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ABSTRACT 

A N-ary sorting system using an Integrated Droplet-Digital Microfluidics (ID2M) 

 

Fatemeh Ahmadi 

 

 

Droplet microfluidics has the ability to compartmentalize reactions in sub nano-liter (or 

pico) volumes that can potentially enable millions of distinct biological assays to be performed on 

individual cells. Typically, there are two main droplet operations that can be performed with these 

platforms: cell encapsulation and sorting. Droplet sorting has been a means to select a subset of 

reactions or activities that can be used for further manipulation and it has been used for single cell 

analysis and directed evolution. But one of the challenges with these techniques is that these are 

typically binary sorters – i.e. only relying on two sorting channels. This can limit the range of 

detecting rare events and to sort based on multiple conditions (i.e. more than two conditions). To 

alleviate this challenge, we have integrated droplet microfluidics with digital microfluidics to 

enable n-ary sorting techniques, which we call ‘Integrated Droplet-Digital Microfluidics’ (ID2M). 

Furthermore, our ‘ID2M’ microfluidic technique also allow on-demand droplet creation and 

droplet mixing which are two other operations that are difficult to perform in current droplet 

microfluidic platforms. ID2M is integrated to an automation system for on-demand manipulation 

of droplets and a spectrometer to detect droplet of interest. The ID2M platform has been validated 

as a robust on-demand screening system by sorting fluorescein droplets of different concentration 

with an efficiency of ~ 96 %. The device is further demonstrated for sorting tolerant wild-type and 

yeast mutants to ionic liquid. We propose that this system has the potential to be used for screening 

different types of cells and for performing directed evolution on chip. 
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Overview of Chapters 
 

This thesis describes the project I conducted and completed for my Master’s in Applied 

Science in Dr. Steve Shih’s research group at Concordia University. In this work, I aimed to 

develop an integrated droplet-digital microfluidic platform tailored to perform automated 

screening of library of biofuel organisms such as yeasts through on-demand mixing and sorting of 

droplets. This thesis provides a literature review on the history of miniaturization and microfluidic 

paradigms, an in-depth review of droplet, digital, and hybrid microfluidic platforms and their 

advantages and disadvantages, and finally a commentary on the state of biofuel production and its 

challenges. While assessing the technological challenges in screening libraries of microorganism 

in terms of lack of individual addressability in the existing platforms, I will then get into the core 

of my research, reporting the methodology utilized for the development of an integrated 

microfluidic platform, and validating the platform with experimental results. 

Chapter 1 will introduce microfluidics in the bigger realm of miniaturization, discuss its progress 

over time and its future market, and describe the three dominant paradigms. Then we elaborate 

on the two paradigms that my project is focused on and discuss their physics, applications, and 

challenges. 

Chapter 2 will introduce hybrid microfluidics and describe its superiority over the other 

paradigms owing to its combinatorial characteristics. Then, the novelty of the hybrid device 

fabricated in this project as well as the integrated automation system will be highlighted. 

Chapter 3 reviews the biological stakes that we will be addressing with our platform, presenting 

microfluidics screening techniques for analyzing biofuel microorganism with a special focus on 

the tolerance of yeast Saccharomyces cerevisiae cell in Imidazolium-Based Ionic Liquids in the 
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context of biofuel production. This commentary will lead to the presentation of my thesis 

objectives.    

Chapter 4 describes my methodology for integrating the processes needed for n-ary sorting of 

biofuel organisms on the ID2M platform. Device fabrication, assembly, operation with the 

automation system, syringe pump and the flame spectroscopy will be described before reviewing 

the method for generating an on-chip calibration curve for fluorescein. Finally, the macro-scale 

experiments that were done for generating ionic liquid tolerant yeast cells and the work flow for 

on-chip sorting of the generated mutants will be presented.  

Chapter 5 describes my results in validating the n-ary sorting system. Device characterization and 

optimization, proof-of-concept work by constructing a fluorescein calibration curve on chip, and 

applying our platform for studying the ionic liquid tolerance of two yeast mutants will be 

discussed.  

Chapter 6 provides concluding remarks regarding my work and its potential in screening library 

of microorganism. We will also evaluate future perspectives for ID2M platform and its potential 

application in directed evolution. 
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Abstract 

Digital microfluidics (DMF) is a technology that provides a means of manipulating nL-μL volumes 

of liquids on an array of electrodes. By applying an electric potential to an electrode, these discrete 

droplets can be controlled in parallel which can be transported, mixed, reacted, and analyzed. 

Typically, an automation system is interfaced with a DMF device uses a standard set of basic 

instructions written by the user to execute droplet operations. Here, we present the first feedback 

method for DMF that relies on imaging techniques that will allow online detection of droplets 

without the need to reactivate all destination electrodes while minimizing the biofouling within a 

given experiment. Our system consists of integrating open-source electronics with a CMOS 

camera with a zoom lens for acquisition of the droplet movements on the device. We also created 

an algorithm that uses a Hough transform to detect a variety of droplet sizes and to detect singular 

droplet dispensing and movement failures on the device.  As a first test, we applied this feedback 

system to testing the droplet movement of a variety of liquids used in cell-based assays and 

implemented a colorimetric cellulase assay to determine enzymes suitable for breaking down 

biomass for biofuel production.  We believe using our approach of integrating imaging and 

feedback with DMF can provide a platform for automating biological assays with high-fidelity. 

Vo, P.Q.N., Husser, M.C., Ahmadi, F., Sinha, H. & Shih, S.C.C. Image-based feedback and 

analysis system for digital microfluidics. Lab on a Chip 17, 3437-3446 (2017). 
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Abstract 

The expression of a recombinant gene in a host organism through induction can be an extensively 

manual procedure.  Several methods have been developed to simplify the protocol, but none has 

fully replaced the traditional IPTG-based induction.  To simplify this process, we describe the 

development of an auto-induction platform based on digital microfluidics.  This system consists 

of a 600 nm LED and a light sensor to enable the real-time monitoring of samples optical density 

(OD) coordinated with the semi-continuous mixing of a bacterial culture.  A hand-held device was 

designed as a micro-bioreactor to culture cells and to measure the OD of the bacterial culture.  In 

addition, it serves as a platform for the analysis of regulated protein expression in E.coli without 

the requirement of standardized well-plates or pipetting-based platforms.  Here, we report for the 

first time, a system that offers great convenience without the user to physically monitor the culture 

or to manually add inducer at specific times.  We characterized our system by looking at several 

parameters (electrode designs, gap height, and growth rates) required for an auto-inducible system.  

As a first step, we carried out an automated induction assay on a RFP reporter gene to identify 

conditions suitable for our system.  Next, we used our system to identify active thermophilic -

glucosidase enzymes which may be suitable candidates for biomass hydrolysis.  Overall, we 

believe that this platform may be useful for synthetic biology applications that require regulating 

and analyzing expression of heterologous genes. 

Husser, M.C., Vo, P.Q.N., Sinha, H., Ahmadi, F. & Shih, S.C.C. An Automated Induction 

Microfluidics System for Synthetic Biology. ACS Synth Biol 7, 933-944 (2018).



1 

 

Chapter 1. Lab on a chip: A Miniaturized World 
 

In this section, we will introduce microfluidics in the bigger realm of miniaturization, 

discuss its progress over time and its future market, and describe the three dominant paradigms. 

Then we elaborate on the two paradigms that my project is focused on and discuss their physics, 

applications, and challenges. 

1.1 Miniaturization technologies: Past, Present, and Future 

The origin of microfluidics devices goes back to hundreds of years ago where scientists 

were interested to study body fluids and behavior of liquids confined in small diameters. They had 

not micro devices, but they have been able to investigate some diseases. Later, in the 17th century, 

the famous Hagen–Poiseuille law for calculating the pressure drop in an incompressible and 

Newtonian fluid was established by studying a laminar flow through a long cylindrical pipe of 

constant cross section. 

Advancement towards microfluidics technology as we know it today, however, is 

intrinsically linked to the development of microelectromechanical systems (MEMS) and synthesis 

of new materials in the end of 1960s; when the primitive micro devices in capillary format were 

developed for micro-analytical studies like gas chromatography (GPC) at Stanford University and 

later for ink jet printer nozzles at IBM. 1, 2 

Another research field that has been a motivational force for the development of 

microfluidics system is the molecular biology and the genomics revolution in the 1980s.  Frequent 

transfer and/or dispensing of a small volume of liquid bio-samples (micro- or nanoliter level) 

between containers of varying sizes and onto substrates of varying types is the basis of most 
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biotechnological lab tests. This liquid handling, conventionally done by manual micro-pipetting2-

4, is needed for experiments like gene sequencing, protein crystallization, antibody testing, and 

drug screening. A need for analytical methods with much greater throughput and higher sensitivity 

and resolution, increased the demand for miniaturization and automation 

Although many integrated robotic workstations have been developed to automate liquid 

handling,4 the cost of the workstation, and the consumption of consumables (reagents, tips, plates, 

etc.) made microfluidics an interesting alternative technology to be used. Consequently, 

microfluidics has rapidly grown in popularity over the last few years, as indicated by the 

skyrocketing numbers of publications featuring microfluidic applications. Although in the early 

stage around 2000, most of the publications were focused on ‘‘synthetic chemistry’’, they later 

shifted toward cell-based analysis and more generally ‘‘biochemical experimentation’’ due to the 

microscale nature of these applications. Several labs-on-a-chip have been commercialized for 

some key applications such as glucose monitoring, breast cancer detection, HIV screening or heart 

attack diagnostics, and as laboratory hardware for procedures like single-cell analysis. According 

to the latest report published by Credence Research, Inc. Lab-on-a-Chip Market was valued at 

USD 4.16 Bn in 2015, and is expected to reach USD 9.06 Bn by 2025, expanding at a CAGR* of 

8.9% from 2017 to 2025. 5, 6  

Microfluidic system, also known as “labs-on-a-chip” (LOC) technology, is a devices 

capable of scaling a single or multiple laboratory functions down to a tiny hand-held chip. 

