
STUDY ON OPTICAL PROPERTIES AND STABILITY OF GOLD NANOSTARS

FOR LOCALIZED SURFACE PLASMON RESONANCE (LSPR) BASED

BIOSENSING APPLICATIONS

Rahul Kumar

A Thesis

In

The Department

Of

Mechanical, Industrial, & Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

Concordia University

Montreal, Quebec, Canada

July 2018

 © Rahul Kumar, 2018

For the Degree of Master of Applied Science (Mechanical Engineering) at

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: ___Rahul Kumar___________________________________

Entitled: ___Study on Optical Properties and Stability of the Gold Nanostars for

Localized Surface Plasmon Resonance (LSPR) based Biosensing Applications__________

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

_____________Dr. Gerard Gouw___________________ Chair

_____________Dr. Ramin Sedaghati ________________ Examiner

_______________Dr. A.Bagchi_____________________ Examiner

_________Dr. Muthukumaran Packirisamy____________ Supervisor

Approved by __

Chair of Department or Graduate Program Director

 __

Dean of Faculty

Date ____July 30, 2018__

Master of Applied Science (Mechanical Engineering)___________

iii

ABSTRACT

Study on Optical Properties and Stability of Gold Nanostars for Localized Surface Plasmon

Resonance (LSPR) based Biosensing Applications

by

Rahul Kumar

Masters of Applied Science in Mechanical and Industrial Engineering

Concordia University, Montreal, QC

Exosomes are small vesicles (typically 30-120 nm), formed through the inward budding of

endocytic compartments and secreted through fusion of these vesicle-containing endosomes with

the plasma membrane. Increasing evidence suggests that exosomes play an important role in cell-

to-cell communication through the transport and delivery of cellular components such as lipids,

proteins, and nucleic acids. Exosomes preferably accumulate at solid tumor sites due to leaky

vasculature and abnormal lymphatic drainage, making them an attractive candidate for detecting

cancer.

In recent years, nanoparticles have paved pathway to detect exosomes by incorporating of

targeting functionality onto nanoparticle surfaces of the nanoparticles. Among various

nanoparticles, Gold nanostars possess interesting tunable properties that can be exploited in

different nanomedicine applications including drug delivery systems, thermal-ablation, and

image contrast agents.

iv

As nanoparticle properties are directly related to their size and shape, it is a fundamental criterion

to ensure high control and precision during the synthesis to obtain anisotropic nanoparticles with

desired properties. Gold nanostars were synthesized by seed-mediated method using

biocompatible capping agents to control and stabilize nanoparticle morphology during the

reactions. First step was to obtain small gold nanoparticles that served as seeds for the growth of

branches to finally obtain nanoparticles with the desired star-shape. Gold seeds were obtained

by chemical reaction method incorporating citrate as capping agent; monodisperse colloidal

nanoparticles (30 ± 5 nm core diameter) were efficiently obtained. Characterization showed that

gold seeds possessed a well-defined spherical structure. Silver nitrate was added to the growth

solution which acts as a catalyst to activate the site for the formation of branches.

However, in most cases these nanostars possess poor long-term stability, short branch length,

polydispersity and suffer from aggregation. In order to address these issues, this thesis focuses

characterization of physical properties such as size and morphology using numerical and

experimental methods to enhance the synthesis and stabilization of gold nanostars for Localized

Surface Plasmon Resonance (LSPR) based biosensing of exosomes. The results show a highly

sensitive biosensing platform with prolonged shelf life of more than a year. Biomolecule such as

Streptavidin, Biotin, PEGylated (PEG) and Vn peptide (Vn96) were used as surface

functionalization molecules on gold nanostars for detecting exosomes. The results show great

promise in comparison to standard spherical nanoparticles.

v

ACKNOWLEDGEMENTS

I would like to convey my gratitude, first and foremost, to my advisor Professor Muthukumaran

Packirisamy for engaging me in his stimulating and first-rate Optical-Bio Microsystems group.

I am honored to have worked under such an illustrious scientist, and for participating in a

discipline with so many diverse and fascinating elements. Dr. Packirisamy has guided and

mentored me throughout numerous exciting projects at the highest standards of academic

research. I am confident that he has impressed on me his keen and exhaustive approach to

achieving a commendable caliber of output.

Another person to whom I am immensely indebted is Dr. Simona Badilescu, the head supervisor

in the lab. Dr. Badilescu has been instrumental at every milestone of my scientific progress. She

has co-authored each of my papers and has been unfailingly patient and helpful with me

throughout these seminal graduate years. Her formidable expertise and gumption have been

indispensible to each undertaking.

I thank Atlantic Cancer Research Institute, Moncton, NB, Canada for supply of Vn96 and MCF

7 exosome. I must also express my appreciation for the incessant assistance and camaraderie of

all my colleagues in the Optical Bio-MEMS lab group.

Lastly, I would like to extend my thanks to those in my personal sphere of life who have provided

me with much peripheral support in my academic activities, namely my mother, Sangeeta

Kumar, my father, Arvind Kumar, and my brother, Major. Nitin Kumar.

vi

CONTENTS

List of figures ……………………………………………………………………………… xi

List of tables……………..……………………………………………………………….… xvii

List of illustrations………………………………………………………………………… xviii

Nomenclature ……………………………………………………………………………… xxiv

Chapter 1. Introduction ………………………………………………………………….. 1

1.1. Introduction …………..……………………………………………………….. 1

Chapter 2. FDTD Simulation of Gold Nanostars: Physical Parameters Influencing the optical

properties ………………………………………………………………………………….. 8

2.1 Introduction…………..………………………………………………………... 8

2.2 Numerical and Experimental Techniques …………………………………….. 11

2.3.1. Numerical Modelling of Gold Nanostar ….…………………………… 11

2.3.2. 3D FDTD with non-uniform mesh ……………………………………. 12

2.3.3. Simulation models and methodology of analysis ..……………………. 14

2.3 Results………….. ……………………………………………………………... 17

2.3.1 Influence of the branch length on the LSPR of Gold Nanostar ..………… 17

2.3.2 Effect of number of branches …………………………………………… 19

vii

2.3.3 Influence of the branch angle on the LSPR of Gold Nanostar ………….. 21

2.3.4 Plasmons Interaction………………………..……………..…………….. 23

2.5. Conclusion……….………………………………………………………….. 25

Chapter 3. Tuning of Morphology and Stability of Gold Nanostars through pH Adjustment

………………………………………………………………………………………………… 26

3.1 Introduction…………..………………………………………………………… 26

3.2 Materials and Methods ………………….…………………………………….. 28

3.2.1. Materials……………………………….….……………………………. 28

3.2.2. Synthesis of Gold nanostars ……………..…………………………….. 28

3.2.3. Selection and preparation of buffer solution…... ..…………………….. 29

3.3 Results………….. ……………………………………………………………… 31

3.3.1. Effect of pH on the morphology of Gold Nanostars (AuNS)…..………. 31

3.3.2. Temporal evolution of AuNS samples at pH 11……………………….. 36

3.3.3. Temporal evolution of AuNS samples at pH 4.5……………….....……. 39

3.3.4. Shape-tuning effect of base buffer at pH 11 .……………..……………. 40

viii

3.4 Conclusion……….…………………………………………………………… 43

Chapter 4: Sonochemical Stabilization of Gold Nanostars: Effect of Sonication Frequency

on the Size, Shape and Stability of Gold Nanostars

………………………………………………………………………………………………… 45

4.1 Introduction ….……..………………………………………………………….. 45

4.2 Materials and Methods ………………….…………………………………….. 47

4.2.1 Materials……………………………….….…………………………….... 47

4.2.2 Ultrasound Treatment . ………………..………………………………..... 47

4.2.3 Synthesis of Gold Nanostars …... ..……………………………………… 47

4.2.4 Bubble Imaging …….…………………………………………………….. 48

4.2.5 Characterization ..….……………………………………………………… 49

4.3 Results and Discussion ….……………………………………………………... 50

4.3.1 The Chemistry of the Reduction of Gold Ions …..………………………... 50

4.3.2 Effect of sonication on the morphology of Gold Nanostars (AuNSs) ……. 51

4.4 Conclusion……….…………………………………………………………….. 58

ix

Chapter 5. Ultrasound-stabilized gold nanostars in Poly (vinyl alcohol)-nanostars

composites for high sensitive Localized Surface Plasmon Resonance sensing

applications …………………………………………………………………………….. 59

5.1 Introduction ………..……………………………………………………………. 59

5.2 Materials and Methods ………………….……………………………………… 61

5.2.1 Materials ……………………………….….………………………………. 61

5.2.2 Preparation of Poly-(Vinyl Alcohol) (PVA) solution …………………….. 61

5.2.3 Preparation of Gold nanostars - PVA Composite ………………………… 62

5.3 Refractive Index Sensitivity Measurement ………………………………… 63

5.4 Results ……………………………………………………………………………. 64

5.4.1 Mechanism of formation of gold nanostars in solution …….….………….. 64

5.4.2 Effect of ultrasounds and temperature on growth kinetics and stabilization

….………………………………………………………………………………… 69

5.4.3 Formation of the Nanostars – PVA polymer composite ……….....……..… 73

5.5 Chemical Sensing of the Surrounding Environment ...…………………… 74

5.6 Conclusion……….…………………………………………………………….. 76

x

Chapter 6. Targeting Exosomes with Gold Nanostars: Implications for LSPR-Based

Biosensing Applications ……………………………………………………………..... 77

6.1 Introduction …………..………………………………………………………….. 77

6.2 Materials and Methods …….………………………….………………………… 82

6.2.1 Materials ……………………………….….……………………………….. 82

6.2.2 Fabrication of PVA/PDMS Composite ….……………………………….. 82

6.2.3 Contact angle measurement ………………………………………………... 83

6.2.4 Fabrication of Gold nanostars (AuNSs) embedded PVA/PDMS ………….. 85

6.2.5 Refractive index sensitivity measurements …………………………………86

6.2.6 Functionalization of the gold nanostars (AuNSs) embedded PVA/PDMS …87

6.3 Results and Discussion ……………………………..…………………………….. 88

6.3.1 Surface wettability study of PVA/PDMS …………….….…………........... 88

6.3.2 Refractive index sensing of surrounding environment …………………..... 90

6.3.3 Biosensing Protocol ………………………………….……….....………… 91

6.3.4 Interaction of streptavidin with AuNSs ….……………..……………….. 93

6.3.5 Interactions of Biotin-PEG-Vn96 with streptavidin bounded AuNSs …….. 95

xi

6.3.6 Interaction of Exosomes with functionalized AuNSs ….…………………. 98

6.4 Conclusion……….……………………………………………………………. 100

Chapter 7. Contributions, Conclusions and Future Work ………………………… 87

7.1 Contribution …….……………………………………………………………... 100

7.2 Contribution …….……………………………………………………………... 104

7.3 Refereed Journal papers ……………………………………………………….. 107

7.4 Proceeding papers and Conference presentation ………………………………. 108

7.5 Suggestions for further research ……………………………………………….. 108

Reference ……..…………………………………………………………………………110

Appendix A: Subpixel Rendering for Image Enhancement ...………………………...124

Appendix B: Low cost cavitation image capturing experimental setup ……………….143

Appendix C: Low cost droplet analysis experimental setup ………………………….164

xii

LIST OF FIGURES

Fig 1.1: Schematic representing the difference between the principles of traditional SPR. and

LSPR

Fig 1.2: 3D Representation of Gold Nanostar

Fig 2.1: Schematic of localized surface plasmon resonance and localized surface plasmon

resonance sensor

Fig 2.2: Schematic of Gold Nanostar LSPR Simulation Condition Diagram

Fig 2.3: Schematic showing the principle of the non-uniform grid used to compute the

properties of one-branch nanostar 3D-model. The grid used was much finer, but it has been

coarsened for clarity. The nanostructure is excited by a wavelength that is emitted from the

launch pad, drawn in blue color. The monitor is shown as the black line rectangle and the

Perfectly matched layer as the outer gray strip

Fig 2.4: Parameters defining the morphology of an AuNS FDTD-simulation model S, S1B, B

and S2B

Fig 2.5: Normalized absorption spectra of a single gold nanostar on the maximum absorption

value for the TE mode and TM mode

xiii

Fig 2.6: (a) Absorbance spectra of the S1B models, semi-aperture angle α=3° and branch

lengths 100, 125, 150, and 175 nm respectively, normalized to the peak intensity of the S

model. (b) Change of the SPR peak wavelength as a function of the branch length

Fig 2.7: FDTD-calculated absorbance spectra normalized on the absorbance of the LSPR of

the spherical core, located at 550 nm. The blue curve represents the spectrum of the Sphere

model, which is unchanged for light polarized parallelly or perpendicularly to the axis of the

branch. The absorbance spectrum of the model is dependent on the orientation of the

polarization of light. In this case, the structure was illuminated only by light polarized parallelly

to the branch axis. The absorbance spectra of branch orientation of 45°┴, 45°║, 180°, single

branch and spherical structure are represented, keeping the half angle aperture and the length

of the branch at a constant value of α=3° and 100 nm, respectively

Fig 2.8: Pictorial representation of the half angle aperture of the of the branch

Fig 2.9: (a) Absorbance spectra of the Sphere with single branch models, semi-aperture angle

α=3°, 6°, 10°, and 15° nm respectively, normalized with respect to the peak intensity of the S

model and has a branch length of 100 nm (b) Change of the LSPR peak wavelength with

reference to Sphere model is shown as a function of the aperture angle

Fig 2.10: Energy level diagram of various Nano shapes (a) The energy level diagram of the

hybridization theory of plasmons [7, 23]. (b) Energy diagram of plasmon interaction in AuNS,

model S1B where the branch parameter values are α=3° and L=100 nm

xiv

Fig 3.1: 3D representation of Gold nanostars core and branch with correspondence to the SEM

images

Fig 3.2: (a) SEM of AuNS at pH 4.5, pH 7.0 and pH 11.0. (b) Schematic of morphology change

of AuNS under different pH environment. (c) UV–vis absorption spectra of AuNS samples at

pH values 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0 and 11.0. (N = 10 Samples)

Fig 3.3: (a) The temporal evolution of UV–vis absorption spectra of AuNS samples at pH 11.

(N = 10 Samples) (b) Represents the temporal evolution of UV–vis absorption spectra of AuNS

samples at pH 7.0. (N = 10 Samples)

Fig 3.4: The temporal evolution of UV–vis absorption spectra of AuNS samples at pH 4.5 (N

= 10 Simples)

Fig 3.5: (a) The temporal evolution of UV-Visible spectra when the pH of the AuNS was

changed from 4.5 to 11.0 by the addition of 60 mL of 0.1 M NaOH base buffer to the growth

solution. (b) Represents the SEM of the nanoparticles at pH 4.5 and when the pH of the growth

solution is increase to 11. (N = 10 Simples)

Fig 4.1: Cavitation images in the gold nanostars solution subjected to ultrasounds with a

frequency of 25 kHz

Fig 4.2: Image analysis performed on the SEM images of gold nanostars, after 20 min of

sonication at 25 kHz to detect the fused cores of the gold nanostars

xv

Fig 4.3. (a) Au LSPR band of gold nanostars as a function of the ultrasound frequency (b)

Average size (core + branches) of gold nanostars as a function of the sonication frequency

Fig 4.4. Temporal evolution of UV–Vis absorption spectra of AuNSs samples at 25 kHz

Fig 4.5. (a) Temporal evolution of UV–Vis absorption spectra of AuNSs samples, without

sonication treatment (until 30 days). (b) Temporal evolution of the UV–Vis absorption spectra

of AuNSs samples sonicated at 25 kHz

Fig 5.1: Schematic showing the preparation of gold nanostars-PVA composite platform

Fig 5.2: (a) SEM images of the ultrasound-stabilized gold nanostars deposited on a glass slide

from their aqueous solution (b) Spectral study of the growth of nanostars with time (t = 2 min

to t = 60 min (The concentration of silver nitrate used in this experiment was 2 mM), (Sample

set (n) = 10 samples) (c) Change of the SPR peak wavelength as a function of the time

Fig 5.3: (a) SEM images of the Au nanostars corresponding to different concentrations of

AgNO3 (b)Tuning the absorption of the LSPD band of nanostars in the presence of silver

nitrate solutions of various concentrations (c) Average Au nanostars size (nm) vs concentration

of AgNO3 (mM). (Sample set, n = 10 samples, SD = 4)

Fig 5.4: (a) Visible-NIR spectra of Au nanostars as a function of the post-synthesis temperature

at a constant ultrasound frequency of 20 kHz. (b)Absorbance spectra of nanostars, recorded on

day 0, after two days, and after 3days without using ultrasounds (c) Absorbance spectra of

nanostars recorded on day 0, after 6 days, and after 30 days after using ultrasounds (d) SEM

xvi

image of the Au nanostars obtained at different temperatures, as indicated on the label, at

constant ultrasound frequency of 20 kHz and the effect of ultrasound and temperature on the

branch length. Data points (n) = 6

Fig 5.5: (a) SEM image of the PVA polymer network (b) SEM image of Au nanostars

aggregates embedded in the PVA matrix and the slow transformation of nanostars to

nanospheres. (c) Spectra of Au nanostars – PVA composite over a period of 200 days showing

the stability of the embedded nanostars aggregates. (Sample set (n) = 6)

Fig 5.6: Sensitivity of the AuNSs on different composite platform (Sample set (n) = 6)

Fig 6.1: Biogenesis of exosomes into the extracellular space

Fig 6.2: (a) Gold Nanostar (AuNS) functionalization for targeting Exosomes (not to scale). (b)

Schematic of the relationship between plasmonic shift and concentration of exosomes during

cancer progression

Fig 6.3: Experimental setup to measure the contact angle

Fig 6.4: Schematic of the AuNSs deposition on PVA/PDMS substrate

Fig 6.5: Biosensing protocol and their corresponding absorbance bands

xvii

Fig 6.6: Contact angle measurements of PDMS surfaces as a function of time. (a) Affinity of a

10 μL water-in-air droplet for a PDMS surface under various surface treatment conditions (b)

Untreated, Plasma treated, PVA-treated, NaOH-PVA treated PDMS. (Sample set, n = 10

samples. Standard Deviation = 4)

Fig 6.7: Sensitivity of the AuNS on the different composite platforms (Sample set, n = 10

samples. Standard Deviation = 4)

Fig 6.8: Absorption spectra of functionalized gold nanostars (AuNSs) on a PVA-treated PDMS

sample platform after each step. (Sample set, n = 10 samples. Standard Deviation = 3)

Fig 6.9: AuNSs depicted as a sphere with homogenous spherical shell

Fig 6.10: (a) Concentration variant adsorption spectrum of Exosomes deposited on Biotin-

PEG-Vn96 bonded AuNSs-PVA/PDMS substrate. (b) Calibration cure of average LSPR shift

for various concentrations of Exosomes (Sample set, n = 10 samples. Standard Deviation = 4)

xviii

LIST OF TABLES

Table 2.1: Parameters used in describing a typical AuNS

Table 3.1: Table 3.1: Preparation of the acidic buffer solutions

Table 3.2: Preparation of the basic buffer solutions

Table 3.3: Average size of AuNS with respect to the pH of the solution (At least 100 particles

were measured to calculate their average sizes)

Table 5.1: Refractive indices of dielectric media used for sensitivity tests at 25OC

Table 6.1: Refractive indices of dielectric media used for sensitivity tests at 25OC temperature

Table 6.2: Concentrations and volume of the chemical compounds used in the biosensing

application with their corresponding LSPR shift Δλ*

xix

NOMENCLATURE

Α The linear coefficient of absorption

Β The two-photon absorption coefficient

E Electric field

ET Transmitted energy

E0 Induced Energy

N Number density of electrons

P Polarization

S Surface area of nanoparticle

V Volume

h Planck’s constant

kB Boltzmann’s constant

m Effective mass of an electron nm – nanometer or 10
-9

m

Γ Collision frequency of electrons

 Size of edge grid at phase interface

 Grid size for bulk domain

ε Dielectric function

ε0 Permittivity of vacuum

µ Permeability of the material

σ Sensitivity

xx

ACRONYMS

ABC Absorbing boundary conditions

AuNSs Gold nanostars

AuNP Gold nanoparticles

B Branch model of a nanostar

CTAB Acetyl trimethylammonium bromide, used in synthesis of nanoparticles

EM Electromagnetic

NIR Near Infrared

NP Nanoparticle or particles of size in the 1-200 nm range

NS Nanostar

OL Optical limiter or limiting

PML Perfectly matched layer

PDMS Polydimethylsiloxane is a polymeric organo-silicon compound

S Spherical core model of a nanostar

S1B NS model of sphere & one branch

S2B NS model of sphere & two branches SHO – single harmonic oscillator

SPR Surface plasmon resonance

LSPR Longitudinal SPR

TSPR Transverse SPR

VIS Visible range electromagnetic radiation: 390 - 770nm wavelength

1

CHAPTER 1

Introduction

1.1 Introduction

The definition of the cancer has evolved in the last decades. The complexity of the cells

interaction creates a unique microenvironment, contributing to the cancer development.

Understanding these cell interactions can be a key fact to developing an early stage cancer

detection tools. The recent development of nanoscale science and technology gave rise to the

development of such tools. With their help very low amounts of biomolecules were detected,

analyzed, mimicked and even externally manipulated.

A nanoparticle is defined as “a particle with all three external dimensions in the nanoscale” [1].

Potentially, nanoparticles have applications in a wide range of fields, such as medicine

engineering, energy and many more [2, 3]. Within this medical field, a huge range of different

nanoparticles are either studied or either currently used as a standard of care.

 A main division within this field of nanoparticles can be made between organic and inorganic

nanoparticles. Organic nanoparticles consist of biological molecules where the most studied

ones are bilipid layered structures called micelles. Inorganic nanoparticles comprise a huge

variety of nanoparticles such as quantum dots, iron oxide, silica, gold nanoparticles etc.

Gold nanoparticles (AuNPs) which are capable of hosting localized oscillations of conduction

band electrons, called plasmons, are very suitable to perform as an active component for such

tunable hybrid system. AuNPs are chemically rather inert so the chemical properties of

2

molecules attached to them are preserved. On the other hand, due to the special optical

characteristics of AuNPs emerging from plasmons, the field distribution around them can be

changed and therefore nuance optical properties of molecules situated nearby.

Surface plasmons are electromagnetic waves transmitted across the juncture of metal and

dielectric environments. Due to the sensitivity of this effect to a slight electromagnetic trigger,

this phenomenon is constructively employed as a method of sensing label-free biological

entities [4]. In a variation of this method, one can introduce nanoparticles to host the conduction

electron oscillations induced by the incident light, and use this as a biosensing technique. Such

technologies have developed into what is known as localized plasmon surface resonance

(LSPR). The smaller decay length of SPR versus LSPR is illustrated in the Fig 1.1. LSPR

works by recording the wavelength at which an absorption of the incident light is caused by a

certain resonant frequency that is associated with the dielectric environment. Such an approach

has many benefits, such as:

• The optical hardware needed for LSPR is much less complex since no prism is needed

to couple the light, so the instrument can be made smaller and more affordable.

• Since the angle is not important, the instrument is much more robust against vibration

and mechanical noise.

• LSPR is not as sensitive to bulk refractive index changes, which causes errors in

experimental data, because it has a much shorter electromagnetic field decay length.

• No strict temperature control is needed, simplifying the instrument.

• The sensor chips can be manufactured at a much more affordable price.

• Easier to use and maintain.

3

This smaller sensing volume means that LSPR is more sensitive to molecular binding and less

sensitive to bulk effects. The smaller decay length and sensitivity associated with LSPR

reduces artifacts caused by external variables such as temperature drift or buffer refractive

index changes.

Also, since only a portion of the absorbed energy of the incident light remains as light in the

form of scattering, and the remainder is dissipated by Landau damping [4], there will be a

transduction of light to heat. This local thermal source has many potential applications, for

example in catalysis or phase transition [5].

Fig 1.1: Schematic representing the difference between the principles of traditional SPR. and

LSPR [4].

All these types of nanoparticles have their advantages and disadvantages to use them in the

medical field [6, 7]. Anisotropic AuNPs are of special interest due to their structural, optical

and catalytic properties, which are different and most often superior to those of spherical

AuNPs.

4

For example, the high electric field enhancements that anisotropic nanoparticles (rods, cubes,

prisms or stars, among others) present at sharp edges and tips, render them extremely attractive

as plasmonic enhancers for surface enhanced Raman scattering. Among many existing

anisotropic gold nanostructures star-shaped nanoparticles (gold nanostars) have achieved a

huge interest. These novel nanoplatforms have numerous applications in various fields, mainly

due to their plasmon tunability into the near infrared (NIR) region and the multiple hot-spots

generated at their branches as shown in Fig 1.2.

Fig 1.2: 3D Representation of Gold Nanostar.

In this context, this thesis focuses on gold nanostars as functional plasmonic nanoparticles for

biosensing application. Chapter 2 presents simulation, analysis, and implementation of

morphology tuning of gold nanostars structures. The gold nanostar was simulated using 3D

Finite-Difference Time-Domain (FDTD) techniques to investigate the effect of morphological

changes on the localized surface plasmon resonance (LSPR) properties. The dependence of the

size and the branch dimension of the nanostar on the LSPR properties were analyzed in the

simulation. Four model parameters have been modified to investigate the sensitivity of LSPR

5

detection: (a) the wavelength of incident light, (b) the diameter of the core of nanostar, (c) the

length of the branch of the nanostar, and (d) the thickness of the branch of the nanostar. The

simulation results show that the variation in the branch dimension influences the LSPR

absorption measurement. The FDTD simulation can be a useful tool for designing an LSPR

nanoparticle biosensor. Chapter 3 is study of morphology and stability of gold nanostars were

investigated under different pH environment. The surface morphologies were observed on

glass substrates using ultraviolet and visible (UV-vis) spectroscopy, and SEM. It is found that

gold nanostars can be readily stabilized just by adjusting the initial pH conditions of

growth solution. The particle size distribution of gold nanostars under different pH

environment has been investigated using UV-vis spectroscopy and found to be highly

dependent on pH. At an optimal pH of 11, gold nanostars obtained are highly monodisperse,

longer branch length and have surface plasmon at 720 nm. For other pH conditions, particles

are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and

large particle size distribution. Through time-dependent UV-Vis spectra studies hypothesize

the pH-dependent stabilization mechanism wherein the formation and stabilization of AuNS

solution were affected greatly by the intarmolecular aggregation induced by pH of the growth

solution. The information obtained in this study can be used to design stable gold nanostars

with longer shelf life for biosensing applications. Chapter 4 focuses on the effects of

sonication on the size, morphology, and stability of gold nanostars was investigated for the first

time. It was found that the seed-mediated method, followed by the sonication treatment

developed in this study, offers new opportunities to synthesize aqueous suspensions of

monodispersed gold nanostars with prolonged stability. The results indicate that at a sonication

frequency of 25 kHz, the maximum average nanostars size of 120 nm is attained. Increasing

the sonication frequency, the average size of nanostars decreased significantly and,

consequently, the position of the Localized Surface Plasmon Resonance (LSPR) band, could

6

be easily tuned. It is thought that the change in the morphology is due to the collapse of the

cavitation bubble which generates extreme conditions of pressure and temperature. Cavitation

images in the gold nanostars solution were for the first time extracted by using an original

software. It is found that the gold nanostars, after ultrasound treatment, are substantially more

stable because their aggregation becomes much slower. The use of the sonication technique to

stabilize gold nanostars, without any additional chemical stabilizer, is both technologically and

scientifically important. It can be expected that by using this technique, to be able to produce

large volumes of consistent quality, stable gold nanostars. Chapter 5 is dedicated to study the

effects of sonication, temperature and immobilization of gold nanostars on the polymer to

develop a sensing platform. The morphology and the spectral characteristics of the embedded

nanostars have been investigated. Our results show that the nanostars aggregates are stable for

several months when embedded in the poly (vinyl alcohol) matrix. In the original aqueous

solution, nanostars, without sonication, revert to the spherical morphology in 1-2 weeks. The

results show that the stabilization of nanostars occurs principally through aggregation.

