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Abstract
Registration and Display of Functional Data

Department of Mathematics and Statistics

Master of Science (Mathematics)

Mahdi Bakhshi

Functional data refer to data which are in the form of functions or smooth curves

that are assessed at a finite, but large subset of some interval. In this thesis, we

explore methods of functional data analysis, especially curve registration, in the

context of climate changes in a group of 16 cities of the United States. In the

first step, spline functions were developed in order to convert the raw data into

functional objects. Data are available in function forms, but the mean function

which was obtained by the unregistered curve fails to produce a satisfactory esti-

mator. This means that the mean function does not resemble any of the observed

curves. A significant problem with most functional data analyses is that of mis-

aligned curves (Ramsay & Silverman, 2005). Curve registration is one method in

functional data analysis that attempts to solve this problem. In the second step,

we used curve registration method based on “landmarks alignment” and “contin-

uous monotone registration” in order to construct a precise measurement of the

average temperature. The results show the differences between unregistered data

and registered data and a significant rise of the temperature in U.S. cities within

the last few decades.
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Chapter 1

Introduction

1.1 What is Functional Data Analysis?

In Functional Data Analysis (FDA) we work with a function rather than a single

data point. FDA attempts to analyze the information of curves or functions with

statistical techniques. It also provides a richer set of analyses than just comparing

means (Ramsay & Silverman, 2005). In other words, one advantage of func-

tional data analysis is the possibility of using information on the rate of change or

derivatives of the curves (Ramsay, 2013). In the weather data, derivative function

illustrates how quickly climate change is accelerating.

The first step in functional data analysis is transforming data points to continuous

functions. These functions are represented as:

yij = xi(tij) + εij i = 1, ..., n j = 1, ..., ni (1.1)

1
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where t is time (or another continuous variable), yij is the jth observation of the

ith sample function, and xi is a smooth function. Also, these smooth functions

are defined as linear expansion:

xi(tij) =
K∑
k=1

φk(tij)cik (1.2)

The φk(t) are basis functions that are mathematically independent of each other.

The cik are the coefficients associated with these K basis. Ramsay (2005) uses

this linear combination of basis functions as the main method for representing the

functions. Ramsay (2005) also determines the coefficients of the expansion ck by

minimizing the least squares criterion:

SSE(y|c) =
n∑
i=1

ni∑
j=1

[yij −
K∑
k=1

ckφk(tij)]
2 (1.3)

The criterion in matrix form is expressed as:

SSE(y|c) = (y −Φc)′(y −Φc) (1.4)

Taking the derivative of this criterion with respect to c and solving the

2ΦΦ′c− 2Φ′y = 0 for c, provides the least square solution:

ĉ = (Φ′Φ)−1Φ′y (1.5)

The vector ŷ of fitted value is:

ŷ = Φĉ (1.6)
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Moreover, Fourier basis functions and B-Spline basis functions are two types of

basis functions that we are use in our analyses.

1.2 Fourier basis functions

Fourier basis is a system that developed in early nineteenth century in France.

The set of basis functions for Fourier series includes one constant function and

pairs of sine and cosine functions to capture the variation in phase (Ramsay &

Silverman, 2005). It is given as follows:

φ1(t) = 1

φ2(t) = sin(tω)

φ3(t) = cos(tω)

φk(t) = sin(
k

2
tω)

φk+1(t) = cos(
k

2
tω)

where the constant ω is related to the period T by the relation ω = 2π
T

.

Because of how we define ω, each basis function repeats itself after T time units

have passed. Consequently, T is the period of the function and we tend to use this

basis for periodic functions.
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1.3 Spline basis functions

Splines are piece-wise polynomial functions defined over sub-intervals.First defin-

ing a spline is to divide the interval of observation into sub-intervals with bound-

aries at points called knots (Ramsay, Hooker, & Graves, 2009). Over any sub-

interval, the spline function is a polynomial of fixed degree (order), and the key

property of spline functions is that they are continuous at the knots. The order of

a polynomial is the number of constants required to define it, and it is one more

than its degree (the highest power) (Ramsay & Silverman, 2005). For splines, the

number of basis functions is:

the number of knots + order of the spline (Ramsay & Silverman, 2005).

Using order six splines guarantees that the first and the second derivatives can

be estimated well (Ramsay et al., 2009). The B-spline basis system developed by

de Boor (2001) is the most popular spline, and code for working with B-splines is

available in R, S-PLUS and MATLAB .

1.4 Number K of basis functions

Determining the number of basis functions is a subtle process. The larger K pro-

vides better fit to the data, but risk of introducing noise or variation will increase.

On the other hand, smaller K eliminates notable features of the smooth function

x(t) (Ramsay & Silverman, 2005). Comparing the number of basis function with

the variability of total squared errors
∑ni

i s
2
i is a common technique that help us to
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specify the number of K. The minimum total square of the residuals corresponds

to the best K. To have more information in terms of variability we should penalize

the residuals by the number of basis ni (King, 2014). The residual calculation is

as follows:

s2
i =

1

ni −K

ni∑
j=1

[yij − x̂i(tij)]2 (1.7)

Where K is the number of basis and ni is the number of observations for the

ith curve. To determine an appropriate number of basis we plot
∑
s2
i versus

K. Where the plot starts to flatten, adding basis function beyond that does not

improve model fit.

1.5 Roughness Penalty

When data are smoothed using either Fourier series or splines, it is very crucial to

avoid both over-smoothing, thereby missing important features of the curve, and

under-smoothing, thereby introducing noise. Fitting basis expansions by least

square criterion (1.3) does not provide a precise estimation of the curves (Ramsay

& Silverman, 2005).

Roughness penalty introduces a powerful option for approximating discrete data

by a function. Additionally, roughness penalty approaches can be applied to a

much wider range of smoothing problems than simply estimating a curve x from

observations of x(tj) for certain points tj (Green & Silverman, 1994).
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First, we define a measure of the roughness of the fitted curve, and then minimize

a fitting criterion that trades off curve roughness against lack of data fit. The

square of the second derivative [D2x(t)]2 of a function x at argument value t is

often called its curvature at t (Ramsay et al., 2009). Penalty term is a measure

of a functions roughness that is the integrated squared second derivative or total

curvature:

PEN2(x) =

∫
[D2x(t)]2dt. (1.8)

Whenever the function is highly variable, the curvature is large and the penalty

is large too. We can apply this concept to derivative estimation, as well, by

penalizing the curvature of the second derivative.

