(Source: Samaranayake et al., 2017). 

 
 

• At the next phase, after 2-3 rounds of iterations from different experts selected from 

industry, Cohen’s Kappa coefficients as a measure of agreement were evaluated. Cohen’s 

Kappa coefficient (K) of at least 0.65 is considered as accepted level for construct validity. 

The results are shown in the following table: 
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Category Kj Var(Kj) Kj/SE(Kj) 

Total 0.79 0.0023774 16.1039880 

D1 0.73 0.0109875 6.9543683 

D2 0.83 0.0165068 6.4749927 

D3 0.67 0.0146693 5.5634289 

D4 0.85 0.0111901 8.0132490 

D5 0.86 0.0116156 7.9589030 

D6 0.79 0.0094388 8.0971671 

Table 2-3. Cohen’s Kappa coefficients (Source : Samaranayake et al., 2017). 

 

• In the second stage, AHP was used to determine the relative weight of importance 

among six technological readiness dimensions to achieve industry 4.0 organisational 

performances. Considering the performance measure from the literature review and 

experts opinion on organisational performance relevant for industry 4.0, four 

performance measures were selected as key objective measures for evaluating the 

relative importance of six technological dimensions. Following results were obtained: 

 

Alternatives Performance measures (Relative weighted score) 

Cost 
reduction 

(0.193) 

Flexibility in 
production 
services 
(0.377) 

Stability of 
process 
(0.340) 

Reduce energy 
pollution 
(0.089) 

D1: Improve and 6 4 3 6 
develop the internet (0.116) (0.141) (0.158) (0.107) 
system     

D2: Knowledge of 1 1 1 1 
human in technology (0.294) (0.256) (0.261) (0.243) 
and how to use it     

D3: Improve ability 2 3 2 3 
of machine and (0.208) 0.(173) (0.178) (0.190) 
device in connecting     

internet     

D4: Ability to 5 2 4 4 
manage the big data (0.118) (0.187) (0.145) (0.128) 

D5: Data sharing 3 5 6 2 
between or within (0.143) (0.136) (0.120) (0.207) 
organization     

D6: Develop the data 4 6 5 5 
security system (0.120) (0.106) (0.139) (0.126) 

Table 2-4. Results of performance measures, Samaranayake et al (2017). 
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Results of AHP method shows that the most important objective in implementing (moving to 

industry 4.0) is the flexibility in production/service. 

2.4 Industry 4.0 projects 

 
In context of industry 4.0, projects can be found in reference to nine pillars of industry 4.0. 

These projects are really important for the implementation of industry 4.0. With the help of the 

references mentioned in enterprise section, following are the projects listed for any industry. 

These projects are for the fully digitized industries as these are the highly advanced 

technological developments. 

 

Projects References 

Cloud manufacturing. Industrie 4.0: Enabling Technologies, Wan et al. 

Real time process. Cyber-physcial Machine Tool-the era of machine tool 4.0, Liu 
et al. 

Additive 
manufacturing. 

The role of additive manufacturing in the era of industry 4.0, 
Dilberoglu et al. 

Natural HMI. Human-CPS interaction-requirements and human-machine 
interaction methods for the industry 4.0, Wittenberg et al. 
Human-machine-interaction in the industry 4.0 era, Gorecky et 
al. 

Manufacturing 
execution system 
(MES). 

Learning in the AutFab-the fully automated industrie 4.0 
learning factory of the university of applied sciences 
Darmstadt, simons et al. 

Cyber-security Analysis of the Cyber-Security of industry 4.0 technologies 
based on RAMI 4.0 and identification of requirements, Flatt 
et al. 

Collaborative robots. Industry 4.0: the future productivity and growth in 
manufacturing industries, Rubmann et al. 

 

Augmented reality and 
virtual reality. 

Supporting remote maintenance in industry 4.0 through 
augmented reality, Masoni et al. 

Big data & advanced 
analytics. 

Advanced design-driven approaches for an industry 4.0 
framework: The human-centred dimension of the digital 
industrial revolution, Celaschi et al. 

Table 2-5. Industry 4.0 projects 
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2.5 Enterprise selection 

 
2.5.1 Indicators (Criteria) for Enterprise selection 

 

Based on research done by various authors, following criteria were obtained for measuring the 

readiness level of enterprises for Industry 4.0. 

 

Criteria Sub-criteria Author 

Technical 

expertise 

• Number of ERP system 
used 

• Technological and 
knowledge management 

Crispim and De souse (, 2009) 

Wu and Barnes (2010) 

Organizational 

structure 

• Inter-enterprise structure 

• Industrial and 
organizational 
competitiveness 

Verdecho et al. (2011) 

Wu and Barnes (2010) 

Cost and budget For raw material and production Wu and Barnes (2011) 

Quality 

services 

and Materials used, 
manufactured 

and products Sha and Che (2004) 

Logistics Automated and updated Sarkis et al. (2007) 

Table 2-6. Criteria for enterprise selection. 

 

Note that the criteria will vary depending on the digital readiness level of organizations. 
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Criteria Sub-categories Author 

Basic digitization level Information systems or ERP 
systems 

Othman et al, 2017 

Cross-departmental IOT FitzHugh and Piercy, 2013 
organization   

 Improve ability of machine  

 and device in connecting  

 internet  

Horizontal 
integration 

and vertical Automated machines Celaschi et al, 2017 

Full digitization Inter-organizational network 
Cloud computing 

Kagermann, 2014 

Advanced 
digitization 

level of Autonomous manufacturing Jin et al, 2014 
Gunasekaran et al,2017 
Xu et al, 2017 

Table 2-7. Criteria for implementation of industry 4.0 

 

 

 

 

2.5.2 Methods for enterprise selection 

 
Table below presents the evaluation methods for selection of enterprises for IT projects. 

 
 

Method Author 

AHP Sari et al. (2008) 

Hybrid SWARA and VIKOR Alimardani et al. (2013) 

Data envelopment analysis and analytical 
network process. 

Hasan et al. (2008) 

ANP Sarkis et al. (2007) 

dynamic feedback model, Dempster-Shafer 
theory, RBF-ANN, ANP-MIMOP 

Wu and Barnes (2012) 

Fuzzy TOPSIS Crispim and de Sousa (2009) 

Dempster–Shafer belief acceptability 
optimisation 

Wu and Barnes (2010) 

Analytic network process-mixed integer 
multi-objective programming 

Wu et al. (2009) 

Analytic hierarchy process (AHP) 
methodology, multi-attribute utility theory 
(MAUT) and integer programming (IP) 

Sha and Che (2005) 

ANP Verdecho et al. (2012) 
Table2-8. Methods used for enterprise selection. 
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2.6 Project selection 

 
2.6.1 Criteria for project selection 

 
According to Amiri (2010), the evaluation and selection of projects before investment decision 

is customarily done using technical information. In a world of limited resources choices have 

to be made. It is not important that every project has a viability. And amongst those that do, 

limited resources like people, time, money and equipment must be applied judicially. With the 

help of the maturity models’, industries can realize their level of digitization, but now next step 

is to choose the high priority indicators. It is easy to determine the projects for any industry, 

but the difficult process is to prioritize these projects because all these projects need a large 

budget for the implementation. So, it is very important to recognize which one to implement 

first. 

The criteria for the selection of project are on the basis of the nine pillars defined for industry 
 

4.0 and other factors like cost, time and many more. It is very important to select the criteria 

for the project selection. In the selection of project, the prioritization of indicators is really 

important. So far, industries find it really hard when transforming the visionary ideas to 

missionary level of increasing the productivity. An isolated implementation of the industry 4.0 

visions could be the reason (e.g. implementation of 3D printing). Collaborative productivity in 

the industries can be achieved practically, only with the collaborative implementation of all the 

concepts of industry 4.0 (Erol et al, 2016). So, it is very important to implement these 

indicators. But the implementation of these indicators together can result in a huge business for 

small and medium scale industries. Thus, importance by paid by the industry to these indicators 

can help in prioritizing the indicators and then they can be implemented accordingly. Following 

criteria can be adopted for the project selection: 
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Figure 2-6 Three step method for project selection. 

 

The benefits of harnessing the yields of industry 4.0 are also diversified. The integration of 

physical objects, human interactions, intelligent machines, processes, and production lines 

results into the development of a new, intelligent, connected, and efficient value chain which 

enables the development of new business models with different organizations (Fettermann et 

al., 2018). 

Following tables describes sample Industry 4.0 projects and associated criteria reported in 

literature for the selection of a project. 

 

Area Project 

Technology ERP 
IIOT 
Cloud computing 

Advance manufacturing components Autonomous robots 
3D printing 
Augmented reality glass 

Data processing Big data and analytics 
Cyber-security 

Connected logistics system Automated inventory control 
Autonomous logistic system 

Table 2-9. Sample Industry 4.0 Projects 
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Criteria Sub-criteria Author 

Time • Processing time 

• Prototyping time 

• Design revision time 

• experience time 

Dulmin and Mininno ( 2003) 
Liao and Kao ( 2011) 
Asosheh et al ( 2010) 
Begicevic et al (2009) 

Total cost and 

budget 

• Hardware cost 

• Maintenance cost 

• Infrastructure cost 

• Consultant expenses 

• Labor cost 

• Cost of rework and scrap 

• Machinery cost 

Lee and Kim (1999) 
Wei et al (2004) 
Kilic et al (2014) 
Haddara ( 2014) 
Efe (2016) 
Asl et al (2012) 
Erdogmus et al (2005) 

Technical • probability of technical success 

• existence of project champion 

• existence of required competence 

• availability of available 
resources 

• applicability to other products 
and processes 

• implementation ability 

• New technologies 

• Technological opportunity 

• Availability of skilled IT 
personnel 

• Technical capability 

Meade and Presley (2002) 
Amiri (2010) 
Kilic et al ( 2014) 
Almeida et al (2013) 
Efe (2016) 
Haddara (2014) 
Pitic et al (2014) 
Wei et al (2004) 
Bolat et al (2018) 
Ma et al ( 2013) 

Size and 

Market 

• probability of market success of 
product 

• potential size of market 

• Product life cycle 

• Number and strength of 
competitors 

• Size and location 

Meade and Presley (2002) 
Amiri (2010) 

Human 

resources 

• Planning 

• Training 

• Evaluation 

• Employee involvement 

• Human source requirements of 
system development 

• Ability   to   work   in different 
business units 

Marhraoui and Manouar ( 2017) 
Vinodh et al (2012) 
Yang et al (2011) 
Afshari et al (2010) 

Quality • Reduced process failures 
• Commitment 

Liang and Li (2008) 
Nezhad (2017) 

Potential risk • Defects and returns Ma et al (2013) 

Table 2-10. Criteria for project selection for various industries. 
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2.6.2 Methods for project selection 

 
Shahin and Mahbood (2007) implemented an integrated approach to prioritize the key 

performance indicators in terms of criteria of SMART (specific, measurable, attainable, and 

realistic, time sensitive) goal setting. They proposed an approach for prioritizing key 

performance indicators based on the integration of AHP and SMART. It involved following 

steps: 

• Define and list all of the KPI’s. 
 