Microfluidics devices are capable of manipulating small (10–9 to 10–18 liters) volumes of fluids 

using channels with dimensions ranging from hundreds of nanometers to hundreds of micrometers 

or arrays of electrodes.2, 7 Reduction of sample/reagent consumption, shorter experiments time, 

                                                 
* The compound annual growth rate (CAGR) is a useful measure of growth over multiple time periods. 
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improvement of the precision of experiments, smaller device footprint, lower limits of detection, 

superior analytical performance, integration capacity, portability, and low costs are some of the 

salient advantages of microfluidics technology over conventional platforms.2, 8, 9  

There are three paradigms of lab-on-a-chip technologies (Figure 1-1) that are frequently 

used by researchers: 1) Continuous Flow microfluidics that enables manipulation of liquid flow 

through fabricated microchannels without breaking continuity.10, 11 2) Droplet-based microfluidics 

that manipulates only discrete volumes of fluids in a second continuous phase (gas or liquid) and 

each droplet serves as an individual microvessels.12, 13 3) Digital microfluidics in which discrete 

droplets are manipulated electrostatically on an open array of electrodes.14-16 

 

     

Figure 1-1– Microfluidic Paradigms. 

(a) Microchannels. Adapted from K. Hattori et al, 2009. 17 

(b) Droplets-in-channel. Adapted from M. Joanicot et al, 2005. 18 

(c) Digital Microfluidics. Adapted from D. Bogojevic et al, 2012. 19 

1.2 Continuous Flow Microfluidics 

Continuous flow microfluidics are based on the manipulation of continuous liquid flow 

through micro-fabricated channels. Samples and reagents are injected into the chip inlet either 

batch-wise or in continuous mode and the fluid flow is established by pressure gradients from 

a b c 
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external sources such as micro-pumps (e.g., peristaltic or syringe pumps) or internal mechanisms 

such as electric, magnetic or capillary forces.20, 21   

Channel microfluidics gained more popularity after 1998, when professor George 

Whitesides, one of the leaders in the field of lab-on-a-chip, presented the rapid prototyping of 

microfluidic systems in polydimethylsiloxane (PDMS) and fabrication procedure became much 

easier for researchers. 22 Since then, this platform has been widely used for many well-defined 

biochemical applications such as chemical separations,23 single cell/molecule analysis,24 and 

simple reactions with high surface area/volume ratio.25 Integration of microchannel microfluidics 

with different types of actuators, micro-valves, micro-pumps, and flow sensors has made these 

devices popular among high-throughput systems.10, 26-28  

A significant advantage of microchannels is the effective heat and mass transfer due to the 

higher surface area/volume ratio that has made these systems a potential platform for applications 

involving exothermic and endothermic reactions. Moreover, the ability to fabricate multilayer 

microchannels has led to the integration of microvalves relying on flexible membranes and 

pneumatic control layers that consequently increases the throughput of the system.10, 26-28 This 

compartmentalization enables multiplexing, by which ~ 106 independent compartments are 

formed; each containing volumes in the range of 10-100 picoliters.26 However, there is a trade-off 

between the throughput and simplicity of the system, because each compartment requires at least 

one valve. As the number of microvalves increases, fabrication procedures become more complex 

and precise alignment techniques are required to make a functional device. Besides, the more 

number of chambers and channels in device corresponds to more number of inlets and outlets as 

well as external pressure sources such as syringe pumps for fluid control that increases the 

complexity of the fabrication, manual intervention, expertise, and costs.  
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In microchannels, as dimensions shrink, the surface to volume ratio (S/V) increases and 

macro-scale forces such as inertia that keep liquid in motion become insignificant. However, 

viscous forces that are responsible for resistance of the body of liquid to deformations become 

extremely important in micro scale due to decrease in fluid mass. Dominance of each of these 

forces would change the regime of the flow. The dimensionless Reynolds number that relates the 

ratio of inertial to viscous forces is used to determine the type of flow expected in the system: 

Equation 1-1: Reynolds Number 

𝑹𝒆 =
𝑵𝒆𝒕 𝑰𝒏𝒆𝒓𝒕𝒊𝒂𝒍 𝑭𝒐𝒓𝒄𝒆𝒔

𝑵𝒆𝒕 𝑽𝒊𝒔𝒄𝒐𝒖𝒔 𝑭𝒐𝒓𝒄𝒆𝒔
=  

𝝆𝝂𝑳

𝝊
  

Where ρ stands for fluid density (kg/m3), v for the mean velocity (m/s), L for the characteristic 

length of the system, and υ for the kinematic viscosity (m2/s). Table 1.1 shows the nature of flow 

for different Reynolds number.29 

Table 1.1. Fluid Flow on the basis of Reynolds Number 

Range of Reynolds Number (Re) Nature of fluid flow 

Re < 2303 Laminar Flow 

2300 < Re < 4000 Transient Flow 

Re > 4000 Turbulent Flow 

 

One of the consequences of laminar flow in microchannels is that mixing requires quite a 

different approach, since there is no whirls or eddies of a turbulent flow. Therefore, liquids blend 

only by diffusion, which is very slow and needs optimization. Since mixing is an essential step in 

most lab-on-a-chip platforms, and reagents preparation is required for a variety of biological and 

chemical assays, alternative strategies have been developed to satisfy the recent demand for rapid 

and homogeneous mixing.30, 31 Generally, there are two types of mixing that can be induced in 
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channels: passive and active. Passive mixing is built up through specific geometry of the 

microchannels and it enhances mixing by increasing the contact area and contact time between 

multiple samples. In other words, passive mixing only relies on diffusion or chaotic advection. It 

requires no moving parts or energy input other than the pressure that is used for fluid flows. 

Lamination, intersecting channels, zigzag channels, 3D serpentine structure, embedded barriers, 

slanted wells, twisted channels, and grooved staggered herringbone are some of the major 

configurations that have been developed for passive microfluidic mixing schemes (Figure 1-2). 32-

38  

     

    

Figure 1-2. Passive mixing in microchannels. 

(a) Intersecting Channels: Photomicrograph of picoliter-volume mixer. Adapted from B. He et al. 

2001. 39 (b) Zigzag Channels: White-light microscopy image of a zigzag microchannel. Adapted 

from V. Mengeaud et al. 2002. 35 (c) Three-Dimensional Serpentine Structures: Staggered 

herringbone mixer (SHM).Adapted from A.D Stroock et al. 2002. 40 (d) Embedded Barriers: 

Schematic diagrams of static mixer with qualitative mixing profiles. Adapted from M.K. Singh et 

al 2009. 41 

c d c 

a b 
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Although utilizing complex geometries for chaotic advection is not an expensive method, 

but these schemes have a lower mixing efficiency and one needs to design longer mixing channel 

to achieve a satisfactory mixing result for high throughput systems. Hence, the other type of mixing 

strategies known as active mixing has been designed that employs external energy sources to create 

disturbances and speed up the diffusion process, such as acoustic/ultrasonic,42-44 electrokinetic 

time-pulse,45-47 dielectrophoretic,48-50 electro-hydrodynamic,51 magnetic,52-54 or thermal55, 56 

techniques (Figure 1-3). Nevertheless, active micro-mixing is still expensive and challenging due 

to the required external actuations and the complicated fabrication process. Furthermore, the 

integration of active mixers in a microfluidic system is often complex. Another debatable feature 

in this paradigm is the essence of continuity that comes with laminar flow and limits the 

applications. There is no individual addressability for all the functions including mixing and 

sorting and samples are studied in series in microchannel channels.  

        

Figure 1-3. Active Mixing in microchannels.  

(a) Acoustic Mixing: through utilizing piezo transducer. Adapted from D. Ahmed et al. 2009.42 (b) 

Electro-kinetic mixing: through micro-electrodes actuation on the substrate layer. Adapted from 

M. Campisi et al. 2009. 48(c) Thermal mixers: a thermal bubble actuated nozzle-diffuser micro-

pump. Adapted from J. Tsai et al. 2002. 56 (d) Magnetic mixer: utilizing AC electromagnetic field. 

Adapted from C.Y Wen et al. 2009. 53
 

a 

c 

b d 
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1.3 Droplets-in-Channel Microfluidics 

Unlike continuous flow microfluidics, droplet based microfluidics manipulates only 

discrete volumes of fluids. The laminar flow of two immiscible liquid or gas-liquid in 

microchannels with certain geometries enables the generation of monodisperse droplets usually at 

rates in the thousands of droplets per second and these micro-droplets can serve as isolated micro-

reactors. Indeed, droplet-based microsystems enable miniaturization of reactions by confining 

reagents in droplets of femtoliter to microliter volumes. Droplets can be generated,57 mixed,57 

sorted,58-60 split,61 and merged with other droplets 62, 63 on chip. Confining reagents in droplets and 

the singularity of each droplet, brings various benefits and adds more functional features to the 

system including eliminating the risk of cross-contamination, rapid mixing of reagents, control of 

the timing of reactions and the ability to manipulate reagents with high throughput (10-100 kHz). 

Moreover, samples can be stored and incubated in liquid droplets over a long period of time 

without evaporation.12, 64 These advantages make droplets-base microfluidics a suitable platform 

for chemical and biochemical screening, protein crystallization,65 magnetic bead based assays,66 

chemical synthesis,67 single cell high-throughput analysis,68-70 enzymatic kinetics,71-73 and 

assays74, 75. Furthermore, such a high throughput system with multiphase-fluid flow opened a new 

horizon of possibility in other applications such as emulsions for nano-particle synthesis,76 cell-

based drug delivery77, 78 etc.  

