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Highlights

• A new method is developed to localize and track the needle in ultrasound volumes acquired by 3D

motorized curvilinear ultrasound probes

• An initial estimation of the needle axis is obtained using a low-cost camera mounted on the ultrasound

probe

• Ultrasound-based local phase analyses are employed to refine the initially-estimated needle axis and

accurately localize the need tip

• Dynamic needle tracking in a sequence of 3D ultrasound volumes is achieved using a tracking loop that

employs a Kalman filter

• The performance results obtained based on ex vivo animal experiments suggest the feasibility of apply-

ing the proposed method to localize and track the needle using 3D motorized curvilinear ultrasound

probes
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Abstract

Three-dimensional (3D) motorized curvilinear ultrasound probes provide an effective, low-cost tool to guide

needle interventions, but localizing and tracking the needle in 3D ultrasound volumes is often challenging.

In this study, a new method is introduced to localize and track the needle using 3D motorized curvilinear

ultrasound probes. In particular, a low-cost camera mounted on the probe is employed to estimate the

needle axis. The camera-estimated axis is used to identify a volume of interest (VOI) in the ultrasound

volume that enables high needle visibility. This VOI is analyzed using local phase analysis and the random

sample consensus algorithm to refine the camera-estimated needle axis. The needle tip is determined by

searching the localized needle axis using a probabilistic approach. Dynamic needle tracking in a sequence of

3D ultrasound volumes is enabled by iteratively applying a Kalman filter to estimate the VOI that includes

the needle in the successive ultrasound volume and limiting the localization analysis to this VOI. A series

of ex vivo animal experiments are conducted to evaluate the accuracy of needle localization and tracking.

The results show that the proposed method can localize the needle in individual ultrasound volumes with

maximum error rates of 0.7 mm for the needle axis, 1.7° for the needle angle, and 1.2 mm for the needle tip.

Moreover, the proposed method can track the needle in a sequence of ultrasound volumes with maximum

error rates of 1.0 mm for the needle axis, 2.0° for the needle angle, and 1.7 mm for the needle tip. These

results suggest the feasibility of applying the proposed method to localize and track the needle using 3D

motorized curvilinear ultrasound probes.

Keywords: Ultrasound-guided needle interventions, 3D ultrasound imaging, needle localization and

tracking, Kalman filter, RANSAC, camera-based needle localization

1. Introduction

Several diagnostic and therapeutic clinical procedures, such as biopsy, therapeutic injection, nerve block,

and anesthesia, involve needle interventions. These procedures require accurate needle localization and

tracking to improve the success rate of the intervention and reduce the incidence of undesired complications.

Ultrasound imaging, which provides a low-cost, real-time, and noninvasive imaging modality, is widely used to5
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guide needle insertion interventions (Holm & Skjoldbye, 1996; Wisniewski et al., 2010). However, visualizing

the needle using conventional two-dimensional (2D) ultrasound with respect to the target anatomy is often

challenging due to the need to perfectly align the ultrasound probe to include the needle in the imaging

plane. Moreover, the use of 2D ultrasound requires accurate interpretation of the 3D anatomical structures

of the patient based on a sequence of 2D ultrasound images, which usually depends on the experience level10

of the physician. An alternative approach is to use 3D ultrasound to guide needle insertion (Gebhard et al.,

2015). In fact, 3D ultrasound, which provides volumetric imaging data, can visualize both the needle and the

3D anatomical structures without the need to perfectly align the ultrasound probe. However, the visibility

of the needle in 3D ultrasound volumes might be degraded by several factors, including ultrasound speckle

that reduces the quality of ultrasound data, the bright linear structures in the ultrasound volume that15

have appearance close to the needle, and the reflection of the ultrasound beam by the needle in a direction

away from the ultrasound probe (Mwikirize et al., 2017). To address these limitations, automatic needle

localization and tracking methods have been developed to detect the needle in 3D ultrasound volumes.

The automatic needle localization and tracking methods can be generally grouped into two classes: meth-

ods based on hardware and methods based on software. The hardware-based methods employ complementary20

devices that enhance the capability to localize and track the needle in 3D ultrasound volumes. For example,

Fronheiser et al. (2008) used a piezoelectric actuator to vibrate the needle and employed 3D color Doppler

ultrasound imaging to detect the vibrations induced in the needle and the surrounding tissue. A similar

approach was proposed in (Adebar & Okamura, 2013) to segment vibrating curved needles using 3D power

Doppler ultrasound. Mung et al. (2011) introduced a robust method to track surgical tools using 3D ultra-25

sound. In this method, small ultrasound sensors are placed on the surgical tool to detect the acoustic waves

transmitted during 3D ultrasound imaging. The signals received by the sensors are analyzed to compute

the 3D position of the surgical tool. Beigi et al. (2015) proposed a method for localizing the needle in

3D ultrasound volumes by moving the needle stylus and detecting the induced intensity variations in the

ultrasound volume. The task of localizing the needle was achieved by projecting the volume into two 2D30

orthogonal image planes and estimating the needle trajectory and tip using these image planes.

One important hardware-based approach for localizing and tracking the needle is to mount cameras on

the ultrasound probe to compute the needle position. Computer vision analyses are used to compute the 3D

location of the needle with respect to the ultrasound probe based on the camera-visible segment of the needle

that is located above the skin. Compared with fixed and wall-mounted cameras, attaching the cameras to35

the ultrasound probe improves the capability of achieving direct line-of-sight between the cameras and the

needle without obstacles (Chan et al., 2005; Khosravi et al., 2007; Najafi et al., 2015; Najafi & Rohling, 2011).

The camera-based approach was employed by Chan et al. (2005), in which two stereo cameras mounted on

a 2D ultrasound probe were used to estimate the needle trajectory with respect to the cameras. Spatial

calibration was carried out to map the estimated needle trajectory to the coordinate system of the 2D40

ultrasound probe. In fact, this method was separately applied using two high-performance cameras and two
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low-cost USB cameras, where the former setup achieved a needle localization accuracy of 3.1 ± 1.8 mm and

the latter obtained an accuracy of 6.5 ± 5.7 mm. Khosravi et al. (2007) proposed the use of two cameras to

estimate the needle trajectory without the need for spatial calibration. In particular, a training algorithm

was applied to compute the mapping between the location of the needle in the 2D camera images and the45

corresponding needle location in the 3D space. The method enabled 3D needle trajectory estimation with

average distance and orientation errors of 2.4 mm and 2.6°, respectively. The camera-based needle localization

approach has been employed by a commercial needle tracking system developed by Clear Guide Medical Inc.

(Baltimore, MD, United States) that computes the needle position using two stereo cameras mounted on a

2D ultrasound probe. This commercial, camera-based needle tracking system demonstrates the feasibility50

of using cameras mounted on the ultrasound probe to improve the capability of guiding needle insertion in

real-life clinical applications. Najafi et al. (2015) proposed the use of one high-performance camera mounted

on a 2D ultrasound probe to estimate the needle trajectory by analyzing the regular marking points that

exist in many medical needles, such as biopsy and epidural needles. This method was applied to localize

needles inserted in a water bath and scanned using out-of-plane 2D ultrasound imaging with an accuracy of55

0.94± 0.46 mm. In fact, the use of one camera, instead of two cameras, to estimate the needle position has

the advantage of reducing the cost, size, and complexity of the needle localization system. It is worth noting

that the one-camera approach has not been demonstrated for 3D ultrasound probes and its performance was

not evaluated when a low-cost camera is employed to localize the needle.

The software-based methods localize and track the needle using ultrasound data analysis. In fact, most60

software-based methods analyze the ultrasound volume to detect features that correspond to the needle

structure. For example, principle component analysis (PCA) has been used to detect the needle in 3D

ultrasound volumes (Novotny et al., 2003). Barva et al. (2004) proposed the use of the Radon transform to

localize the needle based on radio-frequency (RF) signals acquired by a 3D ultrasound probe. Novotny et al.

(2007) developed a real-time algorithm to track straight surgical instruments in 3D ultrasound volumes. The65

algorithm employed the generalized Radon transform to localize the instrument axis and used passive markers

placed on the shaft to identify the instrument tip. Mari & Cachard (2007) proposed a method to localize a

thin needle inserted in a tissue-mimicking phantom using 3D ultrasound RF data by maximizing the parallel

integral projection (PIP) transform, which represents a special form of the Radon transform. An improved

needle localization method was introduced in (Barva et al., 2008), in which the needle was detected by70

computing the PIP transform of the 3D ultrasound volume. The performance of the method was evaluated

by localizing the needle in 3D ultrasound volumes acquired for tissue-mimicking phantoms and in vivo

breast biopsy. Ding et al. (2003) introduced an algorithm to segment the needle in 3D ultrasound volumes

by extracting two orthogonal 2D image projections from the 3D volume and analyzing the 2D projections to

localize the needle. The method involved cropping the 3D ultrasound volume based on a priori estimate about75

the needle location and orientation to eliminate the irrelevant complex structures from the 2D projections.

Zhou et al. (2007) employed a 3D randomized Hough transform (RHT) for localizing the needle in 3D

5
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ultrasound volumes. The 3D RHT reduced the computational complexity of the classical Hough transform

by randomly sampling pairs of voxels in the 3D ultrasound volume after applying thresholding. A faster

version of the 3D RHT, called the 3D quick RHT, was introduced in (Qiu et al., 2008), in which a two-stage,80

coarse-fine search approach was applied to reduce the computational complexity. In (Neshat & Pateluchi,

2008), the localization of curved needles in ultrasound volumes has been achieved by representing the needle

using Bézier polynomials and applying a parallel implementation of the generalized Radon transform.

Another important software-based approach for localizing the needle is to use the random sample consen-

sus (RANSAC) algorithm (Fischler & Bolles, 1981). This approach was used by Uherčík et al. (2010) who85

used a model-fitting RANSAC (MF-RANSAC) algorithm to localize the needle in 3D ultrasound volumes.

The MF-RANSAC algorithm enabled accurate needle localization in simulated ultrasound volumes and ex-

perimental ultrasound volumes of high quality. However, the accuracy and robustness of needle localization

were reduced when the MF-RANSAC algorithm was applied for realistic ultrasound volumes with complex

background. Zhao et al. (2013) proposed a two-phase needle tracking method, called region of interest (ROI)90

combined with the RANSAC and Kalman filter (ROI-RK), to overcome the limitations of the MF-RANSAC

algorithm and support dynamic needle tracking in a sequence of 3D ultrasound volumes. In the first phase,

the ROI-RK method processes the first ultrasound volume using a 3D line filter and the MF-RANSAC al-

gorithm to estimate the needle. Moreover, the estimated needle is used to define a VOI around it. In the

second phase, the location of the VOI that includes the needle is estimated in the next ultrasound volume95

of the 3D sequence by employing a speckle tracking algorithm to compute the velocity of the needle tip and

the Kalman filter to update the position of the VOI. The updated VOI is processed using the MF-RANSAC

algorithm to estimate the needle in the next ultrasound volume. Moreover, the Kalman filter is employed

to refine the estimated location of the needle. This tracking loop is iteratively applied until the needle is

tracked in all volumes of the 3D ultrasound sequence. In a recent study (Zhao et al., 2017), the performance100

of the ROI-RK method was compared with three other needle localization and tracking methods that are

based on PCA, RHT, and PIP. The performance evaluations quantified the capability of the four methods

to estimate the needle in both the static and dynamic situations in simulated and experimental ultrasound

volumes. The results indicated that the ROI-RK method outperformed the three other methods based on

combined metrics of needle localization and tracking accuracies and execution times.105

In the majority of software-based methods, the needle is assumed to appear in the 3D ultrasound volume

as a linear structure with intensity higher than the background. However, this assumption might not be

satisfied in some real-life clinical scenarios. For example, in curvilinear ultrasound images and volumes,

the needle is mainly visible at the needle segment in which the ultrasound beam is perpendicular to the

needle (Hacihaliloglu et al., 2015; Daoud et al., 2015). Moreover, the ultrasound volume might include other110

needle-like structures that can mislead the software-based methods. Some software-based methods, such

as the PIP- and RANSAC-based methods, can be affected by the gain settings of the ultrasound machine.