Aggregation minimizes their surface energy, due to the strong van der Waals forces acting

between the individual nanostars. Embedding in the polymer matrix is assisted by the presence

of hydrated protons (hydronium ions) that result from the sonochemical reduction of water

molecules. The refractive index sensitivity tests performed using Localized Surface Plasmon

Resonance (LSPR) of AuNS-polymer composite films demonstrated high sensitivity of gold

nanostars aggregates in sensing the surrounding environment. Indeed, the refractive index

sensitivity is found to be in the range of 550-600 nm/RIU, compared to 100 nm/ RIU found

previously for the PDMS Gold nanospheres composite. Chapter 6 is dedicated to the unique

properties of Gold nanostars (AuNSs) modulated through surface functionalization, for

biosensing of MCF-7 exosomes in investigated in this paper. Here, a study of AuNSs-surface-

functionalized with streptavidin-biotinylated PEG-Vn96, focusing the targeting of MCF 7

7

exosomes is carried out. The behavior of modified AuNSs, introduced in a PVA/PDMS

composite has been investigated and the critical role of biotinylated PEG-Vn96 in targeting the

MCF 7 exosomes is studied for the first time with the help of localized surface plasmon

resonance (LSPR) spectrum Polydimethylsiloxane (PDMS) is a dominant material in the

fabrication of microfluidic devices. However, its key property of hydrophobicity has hindered

its use in microfluidics, which requires the channels to have hydrophilic surface properties. We

developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface

via the deposition of PVA mixed with NaOH and demonstrated its suitability for droplet

generation. The proposed method is simple, quick, effective, and inexpensive and allows the

device to be selectively patterned with both hydrophilic and hydrophobic regions. The thorough

understanding of the fundamental properties of bioconjugated AuNSs is of great importance

for the design of highly sensitive and reliable functionalized AuNSs-based biosensor.

8

CHAPTER 2

Modeling The Effects of Morphology on Plasmonic Behaviour of

Gold Nanostars

2.1 Introduction

Seeking architectural building blocks with controlled morphology and property is a significant

challenge for future nanodevices and applications [8]. The localized surface plasmon resonance

(LSPR) of noble metal nanoparticles, originated from the collective oscillations of conduction

electrons, are strongly determined by the size, shape, composition, and the surrounding

environment [9]. Gold nanostars are not as highly monodisperse as those with other forms. The

LSPR in gold nanostars could introduce tunable plasmon peaks from visible to the near-infrared

region by tuning the shape and branch length [10]. Gold nanostars are considered as a solid

core with protruding prolate tips, reflecting the multiple bands in their spectra. In some cases,

well-defined peaks in the ensemble spectra can be observed as shown in Fig 2.1 [11 – 14]. With

different tip geometries and asymmetric morphology, one might expect branched nanoparticles

to have complicated LSPR spectral features that are lost in ensemble measurements. But due

to the asymmetric shape, the low Raman signals can be enhanced when the analyte molecules

are placed in proximity to the surface of a plasmonic nanostructured material or located in so-

called hot spots, i.e., locations such as edges, vertices, tips, or intermetallic junctions, where

the local electric field is expected to be the highest [15].

9

Fig 2.1: Schematic of localized surface plasmon resonance and localized surface plasmon

resonance sensor [13].

In this paper, we investigated the LSPR of gold nanostars corresponding to the unique

morphology. The optical response of gold nanostars (AuNSs) - PDMS composite to an incident

light wave is determined by the electrons of the metallic particles embedded in the polymer.

More specifically, the electric field of the incident light excites the valence electrons setting

them collectively into a coherent oscillation, localized at the surface of the particle. At

resonance, a maximal amount of energy is transferred, which is noticed as a local maximum of

an absorption spectrum and is known as the localized Surface Plasmon Resonance (LSPR). A

spherical particle has a single dipolar resonant mode, but particles with shapes of lower order

symmetry, like rods and cones, may have several dipolar modes. To synthesize AuNS, we

adopted a seed-mediated growth method. Spherical Au nanoparticles (AuNP) with a mean

diameter of 40 nm were prepared as a seed and dispersed in an Au precursor (HAuCl4) solution.

Star-shaped Au nanoparticles with multiple branches were formed when ascorbic acid and

silver nitrate were injected into the seed solution. We further controlled the overall size of

AuNS by changing the molar concentration ratio between Au3+ and AuNP seeds

10

([Au3+]/[AuNP]). Higher [Au3+]/[AuNP] ratios led to the synthesis of larger AuNS as shown

in Fig 2.2. To simulate the optical properties of nanostars, their complex structures were

deconstructed into solids of simpler shapes that were numerically modeled by using the FDTD

method. FDTD solves Maxwell’s equations repeatedly along a time evolving spatial grid. This

will yield the information about the far-field extinction and the near-field enhancements at the

nanoparticle surface. FDTD simulations were carried out on a model after an individual

nanostar [16, 17]. LSPR of complex structures such as these branched gold nanoparticles can

be understood regarding the plasmon hybridization model [18]. Thus the nanostars can be

broken down into the spherical core and the elongated tips. The numerical analysis aimed to

reveal the contribution of each such elemental component to the overall optical response of the

AuNS.

Fig 2.2: Schematic of Gold Nanostar LSPR Simulation Condition Diagram [18].

11

2.2 Numerical and Experimental Techniques

2.2.1 Numerical Modelling of Gold Nanostar

To start with mathematical calculations, assume a quasistatic approach using a conical branch

morphology. In a conical shape, both major and minor radii and their aspect ratio are very

important in analyzing the structure; therefore, the exact analytical electromagnetic solution of

cone is discussed using numerical solutions of Maxwell’s equations. The cone is irradiated by

a polarized light in z-direction, in the visible wavelength range as seen in Fig 2.2. This

electrostatic approximation is valid only when 𝝐𝒃 = (𝟐𝝅𝒅
𝝀⁄) ≪ 𝟏 [19], where 𝝐𝒃 is the

electric permittivity of the background medium, 𝜆 is the incident light wavelength and 𝑑 is,

the average diameter of the particle. Localized surface plasmon resonance (LSPR) is due to

the surface plasmon waves produced from the collective oscillations of electrons by

illuminating the nanoparticles. The oscillation of electrons in metal is described by the

dielectric function as by the Drude-Lorentz [19] model as:

𝝐(𝝎) = 𝝐∞ −
𝜷− 𝝐∞

𝟏+𝒊𝝋𝝑
+

𝜹

𝒊𝝋𝝐𝒃
 [Eq 2.1]

Where 𝝐∞, 𝜷, 𝝑, 𝝋, 𝒊, 𝜹 represent infinite frequency permittivity, static permittivity, relaxation

time, free space permittivity, and angular frequency, conductivity, respectively. The infinite

frequency permittivity and conductivity must meet the conditions 𝝐∞ ≥ 1 and 𝜹 >
𝝐𝒃(𝝐∞−𝜷)

𝝑𝟎

if 𝜷 < 𝝐∞ [20].

12

Another model is called the extended Debye model [21]:

𝝐(𝝎) = 𝟏 + ∑
∆

𝝏𝝑𝟐+𝒊𝜺𝝑+ ∈

𝟔
𝒌=𝟏 [Eq 2.2]

Where ∆, 𝝏, 𝜺, ∈ are constants that provide the best fit for various metals (e.g., gold and silver).

2.2.2 3D FDTD with non-uniform mesh

In this study, Rsoft software was applied for the FDTD simulation. The primary challenge with

simulating gold nanoparticles in 3-D is that due to the lossy and dispersive property of gold,

ultra-small grid size has to be used to mesh the gold to guarantee numerical stability. Generally

speaking, the grid size should be smaller than one hundredth of the wavelength. As a result,

the total amount of the stored field’s data on these finely meshed grids is huge and can easily

exceed the available amount of memory. Such a drawback can be overcome by using a non-

uniform mesh configuration. Since gold nanoparticles are very small and that occupy a very

limited space, the simulation region could be meshed in such a way that, gold and its vicinity

are meshed with ultrafine grids, while other areas are meshed with more coarse grids. A

meshing configuration of a gold nanostars is shown in Fig 2.3.

13

Fig 2.3: Schematic showing the principle of the non-uniform grid used to compute the

properties of one-branch nanostar 3D-model. The grid used was much finer, but it has been

coarsened for clarity. The nanostructure is excited by a wavelength that is emitted from the

launch pad, drawn in blue color. The monitor is shown as the black line rectangle and the

Perfectly matched layer as the outer gray strip.

The region that the gold nanostar occupies is meshed by 1.25 nm grids. It should be noted, that,

the regions connected to the finely meshed region are meshed with gradually varying grid sizes

to guarantee the numerical stability. Such a non-uniform mesh is very effective in performing

the simulations. A comparison of different mesh configurations used in simulating gold

nanostar is given in Fig 2.4. It can be observed that as the mesh is refined, the memory required

for the non-uniform mesh goes up slightly.

14

The stability factor of FDTD, 𝜸𝑭𝑫𝑻𝑫 is defined as [23]

𝜸𝑭𝑫𝑻𝑫 =
𝒄𝜹𝒕

𝒏
 [Eq 2.3]

Where 𝒄 is the speed of light in vacuum, 𝜹𝒕 is the time step and 𝒏 is the smallest grid size. In

all the simulations presented in this thesis, 𝜸𝑭𝑫𝑻𝑫 is set to be equal to 0.25, which gives very

good numerical stability.

Once the cell size has been chosen, the time step is being chosen by the RSoft software

automatically, according to stability considerations.

The two modes used for the simulation are:

TE mode: This waveguide mode is dependent upon the transverse electric waves, also

sometimes called H waves, characterized by the fact that the electric vector (E) being always

perpendicular to the direction of propagation [23].

TM mode: Transverse magnetic waves, also called E waves are characterized by the fact that

the magnetic vector (H vector) is always perpendicular to the direction of propagation [23].

2.2.3 Simulation models and methodology of analysis

The synthesis of AuNS is a very complex process that cannot be controlled in sufficient detail

to achieve a specific morphology. For this reason, our goal in simulating the absorbance of

nanostars has not been to model the exact optical response of an actual gold nanostar, but only

of an idealized structure of the average gold nanostar. Thus, the core of the AuNS was

15

approximated by a sphere of diameter “D” with radially oriented multiple branches. Each

branch was approximated by a truncated right circular cone described by its length “L”, the

half angle aperture “α” and a hemispherical tip of radius “r” as illustrated in Fig 2.4. Table.2.1

summarizes the definitions used and the values given to all the parameters used in describing

a typical AuNS.

Fig 2.4: Parameters defining the morphology of an AuNS FDTD-simulation model S, S1B, B

and S2B

Table 2.1: Parameters used in describing a typical AuNS.

Parameter Definition Value(s)

D [nm]

N

L [nm]

R [nm]

α [°]

φ [°]

Diameter of the core (fixed)

Number of branches

Length of branch

Radius of hemispherical tip (fixed)

Half angle aperture of the branch

Branch orientation angle on the axis

Oz

100

1, 2

100, 125, 150

3

3, 10, 15

0, 45, 180

Step 1: In the first stage of simulation, the absorption spectrum normalized on the maximum

absorption value for the TE mode, and TM mode. For the TE mode, there is two absorption

peaks at 560 nm and 790nm because the electric field of the TE mode is polarized only in the

16

X direction and thus excites both the LSPR mode in the gold nanostar, as indicated in Fig 2.5.

There is a peak around 570 nm for both TE and TM mode because the circular shape of gold

nanoparticle supports degenerate modes.

For this purpose, TE mode is better than TM mode because TE mode excites both the LSPR

peak so that the shift of this LSPR peak can be determined without being possibly mixed with

other LSPR peaks. Therefore, in the following discussions, we focused on the TE mode

excitation only.

Step 2: All models had coplanar branches, lying in the plane of the paper. Within this plane,

the orientation of each branch was then fully described by the angle “φ” on the vertical axis Oz

of the {x,y,z} reference system. Furthermore, the contribution of the constituent elements of

the overall absorbance spectrum of an AuNS model was analyzed by using their dimensions as

key parameters with values estimated from SEM micrographs of the AuNS samples.

However, to reduce the large number of the parameters and analyses required by the broad

polydispersity of the AuNSs, the diameter of the sphere of the NS core was held constant at a

value of D = 100 nm. Therefore, a second stage of the analysis would be required to compensate

for the missing variability of the optical response caused by holding the sphere diameter at a

constant value. For the same reason, the radius of the semispherical tip of each branch was held

constant at r = 3 nm. In this case, only the magnitude of the electric field enhancement is

affected locally, regions surrounding the branch tips, without affecting the spectral peak

positions of the LSPR modes [24, 25].

17

Fig 2.5: Normalized absorption spectra of a single gold nanostar on the maximum absorption

value for the TE mode and TM mode.

2.3 RESULTS

2.3.1 Influence of the branch length on the LSPR of Gold Nanostar

The attachment of a branch of half-aperture angle α = 3° to the sphere reduces its order of

symmetry and renders it anisotropic. Therefore, its absorbance spectrum becomes dependent

on the polarization of the incident light. When the polarization plane of the incident light wave

is parallel to the branch, a longitudinal SPR mode is excited in the branch. The peak wavelength

of the plasmon is red-shifted on the plasmon band of the sphere. Keeping the half-aperture

angle of the branch at a constant value of α = 3° and varying only the length of the branch, the

peak wavelength of the longitudinal SPR red-shifts on the plasmon band. The absorbance

curves for the branch lengths of 100, 125 and 150 nm have plasmon bands located at 794 nm,

820 nm and 850 nm, respectively as shown in Fig 2.6a. The shift in the wavelength was

evaluated for concerning the gold nanostars cluster with the average branch size of 140 nm.

18

However, as the branch length was 175 nm, there was no shift noticed in the plasmon band.

Fig 2.6b shows the SPR peak wavelength as a function of the branch length. The SPR peak

wavelength increase as the branch length increases.

In reality actual AuNSs have branches of different morphologies and the total response of the

nanostars is an ensemble of response of the individual component particles. Hence, we estimate

that the spectrum of an ensemble of polydisperse AuNSs by adding the individual spectra and

compare with the experimental data [26].

(a)

19

(b)

Fig 2.6: (a) Absorbance spectra of the S1B models, semi-aperture angle α=3° and branch

lengths 100, 125, 150, and 175 nm respectively, normalized to the peak intensity of the S

model. (b) Change of the SPR peak wavelength as a function of the branch length.

2.3.2 Effect of number of branches

Due to its high order of symmetry, the model of the spherical core alone is isotropic and has a

single dipolar LSPR mode around 550 nm, irrespective of the polarization of the incident light

wave. The attachment of a branch to the sphere reduces the order of symmetry of the structure,

which becomes anisotropic. Its absorbance spectrum is, therefore, dependent on the

polarization of the incident light. When the incident light beam is polarized parallelly to the

axis of the branch, as shown in Fig 2.3, a longitudinal LSPR mode is excited in the branch. Its

plasmon band is red-shifted on the plasmon band of the sphere. Keeping the half angle aperture

and the length of the branch at a constant value of α = 3° and 100 nm respectively, and varying

only the angle between branch, the wavelength shift of the longitudinal LSPR on the plasmon

band of the sphere strongly depends on the branch orientation. The absorbance curves

corresponding to the branch orientation of 45°┴, 45°║, 180°, single branch and spherical

structure, have plasmon bands located at 794 nm, 838 nm, 794 nm, 794 nm and 550 nm,

respectively as seen in Fig 2.8. The absorbance spectrum of the sphere is represented by the

0

10

20

30

40

50

60

70

100 110 120 130 140 150 160 170

Δ
λ

(n
m

)

Branch length, L (nm)

20

single curve, plotted in black, of Fig 2.7, in response to both s- and p-polarized light. This is

one of the most interesting features in the simulated spectra. In order to understand the origins

of this feature, it is important to know that maximum spectral shift can be achieved when the

tips of the AuNS is aligned along the direction of incident light polarization due to E-field more

efficiently concentrated between tips.

Fig 2.7: FDTD-calculated absorbance spectra normalized on the absorbance of the LSPR of

the spherical core, located at 550 nm. The blue curve represents the spectrum of the Sphere

model, which is unchanged for light polarized parallelly or perpendicularly to the axis of the

branch. The absorbance spectrum of the model is dependent on the orientation of the

polarization of light. In this case, the structure was illuminated only by light polarized parallelly

to the branch axis. The absorbance spectra of branch orientation of 45°┴, 45°║, 180°, single

branch and spherical structure are represented, keeping the half angle aperture and the length

of the branch at a constant value of α=3° and 100 nm, respectively.

21

2.3.3 Effect of branch aperture on the LSPR of the Gold Nanostars

Fig 2.8: Pictorial representation of the half angle aperture of the of the branch

As illustrated in Fig 2.8, the branch of the nanostars is conical in geometry. A longitudinal slice

of this cone of branch shows the angular aperture. The angle α is one-half the angular aperture

of the branch.

Increasing the aperture of a branch increases the red-shift of its plasmon band, compared to the

spectra of the model with the same branch lengths but of the constant aperture. The spectra of

the upper part of Fig 2.9a, correspond to the sphere with one branch models with half-angle

aperture increased to α = 3°, 6°, 10°, and 15° illuminated by light polarized parallelly to the

axis of the branch with unchanged branch lengths. The absorbance curves for the half-angle

aperture of α = 3°, 6°, 10°, and 15° have plasmon bands located at 756 nm, 813 nm and 895

nm, and 967 nm respectively. Both spectral location and absorbance of the second LSPR are

highly dependent on the aperture of the branches. This feature is useful for understanding the

location and absorbance of the second LSPR peak. It also demonstrates that branches of

different geometries can compensate each other to form by superposition of any reasonably

similar spectrum of the whole AuNS. Fig 2.9b, shows the SPR peak wavelength as a function

of the Half aperture angle (α0). The SPR peak wavelength increase as the half aperture angle

(α0) increases.

22

Both spectral location and absorbance of the second LSPR depend on the aperture of the

branches. This feature is useful for understanding the effect on absorbance of the second LSPR

peak. It also demonstrates that branches of different geometries can compensate each other to

form by superposition any reasonably similar spectrum of the whole AuNS. Therefore, it is

necessary to under the key parameters through which the plasmon bands can be blue shifted or

red shifted.

(a)

0

50

100

150

200

250

300

3 5 7 9 11 13 15

Δ
λ

(n
m

)

Half aperture angle (α0)

23

(b)

Fig 2.9: (a) Absorbance spectra of the Sphere with single branch models, semi-aperture angle

α=3°, 6°, 10°, and 15° nm respectively, normalized with respect to the peak intensity of the S

model and has a branch length of 100 nm (b) Change of the LSPR peak wavelength with

reference to Sphere model is shown as a function of the aperture angle.

2.3.4 Plasmons Hybridization Interaction

Comparing the first two LSPR modes of the sphere with one branch model (core and one

branch) with the corresponding LSPR modes of the separate core and branch models, a clear

shift of the spectral positions is noticed, as shown in Fig 2.10a and Fig 2.10b. The left and

right-hand side panel of each figure present the absorbance spectra of the separate core and

branch models, while in the middle panel the spectra of the core-and-branch union models are

shown, all resulting from illumination with light linearly polarized parallelly to the branch axes.

In the presented spectra, the branch of half angle aperture α is 3° and length L is 100 nm: The

second LSPR plasmon band is red-shifted. This shift is maintained for modified lengths and

apertures of the branch and can be understood as caused by the interaction between plasmons.

According to the plasmon hybridization theory [27, 28] as shown in Fig 2.10a, when individual

plasmons on separate structural parts come in sufficient proximity to each other, they interact

forming bonding and antibonding plasmons of lower and higher energy, respectively. In this

case, gold nanostar, geometry-dependent plasmon resonances result from the interaction

between the frequency plasmon response of a sphere and that of a branch. The elementary

resonances interact with each other and hybridize in a way that is analogous to the hybridization

between atomic orbitals. This interaction results in the plasmon resonances splitting into two

new resonances: the lower-energy symmetric or “bonding” plasmon (W-), and the higher-

energy antisymmetric or “antibonding” plasmon (W+) as shown in Fig 2.10a [29, 30].

24

Thus, in Fig 2.10b, the separated branch of 3° half angle aperture and length 100 nm has its

LSPR positioned at 1.75 eV or 708 nm. This wavelength is red-shifted to 1.57 eV or 793.7 nm

when the branch is attached to the sphere, which can be interpreted as being caused by the

formation of a stabilizing lower energy or “bonding” plasmon.

(a)

(b)

25

Fig 2.10: Energy level diagram of various Nano shapes (a) The energy level diagram of the

hybridization theory of plasmons [7, 23]. (b) Energy diagram of plasmon interaction in AuNS,

model S1B where the branch parameter values are α=3° and L=100 nm.

2.5 Conclusion

Through FDTD-analyses of the optical response of idealized AuNS models, it was shown that

the geometry of the branches is a key tuning factor of the absorbance peak of AuNSs. This can

be shifted both in intensity and position, depending on the length and aperture of the branches.

Since actual AuNSs have branches of different morphologies and because an ensemble of

AuNSs is the superposition of the individual optical responses of its component particles, we

estimate that the spectrum of an ensemble of polydisperse AuNSs by averaging the component

spectra would and compared with the experimental data. To adjust the overall optical response

of the AuNSs for maximal sensitivity within a well-defined region of the optical spectrum, the

most effective means of fine-tuning may be desired. It is, therefore, useful to know the rate of

shift of the second LSPR on each factor causing the shift. This is especially important if AuNS

synthesis can be carried out in a controlled fashion, in which case the optical properties of

AuNSs can be tuned for optimal performance before synthesis. We can conclude that the LSPR

fine-tuning by adjusting the aperture parameter of the branch is much more effective than

adjusting the length. Therefore the knowledge of the optical properties depending on the above

geometrical parameters is of high importance in tailoring AuNSs of desired optical properties,

such as maximal sensitivity.

26

CHAPTER 3

Tuning of Morphology and Stability of Gold Nanostars through pH

Adjustment

3.1 Introduction

Among a variety of possible nanoparticle morphologies, gold nanostars (AuNSs), comprising a

central core from which multiple sharp branches protrude, have been pinpointed as highly efficient

surface-enhanced Raman scattering (SERS) substrates, due to their tunable localized surface

plasmon resonances (LSPR) and nanoantenna effects by controlling the core size, along with tip

length and sharpness [31 – 38]. A number of methods have been reported for the synthesis of

AuNSs, though, either a seedless, or a seed-mediated approach, using capping molecules such as

poly(N-vinylpyrrolidone) (PVP) or cetyltrimethylammonium bromide (CTAB), but also under

surfactant-free conditions [32, 37, 39 – 41]. PVP-capped AuNS can be synthesized with tailored

dimensions and optical properties [32, 42], and used for ultrasensitive SERS detection [43], but the

SERS signal is affected by analyte chemisorption due to the adsorbed polymer, which can be

removed only via a time-consuming process [33]. For this reason, both the core and the morphology

of the branches have a strong influence on the position of the LSPR band. Due to the strong

27

enhancement of the electric field and light concentration on the tips of the branches, AuNS can be

successfully used as very efficient SERS substrates, sensors, as well as for targeted photothermal

therapy and photoacoustic imaging emerging applications.

However, AuNSs typically display poor stability, resulting in changes in the particle’s morphology

(reshaping) and the corresponding LSPR blueshifts, which has also been reported for other

nanostructures with sharp tips [45, 46]. In the absence of capping molecules, the colloidal stability

is also compromised, as van der Waals attractions become dominant, eventually leading to particle

aggregation [47]. These observations clearly indicate that the surface properties of AuNSs play a

critical role in the colloidal and chemical stability, which is crucial for SERS relevant applications

[48].

In this work, the impact of pH over a wide range (4.5 to 11.0) on the morphology and plasmonic

properties of gold nanostars, obtained by seed-mediated synthesis, were systematically investigated.

28

3.2 Materials and Methods

3.2.1 Materials

The hydrochloric acid solution, silver nitrate (AgNO3), sodium citrate (Na3C6H5O7), ascorbic acid

(C6H8O6) and PVA (C2H4O) (MW 89,000-98,000g/mol) were purchased from Sigma-Aldrich. Gold

chloride (hydrogen tetrachloroaurate) (HAuCl4 ·4H2O) was acquired from Alfa Aesar Chemical.

3.2.2 Synthesis of Gold nanostars

The Gold nanostars were synthesized, by using a seed-mediated method. We further extended this

protocol to enable the size control of the stars, from approximately 45 to 116 nm in size, which

translates to tuning capabilities of the longitudinal plasmon peak in the NIR region, from around

655 to over 750 nm.

The seed solution was prepared by adding 15mL of a sodium citrate solution to100 mL of boiling

1mM HAuCl4 solution. The solution turns, from the original yellow, first to dark blue, and finally,

to purple red. This solution is termed “growth solution”. For the synthesis of nanostars, 10mL of

0.25 mM solution of gold precursor (HAuCl4.3H2O), 10µL of 1M HCl, 100µL of seed solution are

mixed in an Erlenmeyer flask and stirred for 5 min. 50µL of the100mM ascorbic acid solution and

100µl of the 2mM AgNO3 solution are added simultaneously and stirred for another 10 min when

29

the solution turns to blue. The solution is then stored at 4 °C to stop the aggregation process and

allow the growth of the branches. This solution is termed “Nanostars solution” [49].

3.2.3 Selection and preparation of the buffer solutions

Acidic buffer solutions (pH 3.5–7.0) were prepared by combining different proportions of Citric

acid monohydrate, C6H8O7 • H2O, Trisodium citrate dihydrate, C6H5O7Na3 • 2H2O, solutions. x ml

0.1M-citric acid and y ml 0.1M-trisodium citrate are mixed as shown in Table 3.1.

The citric acid and trisodium citrate dihydrate were chosen to prepare the acidic pH buffer solutions

because [43]:

(a) The ions adsorbed on the surface of gold particles are the OH−1 and the citrate ions.

Therefore, the buffer solution does not introduce new species.

(b) Citrate ions reduce the impact of counter ions and enhance the stability of the colloidal

AuNPs solution.

30

Table 3.1: Preparation of the acidic buffer solutions

pH
x ml 0.1 M

citric acid

y ml 0.1 M

trisodium citrate

4.5 49.5 50.5

5.0 35.0 65.0

5.5 25.5 74.5

6.0 77.5 88.5

6.5 5.00 95.0

Highly alkaline pH buffer solutions (pH > 8) were prepared by adding an amount (x ml) of 0.1 M

solution of sodium hydroxide as shown in Table 2. Sigma-Aldrich buffer reference center was used

as a guide to prepare the buffer solutions.

Table 3.2: Preparation of the basic buffer solutions

pH x ml 0.1 Msodium hydroxide

8.0 13.5

9.0 19.0

10.0 25.5

11.0 40.0

3.3 Results and Discussion

3.3.1 Effect of pH on the morphology of Gold Nanostars (AuNSs)

The influence of the pH of the nanostars solution on the particle coverage was investigated using

SEM. The experimental procedure was as follows: The pH value of the nanostars solution was

31

adjusted to 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0 and 11.0 by adding the corresponding

buffer solution. The nanostars solution was distributed uniformly on the surface of a glass slide.

By immersing it for 5 hrs in the solutions with different pH values. After 5 hrs, the glass slide was

removed from the solutions and cleaned with distilled water. The surface morphologies of gold

nanostars on glass slides were observed using SEM. Table 3 shows the average particle size. When

the pH value was decreased from 7 to 4.5, the particle size decreased sharply, while for pH values

larger than 8 pH, the particle size increased.

Fig 3.1: 3D representation of Gold nanostar core and branches as found in SEM images

32

Table 3: Average size of AuNS with respect to the pH of the solution

(At least 100 particles were measured to calculate their average sizes)

pH of AuNS

solution

Core Diameter

(Average) (nm)

Branch Length

(Average) (nm)

Average Size of

AuNS (nm)

4.5 55 ± 5
Spherical

Transformation

No nanostars left in

the nanostars solution

7.0 45 ± 5 20 ± 10 60 ± 10

11.0 45 ± 5 40 ± 20 90 ± 20

A unique 3D nanostar model as shown in Fig 3.1 was designed for gold nanostars, using the

morphology obtained from their corresponding SEM images shown in Fig 3.2a. For a model, the

branches protrude normally to the core surface, but in the model, they were randomly positioned

on the core such as to maximize the inter-branch distance.

The average size of the AuNSswere60 ± 10 nm. When the basic buffer was added to 20 ml of

nanostars solution, the first observation was an immediate color change i.e., the solution became

dark blue and there was an abrupt increase in the absorbance values. It was observed that the higher

the pH of the nanostars solution the darker is the color of the solution. When the pH of the AuNS

solution was basic, the obtained gold nanostars were larger in size as shown in Table3. For example,

the average sizes of the AuNS at pH 11.0 was found to be 90 ± 20 nm, as indicated by the SEM

33

image in Fig 3.2a. Upon further study of the SEM images, it was found that the increase in the size

of AuNS was due to the increase in the branch length, the core diameter of AuNS was almost

constant, around 45 ± 5 nm. The average branch length at pH 11.0 was 40 ± 20 nm as observed by

SEM.