To increase the functionality of droplet-based platforms for a wider range of application 

and to have more control over droplets, many functional components have been developed 

including in-channel guiding and sorting using rails,79-81 laser forcing,82 or electrostatic charging83-

85. 
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While the use of micro-droplets can bypass certain limitations (i.e. like throughput, and 

analytical efficiency) that exist in conventional process conditions, there are still some 

disadvantages that makes less number of researchers to adopt microfluidics in their daily 

workflow. For instance, connections to external equipment such as pumps, tubing are complex and 

it even becomes more complicated for experiments running with multiple reagents. Although, 

many of the functions required for biological and chemical reactions like mixing, sorting, and 

splitting are done in droplet-based microfluidics, but for multiple reagents (i.e. more than three) 

there are still challenges. Moreover, in the field of biological application, the high speed 

manipulation of droplets has made the individual addressability a challenge. In multi-step long-

term processes for example, reagent addition, staining, and media exchange is complicated.  

1.3.1 Fabrication of the Droplet-based Microfluidics 

Droplet microfluidic devices are mostly fabricated by soft lithography techniques 22 in an 

elastomeric material called poly(dimethylsiloxane) (PDMS). The fabrication procedure of PDMS-

based microfluidics starts by designing the network of the microfluidic channels in a CAD 

software. The design is printed as a mask with transparent features with a very high resolution. 

Using this transparency mask and a silicon wafer coated with a negative resist, a master mold is 

fabricated by standard photolithography procedures that can be used several times for soft 

lithography. The PDMS polymer is mixed following standard procedures,22 and then poured over 

this mold, and left to cure, after which the polymer can be peeled off and diced. To seal the 

microchannels, the surface of the PDMS is oxidized in an oxygen plasma and is irreversibly 

bonded to a flat substrates like a slab of PDMS, glass, silicon, silicon oxide, or oxidized 

polystyrene. Although PDMS is inherently hydrophobic, in order to have a smooth flow of the 

fluorinated oil in the channels and form stabilized water-in-oil emulsions, various surfactants have 
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been developed to wet the microchannel walls of the PDMS such as Aquapel® that contains 

fluorinated silane and improves the surface hydrophobicity of PDMS. 22, 86 One of advantages of 

using PDMS is the materials permeability to O2 and CO2, which allows live cells to be 

encapsulated within the channel. PDMS-based microfluidic chips are well established and are 

being vastly used by researchers; nevertheless, accurate alignment of structure features on different 

PDMS layers is still an issue in multilayer microfluidic structures.  

However, there have been also other methods being developed that use other materials such 

as fused silica,87 thiolene resin,88 poly(methyl methacrylate) (PMMA)89, 90, polystyrene (PS),91 and 

fluorinated thermoplastic polymers92.   

 

 

Figure 1-4. PDMS-based microfluidic device fabrication by photo- and soft lithography.  

Adapted from Y. Ma et al, 2014. 93 
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1.3.2 Droplet formation: Active and Passive  

For many of the applications, the potency of droplet-based microfluidic systems lies in the 

formation of uniform droplets and particles, thus fine control over the size and shape of droplets 

is of the utmost importance. To achieve this objective, a variety of techniques have been developed 

for droplet generation. In general, droplet generation originates from flow instabilities between 

two immiscible liquids. The developed methods to create this instability inside channels are either 

passive or active. Passive methods are mostly used and these methods do not require any moving 

parts or external actuation. There are three main strategies for this continuous pressure-driven 

generation of droplets and they are characterized by the nature of the flow field near pinch-off 

(Shown in Figure 1-5): (1) breakup in co-flowing streams, (2) breakup in cross-flowing streams 

and (3) breakup in elongational or stretching dominated flows (mostly known as T-junction).94 

 

Figure 1-5. Schematic of the three microchannel geometries used for droplet generation.   

(a) Flow focusing streams, (b) Co-flowing streams, and (c) cross flowing streams in a T-shaped 

junction. Reproduced with permission from Applied Physics.95
 

In general, two immiscible fluids are driven into microchannels by a pressure-driven flow 

and these two streams meet at a junction in such a way that the dispersed phase liquid extends to 

form a “finger” or “jet” due to the shear forces generated by the continuous phase. The head of the 

finger-shaped liquid elongates until the neck of the dispersed phase thins and eventually, a droplet 

pinches off from the dispersed phase finger by a free surface instability. Droplet formation and the 

liquids flow is controlled either by the volume flow rate or the applied pressure. In addition to the 

a b 
c 
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geometry of the junction and the volumetric flow rates of the two fluids, surface/interfacial 

chemistry also plays an important role in droplet generation. Many fluorosurfactants have been 

reported to decrease interfacial forces and help droplet generation.94, 95 

Active methods, in comparison with passive techniques, use external elements and have an 

active control on droplet formation with a fast response time. This feature brings higher flexibility 

to the system in terms of controlling droplet size and production rate and expands droplet 

microfluidics application for some extreme situations such as utilizing highly viscous liquids as 

dispersed phase and for on-demand droplet generation for deterministic cell-in-droplet 

encapsulation.  

Generally, droplet formation is a result of liquids instability and force imbalance on the 

interface. Forces that affect droplet formation are either intrinsic including inertial, viscous, and 

capillary or external like electrical, magnetic, centrifugal, optical, thermal, and mechanical. Active 

control is modifying or applying any of the aforementioned intrinsic or external forces 

respectively. Intrinsic forces can be modified by manipulating the dynamic velocity and material 

properties, including viscosity, interfacial tension, channel wettability, and fluid density.94  

For both methods, to avoid coalescence and cross-contamination of the generated droplets 

two strategies have been employed; first, using fluorocarbon oils as the continuous phase instead 

of hydrocarbon oils, as these oils are hydrophobic and lipophobic thus have low solubility for the 

biological components of the dispersed phase. They also prevent molecular diffusion between 

droplets. Fluorocarbon oils result in less swelling of PDMS and due to their good solubility for 

gases, they allow sufficient gas exchanges to maintain cell viability for extended periods of time. 

Second, several biocompatible fluorosurfactants have been developed to help stabilizing the water-

in-oil droplets.96, 97 
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1.3.3 Droplet manipulation 

Various methods of manipulating droplets have been developed by researchers. Droplets 

can be mixed, split, fused, coded and sorted on chip either in active or passive mode. To perform 

such manipulations, passive methods employ various channel geometries while active methods 

use external resources such as electrohydrodynamic, and magnetic forces to manipulate droplets. 

I will specifically explain mixing and sorting operations which are the two developed functions in 

this project.  

(i) Mixing, Droplet Coalescence, and Picoinjection  

Mixing of multiple reagents is an essential step for carrying out and studying the kinetics 

of biological and chemical reactions. There are generally three schemes of mixing in droplet-based 

microfluidics. One is mixing various reagents confined within a droplet. Droplets are formed by 

using multiple streams of reagents introduced to the device individually from distinct branches. 

Because the droplet’s diameter is greater than the microchannel’s width, the droplet forms a plug 

that has contact with the channel’s wall (Figure 1-6). This interface with the channel’s wall makes 

a double recirculating flow pattern within the droplet, which acts like a turbulent flow and enhances 

the rate of mixing inside the plug. This recirculating flow actually, is the result of shear forces 

from either the continuous phase fluid or the channel wall. Using winding channels configuration, 

uneven shear forces are made on sides of the plugs leading to a phenomenon known as “stretching 

and folding” that consequently results in a faster mixing droplet contents. Varying the relative flow 

rates of the reagents varies the concentration of the reagents within the plug.12, 64, 98 This method 

however, is not suitable for multistep reactions that needs reagents to be added in a certain time 

one after another. 
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Figure 1-6. Mixing multiple reagents confined within a single droplet.  

Generating uniform plugs out of multiple reagents streams – Adapted from H .Song et al, 2003.64 

The second scheme of mixing is merging two droplets with different contents. As with 

previous fluidic operations, mixing schemes can also be categorized as either “passive”, where 

novel channel configurations have been implemented to enhance rapid internal mixing, or “active”, 

where an external energy force such as hydrodynamic and magnetic is applied to make disturbance 

inside microchannels. In both strategies, to initiate droplet coalescence of surfactant-stabilized 

droplets, two conditions are required to be satisfied: bringing droplets into close contact by 

draining the continuous phase separating the two droplets and disrupting their stabilizing surfactant 

layer by causing an imbalance in their surface tension.61, 98, 99 

To fulfill these pre-requisites, passive methods mostly rely on the precise control over the 

individual droplets velocity and channel geometries to cause relative motion of two droplets. Two 

droplets thus gradually come close to each other and eventually coalesce. Incorporation of an 

expanded portion100 and pillar structures 62 inside the microchannels are two of the most common 

geometry modifications for passive mixing (Figure 1-7Figure 1-7a, b).  