For instance, if the gain is increased to improve the contrast, the noise signals can be magnified and the

6
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ultrasound volume can be affected by ultrasound artifacts and speckle that degrade the needle localization

accuracy.115

One effective technique to achieve intensity-invariant ultrasound-based analysis is to use the local phase.

In fact, Oppenheim & Lim (1981) showed that the contribution of the phase information of a particular

image to its visual appearance outweighs the magnitude information. Intensity-invariant local-phase methods

have been proposed in the literature to extract the bone surface in 2D (Hacihaliloglu et al., 2009) and 3D

(Hacihaliloglu et al., 2012) ultrasound data and classify breast ultrasound images (Cai et al., 2015). Moreover,120

Beigi et al. (2017) and Hacihaliloglu et al. (2015) employed local phase analysis to localize the needle in 2D

ultrasound images. Mwikirize et al. (2017) proposed the use of 2D local phase analysis to detect the needle

in linear 3D ultrasound volumes. In particular, a local phase descriptor is applied to each 2D slice in the 3D

ultrasound volume to quantify the straight linear structures that are similar to the needle. After applying

the local phase descriptor, each slice is processed using a needle detector, which is based on normalized125

histograms of oriented gradients descriptors and a linear support vector machine classifier, to identify the

slices that include the needle and combine these slices into one sub-volume. In the second stage, the sub-

volume is processed to enhance the visibility of the needle and localize the needle tip. The results reported

in (Mwikirize et al., 2017) showed that the method can obtain good results for needles inserted in ex vivo

bovine tissue that are scanned using a 3D motorized linear ultrasound probe. One potential limitation of130

this method is the fact that real-life, clinical 3D ultrasound volumes can include other strong, needle-like,

linear structures, which might mislead the process of identifying the 2D slices that correspond to the needle.

Pourtaherian et al. (2017) proposed a method to detect the best view to visualize medical instruments,

including needles, in 3D ultrasound volumes. The method is composed of three stages. In the first stage, the

ultrasound volume is preprocessed to enhance the appearance of the medical instrument and reduce noise.135

In the second stage, the voxels of the ultrasound volume are classified using linear support vector machine

and linear discriminant analysis classifiers to identify the voxels that belong to the medical instrument. The

classification is performs using descriptors that are based on the raw values of the voxels, the outcome of

vesselness filtering, and the outcome of Gabor transformation. In the third stage, the axis of the instrument

is estimated by fitting a mathematical model that describes the instrument to the classified voxels. The140

performance of the method has been evaluated using in vitro, ex vivo, and in vivo datasets. One limitation

of this method is that it does not support the detection of the needle tip. Moreover, the long processing

time of the method, which is between 2 and 4 minutes, might limit its use in real-life clinical applications.

A large group of commercial 3D ultrasound imaging systems employs motorized curvilinear probes

(Pospisil et al., 2010; Gao et al., 2016). Hence, 3D motorized curvilinear probes provide an attractive145

means to enable 3D ultrasound guidance of needle insertion interventions. Generally, curvilinear ultrasound

probes achieve better needle visibility at clinically-relevant needle insertion angles compared with linear

transducers. This can be attributed to the high probability of obtaining perpendicular interception between

the needle and the ultrasound beams of curvilinear probes (Tsui et al., 2009). However, the spacing between

7
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the ultrasound beams transmitted by 3D motorized curvilinear probes increases as a function of depth, which150

might degrade the visibility of the needle. Therefore, the development of automatic, accurate, reliable, and

efficient needle localization and tracking methods contributes to the ongoing efforts to improve the use of 3D

motorized curvilinear ultrasound probes, which provide extended 3D field-of-view compared to 2D ultrasound

probes, to enhance the outcome and safety of needle insertion interventions. The automatic and accurate

localization of the needle enables the physician to concentrate on manipulating the 3D ultrasound probe to155

visualize the target anatomy and enhancing the alignment between the needle and the target. Moreover,

the automatic and accurate localization of the needle reduces the risk of affecting important anatomical

structures in the body, such as vessels and nerves, and hence improves the safety of the intervention.

In the current study, we propose a hybrid method that combines both hardware- and software-based

analyses to enable accurate and robust needle localization and tracking using 3D motorized curvilinear160

ultrasound probes. The method employs a single low-cost camera mounted on the ultrasound probe to

obtain an approximate estimation of the needle axis. In fact, the algorithm proposed in (Najafi et al., 2015)

to localize the needle in 2D ultrasound images using a single high-performance camera has been employed in

the current study to approximately estimate the needle axis using a low-cost camera. The camera-estimated

needle axis and the imaging geometry of the 3D motorized curvilinear probe are analyzed to identify a VOI165

in the ultrasound volume, called VOIAxis, that enables high needle visibility. VOIAxis is processed using

local phase analysis and the MF-RANSAC algorithm to achieve accurate localization of the needle axis.

The location of the needle tip along the axis is determined using a probabilistic approach that quantifies

the characteristics of the local phase within a VOI, called VOITip, that surrounds the needle axis. Needle

tracking is enabled by employing a tracking loop to estimate the VOIs in the consecutive ultrasound volumes170

that include the needle and limiting the needle estimation analysis to these VOIs.

The main objective of our study is to provide an innovative approach to utilize the initial estimation

of the needle axis, which is obtained using the low-cost camera, to enable reliable, accurate, and efficient

ultrasound-based localization and tracking of the needle in ultrasound volumes acquired by 3D motorized

curvilinear ultrasound probes. Specifically, the main contributions of the current study can be summarized175

as follows:

• For curvilinear ultrasound probes, the visibility of the needle is maximal when the transmitted ultra-

sound beams intercept perpendicularly or near perpendicularly with the needle (Daoud et al., 2011,

2015; Hacihaliloglu et al., 2015). In our study, we have analyzed the camera-based estimation of the

needle axis and the imaging geometry of the 3D motorized curvilinear ultrasound probe to identify180

VOIAxis that enables high needle visibility. The main characteristic of VOIAxis is that the ultrasound

beams transmitted by the ultrasound probe intercept perpendicularly or near perpendicularly with

the needle. Hence, accurate, reliable, and efficient localization of the needle axis can be achieved by

limiting the ultrasound-based analysis for localizing the needle axis to VOIAxis. It is worth noting that

localizing the needle axis by analyzing the entire ultrasound volume might increase the failure rate and185

8
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degrade the localization accuracy due to the presence of other needle-like structures in the ultrasound

volume that can lead to incorrect localization of the needle axis. Moreover, limiting the localization

analysis of the needle axis to VOIAxis reduces the computational complexity of our proposed method.

• The procedure employed to analyze VOIAxis aims to ensure accurate and efficient localization of the

needle axis. In particular, VOIAxis is oriented such that the majority of the ultrasound beams that are190

perpendicular or nearly-perpendicular to the needle passes through its top face. Hence, our proposed

method aims to detect the strong needle reflections of the ultrasound beams that take place within

VOIAxis by applying 2D phase congruency analysis (Kovesi, 2003, 1999) to the 2D image planes in

VOIAxis that are parallel to its front face. Moreover, the capability of detecting the orthogonal needle

reflections of the ultrasound beams is optimized by applying the 2D phase congruency analysis along195

the direction orthogonal to the top face of VOIAxis. Hence, our approach enables intensity-invariant,

orientation-specific detection of the strong needle reflection that take place within VOIAxis using the

low complexity 2D phase congruency analysis, instead of using the computationally-intensive 3D phase

congruency analysis.

• Accurate and efficient localization of the needle tip is achieved by defining VOITip around the ac-200

curately localized needle axis. VOITip is analyzed using the intensity-invariant, orientation-specific,

low-complexity 2D phase congruency analysis, which is described in the previous point, to detect the

edges that correspond to the needle. Moreover, a new probabilistic approach is used to analyze the

detected needle-specific edges with the goal of achieving accurate localization of the needle tip.

• Needle tracking is enabled by employing a tracking loop to estimate the VOIs in the consecutive205

ultrasound volumes that include the needle and limiting the needle estimation analysis to these VOIs.

This tracking loop limits the requirement of having direct line-of-sight between the camera and the

needle to the first ultrasound volume as well as the incidents of needle tracking re-initialization in the

consecutive ultrasound volumes.

• The performance of our proposed method is evaluated by localizing and tracking needles inserted in210

different ex vivo animal specimens that have various ultrasound echogenicity characteristics. More-

over, we have compared the performance our proposed method with a well-studied method that was

introduced by Zhao et al. (2013). The experimental results reported in the current study demonstrate

the feasibility of applying our proposed method to enable reliable, accurate, and efficient localization

and tracking of the needle using 3D motorized curvilinear ultrasound probes.215

The remainder of the paper is organized as follows. Section 2 presents the proposed needle localization

and tracking method. The experiments and analyses employed to evaluate the performance of the proposed

method are provided in section 3. The results, discussion, and conclusion are presented in sections 4, 5, and

6, respectively.
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Figure 1: (a) A block diagram that summarizes the needle localization in the static situation. (b) A block diagram that

summarizes the needle tracking in the dynamic situation.

2. Methods220

The method proposed to localize and track the needle using 3D motorized curvilinear ultrasound probes

is composed of four components. The first three components are focused on needle localization, as illustrated

in Fig. 1(a). In particular, these components include the use of a low-cost camera to approximately estimate

the needle axis in the ultrasound volume, improve the localization accuracy of the needle axis by employing

ultrasound-based analysis, and identify the location of the needle tip by analyzing the ultrasound voxels225

surrounding the needle axis. The last component is focused on customizing the first three parts to enable

accurate needle tracking, as shown in Fig. 1(b).

2.1. Imaging apparatus

3D ultrasound imaging was carried out using a SonixTOUCH Q+ ultrasound system (BK Ultrasound,

Herlev, Denmark). The system was equipped with a 3D motorized curvilinear ultrasound probe (Model230

4DC7-3/40, BK Ultrasound) that has a center frequency of 5 MHz and −6-dB bandwidth of 3 MHz. This

probe enables the acquisition of 3D ultrasound volumes by mechanically sweeping a 2D curvilinear ultrasound

transducer back and forth around a fixed rotation axis. Detailed description of the imaging geometry

employed in the 4DC7-3/40 probe is provided in subsection 2.3.1.

A low-cost USB web camera (IceCam2, Macally Peripherals, Ontario, CA, United States) was attached235

to the 3D ultrasound probe using a plastic housing, as shown in Fig. 2(a). This web camera offers the

advantages of lightweight and compact size. The camera acquires images with a resolution of 640 × 480

10
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(a) (b)

Figure 2: (a) The imaging apparatus that includes the 3D ultrasound probe, the USB web camera, and the plastic housing.

(b) A camera image acquired for a needle inserted in a bovine muscle specimen.

pixels at a maximum frame rate of 30 frames per second and can focus to distances as small as 20 mm.

In the current study, the focus of the camera was adjusted and fixed to obtain clear images of the needle,

which is located between 40 to 80 mm away from the camera. The plastic housing was designed using a240

computer-aided design (CAD) software and manufactured using 3D printing technology to rigidly fix the

camera to the 3D ultrasound probe. Therefore, the spatial transformation between the camera and the

ultrasound probe remained constant throughout the experiments.