In contrast, when the acid buffer was added to 20 mL nanostars solution, the diameter of the core

of the AuNS increased from 45 nm to 55 nm as shown in Fig 3.2a, but the morphology change

from nanostars to nanospheres was noticed as the reaction progressed. This result was consistent

with the classic seeding growth of spherical gold nanocrystals reported in the literature [50, 51, 52].

Fig 3.2c represents the UV-visible spectra carried out to characterize the morphology of AuNS.

Typically, the LSPR of AuNS is represented by two peaks. The first peak is noticed around 500 nm

– 550 nm which indicates the presence of nanospheres and the second peak is noticed at between

630 nm and above. Therefore, it is necessary to mention that not all seeds in the growth solution

are transformed in the AuNSs, some of them will grow and form nanospheres [53 – 58].

The LSPR band of AuNS experienced a gradual red-shift from 650 nm to 750 nm when the pH was

increased from 7.0 to 11.0. This may indicate the increase in the branch length of the AuNSs. An

34

increase in the absorbance peak was also noticed with increase in the pH, which clearly indicated

the increase in the number of AuNS particles.

A gradual blue shift was experienced from 640 nm to 540 nm as the pH decreased from 7.0 to 4.5.

The increase in the absorbance peak was also noticed with decrease in pH, which clearly indicated

the increase in the number of AuNPs particles transformed from nanostars to nanospheres as shown

in Fig 3.2a.

(a)

(b)

35

(c)

Fig 3.2: (a) SEM of AuNSs at pH 4.5, pH 7.0 and pH 11.0. (b) Schematic of the morphology

change of AuNSs under different pH environments. (c) UV–vis absorption spectra of AuNS

samples at pH values 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0 and 11.0. (N = 10 Samples)

3.3.2 Temporal evolution of AuNS samples at pH 11

When 5 ml of base buffer was added to 20 ml nanostars solution to increase the pH of the nanostars

solution from 7.0 to 11.0, a red shift from 660 nm to 720 nm was observed in the localized

plasmonic spectra shown in Fig 3.3a. This indicates an increase in the overall size of the gold due

36

to the formation of longer branches. The change in the color of the gold nanostars solution from

light blue to dark blue was noticed when the base buffer was added to the solution.

The position of their plasmon band was constant for a significant length of time i.e., even after 2

days, which shows that AuNS were stable in the basic medium as depicted in Fig 3.3a, whereas the

AuNS solution at pH 7.0 aggregated and formed a black residual, resulting in a blue shift in the

LSPR spectra of AuNS solution.

According to the classic Mie theory, the wavelength of the LSPR band is affected by three factors:

(1) the nanoparticle's size; (2) the conduction electron density of the particle surface plasma; and

(3) the dielectric constant of the metal particles [59, 60]. The increase in pH value initiated an

electrophoretic migration, causing the particle surface to absorb more negative ions which leaded

to stronger electrostatic repulsion between the particles. As a result, the particle spacing increased,

and the particles did not aggregate. These results demonstrated that the nanostars solution with a

higher pH produced a larger red-shift and are stable for longer period.

37

(a)

(b)

38

Fig 3.3: (a) The temporal evolution of UV–vis absorption spectra of AuNS samples at pH 11. (N

= 10 Samples) (b) Represents the temporal evolution of UV–vis absorption spectra of AuNS

samples at pH 7.0. (N = 10 Samples)

3.3.3 Temporal evolution of AuNS samples at pH 4.5

When 5 ml of acid buffer was added to 20 ml nanostars solution to decrease the pH of the nanostars

solution from 7.0 to 4.5, a blue shift from 660 nm to 540 nm was observed as shown in Fig 3.4.

Upon further investigation, it was found that the nanostars have undergone morphological

transformation to form nanospheres. The decrease in pH of the nanostars solution causes the

dissociation of AuNS into Au+ and Ag+ ions. Initially, this results in the development of nucleation

sites along with the instability that causes the nanoparticles to combine and form larger

agglomerates. This is evident from the increase of the absorbance of the LSPR band and the blue

shift of the plasmon band. These results demonstrated that the nanostars solution with a lower pH

produced a larger blue-shift and are highly unstable.

39

Fig 3.4: The temporal evolution of UV–vis absorption spectra of AuNS samples at pH 4.5 (N =

10 Samples)

3.3.4 Shape-tuning effect of base buffer at pH 11

To get more insights into the shape-directing effect of base buffer at pH 11, a series of experiments

were performed in which the pH of the growth solution was varied from 4.5 to 11.0. In a typical

experiment, 49.5 mL of 0.1 M citric acid and 50.5 mL of 0.1 M trisodium citrate was added to the

100 mL of growth solution to maintain the pH of 4.5. The LSPR peak observed at 540 nm confirms

40

the presence of gold nanospheres at pH 4 as shown in Fig 3.5a. After 20 min of adding the acid

buffer, a freshly prepared (60 mL) of 0.1 M NaOH base buffer was added to the growth solution to

attain a pH of 11. Interestingly, a red shift in the LSPR peak from 540 nm to 670 nm is observed.

The anisotropic growth of AuNPs upon addition of base buffer is shown in Fig 3.5a. A weak

absorbance peak at 540 nm was observed throughout the experiment suggesting the presence of

other spherical particles in the growth solution. Interestingly, the spectra show a tail extending

into the red as shown in Fig 3.5a, indicating that the resulting AuNPs show significant aggregation.

The broadness of the peak indicates the wide size distribution of the nanoparticles’ sizes in the

growth solution. The spectra provide an understanding about the morphology of noble metal

nanoparticles.

The glass slide was placed in growth solutions with different pH values for 5 h. After 5 h, the glass

slide was then removed from the sols/buffer solutions and cleaned with distilled water. The surface

morphologies of AuNPs on glass slide were observed using SEM. The SEM image shown in Fig

3.5b, indicated that particles with a spherical morphology have aggregated when the pH of the

growth solution is maintained at 4.5 pH. Upon addition of the basic buffer to increase the pH of

the growth from 4.5 to 11 pH, a unique change in the morphology was observed in the SEM image

shown in Fig 3.5b. The particles obtained after adding the base buffer to growth solution showed

41

an anisotropic morphology. This could be an explanation to the peak intensity increases with time

which might be due to the formation of tiny AuNPs which simultaneously converted into the bigger

AuNPs with anisotropic morphology. Therefore, the results indicate the controlled pH environment

is found to assist the morphological change of AuNPs.

The anisotropy of AuNPs may show a significant increase in the LSPR bandwidth but it would not

be correct to conclude that the particles are AuNS, as once the nanostars are transformed to

nanospheres, it is thermodynamically not possible for the particle to revert to its original

morphology due to the increase in entropy of the transformation [61, 62].

The observed results summarized in Fig 3.5a and Fig 3.5b indicated the shape-tuning of base buffer

at pH 11. Further, due to the presence of weak plasmonic band at 540 nm throughout the experiment

indicates that the anisotropic morphology seen in SEM is not that of a nanostars but more of the

aggregated tiny particles in the growth solution which has undergone reduction and aggregation

phenomena upon pH change.

42

Fig 3.5: (a) The temporal evolution of UV-Visible spectra when the pH of the AuNSs was increased

from 4.5 to 11.0 by the addition of 60 mL of 0.1 M NaOH base buffer to the growth solution. (b) SEM

images of the nanoparticles at pH 4.5 and pH 11. (N = 10 Simples)

3.4 Conclusion

The results demonstrate that it is possible to address the issue of the stability of the AuNS

considering the pH of the storing solution. The morphology, shape of the spectra and the stability

of gold nanostars increased with increase in the pH of nanostars solution to 11.0. The AuNS

retained their original optical properties and shape even after two weeks at room temperature. The

43

SEM image shows the cause of increase in the size of the nanostars to be that of increase in the

branch length of gold nanostars. Upon further investigation of the shape-tuning effects of base

buffer at pH 11, it is concluded that unlike the transformation of nanostars to nanospheres which

has been reported in the literature, the nanostars transformed from nanopheres cannot be reversed

to their original form again.

45

CHAPTER 4

Sonochemical Stabilization of Gold Nanostars: Effect of Sonication

Frequency on the Size, Shape and Stability of Gold Nanostars

(AdvNanoBioM&D: 2017: 1(4):172-181, ISSN: 2559 – 1118)

4.1 Introduction

During the last decades, a wide variety of synthetic methods have been developed to prepare gold

nanostars: in situ methods, seed-mediated methods [63, 64], one-pot methods [65 – 70], etc. More

on the synthesis of nanostars can be found in the excellent review of Liz-Marzán et al. [71].

Although most of the methods can successfully produce gold nanostars (AuNSs), the synthesis,

generally, requires the use of one, or even more stabilizers, to protect the freshly formed nanostars

against aggregation.

Gold nanostars, due to their high surface area to volume ratio, are instable and have a strong

tendency toward aggregation. Aggregation, due to Van der Waals, and/or electrostatic attraction

forces, may alter the properties, reactivity, fate, transport, and biological interactions (e.g.,

bioavailability and uptake) of gold nanostars. As the aggregation barrier increases with increasing

size, larger particles are significantly more stable than the smaller ones. Despite several attempts

to improve the stability of surfactant-free gold nanostars, keeping the nanostars’ morphology

unchanged and avoiding aggregation over the time, is still challenging [72, 73].

46

Sonochemistry, the application of ultrasounds to chemical reactions and processes, is now

successfully applied in nanochemistry as well. Because of the extreme conditions that can be

achieved, unique mechanisms and reaction pathways may result. The wavelengths of ultrasounds

are much longer than the molecular dimensions, thus, no direct interactions at molecular level can

take place between ultrasounds and chemical species. Ultrasounds create acoustic cavitation, that

is, the formation, growth, and implosive collapse of bubbles in a liquid. The collapse of the bubble

can be assumed to occur adiabatically because it happens in such a short time. At this point, the

accumulated energy, stored in the bubble, will be released in a localized spot, leading to extreme

conditions such as a temperature of ~5000 K and a pressure of ~1000 bar. These localized “hot

spots” are subjected to very high heating and cooling rates, which may hinder the aggregation and

may influence the morphology of the nanoparticles [74 – 79].

In this work, the stabilizing effect of ultrasounds on nanostars is thoroughly investigated. We were

especially interested to establish a relationship between the frequency of ultrasounds and the size

and shape of nanostars, as well as the effect of ultrasounds on the aggregation kinetics. As far as

we know, this is for the first time that sonochemistry is used to increase the stability of

nanoparticles.

47

4.2 MATERIALS AND METHODS

4.2.1 Materials

Hydrochloric acid solution, silver nitrate, sodium citrate, ascorbic acid and PVA (MW 89,000-

98,000) were purchased from Sigma-Aldrich. Gold chloride (hydrogen tetrachloroaurate) (HAuCl4

·4H2O) was acquired from AlfaAesar Chemicals.

4.2.2 Ultrasound treatment

Sonication was carried out using a horn type sonicator (Type: CCH-5838D-25LB PZT-4,

frequency: 25 kHz, 40 kHz, 80 kHz, 120 kHz; radiating surface: 45 mm; resonance impedance

(Ω): 10-25; static capacity (pF) ±10%: 3500-3800; insulation resistance: 10000 Mohm; input

power (Watt): 100W). Immediately after the synthesis, a tightly closed vial, containing 10mL of

gold nanostars solution, was subjected to an ultrasound treatment provided by a horn type sonicator

(CCH-5838D-25LB). There was not direct contact between the radiating surface and the liquid

medium. The gold nanostar solution, after synthesis, was sonicated for 5, 10, 15, and 20 min,

respectively.

4.2.3 Synthesis of Gold Nanostars

Gold nanostars were synthesized by a seed-mediated method [64]. The colloidal solution was

prepared by adding 15mL of a sodium citrate solution (1%) to100 mL of boiling 1mM HAuCl4

solution. The solution turns, from the original yellow, first to dark blue, and finally, to purple red,

the color of colloidal gold.

48

For the synthesis of nanostars, 10mL of a 0.25mM solution of gold precursor (HAuCl4.3H2O),

10µL of 1M HCl, 100µL of seed solution are mixed in an Erlenmeyer flask and stirred for 5 min.

50µL of the 100mM ascorbic acid solution and 100µl of the 2mM AgNO3 solution are added

simultaneously and stirred for another 10 min, when the solution turns to blue. The solution is then

stored at 40C to stop the aggregation process and allow the growth of the branches.

4.2.4 Bubble Imaging

The experimental setup for visualization of the cavitation bubble collapse is shown in Fig 4.1. This

device consists of a set of light sources, the CCH-5838D-25LB ultrasound wave generator, a high-

speed 240 fps Mini Action camera, and a laptop. The camera is used to extract and record the

images. The speed of image extraction is determined by the size of the image. For example, an

image extraction speed of 240frames/s is used for an image size of 1,070 × 90 pixels. When the

high-speed camera stopped recording the image files, the data were extracted and uploaded on the

image processing software, designed for the experiment, by using the magic kernel up-sampling

operator. Hence, the cavitation bubble in its collapse process can be recorded and stored for further

analysis [80].

49

Fig 4.1: Cavitation images in the gold nanostars solution subjected to ultrasounds with a

frequency of 25 kHz.

4.2.5 Characterization

The morphology of the nanoparticles was studied by using Scanning Electron Microscopy (SEM).

Spectral measurements have been taken by using a LAMBDA 600 UV-Vis spectrometer in the

wavelength range of 400 to 900 nm. To visualize the nanoparticle morphology by SEM, a drop of

solution was casted onto a glass slide and left to evaporate.

50

4.3 Result and Discussion

4.3.1 The Chemistry of the Reduction of Gold Ions.

Gold nanoparticles have been synthesized by using the well-known “citrate” method [81]. Briefly,

the reactions involved in this synthesis are shown below:

It is thought that the initial step of the reaction is the oxidation of the citrate ion, that results in the

formation of dicarboxy acetone:

(−OCOCH2)2C (OH) COO− → (−OCOCH2)2C = O + CO2 + H+ + 2e− [Eq 4.1]

Next, auric chloride is reduced to the aurous salt:

AuCl3 + 2 e− → AuCl + 2Cl− [Eq 4.2]

Which will disproportionate as shown in the following reaction:

3AuCl → 2Au0 + AuCl3 [Eq 4.3]

The disproportionation step is facilitated by dicarboxy acetone.

To obtain monodispersed, non-agglomerated silver nanoparticles, further used for the synthesis of

nanostars, the reduction in aqueous solutions of silver nitrate, was used. Because the ascorbic acid

is a mild reductant, it was chosen to reduce Ag+ [82]. The presence of Ag (I) results in the

51

deposition of AgCl and/or Ag (0) on the surfaces of the initial spherical AuNP cores as shown in

the reaction:

Ag+ (aq) + +C6H8O6→2Ag +C6H6O6+2H+ [Eq 4.4]

The silver atoms on the surface of spherical gold will become the starting points of the branches.

4.3.2 Effect of sonication on the morphology of Gold Nanostars (AuNSs)

The number of tips on each AuNSs is not constant, and the distribution of the shape and position

of the tips varies [20]. When the volume of AuNSs is small, the core makes a significant

contribution to the spectrum that will show two marked peaks, at 540, and 700 nm, respectively.

As the volume of AuNSs increases, the number of tips increases as well, and the effect of the core

on the spectrum decreases gradually [63] [83].

Gold nanoparticles with an average diameter larger than 40 nm melt at a temperature between

1200 K and 1300 K [1] [84]. The nearly adiabatic bubble collapse, due to cavitation, leads to

almost 9 orders of magnitude of enhancement in energy per molecule, producing internal

temperatures of∼5 × 103 K [85, 86], sufficient for AuNSs to melt and fuse with other nanoparticles,

at the contact, or through interparticle collision, inside the hot phase of a cavitation bubble.

The SEM image of AuNSs, after 20 min of sonication treatment at 25 kHz, was analyzed by using

the edge detection algorithm with a magic kernel up-sampling operator as shown in Fig 4.2. It was

found that the cores are fused after sonication, forming dumbbell-like particles. Therefore, it is

52

likely that the fusion of Au NPs occurs by interparticle collision, because of the concentration and

the nanoparticles size [87].

Fig 4.2: Image analysis performed on the SEM images of gold nanostars, after 20 min of

sonication at 25 kHz to detect the fused cores of the gold nanostars.

A series of control experiments were carried out with the growth solutions, by using different

sonication frequencies. The average particle size of the AuNSs in the growth solutions varied with

the change in sonication frequency due to the formation of the dumbbell shaped nanostars as shown

in Fig 4.3. As indicated by the SEM observations, the average size of the AuNSs was 50 nm,

without the sonication treatment, and increased to 110 nm, when the solution was sonicated at a

53

frequency of 25 kHz as shown in Fig 4.3 (at least 50 particles were measured to calculate the

average sizes). UV-visible spectra were measured to characterize the gold nanostars, subjected to

different sonication frequencies as shown in Fig 4.3. When the 25 kHz of sonication frequency

was used, the LSPR band of the AuNSs experienced a gradual red-shift from 720 nm to 840 nm,

corresponding to a color change, from pale blue to blue-green. When the sonication frequency was

increased from 25 kHz to 120 kHz, a gradual blue shift from 840 nm to 660 nm was observed.

(a)

54

(b)

Fig 4.3: (a) Au LSPR band of gold nanostars as a function of the ultrasound frequency. (b)

Average size (core + branches) of gold nanostars as a function of the sonication frequency.

Fig 4.3b shows that the size of AuNSs is critically dependent on the ultrasonic frequency. When

the frequency was 25 kHz, AuNSs were observed to grow to almost 150 nm, by fusing of multiple

gold nanoparticles. However, as the sonication frequency increased from 25 kHz to 120 kHz, a

gradual reduction in size of the AuNSs can be observed. A possible explanation would be that,

increasing the sonication frequency, the reduction process is accelerated, leading to an overall

smaller number of ions in the solution, and therefore, a lower ionic strength at which aggregation

would not occur.

Fig 4.4 shows the effect of ultrasonic energy (sonication time) on the size of AuNSs, by using a

conventional ultrasonic bath with a constant frequency (25 kHz).

60

150

70

50

30

0 25 40 80 120

(n
m
)

(kHz)

55

Fig 4.4: Temporal evolution of UV–Vis absorption spectra of AuNSs samples at 25 kHz

Fig 4.4 shows that, at a given frequency, the size of nanoparticles is not significantly dependent on

the sonication time. The spectra indicated a blue shifted LSPR band, from 805 nm to 790 nm,

showing that the prolonged exposure to ultrasounds, results in the formation of smaller particles.

The sonication of an aqueous solution for a prolonged period generates a higher number of

cavitation bubbles. It is possible that, at higher acoustic power levels, a greater number of radicals

are generated per bubble, due to the larger size (Rmax) of the cavitation bubbles. [89, 90]. That

makes it impossible to control the growth stage of the crystallization process, leading to an

uncontrolled and rapid reduction. Even though there would be larger AuNSs present, this would

be for an extremely short period, and, at the end of the sonication process, the solution would

contain only small particles.

56

The stability of the as synthesized AuNSs was studied by comparing the effect of sonication on

the optical and morphological features of the AuNSs. Fig 4.5a and 5b show the LSPR band of the

AuNSs with, and without, sonochemical treatment. Fig 4.5a shows that, without sonication, a blue

shift from 810 nm to 670 nm is observed after only three days, showing that the untreated AuNSs

undergo aging, as indicated by the strong blue shift of the LSPR band. Fig 4.5b shows that

sonicated AuNSs are stable. The sonochemical treated AuNSs show a significant improvement of

stability, possibly, due to the increase in the size of AuNSs that facilitates the increase in the

aggregation barrier.

(a)

57

(b)

Fig 4.5: (a) Temporal evolution of UV–Vis absorption spectra of AuNSs samples, without

sonication treatment (until 30 days). (b) Temporal evolution of the UV–Vis absorption spectra of

AuNSs samples sonicated at 25 kHz.

A direct comparison of yields between different synthesis protocols is difficult because of the lack

of available analytical techniques [91, 92]. However, based on the LSPR results, it can be assumed

that the AuNSs synthesis, followed by ultrasonication treatment, led to well-formed nanostars,

with a yield of about 14% [67]. Therefore, it is reasonable to say that the suspended gold nanostars

are stable for more than one month. Because of the sonication, nanostars are larger, the surface

plasmon resonance mode is shifted to the near infrared which makes them more suitable for

biological applications.

4.4 CONCLUSION

In this study, it was demonstrated for the first time that the sonication frequency has a significant

effect on the size and morphology of gold nanostars. The formation and stability of the gold AuNSs

58

treated ultrasonically can be summarized as follows. At the initial stage of the reaction, many the

small gold particles with a diameter around 30 nm are produced by reduction of gold nanoparticles

ions with a sodium citrate solution. The seed-mediated method, followed by the sonication

treatment developed in this study, offers new opportunities to synthesize aqueous suspensions of

monodispersed gold nanostars with prolonged stability. The result indicates that at a sonication

frequency of 25 kHz, the maximum average particle size of 120 nm is attained, due to the large

diameter of the cavitation bubble which, under collapse, generates extreme conditions of pressure

and temperature. Therefore, the LSPR extinction spectra of the gold nanostars, centered within the

range of 650 to 900 nm, is tunable via the change in the ultrasound frequency. The optical

characteristics of gold nanostars solution after ultrasound treatment appeared to be substantially

more stable than those of non-treated ones because of the slower aggregation of NSs. The LSPR

extinction spectra indicates that there is no further shift in the LSPR band after sonicating the

solution at 25 kHz beyond 20 min, indicating an exponential relation between the optical property

of gold nanostars and the duration of the ultrasound treatment. The use of sonication technique to

stabilize gold nanostars, without any additional chemical stabilizer, is both technologically and

scientifically important. It can, hence, be expected to be able to produce by this method, a large

volume of consistent quality gold nanostars.

59

CHAPTER 5

Sensitivity and Stability enhancement of Poly (vinyl alcohol)-

nanostars composites for Localized Surface Plasmon Resonance

sensing applications

5.1 Introduction

Recently, water-soluble PVA–nanoparticle composite materials are of great interest in terms of

their potential applications in biomedical, electronic, and optical materials due to their hybrid

properties derived from several components [93]. Whether in solution or bulk, these polymer

composites offer a unique response to stimuli (pH, temperature, ionic strength, light and force).

Such characteristics are induced by the interactions of the nanoparticles and the polymer [94].

Such frameworks have been broadly examined over the previous decade following synthetic

advances [95]. Although there are numerous cases of ligand-adjustment of nanoparticles, there are

few examples of polymer-stabilized metal nanoparticles [96].

In general, we note two diverse methodologies used to date. The first procedure comprises of the

in-situ preparation of the nanoparticles in the matrix. This is implemented either by dissolving the

metal salts in the polymer matrix [97] or by the dissipation of metals on the heated polymer surface

[98]. The second method is a less common procedure which involves polymerizing the matrix

around the nanoparticles [99]. An improved methodology would include adapting first and second

methods by blending of pre-synthesized nanoparticles into the polymer matrix. This gives full

60

synthetic control over both the nanoparticles and the network and has the potential for creating a

wide assortment of composite materials.

Among a variety of possible nanoparticle morphologies, colloidal gold nanostars (AuNS)

comprising a central core from which multiple sharp branches protrude, have been noted as highly

efficient surface-enhanced Raman scattering (SERS) substrates due to their tun- able localized

surface plasmon resonances (LSPR) and nanoantenna effects by controlling core size, along with

tip length and sharpness. [100 – 106] However, these AuNS typically display poor stability,

resulting in changes in the particle’s morphology (reshaping) and corresponding LSPR blueshifts,

which has also been reported for other nanostructures with sharp tips. [107, 108]

So far, the sensing experiments with gold-polymer platforms have been performed by using mostly

composites of gold nanospheres and PDMS polymer [97]. The refractive index sensitivity found

by Shiohara et al. was lower than that previously found by our group for nanostars embedded in

porous PDMS [98]. In addition, because of the strong hydrophobicity of PDMS, more appropriate

PDMS surface modifications are needed to improve the surface wettability facilitating fluid

delivery. It is well known that, even after a plasma treatment, PDMS will slowly revert to its

hydrophobic character [99].

To overcome these difficulties, we reasoned that it is necessary to design the gold nanostars to

make them compatible with the polymer matrix. We speculated that gold nanostars whose polymer

ligand is chemically the same as the matrix would be more thermodynamically favorable to their

incorporation [100].

61

In this work, considerable efforts have been devoted to developing a high sensitive Localized

Surface Plasmon Resonance (LSPR) based platform by the synthesis of novel gold nanostars

synthesized using seed method assisted by sonochemical method and their successful embedding

them into the pores of the hydrophilic Poly vinyl alcohol (PVA) polymer matrix. The effect of

sonication frequency and temperature on Localized Surface Plasmon Resonance (LSPR) of

AuNSs-PVA composite is also investigated here.

5.2 Materials and Methods

5.2.1 Materials

The hydrochloric acid solution (HAuCl4), silver nitrate (AgNO3), sodium citrate (Na3C6H5O7),

ascorbic acid (C6H8O6) and PVA (C2H4O) (MW 89,000-98,000 g/mol) were purchased from

Sigma-Aldrich. Gold chloride (hydrogen tetrachloroaurate) (HAuCl4 ·4H2O) was acquired from

Alfa Aesar Chemical. Sonication irradiation was carried out using a horn type sonicator (Type:

CCH5838D-25LB PZT-4, frequency: 25 kHz, diameter of tip: 19 mm, Resonance Impedance (Ω):

10 – 25, Static Capacity (pF) ± 10%: 5400, Input power (Watt): 100W). A Perkin Elmer Lambda

650 UV-Vis spectrometer was used for all the spectral measurements.

5.2.2 Preparation of the Poly- (Vinyl Alcohol) (PVA) solution

The PVA aqueous solution was prepared by slowly adding 4 g of PVA powder in 100 ml of cold

water to avoid formations of lumps, and heated. At a temperature ranging from 85˚C to 98˚C until

the PVA is fully dissolved. The polymer solution is then further heated and held at 115°C for 15

min to remove air bubbles. Once cooled to room temperature, the solution was stored for further

usage.

62

5.2.3 Preparation of gold nanostars- PVA composite

The gold nanostar solution was synthesized using seed-mediated method [88] protocol was

extended further to enable size control and tuning capabilities of the longitudinal plasmon peak in

the NIR region from around 655 to over 750 nm of the stars. The nanostars solution sonicated at 25

kHz for 20 min. The solution is then stored at 4 °C to stop the aggregation process and allow the

growth of the branches.

The gold nanostars - PVA composite was prepared by adding10 mL of gold nanostars solution to

100 mL PVA aqueous solution. The mixture was stirred vigorously and then subjected to vacuum

for removing the traces of air from the sample. Finally, the homogenous solution was poured into

a mold and let it dry at room temperature. The schematic, showing the process of the preparation

of composite and embedding of the AuNSs aggregates into the pore network of the PVA polymer

is shown in Fig 5.1.

Fig 5.1: Schematic showing the preparation of gold nanostars-PVA composite platform

63

5.3 Refractive Index Sensitivity Measurement

The AuNS-PVA nanocomposite samples are introduced into different dielectric media of varying

refractive indices as listed in Table I. The sensitivity of the composite to the surrounding dielectric

medium is calculated as the ratio of the Au-LSPR band shift (Δλ) between the solvent and de-

ionized water to the change in the refractive induces (Δn) of the solvent to de-ionized water [102]:

Sensitivity (σ) = (∆λ)/∆n [Eq. 5.1]

Where

∆λ = λS - λW [Eq. 5.2]

∆n = nS - nW [Eq. 5.3]

Where, ∆λ is the difference in the plasmonic shift, λS is the peak wavelength of the Au LSPR band

where the sample is immersed in a solvent of a known refractive index and λW is the position of the

band of the sample immersed in de-ionized water, Δn is the difference between the refractive

indices of the solvent and that of DI water, ns is the refractive index of the solvent, and nw is the

refractive index of water.

Table 5.1 Refractive indices of dielectric media used for sensitivity tests at 25 °C

Media Refractive Index (n)

Deionized Water 1.330

Ethanol 1.361

Acetone 1.360

64

5.4 Results

5.4.1 Temporal evolution of gold nanostars during synthesis.

(a)

N,N-Dimethylformamide 1.430

Dimethylacetamide 1.437

Chloroform 1.440

65

(b)

(c)

y = 1.8011x + 650.91
R² = 0.9502

640

660

680

700

720

740

760

780

0 10 20 30 40 50 60 70

W
av

e
le

n
gt

h
 P

e
ak

 (
∆

λ
)

Time (mins)

66

Fig 5.2: (a) SEM image of the ultrasound-stabilized gold nanostars deposited on a glass slide from

their aqueous solution. (b) Spectral study of the growth of nanostars with time (t = 2 min to t = 60

min (The concentration of silver nitrate used in this experiment was 2 mM), (Sample set, n = 10

samples) (c) Change in LSPR peak wavelength as a function of the time.