Although passive mixers have simpler designs, less possibility of inter-droplet 

contamination and are more biocompatible in comparison with active techniques, they are limited 

by their mixing rate and have much lower throughput. 101, 102 
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For surfactant stabilized droplets, active fusion methods are employed, as it is normally not 

possible to fuse those droplets using passive techniques. Active methods usually use electric fields 

to merge droplets. Electrocoalescence, dielectrophoresis (DEP), and optical tweezers are some of 

the prevalent strategies for active mixing. Priest et al. demonstrated a device for electrocoalescence 

of tightly packed droplets with a very low voltage of 1 V DC. They placed two electrodes parallel 

to the microchannel and applied a range of AC and DC voltages to rapture the surfactant layer 

between droplets and fuse them together (Figure 1-7c).103 Another approach is to induce 

coalescence of droplets without using electrodes and by imposing an opposite electrical charge on 

different groups of droplets once they are generated. Then, in the presence of an electric field, 

oppositely charged droplets become fused together. The main disadvantage of this method is in 

applications with multiple mixing steps which requires recharging the neutral mixed droplets 

(Figure 1-7d).83 Applying DEP forces on differently-sized droplets is another strategy for active 

mixing. In this method, droplets of different sizes are generated and once they are in the main 

channel, the smaller droplets run faster in comparison with the larger ones and pair with them. 

These paired droplets become fused when passing through a microchannel surrounded by two 

parallel electrodes. Precise timing and flow rate is challenging in this method (Figure 1-7e).104 

Another DEP mixing protocol, is trapping droplets in a side chamber adjoining the main fluidic 

channel by applying a DC voltage and inducing DEP force on the desired droplets to move in a 

specific direction. Once a second type of droplet containing a different reagent is passing by the 

chamber, a DC voltage is again applied which brings the trapped droplet in contact with the passing 

droplet resulting in their fusion. In general, DEP can be used to manipulate droplets that are 

dielectrically distinct from the continuous phase composition. For example, dielectric permittivity 

of water is much higher than that of oil (ɛH2O ≈ 81, ɛoil ≈ 2.5).61, 105  
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a      b      

 

c  d  

 

e     f   

 

Figure 1-7. Passive and active droplet coalescence. 

(a) Droplet fusion through channel geometry modification – Adapted from N. Bremond et al, 2008. 
100(b) Passive droplet fusion by destabilizing the liquid flow using pillar structures inside 

microchannels – Adapted from X. Niu et al, 2008. 62 (c) Controlled electrocoalescence of tightly 

packed droplets within 100 μs with voltage as low as 1 V DC – Adapted from Priest et al, 2006. 
103 (d) Coalescence of electrically charged droplets in presence of an electric field – Adapted from 

D. Link et al. 2006. 83(e) Active droplet fusion using DEP force on differently sized droplets– 

Adapted from K. Ahn et al. 2006. 104 (f) On-demand mixing of two droplets using trapping 

mechanism and DEP –Adapted from W. Wang et al, 2009. 105 
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In addition to the higher efficiency of these active mixers, on-demand mixing of certain 

droplet pairs upon an upstream detection, is one of the main benefits of electrically controlled 

fusion which also helps automating the system. Integrating the external electronic elements 

required for on-demand control, however, adds to the complexity of the system operation and its 

fabrication process. Moreover, due to electrode actuation and possible deposition of droplets’ 

contents on the electrodes, cross contamination between droplets becomes a concern. Furthermore, 

biocompatibility of the high voltage applied in some of the active methods on biological 

components such as DNA or proteins is still debatable. 98, 99 

Some other protocols for droplet mixing have also been exploited including different 

combinations of hydrodynamic stress and electric field,106-108 thermocapillary,109, 110 magnetism111 

and acoustics112. In spite of all the considerable advantages of these on-demand mixing methods, 

it is still difficult to perform multiple additions, since several streams of droplet should be 

synchronized. 

An alternative to mixing droplets of different contents, is adding reagents into passing 

droplets (Figure 1-8). In this technique, several narrow hydrophilic T-junction channels are 

designed to introduce new reagents to the passing droplets in the main channel.113 This method 

however, has several disadvantages including significant possibility for contamination due to 

direct contact of droplets with the reagents stream, and less control over the volumes of the 

reagents added to a passing droplet. Moreover, this technique is not applicable for surfactant 

stabilized droplets, as the surfactant layer on the droplet surface prevents reagents addition to the 

droplet. To address this issue, Abate et al. reported an electric field controlled addition of a defined 

volume by direct injection into a passing droplet. In this method passing droplets pass by the 

reagents stream without coalescing to it due to the presence of surfactant on all interfaces. 
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Switching on the electric field disrupts this stabilized layer and the liquid from the adjoining 

channel is injected into the passing droplet.114 Nevertheless, this techniques needs precise control 

over the flow rate of the aqueous phase and timing of the interval between droplets. 

a  

b   

Figure 1-8. Adding Reagents into Passing Droplets.  

(a) Passive injection of reagents into droplets – Adapted from L. Li, 2007 113 (b) Pico-injection of 

reagents by electric actuation – Adapted from A. Abate et al, 2010. 114  

(ii) Sorting  

Sorting is another important operation for isolating droplets of particular interest and 

purifying samples for further analysis and has many application in cell studies such as circulating 

tumor cells and drug screening. Droplet sorting and distinguishing different subsets of droplets is 

based on a characteristic of the droplet or droplet’s content. Similar to other on-chip function, 

sorting can also be done either in passive or active mode. While passive sorting mechanisms mostly 

rely on channel geometries and gravity and uses droplet size as the discriminating characteristic, 

active sorting, employs various types of labels in droplets to differentiate groups of droplets.99, 115 

An example of size-based sorting using channel geometry is the setup demonstrated by 

Griffiths et al (2009) (Figure 1-9a). In this setup, droplets with larger and smaller dimensions are 
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generated and collected to flow together in a main channel that its depth is set to be between the 

sizes of two droplets. The larger droplets flow slowly and smaller droplets are trapped in between 

the larger ones. Downstream, the main channel branches into two narrowing side channels and a 

widening channel in center. The smaller droplets that are not constrained by the walls of the device 

and flow near the wall of the channel, enter the side channels while the larger droplets move along 

the wider central channel.116 Huh et al (2007) developed a gravity driven microfluidic droplet 

separation system to purify perfluorocarbon droplets from a polydispersed emulsion (Figure 1-9b). 

The theory of this mechanism is that the sedimentation velocity of larger particles is greater than 

that of smaller particles at a given density. Therefore, larger droplets move toward the bottom 

channel. Asymmetrical design of the daughter channel enhances the droplet separation117. 

Although the implementation of passive sorting is simple, this technology is limited with its fixed 

geometry. Using a single device, only a certain range of droplet sizes and speeds are amenable for 

sorting. Moreover, this size-dependent sorting is not applicable for categorizing droplets of similar 

size. Their efficiency is also not comparable to active methods due to a weak control over droplets 

movements. 

a   b  

Figure 1-9. Passive sorting methods. 

(a) Size-based sorting using channel geometry – Adapted from L. Mazutis et al, 2009. 116 

(b) Gravity-driven size-based sorting – Adapted from D. Huh et al, 2007.  117 
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In active sorting techniques, prior to the controlled separation, the target group of droplets 

are required to be detected with an external source such as a photomultiplier tube (PMT) and 

optical fibers. For droplets to be detected they are usually labeled with a marker like fluorescent 

and magnet beads, or their encapsulated cells contain fluorescent proteins as a biomarker. 61, 98 

 One of the first developed and popular active sorting strategy is through using DEP forces. 

When an AC electric field is applied across the electrodes that are placed either beneath the 

microfluidic channels or adjacent to the sorting junction, droplets are deflected to the desired 

pathway. Baret et al. demonstrated a fluorescence activated droplet sorting system based on 

enzymatic activity and achieved sorting rates of around 300 droplets per second with false positive 

error rates of 1 in 104 droplets. 60 To surpass throughputs of a few kilohertz, Sciambi et al, 

presented a new geometry of the collection channels that replaces the hard divider separating the 

outlets with a gapped divider. With this new geometry they could accurately sort droplets at 30 

kHz with > 99% accuracy. 118 Using DEP, Gielen et al, has also reported an ultrahigh-throughput 

(300 droplets per second or >1 million droplets per hour) absorbance-activated droplet sorting with 

a false-positive rates of below 5%119. In addition to DEP based sorting, other methods have also 

been demonstrated by various groups such as surface acoustic wave actuated sorting,120 pneumatic 

valve actuated sorting,121 pressure actuation sorting using a solenoid valve,122 magnetic particle 

sorting,123 and  electrostatic droplet charging and sorting based on the polarity of the charged 

droplets. 85 In spite of the very high throughput and efficient sorting of the developed methods, 

they all lack some important features like the ability to do multiple sorting that is required in some 

applications like directed evolution or single cell studies. Moreover, all of the mentioned protocol 

can only analyze droplets in series and individual addressability is not possible.  
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a  b 

c  d  

e       f  

Figure 1-10. Active sorting mechanisms. 