2.2. The camera-based estimation of the needle axis

Najafi et al. (2015) proposed an analytical method for localizing the needle in 2D ultrasound images245

using a single high-performance camera mounted on the ultrasound probe. This method is employed in the

current study to approximately estimate the position of the needle axis in the 3D ultrasound volume using

a low-cost camera.

The camera-based method starts by calibrating the camera using a standard calibration algorithm

(Heikkila & Silven, 1997) to determine its intrinsic parameters, including the focal length (fx, fy) and the250

principle point (gx, gy). This calibration process is carried out for one time. The 3D position of the linear

needle axis is estimated by identifying a set of N marking points, {Q1, Q2, . . . , QN}, in the camera 2D image

that are collinearly located along the needle and mapping these points into their corresponding locations,

{P1, P2, . . . , PN}, in the world 3D coordinate system. In fact, the uniformly-spaced edge markings that exist

in many medical needles are used as marking points to localize the needle. Accurate identification of the255

needle marking points, {Q1, Q2, . . . , QN}, in the camera image is achieved using an automated algorithm

that is developed by Najafi et al. (2015). Moreover, Najafi et al. (2015) proposed a closed-form solution

11
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to map the camera-image needle marking points, {Q1, Q2, . . . , QN}, into the matching 3D world points,

{P1, P2, . . . , PN}, based on the linear structure of the needle and the known regular spacing between any

consecutive needle marking points. This closed-form solution requires a minimum of three marking points260

to estimate the 3D location of the needle axis. It is worth noting that the results reported in (Najafi et al.,

2015) indicate that accurate tracking of the needle axis can be achieved using 5 to 7 needle marking points.

Hence, in all needle experiments performed in the current study, the plastic housing that holds the camera

and the 3D ultrasound probe was oriented such that a minimum of five needle marking points are included

in the camera images. Figure 2(b) shows an example camera image acquired for a needle inserted in a bovine265

muscle specimen, where the visible part of the needle includes six needle marking points.

After identifying the needle marking points, {Q1, Q2, . . . , QN}, and mapping them to the corresponding

world 3D points, {P1, P2, . . . , PN}, the 3D position of the needle axis is estimated with respect to the camera.

Hence, spatial calibration is required to transform the 3D needle position from the camera coordinate system

to the ultrasound coordinate system. In the current study, the camera-to-ultrasound calibration is performed270

using the single-wall method (Prager et al., 1998).

2.3. Refining the camera-based estimation of the needle axis using ultrasound-based analysis

The 3D pose of the needle axis obtained using the low-cost camera is expected to be located within

an approximate region around the true needle axis. Hence, accurate estimation of the needle axis can

be achieved by defining a VOI, called VOIAxis, around the camera-estimated needle axis and employing275

ultrasound-based analysis to localize the needle axis within VOIAxis. To enable effective ultrasound-based

analysis, it is important to consider the imaging geometry of the 3D motorized ultrasound probe and analyze

the interaction between the ultrasound beams transmitted during 3D ultrasound imaging and the needle.

Hence, in the following, we will describe the imaging geometry of 3D motorized curvilinear ultrasound probes,

with special focus on the 4DC7-3 probe employed in the current study. This understanding of the imaging280

geometry will enable the identification of VOIAxis that enables high needle visibility. The identified VOIAxis

is processed to extract a local phase feature map that provides an intensity-invariant measure to detect

the needle axis. This feature map is processed using the MF-RANSAC algorithm (Uherčík et al., 2010) to

accurately localize the needle axis.

2.3.1. The imaging geometry of 3D motorized curvilinear ultrasound probes285

In 3D motorized curvilinear probes, including the 4DC7-3 probe employed in the current study, ultrasound

imaging is performed by mechanically sweeping a 2D curvilinear ultrasound transducer back and forth around

a fixed rotation axis that is parallel to the aperture of the transducer, as illustrated in Fig. 3(a). The rotation

radius, a, is defined as the spacing between the rotation pivot point and the center of aperture of the 2D

transducer, as shown in Fig. 3(b). To acquire a 3D ultrasound volume, the 2D transducer is rotated along290

the sweep (elevation) direction, φ, to collect a set of 2D curvilinear image frames that covers an elevation

field of view (FOV), denoted by Φ. The acquired ultrasound image frames, which form a fan shape, are
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(a) (b)

Figure 3: (a) The imaging geometry employed by a 3D motorized curvilinear ultrasound probe, in which a 2D curvilinear

transducer is rotated along the elevation direction, φ, to acquire 2D image frames that cover an elevation FOV, Φ. Each image

frame covers a fixed aperture angle, Ψ. (b) The mapping between the local position of a point, p, located at the ith 2D image

frame and the 3D coordinate system, (x, y, z), of the ultrasound volume can be computed based on the rotation radius, a, the

radius of curvature, b, the axial spacing, r, between p and the 2D transducer aperture, the azimuth angle, θ, between p and the

central line of the ith image frame, and the elevation angle, φ, between the ith image frame and the central image frame.

processed to construct a 3D ultrasound volume. The image frame located at φ = 0, which is called in this

study the central image frame, includes the central axis of the 3D probe. The 2D curvilinear transducer has

a fixed aperture angle, Ψ, and a fixed radius of curvature, b. For the 4DC7-3 probe used in this study, the295

values of a, b, Φ, and Ψ are equal to 27.25 mm, 39.8 mm, 75°, and 79°, respectively.

Consider the ith 2D image frame that is acquired at elevation angle φ with respect to the central image

frame as shown in Fig. 3(b). The location of a point, p, within the ith 2D image frame can be described

by the polar 2D coordinate, (r + b, θ), where r is the axial spacing between p and the aperture of the 2D

transducer, b is the radius of curvature of the 2D transducer, and θ is the angle between p and the central line300

of the ith image frame. The location of p in the 3D Cartesian coordinate system, (x, y, z), of the ultrasound

volume synthesized by the 3D probe can be computed based on the local location of p, (r+ b, θ), within the

ith 2D image frame and the elevation angle, φ, of the ith image frame as described in (Harris et al., 2007).

2.3.2. Identifying VOIAxis that enables high needle visibility in the 3D ultrasound volume

As described previously, the camera-based estimation of the needle axis and the imaging geometry of305

motorized curvilinear ultrasound probes, particularly the 4DC7-3/40 probe, can be analyzed to identify a

VOI, denoted by VOIAxis, that enables high needle visibility in the 3D ultrasound volume. In fact, our

approach to identify VOIAxis is to analyze the interaction between the needle and the ultrasound beams

transmitted during the acquisition of the individual 2D image frames that synthesize the 3D ultrasound

volume. At the beginning, we will analyze the interaction between the needle and the ultrasound beams310

transmitted during the acquisition of one of the 2D image frames that compose the ultrasound volume with

the goal of identifying a segment of the needle that enables high needle visibility in this 2D image frame.

This analysis is extended to enable the identification of a needle segment that enables high needle visibility
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in the 3D ultrasound volume. Since the exact location of the needle in the ultrasound volume is unknown,

the camera-based estimation of the needle axis is used to obtain an approximate detection of the needle315

segment that enables high needle visibility in the 3D ultrasound volume. This camera-based estimation of

the needle segment with high needle visibility is employed to identify the location and orientation of VOIAxis

in the 3D ultrasound volume.

Due to the significant mismatch between the acoustic impedance of the metal needle and that of the

surrounding soft tissue, ultrasound reflection at the needle surface generates acoustic echoes with high320

amplitude (Daoud et al., 2015, 2011). Therefore, the brightness of the needle is expected to be higher than

the surrounding tissue. For 2D curvilinear ultrasound transducers, the strongest needle echoes are generated

when the ultrasound beam is perpendicular or nearly perpendicular to the needle (Daoud et al., 2011, 2015;

Hacihaliloglu et al., 2015). The ultrasound beams that intercept perpendicularly with the needle, and hence

generate the strongest needle echoes, are generated by the transducer elements that are located around the325

line that extends from the center of curvature of the 2D curvilinear transducer and orthogonally intercepts

with the needle axis, where this line is called the orthogonal needle line. On the other hand, the transducer

elements that are located away from the orthogonal needle line along the azimuth angular direction are

expected to receive needle echoes with low energy due to the directivity effect of the piezoelectric elements.

In fact, the study by Daoud et al. (2015) indicated that for the 2D curvilinear transducer of the 4DC7-3/40330

probe, the energy of the needle echoes received by the individual transducer elements drops below 10% of

the energy of the strongest echoes received from the needle when the azimuth angular spacing between the

transducer elements and the orthogonal needle line exceeds 20◦. Hence, the elements of the 2D curvilinear

transducer that are expected to enable the highest needle visibility are located within an azimuth interval,

Ω, where the length of Ω is affected by the directivity of the piezoelectric elements and its azimuth center335

is positioned at the orthogonal needle line. For the 2D curvilinear transducer of the 4DC7-3 probe, the

length of the azimuth interval Ω is equal to 40° (Daoud et al., 2015). The 2D curvilinear ultrasound image

shown in Fig. 4(a) illustrates the azimuth interval, Ω, that is expected to enable high needle visibility. This

ultrasound image is acquired by the 2D curvilinear transducer of the 4DC7-3/40 probe for a needle placed

in water bath. During ultrasound image acquisition, the 2D curvilinear transducer of the 4DC7-3/40 probe340

is fixed at an elevation angle, φ, of 0°. The insertion angle and axial location of the needle are around 0◦

and 45 mm, respectively. Moreover, the needle is oriented such that it is included in the imaging plane

of the 2D curvilinear transducer. As shown in Fig. 4(a), the highest needle visibility is obtained by the

transducer elements that are located within the azimuth interval, Ω, that has a length of 40◦. In addition to

the azimuth interval, Ω, the needle visibility in a given 2D image frame depends on the portion of the needle345

that is located within this image frame. Figure 4(b) illustrates the interaction between the ultrasound beams

transmitted during the acquisition of the ith 2D image frame, which is located at elevation angle φ, and the

needle. The needle segment that enables high needle visibility in the 2D ultrasound image frame corresponds

to the intersection between the azimuth interval, Ω, and the portion of the needle that is located within this
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(a) (b)

(c)

Figure 4: (a) An ultrasound image acquired by the 2D curvilinear transducer of the 4DC7-3/40 probe for a needle inserted in

water bath. The 2D curvilinear transducer is fixed at an elevation angle, φ, of 0◦. The needle is placed such that its insertion

angle is 0◦ and axial location is around 45 mm. The strongest needle echoes are mainly within the azimuth interval, Ω = 40◦,

where the center of this interval is located at the orthogonal needle line. (b) Schematic illustration of the needle segment that

enables high needle visibility within the ith image frame. This needle segment can be identified as the intersection between

the azimuth interval, Ω, defined around the orthogonal needle line and the portion of the needle located within the ith image

frame. (c) The portion of the needle that achieves high needle visibility within the 3D ultrasound volume corresponds to the

ensemble of all high-visibility needle segments computed for the 2D image frames that synthesize the volume.

image frame, as shown in Fig. 4(b). It is worth noting that if the azimuth interval, Ω, is located outside the350

2D ultrasound image frame, then the needle segment with high needle visibility cannot be defined for this

image frame.

The concept of the needle segment with high needle visibility can be extended into the 3D ultrasound

volume by analyzing all 2D image frames that synthesize the volume to identify the needle segments with

high visibility within these 2D image frames. The ensemble of these segments defines the portion of the355

needle that enables high needle visibility within the 3D ultrasound volume. Figure 4(c) provides a schematic

representation of a 3D ultrasound volume acquired for a needle and the portion of the needle that enables

high needle visibility in the 3D ultrasound volume.