The growth mechanism of branches in a nanostars is important to establish a relation between

morphology of the stars and optical resonance. The yield of long-branched nanostars is very high,

as shown by SEM image as shown in Fig 5.2a. The size of the nanostars ranges from 100 nm to

250 nm, and the number of tips varies from 15 to 20. To investigate the kinetics of formation of

stars, the solution was sampled at specific time intervals, and the spectra were recorded as shown

in Fig 5.2b which represents the location of the peak of plasmon band as the spectra evolves in

time, suggesting that the branches grows continuously until synthesis completion, which occurs

approximately around 60 min. The non-linear growth of the branches can be inferred from the non-

linear LSPR shift with time. At the initiation of growth plasmon band appears around λ = 650 nm

very early in the synthesis, at t = 2 min, and rapidly red-shifts to approximately λ = 700 nm at t =

20min, following which it slowly progresses further towards the NIR, reaching λ=750 nm at t = 60

min. The evolution of the plasmonic bands implies that the AuNSs branches start growing from the

core surface shortly following nucleation and increase in length rapidly in the first 8 min as shown

Figure 5.1b. The process is followed by further nucleation and growth of the branches. The core

and branches grow simultaneously throughout the synthesis. Their fastest growth rate corresponds

to the beginning of the synthesis, followed by a steady growth until synthesis saturation [103].

The morphology of the Au nanostars depends significantly on the nucleation kinetics, controlled

by the concentration of silver nitrate (AgNO3). In the growth solution, ascorbic acid acts as a mild

67

reducing agent for silver ions. The silver atoms, formed by reduction, will deposit on the gold seeds

and become the starting points of the branches.

(a)

68

 (b)

(c)

Fig 5.3: (a) SEM images of the Au nanostars corresponding to different concentrations of AgNO3.

(b) Tuning the absorption of the LSPD band of nanostars in the presence of silver nitrate solutions

69

of various concentrations. (c) Average Au nanostars size (nm) vs concentration of AgNO3 (mM).

(Sample set, n = 10 samples, SD = 4)

As seen in Fig 5.3, the concentration of the AgNO3 solution used for the synthesis plays a significant

role in the branch formation [104]. The figure shows that the morphology of AuNSs can be

controlled by varying the concentration of the AgNO3 solution as shown in Fig 5.3a. Increasing the

concentration of AgNO3 from 0.5mM to 2mM, a gradual shift in the position of the nanostar’s

plasmon band, from 650 nm to780 nm, is noticed but, if the concentration of the AgNO3 increases

over 2 mM, the LSPD band shifts back from 780 nm to 590 nm. The evolution of the plasmonic

bands implies that a careful tuning of Ag+ concentration is important for the generation of branches.

AuNSs with high Ag+ concentration (>2 mM) led to no branches on the surface of AuNP with

significant nonspecific growth on the tip body. Solution of low AgNO3 concentration (< 0.5 mM)

led to very short branch (length: 15 – 20 nm). We found that the medium concentration of AgNO3

(2 mM) yielded nanostars with sufficiently long branches (length = 100 – 150 nm), as shown in the

Fig 5.3b and Fig 5.3c. The possibility to tune the Au plasmon band by changing the concentration

of a reagent is important and necessary for a significant number of biological and energy

applications.

5.4.2 Effect of ultrasounds and temperature on growth kinetics and stabilization

Au nanoparticles (AuNPs) have the general tendency to form large clusters to minimize their

surface energy, commonly referred to as aggregates, thereby often losing their nanoscale properties.

It is assumed that energy is transform during bubble growth and collapse in sonication reduction

which helps to supply energy required for AuNSs synthesis [105].

70

(a)

(b) (c)

71

(d)

Fig 5.4: (a) Visible-NIR spectra of Au nanostars as a function of the post-synthesis temperature at

a constant ultrasound frequency of 20 kHz. (b) Absorbance spectra of nanostars, recorded on the

same day, after two days, and after 3days without using ultrasounds (c) Absorbance spectra of

nanostars recorded on day 0, after 6 days, and after 30 days after using ultrasounds. (d) SEM image

of the Au nanostars obtained at different temperatures, as indicated on the label, at constant

ultrasound frequency of 20 kHz and the effect of ultrasound and temperature on the branch length.

Data points (n) = 6

72

The AuNSs were synthesized at 25 °C and series of experiments were performed by changing the

temperature of the AuNSs solution and with and without sonication treatment. To determine the

effect of sonication assisted by temperature, the AuNSs solution was sonicated at 25kHz and stored

at various temperatures and the effect was determined by visible-NIR absorbance spectra. The

AuNSs LSPR was found to be shifted from 530 nm to 740 nm when the temperature decreased

from 60 ºC to 5 ºC as showed in Fig 5.4a. Fig 5.4b and Fig 5.4c demonstrate the effect of sonication

on of AuNSs using visible-NIR spectra. Herein, the Sonication-treated AuNSs showed a blue shift

in absorption band from 710 nm to only 685 nm over 30 days, whereas for the non-treated AuNSs

the blue shift in absorption band was from 690 nm to 570 nm after 3 days. At the same time, the

color of the sample turned to purple showing the transformation of nanostars into nanospheres. The

effect of sonication and temperature on morphology of AuNSs is showed by Fig 5.4d. The AuNSs

stored at 50C were highly anisotropic, with relatively long branches and planar appendices, when

compared to AuNSs synthesized at 300C, which seem to have shorter branches.

73

5.4.3 Formation of the Nanostars – PVA polymer composite

(d)

74

Fig 5.5: (a) SEM image of the PVA polymer network. (b) SEM image of Au nanostars aggregates

embedded in the PVA matrix. (c) The slow transformation of nanostars to nanospheres. (d) Spectra

of Au nanostars – PVA composite over a period of 200 days showing the stability of the embedded

nanostars aggregates. (Sample set (n) = 6)

Investigation of PVA polymer film microstructure indicated that the polymer has an internal 3D

network with a large number of micropores throughout the polymer matrix. Fig 5.5a shows a

network structure that can act as a host for the Au nanostar aggregates shown in the Fig 5.5b. The

LSPR spectra of the corresponding AuNSs – PVA polymer composite over time is shown in Fig

5.5c. AuNSs – PVA polymer composite film contains the well dispersed nanostars in polymer

matrix. Considering the porous framework of the polymer as well as the method we used to

incorporate the nanostars, the resultant composite can be considered a host-guest inclusion

complex. A gradual blue shift is seen in the spectra of Au nanostars – PVA composite as shown in

Fig 5.5d. The shift has been accounted by the very slow transformation of the nanostars into the

more thermodynamically stable nanospheres over a year as seen in the Fig 5.5b.

5.5 Chemical Sensing of Surrounding Environment

The LSPR is extremely sensitive to the environment surrounding the AuNPs. Therefore, the LSPR

extinction curve is monitored as a function of changes in the local dielectric environment which is

related to the refractive index. This method can also be applied to sensing of biological molecules

such as proteins and antibodies. The refractive-index sensitivity of the AuNSs LSPR was

demonstrated by exposing the AuNSs-PVA polymer to different solvents having refractive indices

listed in Table I. The change in LSPR band (∆λ) versus refractive index of the local environment

(∆n), for a solvent is plotted in Fig. 5.6, demonstrating a linear relationship between (∆λ) and (∆n).

75

The AuNSs-Glass platform was prepared by depositing 100 µL of AuNSs on the glass substrate

and letting it dry at 25 °C. For AuNSs-PDMS platform, the PDMS Elastomer was mixed thoroughly

with the curing agent in the weight ratio of 10:1 and then degassed under vacuum to remove

entrapped air bubbles. It was then casted on glass slides and cured under vacuum at room

temperature. The mixture was then incubated at 60 °C for 12 hours for the polymer to form. The

PDMS polymer is then dipped in the AuNSs solution for 3 hrs and dried at 25 °C. Overall, the

refractive-index sensitivity for AuNSs-PVA polymer composite was found to be 569 (nm/RIU)

which is higher refractive-index sensitivity than the other platforms as shown in Fig 5.6.

Fig 5.6: Sensitivity of the AuNSs on different composite platform (Sample set (n) = 6)

It is assumed that during the sensing process, the dielectric medium (the solvent) enters the porous

network of the polymer and reaches the long branches of the AuNSs. Therefore, the overall

sensitivity of AuNSs-PVA polymer is significantly higher indicating that the EM field extends far

enough, away from the particle surface to be useful for sensing experiments.

76

5.6 Conclusion

Gold nanostars have been prepared through a seed-assisted method and stabilized by controlling

the temperature after the ultrasound treatment. It is found that if the nanostars stored at 5 0C after

the ultrasound treatment, their stability can be extended from 2-3 days to 30 days. The concentration

of silver nitrate was optimized to increase in the branch length. The morphology of the particles

was assessed by SEM, while the optical properties were characterized with UV/vis spectroscopy.

Subsequently, a host-guest complex has been prepared, by embedding the stabilized Au nanostars

into the porous network of the hydrated PVA. Due to the strong van der Waals interactions between

individual stars, they form aggregates inside the pores. It is assumed that during the sensing process,

the solvent enters the PVA network and contacts the long branches of the stars. In the case of

sensing with Au NS – PVA composites, the sensing entities are not the individual stars but their

aggregates. Further investigations are necessary to understand the fundamental mechanism of

plasmonic sensing through aggregates.

77

CHAPTER 6

Gold Nanostars polymer composite platforms for Localized

Surface Plasmon Resonance Based Early Cancer Diagnosis

6.1 Introduction

Exosomes are vesicles of sizes ranging from 30 to 100 nm, with an important role in cell

communication, predominant for the maturation of tumour microenvironment and progression

of cancer [106]. ExoCarta, an exosome database, highlights the contents identified in multiple

exosomes organisms [107], over 4900 mRNAs, 41,800 proteins, and 2800 miRNAs [108], with

sites in several subcellular compartments [109]. The specific composition of exosomes appears

to depend on the type of cell or tissue and may differ depending on the physiological state as

shown in Fig 6.1 [110, 111, 112].

The extraordinary features of exosomes are as follows: (i) the composition varies according to

the original cell and exosomes derived from cancer cells, usually reflects the tumor stage [113,

114, 115], (ii) exosomes are stable in circulation, they are found in body fluids, including blood,

saliva, breast milk, and urine, indicating that circulating exosomes can be a biological marker,

suitable for diagnosis and prognosis of cancer [116], (iii) they can change the phenotype of a

recipient cell, responsible for the maturation of the tumor microenvironment and progression

of cancer [117, 118]. Understanding the role of exosomes in tumorigenesis creates a new era in

the diagnosis and treatment of cancer, using exosomes circulating as tumour biomarkers [119,

120] and targeting exosomes derived from cancer cells [121].

78

Fig 6.1: Biogenesis of exosomes into the extracellular space

Over the past few years, nanotechnology has paved the way for the development of a plethora

of new diagnostic and therapeutic platforms [122]. Examples of Nano carriers are liposomes,

polymeric nanoparticles, viral vectors, and more recently gold nanoparticles [123]. Gold

nanoparticles (AuNP) have unique physical and optical properties, making them a powerful

tool for diagnosis, and therapy [124, 125]. AuNPs can be modulated in shape, and composition,

as well as their size (1-150 nm), and surface area [126, 127, 128]. Since nanoscale particles are

large enough to contain a variety of drug molecules, thus, they can allow the development of

new treatment strategies [129, 130]. Among the known gold nanoparticles, gold nanostars

(AuNSs) (multi-pod, branched morphologies) are a relatively new class of nanoparticles,

having anisotropic morphology and a wide range of potential applications due to their optical

properties, including localized surface plasmon resonance through the Near-IR spectral region,

particularly for biomedical applications [131, 132, 133].

79

Gold Nanostars (AuNSs) can be covalently or electrostatically conjugated to a variety of

biomolecules, including nucleic acids, proteins, peptides, antibodies, etc., conferring gold

nanostars for targeting capabilities. However, the application of AuNSs for targeting requires

their stability in solutions with high protein and salt concentration. AuNSs can target exosomes

via functionalization with exosome-binding lectins and antibodies, aiming at exosome capture.

To increase the half-life circulation AuNSs, generally they are functionalized with polymers

such as polyethylene glycol (PEG), which enhance their hydrophilic character and,

consequently, their colloidal stability, biocompatibility, and bio-distribution. The PEG layer on

the surface of AuNSs generates an inert hydrophilic surface, which increases the stability of

AuNSs at high concentrations of salt and biological media, preventing their morphological

change. Similarly, functionalization with PEG prevents non-specific electrostatic adsorption of

biomolecules, including proteins such as opsonin, which circulate in plasma proteins that mark

antigens for phagocytosis. Therefore, AuNSs’s coverage with PEG prevents recognition by the

mononuclear phagocytic system (MPS) (which would prevent AuNSs interaction with

exosomes), then increases its half-life in the blood and bio-distribution. Biotin-PEG-Vn96 has

a polyethylene glycol linker between the peptide and biotin moieties, providing flexibility to

Vn96 to access and capture exosomes. PEGs can be bonded with other functional groups at the

AuNSs surface or can serve as linkers for the functionalization with other functional

biomolecules as shown in Fig 6.2a [134 – 139].

Surface plasmon resonance (SPR) is the collective oscillation of valence electrons in a metal,

excited by the incident light. The LSPR condition depends on the size, shape of the metal

nanoparticles and the refractive index of the environmental media surrounding the metal

nanoparticles.

80

Recently, a localized surface plasmon sensor has been proposed with the use of colloidal gold

monolayers deposited on a glass substrate. [140, 141, 142]. In this paper, we employed

polydimethylsiloxane (PDMS) polymer as a substrate for AuNSs. Because of strong

hydrophobicity of PDMS, a more appropriate PDMS surface modifications treatment was

developed using PVA to form a composite polymer substrate for immobilization of gold

nanostars.

Surface plasmon resonance (SPR) based methods have been developed for the detection of

Extra-Vesicular (EV) RNAs. In order to capture exosomes, the surface of gold nanostars has to

be functionalized with one or more different types of antibodies against membrane proteins.

Commercial SPR instruments were able to screen the membrane proteins and determine the

concentration of exosomes in various cultured cell lines. However, due to large surface/volume

ratio of gold nanostars, the affinity of target interaction is high and for this reason, the Localized

Surface Plasmon Resonance (LSPR), based on noble metal nanostars proved to be a more

straightforward way to detect and isolate exosomes [143, 144].

The concentration of exosomes present in the body fluids increases in a cancer patient compared

to a healthy patient. For example, in the case of a glioblastoma (GBM) cancer cell study [145],

the concentration of exosomes was found to be approximately 50 times higher than that of a

healthy patient. Therefore, the concentration of exosomes, detected by measuring the LSPR

plasmonic shift, will increase during the progression of cancer as shown in Fig 6.2b. This figure

shows, in a general way, that the plasmonic shift for the exosomes released by cancerous cells

increases when compared to healthy cells.

81

Here we address novel strategies that can be used to target MCF-7 exosomes derived from

cancer cells, using gold nanostars, immobilized in PDMS/PVA substrate as a platform.

(a)

(b)

82

Fig 6.2: (a) Gold Nanostar (AuNS) functionalization for targeting Exosomes (not to scale). (b)

Schematic of the relationship between plasmonic shift and concentration of exosomes during

cancer progression.

6.2 Materials and Methods

6.2.1 Materials

The hydrochloric acid solution (HAuCl4), silver nitrate (AgNO3), sodium citrate (Na3C6H5O7),

ascorbic acid (C6H8O6) and PVA (C2H4O) (MW 89,000-98,000g/mol) were purchased from

Sigma-Aldrich. Gold chloride (hydrogen tetrachloroaurate) (HAuCl4 ·4H2O) was acquired

from Alfa Aesar Chemical. De-ionized (DI) water with a resistivity of 18MΩ, used in all the

experiments was obtained from the NANOpure ultrapure water system (Barnstead). The 11-

mercaptoundecanoic acid in ethanol (Nano Thinks Acid 11), phosphate buffered saline (PBS)

were obtained from Sigma-Aldrich, Canada. PBS tablets were dissolved in DI water at 0.1M

concentration with a pH of 7.2. Streptavidin (SA) was purchased from IBA GmBH, Vn96-

linker-biotin and MCF7 exosomes were supplied by the Atlantic Cancer Research Institute

(ACRI), Moncton, N.B. Canada.

6.2.2 Fabrication of PVA/PDMS Composite

2 grams, 4 grams and 6 grams of NaOH and PVA in 1:1 ratio was added to 100 mL of DI water

and stirred at room temperature for 10 min forming there different sample set named as

Solution 1, Solution 2 and Solution 3. The temperature was then gradually increased to 100 °C,

and the solution was stirred for another 40 min. Finally, the temperature was reduced to 80 °C

to avoid lumping. DI water was added to compensate for any losses due to water evaporation.

83

The PDMS prepolymer and curing agent were thoroughly mixed in a 10:1 ratio. The mixture

was poured in a petri dish, thoroughly degassed in vacuum and cured overnight in the oven at

65 °C.

To perform the surface modification treatment of PDMS was accomplished in the following

steps:

Step 1: The PDMS chips (50×20×5 mm) were thoroughly degreased in IPA, blown dry and

further dried in an oven at 115 °C for at least 40 min.

Step 2: The PDMS chips were immersed in Solution 1, Solution 2 and Solution 3 for 15 min

at 80 °C,

Step 3: The chips were removed from the solution and blown dried and heated on a hotplate at

110 °C for 15 min.

We found that this process significantly increased the adsorption of NaOH-PVA onto the

PDMS surfaces. A single layer of NaOH-PVA was sufficient to produce stable droplets. The

process was repeated three times to get the desired hydrophilicity.

6.2.3 Contact angle measurement

The evaluation of surface hydrophilicity of the PVA-treated PDMS was performed via

contact angle measurements from the contact area of liquid droplet spread on a solid

substrate. Ten different samples were used from each sample set of PVA-treated PDMS.

Deionized water (100 μL) was always dropped in the center of the PVA/PDMS sample, and

84

the affinity for the surface was measured using a circular adjustment method. The average

contact angle was extrapolated from three different samples. Measurements were made for

each sample before treatment, immediately after treatment and also 30 days after treatment.

All samples were stored in room temperature around 25 °C and humidity of 30-35%,

continously monitored using Arduino weather station.

All the experiments were imaged using a python scripted frame grabber written explicitly for

this experiment. The droplet size was measured using a Sony alpha 200 DSLR camera with

200mm macro lens with a shutter speed of 1/160 sec @ f/8 focus, ISO 100 as shown in Fig 6.3.

The size was calculated, using a software, based on edge detection algorithm using Python

programming language (Python Software Foundation, Wilmington, DE, USA), developed

explicitly for this experiment. The monodispersity of the droplets was extrapolated from the

Gaussian fitting of the histogram as the standard deviation of the average value (coefficient of

variation).

Fig 6.3: Experimental setup to measure the contact angle

85

6.2.4 Fabrication of Gold nanostars (AuNSs) embedded PVA/PDMS

The AuNSs embedded PVA-PDMS polymer composite was fabricated from gold nanostars

solution deposited on a PVA/PDMS composite by the thermal convection method. Gold

nanostars (AuNSs) were synthesized by a seed-mediated method. [146]

The PVA/PDMS composite substrates were cleaned with DI water and then rinsed with acetone,

dried with 2-propanol (IPA) and air. Then, the substrate was heated in an oven at 100 °C for 1

hour to remove any moisture and contaminants, before the deposition process.

The PVA/PDMS composite substrates were immersed at an angle of approximately 30° in a

beaker containing the gold nanostar solution and kept at room temperature around 25 °C until

the solution is evaporated, depositing the multilayers of gold nanostars on the PVA/PDMS

substrate as shown in Fig 6.4.

Fig 6.4: Schematic of the AuNSs deposition on PVA/PDMS substrate

86

6.2.5 Refractive index sensitivity measurements

 The AuNS-PVA/PDMS composite or polymer composite samples are introduced into

different dielectric media of varying refractive indices as listed in Table 1. The sensitivity (S)

of the composite to the surrounding dielectric medium is calculated as the ratio of the Au-

LSPR band shift (Δλ) between the solvent and de-ionized water to the change in the refractive

index of the solvent to de-ionized water (Δn) [146]. Sensitivity (S) =
∆λ

∆n
 where ∆λ = λS - λW

and ∆n = nS - nW.

Where ∆λ is the change in the wavelength of the absorbance peak, λS is the wavelength of the

Au LSPR band corresponding to the sample immersed in a solvent with a known refractive

index and λW is the position of the band of the sample in de-ionized water, Δn is the difference

between the refractive indices of the solvent and that of DI water, ns is the refractive index of

the solvent, and nw is the refractive index of water.

Table 6.1. Refractive indices of dielectric media used for sensitivity tests

A Perkin Elmer Lambda 650 UV-Vis spectrometer was used for all the spectral measurements.

Media Refractive Index (n)

Deionized Water 1.330

Ethanol 1.361

Acetone 1.360

N,N-Dimethylformamide 1.430

Dimethylacetamide 1.437

Chloroform 1.440

87

6.2.6 Functionalization of the Gold nanostars (AuNSs) embedded PVA/PDMS

The adsorption of linkers on nanoparticles has been widely investigated over the last decade

[147]. The functionalization of AuNSs was accomplished using a three-component assembly

as shown in Fig 6.5, which consists of the following:

Step 1: The absorption spectrum of AuNSs embedded in the PVA/PDMS was measured, and

then 100 µL of the NanoThink 11 solution was deposited on the substrate and incubated for 3

hours and, then, allowed to dry. When dried, the absorption spectrum was measured again,

using the Perkin-Elmer spectrophotometer (Lambda 650).

Step 2: In the next stage, 100 µl of different concentrations of Streptavidin (SA) solution were

deposited on the various sample substrates and incubated for overnight to dry, followed by the

spectral measurement.

Step 3: The last step of functionalization, involved depositing of 100µl of the different

concentrations of the Biotin-PEG-Vn96 solution on the various substrates and incubating them

overnight to dry, followed by spectral measurement.

Exosomes targeting: Tunable Resistive Pulse Sensing (TRPS) technology was used to measure

the particle/ml of culture media. The concentration of exosomes in the culture media was found

to be 1.33x1010 particles/ml. Varying concentrations of MCF 7 exosomes were deposited over

different substrates and incubated overnight. Once the samples were dry, they were washed

three to four times using 0.5% Blotting-Grade Blocker Non-Fat Dry Milk, to block the

unreacted exosomes. The minimum concentration of exosomes was less than 0.066x1010

particles/ml, and maximum concentration was 4.65x1010 particles/ml.

88

Fig 6.5: Biosensing protocol and their corresponding absorbance bands

6.3 Results and Discussion

6.3.1. Surface wettability study of PVA/PDMS

 The first step of the treatment was the generation of radical species of hydroxyls groups on

the surface of PDMS, and this species will then form a thermal covalent bond with the PVA

molecule. To do so, NaOH was used with PVA to form the radical species of C-OH [148]. A

series of contact angle measurements were conducted to study the effect of NaOH-PVA

deposition on the PDMS surface as shown in Fig 6.6a. The results showed that significantly

lower water-air contact angles of PDMS treated with NaOH-PVA were obtained compared to

native PDMS as shown in Figure 6.6b.

89

A long-term stable and sustained hydrophilicity of the PDMS surface was attained by

combining the NaOH and PVA treatment with the plasma oxidized PDMS. When only the

plasma activation was used, the sample tended to regain its surface hydrophobicity. The

average contact angle noted was 8.5 ± 0.5° immediately after plasma oxidation and increased

to 92.6 ± 0.3° 2 days later. The level of induced hydrophilicity was evaluated for PDMS treated

with Solution 1, Solution 2 and Solution 3 and concluded that the average contact angles were

11.0 ± 4° for PDMS treated with Solution 2 and 8 ± 5° for PDMS treated with Solution 3 and

this difference was retained for 9 days. PDMS treated with solution 3 was used for all

subsequent experiments.

(a)

90

(b)

Fig 6.6: Contact angle measurements of PDMS surfaces as a function of time. (a) Affinity of a

10 μL water-in-air droplet for a PDMS surface under various surface treatment conditions (b)

Untreated, Plasma treated, PVA-treated, NaOH-PVA treated PDMS. (Sample set, n = 10

samples. Standard Deviation = 4)

6.3.2 Refractive index sensing of surrounding environment

The LSPR is extremely sensitive to the environment surrounding the AuNPs. Therefore, the

LSPR extinction curve is monitored as a function of changes in the local dielectric environment

which is related to the refractive index as shown in Figure 6.7. This method can also be applied

to sensing of biological molecules such as proteins and antibodies. The refractive-index

sensitivity of the AuNSs LSPR was demonstrated by exposing the AuNSs-PVA/PDMS to

different solvents having refractive indices listed in Table 1. The change in LSPR band (∆λ)

versus refractive index of the local environment (∆n), for a solvent as shown in Figure 6.5,

demonstrating a linear relationship between (∆λ) and (∆n).

91

Overall, the refractive-index sensitivity for AuNSs-PVA/PDMS was found to be 503.99

(nm/RIU) which is a much higher-refractive-index sensitivity compared to other platforms.

Fig 6.7: Sensitivity of the AuNS on the different composite platforms (Sample set, n = 10

samples. Standard Deviation = 5)

6.3.3 Biosensing Protocol

As shown in the experimental section, after each step, the AuNSs LSPR band was measured.

Fig 6.8 shows the absorbance spectra of AuNSs, before and after each step of the protocol.

AuNSs exhibit a localized SPR peak at 620 nm that shifted to 701.70 and 770.02 nm upon

adsorption of Biotin-PEG-Vn96 onto the nanoparticle surface and subsequent conjugation with

exosomes solution (0.066x1010 to 4.65x1010 particles/ml), respectively. In this case Δλ*,

plasmonic differnece is the relative shiht for the each step.

92

Table 6.2: Concentrations and volume of the chemical compounds used in the biosensing

application with their corresponding LSPR shift Δλ*

Chemical compound

Concentration

Used

Avg. Δλ*

(nm)

NanoThink 11 5mM 25

Streptavidin 49 µg/mL 34

Biotin-PEG-Vn96 15µg/mL 29

Exosomes (MCF 7)

(0.003, 0.066, 0.133, 0.66, 1.33, 1.995, 2.66,

3.99, 4.65) x1010 particles/ml

68

Fig 6.8: Absorption spectra of functionalized gold nanostars (AuNSs) on a PVA-treated PDMS

sample platform after each step. (Sample set, n = 10 samples. Standard Deviation = 3)

93

6.3.4 Interaction of streptavidin with AuNSs

Fig 6.9: AuNSs depicted as a sphere with homogenous spherical shell

Monodispersed AuNSs is depicted as a sphere with homogenous spherical shell with an

average spherical diameter of 40 ± 0.4 nm and branch length of 25 ± 10 nm will have a surface

area availability per nanoparticle of about 13096.73 nm2 as shown in Fig 6.9. Considering that

streptavidin has a hydrodynamic diameter of 5 nm and an estimated surface area of 25 nm2, a

maximum of about 524 streptavidin molecules per nanoparticle can contribute to the formation

of an adsorbed monolayer [149].

The 40 nm shift of the AuNS LSPR band, after the deposition of streptavidin can be used to

predict the number of streptavidin molecules adsorbed per unit area (assuming again that

AuNSs - Streptavidin can be depicted as a sphere with a homogenous spherical shell). On this

basis, the spectral shift (Δλ) is given by [149]:

94

𝚫𝛌 =
𝛌𝒑

𝟐 (𝝐𝑺− 𝝐𝑾)

𝛌𝒎𝒂𝒙,𝑨𝒖𝑵𝑺𝒔(𝟏+𝟐∝𝑺(𝟏−𝒈))
 [Eq 6.1]

Where, λp is bulk metal plasmon wavelength (131 nm for gold [43], λmax, AuNSs is the

wavelength of maximum absorption for AuNSs (625 nm, as shown in Fig 6.8), 𝑔 is the fraction

of nanoparticle that can be considered a shell, and ∝𝑆 = (𝜖𝑆 − 𝜖𝑊)/(εs + 2𝜖𝑊). 𝑔 can be

obtained from Equation 1 with Δλ = 40 nm by assuming a refractive index (n) of 1.334 for the

medium (water) [44] and a refractive index of 1.47 for Streptavidin [150] (𝜖𝑊 = nwater
2 and 𝜖𝑆=

nSA
2).