(a) Fluorescence-activated DEP-based sorting – Adapted from J. Baret et al, 2009. 60(b) Geometry 

modification for enhancing DEP-based droplet sorting – Adapted from A. Sciambi et al, 2015. 118 

(c) absorbance-activated droplet sorting – Adapted from F. Gielena et al, 2016. 119 (d) Pressure 

actuation sorting using solenoid valve – Adapted from Z. Cao et al, 2013. 122 (e) Magnetic sorting 

– Adapted from K. Zhang, 2009. 123(f) Electrostatically sorting of charged droplets based on their 

polarity – Adapted from B. Ahn et al, 2011.85 
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1.3.4 Droplet-Based Microfluidics for single cell studies 

Compartmentalizing reactions by isolating single molecules and cells into droplets have 

been investigated since 1950s, but the idea did not come true until the advent of droplet 

microfluidics. The highly reproducible and on-demand fabrication of microfluidic devices allows 

for analyzing different reaction conditions. Moreover, droplet-based microfluidic enables fast 

sensitive (qualitative and quantitative) detection of secreted biomolecules from cells inside 

droplets through integration with the modern analysis systems. In comparison with bulk 

experiments, droplets act as tiny reactor containers, in which the concentration of cell-produced or 

excreted compounds, is much higher and thus easier to analyze. Furthermore, the multi-parallel 

and high-throughput platform is promising for studying libraries of biological component like 

enzymes or cells.98 

In addition, single cell encapsulation in droplets, enables studying the potentially important 

heterogeneity of individual cells and analysis of rare cells by separating them from the whole 

population. Gene expression, phenotypic variation, quorum sensing and screening of protein 

libraries for in vivo directed evolution, and drug screening of cancer cell lines have been 

demonstrated in micro droplets at single cell level using stochastic confinement. 98, 124-126  

In order to make the most use of droplet microfluidics for cell analysis, encapsulation of 

cells in droplets with control over cell occupancy and droplet size is crucial. Various methods have 

been demonstrated to control the number of cells in droplets such as stochastic loading at low cell 

density,127 optical trapping,128 bio-electrospraying,129 and inertial focusing 130. The number of cells 

in each droplet follows the non-uniform Poisson distribution (Figure 1-11), meaning each droplet 

might contain one, two, three, or no cells, stochastically. The Poisson distribution is given by:  
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Equation 1-2: Poisson distribution 

                                   𝒑(𝒌, 𝝀) =
𝝀𝒌𝒆−𝝀

𝒌!
  

where k is the number of cells in a droplet and λ is the average number of cells per droplet volume. 

For a given oil-water flow rates and system geometry, where the average cell and droplet volume 

�̅�𝑐 and �̅�𝑑are constant, λ can be defined as the ratio between the volume fraction of cells in the pre-

encapsulation solution 𝜙𝑠 and that of a droplet containing one cell, defined as:𝜙𝑑 =  
�̅�𝑐

�̅�𝑑
. Thus, λ 

can also be expressed as:  

Equation 1-3: Lambda λ value for a given fluids flow and channel geometry 

𝝀 =  
𝝓𝒔

𝝓𝒅
 

 

 

Figure 1-11. The Poisson distribution. 

The proportion of droplets p(λ, k) containing a given number of cells k is shown for different 

discrete values of λ. Adapted from D. Collins et al, 2015 127 
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1.4 Digital Microfluidics 

During the last decade, a new microfluidics technology has emerged called digital 

microfluidics (DMF), although in the early stages, it literally has the greatest potential to make 

lab-on-a-chip slogan truly possible and brings all laboratory instruments and components onto a 

hand-held device. This idea was first introduced in the late 1990s and was inspired by digital 

microelectronics for timed motion of fluids, with accurate control, representing an alternative to 

the conventional paradigm of transporting fluids in enclosed channels. 131, 132  

In digital microfluidics, picoliter–microliter sized droplets are manipulated on arrays of 

electrodes by the controlled application of voltages.15, 16, 133 Through sequential actuation of 

electrodes, droplets can be individually made to merge, mix, split, and dispense from reservoirs. 

 

Figure 1-12. Droplet Manipulation on DMF. 

Adapted from K. Choi et al, 2012134 

 

This technology gives the big advantage of fluid motion and control without pumps and 

valves, and eliminate the clogging problem that is an issue in enclosed channels. The principal 

difference is that in digital microfluidics, droplets are addressed individually, whereas in channels, 

they are controlled in series. Digital microfluidics is well fit with a wide diversity of biomedical 

applications that can be parsed into manageable components given its advantages of being 
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programmable, reconfigurable, reusable, and its ability to speed up the process through massive 

parallelization.7, 133 

Two configurations of DMF devices have been developed: single-plate (open), and two-

plate (closed) devices (Figure 1-13). In the two-plate DMF, droplets are sandwiched between two 

substrates: bottom plate bearing arrays of actuation electrodes and top plate acting as a continuous 

ground electrode which is usually made of a by a transparent, conductive indium tin oxide (ITO) 

layer. In open configuration, however, both actuation and ground electrodes are patterned on the 

bottom plate. In both types of DMF, a layer of insulating dielectric such as Parylene C is coated 

on bottom plates and a layer of hydrophobic coating like Teflon covers all the surfaces in touch 

with droplets. Both types of DMF are widely used for a wide range of application. Nevertheless, 

the one-plate configuration is less popular, as it is not capable of splitting and dispensing due to a 

weaker electric field.134  

 

Figure 1-13. Single-plate and two-plate configurations for DMF. 

Adapted from Choi et al.134 
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1.4.1 Digital Microfluidic Theory 

In the broad field of biomimicry, scientists have been fascinated by the way nature has 

engineered “self-cleaning” lotus leaves or “fog-collecting” Stenocara beetle for a long time  and 

there have been many researches in developing artificial mimics with similar properties to control 

the surface wettability by fluids.135 One of the strategies for tuning the surface’s wettability found 

to be applying pulses of electric potential which later was explained by a phenomenon known as 

“electrowetting”.136-138  Electrowetting-on-dielectric (EWOD) is a phenomenon can be applied to 

control aqueous liquids. EWOD utilizes the change in contact angle of a droplet sitting on a 

substrate when charge is accumulated on the dielectric layer separating the liquid and the 

conducting substrate by means of an electric field.138  

When properly sequenced, this change in contact angle can motivates transporting a droplet 

from one charged region to another. This phenomenon has been used as tool for modulating fluid 

position in digital microfluidics by placing droplets on an array of electrodes coated with an 

insulator and sequentially applying electrical potential to adjacent electrodes on a path, thus 

enabling on-demand movements of droplets.135  

In the earliest theoretical attempt for estimating the driving forces in EWOD, there was a 

thermodynamic approach using the Young-Lippmann equation: 

Equation 1-4: Young-Lippmann Equation 

                                    𝐜𝐨𝐬 𝜽𝒘 = 𝐜𝐨𝐬 𝜽𝟎 +
𝜺𝟎𝜺𝒓𝑽𝟐

𝟐𝜸𝑳𝑮𝒕
  

 

Where θw and θ0 are the wetted and static contact angles, respectively; ε0 and εr are the 

permittivities of free space and of the dielectric, respectively; V is the applied voltage; γ is the 

liquid/filler media surface tension (air or oil); and t is the dielectric thickness. In this model, droplet 
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movement is assumed to be due to capillary pressure resulting from asymmetric contact angles 

across the droplet. 

 To adopt a dynamic model of the droplet motion after deformation from Equation 1-4 (as 

this equation only accounts the static contact angles), the driving force F in this model can be 

expressed as: 

Equation 1-5: Driving force using Young-Lippmann 

                             𝐅 = 𝐋𝜸𝑳𝑮(𝐜𝐨𝐬 𝜽𝒘 − 𝐜𝐨𝐬 𝜽𝟎) =
𝜺𝟎𝜺𝒓𝑳𝑽𝟐

𝟐𝒕
  

Where F is the driving force and L is the length of the contact line overlapping the actuated 

electrode. This driving force is often referred to as the “EWOD force”. 134  

However, it has been shown that for a liquid with a certain conductivity and dielectric 

constant, the electric field in the contact line (i.e, between liquid and dielectric layer) at certain 

frequencies can potentially change the contact angle, but this phenomenon is not necessary for 

liquid motion. Droplets of chloroform or toluene for example, can be moved on electrodes without 

any apparent change in their contact angle. 139, 140 Upon discovery of the fact that the theory behind 

electrowetting does not apply to dielectric liquids 141 and fluids with low surface tension,139 the 

term “Digital Microfluidics” emerged. Moreover, the thermodynamic approach fails in explaining 

contact angle saturation (i.e. there is a limit on contact angle change when increasing the applied 

potential), and liquid-dielectrophoretic force, which is predominant at high frequencies.14 

In fact, the EWOD force itself is a purely electrostatic phenomenon that applies equally to 

conducting solids and fluids. This being said, electrostatic fields have two observable effects upon 

the hydrostatics of liquids. First, in presence of a nonuniform electric field, a net force is applied 

on the liquid and second, the contact angle of the liquid on a dielectric surface changes. For the 
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case of arrays of electrode coated with micron-thick dielectric in DMF both of these effects are 

mostly assumed to be electromechanical, however, depending on the conditions, they can also 

occur in independently. 

Considering the wetting as a result of the exerted forces on the droplet, the most accurate 

way to estimate the forces on the droplet in DMF is adopting an electromechanical approach and 

using a circuit diagram. The amount of energy stored in this system is calculated as a function of 

the applied voltage frequency and droplet position along the direction of translation. 142 Here is the 

Equation 1-6 representing the amount of energy, E, of the system: 

Equation 1-6: Energy equation using electromechanical model 

𝑬(𝒇, 𝒙) =  
𝑳

𝟐
(𝒙 ∑

𝜺𝟎𝜺𝒓𝒊,𝒍𝒊𝒒𝒖𝒊𝒅𝑽𝒊,𝒍𝒊𝒒𝒖𝒊𝒅
𝟐 (𝒋𝟐𝝅𝒇)

𝒅𝒊
+ (𝑳 − 𝒙) ∑

𝜺𝟎𝜺𝒓𝒊,𝒇𝒊𝒍𝒍𝒆𝒓𝑽𝒊,𝒇𝒊𝒍𝒍𝒆𝒓
𝟐 (𝒋𝟐𝝅𝒇)

𝒅𝒊
𝒊𝒊

) 

 

where L is the dimension of the droplet (estimated by the cross-section of the drop), εri,liquid, Vi,liquid 

and εri,filler, Vi,filler are the relative permittivity and voltage drop for the liquid and filler fluid portions 

of the electrode, respectively, and di is the thickness of layer i (corresponds to the dielectric, 

hydrophobic, liquid or filler layers). Differentiating the energy calculated in Equation 1-6 with 

respect to x yields the driving force as a function of frequency: 