• Build AHP hierarchy based on SMART characteristics. 
 

• Pair wise comparison 
 

• Calculate global weight 
 

• Select relevant KPI’s 

 
They conducted a case study considering five alternatives (KPI’s) for a hotel. Using a nine- 

point scale, a comparison was made. They calculated the normalized pair wise values and 

found the reliability with the highest weight and rank 1. Following results were obtained: 

 

Alternative Global weight Ranking 

Responsiveness 5.1700 3 

Tangibles 6.3768 2 

Reliability 6.7575 1 

Assurance 3.5760 4 

Empathy 3.1196 5 
Table 2-11. Results obtained from Shahin and Mahbod (2007) 

External and internal effects which might affect the result are not considered. Also, the view 

of the people who are responsible for rating of the weights of KPIs might lead to an uncertain 

result. They have not considered different industries. 

Daghouri et al (2018) evaluated the information system in construction industry sector based 

on the Delone and Mclean information systems success model. Five Moroccan organizations 

were ranked by TOPSIS method. The hierarchical model contains 6 criteria and 38 sub-criteria 
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as they have grouped the different attribute into one category. They used AHP method to 

estimate the weights of the main criteria and sub-criteria. Data is collected with the help of an 

online questionnaire. Following table shows the 6 criteria and 38 sub-criteria: 

 

Main criteria Sub criteria 

System Quality (C1) Availability(C11), Employees Occupancy(C12), Longest 

Delay(C13), Answer Speed (C14), Abandons(C15), Blockage(C16), 

Average hour of operation(C17), Self-service and availability (C18) 
Information quality 

 

(C2) 

Grammar and spelling(email) (C21), Data accuracy(C22), 
Secure(C23), Complete(C24), Relevant and correct(C25), and Data 
Understand ability(C 26) 

Service quality(C3) On Time delivery(C31), Knowledge and competency(C32),Error 
Network(C33), Availability(C34), Access(C35), Rate Delay(C36) 
and Reliability (C37) 

Use (C4) Frequency of use(C41), Amount of use(C42), Number of reports 
generated(C43), Technical support(C44), Managerial support(C45) 
and Financial transactions use (C46) 

User satisfaction(C5) Handle Time(C51), Average  Number of employees 
connected(C52), Training Investment(C53),  Employee 
Turnover(C54) and Average Satisfaction(C55) 

Net benefits(C6) Return on investment(C61), Productivity(C62), Profit(C63), Market 
Share(C64), Growth in customer base(C65) and Increased Sale 
(C66) 

Table 2-12. Main criteria and sub-criteria (Source: Daghouri et al, 2018). 

 

Schumacher et al (2016) describes the term maturity as a state of being complete, perfect, or 

ready and implies some progress in the development of a system. Accordingly, maturity 

systems increase their capabilities over time regarding the achievement of some desirable 

future state. Maturity can be captured qualitatively or quantitatively in a discrete or continuous 

manner. They introduced a three-step procedure to assess industry 4.0 maturity as follows: 

▪ Step 1: Measurement of maturing items in enterprise via questionnaire (input). 
 

▪ Step 2: Calculation of maturity level in nine dimensions software supported (output). 
 

▪ Step 3: Representation and visualization of maturity via maturity report and radar 

charts. 
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D in 



A scale from 0 to 5 is used describing “not distinct” to “very distinct” respectively. E-mail 

based distribution of 123 questionnaires to practitioners and researchers resulted in 23 

responses. They conducted a case study for an Austrian manufacturing industry who is already 

engaged in industry 4.0. The maturity level is calculated using the following formula: 

 

in 

M 
Dli 

* g
Dli 

M  i1  

 gDli 

i1 

 
 

 
(2.1) 

 

 

M=maturity 

D= dimension 

I= item 

G= weighting factor 

 
n= number of maturity item 

 
Yan and Chai (2017) used Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive 

Evaluation method to evaluate the factors which influence the general aviation tourism industry 

of Xi’an. Their main objective of the research is to promote the development of general aviation 

tourism industry. They grouped the secondary indices to form the primary indices for their 

goal as follows. The AHP method was used to convert these evaluations to numerical values 

that were processed and compared over the entire range of the problem. 

Hermann et al (2016) explained that Design principles explicitly address this issue by providing 

a “systemization of knowledge” and describing the constituents of a phenomenon. Therefore, 

design principles support practitioners in developing appropriate solutions. From an academic 

perspective, design principles are the foundation of design theory. They also illustrated a case 
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study to identify the design principles in Industry 4.0. Using quantitative analysis and 

qualitative literature review following design principles for Industry 4.0 were obtained: 

▪ Interconnection 
 

▪ Information transparency 
 

▪ Decentralized decisions 
 

▪ Technical assistance 
 

A case study was conducted to show how to utilize the four derived design principles. To 

evaluate the identified scenarios, a decision model using AHP is developed. A collaborative 

research project was initiated by a company from a chemical industry and the TU Dortmund 

University, Fraunhofer IML, and CDQ AG. Based on the results of evaluation, five scenarios 

were detailed out. Out of these, three scenarios were selected based on the discussion with the 

internal and external company experts. Han and Han in 2004, conducted a study for the 

selection of effective IC (intellectual capital) indicators. They proposed a decision model using 

Analytic Hierarchy Process. IC indicator selection was done by forming a hierarchy tree based 

on number of previous studies. The indicators were prioritized using the AHP method. Criteria 

weights were assigned by experienced managers and other experts. Such methods can be 

helpful in prioritizing the indicators for any industry. 
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Method Author 

AHP Han and Han ( 2004) 
Wei et al ( 2004) 
Meade and Presley (2002) 
Hermann et al (2016) 

AHP and Fuzzy TOPSIS Efe (2016) 
Amiri (2010) 

ANP and PROMETHEE Kilic et al (2014) 

Multi-attribute rating technique (SMART) Shahin and Mahbood (2007) 
Haddara (2014) 

Maturity model Schumacher et al (2016) 

Delphi and Shannon Entropy technique Asl et al (2012) 

PROMETHEE Dulmin and Mininno (2003) 

Fuzzy TOPSIS and Goal programming Liao and Kao (2011) 

Goal programming, 
methodology 

Delphi and ANP Lee and Kim (1999) 

Table2-13. Methods used for project selection. 

 

2.7 Workforce selection 

 
2.7.1 Criteria for workforce selection 

 
The vision of industry 4.0 will bring not only new approaches but also the methodologies and 

technologies, which will have to be introduced into companies. The transition to such 

sophisticated production will not be possible immediately. It is expected that some professions 

will be replaced. Only qualified and highly educated employees will be able to control these 

technologies. In November 2017, the consulting firm Mckinsey highlights in its report that 

almost 800 million jobs are at risk due to implementation of new technologies, Trotta and 

Garengo (2018). The role of the human factor will be necessary for the future manufacturing. 

The skills and qualifications of the workforce will become the key to success of a highly 

innovative factory (Benesova et al., 2017). Bruecker et al (2015) presented that the planning of 

the workforce in a company is one of the most difficult problems managers face. As the size 

of the company increases, the problem tends to get more and more difficult. The workforce 

planning defines when and how many employees should be hired or dismissed and when these 

employees should work. Hence, it is a combination of staffing and scheduling decisions. 
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Workforce planning problems entail some special features that are absent in all other types of 

resource allocation problems. The basic point from where one can start the workforce planning 

is to determine the skills of the employees. Skills can be defined as the ability to perform certain 

tasks well. To analyze the importance of skills in workforce planning, skills can be divided into 

following: 

 

Type of skill Basic definition Categories in industry 4.0 

Hierarchical In this type, workers with higher skill In industry 4.0, multi skill 
skills level can perform more than workers workers are preferred so that 

 with lower skill level. Eventually, they can be utilized in every 
 higher skilled workers can perform the possible way. So, worker in the 
 tasks which are performed by the lower assembly section will have the 
 skilled workers as higher skilled knowledge of machines and can 
 workers are more educated and repair if by any chance some 
 experienced than lower skilled default occurs. 
 workers. This is called substitution.  

Categorical In case of categorical skills, skills of For example, in any 
skills one person are not better or worse than manufacturing unit tasks 

 the skills of another person. There is no associated with automation 
 difference in skill level. Skills of a installment, robotic tasks or any 
 worker decide the task for that worker. other field associated task can be 
  only done with the highly skilled 
  person who is trained for that 
  job. 

Table 2-14. Types of skills (Source: Bruecker et al., 2015). 

 

Complete system automation and use of advanced technologies, internet of things and big data 

analysis minimizes the human factor in the process but also it changes professionals inside the 

company as we know them today. One of the professions to be changed is the process planner. 

Longo et al (2017) described 5C architecture for industry 4.0. Based on that, we can discuss 

the new skills needed for the industry 4.0. Collaborating, this architecture with nine pillars of 

industry 4.0 we can describe the new skills needed for industry 4.0 as follows: 
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Configuration 

-artificial intelligence 

-resilience control 

 
 
 
 

 

 
 
 

Figure 2-7. 5c Architecture for industry 4.0 (Source: Longo et al, 2017) 

 

 

 

 
It is known that the development of new technologies tends to fail if workers start feeling that 

their job are threatened. The increased automation level also changes the shop floor landscape 

decreasing the low-skill work and increasing the high skill activities. So, the industries will be 

adopting continuous learning, training, and education of the workforce to adapt the 

qualification requirements resulting from industry 4.0 (Buer et al., 2018). 