As described previously, since the location of the true needle in the ultrasound volume is unknown, the

camera-estimated needle axis, which provides an approximation of the true needle axis, is used to estimate360

the region in the ultrasound volume that enables high needle visibility. In particular, each of the 2D image
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frames that compose the 3D ultrasound volume is analyzed individually to estimate the portion of the

camera-estimated needle axis that would enable high needle visibility. For the ith image frame, which is

acquired at elevation angle φ, the orthogonal needle line and the azimuth interval, Ω, are computed based on

the camera-estimated needle axis. Moreover, the portion of the camera-estimated needle axis that overlaps365

with the ith image frame is identified. The intersection, if any, between this portion of the camera-estimated

needle axis and the azimuth interval, Ω, represents a segment along the camera-estimated needle axis that

is expected to enable high needle visibility within the ith frame. The segments along the camera-estimated

needle axis that are expected to enable high needle visibility within the 2D image frames of the 3D volume

form a section in the camera-estimated needle axis that is expected to achieve high needle visibility in the 3D370

ultrasound volume. In fact, this section is called the camera-estimated needle axis section with high needle

visibility.

The computation of the camera-estimated needle axis section with high needle visibility based on the

physical 2D image frames that are acquired by the 3D curvilinear probe to synthesize the 3D ultrasound

volume requires accurate calculation of the elevation (sweep) spacing between the 2D frames. However,375

the number of 2D image frames that are employed to synthesize the ultrasound volume might be changed

based on the configurations of ultrasound imaging system, which in turn alters the elevation spacing between

the acquired 2D frames. An alternative approach is to compute the camera-estimated needle axis section

with high needle visibility based on a set of virtual 2D image frames that are uniformly distributed within

the ultrasound volume along the elevation direction. In particular, these virtual 2D image frames can be380

computed based on the known values of the elevation FOV, Φ, the aperture angle, Ψ, the rotation radius,

a, and the radius of curvature, b, and the predetermined elevation spacing between the virtual frames. It is

worth noting that the values of Φ, Ψ, a, and b are usually provided by the manufacturer. In this study, the

camera-estimated needle axis section with high needle visibility is computed using virtual 2D image frames

with uniform elevation spacing of 0.5°.385

The camera-estimated needle axis section with high needle visibility is employed to define VOIAxis that

will be used to accurately localize the needle axis. In fact, VOIAxis represents an approximate region around

the camera-estimated needle axis section with high needle visibility that is hypothesized to include the needle.

In this study, VOIAxis is selected as a rectangular box with central axis located at the camera-estimated

needle axis and length that matches the camera-estimated needle axis section with high needle visibility.390

The height and depth of VOIAxis are set to 14 mm, which is equal to double the maximum error value

computed for the camera-estimated needle axis as described in the Results section. The top face of VOIAxis

is oriented to be perpendicular to the “average” of the orthogonal needle lines of all 2D image frames that their

azimuth intervals, Ω, overlap with the camera-estimated needle axis section with high needle visibility. This

orientation ensures that the majority of the ultrasound beams that are perpendicular or nearly-perpendicular395

to the camera-estimated needle axis section with high needle visibility passes through the top face of VOIAxis.
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2.3.3. Analyzing VOIAxis to localize the needle axis

To reduce the computational complexity, VOIAxis is extracted from the ultrasound volume and all

ultrasound-based computations to localize the needle axis are limited to VOIAxis. The processing of VOIAxis

is carried out in two phases. In the first phase, VOIAxis is analyzed to generate a 3D feature map using400

local phase analysis. In the second phase, the MF-RANSAC algorithm (Uherčík et al., 2010) is employed

to accurately estimate the needle axis within VOIAxis based on the 3D feature map. The estimated needle

axis is mapped back to the 3D ultrasound volume.

Computing the 3D feature map

Our approach for extracting the 3D feature map is based on the phase congruency analysis introduced by

Kovesi (2003, 1999). In fact, the phase congruency, which quantifies points in the image at which the phase

of the Fourier components are at their maximum, provides an intensity-invariant metric for detecting the

edges (Kovesi, 1999; Morrone et al., 1986; Kovesi, 2003, 2000). The computation of the 2D phase congruency

can be performed by employing even-symmetric and odd-symmetric log-Gabor filters that consider both the

scale index, s, and the orientation index, o. Hence, the 2D phase congruency, PC2D
o (u, v), evaluated at

orientation o can be written as (Kovesi, 1999):

PC2D
o (u, v) =

∑
sWo(u, v)bAs,o(u, v)∆Γs,o(u, v)− Toc∑

sAs,o(u, v) + η
, (1)

whereWo(u, v) is the orientation-specific weighting function, As,o(u, v) is the amplitude of the filter response405

at scale s and orientation o, ∆Γs,o(u, v) is the phase deviation at scale s and orientation o, To is the noise

compensation term at orientation o, and η is a constant with small value to avoid zero denominator. A high

value of PC2D
o (u, v) indicates a strong edge oriented along the direction o and a low value of PC2D

o (u, v)

implies that there is no strong edge along this direction.

Since the majority of the ultrasound beams that are perpendicular or nearly-perpendicular to the camera-410

estimated needle axis section with high needle visibility passes through the top face of VOIAxis, needle

reflection of the ultrasound beams within VOIAxis can be effectively detected by quantifying the edges that

are parallel to the top face. In particular, we applied PC2D
o (u, v) to the 2D image planes that are extracted

sequentially from VOIAxis, such that the extracted 2D image planes are parallel to the front face of VOIAxis.

The computation of PC2D
o (u, v) is performed along the orientation orthogonal to the top face of VOIAxis.415

The parameters of the 2D phase congruency analysis are set as described in (Kovesi, 2000). The 3D feature

map corresponds to the volume synthesized by processing VOIAxis using the above-mentioned 2D phase

congruency analysis. In fact, this 2D approach for computing the 3D feature map reduces the computational

complexity by avoiding the computationally-intensive 3D phase congruency analysis.

Localizing the needle axis420

The 3D feature map might include some false positive features that degrade the accuracy of estimating

the needle axis. Therefore, the MF-RANSAC algorithm (Uherčík et al., 2010) is employed to accurately
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localize the needle axis. To apply the MF-RANSAC algorithm, the 3D feature map is binarized using a

thresholding procedure to generate a 3D binary volume. The thresholding is based on the fact that the

strongest phase congruency features are expected to be located at the needle surface. The selection of the425

threshold is performed by examining eight threshold values that are the highest 50%, 40%, 30%, 20%, 15%,

10%, 5%, and 2% of the non-zero voxels in the 3D feature map. Our analysis indicated that setting the

threshold value to the highest 10% of the non-zero voxels in the 3D feature map reduces the mean error of

localizing the needle axis in all ultrasound volumes considered in this study. Moreover, our analysis showed

that setting the threshold to values between the highest 5% and 15% of the non-zero voxels in the 3D feature430

does not lead to significant change in the accuracy of localizing the needle axis. Based on this analysis, a 3D

binary volume is generated by setting the highest 10% of the non-zero voxels in the 3D feature map to one

and the balance of the voxels to zero. To estimate the needle axis, the MF-RANSAC algorithm (Uherčík

et al., 2010) is applied to the nonzero voxels in the 3D binary volume. In fact, the MF-RANSAC algorithm

is configured to model the needle axis as a straight 3D line.435

An illustrative example about the ultrasound-based analysis to localize the needle axis is provided in

Fig. 5. In particular, Fig. 5(a) presents a 3D ultrasound volume acquired for a needle inserted in bovine

muscle specimen. The figure shows the 2D plane that includes the needle, where the yellow arrow points to

the high-visibility portion of the needle and the green arrow points to the needle tip. The approximate needle

axis estimated using the camera is presented in Fig. 5(b). VOIAxis is shown in Fig. 5(c) as part of the whole440

3D ultrasound volume and in Fig. 5(d) as an extracted rectangular box. The 3D feature map computed

using the 2D phase congruency analysis is presented in Fig. 5(e). Moreover, the needle axis obtained using

the MF-RANSAC algorithm is shown in Fig. 5(f) as part of VOIAxis. The estimated needle axis is mapped

back to the 3D ultrasound volume as shown in Fig. 5(g).

2.4. Identifying the location of the needle tip445

After the accurate localization of the needle axis, the position of the needle tip is identified by analyzing

the voxels around the axis. Similar to the previous section, a VOI, denoted by VOITip, is defined around

the estimated needle axis. In particular, the central axis of VOITip is located at the needle axis, its length

extends across the entire 3D ultrasound volume, and its height and depth are set to 4 mm. These height

and depth values are around three times the actual needle diameter, which limit the needle tip analysis to450

the local neighborhood around the needle axis. The orientation of VOITip is set to match the orientation of

VOIAxis. Figures 6(a) and 6(b) show the VOITip computed for the ultrasound volume in Fig. 5(a) overlaid

on the ultrasound volume and as an extracted rectangular box, respectively.

The analysis of VOITip is performed in two phases. In the first phase, VOITip is processed to compute

an intensity-invariant metric that can be processed to localize the tip. In particular, a 3D feature map is455

extracted from VOITip based on the phase congruency analysis described in the previous section. Figure

6(c) shows the 3D feature map computed for VOITip in Fig. 6(b). To enable robust estimation of the needle

tip, the 3D feature map is projected on the needle axis using a moving window approach. The window
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Figure 5: (a) A 3D ultrasound volume acquired for a needle inserted in bovine muscle specimen. The 2D plane that includes

the needle is shown, where the yellow arrow points to the high-visibility portion of the needle and the green arrow points to

the needle tip. (b) The camera-estimated needle axis. (c) and (d) VOIAxis, which includes the high-visibility portion of the

needle, is shown as part of the 3D ultrasound volume and as an extracted rectangular box, respectively. (e) The 3D feature

map computed using phase congruency analysis. (f) and (g) The ultrasound-based estimation of the needle axis overlaid on

VOIAxis and on the entire 3D ultrasound volume, respectively.
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Figure 6: (a) and (b) VOITip, which is used to localize the needle tip, is shown as part of the 3D ultrasound volume and as an

extracted rectangular box, respectively. (c) The 3D feature map extracted from VOITip using phase congruency analysis. (d)

E(l), E′(l), and P (l) computed to localize the needle tip. The localized needle axis and tip are overlaid on VOITip, where the

needle axis is shown as a yellow line and the needle tip is marked by a green circle. (e) The localized needle axis and tip are

mapped back to the 3D ultrasound volume.
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has a rectangular box structure with height, width, and length of 4 mm. The window is initially placed at

the beginning of the needle axis (i.e. the entry point of the needle). The average value of the 3D feature460

map within the window is assigned to voxel located at the window’s center. In the consecutive step, the

window is shifted along the axis by one voxel and the average value of the feature map within the window

is recomputed and assigned to the voxel at the center. The process of shifting the window and computing

the average value of the 3D feature map is repeated until all voxels along the needle axis are covered by

the moving window. Figure 6(d) shows the projected feature map, denoted by E(l), where l represents the465

voxels along the needle axis. In this figure, E(l) is normalized to values between 0 and 1.

In the second phase, E(l) is processed to localize the needle tip. Similar to the 3D feature map, E(l)

provides an intensity-invariant, orientation-specific metric to detect the edges that match the needle direction.