Equation 1-7: Force equation using electromechanical model 

𝑭(𝒇) =
𝝏𝑬(𝒇, 𝒙)

𝝏𝒙
=  

𝑳

𝟐
(∑

𝜺𝟎𝜺𝒓𝒊,𝒍𝒊𝒒𝒖𝒊𝒅𝑽𝒊,𝒍𝒊𝒒𝒖𝒊𝒅
𝟐 (𝒋𝟐𝝅𝒇)

𝒅𝒊
− ∑

𝜺𝟎𝜺𝒓𝒊,𝒇𝒊𝒍𝒍𝒆𝒓𝑽𝒊,𝒇𝒊𝒍𝒍𝒆𝒓
𝟐 (𝒋𝟐𝝅𝒇)

𝒅𝒊
𝒊𝒊

) 

 

The key advantage of the electromechanical model is that it takes into account the frequency of 

the applied voltage on droplets across each layer and portion of the device – it represents the stored 

energy that results in an applied force.  
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 From this, we can calculate a critical frequency (fc) for each device geometry and the 

liquids being operated.142 Below the critical frequency, the voltage drop occurs across the dielectric 

layer and we can apply the equations relative to the EWOD model. The force that is driving the 

droplet at low frequencies comes from charges accumulation near the three-phase contact line, 

which are being pulled toward the actuated electrode electrostatically. The magnitude of this force 

depends on the capacitive energy stored within the dielectric. When we apply frequencies above 

fc, the liquid is purely insulating and an electric field gradient is generated across the droplet, 

generating a liquid-dielectrophoretic force (DEP) to pull the droplet toward the activated electrode. 

Here, the magnitude depends on the difference in permittivity between the liquid and filler medium 

(air, in our case). In DMF, droplets are manipulated by AC frequencies in the order of kHz and the 

majority of the voltage drops across the dielectric. 142 When inserting this range of frequencies in 

Equation 1-7, we obtain an estimation of DMF forces with magnitudes in the range of μN, which 

can be applied to a wide range of fluids using driving voltages of 100-300 VRMS.  

 The driving electrostatic forces acting on the drop compete with counteracting forces. The 

first is the shear force between the droplet and the plates, 143, 144 which is highly dependent on local 

surface smoothness and heterogeneity, dictated by the quality of dielectric and hydrophobic 

coating and resulting nano- and micro- scale roughness of the hydrophobic surface. The second 

factor impeding droplet movement is the viscous drag force resulting from displacement of the 

filler fluid during droplet translation.144 As soon as the driving force is greater than both the shear 

and viscous drag forces, droplet movement can be observed. Overcoming such movement 

limitations is critical in enhancing droplet movement, and the optimization lies in surface 

characterization, use of surfactants, device design and the device hydrophobicity. For most DMF 

systems, the forces calculated by electrowetting and electromechanical models reach consensus.  
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1.4.2 Applications and Challenges  

Given the versatility of digital microfluidics (DMF) and its unique features, it has been 

applied to a variety of applications that were performed conventionally in macroscale such as 

chemical synthesis,145, 146 enzymatic reactions,147, 148 immunoassays,149, 150 DNA-based and 

proteomics analysis,151-153 cell-based applications,19, 154, 155 clinical diagnostics,156, 157 and studies 

of multicellular organisms158, 159.  

Considering the precise metering of reactants through dispensing droplets from 

individually addressable micro-reactors that DMF is capable of, chemical synthesis and reactions 

have been widely implemented on DMF for synthesizing new compound, analyzing substances of 

interest, and studying reaction kinetics. Jebrail et al (2010), reported a DMF for synthesizing cyclic 

macro-molecules from aminoacids with similar properties to the products made by conventional 

methods proving the potential of DMF platform for efficient and automated synthesis of 

compounds for drug discovery.146 Another group presented an integrated two-plate DMF device 

with four concentric heaters for synthesizing a radiotracer (2-[18F]-fluoro-2-deoxy-D-glucose) 

that is widely used in positron emission tomography (PET) scan for in-vivo imaging of living 

organism. Using their developed DMF, they could produce radiotracers with high and reliable 

radio-fluorination efficiency (85%).145 

As mentioned above, another popular target for digital microfluidics has been cell-based 

assays as the reagents and other materials used in conventional methods are often prohibitively 

expensive. Moving droplets without the need of valves and pumps or any other movable parts, and 

with the great controllability provided by the integrated automation system, has made DMF a 

perfect platform for a variety of cell-based assays, cell sorting and cell culture.131  
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Barbulovic-Nad et al. (2008) demonstrated the first cell-based assay implemented by DMF. 

They were able to actuate high density cell suspensions (6 × 107 cells mL−1) on electrodes using a 

Pluronics additive. Moreover, they reported that the electric field resulting electrode actuation has 

no significant effect on cell viability.154  

To be able to explore a wider range of application, other techniques have been integrated 

with DMF to manipulate cells inside droplets using electrical, optical, or magnetic forces. For 

concentrating a specific cell populations, for instance, Shah et al. (2010), purified a specific type 

of lymphocyte cells from a cell suspension using antibody-conjugated magnetic beads inside 

droplets and an external magnet.160 

However, there are still challenges for implementing cell-based studies in DMF. For cells 

to be viable, there must be gas exchange between cells and the atmosphere. Therefore, oil-filed 

DMF are usually not compatible with this application. In addition, DMF is limited by a major 

problem known as surface biofouling that is nonspecific adsorption of cells and protein to device 

surfaces. Due to this problem, DMF usually requires addition of extra chemical reagents such as 

Pluronic to the droplet or its surroundings that could potentially affect droplet content.134 

Furthermore, throughput of DMF is limited by the amount of reservoirs, the size of the reservoir 

(that cannot not be replenished), and the amount of electrodes available, while channel can produce 

droplets by 30 KHz 125 and this is impossible with the existing DMF technology. Therefore, more 

optimization is needed to be implemented on DMF for high-throughput screening (HTS).  

 

 

 



32 

 

Chapter 2. Hybrid Microfluidics:       

   Toward a True Lab-on-a-chip 

This chapter will introduce hybrid microfluidics and describe its superiority over the other 

paradigms owing to its combinatorial characteristics. Then, the novelty of the hybrid device 

fabricated in this project as well as the integrated automation system will be highlighted.  

2.1 Overview 

The idea of integrating DMF with other microfluidic paradigms is an exciting innovation as it 

combines advantages of both systems while minimizing the disadvantages of the individual 

systems. Hybrid microfluidics has been emerging over the past decade for a variety of applications 

such as single cell assays and synthetic biology applications. 161-168 In most of these studies, DMF 

was integrated with microchannels and is used to control bulk fluid flow or for pre-separation of 

chemical reactions. Aside from integration with microchannels, there are two groups (to our best 

knowledge) that have implemented DMF with droplets-in-channel microfluidics. Shih et al. 

(2015),163 have created two separate devices and used the droplet microfluidic device for 

encapsulation of single cells and the DMF device for generating ionic liquid concentrations and 

analysing their effects on single cells. However, a disadvantage with this system is the 

configuration of two devices as it is prone to droplet breakup between the interfaces of the droplet 

microfluidic device with the DMF.  In another study by Shih et al.,168 the DMF is used to mix 

different DNA parts together to initiate the process of DNA assembly and this mixed droplet was 

suctioned into the droplet microfluidic region for incubation and transformation.  However, the 

integration of valves has resulted in complicated fabrication and control infrastructure and has 
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limited the number of droplets that can be stored and analyzed.  In Gu et al. (2008),165 they have 

implemented electrowetting with microfluidics to control the size and frequency of drop formation 

while in another study167 they have implemented a guiding and sorting system of drops. Although 

both studies are exciting innovations, they do not show multiple sorting or on-demand droplet 

generation or mixing on the same device.  

Moreover, the ideal result of automating functions in DMF is that every set of instructions 

would equate to a droplet movement (e.g., mix, dispense, split) towards the energized electrode. 

However, in a DMF device, due to surface heterogeneity or roughness or the contents of the 

droplet, every application of a potential does not easily translate to a movement on the device.  

This issue points to the other advantage of hybrid microfluidics over DMF which is limiting DMF 

applications for any study that includes cells and protein manipulation, as they tend to stick to the 

surface. This behavior is exacerbated when the droplet constituents contains cells, proteins or other 

cellular debris, and is known as biofouling.169, 170  

In the method presented here, we integrated, droplet-in-channel and single-plate DMF 

configuration for droplet generation, mixing, incubation, and n-ary sorting of droplets. 

2.2 ID2M Novelty 

 In this study, a new multilayer droplet-digital microfluidic method is introduced in which 

a droplet microfluidic device is mated to a digital microfluidic device below, which we call 

integrated digital-droplet microfluidics (ID2M). This new configuration has several substantial 

new developments – (1) there is only one device that does not depend on side-on configurations 

thereby eliminating the need for vacuum or valve-based techniques for droplet manipulation at the 

interface. (2) This device enables on-demand droplet mixing enabling control and creation of 
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different concentration of droplets.  Typical droplet-in-channel techniques have depended on 

fusion99 or picoinjection171 methods for mixing but these techniques only allow one reagent 

addition to an existing droplet and require exquisite control over flow rates, timing, and fluidic 

resistance. Our device can create a range of different concentrations with multiple additions of 

reagent droplets by application of an electric potential without any consideration for other 

parameters. (3) Single plate DMF devices are usually prone to droplet evaporation.  This device 

integration limits evaporation since droplets are in fluorinated oil (commonly used in droplet 

microfluidics) and are covered with a top-layer PDMS. (4) Droplets are sorted through n different 

channels (not just two channels) which allow for a range of droplets to be analyzed. In the 

following, I describe the implementation of this platform and discuss its application in determining 

the effects of ionic liquid on single yeast cells.  This is an important step in the field of digital and 

droplet microfluidics as this can possibly enable more control for droplet microfluidic devices 

while increase droplet throughput for digital microfluidic devices. 