Cognition 

-Artificial intelligence 

-Knowledge generation 

Cyber 

-network control 

-information hub 

Connection 

-Sensors 

-Enterprise manufacturing systems 

Conversion 

-Data conversion into useful information 
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Technical implementation Skills needed 

ERP implementation Process engineers for mapping of all processes. 

Big data and data analytics Engineers with basic knowledge statistically for 
problem solving. 
PL/SQL-advanced 
UML-advanced 

Cloud system and services Cloud system engineers and integrators to maintain 
and use stored and retained data. 
Knowledge of servers. 
Informatics specialist: knowledge of working with 
databases, virtualization and cloud services. 

Data and cyber security Engineers with analytical and logic thinking 
Knowledge of security standards and 
communication standards 

Autonomous manufacturing Robot programmer-with knowledge of off-line and 
on-line robot programming 
Installation of the device into operation 
PLC programmer-machinery programming and 
knowledge of PLC 

Table 2-15. Skills needed for the 5c architecture of industry 4.0 (Source: Longo et al., 2017) 

 

Karre et al (2017) described that as industry 4.0 enforces systems with a higher complexity due 

to automation and the interconnectivity of all its elements, organizational and processual 

understanding will be, among the other important skills, a basic qualification for industrial 

workers. These comprise the ability to recognize elements of the overall production system, 

identification of system borders, understanding of functions and relationships within the system 

and thereby to be able to predict the system behavior. With such an advancement in 

manufacturing sector dependency on one single worker can be detrimental. So, it is very 

important for the workers in industry 4.0 to have multi-skills to adopt the dynamic nature of 

industry 4.0. Thus, along with knowledge of their own core area, knowledge of other 

perspectives is very crucial to handle the complex system of industry 4.0. Following skills are 

structured into: “must have skills”, “should have skills” and “could have skills”. 
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Defined area of 

implementation 

Must have skills Should have skills Could have skills 

ERP 
implementation 

• Process engineers 
for mapping of all 
processes. 

• Awareness for IT- 
security and data 
protection 

• Knowledge  of 
manufacturing 
activities and 
processes 

Big data and data 
analytics 

• Engineers with 
basic knowledge 
statistically for 
problem solving. 

• PL/SQL-advanced 

• UML-advanced 

• Interdisciplinary/generic 
knowledge about 
technologies and 
organization. 

• Knowledge 
about statistical 
process control 
(SPC). 

Cloud system 
and services 

• Cloud system 
engineers  and 
integrators to 
maintain and use 
stored and 
retained data. 

• Knowledge of 
servers. 

• Informatics 
specialist: 
knowledge  of 
working with 
databases, 
virtualization and 
cloud services. 

• Knowledge of big data 
and data security. 

• Intelligent 
fabrication and 
social 
manufacturing. 

Data and cyber 
security 

• Engineers with 
analytical and 
logic thinking 

• Knowledge of 
security standards 
and 
communication 
standards 

• Knowledge about 
computer coding and 
programming. 

• Knowledge of 
cloud systems 
and services to 
integrate      the 
data and 
services. 

Autonomous 
manufacturing 

• Robot 
programmer-with 
knowledge of off- 
line and on-line 
robot 
programming 

• Installation of the 
device into 
operation 

• PLC programmer- 
machinery 
programming 

• Knowledge about 
maintenance of machines 
and robots 

• Knowledge about robot 
programming. 

• Knowledge 
about 
manufacturing. 

• Basic 
knowledge of 
ERP system. 

• Knowledge of 
safety standards 

• Knowledge of 
technical 
documentation. 

Table 2-16. Skills requirement for Industry 4.0 (Source: Karre et al, 2017) 
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Skills are worker’s capability to complete assigned tasks to hit the organization targets. The 

difficulty of gaining specific skills and the capability of workers to catch up with skills and 

tasks determines the skill level variation. Besides, multiskilling is an effective methodology 

that enables workers to possess different type of skills and handle different tasks 

simultaneously. Cross-training is the approach used to equip workers with multi skills. Cross- 

training is an efficient approach to deal with workforce flexibility. Cross-training builds strong 

team work and enables workers to assist each other with secondary skilled task after completing 

their core job. Multi-skilled workers proficient in learning new technologies and switching job 

with different environment easily compared to single-skilled workers, Feng et al (2013). The 

author describes the different models for cross training as listed below. 
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Models Explanation Disadvantage 

Skill 
chaining 

Skill chaining produces chains of skills 
leading to a salient event where salience can 
be defined simply as an end of task reward, 
or as a more sophisticated heuristic. The goal 
of each skill in the chain is to reach a state 
where its successor skill can be executed. For 
example, the agent encounters the goal and 
creates a new sub goal, which later triggers 
the creation of a second skill to reach the first. 
Finally, after many trajectories the agent has 
created a chain of skills to reach the goal. 

Challenging to implement 
this methodology to 
individuals as it requires 
pairs to be crossed trained. 

Floating 
cross training 
strategy 

In this strategy, each workstation is attended 
by a specialist (a worker who is not cross 
trained). Only one of the workers is cross 
trained. This worker can perform every task 
in the line. Floating worker represents a more 
experienced worker with a higher level of 
motivation and a higher wage level. For 
example, at Ford Motor co. such highly cross 
trained floating workers are often called 
“utility” workers. 

Inefficient for long lines due 
to time consumption. 

Fixed before 
shared 
principal 

Under this strategy, cross trained workers can 
assist their peers with the shared tasks after 
completing their core tasks. In this case, cross 
trained workers need to be fast and efficient. 
This policy does not help the operation If the 
cross trained workers are slower than the 
specialized workers. 

Solution from this study is 
limited to two to three 
worker systems and did not 
cover multifaceted systems. 

Partial 
pooling 
strategy 

Under this strategy, a small subset of super 
agents is cross trained. They are trained to 
increase the service level. It is more realistic 
than complete pooling. 

Gets worst when the service 
time starts to fluctuate. 

Partial cross 
training 
simulation 
based 

Partial pooling implemented in 
manufacturing equipment maintenance 
environment with two types of technicians 
using hierarchical model. 

Non-cross  trained 
technicians contribute to 
shorter response time and 
increase emergency 
response time as they are not 
trained to handle emergency 
failures. 

Table 2-17. Cross -training models (Source: Feng et al., 2013) 

 

With the help of these models, we can conclude some benefits and drawbacks of cross training. 

Benefits and drawbacks of cross training are as follows 
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Benefits of cross training Drawbacks of cross training 

➢ Cross training results in making 
workers more capable of handling 
many tasks at the same time, 
increasing their efficiency level. 

➢ Worker’s Productivity is increased. 
➢ Multi skilled workers can cover 

absent peers to avoid overtime costs. 
➢ Worker’s idle and transition time is 

cut down. 
➢ Labor cost is decreased. 
➢ Workforce staffing and scheduling 

becomes easier due to the worker’s 
flexibility. 

➢ Substitution and cross training 
increase the flexibility of the 
workforce such that company can 
cope with the unexpected demand 
peaks without layoffs or hiring 
expensive new or temporary workers. 

➢ It is very important to assign the right 
worker to the right task to reach 
certain level of quality. 

➢ Significant cost is spent on 
instructors that train workers. 

➢ When workers are asked to perform 
tasks other than their core tasks, their 
efficiency can decrease. 

➢ Sometimes in cross training when 
higher skilled persons are required to 
perform the task which is designed 
for the lower skilled person 
downgrading occurs. 

➢ Inefficiency in the operation occurs 
when workers are moved from one 
place to another. 

➢ Learning-forgetting-relearning 
happens. 

Table 2-18. Benefits and drawbacks of Cross-training models (Source: Feng et al., 2013) 

 

Barlat in 2009 proposed that Workforce planning is an important process that enables 

organizations to determine the most Efficient workforce composition and provides a basis to 

recruit and/or reorganize the workforce to achieve organizational goals. A workforce plan is a 

framework for making staffing decisions based on an organization's mission, strategic plan, 

budget, and a set of required worker skills. An effective workforce plan has the right number 

of workers with the right skills in the right place at the right time. Unfortunately, 

simultaneously determining the workforce allocation - the number of workers with each skill 

set available during the planning horizon - and the workforce utilization - the sequence of tasks 

scheduled during the planning horizon to meet customer demand - is not a trivial task. 

Benesova et al (2017) stated that industry 4.0 will completely change the workforce strategies 

for many manufacturing industries. The emerging technologies will have huge effect on the 

education of people. Only highly qualified and highly educated employees will be able to 

control these technologies. The role of human factor will be very important for the future 

manufacturing. The skills and qualifications of the workforce will become the key to success 
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of a highly innovative factory. For this reason, companies should focus on the qualified 

workforce by the human resource management. It not only includes selection, staffing and 

dismissing employees but also education, learning and training of employees. Educational 

qualifications will be higher than the present because companies will be implementing new 

technologies. Even though it is bringing the machine world up, but for the coming 10 years we 

need to have the human workforce but in a different direction. Implementation of industry 4.0 

is not an abrupt procedure but it is a gradual process. Based on each phase of industry 4.0, 

different sections contain different kind of jobs, they described the following phases: 

 

 
Phase Implementation Job requirement 

 

Digital representation of 
factory in real time 

 

Introduction of information 
system such as ERP 

▪ Process engineers 
▪ Specialists for cloud 

system and services. 

 

Horizontal integration 
 

New automated machines 
▪ Process engineers will 

require a retaining course 
for the new automated 
machine. 

 

Data analysis of vertical 
integration 

 

Data processing 
▪ Data analyst 

(knowledgeable  in 
specified field) 

▪ Data analyst (along with 
knowledge of the 
production process) 

▪ Business data analyst 

 

Self-controlling manufacture 
and logistic 

 

Autonomous manufacturing 
▪ Operators. 
▪ Maintenance workers 
▪ Data analysts 
▪ Process engineers 
▪ Quality controllers. 

Table 2-19. Workforce requirements for different phases (Source: Benesova et al, 2017) 

 

They described that the skills and qualifications of the workforce will become the key to 

success of a highly innovative factory. For this reason, the companies should focus on the 

development of qualified workforce by the human resource management. Requirements for the 
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qualifications and skills of employees will be higher than at present, because the companies 

will use new technologies and smart media. 