Hence, when the axis of the needle is traversed from the entry point of the needle (l = 0) towards the needle

tip, a sharp decay in E(l) is expected at the needle tip. Such sharp decay leads to a large negative value

in the spatial derivative of E(l), i.e. E′(l) = dE(l)
dl . However, similar sharp decays in E(l) might occur in

other locations along the needle axis, which might limit the accuracy of localizing the needle tip. Another

effective characteristic, which we also have used to identify the needle tip, is the fact that the majority of

E(l) values before the needle tip are expected to be high and the majority of E(l) values after the tip are

expected to be low. To quantify this characteristic, E(l) is binarized using global thresholding in which the

threshold is computed by applying Otsu’s method (Otsu, 1979) on the non-zero points. In the binarized

E(l), which is denoted as EB(l), the white points from the entry point of the needle until the needle tip

represent the correctly-detected needle voxels and the black points after the needle tip correspond to the

correctly-identified non-needle voxels. Hence, the likelihood of a point, l, along the needle axis to be the true

needle tip is proportional to P (l):

P (l) =

∑l
i=0EB(i) +

∑N
i=l+1(1− EB(i))

N
, (2)

where N is the total number of voxels along the needle axis. Figure 6(d) shows the normalized E′(l) and

P (l) computed for the 3D feature map in Fig. 6(c).

To enable effective localization of the needle tip, both E′(l) and P (l) are analyzed. In particular, each

peak in P (l) represents a candidate point that might be the true needle tip. If multiple peaks exist in P (l),470

then these peaks can be ranked based on the corresponding values of E′(l). The peak of P (l) with the

highest negative value of E′(l) is considered to be the needle tip. The plot of P (l) presented in Fig. 6(d)

shows a single peak, and hence the location of this peak is selected as the needle tip. It is worth noting that

the highest negative value of E′(l) in Fig. 6(d) is also located at the detected needle tip. At the bottom of

Fig. 6(d), the estimated needle axis and tip are overlaid on the extracted VOITip, where the needle axis is475

shown as a yellow line and the needle tip is marked by a green circle. The localized needle axis and tip are

mapped back to the 3D ultrasound volume, as shown in Fig. 6(e).
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2.5. Needle tracking procedure

Since needle insertion in the tissue is a dynamic process, the localization of the needle in an individual

3D ultrasound volume is not sufficient in real-life clinical needle interventions. In fact, the application of480

our proposed needle localization method, which is described in subsections 2.2, 2.3, and 2.4, for tracking the

needle in a sequence of 3D ultrasound volumes requires the needle to be visible for the camera during the

acquisition of all ultrasound volumes. Such a requirement might impose some limitations on the use of the

propsoed method in real-life clinical interventions. To address this limitation, a needle tracking procedure

is employed to limit the camera-visibility requirement to be mainly at the beginning of the 3D ultrasound485

imaging process.

The needle tracking process starts by detecting the needle axis and tip in the first volume of the ultrasound

sequence using the camera- and ultrasound-based localization analyses described in subsections 2.2, 2.3, and

2.4. For the remaining volumes, a tracking loop is used to estimate the needle location in the current, i.e.

kth, volume by taking into consideration the needle location in the previous, i.e. (k − 1)th, volume. The490

tracking loop is essentially based on the tracking procedure introduced in (Zhao et al., 2013).

The tracking loop employs a motion estimation algorithm to compute the insertion velocity of the needle

tip. In this algorithm, the computation of the tip velocity is carried out by defining a small 3D region around

the needle tip in the (k − 1)th ultrasound volume and a larger region around the same location in the kth

ultrasound volume. Both 3D regions are processed using a speckle tracking method (Trahey et al., 1988)495

to compute the tip velocity. The configurations of the 3D regions and the speckle tracking method match

the tracking analysis described in (Zhao et al., 2013). The Kalman filter described in (Zhao et al., 2013) is

adopted to track the needle in the kth ultrasound volume. In particular, the time update equations of the

Kalman filter are employed to obtain an initial prediction of the needle axis in the kth ultrasound volume

based on the needle location in the (k − 1)th ultrasound volume and the tip velocity computed using the500

motion tracking algorithm. The initial prediction of the needle axis is used in the dynamic needle tracking

situation as a substitution for the camera-based estimation of the needle axis. Hence, accurate tracking of

the needle axis and tip in the kth ultrasound volume can be obtained by processing the initial prediction of

the needle axis using the ultrasound-based analyses described in subsections 2.3 and 2.4. Specifically, the

computation of VOIAxis, which is described in subsection 2.3.2, is performed using the initial prediction of505

the needle axis instead of the camera-based estimation of the needle axis. Finally, the measurement update

equations of the Kalman filter are used to refine the ultrasound-based estimations of the needle axis and tip

computed for the kth ultrasound volume based on the needle tracking results of the (k − 1)th volume.

Similar to (Zhao et al., 2013), an automatic error correction policy has been implemented to enable robust

needle tracking. The policy is based on the assumption that needle insertion in the tissue usually follows a510

specific path and hence the locations of the needle in two consecutive ultrasound volumes are expected to be

close. Therefore, if the difference between the needle axis in the kth ultrasound volume and the needle axis

in the (k − 1)th volume is greater than 3 mm, the tracking of the needle in the kth volume is considered to
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be a failure. Hence, needle tracking in the kth ultrasound volume is re-initialized based on the camera-based

estimation of the needle axis described in subsection 2.2.515

3. Experiments

The performance of the proposed method is evaluated in terms of its ability to localize and track the

needle. In particular, the accuracy of the camera-estimated needle axis, which is based on the study by

Najafi et al. (2015), is quantified. Furthermore, the performance of our proposed method, which integrates the

camera-based estimation of the needle axis with effective ultrasound-based analysis for localizing and tracking520

the needle, is evaluated and compared with the ROI-RK method (Zhao et al., 2013). These evaluations and

comparisons are performed in both the static needle localization situation and the dynamic needle tracking

situation using various ex vivo tissue types.

The proposed method, including the camera- and ultrasound-based analyses, and the ROI-RK method

are implemented using MATLAB (The MathWorks Inc., Natick, MA, USA). Both methods are run on a525

computer workstation with Intel Xeon Processor (Intel Corporation, Santa Clara, CA, USA) operating at

3.5 GHz and 16 GB memory.

3.1. Setup of the ex vivo animal experiments

Five bovine muscle specimens, five porcine muscle specimens, and five bovine liver specimens are used

as imaging media. All tissue specimens were freshly excised and bought from a local butcher on the ex-530

periment day. The bovine muscle specimens, the porcine muscle specimens, and the bovine liver specimens

provide imaging media with different ultrasound echogenicity characteristics. The needles employed in the

experiments are standard biopsy needles with a diameter of 1.25 mm.

A mounting tool was used to hold the imaging apparatus, which includes the 3D ultrasound probe, the

USB camera, and the plastic housing. For each tissue specimen, the needle was inserted manually to an535

insertion depth within the range of 40 to 90 mm. The needle insertion angles were between 30° and 60°

with respect to the skin. Figure 7 shows the experimental setup. During the insertion of the needle in

each tissue specimen, the USB camera was used to track the advancing needle. Moreover, the ultrasound
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Figure 8: The computation of the needle axis error.

imaging system was used to acquire a sequence of ten 3D ultrasound volumes. The imaging depth of the

ultrasound system was adjusted before starting the experiments to values between 50 and 90 mm, which540

enabled the acquisition of 3D ultrasound volumes with isotropic voxel sizes between 0.4 and 0.7 mm at frame

rates between 1.6 and 1.8 volumes per seconds.

3.2. Performance analysis of the camera-based estimation of the needle axis

The performance of the camera-based estimation of the needle axis is quantified by estimating the needle

axis in each individual volume of the acquired 3D ultrasound sequences and comparing the estimated axis545

with the axis of the matching ground truth needle. In fact, the ground truth needle was obtained using

manual segmentation performed by a radiologist with more than 14 years of experience. In particular,

the needle in each ultrasound volume was segmented manually for three times and the mean of the three

segmentations is taken as the ground truth needle.

Two performance metrics are used to evaluate the camera-estimated needle axis, where these metrics550

are the axis error and the angle error. The axis error is based on the accuracy analyses reported in (Zhao

et al., 2013) and (Zhao et al., 2017). Figure 8 illustrates the computation of the axis error. In this figure,

the plane that includes the needle is shown, where NEntry and NTip are the entry point and the tip of the

ground truth needle, respectively, and CEntry and CTip are the orthogonal projections of NEntry and NTip,

respectively, on the camera-estimated needle axis. The axis error is evaluated by computing the Euclidean555

distance between NEntry and CEntry and the distance between NTip and CTip and taking the maximum of

the two distances. The angle error is defined as the angle between the axis of the ground truth needle and

the estimated needle axis.

For a given ultrasound volume, the camera-based estimation of the needle axis is considered as failure

if the axis error is greater than a given tolerance distance. In this study, three failure rates, namely the560

failure rate with tolerance distance of 3 mm, the failure rate with tolerance distance of 5 mm, and the failure

rate with tolerance distance of 10 mm, are computed to quantify the percentages of camera-based needle

axis estimations that have axis error values greater than 3 mm, 5 mm, and 10 mm, respectively. Since
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the camera-based analysis aims to provide approximate estimation of the needle axis, the mean ± standard

deviation of each one of the two evaluation metrics is calculated for the ultrasound volumes in which the axis565

error is less than 10 mm. In addition, the mean ± standard deviation execution time needed to estimate the

needle axis using the camera is reported.

3.3. Performance analysis of the static needle localization

The accuracy of localizing the needle in the static situation was evaluated by employing our proposed

method and the ROI-RK method (Zhao et al., 2013) to localize the needle in each individual volume of570

the acquired 3D ultrasound sequences. In fact, needle localization in the static situation is performed by

analyzing only the camera and ultrasound data of the volume under consideration without considering the

localization results of the previous volume in the sequence. Hence, the tracking loops of our proposed method

and the ROI-RK method (Zhao et al., 2013) are not employed. For each ultrasound volume, the process of

localizing the needle using the two methods has been repeated for three times. Hence, the total number of575

evaluations is 450 (3 tissue types × 5 specimens of each tissue type × 10 ultrasound volumes acquired during

needle insertion × 3 evaluation trials performed for each volume).

The estimated coordinates of the needle axis and tip were compared with the matching ground truth

needle coordinates. In fact, three metrics are employed to quantify the needle localization accuracy, where

these metrics are the tip error, the axis error, and the angle error. The axis error and the angle error are580

calculated using the same procedure employed to evaluate the performance of the camera-based estimation

of the needle axis, which was described in the previous subsection. The tip error is equal to the Euclidean

distance between the ground truth needle tip and the estimated needle tip. In addition, three failure rates,

namely the failure rate with tolerance distance of 3 mm, the failure rate with tolerance distance of 5 mm,

and the failure rate with tolerance distance of 10 mm, are computed to quantify the percentages of the needle585

localization trials in which the axis error of the estimated needle is greater than 3 mm, 5 mm, and 10 mm,

respectively. Since the task of localizing the needle aims to enable accurate estimation of the needle, the

mean ± standard deviation of each metric is calculated for the evaluation trials in which the axis error is

less than 3 mm. Moreover, the mean ± standard deviation execution time required to localize the needle is

reported.590

3.4. Performance analysis of the dynamic needle tracking

The accuracy of needle tracking is evaluated by employing our proposed method and the ROI-RK method

(Zhao et al., 2013) to track the needle in each ultrasound volume sequence acquired during needle insertion.