For periodic functions such as mean temperature curves, suppose that the func-

tions are represented by the first three terms in the Fourier series for some known

period ω = 2π
T

as follows:

x(t) = c0 + a1sin ωt+ b1cos ωt

Ramsay (2005) defines the differential operator L = ω2D + D3 as the harmonic

acceleration operator. If we apply this harmonic acceleration operator to higher-

order terms in a Fourier series:

L[aj sin jωt+ bj cos jωt] = ω2j(1− j2)[aj cos jωt− bj sin jωt]. (1.9)

For j = 1 it is zero and it increases with the cube of j. The integral of the square
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of this harmonic acceleration operator may be a suitable measure of roughness for

periodic data like the temperatures curves (Ramsay et al., 2009):

PENL(x) =

∫
[Lx(s)]2ds. (1.10)

Because this expression is proportional to j2(1−j2)2, the term with j = 1 does not

get penalized at all, but higher-order terms in the Fourier approximation receive

substantially higher penalties.

Regardless of what roughness penalty was used, we add some multiple of it to the

error sum of squares to define the compound fitting criterion.

PenSSE =

ni∑
j=1

(yij − xi(tij))2 + λ

∫
[D2x(t)]2dt. (1.11)

The parameter λ is a smoothing parameter. The first term is residual sum of

squares that shows the rate of exchange between fit to the data. The second term

is penalizing curvature that shows the variability of function x. The smoothing

parameter λ measures the rate of exchange between first term and second term.

As λ ↑ ∞, curvature becomes increasingly penalized and x(t) becomes smooth.

When λ ↓ 0 the function x free to fit the data as closely as possible (Ramsay et

al., 2009).

Determining the roughness penalty is not an exact science and should be evaluated

in more than one way to make sure results are consistent.

To determine the best value for smoothing parameter λ we use the generalized
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cross-validation measure GCV developed by Craven and Wahba (1979).

GCV (λ) = (
n

n− df(λ)
)(

SSE

n− df(λ)
) (1.12)

where df() measures the effective number of parameters used to estimate x(t)

(Ramsay & Silverman, 2007) plotting the function GCV (λ) in any case will inform

us about the curvature of near its minimum (Ramsay et al., 2009).

1.6 Curve Registration

After transforming our observations to functional forms, we want to analyze the

standard summary measures that are used in functional data analysis, including

the mean and co-variance functions. We are not quite ready, however, there are

systematic variations such as amplitude and phase variation among functional

observations. Therefore, the direct averaging to produce a cross-sectional mean

function over curves that are not aligned will produce poor estimators of the true

process average and co-variance functions. Registration of the functional data,

involving transformations of the argument t rather than the values x(t), will help

us to optimize the estimations (Ramsay & Silverman, 2005).

There are two types of variation between function values xi(ti). One is amplitude

variation or vertical variation, where x1(t) and x2(t) differ at points of time t but

exhibit the same shape features at that time. Figure 1.1 shows this amplitude

variation:
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Figure 1.1: Three curves vary only in amplitude.

The other one is phase variation where x1 and x2 are not exhibiting the same

behavior at the same time t. Therefore, to compare these two functions we need

to transform the time scale horizontally as you can see in Figure 1.2:

Figure 1.2: Three curves vary only in phase.
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There are several elements that affect the weather temperature of the cities. Some

of these factors are altitude or height above sea level, distance from the sea and

ocean currents. Consequently, winter comes earlier in some cities than others or

arrives late in some years. In temperature data case the shift is an important

feature of each curve (Ramsay & Silverman, 2005).

Without thinking about the phase variation, the cross-sectional mean is at risk of

underestimating the local maxima and overestimating the local minima (Zhong,

2008). The sample cross-sectional mean will be more successful in estimation

of average maximum temperature or minimum temperature, when the certain

features of curves are aligned to the same time.

1.7 Warping function

A warping function works as a time transformation function. Composition of the

smooth function and the warping function gives a registered curve (Zhong, 2008).

Let N functions xi be defined on closed real intervals [0, Ti]. The upper boundaries

may either vary randomly or be fixed. Also, let hi(t) be a transformation of

time t for case i. Since timing of events remains in the same order and hi(t)

should not affect that, the time warping function should be strictly increasing, i.e.

hi(t1) > hi(t2) for t1 > t2 (Ramsay & Silverman, 2007). Hence, transformation is

one to one and warping function is invertible. The inverse of a warping function

transforms observation time to a synchronized time scale where certain features

on different curves occur simultaneously (Zhong, 2008).
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The registered functions are x∗i (t) = xi[h
−1(t)], where the aligning function h(t)

satisfies the following equation:

h−1[h(t)] = t (1.13)

1.8 Landmark Registration

One procedure to align the curves is landmark registration that makes use of

warping function. A landmark is a certain feature of a curve with location such

as minimum, maximum or crossing of zero.

We are going to align the curves by transforming t for each curve, so that the

features of interest occur at the same transformed times.

For each curve xi we identify the argument values tif , f = 1, .., F related to each

of F features. The goal is to find a set of warping functions that satisfy:

hi(0) = 0, hi(T0) = Ti

where T0 is the synchronized ending time and Ti is the observed ending time for

sample path i and hi(t0f ) = tif , f = 1, .., F , where t0f is timing of landmarks for

mean function.

The landmarks of each converted curves occur at the same time as in the mean

function (Ramsay & Silverman, 2005). Now that a warping function h has been
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estimated from landmark registration, we can calculate the registered function:

x∗i (t) = xi[h
−1(t)]. (1.14)

1.9 Continuous Registration

One problem of using landmark registration is that occasionally landmarks are not

visible in all curves, and sometimes, its not easy to precisely find the location of

the landmarks. Identifying their timing may involve tedious interactive graphical

procedures. Thus, we might prefer a fully automatic method (Ramsay et al.,

2009). Moreover, using just a few landmarks could devaluate other aspects of the

curves and leave them unregistered. Ramsay(1998) proposed continuous monotone

registration method where a warping function is selected from a smooth monotone

family of functions.

The idea behind this method is that if an arbitrary sample registered curve x[h(t)]

and target curve x0(t) differ only in terms of amplitude variation, i.e. x0(t) =

Cx[h(t)], C is a constant, then their values are proportional to each other. If

we plot the function values x0(t) and x[h(t)] against each other, we will see a

straight line passes through the origin. Let the n by two matrix X contain pairs

of (x0(t), x[h(t)]) where both the target function x0(t) and the registered function

x[h(t)] are evaluated at a fine mesh of n values of t. Now we are going to analyze the

two-by-two cross-product matrix X ′X by principle components. The functional
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analogue of the cross-product matrix X ′X is an order two matrix :

T (h) =


∫
{x0(t)}2dt

∫
x0(t)x[h(t)]dt∫

x0(t)x[h(t)]dt
∫
{x[h(t)]}2dt



The principle components analysis of T (h) of integrated products of target curve

and registered curves should essentially reveal one component, and the smallest

eigenvalue should be near zero (Ramsay et al., 2009). Ramsay defines the minimum

eigenvalue criterion as follows:

MINEIG(h) = µ2[T (h)], (1.15)

where the function µ2 is the size of the smallest eigenvalue of an order two sym-

metric matrix. When MINEIG(h) = 0, h is the warping function for registration.