Kinzel (2016) explained that the designers of industry 4.0 concept appear to have a good grip 

on the technology of the system. However, the human factor seems not to be considered 

adequately. Humans are involved everywhere: as a team of system designers, a group of 

workers and our society as the clients of the manufactured goods. In the case of a complex 

system such as the Industry 4.0 concept, the entire society is at the “output” end of the 

automated manufacturing process. Systems do not (yet?) create themselves. There are teams of 

experts behind every new idea and very specialized engineers and software designers are 

required to convert the ideas into working software. Thus, even in industry 4.0, human factor 

plays a vital role. 

In 2015, Lorenz et al revealed that there will be 6 percent increase in the employment but at 

the same time automation will displace the low skilled labourers and there will be increase in 

demand of employees in software development and IT technologies. These days company’s 

productivity, profits and competitiveness greatly depends on how their employees are 

managed. Roux et al (2017) revealed that with the introduction of new technologies and new 

markets there will be introduction of new job categories with the use of human talent in a 

different direction. Hecklau et al (2016) published that with the introduction of new technology 

companies need to adopt new strategies for the holistic development of human resource 

management. They also proposed employee readiness level to conduct a competence gap 

analysis for required competencies in industry 4.0. Motyl et al (2017) conducted a research by 

organising 26 questions to investigate how the educational needs of students and of the 

industrial workforce are changing. They conducted the research to investigate which are the 

necessary skills and expertise young engineers require being ready for the industry 4.0 

framework. They observed that the main important asset of the industry 4.0 framework is 
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people. Workforce represents the critical aspect of the digital business transformation. Culture 

and education are the main keys for promoting knowledge and awareness about industry 4.0. 

Following table presents the criteria proposed by different authors. 

 

Criteria Sub-criteria Author 

Multi-skills for employees • Ability to work in 
different business 
units 

• Strategic thinking 

• Computer skills 

• Core ability 

• General aptitude 

• Leadership 

Afshari et al (2010) 

Gungor et al (2008) 

Dursun and Karsak (2010), 

  Kabak (2012) 

 • Culture protection 
and security of 
information 

 

Alguliyev et al (2015) 

Technology evaluation and 
changes 

Analysing the technological 
advancements needed 

Ho and Frampton (2010) 

Type of industry • Manufacturing 

• Services 
• Others 

Sanyal and Guvenli (2008) 

Size and budget of the 
industry 

• The importance of 
automating the 
process for the 
organization 

De almeida et al (2013) 

Time management • Experience in 
management 

• Crisis management 
ability 

Koutra et al (2017), 

Kundakci (2016) 

Table 2-20. Criteria for workforce selection. 

 

2.7.2 Methods for workforce selection 

 
Many researchers in the past have purposed used different methods for the workforce selection 

and allocation. Gomar et al (2002) developed a model to optimize the workforce resource 

allocation and assignment process of a partially multi-skilled workforce. They developed the 

MOMA (multiskilling optimization model for allocation) model and their objective function 

was to minimize total number of workers, minimize switching and minimize hires and fires. 
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They concluded that assignment and allocation of a partially multi-skilled workforce can be 

optimized using this model. They also concluded that multi-skilled workers are always 

preferred by the optimization model over single skilled workers. 

Multi-skill workers can survive easily in the era of industry 4.0 as compared to single skill 

workers. That is why, multi skill workforce selection and planning is comparatively hard. 

Wongwai and Malaikrisanachalee in 2011 used augmented heuristic algorithm for multi-skilled 

resource scheduling (AHAMRS). They compared the results with the existing heuristic 

approach concept. In AHAMRS, they assign available resource to the exact required resource 

to all current eligible activities in a priority order regardless of insufficient resources. Then, 

they examine the resource fulfilment in horizontal direction. They conducted the case study 

and observed that results with AHAMRS are far better than the existing heuristic approach. 

Same projects were covered in less numbers of days in AHAMRS. 

Fowler et al (2007) used a MIP (Mixed Integer Programming) model based on the work of 

Wirojanagud et al (2007). Fowler and his colleagues tried to cover the gaps in their study. The 

objective of this paper is to develop simple and effective heuristics that reduce the 

computational time required to solve workforce planning problems of realistic size. They used 

linear programming to solve the rounding up and rounding down problem. The heuristic 

decides whether to round up or round down as rounding up creates overstaffing and rounding 

down creates missed production. The heuristic attempts to cross train the excess number of 

workers resulting from rounding up to cover the demand that is not fulfilled by rounding down. 

They also use genetic algorithm as a benchmark and also as an alternate which can be used for 

better results. Solution space partition (SSP) approach is used to reduce the problem size. They 

concluded that SSP and LP based heuristics provide feasible solution with a reasonable 

computational time. 
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Method Author 

Multiskilling optimization model for allocation 
(MOMA) 

Gomar et al (2002) 

Augmented heuristic algorithm for multi-skilled 
resource scheduling (AHAMRS) 

Wongwai and Malaikrisanachalee 
(2011) 

MIP (Mixed Integer Programming) model Wirojanagud et al (2007) 

ANP and TOPSIS Dagdeviren (2008) 

Fuzzy MULTIMOORA (Multi-objective optimization 
by ratio analysis) 

Balezentis (2012) 

Fuzzy MCDM Dursun and Karsak (2010) 

ANP and Fuzzy data envelopment analysis approach Lin (2010) 

Fuzzy DEMATEL (Decision making trial and 
evaluation laboratory)-ANP 

Kabak (2011) 

TOPSIS Boran et al (2009) 

TODIM method (Interactive and multi-criteria decision 
making) 

Zhang and Wang (2016) 

Modified Fuzzy VIKOR method Algulivey et al (2015) 

AHP Koutra et al (2017) 

Fuzzy-TOPSIS Samanlioglu et al (2017) 
Table 2-21. Method for workforce selection. 

 

2.8 Limitation of existing works and research gaps 

 
This section describes the research gap based on the previous researches in industry 4.0. 
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Author (Year) Work Title Advantages Disadvantages 

Lorenz 
(2015) 

et al Industry 4.0: the future 
of productivity and 
growth in 
manufacturing 
industries. 

Nine pillars were 
discussed thoroughly. 

Nine pillars are 
not prioritized 
according to their 
importance 

Schumacher et 
al (2016) 

A maturity model for 
assessing industry 4.0 
readiness and maturity 
of manufacturing 
enterprises 

A multi- 
methodological 
development approach 
was carried out 
To evaluate the results, 
two case studies were 
conducted. 

Standardized 
Questionnaires 
were developed 
only for one kind of 
industries 

Flaviano 
celaschi. 
(2017) 

Advanced  design- 
driven approaches for 
an industry   4.0 
framework:   The 
human-centred 
dimension of  the 
digital industrial 
revolution. 

Description of primary 
and most common 
enabling technologies 
with their 
characteristics and 
applications. 

No explanation for 
the methods 
required for the 
implementation of 
these technologies. 

Carsten 
wittenberg 
(2016) 

Human-CPS 
interaction- 
requirements  and 
human-machine 
interaction methods 
for the industry 4.0. 

Explained classical 
approach vs. digital 
factory approach 

Didn’t describe the 
risks associated 
with the tools used 
in digital factory 
approach. 

Gorecky et al 
(2014) 

Human-machine- 
interaction in the 
industry 4.0 Era. 

Description of human 
responsibilities in 
usage of different 
cyber-physical system 
related technologies. 

No description of 
training which is 
imperative for the 
labour due to the 
huge change in the 
technologies. 

Chryssolouris 
et al (2009) 

Digital manufacturing: 
History, perspectives, 
and outlook 

Real examples for the 
implementation of 
applications associated 
with industry 4.0 

The industries that 
benefit the most are 
those with capital- 
intensive 
manufacturing. 

Leyh 
(2016) 

et al SIMMI 4.0- A 
maturity model for 
classifying the 
enterprise-wide IT and 
software landscape 
focussing on industry 
4.0. 

Step by step approach 
to measure the level of 
digitization of any 
industry. 

Real 
implementation is 
not provided. 

Brettel 
(2014) 

et al How virtualization, 
decentralization and 
network          building 
change the 
manufacturing 

Mass customization 
and  collaborative 
manufacturing 
associated with CPS is 
explained. 

Only large-scale 
industries can 
implement such 
strategies. 
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 landscape: an industry 
4.0 perspective. 

  

Bley 
(2016) 

et al Digitization of 
German enterprises in 
the production sector- 
do they know how 
digitized they are? 

A real  and actual 
implementation    is 
done to  find  how 
digitized the industries 
are,   based   on 
implemented 
enterprise systems. 

Other digital factors 
like manufacturing 
techniques, 
information sharing 
strategies were not 
considered. 

Benesova et al 
(2017) 

Requirements for 
education and 
qualification of people 
in industry 4.0. 

Requirements for each 
phase and each job 
position are listed. 

No technologies 
introduced for data 
security. 

Motyl 
(2017) 

et al How will change the 
future engineer’s skills 
in the industry 4.0 
framework? A 
questionnaire surveys. 

Change in workforce 
is explained as per 
with the introduction 
of new technologies. 

Technical strategies 
which need to be 
introduced for the 
change 

Roux 
(2017) 

et al Industry 4.0: preparing 
for the future of work. 

Impact of industry 4.0 
on future work and 
worker is discussed 

No training or 
solution approaches 
are introduced for 
labours with low 
and conventional 
skills. 

Hecklau et al 
(2016) 

Holistic approach for 
human resource 
management  in 
industry 4.0. 

Digital skills and 
digital behaviour is 
measured by 
conducting a survey. 

They did not 
consider business 
section as it was 
only for educational 
sector. 

Table 2-22. Pros and cons of various literature. 

 

It can be seen from above that there is currently no comprehensive framework that 

addresses the enterprise selection, project selection and workforce selection for Industry 

4.0 altogether. This is the challenge we are addressing in this thesis. 