The coating thickness (S) can be calculated from the shell fraction (g) and core diameter (d)

[149]:

𝑺 =
𝒅

𝟐
((𝟏 − 𝒈)−

𝟏

𝟑 − 𝟏) [Eq 6.2]

The mass of strepavidin absorbed per unit area (coverage, ξ) is of interest as well as the

thickness, which is used to calculated using the equation [149]:

𝝃 = 𝒔
𝒏𝑺𝑨− 𝒏𝒘𝒂𝒕𝒆𝒓

𝒅𝒏
𝒅𝒄

⁄
 [Eq 6.3]

By using the value 0.212 cm3 g−1 for the refractive-index increment (dn/dc) of Streptavidin

[150] a coverage of 19 mg m−2 of streptavidin, corresponding to about 414 streptavidin

molecules per nanostar, is obtained.

95

6.3.5. Interactions of Biotin-PEG-Vn96 with streptavidin bounded AuNSs

The streptavidin–biotin interaction has a very high affinity (Ka ~ 1015 M-1) under various

conditions [151] and will serve as a very good model for the LSPR nanosensor. Streptavidin is

a tetrameric protein with four subunits arrayed symmetrically, and each unit has a biotin-

binding affinity. Therefore it can be expected that four of the biotin binding pockets are

accessible by Biotin-PEG-Vn96 per surface-adsorbed streptavidin molecule. On this basis, it

can be estimated to be around 828 Biotin-PEG-Vn96 molecules were immobilized per AuNS.

The experiment involved treating the streptavidin functionalized AuNSs with 3.0, 7.5, 15, 20

(µg/mL) concentration of biotin-PEG-Vn96 solution. After the incubation, the glass slide was

washed with DI water for several times to remove unbound biotin-PEG-Vn96.

A red shift in the LSPR band was noticed in Fig 6.8 after depositing the streptavidin solution.

To understand the importance of the functionalization of AuNSs, it is necessary to understand

the kinetics of the association between streptavidin and biotin. These two biomolecules have

exceptionally high affinity with an binding constant KA ~ 1015 Lmol-1 [152].

If the concentration of the streptavidin is [S] and the Biotin-PEG-Vn96 concentration is [B],

therefore concentration of the formed complex is [SB]. The interactions between streptavidin

and Biotin-PEG-Vn96 can be described as [151]:

[𝑺] + [𝑩] ⟺ [𝑺𝑩] [Eq 6.4]

Where the association and dissociation happen at the same time but at the different rates.

96

The rate of association is given as ka[S][B], where ka is the association rate constant with the

unit M-1s-1 while the rate of dissociation is given as kd[SB], where kd is the dissociation rate

constant with the unit s-1. Therefore, the rate of formation of complexes at a given time t is

given by [153]:

𝒅[𝑺𝑩]

𝒅𝒕
= 𝒌𝒂[𝑺][𝑩] − 𝒌𝒅[𝑺𝑩] [Eq 6.5]

The concentrations of the already formed complexes and remaining streptavidin are related as

[S] = [S0] - [SB], where [S0] is the concentration of streptavidin before introducing the biotin.

Therefore, the above equation can be written as [153]:

𝒅[𝑺𝑩]

𝒅𝒕
= 𝒌𝒂[𝑩]([𝑺𝟎] − [𝑺𝑩]) − 𝒌𝒅[𝑺𝑩] [Eq 6.6]

This implies that the concentration [S] is a constant value. There let [S] = CS, therefore [154]

𝝀𝑪 = 𝒎𝒄[𝑺𝑩] [Eq 6.7]

Where 𝜆𝐶 is the shift in the wavelength and 𝑚𝑐 is the sensitivity coefficient. The maximum

response occurs when all the streptavidin is bonded to biotin-PEG-Vn96 in the association

phase. Therefore, the relation between the kinetic and equilibrium constants is as described in

equation, which corresponds the maximum wavelength shift 𝜆𝑚𝑎𝑥 [154]:

𝝀𝑪 = 𝝀𝒎𝒂𝒙 (𝟏 + (
𝒌𝒅

𝑪𝒔𝒌𝒂
)) [Eq 6.8]

97

Knowing the 𝜆𝐶 , 𝜆𝑚𝑎𝑥 values from Fig 6.6 and kd = 2.4x10-6 S-1 [46] it is found that the

association rate constant is 4.5x107 M-1 s-1, which shows that streptavidin and biotin bond can

be considered as strong binding.

And at steady state [153]:

𝒌𝒂[𝑺][𝑩] = 𝒌𝒅[𝑺𝑩] ⇒
[𝑺𝑩]

[𝑺][𝑩]
=

𝒌𝒂

𝑲𝒅
 and [𝑺𝑩] = [𝑺𝟎] =

𝝀𝒎𝒂𝒙

𝒎𝒄
 [Eq 6.9]

Therefore,

𝝀𝒎𝒂𝒙
𝒎𝒄

[𝑺][𝑩]
=

𝒌𝒂

𝒌𝒅
 ⇒ [𝑩] =

𝒌𝒅(
𝝀𝒎𝒂𝒙

𝒎𝒄
)

[𝑺]𝒌𝒂
= 𝟔𝟓𝟑 𝑴 [Eq 6.10]

Where [S] is the molecule of streptavidin calculated in section 3.4, [S] = 414 M.

Therefore, the number of Biotin attached per streptavidin is given by

[𝑩]

[𝑺]
= 𝟐. 𝟒 [Eq 6.11]

Meaning that two or three Biotin-PEG-Vn96 is bonded to one streptavidin molecule. Therefore,

maximum of about 1572 Biotin-PEG-Vn96 molecules per nanoparticle can contribute to the

formation of an adsorbed monolayer.

98

6.3.6 Interaction of MCF-7 Exosomes with functionalized AuNSs

The functionalization is experimentally studied by depositing different concentration of

Exosomes solution on the functionalized AuNSs-PVA/PDMS substrate. The measured

reflection spectra are plotted in Fig 6.10a. The LSPR wavelength shift as a function of

concentration (particles/mL) along with the corresponding sensitivity. A red shift from 703 nm

to 766 nm was noted in resonance wavelength when a solution of 3.99x1010 particles/ml of

exosomes was deposited. The concentration is a key biosensing parameter that determines the

sensitivity with which very small wavelength changes can be measured, by considering the

sharpness of the resonance.

In order to demonstrate the limitation of the biosensing for targeting the exosomes, the

corresponding values for the LSPR shifts were noted for the lowest concentration as 710 nm

for 0.001x1010 and 0.003x1010 particles/ml and the highest concentration as 766 nm for

3.99x1010 and 4.65 x1010 particles/ml.

When exosomes are captured by biotin-PEG-Vn96, the interactions could result in

deformability due to their elastic nature. Therefore, the protein – protein binding of exosomes

to the biotin-PEG-Vn96 molecules will result in a non-linear behavior. The dependency curve

of the system is defined as S = ∆λ/(particles/mL), where ∆λ is the LSPR spectral shift and

(particles/mL) is the concentration of exosomes deposited on the substrate as shown in Fig

6.10b. The dependency curve allows the estimation of concentration in terms of the number of

exosomes in a sample. The equation of the curve reflects a non-linear trend in the form of LxM

where x corresponds to the number of exosomes to biotin-PEG-Vn96 interactions. It can be

observed from the experimental results that the LSPR shift of the exosomes has a non-liner

dependency on binding to the biotin-PEG-Vn96 and the curve is significantly not yet saturated,

99

which clearly explains that the capacity of nanostars platform to capture exosomes is higher

than the standard gold nanoparticles based platform.

The culture media used in the experiment belongs to fully developed cancerous condition taken

from patients. Therefore, 1.33x1010 particles/ml correspondes to the concentration of exosomes

in a fully developed condition and 0.066x1010 particles/ml concentration of exosomes of this

sample would corresponds to a non-cancerous situation. Hence, the tested range of

concentrations of exosomes covers non-cancerous to finally cancerous condition.

Hence, the gold nanostars embedded PVA/PDMS polymer platform based on LSPR

interactions with the optimized biosensing protocol proves to be the effective way to detect

and capture high concentration of exosomes corresponding to cancerous conditions. Therefore,

the developed nanostars based platform can effectively detect early stages of cancer as well as

progress leading to very early diagnosis.

(a)

100

(b)

Figure 6.10: (a) Concentration variant adsorption spectrum of Exosomes deposited on Biotin-

PEG-Vn96 bonded AuNSs-PVA/PDMS substrate. (b) Calibration cure of average LSPR shift

for various concentrations of Exosomes (Sample set, n = 10 samples. Standard Deviation = 4)

6.4 Conclusion

We demonstrated a simple, one-step surface modification method to create hydrophilic PDMS

substrate, which surpasses several existing techniques. The proposed surface modification was

achieved by exposing the PDMS surface to NaOH-PVA in DI water. Our experimental data

show that the PVA-treated PDMS surfaces retain their hydrophilicity for more than 10 days

highlighting the ability of the proposed method to deliver off-the-shelf products that can be

maintained without compromising the performance of the microfluidic device. The AuNSs-

PVA/PDMS substrate exhibit a strong LSPR at wavelengths around 625 nm. The efficiency of

this platform was demonstrated with sensitivity factor estimated as 503.99 nm RIU−1.

101

We believe that, the success of this LSPR nanosensor is directly related to the isolation of

target biomolecules. The attachment of MCF 7 on the functionalized Gold nanostars leads to a

detectable shift in localized surface plasmon resonance, which is used here to study the extent

and the thereby the efficiency of the functionalized Gold nanostars in targeting MCF 7

exosomes. The biosensing platform can be employed for a wide range of exosomes

concentrations: from highly diluted concentration of 0.066x1010 particles/ml with a LSPR at

wavelengths around 704 nm to the more concentrated amount of 3.99x1010 particles/ml with

strong LSPR at wavelengths around 763 nm.

In summary, this AuNSs-PVA/PDMS substrate has the ability to detect the extremely small

refractive index changes, allowing the detection of lower and higher concentration of

biomolecules in extremely diluted solutions.

102

Chapter 7

Contributions, Conclusions and Future Work

7.1 Contribution

As solutions to the difficulties encountered during my attempt to accomplish the objectives

stated in this thesis, this work has:

1) Characterizes optically an AuNS by computational simulations of absorbance spectra. The

numerical model was built up by decomposing an AuNS into parameterized structural

elements to allow for the systematic study of its optical properties. As a result, this structure

was shown to have highly tunable fundamental SPR, which can be achieved by adjusting

the geometry, orientation and number of their branches. The most effective way of tuning

the resonant excitation of an AuNS is determined.

2) The synthesis process of the gold nanostars holds the key to understand the morphology

and shape tuning ability of gold nanostars.

a) For the first time, detail studies where conducted to understand the effect of

concentration of silver nitrate and temperature on the growth and aggregation kinetics

of the gold nanostars.

3) The traditional methods use non-biocompatible chemical to stabilize the gold nanostars

making the use of gold nanostars for biosensing impossible. As solutions to the difficulties

encountered, novel methods were innovated to stabilize and increase the size of the gold

nanostars for biosensing application.

103

a) Developed novel method to increase the stability of gold nanostars by modifying the

pH of gold nanostars solution. The nanostars remained monodispersed in the growth

solution for more than two weeks in room temperature.

b) Developed novel Sono-chemistry method to increase the shape and stability of the gold

nanostars in the growth solution. Ultrasonication at 25 kHz was used to fuse nanostars

together causing the increase in the particle size and increasing the aggression energy

in the solution therefore increasing the aggression limit of the nanostars. The nanostars

remained monodispersed in the growth solution for more than two weeks in room

temperature.

c) Innovated a host-guest complex to increase the stability of the gold nanostars by

creating PVA embedded gold nanostars composite. The gold nanostars retained they

optical properties for more than 200 days.

4) Innovated a standard preparation for surface modification of PDMS using NaOH-PVA

solution to increase the hydrophilicity of PDMS for biofunctionalization application. The

results of this method prolong the hydrophilicity of the PDMS surface over 10 days when

compare to standard plasma treatment, where the hydrophilicity of PDMS last only for few

minutes.

5) Current scientific research focuses more on gold nanospheres as the primary nanoparticle

for biosensing application. For the first time, a high sensitivity biosensing platform using

gold nanostars as a primary nanoparticle to detect the progress of cancer using MCF7

exosomes as a bioindicator. The biosensing platform can be employed for a wide range of

exosomes concentrations: from highly diluted concentration of 0.066x1010 particles/ml

104

with a LSPR at wavelengths around 704 nm to the more concentrated amount of 3.99x1010

particles/ml with strong LSPR at wavelengths around 763 nm.

6) A lot of low cost apparatus were invented during the research to accelerate the progress and

quality of the research.

a) Low cost high speed cavitation imaging system.

b) Subpixel rendering methods to increase the quality of the SEM images by roster to

vector conversation methods.

c) Low cost water droplet imaging system.

d) Low cost ultrasound generator system.

7.2 Conclusion

Chapter 2 characterizes optically an AuNS through FDTD-analyses. It was shown that the

geometry of the branches is a key tuning factor of the absorbance peak of AuNSs. This can be

shifted both in intensity and position, depending on the length and aperture of the branches. To

adjust the overall optical response of the AuNSs for maximal sensitivity within a well-defined

region of the optical spectrum, the most effective means of fine-tuning may be desired prepared

the theoretical and simulation background necessary to conclude that the LSPR fine-tuning by

adjusting the parameter of the branch is much more effective than adjusting the length.

However, since the nucleation and aggregation process involving molecule formation and

assembly cannot be controlled. Therefore the knowledge of the optical properties depending

on the above geometrical parameters is of high importance in tailoring AuNSs of desired

optical properties, such as maximal sensitivity in a convenient region of observation.

105

Chapter 3 presented the method used for achieving stability of gold nanostars increased with

increase in the pH of nanostars solution to 11.0. The AuNS retained their original optical

properties and shape even after two weeks at room temperature. The SEM image shows the

cause of increase in the size of the nanostars to be that of increase in the branch length of gold

nanostars. Upon further investigation of the shape-tuning effects of base buffer at pH 11, it is

concluded that unlike the transformation of nanostars to nanospheres which has been reported

in many literature, the nanostars transformed from nanospheres cannot be reversed to nanostars

again.

Chapter 4 demonstrated for the first time that the sonication frequency has a significant effect

on the size and morphology of gold nanostars. At the initial stage of the reaction, many the

small gold particles with a diameter around 30 nm are produced by reduction of gold

nanoparticles ions with a sodium citrate solution. The seed-mediated method, followed by the

sonication treatment developed in this study, offers new opportunities to synthesize aqueous

suspensions of monodispersed gold nanostars with prolonged stability. The result indicates that

at a sonication frequency of 25 kHz, the maximum average particle size of 120 nm is attained,

due to the large diameter of the cavitation bubble which, under collapse, generates extreme

conditions of pressure and temperature. Therefore, the LSPR extinction spectra of the gold

nanostars, centered within the range of 650 to 900 nm, is tunable via the change in the

ultrasound frequency. The optical characteristics of gold nanostars solution after ultrasound

treatment appeared to be substantially more stable than those of non-treated ones because of

the slower aggregation of NSs. The use of sonication technique to stabilize gold nanostars,

without any additional chemical stabilizer, is both technologically and scientifically important.

It can, hence, be expected to be able to produce by this method, a large volume of consistent

quality gold nanostars.

106

Chapter 5 presented a host-guest complex has been prepared, by embedding the stabilized Au

nanostars into the porous network of the hydrated PVA. Due to the strong van der Waals

interactions between individual stars, they form aggregates inside the pores. It is assumed that

during the sensing process, the solvent enters the PVA network and contacts the long branches

of the stars. In the case of sensing with Au NS – PVA composites, the sensing entities are not

the individual stars but their aggregates

Chapter 6 proposed surface modification was achieved by exposing the PDMS surface to

NaOH-PVA in DI water. The NaOH creates the hydroxyl group (C-OH) in the presence of

PVA when heated, which allows the hydrogen bonding between the PVA molecule and the

PDMS surface, leading to a permanently hydrophilized surface. Our experimental data show

that the PVA-treated PDMS surfaces retain their hydrophilicity more than 10 days highlighting

the ability of the proposed method to deliver off-the-shelf products that can be maintained

without compromising the performance of the microfluidic device.

The Streptavidin coated AuNSs were modified with biotinylated PEG-Vn96 to develop an

innovative targeting approach. We believe that, the success of this LSPR nanosensor is directly

related to the isolation of target biomolecules. The attachment of MCF 7 on the functionalized

Gold nanostars leads to a detectable shift in localized surface plasmon resonance, which was

used here to study the extent and the thereby the efficiency of the functionalized Gold

nanostars in targeting MCF 7 exosomes. The AuNSs-PVA/PDMS substrate exhibit a strong

LSPR at wavelengths around 625 nm. The shift in LSPR wavelength upon deposition of MCF

7 exosomes showed a linear response with a correlation coefficient of R = 0.95. From the slope

of the linear fit, the sensitivity factor was estimated as 512.37 nm RIU−1. The binding events

107

between the immobilized biotin and streptavidin molecules were investigated in a streptavidin

concentration range of 2.0 - 20 (µg/mL).

Furthermore, the biosensing platform can be employed for a wide range of exosomes

concentrations: from highly diluted concentration of 0.066x1010 particles/ml with a LSPR at

wavelengths around 704 nm to the more concentrated amount of 3.99x1010 particles/ml with

strong LSPR at wavelengths around 763 nm. In summary, this AuNSs-PVA/PDMS substrate

has the ability to detect the extremely small refractive index changes, allowing the detection

of lower and higher concentration of biomolecules in extremely diluted solutions.

7.3 Refereed Journal papers

1. R. Kumar, S. Badilescu and M. Packirisamy “Modeling the Effects of Morphology on

Plasmonic Behaviour of Gold Nanostars” submitted to: Plasmonics, July, 2018, to be

submitted.

2. R. Kumar, S. Badilescu and M. Packirisamy “Tuning of Morphology and Stability of

Gold Nanostars through pH Adjustment” submitted to: Journal of Nanoscience and

Nanotechnology, May, 2018, accepted and under publication process.

3. R. Kumar, S. Badilescu and M. Packirisamy “Sonochemical Stabilization of Gold

Nanostars: Effect of Sonication Frequency on the Size, Shape and Stability of Gold

Nanostars” AdvNanoBioM&D: 2017: 1(4):172-181.

4. R. Kumar, S. Badilescu and M. Packirisamy “Sensitivity and Stability enhancement of

Poly (vinyl alcohol)-nanostars composites for Localized Surface Plasmon Resonance

108

sensing applications” submitted to: Photonics and Nanostructures - Fundametals and

Applications, July, 2018, currently under review.

5. R. Kumar, S. Badilescu and M. Packirisamy “Gold Nanostars polymer composite

platforms for Localized Surface Plasmon Resonance Based Early Cancer Diagnosis”

Journal of Biophotonics, July, 2018, to be submitted.

7.4 Proceedings papers and Conference presentations

1. R. Kumar, S. Badilescu and M. Packirisamy “Ex-Situ Synthesized and Diffusion Driven

Highly Anchored Gold Nano-Stars in Polymer Composites” Photonics North 2016

Abstract Reference Number: 255-SLiU-192.

2. R. Kumar, S. Badilescu and M. Packirisamy “Influence of the Potential of pH on the

Morphology and Stability of the Gold Nanostars solution” International Conference of

Theoretical and Applied Nanoscience and Nanotechnology (TANN'17), ID:124.

7.5 Suggestions for further research

1. The FDTD simulation were conducted only with sphere with two branch models due to

system memory limitation. Simulation with more than two branch models can be

simulated now using cluster server installed with RSoft software.

2. Understanding the effect of branch morphology is the key to understand the optical

properties of gold nanostars. Using the RSoft software on cluster, multiple branches

with different branch length needs to be studies to exactly corelate the outcome of the

synthesized gold nanostars.

109

3. Gold nanostars are currently not stable when conducting the liquid biopsy. To increase

the stability of the gold nanostars for the liquid biopsy application, research needs to be

conducted on gold nanostars suspended in PB buffer or another biocompatible neutral

buffer.

4. To increase the application area of the gold nanostars based biosensing platform,

research should be conducted microfluidic application of the platform.

124

Appendix A

Subpixel Rendering for Image Enhancement

125

126

127

The k-means problem is solved using Lloyd’s algorithm. The average complexity is given by

O (k n T), were n is the number of samples and T is the number of iteration. The worst-case

complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S.

Vassilvitskii, ‘How slow is the k-means method?’ SoCG2006) In practice, the k-means

algorithm is very fast (one of the fastest clustering algorithms available), but it falls in local

minima. That’s why it can be useful to restart it several times.

Code:
from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

import argparse

import utils

import cv2

from Tkinter import *

import os

import ctypes

from PIL import ImageTk

from PIL import ImageOps

from tkFileDialog import*

import tkMessageBox

import imghdr

from PIL import Image, ImageDraw

from collections import*

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans

from sklearn import datasets

np.random.seed(5)

iris = datasets.load_iris()

X = iris.data

y = iris.target

estimators = [('k_means_iris_8', KMeans(n_clusters=8)),

 ('k_means_iris_3', KMeans(n_clusters=3)),

 ('k_means_iris_bad_init', KMeans(n_clusters=3, n_init=1,

 init='random'))]

fignum = 1

titles = ['8 clusters', '3 clusters', '3 clusters, bad initialization']

for name, est in estimators:

 fig = plt.figure(fignum, figsize=(4, 3))

 ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

 est.fit(X)

 labels = est.labels_

 ax.scatter(X[:, 3], X[:, 0], X[:, 2],

 c=labels.astype(np.float), edgecolor='k')

 ax.w_xaxis.set_ticklabels([])

128

 ax.w_yaxis.set_ticklabels([])

 ax.w_zaxis.set_ticklabels([])

 ax.set_xlabel('Petal width')

 ax.set_ylabel('Sepal length')

 ax.set_zlabel('Petal length')

 ax.set_title(titles[fignum - 1])

 ax.dist = 12

 fignum = fignum + 1

Plot the ground truth

fig = plt.figure(fignum, figsize=(4, 3))

ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

for name, label in [('Setosa', 0),

 ('Versicolour', 1),

 ('Virginica', 2)]:

 ax.text3D(X[y == label, 3].mean(),

 X[y == label, 0].mean(),

 X[y == label, 2].mean() + 2, name,

 horizontalalignment='center',

 bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))

Reorder the labels to have colors matching the cluster results

y = np.choose(y, [1, 2, 0]).astype(np.float)

ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k')

ax.w_xaxis.set_ticklabels([])

ax.w_yaxis.set_ticklabels([])

ax.w_zaxis.set_ticklabels([])

ax.set_xlabel('Petal width')

ax.set_ylabel('Sepal length')

ax.set_zlabel('Petal length')

ax.set_title('Ground Truth')

ax.dist = 12

fig.show()

################ DRAW ################

def drawOnImage(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=True

 drawWindow=Toplevel(canvas.data.mainWindow)

 drawWindow.title="Draw"

 drawFrame=Frame(drawWindow)

 redButton=Button(drawFrame, bg="red", width=2, \

 command=lambda: colourChosen(drawWindow,canvas,

"red"))

 redButton.grid(row=0,column=0)

 blueButton=Button(drawFrame, bg="blue", width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"blue"))

 blueButton.grid(row=0,column=1)

 greenButton=Button(drawFrame, bg="green",width=2, \

 command=lambda: colourChosen(drawWindow,canvas,

"green"))

 greenButton.grid(row=0,column=2)

 magentaButton=Button(drawFrame, bg="magenta", width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"magenta"))

 magentaButton.grid(row=1,column=0)

129

 cyanButton=Button(drawFrame, bg="cyan", width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"cyan"))

 cyanButton.grid(row=1,column=1)

 yellowButton=Button(drawFrame, bg="yellow",width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"yellow"))

 yellowButton.grid(row=1,column=2)

 orangeButton=Button(drawFrame, bg="orange", width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"orange"))

 orangeButton.grid(row=2,column=0)

 purpleButton=Button(drawFrame, bg="purple",width=2, \

 command=lambda: colourChosen(drawWindow,canvas,

"purple"))

 purpleButton.grid(row=2,column=1)

 brownButton=Button(drawFrame, bg="brown",width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"brown"))

 brownButton.grid(row=2,column=2)

 blackButton=Button(drawFrame, bg="black",width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"black"))

 blackButton.grid(row=3,column=0)

 whiteButton=Button(drawFrame, bg="white",width=2, \

 command=lambda: colourChosen(drawWindow,canvas,

"white"))

 whiteButton.grid(row=3,column=1)

 grayButton=Button(drawFrame, bg="gray",width=2,\

 command=lambda: colourChosen(drawWindow,canvas,

"gray"))

 grayButton.grid(row=3,column=2)

 drawFrame.pack(side=BOTTOM)

def colourChosen(drawWindow, canvas, colour):

 if canvas.data.image!=None:

 canvas.data.drawColour=colour

 canvas.data.mainWindow.bind("<B1-Motion>",\

 lambda event: drawDraw(event, canvas))

 drawWindow.destroy()

def drawDraw(event, canvas):

 if canvas.data.drawOn==True:

 x=int(round((event.x-

canvas.data.imageTopX)*canvas.data.imageScale))

 y=int(round((event.y-

canvas.data.imageTopY)*canvas.data.imageScale))

 draw = ImageDraw.Draw(canvas.data.image)

 draw.ellipse((x-3, y-3, x+ 3, y+3), fill=canvas.data.drawColour,\

 outline=None)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

######################## FEATURES ###########################

def closeHistWindow(canvas):

 if canvas.data.image!=None:

130

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.histWindowClose=True

def histogram(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 histWindow=Toplevel(canvas.data.mainWindow)

 histWindow.title("Histogram")

 canvas.data.histCanvasWidth=350

 canvas.data.histCanvasHeight=475

 histCanvas = Canvas(histWindow, width=canvas.data.histCanvasWidth, \

 height=canvas.data.histCanvasHeight)

 histCanvas.pack()

 # provide sliders to the user to manipulate red, green and blue amounts

in the image

 redSlider=Scale(histWindow, from_=-100, to=100, \

 orient=HORIZONTAL, label="R")

 redSlider.pack()

 blueSlider=Scale(histWindow, from_=-100, to=100,\

 orient=HORIZONTAL, label="B")

 blueSlider.pack()

 greenSlider=Scale(histWindow, from_=-100, to=100,\

 orient=HORIZONTAL, label="G")

 greenSlider.pack()

 OkHistFrame=Frame(histWindow)

 OkHistButton=Button(OkHistFrame, text="OK", \

 command=lambda: closeHistWindow(canvas))

 OkHistButton.grid(row=0,column=0)

 OkHistFrame.pack(side=BOTTOM)

 initialRGB=(0,0,0)

 changeColours(canvas, redSlider, blueSlider, \

 greenSlider, histWindow, histCanvas, initialRGB)

def changeColours(canvas, redSlider, blueSlider, \

 greenSlider, histWindow, histCanvas, previousRGB):

 if canvas.data.histWindowClose==True:

 histWindow.destroy()

 canvas.data.histWindowClose=False

 else:

 # the slider value indicates the % by which the red/green/blue

 # value of the pixels of the image need to incresed (for +ve

values)

 # or decreased (for -ve values)

 if canvas.data.image!=None and histWindow.winfo_exists() :

 R, G, B= canvas.data.image.split()

 sliderValR=redSlider.get()

 (previousR, previousG, previousB)= previousRGB

 scaleR=(sliderValR-previousR)/100.0

 R=R.point(lambda i: i+ int(round(i*scaleR)))

 sliderValG=greenSlider.get()

 scaleG=(sliderValG-previousG)/100.0

 G=G.point(lambda i: i+ int(round(i*scaleG)))

 sliderValB=blueSlider.get()

 scaleB=(sliderValB-previousB)/100.0

 B=B.point(lambda i: i+ int(round(i*scaleB)))

 canvas.data.image = Image.merge(canvas.data.image.mode, (R, G,

B))