Chapter 2

Methods

2.1 Data Collection

In this study we are going to work on the daily temperature of sixteen cities of

the United State between 1950 and 2013. (Atlanta, GA, Boston, MA ,Burlington,

VT, Los Angeles, CA, Portland, OR, Miami, FL, Salt Lake City, UT, Nashville,

TN, New York City, NY, San Antonio, TX, Indianapolis, IN, Minneapolis, MN,

Green Bay, WI, Missoula, MT, Fairbanks, AK, San Francisco, CA).

The data was collected from NOAA′s National Climatic Data Center. This data

center provided the minimum and maximum temperatures of different weather

stations and we used the average of minimum and maximum as yij for the analyses.

Totally there are 23376 time points (days) for each city (ni are equal). We have

also used the package fda in R that created by J. O. Ramsay for the most part

of our analyses.

14
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2.2 Transforming the Data into Functions

To have a precise study of changes between temperature of cities, seasonal and

random variations need to be removed. We can subtract the average median tem-

perature from daily temperature to seasonal adjustment (King, 2014).

Using functional data techniques such as, fitting the Fourier series to the full data,

is an appropriate method (Ramsay & Silverman, 2005) (Ramsay & Silverman,

2007).

The Fourier series with a period of 365.25 days (there are 16 leap years in the data)

and five basis functions were used in this thesis. The residuals of the predicted

and the observed data points were minimized to acquire a suitable and acceptable

number of basis functions.

Plot of the number of basis functions versus the residuals in Figure 2.1 indicates

that the biggest decline occurs when number of basis functions K is five and the

sum of the residuals is 962.85. Far more than the range of K in the Figure 2.1,

the Fourier series with 131 basis functions has residuals that sum up to 950.26.

This shows that adding more basis functions does not considerably decreases the

sum of the residuals and it is not worth the cost of complicating the model.



16

4 6 8 10 12 14

95
5

96
5

97
5

98
5

K versus total of squared residuals

K

Su
m

ve
ct

or

Figure 2.1: Number of basis functions for the Fourier series

In this study we also used B-spline basis system to fit the data. An order of six

spline was fit to the original data with 133 basis functions. The calculation to

determine the acceptable number of basis functions is similar to the calculation

used for the Fourier series.

Figure 2.2 shows that the sum of the residuals decreases significantly with 133

basis functions.
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Figure 2.2: Three curves vary only in Phase.

One possible explanation for this drop at 133 basis functions is that this number is

twice the number of years (64 years) plus the degree of the spline (King, 2014). It

can be assumed that each year has two knots considering maximum and minimum

temperature. In the next chapter we will compare both Fourier series and B-spline

transformation.

Now its time to smooth these functional data with the roughness penalty.

For the functions obtained by the Fourier series we smoothed the data using a

harmonic acceleration roughness penalty, equation (1.10), which was defined in

chapter one. We also determined a range of smoothing parameter λ values and

examined the degrees of freedom and values of the generalized cross-validation
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coefficient GCV associated with each value of λ. Figure 2.3 shows the plot of the

log10 GCV versus the log10 λ since the only interest is the scale of the number of

digits.

λ

Figure 2.3: GCV versus the smoothing parameter λ to penalize the functions
obtained by the Fourier series

According to this figure, GCV value is minimized at log10 λ = 6. This was the

smoothing parameter used to minimizing the penalized least squares criterion,

equation (1.11), and smoothing the curves.

The process to find smoothing parameter λ for the data fitted with B-spline basis

is same as the Fourier series. However, in this case, the roughness penalty is based
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on the equation (1.8). Minimized GCV happened at log10 λ = 10. It can be found

in Figure 2.4:

λ

Figure 2.4: GCV versus the smoothing parameter λ to penalize the functions
obtained by the B-splines

After smoothing the functional data and evaluating both the Fourier series and

spline functions at every time point, the seasonal fits, which were acquired by the

Fourier basis, were subtracted of spline fits to obtain deseasonalized data. An

order six spline with ten basis function applied to smooth the residuals.
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2.3 Registration

The comparison of the curves obtained in the preceding chapters shows that the

warmest or coldest temperatures of cities occur in different times. Figure 2.5 shows

the maximum and minimum temperature of the two cities within a year.

Figure 2.5: Black curve shows the temperature of the Burlington and red
curve shows the temperature of Fairbanks during a year.

Burlington reaches the highest temperature of the year earlier than Fairbanks,

but winter comes later in Burlington. This means that, based on differences in

geographical areas, the arrival time of winter or summer is different. Winter comes

earlier in some cities than others. Consequently, the cross sectional mean function

or calculated average temperature does not resemble any of the observed curves,
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and it also does not provide an accurate measure of the average temperature.

Figure 2.6 shows the mean function curve (dashed line) and unregistered functions

of three cities of Burlington, Indianapolis and San Francisco. The average of these

temperature curves displays an image that is different from any of the individual

curve.

Figure 2.6: Dashed line is the mean function. The black,blue and red line
represent the functions for cities of Burlingtone, Indianapolis and San Francisco

respectively.

We used both landmark registration and continuous registration method to align

the curves and solve this problem.
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2.4 Landmark Registration Method

We found the maximum temperature of each city during a year as a landmark,

and the mean of these values was calculated. The goal is to align the landmarks

with their mean. This process happened similarly for the minimum temperatures

to not leave these aspects unregistered.

To identify these landmarks we used interactive graphical procedures provided by

locator function in R program. In the landmark method, t is transformed so that

the landmarks for each curve closely approach the landmarks of the mean function.

That means, all of the maximum and minimum temperatures respectively got close

to maximum and minimum of mean function. In this case, we tried to show that

how warm the average summer is at the time the average temperature reaches its

peak, rather than at any fixed time.

We will discuss the result of this method in chapter three.

2.5 Continuous Registration Method

The timings of a fixed set of landmarks provide one way of describing how similar

the shapes of two curves are. Continuous registration method is an automatic

method that use the entire curves for registration (Ramsay & Silverman, 2007).