2.3 Hybrid Microfluidics and Automation  

Similar to DMF, hybrid microfluidics also benefits from the amenability to integrating 

automation systems 172, 173 and coupling the platform to external detectors (or internal in-line 

detectors 174, 175) for real-time or downstream biological analysis 176, 177 that is inheriting from its 

DMF part. The core of automation systems interfaces with a hybrid device which enables droplet 

manipulation with a standard set of basic instructions written by the user. The user will interact 

with the graphical user interface (GUI) to program a set of instructions to generate, merge, mix, 

and sort droplets for analysis. Such automation gives hybrid microfluidics the capacity to control 

droplets individually and operate in parallel on a single device.   
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Typically, DMF automation systems rely on an array of relay switches, each of which is 

responsible for one individual electrode on the device and relays AC or DC voltages to it when 

instructed. The state of the switches is controlled through a computer and microcontroller. Here in 

this project, I have exploited a similar automation setup and a graphical user interface (GUI) to 

what has been previously developed in our lab178. This automation system consists of a MATLAB 

program that is used to control an Arduino Uno microcontroller. Driving input potentials of 130-

270 VRMS are generated by amplification of a sine wave output from a function generator operating 

at 15 kHz by an amplifier and delivered to the PCB control board. The Arduino controls the state 

of high-voltage relays that are soldered onto the PCB control board.  The logic state of an 

individual solid-state switch is controlled through an I2C communication protocol by an I/O 

expander. This control board is mated to a pogo pin interface (104 pins), where each switch 

delivers a high-voltage potential (or ground) signal to a contact pad on the DMF device. See our 

GitHub registry (https://github.com/shihmicrolab/Automation) to assemble the hardware and to 

install the open-source software program to execute the automation system. 

In addition to the setup reported in our previous publication,178 a modular low pressure 

syringe pump for controlling droplets flow and a flame spectrometer for optical detection are 

integrated with the system (Figure 2-1). Moreover, to be able to actuate different sequences of 

electrodes in parallel and with the minimum delay possible, the GUI interface was upgraded to a 

new version capable of defining multiple sequences with different times of electrode actuation 

(Figure 2-2). However, the syringe pump and the flame spectrometer have separate user interface 

and were controlled manually. A detailed description of the automation is presented in the 

following chapter.  

 

https://github.com/shihmicrolab/Automation
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Figure 2-1. ID2M Automation Setup. 

 

Figure 2-2. Graphical User Interface. 
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Chapter 3. Biofuel Production and Thesis Objectives 

 

Here, we review the biological stakes that we will be addressing with our platform, 

presenting microfluidics screening techniques for analyzing biofuel organism with a special focus 

on the tolerance of yeast Saccharomyces cerevisiae cells in Imidazolium-Based Ionic Liquids in 

the context of biofuel production. This commentary will lead to the presentation of my thesis 

objectives. 

3.1 Biofuel Production: Opportunities and Challenges 

Over the past two decades, there has been a growing demand for petroleum-derived fuels 

and the oil supply cannot meet the demand at prices to which the global economy was accustomed 

(Figure 3-1).179 Given that other exhaustible sources such as tar sands, shale oil, shale gas, natural 

gas, and coal have limited reserves and problems with large green-house gas emissions associated 

with their conversion process, they cannot replace conventional oil. Therefore, there have been 

many researches demonstrated to investigate the possibility of using biofuels as alternatives. 

However, replacement of conventional petroleum-derived fuels with biofuels requires production 

of compounds that have a large capacity and energy density which is the biggest disadvantage in 

other alternative technologies (e.g. fuel cells, hydrogen, and electricity).180-182 

Amongst first generation biofuel, ethanol is currently most widely used and is produced 

from sugar cane, corn or wheat. But it has not fully expanded as an alternative to fossil fuel, 

because its feedstock is competing with food production and it has contributed to higher food 

prices and deforestation. Moreover, its low energy content and incompatibility with existing fuel 

distribution and storage infrastructure has led to a replacement of 1st generation biofuels by 2nd 
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generation biofuels that are derived from cellulosic biomass. Production of the second generation  

biofuels from renewable materials has recently attracted much attention and are expected to 

address energy security and climate change concerns, as cellulose is the most abundant and 

renewable raw material for producing sustainable biofuels and will not cause food shortage like 

ethanol feedstock.  

 

Figure 3-1. Global oil production from 1998 to 2011 

Production of crude oil increased along with demand from 1988 to 2005. But after 2005 the 

production has roughly remained constant for seven years, despite an increase in price of around 

15% per year. Adapted from J. Murray et al, 2012. 179 

 Generally, bioethanol production from lignocellulosic plant biomass consists of three main 

steps: (1) Cellulose pretreatment for enhancing the enzymatic degradation of polysaccharides, (2) 

hydrolysis of cellulose to fermentable sugars by cellulases, and (3) ethanol fermentation by 

microorganisms, such as yeast (Figure 3-2). 180, 182 

Although cellulosic biomass is a promising material for providing fermentable sugars, it 

has a highly crystalline polymer structure in which cellulose chains are tightly packed by 

multivalent inter- and intramolecular hydrogen bonding. This crystalline structure makes biomass 

recalcitrant to enzymatic digestion, and limits release of cellulosic sugars for fermentation to 
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biofuels. As a result, several techniques have been developed to pretreat biomass and enhance 

disrupting the highly ordered structure of lignocellulose and make the cellulose more accessible to 

hydrolytic enzymes.  

 

Figure 3-2. Bio-ethanol production yeast from cellulose pretreated with ionic liquid 

The functionalized microorganism is called an “arming yeast” because the yeast cell is apparently 

armed with a number of cellulase enzymes via the cell-wall binding domain as an adhesion moiety. 

Adapted from K. Nakashima et al, 2011. 181 
 

Ionic liquids (IL) pretreatment is an emerging pretreatment technology that is found to be 

able to dramatically enhance the cellulose degradation and ethanol productivity. Ionic liquids are 

neutral salts that have a relatively low melting temperature and attain a liquid state at temperatures 

mostly below 100 °C. These solvents have unique properties such as negligible volatility, thermal 

stability, and tunable physicochemical properties. Ionic liquids are also reported to be effective in 

dissolving various kinds of bio-polymers including cellulose. Cellulose can be easily dissolved in 

ILs under moderate conditions (e.g. mostly under 100 °C, or in some cases at room temperature), 

and then it can be highly accessible and degradable by cellulase enzymes that hydrolyze it into 
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monomeric glucose. Imidazolium ionic liquids (IILs) such as 1-ethyl-3-methylimidazolium 

chloride [C2C1im] Cl), 1-ethyl-3-methylimidazolium acetate ([C2C1im] [OAc]), and 1-butyl-3-

methylimidazolium chloride ([C4C1im] Cl) are mostly used in renewable bioenergy 

applications.180-182 

However, there are two disadvantages in using IL solvents for biofuel production. They are 

pretty expensive and they are also toxic to biofuel-producing microbes, including the yeast 

Saccharomyces cerevisiae which is the dominant fermentative yeast and is particularly sensitive 

to low levels of the most common ILs 30-60 mM [C2C1im] Cl).183-185  

Although there is a washing step following IL pretreatment, but small quantities of residual 

IL can inhibit fermentative microorganisms downstream. It has been reported that after IL 

treatment, up to 270 mM IL may persist during fermentation and such concentrations of IILs can 

severely damage yeast growth and biofuel production.183, 186  

In a study done by Ouellet et al (2011), it is shown that S. cerevisiae growth is highly 

inhibited by IL concentration of more than 50 mM (Figure 3-3). However, more concentrated IL 

in pretreatment results is in more ethanol titers.183 Therefore, in order to achieve higher efficiency 

in biofuel production, genetically modified yeasts are required to remain viable in the inhibitory 

IIL concentrations used in cellulose pretreatment.  

To generate strains capable of tolerating residual ILs present in treated feedstocks, various 

approaches have been implemented such as extensive screening library of yeasts to discover more 

IL-tolerant species or strain 187 and inserting gene sequences from IIL-tolerant microbes into 

biofuel-producing microbes. Using the latter strategy, Higgins et al (2018), introduced SGE1 

mutations into the genome of BY strain by CRISPR/Cas9 and reported a fast growth (OD600 ~ 1.2 

after 48 hr) in SC media containing 125 mM [C2C1im] Cl.188 Dickinson et al, undertook chemical 
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genomic profiling using a panel of > 4000 yeast non-essential gene deletion strains and analyzed 

the sensitive mutant genome to find out which protein functionality is affected by [C2C1im] Cl.184  

As described above, several potential advanced techniques have been implemented to 

produce more resistant biofuel microorganisms. However, to attain the cost-effective commercial 

production of biofuels, further engineering of the production pathways and the microorganisms 

themselves is needed. To date, several researches has highlighted the low tolerance of S. cerevisiae 

to [C2C1im] [OAc] compared to the other types of ILs. 187, 189 

 

Figure 3-3. Impact of IL pretreated biomass on S. cerevisiae growth. 

(a) S. cerevisiae growth in 20 g L-1 glucose in the presence of [C2mim][OAc] (b) Ethanol titers 

and final glucose concentration after 72 h of fermentation in 20 g L-1 glucose in presence of 

[C2mim][OAc]. Adopted from M. Ouellet et al, 2011. 183  

  By taking advantage of advanced technologies such as microfluidic devices, it may be 

possible to screen much larger library of S. cerevisiae mutants and isolate the most tolerant ones. 