131

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

 displayHistogram(canvas, histWindow, histCanvas)

 previousRGB=(sliderValR, sliderValG, sliderValB)

 canvas.after(200, lambda: changeColours(canvas, redSlider,\

 blueSlider, greenSlider, histWindow, histCanvas,

previousRGB))

def displayHistogram(canvas,histWindow, histCanvas):

 histCanvasWidth=canvas.data.histCanvasWidth

 histCanvasHeight=canvas.data.histCanvasHeight

 margin=50

 if canvas.data.image!=None:

 histCanvas.delete(ALL)

 im=canvas.data.image

 #x-axis

 histCanvas.create_line(margin-1, histCanvasHeight-margin+1,\

 margin-1+ 258, histCanvasHeight-margin+1)

 xmarkerStart=margin-1

 for i in xrange(0,257,64):

 xmarker="%d" % (i)

 histCanvas.create_text(xmarkerStart+i,\

 histCanvasHeight-margin+7, text=xmarker)

 #y-axis

 histCanvas.create_line(margin-1, \

 histCanvasHeight-margin+1, margin-1, margin)

 ymarkerStart= histCanvasHeight-margin+1

 for i in xrange(0, histCanvasHeight-2*margin+1, 50):

 ymarker="%d" % (i)

 histCanvas.create_text(margin-1-10,\

 ymarkerStart-i, text=ymarker)

 R, G, B=im.histogram()[:256], im.histogram()[256:512], \

 im.histogram()[512:768]

 for i in xrange(len(R)):

 pixelNo=R[i]

 histCanvas.create_oval(i+margin, \

 histCanvasHeight-pixelNo/100.0-1-margin,

i+2+margin,\

 histCanvasHeight-pixelNo/100.0+1-margin, \

 fill="red", outline="red")

 for i in xrange(len(G)):

 pixelNo=G[i]

 histCanvas.create_oval(i+margin, \

 histCanvasHeight-pixelNo/100.0-1-margin,

i+2+margin,\

 histCanvasHeight-pixelNo/100.0+1-margin, \

 fill="green", outline="green")

 for i in xrange(len(B)):

 pixelNo=B[i]

 histCanvas.create_oval(i+margin,\

 histCanvasHeight-pixelNo/100.0-1-margin,

i+2+margin,\

 histCanvasHeight-pixelNo/100.0+1-margin,\

 fill="blue", outline="blue")

def colourPop(canvas):

 canvas.data.cropPopToHappen=False

 canvas.data.colourPopToHappen=True

 canvas.data.drawOn=False

132

 tkMessageBox.showinfo(title="Colour Pop", message="Click on a part of

the image which you want in colour" , parent=canvas.data.mainWindow)

 if canvas.data.cropPopToHappen==False:

 canvas.data.mainWindow.bind("<ButtonPress-1>", lambda event:

getPixel(event, canvas))

def getPixel(event, canvas):

 # have to check if Colour Pop button is pressed or not, otherwise, the

root

 # events which point to different functions based on what button has

been

 # pressed will get mixed up

 try: # to avoid confusion between the diffrent events

 # asscoaited with crop and colourPop

 if canvas.data.colourPopToHappen==True and \

 canvas.data.cropPopToHappen==False and canvas.data.image!=None :

 data=[]

 # catch the location of the pixel selected by the user

 # multiply it by the scale to get pixel's olaction of the

 #actual image

 canvas.data.pixelx=\

 int(round((event.x-

canvas.data.imageTopX)*canvas.data.imageScale))

 canvas.data.pixely=\

 int(round((event.y-

canvas.data.imageTopY)*canvas.data.imageScale))

 pixelr, pixelg, pixelb= \

 canvas.data.image.getpixel((canvas.data.pixelx,

canvas.data.pixely))

 # the amount of deviation allowed from selected pixel's value

 tolerance=60

 for y in xrange(canvas.data.image.size[1]):

 for x in xrange(canvas.data.image.size[0]):

 r, g, b= canvas.data.image.getpixel((x, y))

 avg= int(round((r + g + b)/3.0))

 # if the deviation of each pixel value > tolerance,

 # make them gray else keep them coloured

 if (abs(r-pixelr)>tolerance or

 abs(g-pixelg)>tolerance or

 abs(b-pixelb)>tolerance):

 R, G, B= avg, avg, avg

 else:

 R, G, B=r,g,b

 data.append((R, G, B))

 canvas.data.image.putdata(data)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

 except:

 pass

 canvas.data.colourPopToHappen=False

def crop(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.drawOn=False

 # have to check if crop button is pressed or not, otherwise,

 # the root events which point to

 # different functions based on what button has been pressed

133

 # will get mixed up

 canvas.data.cropPopToHappen=True

 tkMessageBox.showinfo(title="Crop", \

 message="Draw cropping rectangle and press Enter"

,\

 parent=canvas.data.mainWindow)

 if canvas.data.image!=None:

 canvas.data.mainWindow.bind("<ButtonPress-1>", \

 lambda event: startCrop(event, canvas))

 canvas.data.mainWindow.bind("<B1-Motion>",\

 lambda event: drawCrop(event, canvas))

 canvas.data.mainWindow.bind("<ButtonRelease-1>", \

 lambda event: endCrop(event, canvas))

def startCrop(event, canvas):

 # detects the start of the crop rectangle

 if canvas.data.endCrop==False and canvas.data.cropPopToHappen==True:

 canvas.data.startCropX=event.x

 canvas.data.startCropY=event.y

def drawCrop(event,canvas):

 # keeps extending the crop rectange as the user extends

 # his desired crop rectangle

 if canvas.data.endCrop==False and canvas.data.cropPopToHappen==True:

 canvas.data.tempCropX=event.x

 canvas.data.tempCropY=event.y

 canvas.create_rectangle(canvas.data.startCropX, \

 canvas.data.startCropY,

 canvas.data.tempCropX, \

 canvas.data.tempCropY, fill="gray", stipple="gray12", width=0)

def endCrop(event, canvas):

 # set canvas.data.endCrop=True so that button pressed movements

 # are not caught anymore but set it to False when "Enter"

 # is pressed so that crop can be performed another time too

 if canvas.data.cropPopToHappen==True:

 canvas.data.endCrop=True

 canvas.data.endCropX=event.x

 canvas.data.endCropY=event.y

 canvas.create_rectangle(canvas.data.startCropX, \

 canvas.data.startCropY,

 canvas.data.endCropX, \

 canvas.data.endCropY, fill="gray", stipple="gray12", width=0)

 canvas.data.mainWindow.bind("<Return>", \

 lambda event: performCrop(event, canvas))

def performCrop(event,canvas):

 canvas.data.image=\

 canvas.data.image.crop(\

 (int(round((canvas.data.startCropX-

canvas.data.imageTopX)*canvas.data.imageScale)),

 int(round((canvas.data.startCropY-

canvas.data.imageTopY)*canvas.data.imageScale)),

 int(round((canvas.data.endCropX-

canvas.data.imageTopX)*canvas.data.imageScale)),

 int(round((canvas.data.endCropY-

canvas.data.imageTopY)*canvas.data.imageScale))))

 canvas.data.endCrop=False

 canvas.data.cropPopToHappen=False

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

134

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def rotateFinished(canvas, rotateWindow, rotateSlider, previousAngle):

 if canvas.data.rotateWindowClose==True:

 rotateWindow.destroy()

 canvas.data.rotateWindowClose=False

 else:

 if canvas.data.image!=None and rotateWindow.winfo_exists():

 canvas.data.angleSelected=rotateSlider.get()

 if canvas.data.angleSelected!= None and \

 canvas.data.angleSelected!= previousAngle:

 canvas.data.image=\

 canvas.data.image.rotate(float(canvas.data.angleSelected))

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

 canvas.after(200, lambda:rotateFinished(canvas,\

 rotateWindow, rotateSlider, canvas.data.angleSelected)

)

def closeRotateWindow(canvas):

 if canvas.data.image!=None:

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.rotateWindowClose=True

def rotate(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 rotateWindow=Toplevel(canvas.data.mainWindow)

 rotateWindow.title("Rotate")

 rotateSlider=Scale(rotateWindow, from_=0, to=360, orient=HORIZONTAL)

 rotateSlider.pack()

 OkRotateFrame=Frame(rotateWindow)

 OkRotateButton=Button(OkRotateFrame, text="OK",\

 command=lambda: closeRotateWindow(canvas))

 OkRotateButton.grid(row=0,column=0)

 OkRotateFrame.pack(side=BOTTOM)

 rotateFinished(canvas, rotateWindow, rotateSlider, 0)

def closeBrightnessWindow(canvas):

 if canvas.data.image!=None:

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.brightnessWindowClose=True

def changeBrightness(canvas, brightnessWindow, brightnessSlider, \

 previousVal):

 if canvas.data.brightnessWindowClose==True:

 brightnessWindow.destroy()

 canvas.data.brightnessWindowClose=False

 else:

 # increasing pixel values according to slider value increases

 #brightness we change ot according to the difference between the

 # previous value and the current slider value

 if canvas.data.image!=None and brightnessWindow.winfo_exists():

 sliderVal=brightnessSlider.get()

 scale=(sliderVal-previousVal)/100.0

135

 canvas.data.image=canvas.data.image.point(\

 lambda i: i+ int(round(i*scale)))

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

 canvas.after(200, \

 lambda: changeBrightness(canvas, brightnessWindow, \

 brightnessSlider, sliderVal))

def brightness(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 brightnessWindow=Toplevel(canvas.data.mainWindow)

 brightnessWindow.title("Brightness")

 brightnessSlider=Scale(brightnessWindow, from_=-100, to=100,\

 orient=HORIZONTAL)

 brightnessSlider.pack()

 OkBrightnessFrame=Frame(brightnessWindow)

 OkBrightnessButton=Button(OkBrightnessFrame, text="OK", \

 command=lambda:

closeBrightnessWindow(canvas))

 OkBrightnessButton.grid(row=0,column=0)

 OkBrightnessFrame.pack(side=BOTTOM)

 changeBrightness(canvas, brightnessWindow, brightnessSlider,0)

 brightnessSlider.set(0)

def reset(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 ### change back to original image

 if canvas.data.image!=None:

 canvas.data.image=canvas.data.originalImage.copy()

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def mirror(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 if canvas.data.image!=None:

 canvas.data.image=ImageOps.mirror(canvas.data.image)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def flip(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 if canvas.data.image!=None:

 canvas.data.image=ImageOps.flip(canvas.data.image)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def transpose(canvas):

136

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 # I treated the image as a continuous list of pixel values row-wise

 # and simply excnaged the rows and the coloums

 # in oder to make it rotate clockewise, I reversed all the rows

 if canvas.data.image!=None:

 imageData=list(canvas.data.image.getdata())

 newData=[]

 newimg=Image.new(canvas.data.image.mode,\

 (canvas.data.image.size[1], canvas.data.image.size[0]))

 for i in xrange(canvas.data.image.size[0]):

 addrow=[]

 for j in xrange(i, len(imageData), canvas.data.image.size[0]):

 addrow.append(imageData[j])

 addrow.reverse()

 newData+=addrow

 newimg.putdata(newData)

 canvas.data.image=newimg.copy()

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

############### FILTERS ######################

 def covertGray(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 #### The existing method to convert to a grayscale image converts the

 #### image mode, so I used my own function to convert

 # value of each channel of a pixel is set to the average of the

original

 # values of the channels

 if canvas.data.image!=None:

 data=[]

 for col in xrange(canvas.data.image.size[1]):

 for row in xrange(canvas.data.image.size[0]):

 r, g, b= canvas.data.image.getpixel((row, col))

 avg= int(round((r + g + b)/3.0))

 R, G, B= avg, avg, avg

 data.append((R, G, B))

 canvas.data.image.putdata(data)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def sepia(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 # this method first converts the image to B&W and then adds the

 # same amount of red and green to every pixel

 if canvas.data.image!=None:

 sepiaData=[]

 for col in xrange(canvas.data.image.size[1]):

 for row in xrange(canvas.data.image.size[0]):

 r, g, b= canvas.data.image.getpixel((row, col))

137

 avg= int(round((r + g + b)/3.0))

 R, G, B= avg+100, avg+50, avg

 sepiaData.append((R, G, B))

 canvas.data.image.putdata(sepiaData)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def invert(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 if canvas.data.image!=None:

 canvas.data.image=ImageOps.invert(canvas.data.image)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def solarize(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 solarizeWindow=Toplevel(canvas.data.mainWindow)

 solarizeWindow.title("Solarize")

 solarizeSlider=Scale(solarizeWindow, from_=0, to=255,

orient=HORIZONTAL)

 solarizeSlider.pack()

 OkSolarizeFrame=Frame(solarizeWindow)

 OkSolarizeButton=Button(OkSolarizeFrame, text="OK",\

 command=lambda: closeSolarizeWindow(canvas))

 OkSolarizeButton.grid(row=0,column=0)

 OkSolarizeFrame.pack(side=BOTTOM)

 ### beacsue intial silderVal=0

 performSolarize(canvas, solarizeWindow, solarizeSlider, 255)

def performSolarize(canvas, solarizeWindow, solarizeSlider,

previousThreshold):

 if canvas.data.solarizeWindowClose==True:

 solarizeWindow.destroy()

 canvas.data.solarizeWindowClose=False

 else:

 # the slider denotes the % of solarization thta the user wants,

 # so the threshold (above which pixels are inverted) is inversely

 # related to the slider value

 if solarizeWindow.winfo_exists():

 sliderVal=solarizeSlider.get()

 threshold_=255-sliderVal

 if canvas.data.image!=None and threshold_!=previousThreshold:

 canvas.data.image=ImageOps.solarize(canvas.data.image,\

 threshold=threshold_)

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

 canvas.after(200, lambda: performSolarize(canvas, \

 solarizeWindow, solarizeSlider,

threshold_))

def closeSolarizeWindow(canvas):

 if canvas.data.image!=None:

138

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.solarizeWindowClose=True

def posterize(canvas):

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.drawOn=False

 # we basically reduce the range of colurs from 256 to 5 bits

 # and so, assign a single new value to each colour value

 # in each succesive range

 posterData=[]

 if canvas.data.image!=None:

 for col in xrange(canvas.data.imageSize[1]):

 for row in xrange(canvas.data.imageSize[0]):

 r, g, b= canvas.data.image.getpixel((row, col))

 if r in xrange(32):

 R=0

 elif r in xrange(32, 96):

 R=64

 elif r in xrange(96, 160):

 R=128

 elif r in xrange(160, 224):

 R=192

 elif r in xrange(224,256):

 R=255

 if g in xrange(32):

 G=0

 elif g in xrange(32, 96):

 G=64

 elif g in xrange(96, 160):

 G=128

 elif r in xrange(160, 224):

 g=192

 elif r in xrange(224,256):

 G=255

 if b in xrange(32):

 B=0

 elif b in xrange(32, 96):

 B=64

 elif b in xrange(96, 160):

 B=128

 elif b in xrange(160, 224):

 B=192

 elif b in xrange(224,256):

 B=255

 posterData.append((R, G, B))

 canvas.data.image.putdata(posterData)

 save(canvas)

 canvas.data.undoQueue.append(canvas.data.image.copy())

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

################ EDIT MENU FUNCTIONS ############################

def keyPressed(canvas, event):

 if event.keysym=="z":

 undo(canvas)

 elif event.keysym=="y":

 redo(canvas)

we use deques so as to make Undo and Redo more efficient and avoid

memory space isuues

after each change, we append the new version of the image to

139

the Undo queue

def undo(canvas):

 if len(canvas.data.undoQueue)>0:

 # the last element of the Undo Deque is the

 # current version of the image

 lastImage=canvas.data.undoQueue.pop()

 # we would want the current version if wehit redo after undo

 canvas.data.redoQueue.appendleft(lastImage)

 if len(canvas.data.undoQueue)>0:

 # the previous version of the image

 canvas.data.image=canvas.data.undoQueue[-1]

 save(canvas)

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

def redo(canvas):

 if len(canvas.data.redoQueue)>0:

 canvas.data.image=canvas.data.redoQueue[0]

 save(canvas)

 if len(canvas.data.redoQueue)>0:

 # we remove this version from the Redo Deque beacuase it

 # has become our current image

 lastImage=canvas.data.redoQueue.popleft()

 canvas.data.undoQueue.append(lastImage)

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

############# MENU COMMANDS ################

def saveAs(canvas):

 # ask where the user wants to save the file

 if canvas.data.image!=None:

 filename=asksaveasfilename(defaultextension=".jpg")

 im=canvas.data.image

 im.save(filename)

def save(canvas):

 if canvas.data.image!=None:

 im=canvas.data.image

 im.save(canvas.data.imageLocation)

def newImage(canvas):

 imageName=askopenfilename()

 filetype=""

 #make sure it's an image file

 try: filetype=imghdr.what(imageName)

 except:

 tkMessageBox.showinfo(title="Image File",\

 message="Choose an Image File!" , parent=canvas.data.mainWindow)

 # restrict filetypes to .jpg, .bmp, etc.

 if filetype in ['jpeg', 'bmp', 'png', 'tiff']:

 canvas.data.imageLocation=imageName

 im= Image.open(imageName)

 canvas.data.image=im

 canvas.data.originalImage=im.copy()

 canvas.data.undoQueue.append(im.copy())

 canvas.data.imageSize=im.size #Original Image dimensions

 canvas.data.imageForTk=makeImageForTk(canvas)

 drawImage(canvas)

 else:

 tkMessageBox.showinfo(title="Image File",\

 message="Choose an Image File!" , parent=canvas.data.mainWindow)

140

######## CREATE A VERSION OF IMAGE TO BE DISPLAYED ON THE CANVAS #########

def makeImageForTk(canvas):

 im=canvas.data.image

 if canvas.data.image!=None:

 # Beacuse after cropping the now 'image' might have diffrent

 # dimensional ratios

 imageWidth=canvas.data.image.size[0]

 imageHeight=canvas.data.image.size[1]

 #To make biggest version of the image fit inside the canvas

 if imageWidth>imageHeight:

 resizedImage=im.resize((canvas.data.width,\

int(round(float(imageHeight)*canvas.data.width/imageWidth))))

 # store the scale so as to use it later

 canvas.data.imageScale=float(imageWidth)/canvas.data.width

 else:

resizedImage=im.resize((int(round(float(imageWidth)*canvas.data.height/imag

eHeight)),\

 canvas.data.height))

 canvas.data.imageScale=float(imageHeight)/canvas.data.height

 # we may need to refer to ther resized image atttributes again

 canvas.data.resizedIm=resizedImage

 return ImageTk.PhotoImage(resizedImage)

def drawImage(canvas):

 if canvas.data.image!=None:

 # make the canvas center and the image center the same

 canvas.create_image(canvas.data.width/2.0-

canvas.data.resizedIm.size[0]/2.0,

 canvas.data.height/2.0-

canvas.data.resizedIm.size[1]/2.0,

 anchor=NW, image=canvas.data.imageForTk)

 canvas.data.imageTopX=int(round(canvas.data.width/2.0-

canvas.data.resizedIm.size[0]/2.0))

 canvas.data.imageTopY=int(round(canvas.data.height/2.0-

canvas.data.resizedIm.size[1]/2.0))

############# DESKTOP BK ##############

Please comment this function out if you use this on any OS apart from

Windows

def desktopBk(canvas):

 if canvas.data.image!=None:

 new=canvas.data.image.copy()

 # Windows desktop photos are supposed to be bitmap images

 newLocation=os.path.dirname(\

 canvas.data.imageLocation)+"/desktopPhoto.bmp"

 new.save(newLocation)

 SPI_SETDESKWALLPAPER = 20

 ctypes.windll.user32.SystemParametersInfoA(SPI_SETDESKWALLPAPER, 0,

str(newLocation), 0)

########### INITIALIZE ##############

def init(root, canvas):

 buttonsInit(root, canvas)

 menuInit(root, canvas)

 canvas.data.image=None

 canvas.data.angleSelected=None

 canvas.data.rotateWindowClose=False

 canvas.data.brightnessWindowClose=False

 canvas.data.brightnessLevel=None

141

 canvas.data.histWindowClose=False

 canvas.data.solarizeWindowClose=False

 canvas.data.posterizeWindowClose=False

 canvas.data.colourPopToHappen=False

 canvas.data.cropPopToHappen=False

 canvas.data.endCrop=False

 canvas.data.drawOn=True

 canvas.data.undoQueue=deque([], 10)

 canvas.data.redoQueue=deque([], 10)

 canvas.pack()

def buttonsInit(root, canvas):

 backgroundColour="white"

 buttonWidth=14

 buttonHeight=2

 toolKitFrame=Frame(root)

 cropButton=Button(toolKitFrame, text="Crop",\

 background=backgroundColour ,\

 width=buttonWidth, height=buttonHeight, \

 command=lambda:crop(canvas))

 cropButton.grid(row=0,column=0)

 rotateButton=Button(toolKitFrame, text="Rotate",\

 background=backgroundColour, \

 width=buttonWidth,height=buttonHeight, \

 command=lambda: rotate(canvas))

 rotateButton.grid(row=1,column=0)

 brightnessButton=Button(toolKitFrame, text="Brightness",\

 background=backgroundColour ,\

 width=buttonWidth, height=buttonHeight,\

 command=lambda: brightness(canvas))

 brightnessButton.grid(row=2,column=0)

 histogramButton=Button(toolKitFrame, text="Histogram",\

 background=backgroundColour ,\

 width=buttonWidth,height=buttonHeight, \

 command=lambda: histogram(canvas))

 histogramButton.grid(row=3,column=0)

 colourPopButton=Button(toolKitFrame, text="Colour Pop",\

 background=backgroundColour, \

 width=buttonWidth,height=buttonHeight, \

 command=lambda: colourPop(canvas))

 colourPopButton.grid(row=4,column=0)

 mirrorButton=Button(toolKitFrame, text="Mirror",\

 background=backgroundColour, \

 width=buttonWidth,height=buttonHeight, \

 command=lambda: mirror(canvas))

 mirrorButton.grid(row=5,column=0)

 flipButton=Button(toolKitFrame, text="Flip",\

 background=backgroundColour ,\

 width=buttonWidth,height=buttonHeight, \

 command=lambda: flip(canvas))

 flipButton.grid(row=6,column=0)

 transposeButton=Button(toolKitFrame, text="Transpose",\

 background=backgroundColour, width=buttonWidth,\

 height=buttonHeight,command=lambda:

transpose(canvas))

 transposeButton.grid(row=7,column=0)

 drawButton=Button(toolKitFrame, text="Draw",\

 background=backgroundColour ,width=buttonWidth,\

 height=buttonHeight,command=lambda:

drawOnImage(canvas))

142

 drawButton.grid(row=8,column=0)

 resetButton=Button(toolKitFrame, text="Reset",\

 background=backgroundColour ,width=buttonWidth,\

 height=buttonHeight, command=lambda: reset(canvas))

 resetButton.grid(row=9,column=0)

 #Please comment this button out if you use this on any OS apart from

Windows

 desktopButton=Button(toolKitFrame, text="Make Desktop Bk",\

 background=backgroundColour,height=buttonHeight,\

 width=buttonWidth,command=lambda:

desktopBk(canvas))

 desktopButton.grid(row=10,column=0)

 toolKitFrame.pack(side=LEFT)

def menuInit(root, canvas):

 menubar=Menu(root)

 menubar.add_command(label="New", command=lambda:newImage(canvas))

 menubar.add_command(label="Save", command=lambda:save(canvas))

 menubar.add_command(label="Save As", command=lambda:saveAs(canvas))

 ## Edit pull-down Menu

 editmenu = Menu(menubar, tearoff=0)

 editmenu.add_command(label="Undo Z", command=lambda:undo(canvas))

 editmenu.add_command(label="Redo Y", command=lambda:redo(canvas))

 menubar.add_cascade(label="Edit", menu=editmenu)

 root.config(menu=menubar)

 ## Filter pull-down Menu

 filtermenu = Menu(menubar, tearoff=0)

 filtermenu.add_command(label="Black and White", \

 command=lambda:covertGray(canvas))

 filtermenu.add_command(label="Sepia",\

 command=lambda:sepia(canvas))

 filtermenu.add_command(label="Invert", \

 command=lambda:invert(canvas))

 filtermenu.add_command(label="Solarize", \

 command=lambda:solarize(canvas))

 filtermenu.add_command(label="Posterize", \

 command=lambda:posterize(canvas))

 menubar.add_cascade(label="Filter", menu=filtermenu)

 root.config(menu=menubar)

def run():

 # create the root and the canvas

 root = Tk()

 root.title("Image Editor")

 canvasWidth=500

 canvasHeight=500

 canvas = Canvas(root, width=canvasWidth, height=canvasHeight, \

 background="gray")

 # Set up canvas data and call init

 class Struct: pass

 canvas.data = Struct()

 canvas.data.width=canvasWidth

 canvas.data.height=canvasHeight

 canvas.data.mainWindow=root

 init(root, canvas)

 root.bind("<Key>", lambda event:keyPressed(canvas, event))

 # and launch the app

 root.mainloop() # This call BLOCKS (so your program waits)

run()

143

APPENDIX B

Low cost cavitation image capturing experimental setup

144

145

Code:
import os

import glob

import shutil

import sys

import logging

from threading import Thread

import time

import datetime

mypath = os.path.abspath(__file__) # Find the full path of this python

script

baseDir = mypath[0:mypath.rfind("/")+1] # get the path location only

(excluding script name)

baseFileName = mypath[mypath.rfind("/")+1:mypath.rfind(".")]

progName = os.path.basename(__file__)

Color data for OpenCV lines and text

cvWhite = (255, 255, 255)

cvBlack = (0, 0, 0)

cvBlue = (255, 0, 0)

cvGreen = (0, 255, 0)

cvRed = (0, 0, 255)

Check for variable file to import and error out if not found.

configFilePath = baseDir + "config.py"

if not os.path.exists(configFilePath):

 print("ERROR : Missing config.py file - Could not find Configuration

file %s"

 % configFilePath)

 import urllib2

 config_url = "https://raw.github.com/pageauc/speed-

camera/master/config.py"

 print("INFO : Attempting to Download config.py file from %s" %

config_url)

 try:

 wgetfile = urllib2.urlopen(config_url)

 except:

 print("ERROR : Download of config.py Failed")

 print(" Try Rerunning the speed-install.sh Again.")

 print(" or")

 print(" Perform GitHub curl install per Readme.md")

 print(" and Try Again.")

 print(" Exiting %s" % progName)

 sys.exit(1)

 f = open('config.py', 'wb')

 f.write(wgetfile.read())

 f.close()

Read Configuration variables from config.py file

from config import *

from search_config import search_dest_path

if pluginEnable: # Check and verify plugin and load variable overlay

 pluginDir = os.path.join(baseDir, "plugins")

 if pluginName.endswith('.py'): # Check if there is a .py at the end

of pluginName variable

 pluginName = pluginName[:-3] # Remove .py extensiion

 pluginPath = os.path.join(pluginDir, pluginName + '.py')

 print("INFO : pluginEnabled - loading pluginName %s" % pluginPath)

 if not os.path.isdir(pluginDir):

 print("ERROR : plugin Directory Not Found at %s" % pluginDir)

 print(" Suggest you Rerun github curl install script to

install plugins")

146

 print(" https://github.com/pageauc/pi-timolo/wiki/How-to-

Install-or-Upgrade#quick-install")

 print(" Exiting %s Due to Error" % progName)

 sys.exit(1)

 elif not os.path.exists(pluginPath):

 print("ERROR : File Not Found pluginName %s" % pluginPath)

 print(" Check Spelling of pluginName Value in %s" %

configFilePath)

 print(" ------- Valid Names -------")

 validPlugin = glob.glob(pluginDir + "/*py")

 validPlugin.sort()

 for entry in validPlugin:

 pluginFile = os.path.basename(entry)

 plugin = pluginFile.rsplit('.', 1)[0]

 if not ((plugin == "__init__") or (plugin == "current")):

 print(" %s" % plugin)

 print(" ------- End of List -------")

 print(" Note: pluginName Should Not have .py Ending.")

 print("INFO : or Rerun github curl install command. See github

wiki")

 print(" https://github.com/pageauc/speed-camera/wiki/How-to-

Install-or-Upgrade#quick-install")

 print(" Exiting %s Due to Error" % progName)

 sys.exit(1)

 else:

 pluginCurrent = os.path.join(pluginDir, "current.py")

 try: # Copy image file to recent folder

 print("INFO : Copy %s to %s" % (pluginPath, pluginCurrent))

 shutil.copy(pluginPath, pluginCurrent)

 except OSError as err:

 print('ERROR : Copy Failed from %s to %s - %s'

 % (pluginPath, pluginCurrent, err))

 print(" Check permissions, disk space, Etc.")

 print(" Exiting %s Due to Error" % progName)

 sys.exit(1)

 print("INFO : Import Plugin %s" % pluginPath)

 sys.path.insert(0, pluginDir) # add plugin directory to program

PATH

 from plugins.current import *

 try:

 if os.path.exists(pluginCurrent):

 os.remove(pluginCurrent)

 pluginCurrentpyc = os.path.join(pluginDir, "current.pyc")

 if os.path.exists(pluginCurrentpyc):

 os.remove(pluginCurrentpyc)

 except OSError as err:

 print("WARN : Failed To Remove File %s - %s"

 % (pluginCurrentpyc, err))

 print(" Exiting %s Due to Error" % progName)

else:

 print("INFO : No Plugins Enabled per pluginEnable=%s" % pluginEnable)

Now that variables are imported from config.py Setup Logging

if loggingToFile:

 logging.basicConfig(level=logging.DEBUG,

 format='%(asctime)s %(levelname)-8s %(funcName)-10s

%(message)s',

 datefmt='%Y-%m-%d %H:%M:%S',

 filename=logFilePath,

 filemode='w')

elif verbose:

147

 logging.basicConfig(level=logging.DEBUG,

 format='%(asctime)s %(levelname)-8s %(funcName)-10s

%(message)s',

 datefmt='%Y-%m-%d %H:%M:%S')

 logging.info("Logging to Console per Variable verbose=True")

else:

 logging.basicConfig(level=logging.CRITICAL,

 format='%(asctime)s %(levelname)-8s %(funcName)-10s

%(message)s',

 datefmt='%Y-%m-%d %H:%M:%S')

 logging.info("Logging Disabled per Variable verbose=False")

import the necessary packages

try: #Add this check in case running on non RPI platform using web cam

 from picamera.array import PiRGBArray

 from picamera import PiCamera

except ImportError:

 WEBCAM = True

import subprocess

if not WEBCAM:

 # Check that pi camera module is installed and enabled

 camResult = subprocess.check_output("vcgencmd get_camera", shell=True)

 camResult = camResult.decode("utf-8")

 camResult = camResult.replace("\n", "")

 if (camResult.find("0")) >= 0: # -1 is zero not found. Cam OK

 logging.error("Pi Camera Module Not Found %s", camResult)

 logging.error("if supported=0 Enable Camera using command sudo

raspi-config")

 logging.error("if detected=0 Check Pi Camera Module is Installed

Correctly")

 logging.error("Exiting %s", progName)

 sys.exit(1)

 else:

 logging.info("Camera Module is Enabled and Connected %s",

camResult)

try: # Check to see if opencv is installed

 import cv2

except ImportError:

 logging.error("Could not import cv2 library")

 if sys.version_info > (2, 9):

 logging.error("python3 failed to import cv2")

 logging.error("Try installing opencv for python3")

 logging.error("For RPI See https://github.com/pageauc/opencv3-

setup")

 else:

 logging.error("python2 failed to import cv2")

 logging.error("Try RPI Install per command")

 logging.error("INFO : Exiting %s", progName)

 sys.exit(1)

fix possible invalid values

if WINDOW_BIGGER < 1:

 WINDOW_BIGGER = 1

if image_bigger < 1:

 image_bigger = 1

System Settings

image_width = int(CAMERA_WIDTH * image_bigger) # Set width of trigger

point image to save

image_height = int(CAMERA_HEIGHT * image_bigger) # Set height of trigger

point image to save

Calculate conversion from camera pixel width to actual speed.