The function of register.fd (in R program) was used to improve the temper-

ature curves that have already been registered using function of landmarkreg.

.
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A basis function is combined with a roughness penalty for defining the warp-

ing function. Also, there is a target function so that important features such as

maximum and minimum occur at about the same argument values of that tar-

get function. In this study we used the mean of registered curves obtained by

landmark registration as the target function. The continuous registration process

requires iterative numerical optimization techniques (Ramsay et al., 2009). To

optimize the registration process and have a better estimation, we used the calcu-

lated mean obtained by this method as a new target function and again started

to register the curves.



Chapter 3

Results

3.1 Unregistered data

The Fourier series which consist of five basic functions were used to model the

seasonal variation. Figure 3.1(a) shows the Fourier fits for all cities only for the

first decade, and figure 3.1(b) shows the Fourier series for only the city of Atlanta.

24
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(a) Fourier series using five basis functions.Only first decade is shown and each color represent
one city

(b) Fourier series of Atlanta using five basis functions

Figure 3.1: Fourier series for first decade
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Ramsay declares that the Fourier series are useful for the functions, where the

curvature tends to be of the same order everywhere. Ideally, the periodicity of the

Fourier series should be reflected to some degree in the temperature data.

From these graphs, it is easily observed that the functions are purely periodic.

Specific features such as maximum and minimum values do not vary in its period

from year to year.

In accordance with previous criteria, 133 basis functions were used with order 6

splines on the original data. Figure 3.2(a) illustrates the graph of the first decade

of these splines. Seasonality of the curves is still visible, but unlike the Fourier

series the seasonality varies from year to year.

The maximum and minimum values of the functions change in each different year.

It is shown in Figure 3.2(b) for city of Alberta.
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(a) B-spline using 133 basis functions.Only first decade is shown and each color represent one city

(b) B-spline of Atlanta using 133 basis functions

Figure 3.2: Order 6 Splines for first decade
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After presenting the Fourier and B-spline fits, the differences of these two func-

tional objects were calculated in order to obtain the data without seasonal varia-

tions (King, 2014). For each city a spline was fit to the differences of the Fourier

series and the spline of the original data. The total number of 10 basis functions

were used to have a fairly smooth trend.

These functions also were penalized using log λ = 10 as the smoothing parame-

ter. Figure 3.3(a) shows the splines of all the cities with the seasonal variation

removed, while the Figure 3.3(b) shows only the city of Burlington, VT. These

graphs mainly show an upward trend in the temperature through the entire time

frame. Accordingly, mean temperature of the cities is increasing over the time.
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(a) Order 6 splines of the data of all cities with seasonal variation removed.

(b) Order 6 splines of the Indianapolis with seasonal variation removed.

Figure 3.3: Splines of all cities using deseasoned data
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The major variations of the temperature during 1950s could just be due to mea-

surement error since recording temperatures were not regulated until later (Karl,

Melillo, Peterson, et al., 2009).

Also, there is another interpretation about the high variations of 1950s. Since

spline functions are less accurate around the endpoints, the difference between

these two functional objects (Fourier and Spline) are significant (King, 2014).

We also found the average temperature of all of these cities. The functional data

objects were averaged together using the sum of the functions and dividing by 16

(number of functions contributing to the mean). Figure 3.4 indicates how mean

temperature is changing between 1950 and 2013. The mean function is not a

straight line and it is possible to see that the warming is not linear.

Figure 3.4: Mean temperature of deseasoned data
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3.2 Registered data

Looking at the temperatures of the cities we can see that timing of the warmest

or coldest day of a year is variable.

Figure 3.5 shows the unregistered curves during the first year and the dashed line

indicates the mean of these sixteen curves.

Figure 3.5: Temperature of all unregistered data for the first year

We can see that peak of temperature of the mean curve occurs around the last

week of July. Using the land mark registration method, the time of maximum

temperature of each city was specified by R programming locator code. This was

a manual maximum temperature identification procedure requiring a mouse click

at the point where the temperature curve reaches the peak.
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We used a single landmark ti being the day for each city (i) at which its tem-

perature is maximum. Mean of these ti values is 204.85 which is on 24th of July.

Some cities experience their warmest day of the year before July 24th and some

cities after that. This analysis should make it fairly easy to understand why the

average of these temperature curves displays an image that is different from any

of individual curves. Let us define t0 = 204.85 as a time specified for the middle of

the average temperature. Then we specify time-warping functions hi by fitting a

smooth function to the three points (1, 1), (t0, ti), and (365, 365). Because in this

method we just found maximum temperatures as landmarks, we left the minimum

temperatures unregistered. To solve this, we found new landmark ti (the day for

each city (i) at which its temperature is minimum) and did the same procedure

to find the average of the minimum temperature. The mean value of these new

landmarks is 32.46 which is on first of February.

Unregistered data was registered using these specific landmarks. The bottom panel

in Figure 3.6 uses landmark registration to align these curves, so the maximum

and minimum temperature for all cities happens fairly at the same time.
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Figure 3.6: The top panel reproduces the unregistered temperature curves.
The landmark registered curves corresponding to those are shown in the bottom
panel, where the landmarks were the maximum and minimum temperatures.
The dashed line in each panel indicates the mean curve for the curves in that

panel.
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Comparison of mean of unregistered data and registered data indicates that mean

of registered data tends to resemble much more closely in most of the sample

curves. In Figure 3.7, mean of unregistered and registered data for city of Indi-

anapolis is shown. The mean function of registered data gives a better display of

observed data specifically at the beginning and end of the year.

Figure 3.7: Comparing the mean function of unregistered and landmark reg-
istered data for the city of Indianapolis
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3.3 Time Warping function and registration

Figure 3.8 shows the temperature curves on the left and the corresponding warping

function h(t) on the right for the cities of San Francisco and Burlington. The

vertical dashed line is the mean of warmest day of the year calculated in the

previous section.

Figure 3.8: Temperature curves and corresponding time warping functions.

If, at any time t, hi(t) > t, then warped time is growing faster than clock time and

our observed process is running late (Ramsay & Silverman, 2005). This means

that the temperature reaches the peak later than average at that clock time.

Similarly, if h(t) < t , clock time is being slowed down for a process that is



36

running ahead of some target. In this case , the temperature reaches the peak

earlier compare to the average. According to Figure 3.8 summer comes earlier in

city Burlington compared to city San Francisco. Figure 3.9 also illustrates the

time warping function h(t) for all sixteen cities.
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Figure 3.9: Warping function h(t) for all cities.