Therefore, all components of our proposed method and the ROI-RK method, including the needle tracking

loop, are applied. For each ultrasound sequence, the two methods are run for three trials to track the needle.595

Hence, the total number of evaluation trials is 45 (3 tissue types × 5 specimens of each tissue type × 3

needle tracking trials performed for the ultrasound volume sequence acquired for each specimen).
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The three performance metrics, which are described in the previous subsection, are used to compare the

needle tracked in each ultrasound volume with the matching ground truth needle. Moreover, three failure

rates, namely the failure rate with tolerance distance of 3 mm, the failure rate with tolerance distance of600

5 mm, and the failure rate with tolerance distance of 10 mm, are computed. In fact, the failure rates with

tolerance distances of 3 mm, 5 mm, and 10 mm are the percentages of the needle tracking trials in which

the needle axis error of any volume in the ultrasound sequence exceeds 3, 5, and 10 mm, respectively. Since

the task of tracking the needle is more challenging than the needle localization task, the mean ± standard

deviation of each evaluation metric is computed for the needle tracking trials in which the axis errors of all605

volumes in the sequence are less than 10 mm. Moreover, the mean ± standard deviation execution time

required to track the needle in a particular volume of the ultrasound sequence is computed.

3.5. Analyzing the effect of varying the number of needle marking points on the camera-based estimation of

the needle axis

The camera-based estimation of the needle axis might be affected by clutter and lighting conditions, as610

well as other camera acquisition conditions, that can affect the capability of identifying the needle marking

points in the camera images. Hence, an additional set of ten experiments are carried out to investigate the

effect of varying the number of needle marking points in the camera images on the accuracy of the camera-

based estimation of the needle axis. In these experiments, a standard biopsy needle with a diameter of 1.25

mm was inserted in a water bath. In each experiment, the ultrasound imaging system and the camera were615

used to acquire a 3D ultrasound volume and a camera image, respectively, for the needle. The camera images

included six needle marking points, where these points were located outside the needle bath. Moreover, the

imaging depth of the ultrasound system was set to 90 mm and the needle insertion depth and angle were

within the range of 40 to 90 mm and 30◦ to 60◦, respectively. It is worth noting that the experimental setup

employed in the current study to investigate the effect of varying the needle marking points on the accuracy620

of the camera-based estimation of the needle axis, which is based on needles embedded in a water bath, is

close to the setup employed by Najafi et al. (2015).

For each experiment, the camera-based estimation of the needle axis was repeated twelve times using 6,

5, 4, and 3 needle marking points, such that for each specific number of needle marking points the camera-

based needle axis localization is repeated for three times. For the camera-based needle axis localization trials625

that were performed using a number of needle marking points lower than 6, the marking points employed

to localize the needle axis in each trial were randomly selected from the 6 points that exist in the camera

image. The accuracy of the camera-based localization of the needle axis was evaluated by computing the

failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm as well as the mean ± standard deviation

values of the needle axis error and needle angle error based on manual segmentations of the needle in the630

3D ultrasound volumes.
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Table 1: The performance results of the camera-based estimation of the needle axis computed for needles inserted in bovine

muscle specimens, porcine muscle specimens, and bovine liver specimens. The failure rates with tolerance distances of 3 mm,

5 mm, and 10 mm are denoted by failure rate 3 mm, failure rate 5 mm, and failure rate 10 mm, respectively.

Failure rate Failure rate Failure rate Axis error Angle error
Tissue 3 mm 5 mm 10 mm (mm) (°)

Bovine muscle 88% 45% 0% 4.4 ± 1.2 3.2 ± 2.1

Porcine muscle 80% 51% 0% 4.5 ± 1.6 4.4 ± 2.8

Bovine liver 59% 45% 0% 4.0 ± 1.9 4.6 ± 2.2

4. Results

4.1. Results of the camera-based estimation of the needle axis

Table 1 presents the failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm, which are denoted

in the table by failure rate 3 mm, failure rate 5 mm, and failure rate 10 mm, respectively, that are computed635

for the camera-based axis estimations of the needles inserted in the three tissue types. These failure rates

indicate that the majority of the axis errors computed for the camera-estimated needle axes are greater than

3 mm. Around half of the camera-estimated needle axes have error rates smaller than 5 mm. Furthermore,

the camera-based analysis was able to estimate all needle axes with errors smaller than 10 mm. In fact, our

analysis showed that all camera-estimated needle axes had axis error values smaller than 7 mm.640

The mean ± standard deviation values of the axis error and the angle error computed for the camera-

estimated needle axes are also shown in Table 1. For the three tissue types, the mean values of the needle

axis error are between 4.0 and 4.5 mm. Moreover, the mean values of the needle angle error are between

3.2° and 4.6°. The mean ± standard deviation execution time required to estimate the needle axis in one

ultrasound volume using the camera-based analysis is 0.08 ± 0.01 second.645

4.2. Results of the static needle localization

Table 2 shows the failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm, which are denoted

in the table by failure rate 3 mm, failure rate 5 mm, and failure rate 10 mm, respectively, that are calculated

for the needle localization estimations obtained using our proposed method and the ROI-RK method (Zhao

et al., 2013). For the three tissue types, the axis errors of all needle localizations performed using our650

proposed method are lower then 3 mm. For the ROI-RK method, the axis errors of the needles inserted

in bovine muscle, porcine muscle, and bovine liver specimens are 81.7%, 85.3%, and 78.7%, respectively,

higher than 3 mm, 65.6%, 64.7%, and 59.3%, respectively, greater than 5 mm, and 42.2%, 45.3%, and 37.3%,

respectively, greater than 10 mm. These results indicate that the proposed method, which combines the

camera-based estimation of the needle axis along with effective ultrasound-based localization of the needle,655

can enable accurate localization of the needle axis.
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Table 2: The performance results obtained by the proposed method and the ROI-RK method (Zhao et al., 2013) in the static

situation when the two methods are used to localize needles inserted in bovine muscle specimens, porcine muscle specimens,

and bovine liver specimens. The failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm are denoted by failure rate

3 mm, failure rate 5 mm, and failure rate 10 mm, respectively.

Failure rate Failure rate Failure rate Tip error Axis error Angle error
Tissue Method 3 mm 5 mm 10 mm (mm) (mm) (°)

Bovine muscle Proposed 0.0% 0.0% 0.0% 1.2 ± 0.8 0.6 ± 0.5 1.4 ± 0.9

ROI-RK 81.7% 65.6% 42.2% 2.4 ± 1.5 1.8 ± 0.9 2.7 ± 1.6

Porcine muscle Proposed 0.0% 0.0% 0.0% 1.0 ± 0.7 0.7 ± 0.5 1.6 ± 0.8

ROI-RK 85.3% 64.7% 45.3% 3.2 ± 1.0 1.9 ± 0.7 3.3 ± 1.7

Bovine liver Proposed 0.0% 0.0% 0.0% 0.9 ± 0.8 0.6 ± 0.6 1.7 ± 1.0

ROI-RK 78.7% 59.3% 37.3% 2.6 ± 1.3 1.8 ± 0.8 4.3 ± 3.4

Table 2 also shows the mean ± standard deviation values of the axis error, the angle error, and the tip

error that are calculated for the proposed method and the ROI-RK method. The proposed method can

localize the needle with mean axis errors between 0.6 and 0.7 mm, mean angle errors between 1.4° and 1.7°,

and mean tip errors between 0.9 mm and 1.2 mm. In comparison, the ROI-RK method can localize the660

needle with mean axis errors between 1.8 and 1.9 mm, mean angle errors between 2.7° and 4.3°, and mean

tip errors between 2.4 and 3.2 mm. It is worth noting that the error values of our proposed method are

calculated based on all evaluation trials while the error values of the ROI-RK method are computed based

on the evaluation trials in which its estimated needle has an axis error less than 3 mm.

The mean ± standard deviation execution time required to estimate the needle in one ultrasound volume665

using the proposed method, including both the camera- and ultrasound-based analyses, is 0.32 ± 0.02 second.

In comparison, the mean ± standard deviation execution time needed to localize the needle using the ROI-RK

method is 1.18 ± 0.04 second.

4.3. Results of the dynamic needle tracking

The values of the failure rate with tolerance distance of 3 mm obtained by employing our proposed670

method to track the needle insertions in the bovine muscle, porcine muscle, and bovine liver specimens are

6.7%, 0.0%, and 6.7%, respectively. Moreover, all values of the failure rate with tolerance distance of 5 mm

and the failure rate with tolerance distance of 10 mm obtained by our proposed method for the three tissue

types are equal to 0.0%. In comparison, the values of the failure rates obtained by the ROI-RK method for

bovine muscle, porcine muscle, and bovine liver are 100%, 100%, and 100%, respectively, when the tolerance675

distance is 3 mm, 100%, 93.3%, and 93.3%, respectively, when the tolerance distance is 5 mm, and 60.0%,

66.7%, and 60.0%, respectively, when the tolerance distance is 10 mm. These results demonstrate the ability

of the proposed method to effectively track the needle.
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Figure 9: The mean ± standard error values of the (a) axis error, (b) angle error, and (c) tip error obtained when the proposed

method and the ROI-RK method (Zhao et al., 2013) are used to track the needles inserted in bovine muscle specimens.

The tracking accuracy results obtained for the needles inserted in bovine muscle, porcine muscle, and

bovine liver specimens are shown in Figs. 9, 10, and 11, respectively, as a function of the number of the680

acquired ultrasound volume. The tracking error values of our proposed method are computed based on

all evaluation trials. However, the error values of the ROI-RK method are obtained using 40.0%, 33.3%,

and 40.0% of the needle tracking trials performed for the bovine muscle, porcine muscle, and bovine liver

specimens, respectively, in which the axis errors of all volumes in the ultrasound sequence are less than

10 mm. For all tissue types, our proposed method tracked the needles with mean axis errors between 0.4685

and 1.0 mm, mean angle errors between 1.1° and 2.0°, and mean tip errors between 0.8 and 1.7 mm. In

comparison, needle tracking using the ROI-RK method achieved mean axis errors between 1.7 and 4.7 mm,

mean angle errors between 2.6° and 7.3°, and mean tip errors between 2.1 and 7.2 mm. The tracking results of

our proposed method indicate that increasing the volume number within the ultrasound sequence generally

did not lead to large increase in the mean error values. However, the tracking results of the ROI-RK method690

indicate that increasing the volume number within the ultrasound sequence generally degrades the accuracy

of needle tracking.

The mean ± standard deviation execution time needed to track the needle using the proposed method is

0.19 ± 0.01 second per ultrasound volume. In comparison, the mean ± standard deviation execution time

required by the ROI-RK method to track the needle in one ultrasound volume is 0.20 ± 0.02 second. It is695

worth noting that 16% of the computations performed by the proposed method to track the needle in the

acquired 3D ultrasound sequences include needle tracking re-initializations in which the needle is estimated
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Figure 10: The mean ± standard error values of the (a) axis error, (b) angle error, and (c) tip error obtained when the proposed

method and the ROI-RK method (Zhao et al., 2013) are used to track the needles inserted in porcine muscle specimens.

in the ultrasound volume using the static needle localization procedure.

4.4. Quantitative analysis

Figures 12(a), 13(a), 14(a), and 15(a) present four ultrasound volumes acquired for needles inserted in ex700

vivo animal tissue specimens, where each volume is configured to show the plane that includes the needle. In

particular, the needles in Figs. 12(a) and 13(a) are inserted in bovine muscle specimens. Moreover, the needles

in Figs. 14(a) and 15(a) are inserted in porcine muscle specimen and bovine liver specimen, respectively.