42 
 

Step 1 

(Workforce 

Selection) 

Step 2 (Project 

Selection) 

Step 1 

(Enterprise 

Selection) 

 
Criteria Selection 

 
Industry 4.0 implementation 

Chapter 3: 
 

 

 

 
3.1 Introduction 

Methodology 

In the previous chapter, using comprehensive literature review we have analysed the different 

possible problems faced by any industry for the implementation of industry 4.0. In this chapter, 

we will present the criteria and the solution approaches used to address the enterprise, project 

and workforce selection for Industry 4.0. Our methodology comprises of three inter-related 

components namely enterprise selection, project selection and workforce selection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3-1: Digital enterprise planning 
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3.2 Criteria Selection for Industry 4.0 

 
Three categories of criteria are proposed depending upon the problem being addressed namely 

Enterprise selection, Project selection, or Workforce selection. The Table below presents these 

criteria. The criteria were obtained by discussion with industry experts and literature studies. 
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Enterprise Selection Criteria Type Authors 

Organization Type (manufacturing/service) Benefit Liao et al (2017), 
Gokalp et al (2016) 

Organization Size (Large, Medium, SME) Benefit Chryssolouris et al 
(2009), Asl et al 
(2012) 

Digital maturity level (state of IT 
implementation) 

Benefit Bley et al (2016), 
Tsai et al (2014) 

Digital (IT) strategy Benefit Leyh et al (2016), 
samaranyake et al 
(2017) 

Organization culture (international) Benefit Sarkis et al (2007) 

Innovation Benefit Wan et al (2015) 

Project Selection   

Implementation cost Cost Gunasekaran et al 
(2017) 

Time to completion Cost Schumacher et al 
(2016) 

Feasibility Benefit Brettel et al (2014) 

Resource Requirements Benefit Fowler et al (2007) 

IT Requirements Cost Lorenz et al (2015), 
Longo et al (20170 

Expected Revenues Cost Thannimalai et al 
(2013) 

Risk Cost Verdecho et al 
(2012) 

Workforce Selection   

Computer skills (programming, human machine 
interface) 

Benefit Sampson (2006), 
Crispim et al (2009) 

Soft skills (communication) Benefit Benesova and Tupa 
(2017) 

Ability to work in different business units 
(multitasking) 

Benefit Askin and Huang 
(1997), Liao et al 
(2011) 

Leadership Benefit Lin and Gen (2008), 
Vidic (2008) 

Core skills (fundamentals, engineering) Benefit Walter and 
Zimmermann 
(2016), Sha and Che 
(2005) 

Team thinking Benefit Balezentis et al 
(2012), Bhadury et 
al (2000) 

General aptitude (problem solving) Benefit Algulivey et al 
(2015), Lill (2009) 

Table 3-1. Proposed criteria for Industry 4.0 application 
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3.3. Prioritizing the Criteria 

 

After determining the criteria for any industry, it is important to prioritize these indicators. 

There are various methods for prioritizing the indicators like AHP, TOPSIS, Fuzzy TOPSIS. 

The other potential method for prioritising criteria is AHP. It was developed by Saaty in 1980. 

It is a widely used decision-making method and can be applied to determine the weights of 

different criteria in a multi criteria decision-making (MCDM) problem. The weight elicitation 

process quantifies the subjective judgments of the expert and can evaluate the consistency of 

the collected opinions through the structured framework associated with the AHP (i.e., 

consistency ratio [CR]) Su et al (2014). In AHP, an identical matrix with indicators on rows 

and columns side is constructed. When two similar indicators are compared in the matrix, value 

will be zero. Each indicator is given a weight in the first column according to our priority. All 

other values will be constructed in the upper triangular region by dividing the values in column 

1. It is very important to check the consistency because our assumption of assigning weight to 

indicators according to our priority can be wrong also. Steps for AHP can be described as 

follows: 

Step 1: First, construct a set of pair-wise comparison matrices size n × n. for each of the lower 

levels with one matrix for each element in the level immediately above by using the relative 

scale measurement. The matrix obtained is the criteria comparison matrix. 

 

 

1 12 1

2 21 2

3 31

4 41

5 51

6 61 62

1 . . .

1 . . .

. 1 . . .

. . 1 . .

. . . 1 .

. . . 1

n

n

C

x xI
x xI
xI
xI
xI
x xI

 
 
 
 

  
 
 
 
  

                                                                                                   (3.1)                   
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About Saaty’s pairwise comparison scale following values is used in the numerical method: 
 

Scale Definition Explanation 

1 Equal importance Two elements contribute 
equally to the property 

3 Moderate importance of one 
over another 

Experience and judgement 
slightly favour one over the 
other 

5 Essential or strong 
importance 

Experience and judgement 
strongly favour one over 
another 

7 Very strong importance An element is strongly 
favoured, and its dominance 
is demonstrated in practice 

9 Extreme importance The evidence favouring one 
element over another is one 
of the highest possible order 
of affirmation 

2,4,6,8 Intermediate values between 
two adjacent judgements 

Comprise is needed between 
two judgements 

Table 3-2. Saaty’s Pairwise Comparison. 
 

 

 

Step 2: This step is to obtain the normalized matrix. Normalized matrix can be obtained by 

dividing each column element by sum of the respective column. Sum of each column in a 

normalized matrix will be equal to 1. 

Step 3: Calculate the criteria weights by taking the average of each row of the normalized 

matrix. 

Step 4: The next step is to check the consistency of our result based on the assumptions we 

have made. 

I. First, we need to obtain   ws  which can be obtained by the relationship [c]*{w}. 

Here [c] is the criteria comparison matrix obtained in step 1 and {w} is the weighted 

matrix obtained in step 3. 

II. Next step is to find consistency vector since we cannot divide a vector by a vector, so 

we will take a dot product here. 
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consistency  ws *1/ w 
(3.2) 

 

III. In this step, calculate the consistency index using the formula below. Here,  is the 

Eigen value which is calculated by taking the average of the matrix obtained in the 

above step. 

CI max  n 
 

n 1 (n is the matrix size) (3.3) 

 

IV. The judgement consistency can be checked using the ratio CI/RI. Here, RI depends on 

the value of n. 

 
 

The CR is acceptable, if it does not exceed 0.10. If it is more, the judgment matrix is 

inconsistent. To obtain a consistent matrix, judgments should be reviewed and improved. It 

will be clearer with the help of following flowchart: 

a.
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Figure 3-2. Description of AHP method. 

 

But in our cases, we will be using TOPSIS method. For direct ranking, expert ratings were 

used. Experts rated the various criteria on a scale of 1-10, where 1 represents the lowest score 

and 10 represents the highest score. The aggregated scores were then normalized to determine 

criteria priorities (weights). 

3.4 Evaluation Methods for Industry 4.0 

 
Two methods were primarily used in our study for Industry 4.0 application namely TOPSIS (a 

multi-attribute decision making method) and Genetic Algorithms (meta-heuristic). These 

methods are described as follows: 
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Alternative   iA A    that best satisfies the 

goals 

3.4.1 MADM (Multi-attribute decision making) 

 
Bohanec et al (1988) defined the decision-making problem as follows: 

 
Given (aims or the goals of decision-maker) 

 
 
 
 

Find 

 

 

 
 

Figure 3-3. Definition of decision making problem. 

 

The main role of decision methods and tools is to support decision makers in 

 
• organizing and systematizing the facts, data and knowledge that influence the decision, 

 
• Consistently applying these upon all alternatives, and in 

 
• Further analysis and optimization of the alternatives. 

 
Multi-attribute decision making methods can be combined with expert system technology to 

obtain a better quality in terms of decision knowledge acquisition and explanation, where an 

expert system plays the role of a cognitive support tool for decision making. The MADM 

methods belong to the general category of multi-criteria decision-making methods. 

A set of alternatives A= {A1, A2, A3} 
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➢ Collection of information 

 
➢ Quantification of information 

 
➢ Modelling 

 
➢ Action 

 
We are using MADM instead of MODM due to following reason: 

 
 

Characteristic MADM MODM 

Criteria Attribute Objective 

Objective Implicit Explicit 

Attribute Explicit Implicit 

Constraint math. Form Inherent Explicit 

Alternative number Finite number Infinite number 

Usage Selection/evaluation Design 
Table 3-3. Difference between MADM and MODM. 

 

Among the MADM methods, we will be using TOPSIS for application in the three problems. 

The strength of TOPSIS is that it is able to distinguish between positive and negative criteria 

and generates criteria ranking based on proximity to the ideal solution. More details on TOPSIS 

are provided as follows. 

3.4.2 TOPSIS (Technique for order preference by similarity to ideal solution) 

 
TOPSIS method is applicable for the process where we have different alternatives and 

according to the given criteria we can select which model is more suitable for us. It does not 

consider the pairwise information like AHP method. TOPSIS an MCDM method, was 

originally developed by Hwang and Yoon in 1981 with further development by Yoon in 1987, 

and Hwang, Lai and Liu in 1993 to identify solutions from a finite set of alternatives based 

upon simultaneous minimization of distance from an ideal point and maximization of distance 

from a nadir point. TOPSIS can incorporate relative weights of criterion importance. This 

Method assumes that we have m alternatives (options) and n attributes/criteria and we have the 
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TOPSIS can be implemented through following steps: 
 

Step 1: Establish a decision matrix of attributes of an industry according to their priority based 

on industry 4.0. The structure of matrix can be described as follows: 

               C1      C2     .    .    .    Cn 

1 11 12 1

2 21 22 2

1

. . .

. . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . .

n

n

m m mn

D

x x xI
x x xI

x xI

 
 
 
 

  
 
 
 
  

                                                                                (3.4) 



Where Ii denote industries considered to measure the readiness where i ranges from 1 to m. 
 

Xij (i = 1, …, m and j = 1, …., n) denote the attributes of industry 4.0 indicating the value of the 

attributes of respective industry assigned according to their priority. 

Step 2: Next step is to calculate normalized decision matrix. As we know, different criteria 

have different units. So, data normalization is important to transform data to a specific range. 

There are various methods to normalize data like Min-max, standardization, Length-one or 

normalizing scaling, ordinal scale, normal scale, difference scale, absolute scale, linear 

normalization, non-monotonic normalization and vector normalization. We will be using the 

vector normalization method for normalization. The normalized matrix R(=[ rij ]) can be 

calculated as: 

 

rij 
xij 

 

(3.5) 
 
 

 

Where j = 1, …., n and I = 1, …., m. 

 
Step 3: Calculate the weighted normalized decision matrix. It is simply the multiplication of normalized 

decision matrix by its associated weights. Thus, it is: 

 x 

m 
2 

ij 

i 1 
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ij ij ij
rv w                                                                                                                                 (3.6) 

Where wij represents the weight of the jth attribute and rij is the normalized decision value. 

Step 4: Determine the positive ideal solution (PIS) or negative ideal solution (NIS) 

respectively. 