For the next step we used continuous registration method to register the temper-

ature curves. Figure 3.10(a) shows that the continuously registered temperature

curves are now aligned over the entire maximum and minimum values relative to

the landmark registered curves. Figure 3.10(b) also shows the time warping func-

tions h(t) of all cities.
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(a) Continuous registered curves. Dashed line is mean function.
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(b) Warping function h(t) for all cities.

Figure 3.10: Continuous registered curves
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The calculated mean obtained by this method was used as a new target function

and the process of continuous registration was operated again. However, the result

of this iteration is not significantly different from previous registered curves. For

each curve we also found a series of plots, each containing two side-by-side pan-

els. The left panel contains the unregistered curve (dashed blue line), the target

function (dashed red line) and the registered curve (solid blue line). The right

panel includes the warping function h(t) and the linear function corresponding

to no warping. Fig 3.11 shows these plots for Burlington, Indianapolis, and San

Francisco cities.
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Figure 3.11: Continuous registration of three city and corresponding warping
functions.
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To determine the impacts of two types of registration (landmark and continuous

methods), we plot all unregistered, landmark and continuously registered curves

in Figure 3.12.

Figure 3.12: Plots of unregistered, landmark and registered data.
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Figure 3.13 shows the mean of unregistered and registered data. The mean of the

continuously registered acceleration curves is shown as black solid line, while that

of the landmark registered curves is a dotted blue line. The light dashed line is

the mean of the unregistered curves.

Figure 3.13: Mean of unregistered and registered data



Chapter 4

Conclusion

In this study we have tried to transform the discrete data to the functional form

with close attention to functional data analysis methods. These methods were

applied to weather data of sixteen cities of the United States during a 64 year

interval. In this process, bases such as the Fourier series and splines were defined

and to reach the functional form we used least square and generalized cross vali-

dation criterion. After forming the functional objects, we started to register the

curves. The main reason for registration of weather data was the variation of the

timing of special features (warmest or coldest day of a year) in different cities.

Landmark and continuous registration methods were applied to the data in order

to move these considerable features towards each other and have a more precise

comparison about the temperature of different cities. According to the informa-

tion acquired from registered curves, it is seen that weather temperature of all

cities has experienced an upward trend during last 64 years.
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Appendix A

R Codes
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##################### Load the fda library #####################  
library(fda) 
 
##################### Data set #####################  
 
USweather = 
read.csv("/Users/Mahdi/Documents/Uni/Thesis/data/Datasets/mydetasetmatrix.csv", TRUE, 
",") 
USweatherMatrix= as.matrix(USweather) 
 
UScitynames = read.csv("/Users/Mahdi/Documents/Uni/Thesis/data/Datasets/UScitylist.csv", 
TRUE, ",", colClasses = "character" ) 
 
 
##################### Creating Fourier basis ##################### 
 
yearRng= 23376 
Tempbasis1 = create.fourier.basis(yearRng, 5, period = 365.25) 
Tempfd1 = smooth.basis(argvals = (1:23376)-0.5, 
                       USweatherMatrix, Tempbasis1)$fd 
Tempfd1$fdnames= list("Day", "Weather Station", "Mean temperature") 
 
#######mean and std of functions 
 
mean1= mean(Tempfd1) 
 
sd1=sd.fd(Tempfd1) 
 
##################### Creating B-spline basis ##################### 
 
Tempbasis2= create.bspline.basis(yearRng, 133, 6) 
Tempfd2 = smooth.basis(argvals = (1:23376)-0.5, 
                       USweatherMatrix, Tempbasis2)$fd 
 
Tempfd2$fdnames= list("Day", "Weather Station", "Mean temperature") 
 
 
#######mean and std of functions 
mean2=mean(Tempfd2) 
 
sd2=sd.fd(Tempfd2) 
 
##################### Plots Figure 9(a) 9(b) and Figure 10(a) and 10(b) 
##################### 
 
plot(Tempfd1, xlim = c(1,3650), main="All Cities of Fourier Basis", 
     xlab="Year", ylab="Temperature",xaxt='n') 
 
plot(Tempfd2, xlim = c(1,3650), main="Order 6 Splines of All Cities",  
     xlab="Year", ylab="Temperature",xaxt='n') 
 
plot(Tempfd1[1], xlim = c(1,3650), main="Fourier Basis of Atlanta", 
     xlab="Year", ylab="Temperature",xaxt='n') 



 
plot(Tempfd2[1], xlim = c(1,3650), main="Order 6 Splines of Atlanta", 
     xlab="Year", ylab="Temperature",xaxt='n') 
 
############################## Ploting curves for one year ####################### 
plot(Tempfd1[1:16],xlim = c(300,795), xaxt='n',lty=1, lwd=1, cex=2) 
abline(v=365,lty=1, lwd=2) 
abline(v=730, lty=1, lwd=2) 
lines( mean1,xlim = c(300,795),lwd=3,lty=3) 
 
 
plot(Tempfd2[1:16],xlim = c(300,795), xaxt='n',lty=1, lwd=1, cex=2) 
abline(v=365,lty=1, lwd=2) 
abline(v=730, lty=1, lwd=2) 
lines( mean2,xlim = c(300,795),lwd=3,lty=3) 
 
 
##################### Calculating K number of basis for the Fourier series 
#####################  
#K is the number of basis functions required 
#and sumvector is the total of the squared residuals added together. 
for ( k in c(3,5,7,9,11,13,15)) { 
   
  yearRng= 23376 
  Tempbasis1 = create.fourier.basis(yearRng, k, period = 365.25) 
  Tempfd1 = smooth.basis(argvals = (1:23376)-0.5, 
                         USweatherMatrix, Tempbasis1)$fd 
  tvec= c(1:23376)-0.5 
  coefficient= coef(Tempfd1) 
  basismatrix= eval.basis(tvec, Tempbasis1) 
  xhat= basismatrix%*%coefficient 
  diffmatrix= (USweatherMatrix-xhat) 
  diffmatrix2= (diffmatrix)^2 
  squaredMatrix = apply(diffmatrix, c(1,2), function(x) x^2) 
  sse= sum(squaredMatrix) 
  ssen= (1/(23376-k))*sse 
  print(ssen) 
} 
 
ss1=c(989.0686, 962.8558, 957.5924, 956.7544, 956.1556, 955.4546, 955.1731) 
k1= c(3,5,7,9,11,13,15) 
plot(k1,ss1, type = "b", main = "K versus total of squared residuals", 
     xlab = "K", ylab = "Sumvector") 
 