The four volumes have different ultrasound echogenicities and various needle visibility characteristics. The

camera-based estimations of the needle axis obtained for the four ultrasound volumes are presented in705

Figs. 12(b), 13(b), 14(b), and 15(b). In fact, the camera-estimated needle axis of each volume is located

in a plane that is slightly different from the plane that includes the needle. These camera-estimated needle

axes demonstrate the capability of the camera-based analysis to obtain good approximation of the needle

trajectory. The needle axis and tip that are localized using the ultrasound-based analysis are shown in

Figs. 12(c), 13(c), 14(c), and 15(c). The localized needle axes and tips are close to the ground truth needles710

that are shown in Figs. 12(a), 13(a), 14(a), and 15(a). For comparison, the localization results obtained

using the ROI-RK method (Zhao et al., 2013) are presented in Figs. 12(d), 13(d), 14(d), and 15(d).

4.5. Results of varying the number of needle marking point on the camera-based estimation of the needle axis

Table 3 shows the values of the failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm, which

are denoted in the table by failure rate 3 mm, failure rate 5 mm, and failure rate 10 mm, respectively, that715
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Figure 11: The mean ± standard error values of the (a) axis error, (b) angle error, and (c) tip error obtained when the proposed

method and the ROI-RK method (Zhao et al., 2013) are used to track the needles inserted in bovine liver specimens.

are computed for the camera-based estimation of the axes of the needles embedded in water bath using

different numbers of needle marking points. As shown in the table, increasing the number of needle marking

points from 3 to 4 reduces the values of both the failure rate with tolerance distance of 3 mm and the failure

rate with tolerance distance of 5 mm by 10%. Moreover, increasing the number of needle marking points

from 4 to 5 leads to reductions in the failure rates with tolerance distances of 3 mm and 5 mm by 6% and720

13%, respectively. However, increasing the number of needle marking points from 5 to 6 improves the failure

rates with tolerance distances of 3 mm and 5 mm by only 4% and 3%, respectively. For all examined values

of needle marking points, the values of the failure rate with tolerance distance of 10 mm are equal to 0%,

which indicates that all camera-estimated needle axes have axis error values that are smaller than 10 mm.

Table 3 also shows that increasing the number of needle marking points from 3 to 4 reduces the mean725

needle axis error and needle angle error values by 0.9 mm and 0.8◦, respectively. Moreover, increasing the

number of needle marking points from 4 to 5 reduces the mean needle axis error and mean needle angle

error by 0.9 mm and 1.4◦, respectively. However, increasing the needle marking points from 5 to 6 minimizes

the mean needle axis error and mean needle angle error by only 0.2 mm and 0.3◦, respectively. It is worth

noting that the needle axis error values of all camera-based needle axis estimations obtained using 5 and 6730

needle marking points are lower than 7 mm. However, for the camera-based needle axis estimations that are

performed using 3 and 4 needle marking points, the needle axis error values can exceed 7 mm, but they are

lower than 10 mm.
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Figure 12: (a) A 3D ultrasound volume acquired for a needle inserted in bovine muscle specimen. The 2D plane that includes

the needle is shown, where the yellow arrow points to the high-visibility portion of the needle and the green arrow points to

the needle tip. (b) The camera-estimated needle axis. (c) The needle axis and tip estimated using the proposed method. (d)

The needle axis and tip estimated using the ROI-RK method (Zhao et al., 2013). In (c) and (d), the needle axis is shown as a

yellow line and the needle tip is marked by a green circle.

5. Discussion

The experimental results reported in the current study demonstrate the capability of our proposed method735

to enable accurate, reliable, and efficient localization and tracking of the needle using 3D curvilinear ultra-

sound volumes. In the static situation, the proposed method can localize the needle in the individual 3D

ultrasound volumes with values of the failure rate with tolerance distance of 3 mm that are equal to 0%

and maximum mean error values of 0.7 mm for the needle axis, 1.4◦ for the needle angle, and 1.2 mm for

the needle tip. Moreover, the mean ± standard deviation execution time required to localize the needle in740

one ultrasound volume is 0.32 ± 0.02 second. In the dynamic situation, our proposed method can track the

needle in a sequence of 3D ultrasound volumes with values of the failure rate with tolerance distance of 3 mm

that are between 0% and 6.7% and values of the failure rate with tolerance distance of 5 mm that are equal

to 0%. Moreover, the maximum mean error values computed for the dynamic needle tracking are equal to

1.0 mm for the needle axis, 2.0◦ for the needle angle, and 1.7 mm for the needle tip. The mean ± standard745

deviation execution time needed to track the needle is 0.19 ± 0.01 second per ultrasound volume. In the

following, detailed discussion is provided for the methods and results reported in the previous sections.

The camera-based estimation of the needle axis has been demonstrated in the current study using a

low-cost camera. The use of a low-cost camera introduces several challenges, including the limited field-
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Figure 13: (a) A 3D ultrasound volume acquired for a needle inserted in bovine muscle specimen, in which a strong linear

structure is located close to the needle. The left part of the figure shows a 2D plane in the ultrasound volume that includes

the needle, where the yellow arrow points to the high-visibility portion of the needle and the green arrow points to the needle

tip. Moreover, the right part of the figure shows a 2D plane in the ultrasound volume that includes the linear structure. (b)

The camera-estimated needle axis. (c) The needle axis and tip estimated using the proposed method. (d) The needle axis and

tip estimated using the ROI-RK method (Zhao et al., 2013). In (c) and (d), the needle axis is shown as a yellow line and the

needle tip is marked by a green circle.

of-view and the low resolution. Despite these challenges, the results reported in Table 1 show that the750

low-cost camera was able to estimate the needle axis with mean axis errors on the order of 4 mm. Table 1

also indicates that the camera-based analysis, which is performed using a number of needle marking points

greater than or equal to 5, can estimate the needle axis with maximum axis errors smaller than 7 mm.

Hence, the width and height of VOIAxis, which is defined around the camera-estimated needle axis to enable

accurate ultrasound-based localization of the needle, are equal to two times the maximum limit of the camera755

axis error (i.e. 14 mm). In fact, the camera-based needle estimation accuracy results reported in Tabel 1

are lower than the accuracy results reported by Najafi et al. (2015), in which the needle position in a water

bath was estimated by applying the same algorithm employed in the current study on images acquired by

a high-performance camera. This difference in needle estimation accuracy can be attributed to the use of
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Figure 14: (a) A 3D ultrasound volume acquired for a needle inserted in porcine muscle specimen. The 2D plane that includes

the needle is shown, where the yellow arrow points to the high-visibility portion of the needle and the green arrow points to

the needle tip. (b) The camera-estimated needle axis. (c) The needle axis and tip estimated using the proposed method. (d)

The needle axis and tip estimated using the ROI-RK method (Zhao et al., 2013). In (c) and (d), the needle axis is shown as a

yellow line and the needle tip is marked by a green circle.

a low-cost camera, instead of a high-performance camera, to compute the needle axis position. A similar760

drop in the needle localization accuracy due to the use of low-cost cameras has been reported in (Chan

et al., 2005), in which the mean camera-based needle localization accuracy was dropped from 3.1 mm using

high-performance cameras to 6.5 mm using low-cost cameras. Hence, our proposed method may possibly

be improved by using a camera with high resolution and wide field-of-view to estimate the needle axis.

Such an improvement may possibly lead to enhance the accuracy of the camera-based estimation of the765

needle axis using a lower number of needle marking points. Moreover, the performance of our proposed

method may possibly be enhanced by using two cameras mounted on the ultrasound probe to estimate the

needle axis. Such an enhancement is expected to enable the camera-based analysis to estimate the axis of a

needle that does not have regular marking points. However, the use of two cameras or a signal camera with

high specifications for estimating the needle axis is expected to increase the cost and the processing time770

requirements of our proposed method. In addition, the use of two cameras to estimate the needle axis might

impose the need of maintaining direct line-of-sight between both cameras and the needle.

An important characteristic of our proposed method is the capability of the ultrasound-based analysis

to refine the camera-based estimation of the needle axis, which has limited accuracy, to achieve accurate,

reliable, and efficient localization of the needle axis. In particular, the results presented in Table 2 show that775
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Figure 15: (a) A 3D ultrasound volume acquired for a needle inserted in bovine liver specimen. The 2D plane that includes

the needle is shown, where the yellow arrow points to the high-visibility portion of the needle and the green arrow points to

the needle tip. (b) The camera-estimated needle axis. (c) The needle axis and tip estimated using the proposed method. (d)

The needle axis and tip estimated using the ROI-RK method (Zhao et al., 2013). In (c) and (d), the needle axis is shown as a

yellow line and the needle tip is marked by a green circle.

the ultrasound-based analysis was able to localize the needle axis in all evaluation trials with axis error values

smaller than 3 mm. Table 2 also shows that the ROI-RK method (Zhao et al., 2013) was able to obtained

needle axis errors smaller than 3 mm, 5 mm, and 10 mm in only 14.7% to 21.3%, 34.4% to 40.7%, and 54.7% to

62.7%, respectively, of the evaluation trials performed for the three tissue types. In addition, the mean values

of the needle axis error and angle error obtained by the proposed method for all evaluation trials are smaller780

than the matching mean error values achieved by the ROI-RK method for the evaluation trails in which the

needle axis error is smaller than 3 mm. The capability of the proposed method to effectively localize the

needle axis can be explained as follows. The ultrasound-based localization of the needle axis was performed

using VOIAxis, which is obtained by considering both the camera-based approximation of the needle axis and

the imaging geometry of the 3D ultrasound probe. Hence, the computation of the needle axis, which is based785

on VOIAxis, ensures that the needle axis localization process is performed based on a small region in the

ultrasound volume that enables high needle visibility and limits the undesired interference of other irrelevant

structures in the ultrasound volume. Moreover, limiting the needle axis localization analysis to VOIAxis is

crucial to minimize the computational complexity of our approach by avoiding the processing of other regions

in the ultrasound volume that are not expected to provide high needle visibility. Furthermore, the local phase790

analysis of VOIAxis, which is used to compute the 3D feature map, enables intensity-invariant, orientation-
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Table 3: The performance results of the camera-based estimation of the needle axis computed for needles inserted in water bath

using different numbers of needle marking points. The failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm are

denoted by failure rate 3 mm, failure rate 5 mm, and failure rate 10 mm, respectively.

Number of needle Failure rate Failure rate Failure rate Axis error Angle error
marking points 3 mm 5 mm 10 mm (mm) (◦)

3 93% 63% 0% 6.1 ± 2.2 6.4 ± 1.9

4 83% 53% 0% 5.2 ± 2.2 5.6 ± 1.6

5 77% 40% 0% 4.3 ± 1.6 4.2 ± 1.2

6 73% 37% 0% 4.1 ± 1.5 3.9 ± 0.7

specific detection of the edges that essentially match the direction of the camera-estimated needle axis. Due

to these factors, the effects of speckle noise, ultrasound intensity variations, and needle-like structures that

might exist in the ultrasound volume are minimized. It is worth noting that the intensity-based MF-

RANSAC algorithm described in (Uherčík et al., 2010), which represents the main component of the static795

needle localization phase of the ROI-RK method (Zhao et al., 2013), has been reported in (Uherčík, 2011)

to have high failure rates in real ultrasound volumes with complex background.