   1
,......, ;

n ij ij
Max Minr r r r r

                                                                            (3.7) 

   _ _ _

1
,......, ;

n ij ij
Min Maxr r r r r                                                                          (3.8) 

Step 5: Calculation of separation measure using the m-dimensional Euclidean distance. The 

separation from PIS can be calculated as: 

2

1
, 1,2,....( )

n

i j
i mijs r r




                                                                                          (3.9) 

Similarly, the separation from NIS can be calculated as: 

2
_

1
, 1,2,....( )

n

i j
i mijs r r

                                                                                 (3.10) 

Step 6: Calculate the relative closeness to the ideal solution. The relative closeness can be 

calculated as follows: 

 

_

_

i

i

i i

s
c

s s



                                                                                                                               (3.11) 

The index value of i C will lie between 0 and 1. The higher the value, the stronger is the 

recommendation to implement the industry 4.0 project based on the priorities assigned to the 

criteria. These results will be changed if we change the formula to the following: 

_

i

i

i i

s
c

s s






    

The complete order obtained by the defined formula will be reversed. The best possible value 

will change to the worst possible if we change the designed formula. 
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even if the inputs changed slightly or in the presence of reasonable noise. While performing 

search in large-state space, multi-modal state space, or n-dimensional surface, a genetic 

algorithm offers significant benefits over many other typical search optimization techniques 

like linear programming, heuristic, depth first, breath-first, RC Chakraborty (2010). 

GA’s was developed by Holland and his colleagues in the 1960’s. It is based on the theory of 

evolution. According to Smith et al (2006), GA are inspired by the evolutionist theory 

explaining the origin of species. In nature, weak and unfit species within their environment are 

faced with extinction by natural selection. The strong ones have greater opportunity to pass 

their genes to future generations via reproduction. In the long run, species carrying the correct 

combination in their genes become dominant in their population. Sometimes, during the slow 

process of evolution, random changes may occur in genes. If these changes provide additional 

advantages in the challenge for survival, new species evolve from the old ones. Unsuccessful 

changes are eliminated by natural selection. Important terms of genetic algorithm are: 

Population pool: Set of possible solutions. The population is randomly initialized. 

An objective function: which is to be minimized or maximized. 
 

Fitness function: used to find the fittest parents to produce fittest off-springs. 
 

Cross-over: it is the most important operator which is used to combine the fittest parents to 

produce the off-springs. 

Mutation: The mutation operator introduces random changes into characteristics of 

chromosomes. Mutation is generally applied at the gene level. In typical GA implementations, 

the mutation rate (probability of changing the properties of a gene) is very small and depends 

on the length of the chromosome. Therefore, the new chromosome produced by mutation will 

not be very different from the original one. Mutation plays a critical role in GA. As discussed 

earlier, crossover leads the population to converge by making the chromosomes in the 

population alike. Mutation reintroduces genetic diversity back into the population and assists 
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the search escape from local optima, Smith et al (2006). Following steps can be followed to 

find the optimal solution: 

➢ Step 1: Generate a random pool of population P1 of N solutions. 
 

➢ Step 2: Evaluate the fitness function of solutions in P1. 
 

➢ Step 3: Choose two fittest values x and y from P1. Generate off-springs by using a 
cross-over operator. Offspring population can be termed as Q1. 

 
➢ Step 4: Randomly mutate any solution in Q1 matrix with a pre-defined mutation rate. 

 
➢ Step 5: Calculate the fitness function for each solution in Q1 matrix. 

 
➢ Step 6: Based on the fitness value according to our pre-defined condition, add the 

solutions (Fittest) from Q1 to P1. 
 

➢ Step 7: If our pre-defined condition is satisfied, terminate the search or go to step 3 to 
create other Q2 matrix. Following flowchart describes the working of Genetic 
algorithm: 

 
 
 
 

 
Figure 3-6. Genetic algorithm steps. 
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The genetic algorithms offer a wide range of solutions to optimization problems. The genetic 

algorithms are a class of stochastic relaxation techniques that are applicable to the solution of 

a wide variety of optimization problems, by emanating the evolutionary behavior of biological 

systems, Reid et al (1996). Decision making associated with workforce planning results in 

difficult optimization problems because it involves multiple levels of complexity, Enrique Alba 

et al. In industry 4.0, workforce planning is an important issue especially when workers are 

cross-trained for multi-skills. It is important to know which workers can perform the task and 

how many hours they need to perform the task. Optimization techniques are useful when our 

main goal is to maximize the profit and minimize the cost. The basic feature of genetic 

algorithms is the multiple directional and global searches, in which a population of potential 

solutions is maintained from generation to generation. A useful feature of genetic algorithm is 

to handle multi-objective function optimization, Lin and Gen (2008). To efficiently utilize the 

benefits of cross-training, it is very important to implement workforce planning and human 

resource allocation in an efficient way. Following steps can be followed to solve an 

optimization problem using genetic algorithm: 

3.4.5  Method for workforce selection 

 

Let us consider an industry that wants to perform a task in a day which includes two jobs, with 

certain number of workers. They have a budget to perform the task. The industry wants to know 

the number of hours they should assign to each worker so that they can perform the task keeping 

the cost as minimum as possible. They have four categories of workers to perform job 1 and 

job 2 of the task. It can be described as, 
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z
i 

 
 

 
 

Type 1: 

Figure 3-7. Problem representation of GA. 

 

xi workers who can perform job 1. 
 

Type 2: yi workers who can perform job 2. 
 

Type 3: ' is the number of hours for workers from mixed skill category who can perform job 
 

1. 

 
Type 4: 

 
 
zi " 

 

 
is the number of hours for workers from mixed skill categories who can perform 

 

job 2. 

 
wi : Wages for each category of workers. 

 
So, our objective function is the cost minimization but keeping in mind the possible constraints 

setup by the industry. So, 

 
 

Objective function 
 

Min f (x) 
itype1 

wi xi 
itype2 

wi yi 
itype3 

wi zi '
itype4 

wi zi " 
 

(3.12) 

 

Here, f(x) is the total cost. 

 
 

Constraints: 
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i i 

i i i i 


itype1 

wi xi  
itype2 

wi yi  
itype3 

wi zi '
itype4 

wi zi "  D Here, D is the per day budget for the 

 

tasks. 
 

z '  z "  q 

 

x , y , z ', z " u, v

Here, q is the upper limit of hours for mixed skill workers. 

Here, u and v is the lower and upper limit of hours compulsory 

for each worker, respectively. 

 

Step 1: Select a pool of possible solutions from your own priorities and estimation. The 

population pool matrix be: 

11 12 13 14

21 24

31

41 44

. .

. . .

. .

x x x x

x x

x

x x

 
 
 
 
 
 

                                                                                                         (3.13)          

Step 2: Calculate the objective function using the values from the population pool for number 

of hours and the value of fixed wages is provided by the industry. 

Step 3: Calculate the fitness function using the rank-based method. We will be using Rank 

based technique for the selection of parents. The rank can be assigned to them using the 

following equation: 

Rank1  Rank2 If 
 

abs(optimal  work)1  abs(optimal  work )2 

 
(3.14) 

 

 

Here, optimal solution is the per day budget of the industry. 

 
Step 4: The next step is to cross-over the fittest parents to produce the fittest off-springs. 

Crossover is a recombined operator for two high-fitness strings (parents) to produce two 

offspring by matching their desirable qualities through a random process, Ketabchi et al (2013). 
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Chapter 4 

Numerical Application 

4. 1 Enterprise selection 

 
In the previous chapter, we presented our solutions for the problems described in chapter 2. In 

this section, we will demonstrate their application using real data sets and case study. 

4.1.1 Criteria for Enterprise selection 

 
We are using TOPSIS method to select the enterprise for the implementation of industry 4.0 

project. Let us assume there are 4 manufacturing I1, I2, I3, I4 industries who want to implement 

industry 4.0 project. They already are at full digitization stage. Thus, we are implementing 

advanced level of digitization in an industry. We will consider the following six criteria for 

industry 4.0. Following indicators are realized with the help of the indicators realized in table 

2-1 for advanced level implementation of the industry 4.0. 

C1= Organization Type (manufacturing/service) 

C2= Organization Size (Large, Medium, SME) 

C3= Digital maturity level (state of IT implementation) 

C4= Digital (IT) strategy 

C5= Organization culture (international) 

C6= Innovation 



63  


 

4.1.2 Method for Enterprise selection 

 
Step 1: A scale from 1 to 10 is used to assign them the weights according to their priorities. 

Higher the rank, higher is the priority. Following decision matrix is obtained which can be 

named as Q matrix. Here, attributes are taken horizontally, and industries are represented 

vertically. These values are based on the survey conducted. 

        C1    C2    C3     C4    C5   C6 

1

2

3

4

8 7 9 9 7 10

3 7 9 10 5 8

7 8 8 8 6 6

10 10 9 10 5 7

I
I
I
I

 
 
 
 
 
 

                                                                                                  (4.1)


Step 2: In this step, we will normalize the decision matrix obtained in the step 1. Normalization 

is really an important to make the same base because attributes can have different units when 

we are considering different industries. Our normalization matrix is: 

 
 

  

C1 
 

C2 
 

C3 
 

C4 
 

C5 
 

C6 
 

I1 
 

0.536925 
 

0.432461 
 

0.513657 
 

0.484544 
 

0.602464 
 

0.633724 
 

I2 
 

0.201347 
 

0.432461 
 

0.513657 
 

0.538382 
 

0.430331 
 

0.506979 
 

I3 
 

0.469809 
 

0.494242 
 

0.456584 
 

0.430706 
 

0.516398 
 

0.380235 
 

I4 
 

0.671156 
 

0.617802 
 

0.513657 
 

0.538382 
 

0.430331 
 

0.443607 

(4.2) 
 
 
 

 

Step 3: We will develop a set of importance weights wk for each of the column. These weights 
 

can be random numbers but usually they are ad hoc reflective of relative importance. Following 

weights are calculated 
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W1  0.14 

W2  0.17 

W3  0.19 

W4  0.20 

W5  0.12 

W6  0.16 

 
 

 
(4.3) 

 

Step 3: Weighted decision matrix named vij , obtained my multiplying each weight with the 

respective column. Here, columns are the weights assigned to the criteria by different expertise. 