##################### Calculating K number of basis for the B-spline 
#####################  
 
for ( k in c(130:150)) { 
   
  yearRng= 23376 
  Tempbasis2 = create.bspline.basis(yearRng, k, 6) 
  Tempfd2 = smooth.basis(argvals = (1:23376)-0.5, 
                         USweatherMatrix, Tempbasis2)$fd 



  tvec= c(1:23376)-0.5 
  coefficient2= coef(Tempfd2) 
  basismatrix2= eval.basis(tvec, Tempbasis2) 
  xhat2= basismatrix2%*%coefficient2 
  diffmatrix2= (USweatherMatrix-xhat2) 
  diffmatrix22= (diffmatrix2)^2 
  squaredMatrix2 = apply(diffmatrix2, c(1,2), function(x) x^2) 
  sse= sum(squaredMatrix2) 
  ssen= (1/(23376-k))*sse 
  print(ssen) 
} 
 
ssp=c(3417.574, 3238.291, 3037.186, 1262.666, 2755.128, 2498.695, 2339.635, 2202.555, 
      2056.651, 1935.361, 1792.426, 1691.904, 1585.551,1507.677,1413.343,1370.666,1297.635, 
      1255.901,1219.691,1185.431,1150.567) 
ksp= c(130:150) 
plot(ksp,ssp, type = "b", main = " K versus total of squared residuals", 
     xlab = "K", ylab = "Sumvector") 
 
########### harmonic accelerator and penalized functions ########## 
 
 
harmaccelLfd = vec2Lfd(c(0,(2*pi/23376)^2,0), c(0, 23376)) 
Tempbasis1 = create.fourier.basis(yearRng, 5, period = 365.25) 
 
loglam1 = seq(-2,7,0.5) 
nlam1   = length(loglam1) 
dfsave1 = rep(NA,nlam1) 
names(dfsave1)= loglam1 
gcvsave1 = dfsave1 
 
for (ilam in 1:nlam1) { 
  cat(paste('log10 lambda =',loglam1[ilam],'\n')) 
  lambda        = 10^loglam1[ilam] 
  fdParobj1      = fdPar(Tempbasis1, harmaccelLfd, lambda) 
  smoothlist1    = smooth.basis(argvals = (1:23376), USweatherMatrix, 
                                fdParobj1) 
  dfsave1[ilam]  = smoothlist1$df 
  gcvsave1[ilam] = sum(smoothlist1$gcv) 
} 
 
 
plot(loglam1, gcvsave1, type='b', lwd=2, main ='GCV Criterion', 
     xlab=expression(log[10](lambda)),ylab =expression(log[10](GCV)) ) 
 
 
lambda1      = 1e6 
fdParobj1    = fdPar(Tempbasis1, harmaccelLfd, lambda1) 
logprec.fit1 = smooth.basis(argvals = 1:23376, USweatherMatrix, fdParobj1) 
logprec.fd1  = logprec.fit1$fd 
fdnames     = list("Day ", 
                   "Weather Station" , 
                   "Log 10 Temperature") 



logprec.fd1$fdnames = fdnames 
plot(logprec.fd1, xlim = c(0,3650),lty=1, lwd=1, cex=2) 
 
 
############# penalized B-spline   ##### 
 
Tempbasis2= create.bspline.basis(yearRng, 133, 6) 
 
loglam2 = seq(-2,11,1) 
nlam2   = length(loglam2) 
dfsave2 = rep(NA,nlam2) 
names(dfsave2)= loglam2 
gcvsave2 = dfsave2 
 
for (ilam in 1:nlam2) { 
  cat(paste('log10 lambda =',loglam2[ilam],'\n')) 
  lambda        = 10^loglam2[ilam] 
  fdParobj2      = fdPar(Tempbasis2, 4, lambda) 
  smoothlist2    = smooth.basis(argvals = (1:23376), USweatherMatrix, 
                                fdParobj2) 
  dfsave2[ilam]  = smoothlist2$df 
  gcvsave2[ilam] = sum(smoothlist2$gcv) 
} 
 
 
plot(loglam2, gcvsave2, type='b', lwd=2, main='GCV Criterion', 
     xlab=expression(log[10](lambda)),ylab = expression(log[10](GCV)) ) 
 
 
lambda2      = 1e10 
fdParobj2    = fdPar(Tempbasis2, 4 , lambda2) 
logprec.fit2 = smooth.basis(argvals = 1:23376, USweatherMatrix, fdParobj2) 
logprec.fd2  = logprec.fit2$fd 
fdnames     = list("Day ", 
                   "Weather Station" , 
                   "Log 10 Temperature") 
logprec.fd2$fdnames = fdnames 
plot(logprec.fd2,  xlim = c(0,3650),lty=1, lwd=1, cex=2) 
 
 
######################################## 
###Deseaonalized data was obtained by subtracting  
#the Fourier fits from a smooth of the original data. 
 
 
differences=eval.fd(evalarg = (1:23376)-0.5, Tempfd2)-eval.fd(evalarg = (1:23376)-0.5, 
Tempfd1) 
 
Tempbasisdiff= create.bspline.basis(yearRng, 10,6) 
Tempfddiff=  smooth.basis(argvals = (1:23376)-0.5, 
                          differences, Tempbasisdiff)$fd 
 
############# splines of all the cities with the seasonal variation removed 



 
plot(Tempfddiff,lty=1, lwd=1, cex=2, xlab="Year", ylab="B-spline fits-Fourier fits",main="All 
cities",xaxt='n') 
plot(Tempfddiff[6],lty=1, lwd=1, cex=2, xlab="Year", ylab="B-spline fits-Fourier fits", 
main="Indianapolis",xaxt='n') 
 
##############Splines of all the cities with seasonal variation removed penalized  
######against the 4th derivative using 1e10 as lambda, the smoothing parameter, and 10 basis 
functions 
 
lamdadiff= 1e10 
fdParobjdiff    = fdPar(Tempbasisdiff, 4, 1e10) 
logprec.fitdiff = smooth.basis(argvals = 1:23376, differences, fdParobjdiff) 
logprec.fddiff  = logprec.fitdiff$fd 
 
 
plot(logprec.fddiff,lty=1, lwd=1, cex=2) 
plot(mean(logprec.fddiff), xlab="Year", ylab="Mean Value", xaxt='n') 
#It is clear from these graphs temperature is increasing over time. 
 