Another advantage of the ultrasound-based needle localization analysis employed by our proposed method

is the capability of reducing of the effect of the depth-dependent degrade in ultrasound lateral resolution,

which causes blurring and deformation artifacts. As described previously, the highest needle visibility in the800

ultrasound images and volumes acquired by curvilinear ultrasound probes is obtained when the ultrasound

beams intercept perpendicularly or near perpendicularly with the needle (Daoud et al., 2015; Hacihaliloglu

et al., 2015). In fact, needle insertion in many real-life clinical interventions is performed at mid to steep

insertion angles (Hacihaliloglu et al., 2015). Hence, for curvilinear 2D transducers, the perpendicular or

near perpendicular interception between the needle and the ultrasound beams, which are transmitted by a805

transducer with convex shape, is expected to occur around a segment of the needle in which the distance

between the needle and the transducer surface is reduced, i.e. at the closer needle segment to the transducer

surface (Hacihaliloglu et al., 2015). Similarly, the part of the needle that enables high needle visibility in a

3D ultrasound volume acquired by a motorized curvilinear ultrasound probe is also expected to be the closer

needle part to the probe surface. This behavior can be seen in the 3D ultrasound volumes shown in Figs. 12,810

13, 14, and 15. Due to this advantage, the effects of depth-dependent blurring and deformation artifacts is

expected to be reduced inside VOIAxis that surrounds the needle part with high visibility. Moreover, the

ultrasound-based needle localization analysis performed by our proposed method, which employs intensity-

invariant, orientation-specific, local phase analysis to identify the needle reflections inside VOIAxis, are also

expected to reduce the effects of blurring and deformation.815

The results presented in Table 2 also show that the proposed method was able to localize the needle

tip in all evaluation trials with mean error values between 0.9 and 1.2 mm. These mean values of the tip
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error are two to three times smaller than the matching values obtained by the ROI-RK method for the

evaluation trials in which the needle axis error is smaller than 3 mm. The capability of the propsoed method

to accurately localize the needle tip is attributed to the probabilistic approach employed to analyze VOITip820

that is generated around the localized needle axis. This probabilistic approach, which is based on intensity-

invariant, orientation-specific local phase analysis, models the tip as a disconnection point along the needle

axis in which the preceding points include edge features that match the needle direction and the succeeding

points do not include such features.

The metrics employed to evaluate the performance of the dynamic needle tracking aim to quantify the825

capability to detect the needle in all volumes of a given ultrasound sequence, rather than test the ability

to detect the needle in the individual ultrasound volumes as in the static needle localization situation. In

particular, the failure rates with tolerance distances of 3 mm, 5 mm, and 10 mm that are computed in

the dynamic needle tracking situation quantify the percentages of the needle tracking trials in which the

needle axis error in any volume of the ultrasound sequence exceeds 3, 5, and 10 mm, respectively. In830

comparison, the computation of the three failure rate metrics in the static needle localization situation is

performed based on the individual ultrasound volumes that are extracted from the 3D ultrasound sequences.

Hence, the needle tracking performance analysis imposes higher requirements than the needle localization

performance analysis. The needle tracking results obtained by the proposed method show that the values of

the failure rate with tolerance distance of 3 mm obtained by employing our proposed method to track the835

needle insertions in the bovine muscle, porcine muscle, and bovine liver tissue specimens are 6.7%, 0.0%,

and 6.7%, respectively. Moreover, all values of the failure rates with tolerance distances of 5 mm and 10 mm

obtained by our proposed method for tracking the needle insertions in the three tissue types are equal to

0.0%. Hence, for each one of the 15 needle tracking trials that are performed for the porcine muscle tissue

specimens, our proposed method succeeded to track the needle in all ten ultrasound volumes that compose840

the 3D ultrasound sequence with needle axis error values smaller than 3 mm. However, for the 30 needle

tracking trials that are carried out for the bovine muscle and bovine liver tissue specimens, our proposed

method succeeded to track the needle insertions in 28 needle tracking trials with needle axis error values

smaller than 3 mm for all ultrasound volumes of the 3D ultrasound sequence. For each one of the two

remaining tracking trials that are performed for the bovine muscle and bovine liver tissue specimens, our845

proposed method succeeded to track the needle with axis error values smaller than 3 mm for nine ultrasound

volumes and needle axis error values between 3 and 5 mm for one of the ultrasound volumes that compose

the 3D ultrasound sequence. The results presented in Figs. 9, 10, and 11 indicate that the mean values

of the three performance metrics obtained by the proposed method for the three tissue types are relatively

consistent throughout the needle tracking process. Moreover, the mean values of the three performance850

metrics achieved in the dynamic needle tracking situation are comparable with the performance metrics

achieved by the proposed method in the static needle localization analysis. In comparison, for the vast

majority of the needle tracking evaluation trials, the ROI-RK method failed to achieve needle axis errors
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smaller than 5 mm for all volumes of the ultrasound sequence. For 33.3% to 40.0% of the needle tracking

evaluation trials, the ROI-RK method was able to track the needle in all volumes of the ultrasound sequence855

with axis errors smaller than 10 mm. The results in Figs. 9, 10, and 11 indicate that the error metric values

obtained by the ROI-RK method, which are computed for the tracking trials in which the axis errors of all

volumes in the sequence are less than 10 mm, are substantially higher than the error metric values achieved

by the proposed method. Furthermore, the results presented in Figs. 9, 10 and 11 suggest that the error

of tracking the needle using the ROI-RK method generally exhibits an increasing trend as a function of the860

volume number.

As described previously, an important advantage of applying the needle tracking procedure of our pro-

posed method is to limit the requirement of having direct line-of-sight between the camera and the nee-

dle to the first ultrasound volume of the 3D ultrasound sequence and the incidents of needle tracking re-

initialization. However, one constraint of applying the needle tracking procedure is the automatic error865

correction policy that assumes that the locations of the needle in two consecutive ultrasound volumes are

expected to be close. In fact, this assumption implies that if the difference between of the tracked needle

axis in the current ultrasound volume and the previous ultrasound volume exceeds 3 mm, then the dynamic

tracking of the needle in the current volume is re-initialized by localizing the needle using the static needle

localization procedure. This re-initialization process requires the physician to maintain direct line-of-sight870

between the camera and visible part of the needle located outside the body. Hence, in some clinical inter-

ventions that might not satisfy this assumption, such as the situations in which the relative motion between

the probe and the patient is high compared to the acquisition rate of the 3D ultrasound probe, the location

of the needle should be determined by processing each individual 3D ultrasound volume separately using the

static needle localization procedure, instead of applying the dynamic needle tracking procedure.875

The execution time of the proposed method in the static needle localization situation is 3.7 times faster

than the ROI-RK method. Moreover, the execution time of the proposed method in the dynamic needle

tracking situation is comparable to the ROI-RK method. These execution time results can be explained

as follows. In the static needle localization situation, the proposed method employed the camera-estimated

needle axis to define VOIAxis and all ultrasound-based analysis performed to refine the needle axis, including880

the phase congruency analysis and the MF-RANSAC algorithm, are limited to this VOI. Furthermore, the

application of the MF-RANSAC algorithm, which represents a computationally-intensive component of the

proposed method, is limited to the small set of edges that match the needle orientation. The refined needle

axis is used to generate VOITip and all needle tip computations are limited to this VOI. Hence, the proposed

method was able to achieve a mean ± standard deviation execution time of 0.32 ± 0.02 second. On the other885

hand, the needle axis estimation in the ROI-RK method involves the application of a 3D line filter on the

whole ultrasound volume to obtaine a 3D tubularness volume. The computationally-intensive MF-RANSAC

algorithm is then applied on the entire tubularness volume to estimate the needle axis and tip. Hence, the

mean ± standard deviation execution time of the ROI-RK method to localize the needle is 1.18 ± 0.04
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second. The execution time of our proposed method in the static situation is also lower than other previous890

methods that are introduced for localizing the needle in 3D ultrasound volumes, such as the method by

Mwikirize et al. (2017) that has an execution time of around 3.5 second and the method by Pourtaherian

et al. (2017) that has execution times between 2 and 4 minutes. In the dynamic needle tracking situation, the

needle axis computations in the proposed method are limited to VOIAxis that is estimated either using the

Kalman filter, if there is no need for re-initialization, or using the camera-estimated needle axis, if there is a895

need for re-initialization. The estimation of the needle tip match the computations performed in the static

needle localization situation. For the ROI-RK method, the computations performed to track the needle is

limited to a small VOI that is estimated using the Kalman filter when there is no need for re-initialization.

If there is a need to re-initialize, then the ROI-RK method applies the static needle localization algorithm.

Therefore, the mean ± standard deviation execution times of the proposed method and ROI-RK method in900

the dynamic needle tracking situation are equal to 0.19 ± 0.01 second and 0.20 ± 0.02 second, respectively.

One important factor that might affect the performance of our proposed method is the number of needle

marking points employed to perform the camera-based estimation of the needle axis. In fact, the results

reported in Table 3 indicate that the use of a number of needle marking points that is lower than 5, i.e.

3 or 4, decreases the accuracy of the camera-based needle axis estimation. However, the results reported905

in subsection 4.5 indicate that the error of estimating the needles axes using the camera-based analysis did

not exceed 10 mm regardless of the number of needle marking points employed to carry out the analysis.

Based on these results, if the camera-based needle axis estimation is performed using a number of needle

marking points that is lower than 5, then the size of VOIAxis can be increased to enable the ultrasound-

based analysis to localize the needle axis within a larger region around the camera-estimated needle axis.910

The analysis performed in the current study did not consider the effect of bending the needle on the accuracy

of the camera-based analysis. In fact, since the camera-based analysis assume that the needle has a perfect

linear structure, the error of estimating the needle axis using the camera is expected to be higher when the

needle is bended during the insertion process. The effect of bending the needle can be handled by increasing

the height and width of VOIAxis to enable the ultrasound-based analysis to search for the needle within a915

larger region around the camera-estimated needle axis.

The results reported in the current study suggest that the proposed method provides a promising approach

for localizing and tracking the needle in ultrasound sequences acquired using 3D motorized curvilinear

probes. The future directions include the extension of the proposed method to support needle localization

and tracking in 3D ultrasound sequences acquired by other types of 3D ultrasound probes, such as 3D920

phased-array ultrasound probes. Moreover, we plan to evaluate the proposed method using 3D ultrasound

volume sequences obtained during in vivo needle insertion procedures. In fact, clinical application of our

proposed method requires refining the size, shape, and layout of the plastic housing that attaches the camera

to the ultrasound probe and the use of a smaller camera to improve the usability of the imaging apparatus

in real-life medical applications. The execution time of the proposed method can be reduced using parallel925
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computing platforms, such as graphics processing units.

6. Conclusion

Needle localization and tracking in ultrasound volume sequences acquired using 3D motorized curvilin-

ear ultrasound probes is essential to improve the performance of many ultrasound-guided needle insertion

procedures. This study introduces a method to improve needle localization and tracking using 3D motorized930

curvilinear ultrasound probes. The method employs a low-cost camera mounted on the ultrasound probe to

obtain an initial estimate of the needle axis. This initial estimate is refined by generating a VOI around the

camera-estimated needle axis and applying ultrasound-based analysis to accurately localize the needle axis.

The ultrasound-based analysis include the extraction of a local phase congruency map and the application

of the MF-RANSAC algorithm. The location of the needle tip is determined using a probabilistic approach935

that quantifies the phase congruency around the estimated needle axis. Furthermore, the proposed method

supports dynamic needle tracking in a sequence of 3D ultrasound volumes by incorporating a Kalman filter

and a motion estimation algorithm. This needle tracking approach enabled effective estimation of the needle

axis and tip in all volumes of the tracked ultrasound sequence and restricted the need for the camera-based

estimation of the needle axis to be mainly at the first volume of the sequence. The proposed method was940

employed to localize and track needles inserted in different ex vivo animal tissue specimens. Moreover, the

performance of the proposed method was compared with the ROI-RK method described in (Zhao et al.,

2013). The results reported in the current study suggest the feasibility of applying the proposed method to

localize and track the needle in 3D ultrasound volume sequences.
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