These weights are obtained with the help of a survey conducted. So, our weighted decision 

matrix obtained is as follows: 

 
Vij= 

 
 

 
C1 C2 C3 C4 C5 C6 

I1 0.075169 0.073518 0.097595 0.096909 0.072296 0.101396 

I2 0.028189 0.073518 0.097595 0.107676 0.05164 0.081117 

I3 0.065773 0.084021 0.086751 0.086141 0.061968 0.060838 

I4 0.093962 0.105026 0.097595 0.107676 0.05164 0.070977 

(4.4) 
 

Step 4: Positive ideal solutions (PIS) and negative ideal solutions (NIS) are as follows: 
 
 

 
V+ 

 
0.093962 

 
0.105026 

 
0.097595 

 
0.107676 

 
0.072296 

 
0.101396 

(4.5) 
 
 

 

V- 
 

0.028189 
 

0.073518 
 

0.086751 
 

0.086141 
 

0.05164 
 

0.060838 

(4.6) 
 

Step 5: The separation from PIS (S  ) and NIS (S  ) 
 
can be calculated as: 

i i 
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Si+ Si- 

0.038234 0.067174 

0.078465 0.031506 

0.05974 0.040368 

0.036769 0.077479 

 

 

Step 6: Relative closeness to ideal solution can be calculated as: 
 

I1   0.63 

I3   0.40 

I2  0.28 

I4  0.67 
 

As we know, relative close to value 1 is the best possible case and closeness to value 0 is the 

worst possible case. So, according to the priorities assigned to the attributes, industry I4 is 

highly capable of implementing industry 4.0. Following table describes the ranking with 

different normalization methods. 

 

Normalization Methods Ranking results 

Vector Normalization I4>I1>I3>I2 

Linear normalization (1) I4>I1>I3>I2 

Linear normalization (2) I4>I1>I2>I3 

Linear normalization (3) I4>I1>I3>I2 

Table 4-1. Impact of normalization on ranking results 

 

 

4.2 Project selection 

 
4.2.1 Criteria for project selection 

After the selection of industry, our next step is to prioritize the indicators. There are different 

attributes for industry 4.0. But it is very important to know which indicator to implement first. 

It is not possible to implement all the indictors at once as it needs a huge budget. Moreover, 

industries are reluctant to implement all the indicators as they are not sure about the results. 

Here, we will use the TOPSIS method to prioritize the indicators. So, higher important 
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indicators can be implemented first. We already discussed this method in the previous chapter. 

Now, we will consider a numerical example for the practical usage. Following are our criteria 

for the project selection which are obtained using the results of survey conducted. 

C1=Implementation cost 

C2= Time to completion 

C3= Feasibility 

C4=Resource Requirements 

C5= IT Requirements 

C6= Expected Revenues 

C7 = Risk 

4.2.2 Method for project selection 

 

As before, we will use the TOPSIS method by following steps. In TOPSIS method, we will 

consider the same criteria. We have discussed the steps for TOPSIS earlier. So, here we will 

just implement the result. 

Step 1: Our decision Matrix say D, based on the Survey conducted is as follows 

                 C1     C2   C3    C4   C5   C6   C7 

     

1

2

3

4

7 10 10 9 9 9 9

8 5 7 4 10 6 9

9 7 5 6 6 8 6

9 10 7 10 9 9 5

P

P
D

P

P

 
 
 
 
 
 

                                                              (4.7)                    

 Step 2: Our normalized matrix R is as follows: 
 
 

 C1 C2 C3 C4 C5 C6 C7 

P1 0.422116 0.604122 0.66965 0.58961 0.521356 0.556022 0.602685 

P2 0.482418 0.302061 0.468755 0.262049 0.579284 0.370681 0.602685 

P3 0.54272 0.422885 0.334825 0.393073 0.347571 0.494242 0.40179 

P4 0.54272 0.604122 0.468755 0.655122 0.521356 0.556022 0.334825 
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(4.8) 
 

Step 3: Our weighted matrix is as follows: 

 

W1    0.17 

W2    0.14 

W3    0.13 

W4    0.13 

W5    0.16 

W6    0.14 

W7    0.13 
 

Step 4: Weighted decision matrix can be calculated as: 
 
 
 
 
 

 
C1 C2 C3 C4 C5 C6 C7 

P1 0.059096 0.102701 0.127233 0.117922 0.062563 0.088963 0.078349 

P2 0.067539 0.05135 0.089063 0.05241 0.069514 0.059309 0.078349 

P3 0.075981 0.071891 0.063617 0.078615 0.041708 0.079079 0.052233 

P4 0.075981 0.102701 0.089063 0.131024 0.062563 0.088963 0.043527 

(4.9) 

 

Step 4: Positive ideal solutions (PIS) and negative ideal solutions (NIS) are as follows: 
 
 

 
V+ 

 
0.059096 

 
0.05135 

 
0.127233 

 
0.05241 

 
0.041708 

 
0.088963 

 
0.043527 

(4.10) 
 
 

 
V- 

 
0.075981 

 
0.102701 

 
0.063617 

 
0.131024 

 
0.069514 

 
0.059309 

 
0.078349 
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                                 (4.11) 
 

Step 5: The separation from PIS (S  ) and NIS (S  ) 
 
can be calculated as: 

i i 

 

Si+ Si- 

0.19397 0.18495 

0.066282 0.097652 

0.074928 0.074445 

0.104853 0.0528 

 

 

Step 6: Relative closeness to ideal solution can be calculated as: 
 

P1   0.48 

P3     0.49 

P2    0.59 

 
P4    0.33 

 

As we know closeness to value 1 provides the best solution. Thus, industry I4 which was 

selected in Enterprise selection method, can implement project 2 first. To evaluate we have 

checked the impact of different normalization methods on the ranking. Since cost and benefit 

attributes are involved so results differ depending upon the formulae used. 

 

 
Normalization Methods Ranking results 

Vector Normalization P2>P3>P1>P4 

Linear normalization (1) P1>P4>P2>P3 

Linear normalization (2) P4>P2>P1>P3 

Linear normalization (3) P3>P2>P1>P4 

Table 4-2. Impact of normalization on ranking results 
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i i 

4.3 Workforce selection 

 
4.3.1 Criteria for workforce selection 

 
As discussed previously, the industry wants to perform the task which includes two jobs. They 

have above mentioned four categories of workers which can do this task. Type 3 and type 4 are 

the mixed skill workers so they are more expensive. The company has a per day budget of 

1000$ for this task. A worker can work between 1 to 8 hours in a day. The company wants to 

know the number of hours they should assign to each worker keeping the cost under-budget. 

Since company must pay more to type 3 and type 4, the number of hours for these categories 

should not be more than 15. All workers must work at least 1 hour a day. The mutation rate is 

10%. 

So, the objective function of this problem is the minimization of the cost which can be 

described as: 

f (x) 
itype1 

wi xi 
itype2 

wi yi 
itype3 

wi zi '
itype4 

wi zi " 
 

(4.12) 

 
 

wi For type 1 = 40$/hour 
 

wi For type 2 = 45$/hour 
 

wi For type 3= 50$/hour 
 

wi For type 4= 55$/hour. 

 
Constraints for our case study are: 

 


itype1 

wi xi  
itype2 

wi yi  
itype3 

wi zi '
itype4 

wi zi "  1000 

 

z 
'  z 

" 15 
 

(4.13) 
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i i i i x , y , z ' , z " 1,8 (4.14) 
 

 

Step 1: Set up the population pool of random solutions with population size 16. We will take 

a matrix of 4×4. Matrix P is generated keeping the constraints in mind.35) 

    

1

2

3

4

8 1 2 4

4 1 2 2

7 5 8 2

6 8 3 7

P

P

P

P

 
 
 
 
 
 

                                                                                                              (4.15) 

For the first iteration, we will not calculate the objective function and fitness function to find 

the fittest parents for cross-over because it is a randomly generated pool. So, we will do the 

cross-over randomly. 

Step 2: So, we will randomly cross-over the elements in matrix P. we will use single cross- 

over point. We will do the cross-over on second element of each row. Elements obtained after 

cross-over are: 

 

   

1 2

2 4

3 1

4 2

8 1 2 2

4 1 3 7

7 5 2 4

6 8 2 2

PP

P P

P P

P P

 
 
 
 
 
 

                                                                                                                        (4.16)

                
Step 3: Mutation is the simple replacement of the value in the cross-over matrix with any 

random value. Our mutation rate is 10%. So, in the matrix of 16 elements there will be chance 

of only one value mutated. Matrix obtained after mutation is: 

    

1

2

3

4

1 2 2

4 1 3 7

7 5 2 4

6 8 2 2

4Q

Q

Q

Q

 
 
 
 
 
 
 

                                                                                                            (4.17)

Now, we have obtained a pool of population. So, calculate the objective function of this 

population pool. In short, we will repeat the steps to find the optimal solution. 
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  

Step 1: Objective function can be calculated as 
 
 

 f(Q1) f(Q2) f(Q3) f(Q4) 

Values 415 740 825 810 
 
 

 

Step 2: Calculate the fitness function using the rank-based method to find the fittest parents to 

produce fittest off-spring. The equation is 

Rank1  Rank2 if 
 

abs(optimal  work)1  abs(optimal  work )2 

 
(4.18) 

 

 

Here, optimal value is the per day budget of the industry. And work is the value of objective 

function obtained with the values of Q matrix. So, fitness function and respective rank is as 

follows: 

 

 Q1 Q2 Q3 Q4 

Values 585 260 175 190 

Rank 4 3 1 2 
 
 

 

These parents can be arranged in an ascending order according to their fitness level as follows: 
 

Q3 > Q4 > Q2 > Q1 

 

(4.19) 
 

 

Step 3: Based on the fitness, cross-over the fittest parents to produce the fittest off-springs. In 

our numerical solution we are using single point cross over on the second element of the row. 

Cross-over can be displayed as: 

3 2

3 4

4 2

4 1

7 5 3 7

7 5 2 2

6 8 3 7

6 8 2 2

Q Q

Q Q

Q Q

Q Q

 
 
 
 
 
 

                                                                                                          (4.20)
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Step 4: Now, mutate any value with random value between 4 to 8. The mutated matrix M is 

obtained as: 

    

7 5 3 7

7 5 2 2

6 8 3 7

6 2 24

M

 
 
   
 
  

                                                                                                                     (4.21)

    Step 5: Next, calculate the objective function for M matrix. It can be stated as: 
 
 

 M1 M 2 M3 M 4 

Values for objective function 1040 715 1135 630 

Fitness function using the 
equation 

40 285 135 330 

 
 

 

So, their fitness can be explained as: 
 

M1 > M3 > M 2 > M 4 

 

(4.22) 
 

 

Application results 
 

Since M1 

 

has the minimum difference between the optimal solution and solution obtained. 
 