 
######################################## 
#################################### 
############################### 
######################### 
# Registration of data for just first year 
 
################## 
USweather5 = read.csv("/Users/Mahdi/Documents/Uni/Thesis/data/Datasets/firstyear.csv", 
TRUE, ",") 
USweatherMatrix5= as.matrix(USweather5) 
 
 
 
##################### Creating Bspline basis ##################### 
yearRgn5=365 
Tempbasis5= create.bspline.basis(yearRgn5,9,6) 
Tempfd5 = smooth.basis(argvals = (1:365)-0.5, USweatherMatrix5, Tempbasis5)$fd 
mean5= mean(Tempfd5) 
Tempfd5$fdnames= list("Day", "Weather Station", "Mean temperature") 
 
plot(Tempfd5, lty=1, lwd=1, cex=2, xaxt='n',ylab="Temeperature" ,xlab="Month") 
lines(mean5,col=1, lwd=2, lty=2 ) 
 
plot(Tempfd5[3:4], lty=1, lwd=1, cex=2 , main="Burlington and Fairbanks", xlab="Month",  
     ylab="Temperature", xaxt='n' ) 
 
lambda5      = 1e8 
fdParobj5    = fdPar(Tempbasis5, 4 , lambda5) 
logprec.fit5 = smooth.basis(argvals = 1:365, USweatherMatrix5, fdParobj5) 
logprec.fd5  = logprec.fit5$fd 
fdnames     = list("Day ","Weather Station" ,"Log 10 Temperature") 
logprec.fd5$fdnames = fdnames 



logmean=mean(logprec.fd5) 
 
plot(logprec.fd5, lty=1, lwd=1, cex=2 ) 
plot(fdobject, lty=1, lwd=1, cex=2 ) 
fdobject 
lines(logmean,col=1, lwd=2, lty=2 ) 
 
 
 
plot(logprec.fd5[3], lty=1, lwd=1, cex=2, xlab="Month", 
     ylab="Temperature" , main="Burlington, Indianapolis and San Francisco", xaxt='n') 
lines(logmean,col=1, lwd=3, lty=2 ) 
lines(logprec.fd5[6], lty=1, lwd=1, cex=2, col=36) 
lines(logprec.fd5[16], lty=1, lwd=1, cex=2, col=26) 
 
############################# 
###### 
############# Landmark registration 
###### 
############################ 
 
 
rooz= c(1:365) 
city = 1:16 
PGSctr1 = rep(0,length(city)) 
for (icase in city) { 
  accveci5 = eval.fd(evalarg=(1:365),logprec.fd5[icase]) 
  plot(rooz,accveci5,"l", 
       xlab="Year", ylab="Height Accel.", 
       main=paste("Case",icase)) 
  lines(c(1,365),c(0,0),lty=2) 
  PGSctr1[icase] = locator(1)$x 
   
} 
 
PGSctr2 = rep(0,length(city)) 
for (icase in city) { 
  accveci5 = eval.fd(evalarg=(1:365),logprec.fd5[icase]) 
  plot(rooz,accveci5,"l", 
       xlab="Year", ylab="Height Accel.", 
       main=paste("Case",icase)) 
  lines(c(1,365),c(0,0),lty=2) 
  PGSctr2[icase] = locator(1)$x 
   
} 
 
PGSctr3 = rep(0,length(city)) 
for (icase in city) { 
  accveci5 = eval.fd(evalarg=(1:365),logprec.fd5[icase]) 
  plot(rooz,accveci5,"l", 
       xlab="Year", ylab="Height Accel.", 
       main=paste("Case",icase)) 
  lines(c(1,365),c(0,0),lty=2) 



  PGSctr3[icase] = locator(1)$x 
   
} 
 
PGSctr1 
PGSctr2 
PGSctr3 
 
mypgstr= cbind(PGSctr2,PGSctr1,PGSctr3 ) 
mypgstr 
PGSctrmean55= colMeans(mypgstr) 
class(PGSctrmean55) 
 
 
###############  Mean of Landmarks  ######### 
 
 
PGSctrmean5=mean(PGSctr1) 
PGSctrmean52=mean(PGSctr2) 
PGSctrmean53=mean(PGSctr3) 
 
wbasisLM5 = create.bspline.basis(c(1,365), 7,4,breaks=seq(1, 365, len=5) ) 
WfdLM5   =fd(matrix(0,wbasisLM5$nbasis,1),wbasisLM5) 
WfdParLM5 = fdPar(WfdLM5,1,1e-4) 
fdobject= smooth.basis(argvals = 1:365, USweatherMatrix5,wbasisLM5)$fd 
 
regListLM5 = landmarkreg(fdobject, mypgstr, PGSctrmean55, 
                         WfdParLM5, TRUE) 
 
 
accelfdLM50     = regListLM5$warpfd 
accelfdLM5     = regListLM5$regfd 
accelmeanfdLM5= mean(accelfdLM5) 
 
######## plot of landmark registered data 
 
plot(accelfdLM5, xlim=c(1,365), lty=1, lwd=1, 
     cex=2, xlab="Day", ylab="Mean Temperature") 
lines(accelmeanfdLM5, col=1, lwd=2, lty=2) 
lines(c(PGSctrmean5,PGSctrmean5), c(50,80), lty=2, lwd=1.5) 
lines(c(PGSctrmean52,PGSctrmean52), c(20,50), lty=2, lwd=1.5) 
lines(c(PGSctrmean53,PGSctrmean53), c(20,50), lty=2, lwd=1.5) 
 
########## plot of all warping functions 
 
plot(accelfdLM50, xlim=c(1,365), lty=1, lwd=1, 
     cex=2, xlab="Time", ylab="Transformed Time") 
lines(x = c(0,365), y = c(0,365), lty=3) 
 
########## Plots of Unregistered and Registered data 
 
meanfun0= mean(logprec.fd5[city]) 
 



meanln0 =mean (accelfdLM5[city]) 
 
 
op = par(mfrow=c(2,1)) 
plot(logprec.fd5[city], xlim=c(1,365), lty=1, lwd=1, 
     cex=2, xlab="Month", ylab="Temperature",xaxt='n') 
lines(meanfun0, col=1, lwd=2, lty=2) 
lines(c(PGSctrmean5,PGSctrmean5), c(50,80), lty=2, lwd=1.5) 
lines(c(PGSctrmean52,PGSctrmean52), c(20,50), lty=2, lwd=1.5) 
lines(c(PGSctrmean53,PGSctrmean53), c(20,50), lty=2, lwd=1.5) 
plot(accelfdLM5[city], xlim=c(1,365), lty=1, lwd=1, 
     cex=2, xlab="Month", ylab="Temperature",xaxt='n') 
lines(meanln0, col=1, lwd=2, lty=2) 
lines(c(PGSctrmean5,PGSctrmean5), c(50,80), lty=2, lwd=1.5) 
lines(c(PGSctrmean52,PGSctrmean52), c(20,50), lty=2, lwd=1.5) 
lines(c(PGSctrmean53,PGSctrmean53), c(20,50), lty=2, lwd=1.5) 
par(op) 
 