148

px_to_kph = float(cal_obj_mm/cal_obj_px * 0.0036)

quote = '"' # Used for creating quote delimited log file of speed data

if SPEED_MPH:

 speed_units = "mph"

 speed_conv = 0.621371 * px_to_kph

else:

 speed_units = "kph"

 speed_conv = px_to_kph

#--

class PiVideoStream:

 def __init__(self, resolution=(CAMERA_WIDTH, CAMERA_HEIGHT),

framerate=CAMERA_FRAMERATE,

 rotation=0, hflip=CAMERA_HFLIP, vflip=CAMERA_VFLIP):

 # initialize the camera and stream

 try:

 self.camera = PiCamera()

 except:

 logging.error("PiCamera Already in Use by Another Process")

 logging.error("Exit %s", progName)

 sys.exit(1)

 self.camera.resolution = resolution

 self.camera.rotation = rotation

 self.camera.framerate = framerate

 self.camera.hflip = hflip

 self.camera.vflip = vflip

 self.rawCapture = PiRGBArray(self.camera, size=resolution)

 self.stream = self.camera.capture_continuous(self.rawCapture,

 format="bgr",

 use_video_port=True)

 # initialize the frame and the variable used to indicate

 # if the thread should be stopped

 self.frame = None

 self.stopped = False

 def start(self):

 # start the thread to read frames from the video stream

 t = Thread(target=self.update, args=())

 t.daemon = True

 t.start()

 return self

 def update(self):

 # keep looping infinitely until the thread is stopped

 for f in self.stream:

 # grab the frame from the stream and clear the stream in

 # preparation for the next frame

 self.frame = f.array

 self.rawCapture.truncate(0)

 # if the thread indicator variable is set, stop the thread

 # and resource camera resources

 if self.stopped:

 self.stream.close()

 self.rawCapture.close()

 self.camera.close()

 return

 def read(self):

 # return the frame most recently read

149

 return self.frame

 def stop(self):

 # indicate that the thread should be stopped

 self.stopped = True

#--

class WebcamVideoStream:

 def __init__(self, CAM_SRC=WEBCAM_SRC, CAM_WIDTH=WEBCAM_WIDTH,

CAM_HEIGHT=WEBCAM_HEIGHT):

 # initialize the video camera stream and read the first frame

 # from the stream

 self.stream = CAM_SRC

 self.stream = cv2.VideoCapture(CAM_SRC)

 self.stream.set(3, CAM_WIDTH)

 self.stream.set(4, CAM_HEIGHT)

 (self.grabbed, self.frame) = self.stream.read()

 # initialize the variable used to indicate if the thread should

 # be stopped

 self.stopped = False

 def start(self):

 # start the thread to read frames from the video stream

 t = Thread(target=self.update, args=())

 t.daemon = True

 t.start()

 return self

 def update(self):

 # keep looping infinitely until the thread is stopped

 while True:

 # if the thread indicator variable is set, stop the thread

 if self.stopped:

 return

 # otherwise, read the next frame from the stream

 (self.grabbed, self.frame) = self.stream.read()

 def read(self):

 # return the frame most recently read

 return self.frame

 def stop(self):

 # indicate that the thread should be stopped

 self.stopped = True

#--

def get_fps(start_time, frame_count):

 # Calculate and display frames per second processing

 if frame_count >= 1000:

 duration = float(time.time() - start_time)

 FPS = float(frame_count / duration)

 logging.info("%.2f fps Last %i Frames", FPS, frame_count)

 frame_count = 0

 start_time = time.time()

 else:

 frame_count += 1

 return start_time, frame_count

150

#--

def show_settings():

 """Initialize and Display program variable settings from config.py"""

 cwd = os.getcwd()

 html_path = "media/html"

 if not os.path.isdir(image_path):

 logging.info("Creating Image Storage Folder %s", image_path)

 os.makedirs(image_path)

 os.chdir(image_path)

 os.chdir(cwd)

 if imageRecentMax > 0:

 if not os.path.isdir(imageRecentDir):

 logging.info("Create Recent Folder %s", imageRecentDir)

 try:

 os.makedirs(imageRecentDir)

 except OSError as err:

 logging.error('Failed to Create Folder %s - %s',

imageRecentDir, err)

 if not os.path.isdir(search_dest_path):

 logging.info("Creating Search Folder %s", search_dest_path)

 os.makedirs(search_dest_path)

 if not os.path.isdir(html_path):

 logging.info("Creating html Folder %s", html_path)

 os.makedirs(html_path)

 os.chdir(cwd)

 if verbose:

 print("--

--------------------")

 print("Note: To Send Full Output to File Use command")

 print("python -u ./%s | tee -a log.txt" % progName)

 print("Set log_data_to_file=True to Send speed_Data to CSV File

%s.log"

 % baseFileName)

 print("--------------------------------- Settings -----------------

--------------------")

 print("")

 print("Plugins pluginEnable=%s pluginName=%s"

 % (pluginEnable, pluginName))

 print("Message Display . verbose=%s display_fps=%s calibrate=%s"

 % (verbose, display_fps, calibrate))

 print(" show_out_range=%s" % show_out_range)

 print("Logging Log_data_to_CSV=%s log_filename=%s.csv

(CSV format)"

 % (log_data_to_CSV, baseFileName))

 print(" loggingToFile=%s logFilePath=%s"

 % (loggingToFile, logFilePath))

 print(" Log if max_speed_over > %i %s"

 % (max_speed_over, speed_units))

 print("Speed Trigger ... If track_len_trig > %i px" %

track_len_trig)

 print("Exclude Events .. If x_diff_min < %i or x_diff_max > %i px"

 % (x_diff_min, x_diff_max))

 print(" If y_upper < %i or y_lower > %i px"

 % (y_upper, y_lower))

 print(" or x_left < %i or x_right > %i px"

 % (x_left, x_right))

 print(" If max_speed_over < %i %s"

 % (max_speed_over, speed_units))

 print(" If event_timeout > %i seconds Start New

Track"

151

 % (event_timeout))

 print(" track_timeout=%i sec wait after Track

Ends"

 " (avoid retrack of same object)"

 % (track_timeout))

 print("Speed Photo Size=%ix%i px image_bigger=%i"

 " rotation=%i VFlip=%s HFlip=%s "

 % (image_width, image_height, image_bigger,

 CAMERA_ROTATION, CAMERA_VFLIP, CAMERA_HFLIP))

 print(" image_path=%s image_Prefix=%s"

 % (image_path, image_prefix))

 print(" image_font_size=%i px high

image_text_bottom=%s"

 % (image_font_size, image_text_bottom))

 print("Motion Settings . Size=%ix%i px px_to_kph=%f

speed_units=%s"

 % (CAMERA_WIDTH, CAMERA_HEIGHT, px_to_kph, speed_units))

 print("OpenCV Settings . MIN_AREA=%i sq-px BLUR_SIZE=%i"

 " THRESHOLD_SENSITIVITY=%i CIRCLE_SIZE=%i px"

 % (MIN_AREA, BLUR_SIZE, THRESHOLD_SENSITIVITY, CIRCLE_SIZE))

 print(" WINDOW_BIGGER=%i gui_window_on=%s"

 " (Display OpenCV Status Windows on GUI Desktop)"

 % (WINDOW_BIGGER, gui_window_on))

 print(" CAMERA_FRAMERATE=%i fps video stream

speed"

 % CAMERA_FRAMERATE)

 print("Sub-Directories . imageSubDirMaxHours=%i (0=off)"

 " imageSubDirMaxFiles=%i (0=off)"

 % (imageSubDirMaxHours, imageSubDirMaxFiles))

 print(" imageRecentDir=%s imageRecentMax=%i

(0=off)"

 % (imageRecentDir, imageRecentMax))

 if spaceTimerHrs > 0: # Check if disk mgmnt is enabled

 print("Disk Space Enabled - Manage Target Free Disk

Space."

 " Delete Oldest %s Files if Needed" % (spaceFileExt))

 print(" Check Every spaceTimerHrs=%i hr(s)

(0=off)"

 " Target spaceFreeMB=%i MB min is 100 MB)"

 % (spaceTimerHrs, spaceFreeMB))

 print(" If Needed Delete Oldest

spaceFileExt=%s spaceMediaDir=%s"

 % (spaceFileExt, spaceMediaDir))

 else:

 print("Disk Space Disabled - spaceTimerHrs=%i"

 " Manage Target Free Disk Space. Delete Oldest %s Files"

 % (spaceTimerHrs, spaceFileExt))

 print(" spaceTimerHrs=%i (0=Off)"

 " Target spaceFreeMB=%i (min=100 MB)"

 % (spaceTimerHrs, spaceFreeMB))

 print("")

 print("--

--------------------")

 return

#--

def take_calibration_image(filename, cal_image):

 """

 Create a calibration image for determining value of IMG_VIEW_FT

variable

152

 Create calibration hash marks

 """

 for i in range(10, CAMERA_WIDTH - 9, 10):

 cv2.line(cal_image, (i, y_upper - 5), (i, y_upper + 30), cvRed, 1)

 # This is motion window

 cv2.line(cal_image, (x_left, y_upper), (x_right, y_upper), cvBlue, 1)

 cv2.line(cal_image, (x_left, y_lower), (x_right, y_lower), cvBlue, 1)

 cv2.line(cal_image, (x_left, y_upper), (x_left, y_lower), cvBlue, 1)

 cv2.line(cal_image, (x_right, y_upper), (x_right, y_lower), cvBlue, 1)

 print("")

 print("----------------------------- Create Calibration Image ---------

--------------------")

 print("")

 print(" Instructions for using %s image for camera calibration" %

filename)

 print("")

 print("1 - Use a known size reference object in the image like a

vehicle")

 print(" at the required distance.")

 print("2 - Record cal_obj_px Value using Red y_upper hash marks at

every 10 px")

 print("3 - Record cal_obj_mm of object. This is Actual length in mm of

object above")

 print("4 - Edit config.py and enter the values for the above

variables.")

 print("")

 print(" Calibration Image Saved To %s%s" % (baseDir, filename))

 print("")

 print("---------------------- Press cntl-c to Quit Calibration Mode ---

--------------------")

 print("")

 return cal_image

#--

def subDirLatest(directory): # Scan for directories and return most recent

 dirList = [name for name in os.listdir(directory) if

os.path.isdir(os.path.join(directory, name))]

 if len(dirList) > 0:

 lastSubDir = sorted(dirList)[-1]

 lastSubDir = os.path.join(directory, lastSubDir)

 else:

 lastSubDir = directory

 return lastSubDir

#--

def subDirCreate(directory, prefix):

 now = datetime.datetime.now()

 # Specify folder naming

 subDirName = ('%s%d%02d%02d-%02d%02d' %

 (prefix, now.year, now.month, now.day, now.hour,

now.minute))

 subDirPath = os.path.join(directory, subDirName)

 if not os.path.exists(subDirPath):

 try:

 os.makedirs(subDirPath)

 except OSError as err:

 logging.error('Cannot Create Directory %s - %s, using default

location.',

 subDirPath, err)

153

 subDirPath = directory

 else:

 logging.info('Created %s', subDirPath)

 else:

 subDirPath = directory

 return subDirPath

#--

def deleteOldFiles(maxFiles, dirPath, prefix):

 # Delete Oldest files gt or eq to maxfiles that match filename prefix

 try:

 fileList = sorted(glob.glob(os.path.join(dirPath, prefix + '*')),

 key=os.path.getmtime)

 except OSError as err:

 logging.error('Problem Reading Directory %s - %s', dirPath, err)

 else:

 while len(fileList) >= maxFiles:

 oldest = fileList[0]

 oldestFile = oldest

 try: # Remove oldest file in recent folder

 fileList.remove(oldest)

 os.remove(oldestFile)

 except OSError as err:

 logging.error('Cannot Remove %s - %s', oldestFile, err)

#--

def subDirCheckMaxFiles(directory, filesMax): # Count number of files in a

folder path

 fileList = glob.glob(directory + '/*jpg')

 count = len(fileList)

 if count > filesMax:

 makeNewDir = True

 logging.info('Total Files in %s Exceeds %i ', directory, filesMax)

 else:

 makeNewDir = False

 return makeNewDir

#--

def subDirCheckMaxHrs(directory, hrsMax, prefix): # Note to self need to

add error checking

 # extract the date-time from the directory name

 dirName = os.path.split(directory)[1] # split dir path and keep

dirName

 dirStr = dirName.replace(prefix, '') # remove prefix from dirName so

just date-time left

 dirDate = datetime.datetime.strptime(dirStr, "%Y-%m-%d-%H:%M") #

convert string to datetime

 rightNow = datetime.datetime.now() # get datetime now

 diff = rightNow - dirDate # get time difference between dates

 days, seconds = diff.days, diff.seconds

 dirAgeHours = days * 24 + seconds // 3600 # convert to hours

 if dirAgeHours > hrsMax: # See if hours are exceeded

 makeNewDir = True

 logging.info('MaxHrs %i Exceeds %i for %s', dirAgeHours, hrsMax,

directory)

 else:

 makeNewDir = False

 return makeNewDir

154

#--

def subDirChecks(maxHours, maxFiles, directory, prefix):

 # Check if motion SubDir needs to be created

 if maxHours < 1 and maxFiles < 1: # No Checks required

 # logging.info('No sub-folders Required in %s', directory)

 subDirPath = directory

 else:

 subDirPath = subDirLatest(directory)

 if subDirPath == directory: # No subDir Found

 logging.info('No sub folders Found in %s', directory)

 subDirPath = subDirCreate(directory, prefix)

 elif (maxHours > 0 and maxFiles < 1): # Check MaxHours Folder Age

Only

 if subDirCheckMaxHrs(subDirPath, maxHours, prefix):

 subDirPath = subDirCreate(directory, prefix)

 elif (maxHours < 1 and maxFiles > 0): # Check Max Files Only

 if subDirCheckMaxFiles(subDirPath, maxFiles):

 subDirPath = subDirCreate(directory, prefix)

 elif maxHours > 0 and maxFiles > 0: # Check both Max Files and

Age

 if subDirCheckMaxHrs(subDirPath, maxHours, prefix):

 if subDirCheckMaxFiles(subDirPath, maxFiles):

 subDirPath = subDirCreate(directory, prefix)

 else:

 logging.info('MaxFiles Not Exceeded in %s', subDirPath)

 os.path.abspath(subDirPath)

 return subDirPath

#--

def filesToDelete(mediaDirPath, extension=image_format):

 return sorted(

 (os.path.join(dirname, filename)

 for dirname, dirnames, filenames in os.walk(mediaDirPath)

 for filename in filenames

 if filename.endswith(extension)),

 key=lambda fn: os.stat(fn).st_mtime, reverse=True)

#--

def saveRecent(recentMax, recentDir, filename, prefix):

 """ save specified most recent files (timelapse and/or motion) in

recent subfolder"""

 deleteOldFiles(recentMax, recentDir, prefix)

 try: # Copy image file to recent folder

 shutil.copy(filename, recentDir)

 except OSError as err:

 logging.error('Copy from %s to %s - %s', filename, recentDir, err)

#--

def freeSpaceUpTo(freeMB, mediaDir, extension=image_format):

 """ Walks mediaDir and deletes oldest files until spaceFreeMB is

achieved

 Use with Caution """

 mediaDirPath = os.path.abspath(mediaDir)

 if os.path.isdir(mediaDirPath):

 MB2Bytes = 1048576 # Conversion from MB to Bytes

 targetFreeBytes = freeMB * MB2Bytes

155

 fileList = filesToDelete(mediaDir, extension)

 totFiles = len(fileList)

 delcnt = 0

 logging.info('Session Started')

 while fileList:

 statv = os.statvfs(mediaDirPath)

 availFreeBytes = statv.f_bfree*statv.f_bsize

 if availFreeBytes >= targetFreeBytes:

 break

 filePath = fileList.pop()

 try:

 os.remove(filePath)

 except OSError as err:

 logging.error('Del Failed %s', filePath)

 logging.error('Error: %s', err)

 else:

 delcnt += 1

 logging.info('Del %s', filePath)

 logging.info('Target=%i MB Avail=%i MB Deleted %i of %i

Files ',

 targetFreeBytes / MB2Bytes,

 availFreeBytes / MB2Bytes,

 delcnt, totFiles)

 if delcnt > totFiles / 4: # Avoid deleting more than 1/4

of files at one time

 logging.warning('Max Deletions Reached %i of %i',

delcnt, totFiles)

 logging.warning('Deletions Restricted to 1/4 of total

files per session.')

 break

 logging.info('Session Ended')

 else:

 logging.error('Directory Not Found - %s', mediaDirPath)

#--

def freeDiskSpaceCheck(lastSpaceCheck):

 if spaceTimerHrs > 0: # Check if disk free space timer hours is

enabled

 # See if it is time to do disk clean-up check

 if (datetime.datetime.now() - lastSpaceCheck).total_seconds() >

spaceTimerHrs * 3600:

 lastSpaceCheck = datetime.datetime.now()

 if spaceFreeMB < 100: # set freeSpaceMB to reasonable value

if too low

 diskFreeMB = 100

 else:

 diskFreeMB = spaceFreeMB

 logging.info('spaceTimerHrs=%i diskFreeMB=%i spaceMediaDir=%s

spaceFileExt=%s',

 spaceTimerHrs, diskFreeMB, spaceMediaDir,

spaceFileExt)

 freeSpaceUpTo(diskFreeMB, spaceMediaDir, spaceFileExt)

 return lastSpaceCheck

#--

def get_image_name(path, prefix):

 # build image file names by number sequence or date/time

 rightNow = datetime.datetime.now()

 filename = ("%s/%s%04d%02d%02d-%02d%02d%02d.jpg" %

156

 (path, prefix, rightNow.year, rightNow.month, rightNow.day,

 rightNow.hour, rightNow.minute, rightNow.second))

 return filename

#--

def log_to_csv_file(data_to_append):

 log_file_path = baseDir + baseFileName + ".csv"

 if not os.path.exists(log_file_path):

 open(log_file_path, 'w').close()

 f = open(log_file_path, 'ab')

 # header_text = '"YYYYMMDD","HH","MM","Speed","Unit"," Speed

Photo Path ","X","Y","W","H","Area","Direction"' + "\n"

 # f.write(header_text)

 f.close()

 logging.info("Create New Data Log File %s", log_file_path)

 filecontents = data_to_append + "\n"

 f = open(log_file_path, 'a+')

 f.write(filecontents)

 f.close()

 return

#--

def speed_camera():

 ave_speed = 0.0

 # initialize variables

 frame_count = 0

 fps_time = time.time()

 first_event = True # Start a New Motion Track

 event_timer = time.time()

 start_pos_x = 0

 end_pos_x = 0

 # setup buffer area to ensure contour is fully contained in crop area

 x_buf = int((x_right - x_left) / 10)

 y_buf = int((y_lower - y_upper) / 8)

 travel_direction = ""

 # initialize a cropped grayimage1 image

 # Only needs to be done once

 image2 = vs.read() # Get image from PiVideoSteam thread instance

 try:

 # crop image to motion tracking area only

 image_crop = image2[y_upper:y_lower, x_left:x_right]

 except:

 vs.stop()

 logging.warn("Problem Connecting To Camera Stream.")

 logging.warn("Restarting Camera. One Moment Please ...")

 time.sleep(4)

 return

 if verbose:

 if gui_window_on:

 logging.info("Press lower case q on OpenCV GUI Window to Quit

program")

 logging.info(" or ctrl-c in this terminal session to

Quit")

 else:

 logging.info("Press ctrl-c in this terminal session to Quit")

 if loggingToFile:

 logging.info("Sending Logging Data to %s (Console Messages

Disabled)", logFilePath)

157

 else:

 logging.info("Start Logging Speed Camera Activity to Console")

 else:

 print("INFO : NOTE: Logging Messages Disabled per verbose=%s" %

verbose)

 if pluginEnable:

 logging.info("Plugin %s is Enabled." % pluginName)

 if calibrate:

 logging.info("IMPORTANT: Camera Is In Calibration Mode")

 logging.info("Begin Motion Tracking")

 # Calculate position of text on the images

 font = cv2.FONT_HERSHEY_SIMPLEX

 if image_text_bottom:

 text_y = (image_height - 50) # show text at bottom of image

 else:

 text_y = 10 # show text at top of image

 grayimage1 = cv2.cvtColor(image_crop, cv2.COLOR_BGR2GRAY)

 event_timer = time.time()

 # Initialize prev_image used for taking speed image photo

 prev_image = image2

 still_scanning = True

 lastSpaceCheck = datetime.datetime.now()

 speed_path = image_path

 while still_scanning: # process camera thread images and calculate

speed

 image2 = vs.read() # Get image from PiVideoSteam thread instance

 if WEBCAM:

 if (WEBCAM_HFLIP and WEBCAM_VFLIP):

 image2 = cv2.flip(image2, -1)

 elif WEBCAM_HFLIP:

 image2 = cv2.flip(image2, 1)

 elif WEBCAM_VFLIP:

 image2 = cv2.flip(image2, 0)

 # crop image to motion tracking area only

 image_crop = image2[y_upper:y_lower, x_left:x_right]

 if time.time() - event_timer > event_timeout: # Check if event

timed out

 # event_timer exceeded so reset for new track

 event_timer = time.time()

 first_event = True

 start_pos_x = 0

 end_pos_x = 0

 if display_fps: # Optionally show motion image processing loop

fps

 fps_time, frame_count = get_fps(fps_time, frame_count)

 # initialize variables

 motion_found = False

 biggest_area = MIN_AREA

 cx, cy = 0, 0 # Center of contour used for tracking

 mw, mh = 0, 0 # w,h width, height of contour

 # Convert to gray scale, which is easier

 grayimage2 = cv2.cvtColor(image_crop, cv2.COLOR_BGR2GRAY)

 # Get differences between the two greyed images

 differenceimage = cv2.absdiff(grayimage1, grayimage2)

 # Blur difference image to enhance motion vectors

 differenceimage = cv2.blur(differenceimage, (BLUR_SIZE, BLUR_SIZE))

 # Get threshold of blurred difference image based on

THRESHOLD_SENSITIVITY variable

 retval, thresholdimage = cv2.threshold(differenceimage,

THRESHOLD_SENSITIVITY,

 255, cv2.THRESH_BINARY)

158

 try:

 # opencv 2 syntax default

 contours, hierarchy = cv2.findContours(thresholdimage,

 cv2.RETR_EXTERNAL,

 cv2.CHAIN_APPROX_SIMPLE)

 except ValueError:

 # opencv 3 syntax

 thresholdimage, contours, hierarchy =

cv2.findContours(thresholdimage,

cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

 total_contours = len(contours)

 # Update grayimage1 to grayimage2 ready for next image2

 grayimage1 = grayimage2

 # find contour with biggest area

 if contours:

 for c in contours:

 # get area of next contour

 found_area = cv2.contourArea(c)

 if found_area > biggest_area:

 (x, y, w, h) = cv2.boundingRect(c)

 # check if complete contour is completely within crop

area

 if (x > x_buf and

 x + w < x_right - x_left - x_buf and

 y > y_buf and

 y + h < y_lower - y_upper - y_buf):

 motion_found = True

 biggest_area = found_area

 cx = int(x + w/2) # put circle in middle of width

 cy = int(y + h/2) # put circle in middle of

height

 mw = w

 mh = h

 if motion_found:

 # Process motion event and track data

 if first_event: # This is a first valide motion event

 first_event = False

 start_pos_x = cx

 end_pos_x = cx

 track_start_time = time.time()

 logging.info("New - cxy(%i,%i) Start New Track", cx,

cy)

 else:

 if end_pos_x - start_pos_x > 0:

 travel_direction = "L2R"

 else:

 travel_direction = "R2L"

 if (abs(cx - end_pos_x) > x_diff_min and abs(cx -

end_pos_x) < x_diff_max):

 # movement is within acceptable distance range of

last event

 end_pos_x = cx

 tot_track_dist = abs(end_pos_x - start_pos_x)

 tot_track_time = abs(time.time() -

track_start_time)

 ave_speed = float((abs(tot_track_dist /

tot_track_time)) * speed_conv)

 if abs(end_pos_x - start_pos_x) >= track_len_trig:

159

 # Track length exceeded so take process speed

photo

 if ave_speed > max_speed_over or calibrate:

 logging.info(" Add - cxy(%i,%i) %3.2f %s

px=%i/%i"

 " C=%i %ix%i=%i sqpx %s",

 cx, cy, ave_speed,

speed_units,

 abs(start_pos_x - end_pos_x),

track_len_trig,

 total_contours, mw, mh,

biggest_area, travel_direction)

 # Resized and process prev image before

saving to disk

 prev_image = image2

 if calibrate: # Create a calibration

image

 filename = get_image_name(speed_path,

"calib-")

 prev_image =

take_calibration_image(filename, prev_image)

 else:

 # Check if subdirectories configured

and create as required

 speed_path =

subDirChecks(imageSubDirMaxHours,

imageSubDirMaxFiles,

 image_path,

image_prefix)

 if image_filename_speed:

 speed_prefix =

str(int(round(ave_speed))) + "-" + image_prefix

 else:

 speed_prefix = image_prefix

 filename = get_image_name(speed_path,

speed_prefix)

 if spaceTimerHrs > 0:

 # if required check free disk space and

delete older files (jpg)

 lastSpaceCheck =

freeDiskSpaceCheck(lastSpaceCheck)

 if image_max_files > 0:

 # Manage a maximum number of files and

delete oldest if required.

 deleteOldFiles(image_max_files,

speed_path, image_prefix)

 # Add motion rectangle to image

 if image_show_motion_area:

 if SHOW_CIRCLE:

 cv2.circle(prev_image, (cx +

x_left, cy + y_upper),

 CIRCLE_SIZE, cvRed,

LINE_THICKNESS)

 cv2.line(prev_image, (x_left, y_upper),

 (x_right, y_upper), cvRed, 1)

 cv2.line(prev_image, (x_left, y_lower),

 (x_right, y_lower), cvRed, 1)

 cv2.line(prev_image, (x_left, y_upper),

 (x_left, y_lower), cvRed, 1)

160

 cv2.line(prev_image, (x_right,

y_upper),

 (x_right, y_lower), cvRed, 1)

 big_image = cv2.resize(prev_image,

(image_width, image_height))

 if image_text_on:

 # Write text on image before saving

 image_text = ("SPEED %.1f %s - %s"

 % (ave_speed,

speed_units, filename))

 text_x = int((image_width / 2) -

 (len(image_text) *

image_font_size / 3))

 if text_x < 2:

 text_x = 2

 logging.info(" Ave Speed is %.1f %s %s

",

 ave_speed, speed_units,

travel_direction)

 cv2.putText(big_image, image_text,

(text_x, text_y),

 font, FONT_SCALE,

(cvWhite), 2)

 logging.info(" Saved %s", filename)

 cv2.imwrite(filename, big_image)

 if imageRecentMax > 0 and not calibrate:

 # Optional save most recent files to a

recent folder

 saveRecent(imageRecentMax,

imageRecentDir, filename,

 image_prefix)

 if log_data_to_CSV: # Format and Save

Data to CSV Log File

 log_time = datetime.datetime.now()

 log_csv_time =

("%s%04d%02d%02d%s,%s%02d%s,%s%02d%s"

 % (quote,

 log_time.year,

log_time.month,

 log_time.day,

 quote,

 quote,

log_time.hour, quote,

 quote,

log_time.minute, quote))

 log_csv_text =

("%s,%.2f,%s%s%s,%s%s%s,%i,%i,%i,%i,%i,%s%s%s"

 % (log_csv_time,

ave_speed,

 quote, speed_units,

 quote, quote,

filename,

 quote, cx, cy, mw,

mh, mw * mh,

 quote,

travel_direction, quote))

 log_to_csv_file(log_csv_text)

 logging.info("End - Tracked %i px in %.3f

sec",

 tot_track_dist,

tot_track_time)

161

 time.sleep(track_timeout) # Optional Wait

to avoid dual tracking.

 else:

 logging.info("End - Skip Photo SPEED %.1f

%s"

 " max_speed_over=%i %i px in

%.3f sec"

 " C=%i A=%i sqpx",

 ave_speed, speed_units,

 max_speed_over,

tot_track_dist,

 tot_track_time,

total_contours, biggest_area)

 time.sleep(track_timeout) # Optional Wait

to avoid dual tracking

 # Track Ended so Reset Variables for next cycle

through loop

 start_pos_x = 0

 end_pos_x = 0

 first_event = True

 else:

 logging.info(" Add - cxy(%i,%i) %3.1f %s"

 " px=%i/%i C=%i %ix%i=%i sqpx %s",

 cx, cy, ave_speed, speed_units,

 abs(start_pos_x - end_pos_x),

 track_len_trig, total_contours,

 mw, mh, biggest_area,

travel_direction)

 end_pos_x = cx

 event_timer = time.time() # Reset event_timer

since valid motion was found

 else:

 if show_out_range:

 if abs(cx - end_pos_x) >= x_diff_max:

 # Ignore movements that exceed Max px

movement allowed

 logging.info(" Out - cxy(%i,%i) Dist=%i is

>=%i px"

 " C=%i %ix%i=%i sqpx %s",

 cx, cy, abs(cx - end_pos_x),

x_diff_max,

 total_contours, mw, mh,

biggest_area, travel_direction)

 else:

 logging.info(" Out - cxy(%i,%i) Dist=%i is

<=%i px"

 " C=%i %ix%i=%i sqpx %s",

 cx, cy, abs(cx - end_pos_x),

x_diff_min,

 total_contours, mw, mh,

biggest_area, travel_direction)

 event_timer = time.time() # Reset

event_timer since valid motion was found

 if gui_window_on:

 # show small circle at motion location

 if SHOW_CIRCLE:

 cv2.circle(image2, (cx + x_left * WINDOW_BIGGER,

 cy + y_upper * WINDOW_BIGGER),

 CIRCLE_SIZE, cvGreen, LINE_THICKNESS)

 else:

 cv2.rectangle(image2, (int(cx + x_left - mw/2),

162

 int(cy + y_upper - mh/2)),

 (int(cx + x_left + mw/2),

 int(cy + y_upper + mh/2)),

 cvGreen, LINE_THICKNESS)

 if gui_window_on:

 # cv2.imshow('Difference Image',difference image)

 cv2.line(image2, (x_left, y_upper), (x_right, y_upper), cvRed,

1)

 cv2.line(image2, (x_left, y_lower), (x_right, y_lower), cvRed,

1)

 cv2.line(image2, (x_left, y_upper), (x_left, y_lower), cvRed,

1)

 cv2.line(image2, (x_right, y_upper), (x_right, y_lower), cvRed,

1)

 image_view = cv2.resize(image2, (image_width, image_height))

 cv2.imshow('Movement (q Quits)', image_view)

 if show_thresh_on:

 cv2.imshow('Threshold', thresholdimage)

 if show_crop_on:

 cv2.imshow('Crop Area', image_crop)

 # Close Window if q pressed

 if cv2.waitKey(1) & 0xFF == ord('q'):

 cv2.destroyAllWindows()

 logging.info("End Motion Tracking")

 vs.stop()

 still_scanning = False

#--

if __name__ == '__main__':

 show_settings()

 try:

 WEBCAM_TRIES = 0

 while True:

 # Save images to an in-program stream

 # Setup video stream on a processor Thread for faster speed

 if WEBCAM: # Start Web Cam stream (Note USB webcam must be

plugged in)

 WEBCAM_TRIES += 1

 logging.info("Initializing USB Web Camera Try .. %i",

WEBCAM_TRIES)

 vs = WebcamVideoStream().start()

 vs.CAM_SRC = WEBCAM_SRC

 vs.CAM_WIDTH = WEBCAM_WIDTH

 vs.CAM_HEIGHT = WEBCAM_HEIGHT

 if WEBCAM_TRIES > 3:

 logging.error("USB Web Cam Not Connecting to WEBCAM_SRC

%i", WEBCAM_SRC)

 logging.error("Check Camera is Plugged In and Working

on Specified SRC")

 logging.error(" and Not Used(busy) by Another

Process.")

 logging.error("Exiting %s", progName)

 sys.exit(1)

 time.sleep(4.0) # Allow WebCam to initialize

 else:

 logging.info("Initializing Pi Camera")

 vs = PiVideoStream().start()

 vs.camera.rotation = CAMERA_ROTATION

 vs.camera.hflip = CAMERA_HFLIP

163

 vs.camera.vflip = CAMERA_VFLIP

 time.sleep(2.0) # Allow PiCamera to initialize

 speed_camera()

 except KeyboardInterrupt:

 vs.stop()

 print("")

 logging.info("User Pressed Keyboard ctrl-c")

 logging.info("Exiting %s %s", progName, version)

 sys.exit()

164

APPENDIX C

Low cost Droplet Analysis Experimental Setup

165

166

Code:
import wx

import os

import string

import popen2

import glob

import Image

import wx.lib.plot as plot

from mydrop import *

VERSION = 0.4

class MyFrame(wx.Frame):

 """

 This is MyFrame. It just shows a few controls on a wxPanel,

 and has a simple menu.

 """

 def __init__(self, parent, title):

 wx.Frame.__init__(self, parent, -1, title,

 pos=(150, 150), size=(525, 350))

 # Create the menubar

 menuBar = wx.MenuBar()

 # and a menu

 menu = wx.Menu()

 # add an item to the menu, using \tKeyName automatically

 # creates an accelerator, the third param is some help text

 # that will show up in the statusbar

 menu.Append(103, "Change &Directory\tAlt-D", "Change Directory")

 menu.Append(102, "Run &TraceDrop\tAlt-T", "Run TraceDrop")

 menu.Append(101, "E&xit\tAlt-X", "Exit")

 # bind the menu event to an event handler

 self.Bind(wx.EVT_MENU, self.OnTimeToClose, id=101)

 self.Bind(wx.EVT_MENU, self.OnTraceDrop, id=102)

 self.Bind(wx.EVT_MENU, self.OnCdir, id=103)

 # and put the menu on the menubar

 menuBar.Append(menu, "&File")

 menu2 = wx.Menu()

 menu2.Append(201, "&Help\tAlt-H", "Help")

 menu2.Append(202, "&About\tAlt-A", "About xtracedrop")

 self.Bind(wx.EVT_MENU, self.OnHelp, id=201)

 self.Bind(wx.EVT_MENU, self.OnMsg, id=202)

 menuBar.Append(menu2, "Help")

 self.SetMenuBar(menuBar)

 self.CreateStatusBar()

 # Now create the Panel to put the other controls on.

 panel = wx.Panel(self)

 # Add a few control fields

 textin = wx.StaticText(panel, -1, "infile conc a/b

resid ")

 self.input = ''

 fieldin = wx.TextCtrl(panel, 500, self.input, size=(300, 150),

style=wx.TE_MULTILINE)

 fieldin.Bind(wx.EVT_TEXT, self.GetData)

 fieldin.SetToolTipString("Edit filenames of drop images\n"

167

 "Enter detergent concentrations next to

file names\n"

 "Results will be placed next to filename\n"

 "Delete or add lines as needed")

 self.fieldin = fieldin

 self.filetemplate = '*.jpg'

 templatetext = wx.StaticText(panel, -1, 'filename template')

 templatefield = wx.TextCtrl(panel, 510, self.filetemplate,

size=(125, -1))

 templatefield.Bind(wx.EVT_TEXT, self.GetData)

 templatefield.Bind(wx.EVT_KILL_FOCUS, self.FindFiles)

 self.templatefield = templatefield

 self.dropctr = '2150 1300'

 textctr = wx.StaticText(panel, -1, "center:") # drop center

 fieldctr = wx.TextCtrl(panel, 501, self.dropctr, size=(125, -1))

 fieldctr.Bind(wx.EVT_TEXT, self.GetData)

 fieldctr.SetToolTipString("Approx Center of the drop in all the

images")

 self.fieldctr = fieldctr

 self.outfile = 'results.dat'

 textout = wx.StaticText(panel, -1, "results file: ") # results

file

 fieldout = wx.TextCtrl(panel, 502, self.outfile, size=(125,-1))

 fieldout.Bind(wx.EVT_TEXT, self.GetData)

 fieldout.SetToolTipString("Enter filename for output data")

 self.fieldout = fieldout

 tracebtn = wx.Button(panel, -1, "Run", style=wx.BU_EXACTFIT)

#control button2

 plotbtn = wx.Button(panel, -1, "Plot Results",

style=wx.BU_EXACTFIT)

 # bind the button events to handlers

 tracebtn.Bind(wx.EVT_BUTTON, self.OnTraceDrop)

 plotbtn.Bind(wx.EVT_BUTTON, self.OnPlotResults)

 plotbtn.Bind(wx.EVT_RIGHT_DOWN, self.OnPlotResultsRight)

 plotbtn.SetToolTipString("Plot ratio vs. conc\n"

 "Right click to save plot")

 choicelist = []

 for i in range(50): choicelist.append("%s" % i)

 choicefield = wx.Choice(panel, 520, size=(50,30),

choices=choicelist)

 choicefield.Bind(wx.EVT_CHOICE, self.GetChoice)

 choicefield.SetToolTipString("select image for plotting")

 self.choicefield = choicefield

 self.choicefield.SetSelection(0)

 self.plotchoice = 0

 plotfitbtn = wx.Button(panel, -1, "Show Fit", style=wx.BU_EXACTFIT)

 plotfitbtn.Bind(wx.EVT_BUTTON, self.OnPlotFit)

 plotfitbtn.Bind(wx.EVT_RIGHT_DOWN, self.OnPlotFitRight) #right

click->print

 plotfitbtn.SetToolTipString("Show fit for selected image\n"

 "Right click will save plot to file")

 showimagebtn = wx.Button(panel, -1, "Show Img",

style=wx.BU_EXACTFIT)

168

 showimagebtn.Bind(wx.EVT_BUTTON, self.OnShowImg)

 showimagebtn.SetToolTipString("View original for selected image")

 closebtn = wx.Button(panel, -1, "Close", style=wx.BU_EXACTFIT) #

control button1

closebtn.Bind(wx.EVT_BUTTON, self.OnTimeToClose)

closebtn.SetToolTipString("Close Program")

#--------------

Use a sizer to layout the controls, stacked vertically and with

 # a 10 pixel border around each

 sizer = wx.BoxSizer(wx.VERTICAL)

 sizera = wx.BoxSizer(wx.VERTICAL)

 sizera.Add(textin, 0, wx.ALL, 5)

 sizera.Add(fieldin, 0, wx.ALL, 5)

 sizerb = wx.BoxSizer(wx.VERTICAL)

 sizerb.Add(templatetext, 0, wx.LEFT,15)

 sizerb.Add(templatefield, 0, wx.ALL, 5)

 sizerb.Add(textctr,0,wx.LEFT,30)

 sizerb.Add(fieldctr,0,wx.ALL, 5)

 sizerb.Add((20,20))

 sizerb.Add(textout, 0, wx.LEFT, 20)

 sizerb.Add(fieldout, 0, wx.ALL, 5)

 sizerc = wx.BoxSizer(wx.HORIZONTAL)

 sizerc.Add(sizera, 0, wx.ALL, 10)

 sizerc.Add(sizerb, 0, wx.ALL, 10)

 sizer2 = wx.BoxSizer(wx.HORIZONTAL)

place buttons horizontally

 sizer2.Add(tracebtn, 0, wx.LEFT | wx.RIGHT, 10)

 sizer2.Add(plotbtn, 0, wx.LEFT | wx.RIGHT, 5)

 sizer2.Add(choicefield, 0, wx.LEFT, 20)

 sizer2.Add(plotfitbtn, 0, wx.LEFT , 5)

 sizer2.Add(showimagebtn, 0, wx.LEFT, 5)

 sizer2.Add(closebtn, 0, wx.LEFT, 25)

 sizer.Add((20,10))

 sizer.Add(sizerc, 0, wx.ALL, 10)

 sizer.Add(sizer2, 0, wx.ALL, 10)

 panel.SetSizer(sizer)

 panel.Layout()

 self.plotdata = []

#initialize results # look for files in this directory for processing

 def FindFiles(self,event):

 self.fieldin.Clear()

 imgfiles = glob.glob('%s' % self.filetemplate)

 imgfiles.sort()

 if len(imgfiles) == 0:

 cwd = os.getcwd()

 print '%s: No Files Found' % cwd

 else:

169

 for file in imgfiles:

 self.fieldin.AppendText('%s\n' % file)

 return True

 def GetData(self, event):

 data = event.GetString()

 if event.GetId() == 500:

 self.input = data

 if event.GetId() == 501:

 self.dropctr = data

 if event.GetId() == 502:

 self.outfile = data

 if event.GetId() == 510:

 self.filetemplate = data

 def GetChoice(self, event):

 if event.GetId() == 520: self.plotchoice = event.GetSelection()

 def OnShowImg(self, event):

 try:

 if self.plotchoice >= len(self.drop):

 print 'Selected Img out of range'

 return

 else:

 img = Image.open(self.drop[self.plotchoice].imgfile)

 img.show()

 except:

 dropdata = string.rstrip(self.input)

 droplist = string.split(dropdata,'\n')

 numfiles = len(droplist)

 if self.plotchoice >= numfiles:

 print 'Selected Img out of range'

 return

 else:

 filename = string.split(droplist[self.plotchoice])[0]

 img = Image.open(filename)

 img.show()

 def OnTimeToClose(self, evt):

 """Event handler for the button click."""

 self.Close()

 def OnTraceDrop(self, evt):

 dropdata = string.rstrip(self.input)

 droplist = string.split(dropdata,'\n')

 numfiles = len(droplist)

 self.concmin = 10000.

 self.concmax = 0.

 self.ratiomin = 100000.

 self.ratiomax = 0.

 # run tracedrop

 self.fieldin.Clear()

 self.results = [] # list of tuples containing results

 self.drop = [] # list of class instances

 index = 0

 for drop in droplist: # analyze each drop

 if ':' in drop[0]: drop = drop[1:] #strip first element

 filename = string.split(drop)[0]

170

 try:

 conc = float(string.split(drop)[1])

 except:

 conc = 0.0 #default value if not entered into gui

 nextdrop = MyDrop(filename, self.dropctr)

 nextdrop.setconc(conc)

 nextdrop.tracedrop() #run algorithm to trace drop and fit to

ellipse

 self.drop.append(nextdrop)

 self.results.append((nextdrop.a1,nextdrop.b1,

 nextdrop.x1,nextdrop.y1,nextdrop.error))

 self.fieldin.AppendText('%s: %s %.2f %.2f %.2f\n' % (index,

nextdrop.imgfile,

 nextdrop.conc, nextdrop.ratio,

nextdrop.error))

 index += 1

 # write file with results from tracedrop

 output_txt = open(self.outfile,'w') #write out results

 self.plotdata = []

 index = 0

 for drop in self.drop:

 output_txt.write('%s\t%.2f\t%.2f\t%.2f\n'% (drop.imgfile,

drop.conc,

 drop.ratio,drop.error))

 self.plotdata.append((drop.conc,drop.ratio))

 if drop.conc > self.concmax: self.concmax = drop.conc

 if drop.conc < self.concmin: self.concmin = drop.conc

 if drop.ratio > self.ratiomax: self.ratiomax = drop.ratio

 if drop.ratio < self.ratiomin: self.ratiomin = drop.ratio

 index += 1

 output_txt.close()

 self.concmax *= 1.1

 self.ratiomax *= 1.1

 self.concmin *= 0.9

 self.ratiomin *= 0.9

 print "**** All Done *****"

 def OnPlotResults(self, event):

 if len(self.plotdata) == 0:

 print 'No results to plot'

 return False

 title = '%s' % self.outfile

 self.sumplot = MyPlot(self.plotdata, title)

 def OnPlotResultsRight(self, event):

 self.OnPlotResults(event)

 #self.sumplot.myplot.SaveFile('test.png') #this doesn't work!???

 self.sumplot.myplot.SaveFile()

 def OnPlotFit(self, event):

 index = self.plotchoice

 if (index+1) >= len(self.drop):

 print 'Selected file out of range'

 return

 filebase = string.split(self.drop[index].imgfile,'.')[0]

 #prepare data used for fit

 self.fitdata = []

 i = 0

 for x in self.drop[index].x_init:

 self.fitdata.append((self.drop[index].x_init[i],

171

 self.drop[index].y_init[i]))

 i += 1

 self.xmax = max(self.drop[index].x_init)

 self.xmin = min(self.drop[index].x_init)

 self.ymax = max(self.drop[index].y_init)

 self.ymin = min(self.drop[index].y_init)

 #prepare data from edge of drop (excluded from fit)

 self.edgedata = []

 i = 0

 for x in self.drop[index].x_edge:

 self.edgedata.append((self.drop[index].x_edge[i],

 self.drop[index].y_edge[i]))

 i += 1

 if max(self.drop[index].x_edge) > self.xmax:

 self.xmax = max(self.drop[index].x_edge)

 if min(self.drop[index].x_edge) < self.xmin:

 self.xmin = min(self.drop[index].x_edge)

 if max(self.drop[index].y_edge) > self.ymax:

 self.ymax = max(self.drop[index].y_edge)

 if min(self.drop[index].y_edge) < self.ymin:

 self.ymin = min(self.drop[index].y_edge)

 self.xmax *= 1.1

 self.ymax *= 1.1

 self.xmin *= 0.9

 self.ymin *= 0.9

 # create data for fitted ellipse

 p1 = [self.drop[index].a1,self.drop[index].b1,

 self.drop[index].x1,self.drop[index].y1]

 self.calcdata = []

 xst = int(self.drop[index].x1-self.drop[index].a1 + 1)

 xend = int(self.drop[index].x1+self.drop[index].a1 - 1)

 for xcalc in range(xst,xend):

 ycalc=self.drop[index].y1-sqrt(ellipse(xcalc,p1))

 self.calcdata.append((xcalc,ycalc))

 title = ' a/b= %.2f error=%.2f' % (self.drop[index].ratio,

 self.drop[index].error)

 #pflag = (event.GetEventType() == 10029) # event for right button

 self.nextplot = PlotFit(self.drop[index].imgfile, title) # creates

plot

 self.plotchoice += 1 #increment counter in gui

 self.choicefield.SetSelection(self.plotchoice)

 def OnPlotFitRight(self, event):

 self.OnPlotFit(event)

 self.nextplot.plotfit.SaveFile()

 #self.nextplot.plotfit.SaveFile('plotfit.png') #this is supposed

to work

 def OnMsg(self, event):

 d = wx.MessageDialog (self, "xtracedrop ver. %s\n"

 "This program calculates shape of a series of drops."

 "find help at

http://www.nysbc.net/twiki/bin/view/Main/tracedrop\n"

 "send bug reports to stokes@nyu.edu, rice@nysbc.org"

 % VERSION,

 "About xtracedrop", wx.OK)

 d.ShowModal()

172

 d.Destroy()

 def OnHelp(self, event):

 d = wx.MessageDialog (self, "find help at\n"

 "http://www.nysbc.net/twiki/bin/view/Main/EmIP",

 "Help for EMIP", wx.OK)

 d.ShowModal()

 d.Destroy()

 def OnCdir(self, event):

 frame=InfoWindow(None, 'New Directory')

 frame.Show(True)

 return True

def SpawnProcess(program, input='', output=False, redirect = ''):

 print '************************\n', program

 exe = string.split(program)[0] #isolate program name

 t = popen2.Popen3('which %s' % exe, True)

 if t.wait(): #wait for process to finish and get exit status

 print '***ERROR: program %s not in path' % exe

 return False

 p = popen2.Popen4(program) #spawn process

 if input: p.tochild.write(input) #write stdinput to

program

 p.tochild.close()

 if output or redirect != '':

 stdout = "".join(p.fromchild.readlines()) #get stdoutput from

program

 p.fromchild.close()

 if redirect:

 f = open(redirect, 'w')

 f.write(stdout)

 f.close()

 else:

 print stdout

 status = p.poll() #0=normal end, -1=still running, >0 indicates error

 print

'\n**************************\nDone!\n**************************\n'

 return True

class MyPlot(wx.Frame):

 def __init__(self, data, title):

 self.frame1 = wx.Frame(None, title="tracedrop results", id=-1,

size=(410, 340))

 self.panel1 = wx.Panel(self.frame1)

 self.panel1.SetBackgroundColour("yellow")

 # mild difference between wxPython26 and wxPython28

 if wx.VERSION[1] < 7:

 self.myplot = plot.PlotCanvas(self.panel1, size=(400, 300))

 else:

 self.myplot = plot.PlotCanvas(self.panel1)

 self.myplot.SetInitialSize(size=(400, 300))

 # enable the zoom feature (drag a box around area of interest)

 self.myplot.SetEnableZoom(True)

 # list of (x,y) data point tuples

 #data = [(1,2), (2,3), (3,5), (4,6), (5,8), (6,8), (12,10), (13,4)]

 # draw points as a line

173

 line = plot.PolyLine(data, colour='red', width=1)

 # also draw markers, default colour is black and size is 2

 # other shapes 'circle', 'cross', 'square', 'dot', 'plus'

 marker = plot.PolyMarker(data, marker='triangle')

 # set up text, axis and draw

 gc = plot.PlotGraphics([line, marker], title, 'conc', 'a/b')

 self.myplot.Draw(gc, xAxis=(app.frame.concmin,app.frame.concmax),

 yAxis=(app.frame.ratiomin,app.frame.ratiomax))

 self.frame1.Show(True)

class PlotFit(wx.Frame):

 def __init__(self, filename, title):

 self.frame1 = wx.Frame(None, title="tracedrop fit", id=-1,

size=(600, 630))

 self.panel1 = wx.Panel(self.frame1)

 self.panel1.SetBackgroundColour("yellow")

 # mild difference between wxPython26 and wxPython28

 if wx.VERSION[1] < 7:

 plotter = plot.PlotCanvas(self.panel1, size=(600, 630))

 else:

 self.plotfit = plot.PlotCanvas(self.panel1)

 self.plotfit.SetInitialSize(size=(600, 600))

 # enable the zoom feature (drag a box around area of interest)

 self.plotfit.SetEnableZoom(True)

 # list of (x,y) data point tuples

 #data = [(1,2), (2,3), (3,5), (4,6), (5,8), (6,8), (12,10), (13,4)]

 # draw points as a line

 line = plot.PolyLine(app.frame.calcdata, colour='blue', width=2)

 # also draw markers, default colour is black and size is 2

 # other shapes 'circle', 'cross', 'square', 'dot', 'plus'

 marker1 = plot.PolyMarker(app.frame.fitdata, colour='green',

marker='cross')

 marker2 = plot.PolyMarker(app.frame.edgedata, colour='red',

marker='plus')

 # set up text, axis and draw

 gc = plot.PlotGraphics([marker1, marker2, line], filename+title,

'x', 'y')

 (xmax, xmin) = (app.frame.xmax, app.frame.xmin)

 (ymax, ymin) = (app.frame.ymax, app.frame.ymin)

 xrange = xmax - xmin

 yrange = ymax - ymin

 range = max(xrange, yrange) # ensure that plot has is isotropic

 range2 = range/2.

 xmean = (xmax + xmin)/2.

 ymean = (ymax + ymin)/2.

 self.plotfit.Draw(gc, xAxis=(xmean-range2, xmean+range2),

 yAxis=(ymean-range2, ymean+range2))

 self.frame1.Show(True)

class InfoWindow(wx.Frame):

 def __init__(self, parent, title):

 wx.Frame.__init__(self, parent, -1, title, pos=(50,150),

size=(350,200))

 panel = wx.Panel(self)

 currentdir = wx.StaticText(panel, -1,

174

 "enter working directory:\n(? will create list of possible

subdirectories)")

 directory = wx.TextCtrl(panel, -1, os.getcwd(), size=(300,-1))

 dirbtn = wx.Button(panel, 1000, "Change Dir")

 exitbtn = wx.Button(panel, 2000, "Close")

 directory.Bind(wx.EVT_TEXT, self.GetDir)

 directory.SetFocus()

 dirbtn.Bind(wx.EVT_BUTTON, self.OnChDir)

 exitbtn.Bind(wx.EVT_BUTTON, self.SubExit)

 self.newdir = ""

 sizerbtn = wx.BoxSizer(wx.HORIZONTAL)

 sizerbtn.Add(dirbtn, 0, wx.LEFT|wx.RIGHT, 10)

 sizerbtn.Add(exitbtn, 0, wx.LEFT|wx.RIGHT, 10)

 sizer = wx.BoxSizer(wx.VERTICAL)

 sizer.Add(currentdir, 0, wx.ALL, 10)

 sizer.Add(directory, 0, wx.ALL, 10)

 sizer.Add(sizerbtn, 0, wx.ALL, 10)

 panel.SetSizer(sizer)

 panel.Layout()

 def GetDir(self,event):

 self.newdir = '%s' % event.GetString()

 def OnChDir(self,event):

 if os.path.exists(self.newdir):

 os.chdir(self.newdir)

 app.frame.FindFiles(wx.EVT_TEXT)

 else:

 print ("no such directory: %s" % self.newdir)

 root = os.path.split(self.newdir)[0]

 while not os.path.exists(root):

 root = os.path.split(root)[0]

 print("valid subdirectories of\n%s:" % root)

 #os.system('ls -F %s | grep /' % root)

 filelist = os.listdir(root)

 for file in filelist:

 if os.path.isdir(file): print file

 return

 def SubExit(self,event):

 self.Close(True)

class MyApp(wx.App):

 def OnInit(self):

 self.frame = MyFrame(None, "xtracedrop")

 self.SetTopWindow(self.frame)

 #print "Print statements go to this stdout window by default."

 self.frame.Show(True)

 return True

175

if __name__ == '__main__':

 app = MyApp(redirect=True)

 app.MainLoop()

	first page
	Abstract
	Chapter 1 Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A
	Appendix B
	Appendix C