Industry can accept this decision or can go for many other iterations until the difference 

between the optimal and the obtained decision becomes zero or less than the value obtained in 

the previous iteration value. So, if company gives following hours to the worker, they can 

achieve the target within their budget and considering the constraints. 

 

Type Type1 Type2 Type3 Type4 

Hours 7 hours 5 hours 3 hours 7 hours 
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4.3.2 TOPSIS for workforce selection 

 
For workforce selection we will be using the TOPSIS method again. As per the survey 

conducted for the criteria following decision matrix is obtained based on the responses 

observed from different expertise. 

Step 1: Here, WF1, WF2, WF3 and WF4 represent different industries which participated in the 

survey. C1, C2, C3, C4, C5, C6 and C7 are different criteria for workforce selection where 

C1= Computer skills (programming, human machine interface) 

C2=Soft skills (communication) 

C3= Ability to work in different business units (multitasking) 

C4= Leadership 

C5=Core skills (fundamentals, engineering) 

C6= Team thinking 

C7= General aptitude (problem solving) 

C1    C2   C3   C4   C5    C6   C7 

   

1

2

3

4

10 8 8 7 9 9 9

9 5 6 8 10 7 4

6 5 5 4 4 4 4

7 7 9 9 9 6 6

WF

WF

WF

WF

 
 
 
 
 
 

 

 

Step 2: Normalized Matrix R is as follows: 
 
 

 
C1 C2 C3 C4 C5 C6 C7 

WF1 0.613139 0.626608 0.557386 0.483046 0.539784 0.667124 0.737309 

WF2 0.551825 0.39163 0.41804 0.552052 0.59976 0.518875 0.327693 

WF3 0.367884 0.39163 0.348367 0.276026 0.239904 0.2965 0.327693 

WF4 0.429198 0.548282 0.62706 0.621059 0.539784 0.44475 0.491539 
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Step 3: Our weighted matrix is 

 

W1    0.16 

W2    0.12 

W3    0.14 

W4    0.14 

W5    0.16 

W6    0.13 

W7    0.11 
 

 

Step 4: Weighted decision matrix named vij , obtained my multiplying each weight with the 

respective column is given as follows: 

 

 C1 C2 C3 C4 C5 C6 C7 

WF 1 0.098102 0.075193 0.078034 0.067626 0.086365 0.086726 0.081104 

WF 2 0.088292 0.046996 0.058526 0.077287 0.095962 0.067454 0.036046 

WF 3 0.058861 0.046996 0.048771 0.038644 0.038385 0.038545 0.036046 

WF 4 0.068672 0.065794 0.087788 0.086948 0.086365 0.057817 0.054069 

(4.23) 
 

Step 5: Positive ideal solutions (PIS) and negative ideal solutions (NIS) are as follows: 
 
 

 
V+ 

 
0.098102 

 
0.075193 

 
0.087788 

 
0.086948 

 
0.095962 

 
0.086726 

 
0.081104 

(4.24) 
 
 

 
V- 

 
0.058861 

 
0.046996 

 
0.048771 

 
0.038644 

 
0.038385 

 
0.038545 

 
0.036046 

(4.25) 
 

Step 6: The separation from PIS (S 
 ) and NIS (S 

 ) 
 
can be calculated as: 

i i 

 

Si+ Si- 

0.000561 0.237792 

0.065135 0.081274 

0.117717 0 

0.051119 0.085462 
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Step 7: Relative closeness to ideal solution can be calculated as: 
 

WF1  0.99 

 
WF3  0 

WF2  0.55 

 
WF4  0.62 

 

The value closest to 1 provides us the best solution. So, considering workforce selection I1 

satisfies the workforce selection criteria. Different normalization methods can be adopted, 

and their result be 

 

Normalization Methods Ranking results 

Vector Normalization WF1>WF4>WF2>WF3 

Linear normalization (1) WF1>WF4>WF2> WF3 

Linear normalization (2) WF1>WF4>WF2>WF3 

Linear normalization (3) WF1>WF4>WF2>WF3 

Table 4-3. Impact of normalization on ranking results 
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Chapter 5: 

Conclusions and Future Works 

5.1 Conclusion 

Industry 4.0 is considered as the next phase in digitization and manufacturing sector. 

Implementing industry 4.0 is important to face the competition in the manufacturing world but 

implementing it in right direction is even more important. The goal of this study was to provide 

the methods which can be adopted by any industry for the implementation of industry 4.0 

project. We addressed three main problems in this regard namely enterprise selection, project 

selection and workforce selection. TOPSIS and Genetic Algorithm based approaches are 

proposed. Direct ranking from experts were used to determine criteria weights. Numerical 

applications are provided. The proposed work is innovative and can be useful to manufacturing 

and service organizations interested in implementing Industry 4.0 projects for performance 

improvement. 

5.2 Future work 

 
This research has limitations which can be converted to opportunities for future works as 

follows: 

• Inter-relationship between the evaluation criteria can be considered. 
 

• AHP method could be used to prioritize the indicators 
 

• The focus of this study was mainly on the manufacturing sector. It could be extended 

to other sectors. 

• We have provided different solutions for the various problems associated with the 

implementation of industry 4.0 but these solutions have not been practically tested. 

They can be tested for different industry type, size and context. 
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• The assumptions we have considered are based on the previous literature and research. 
 

So, it can be modified according to the practical perspective and future usage. 
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APPENDIX A: QUESTIONNAIRE 

This Questionnaire is designed for Enterprise, project and workforce selection. Different 
responses are collected from people working in different industries. We organised this survey 
to validate our results for enterprise selection, project selection and workforce selection. 

Please rank the importance of following criteria on a scale of 1-10 for implementing large 

scale information technology project in an organization. The rank 1 represents the lowest score 

and 10 represents the highest score. 

Your Sector: Service Type of industry: Home Automation 

Years of experience with IT projects 5 

Enterprise Selection 
 

Criteria Score (1-10), 1- Least important, 
10- Most Important 

Organization Type (manufacturing/service) 8 

Organization Size (Large, Medium, SME) 7 

Digital maturity level (state of IT implementation) 9 

Digital (IT) strategy 9 

Organization culture (international) 7 

Innovation 10 

 

Project Selection 
 

Criteria Score (1-10), 1- Least important, 
10- Most Important 

Implementation cost 7 

Time to completion 10 

Feasibility 10 

Resource Requirements 9 

IT Requirements 9 

Expected Revenues 9 

Risk 9 

 

Workforce Selection 
 

Criteria Score (1-10), 1- Least important, 
10- Most Important 

Computer skills (programming, human machine 
interface) 

10 

Soft skills (communication) 8 

Ability to work in different business units 
(multitasking) 

8 

Leadership 7 

Core skills (fundamentals, engineering) 9 

Team thinking 9 

General aptitude (problem solving) 9 

THANK YOU 
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Please rank the importance of following criteria on a scale of 1-10 for implementing large scale 

information technology project in an organization. The rank 1 represents the lowest score and 10 

represents the highest score. 

Your Sector: Manufacturing/Service Type of industry: Manufacturing 

Years of experience with IT projects: 1 

 
 

Enterprise Selection 
 

Criteria Score (1-10), 1- Least important, 
10- Most Important 

Organization Type (manufacturing/service) 7 

Organization Size (Large, Medium, SME) 8 

Digital maturity level (state of IT implementation) 8 

Digital (IT) strategy 8 

Organization culture (international) 6 

Innovation 6 

 

Project Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Implementation cost 9 

Time to completion 7 

Feasibility 5 

Resource Requirements 6 

IT Requirements 6 

Expected Revenues 8 

Risk 6 

 

Workforce Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Computer skills (programming, human machine interface) 6 

Soft skills (communication) 5 

Ability to work in different business units (multitasking) 5 

Leadership 4 

Core skills (fundamentals, engineering) 4 

Team thinking 4 

General aptitude (problem solving) 4 

 

THANK YOU 
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Please rank the importance of following criteria on a scale of 1-10 for implementing large scale 

information technology project in an organization. The rank 1 represents the lowest score and 10 

represents the highest score. 

Your Sector: Manufacturing/Service: Service Type of industry: Technology 

Years of experience with IT projects: 7 years 

 
 

Enterprise Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Organization Type (manufacturing/service) 3 

Organization Size (Large, Medium, SME) 7 

Digital maturity level (state of IT implementation) 9 

Digital (IT) strategy 10 

Organization culture (international) 5 

Innovation 8 

 

Project Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Implementation cost 8 

Time to completion 5 

Feasibility 7 

Resource Requirements 4 

IT Requirements 10 

Expected Revenues 6 

Risk 9 

 

Workforce Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Computer skills (programming, human machine interface) 9 

Soft skills (communication) 5 

Ability to work in different business units (multitasking) 6 

Leadership 8 

Core skills (fundamentals, engineering) 10 

Team thinking 7 

General aptitude (problem solving) 4 

 

THANK YOU 
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Please rank the importance of following criteria on a scale of 1-10 for implementing large scale 

information technology project in an organization. The rank 1 represents the lowest score and 10 

represents the highest score. 

Your Sector: Manufacturing/Service Type of industry: IT 

Years of experience with IT projects 7 

 
 

Enterprise Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Organization Type (manufacturing/service) 10 

Organization Size (Large, Medium, SME) 10 

Digital maturity level (state of IT implementation) 9 

Digital (IT) strategy 10 

Organization culture (international) 5 

Innovation 7 

 

Project Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Implementation cost 9 

Time to completion 10 

Feasibility 7 

Resource Requirements 10 

IT Requirements 9 

Expected Revenues 9 

Risk 5 

 

Workforce Selection 
 

Criteria Score (1-10), 1- Least important, 10- 
Most Important 

Computer skills (programming, human machine interface) 7 

Soft skills (communication) 7 

Ability to work in different business units (multitasking) 9 

Leadership 9 

Core skills (fundamentals, engineering) 9 

Team thinking 6 

General aptitude (problem solving) 6 

 

THANK YOU 
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For the result validation of Genetic algorithm, we also used Python language to get the 

results. Following results were obtained. 
 