###############  plot warping functions for cases 3 and 16 
 
accelfdLM50     = regListLM5$warpfd 
warpmatLM = eval.fd(evalarg=(1:365), accelfdLM50) 
 
op = par(mfrow=c(2,2)) 
 
plot(logprec.fd5[16], xlim=c(1,365), lty=1, lwd=2, 
     xlab="", ylab="") 
lines(c(PGSctrmean5,PGSctrmean5), c(-20,180), lty=2, lwd=1.5) 
 
plot((1:365), warpmatLM[,16], "l", lty=1, lwd=2, col=1, cex=1.2,xlim = c(190,365), 
     xlab="", ylab="") 
lines((180:365),  (180:365), lty=2, lwd=1.5) 
lines(c(PGSctrmean5,PGSctrmean5), c(1,365), lty=2, lwd=1.5) 
text(PGSctrmean5+0.1, warpmatLM[205,16]+0.2, "o", lwd=2) 
 
 
plot(logprec.fd5[3], xlim=c(1,365), lty=1, lwd=2, 
     xlab="", ylab="") 
lines(c(PGSctrmean5,PGSctrmean5), c(-20,80), lty=2, lwd=1.5) 
 
plot((1:365), warpmatLM[,3], "l", lty=1, lwd=2, col=1, cex=1.2,xlim = c(115,235), 
     xlab="", ylab="") 
lines((100:365),  (100:365), lty=2, lwd=1.5) 
lines(c(PGSctrmean5,PGSctrmean5), c(1,365), lty=2, lwd=1.5) 
text(PGSctrmean5+0.1, warpmatLM[185,10]+0.01, "o", lwd=2) 
 
par(op) 
########## h(t)>t; warped time is growing faster than clock time,  
#and this is what we want if our observed processis running late 
 
########## h(t)<t; clock time is being slowed down for a process that  
#is running ahead of some target. 
 



 
############################# 
###### 
############# Continuous registration 
###### 
############################ 
 
 
wbasisCR  = create.bspline.basis(c(1,365), 15, 5) 
Wfd0CR    = fd(matrix(0,15,16),wbasisCR) 
WfdParCR  = fdPar(Wfd0CR, 1, 1) 
 
 
registerlistCR = register.fd(accelmeanfdLM5, accelfdLM5, WfdParCR) 
 
accelfdCR = registerlistCR$regfd 
warpfdCR  = registerlistCR$warpfd 
WfdCR     = registerlistCR$Wfd 
shiftCR   = registerlistCR$shift 
 
accelmeanfdCR = mean(accelfdCR) 
 
plot(accelfdCR, xlim=c(1,365), lty=1, lwd=1, 
     cex=2) 
lines(accelmeanfdCR, xlim=c(1,365), lty=2, lwd=3, 
      cex=2)                  
 
plot(warpfdCR, xlim=c(1,365), lty=1, lwd=1, 
     cex=2)  
 
 
 
#  The left panel contains: 
#    -- the unregistered curve (dashed blue line) 
#    -- the target function (dashed red line) MEAN OF LANDMARK 
#    -- the registered curve (solid blue line) 
#  The right panel contains: 
#    -- the warping function h(t) 
#    -- the linear function corresponding to no warping 
 
plotreg.fd(registerlistCR) 
 
 
########################### 
#########Change the target to the mean of the registered functions 
########################### 
 
 
 
registerlistCR1 = register.fd(accelmeanfdCR, accelfdLM5, WfdParCR) 
 
accelfdCR1 = registerlistCR1$regfd 
warpfdCR1  = registerlistCR1$warpfd 



WfdCR1     = registerlistCR1$Wfd 
shiftCR1   = registerlistCR1$shift 
 
accelmeanfdCR1 = mean(accelfdCR1) 
 
op = par(mfrow=c(2,1)) 
plot(accelfdCR, xlim=c(1,365), lty=1, lwd=1, 
     cex=2) 
lines(accelmeanfdCR, xlim=c(1,365), lty=2, lwd=3, 
      cex=2)  
 
plot(accelfdCR1, xlim=c(1,365), lty=1, lwd=1, 
     cex=2) 
lines(accelmeanfdCR1, xlim=c(1,365), lty=2, lwd=3, 
      cex=2)  
 
par(op) 
 
 
 
 
 
plotreg.fd(registerlistCR1) 
 
 
 
#################################### 
########## plot Unregisterd and continuously registered curves 
#################################### 
 
 
 
meanln0 =mean (accelfdLM5[city]) 
 
accelmeanfdCR10 = mean(accelfdCR[city]) 
 
op = par(mfrow=c(3,1)) 
plot(logprec.fd5[city], xlim=c(1,365),  lty=1, lwd=1, 
     cex=2, xlab="Time (Days)", ylab="Temperature", main="Unregisterd") 
lines(mean(logprec.fd5), col=1, lwd=2, lty=2) 
 
plot(accelfdLM5[city], xlim=c(1,365),  lty=1, lwd=1, 
     cex=2, xlab="Time (Days)", ylab="Temperature", main="Landmark Registration") 
lines(mean(accelfdLM5), col=1, lwd=2, lty=2) 
 
 
plot(accelfdCR1[city], xlim=c(1,365),  lty=1, lwd=1, 
     cex=2, xlab="Time (Days)", ylab="Temperature", main="Continuous Registration") 
lines(accelmeanfdCR10, col=1, lwd=2, lty=2) 
 
par(op) 
 



########### Average of temperature in unregistered data does not resemble to most of the 
observed curves,  
#but in registered data ,average temperature shows a good illustration of observed curves.  
 
 
 
 
#################################### 
####################### Mean of Unregistered, landmark and continuous registered data 
#################################### 
 
 
 
 
accelmeanfdUN = mean(logprec.fd5) 
accelmeanfdLM = mean(accelfdLM5) 
accelmeanfdCR = mean(accelfdCR) 
 
plot(accelmeanfdCR, xlim=c(1,365),col=2, lty=2, lwd=1, 
     cex=1.2, xlab="Days", ylab="Mean Temperature", 
     main = "Mean of unregisterde, landmark and continuous registered curves") 
lines(accelmeanfdLM, col=4, lty=3, lwd=2) 
lines(accelmeanfdUN, col=1, lty=1, lwd=1) 
title(main = "mean of unregisterde , landmark and continuous registered", 
      sub = "Red line is for unregisterde, Blue is for landmark and black is for continuous 
registerd") 
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