Moreover, following the isolation of most tolerant yeast, it will be possible to study the gene 

sequence responsible for IL-tolerance in yeast genome.  
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3.2 Droplet microfluidics for biofuel organism screening  

Microdroplets (either in microchannels or on DMF) have been widely used for analyzing 

chemical reactions involving ionic liquids and screening biofuel organisms. 190-192  

 Using droplet microfluidics has resolved the limitation of testing a miniscule fraction of 

biodiversity caused by low throughput screening systems. Najah et al (2014), described an ultra-

high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 

bacteria without prior cultivation in less than 20 min. They were also able to sort droplets based 

on cellobiohydrolase activity using DEP. Their results showed ~ 240-fold increase in throughput 

and a ~250,000-fold decrease in reagent volume compared to state-of the art, robotic microtiter 

plate screening systems.193 Kim et al (2015), represented a droplet microfluidics-based microalgae 

analysis platform capable of measuring both growth and oil content of various microalgal strains 

with single-cell resolution in a high throughput manner.194 The same group, later, reported another 

microfluidics screening platform for selecting fast‐ growing and high lipid‐ producing microalgae 

from a mutant library.195 In the same vein, Huang et al (2015), performed a high throughput 

screening of mutant yeast strain libraries, generated by UV mutagenesis using a microfluidic 

droplet-sorting method for improving protein secretion.196 

All the above mentioned technologies, although benefit from their high throughput systems, they 

lack two important features. They do not have individual addressability over each microorganism 

under study to be able to do further manipulation on the same device and they are only able to do 

binary sorting. Here, we introduce a novel integrated droplet-digital microfluidics which 

encompass both above mentioned features.  
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3.3 Thesis Objectives 

To address the challenges described above, we report here a new hybrid microfluidic 

device for on-demand n-ary sorting of library of microorganisms such as yeasts. We call this new 

platform an Integrated Droplet-Digital Microfluidics (ID2M) which enables individual control 

over all necessary functions for a biological assay including droplet generation, mixing, 

incubation, and sorting. Our ID2M platform is validated by constructing a fluorescein standard 

curve through n-ary sorting of fluorescein droplets with different concentration. In this study, EMS 

mutagenesis is accomplished to produce mutant of Saccharomyces cerevisiae that can tolerate and 

grow under high concentrations of a well know Imidazolium ionic liquid. Then, we report the 

application of ID2M to evaluate the effect of Ionic liquid on two of the most tolerant yeast mutants 

that can be potential candidates for biofuel production. The results of this work (to our knowledge) 

are the first to show automated and multiple sorting of droplets that have been applied to sorting 

mutant yeast libraries. We believe this will serve as a platform for other possibilities like directed 

evolution or protein engineering applications. 

My research was segmented into five steps, described below in chronological order: 

1. ID2M design and fabrication: The device layout was established for on-demand droplet 

generation, mixing, incubation and sorting for screening the tolerance of the mutant yeast to IL. 

2. ID2M integration and optimization: ID2M was integrated to an optical detection system 

consisting of a flame spectrometer and optical fibers. Oil and water flow rates were optimized with 

the actuation voltage to be able to maintain control over droplets. 

3. Platform validation: A fluorescein calibration curve was constructed through making 

dilutions of fluorescein solution on chip and n-ary sorting of the diluted droplet based on their 

fluorescent signals into four groups.  
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4. Proof-of-Concept: EMS mutagenesis was performed at macro scale on a wild-type yeast 

strain and different levels of tolerance to IL compared with the wild-type was observed.   

5. Application: To confirm the broad applicability of our platform, we proposed to study the 

effect of ionic liquid on two of the most tolerant mutants, by performing the whole assay including 

single cell encapsulation, mixing with IL, incubating droplets and sorting based on the number of 

cells after 2 days on our ID2M chip.  
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Chapter 4. Methodology: Operating the N-ary Sorter System 

In this chapter, the methodology for integrating the processes needed for n-ary sorting of 

biofuel organisms on the ID2M platform is described. Device fabrication, assembly, operation 

with the automation system, syringe pump and the flame spectroscopy is discussed before 

reviewing the method for generating an on-chip calibration curve for fluorescein. Finally, the 

macro-scale experiments that were done for generating ionic liquid tolerant yeast cells and the 

work flow for on-chip sorting of the generated mutants will be presented. 

4.1 Reagents and Materials 

1-ethyl-3-methylimidazolium acetate ≥ 95 % (HPLC grade), ethyl methanesulfonate, sodium 

thiosulfate, sodium hydroxide (lab grade), fluorescein (free acid) dye content 95 %, yeast nitrogen 

base without amino acids and with ammonium sulfate, bovine serum albumin (lyophilized powder) 

≥ 96 %  ,and α-D-Glucose anhydrous 96% were purchased from Sigma, unless specified otherwise. 

L-Leucine, L-Histidine, L-Methionine, and Uracil were purchased from Bio basic Canada Inc. 

Yeast BY4741 strains (genotype: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) were generously 

donated from Dr. Vincent Martin. 3M Novec HFE7500 engineering fluid was purchased from 

M.G. Chemicals (Burlington, ON Canada). AquapelTM was purchased from Aquapel.ca (Lachute, 

QC Canada).  20 g of 5% wt of fluoro-surfactant dissolved in HFE7500 was purchased from Ran 

Biotechnologies (Beverly, MA). Sodium phosphate monobasic and sodium phosphate dibasic 

(Anhydrous, ASC grade) were purchased from BioShop (Burlington, ON).  

Microfluidics device fabrication reagents and supplies include chromium coated glass 

slides with S1811 photoresist from Telic (Valencia, CA), MF-321 positive photoresist developer 

from Rohm and Haas (Marlborough, MA), CR-4 chromium etchant from OM Group (Cleveland, 
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OH), and AZ-300T photoresist stripper from AZ Electronic Materials (Somerville, NJ).  Polylactic 

acid (PLA) material for 3D printing were purchased from 3Dshop (Mississauga, ON, Canada). 

Poly(dimethylsiloxane) (PDMS -- Sylgard 194) was purchased from Krayden Inc. (Westminster, 

CO).  SU8 photoresist and developer were purchased from Microchem (Westborough, MA).  De-

ionized (DI) water had a resistivity of 18 M•cm at 25 °C.  

A 100 mM phosphate buffer was prepared by mixing 5.77 mL of 1 M Na2HPO4 and 4.23 

mL of 1 M NaH2PO4 solutions, and the pH was adjusted to 7.0.  5 g of sodium thiosulfate salt was 

added to deionized water to produce a 5 % (w/v) sodium thiosulfate solution. Fluorescein solutions 

(0.5 mM) was prepared by adding about 1.66 mg of fluorescein powder (332.3 g/mol) to 10 mL 1 

M NaOH solution. 

4.2 Device fabrication and operation  

4.2.1 Photolithography 

ID2M Devices were designed using AutoCAD 2016 and were fabricated in the Concordia 

cleanroom using a transparent photomask printed at high resolution by CAD/Art Services Inc. 

(Bandon, OR). The “hybrid” microfluidic chip consisted of three layers: a digital microfluidic, 

dielectric, and channel layer (Fig. 1).  As described previously,178, 197 the digital microfluidic layer 

consisted of a bottom glass substrate with chromium and coated with positive photoresist S1811.  

Electrodes were patterned by UV exposure (5 sec) on a Quintel Q-4000 mask aligner (Neutronix 

Quintel, Morgan Hill, CA).  Exposed substrates were developed in Microposit MF-321 developer 

(2 min), rinsed with DI water, and post-baked on a hot plate (115°C, 1 min). After 

photolithography, substrates were etched in chromium (CR-4) etchant (2 min). Finally, the 

remaining photoresist was stripped in AZ300T (2 min). Next, DMF devices were rinsed by 
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acetone, isopropanol (IPA), and DI water before coating a SU-8 based dielectric.  The device 

surface was treated with a plasma cleaner (Harrick Plasma PDC-001, Ithaca, NY) for 2 min and 

then immediately spin-coated (Laurell, North Wales, PA) with SU8-5 photoresist to achieve a 

thickness of 7 μm (10 s, 500 rpm, 30 s 2000 rpm).  The dielectric layer was then soft-baked on hot 

plate (1. 65 °C, 2 min, 2. 95 °C, 5 min) and exposed to UV light for 5 sec.  A post exposure bake 

(1. 65 °C, 1 min, 2. 95 °C, 1 min) followed by immersing in SU-8 developer (2 min) was 

performed. After rinsing with IPA and DI water, a hard bake was performed in three steps (1. 65 

°C, 2 min, 2. 95 °C, 4 min, 3. 180 °C, 10 min).  For the channel layer, devices were cleaned with 

IPA and DI water prior to plasma cleaning (2 min). Next, SU-8-2075 photoresist was immediately 

spin-coated (1. 10 s 500 rpm, 2. 30 s 2000 rpm) on the chip and soft-baked at 65°C and 95°C for 

3 and 9 min respectively, based on the manufacturer’s instructions for 110-120 μm thickness. 

Following UV exposure (15 sec), devices were post-baked (1. 65 °C, 2 min- 2. 95°C, 7 min) and 

developed in SU-8 developer for 7 min and rinsed with IPA and DI water. The devices were hard-

baked using a three-step procedure (1. 65 °C, 2 min, 2. 95 °C, 4 min, 3. 180 °C, 10 min) to achieve 

a channel layer with depth ~110-120 μm.  

4.2.2 Device sealing and channel treatment 

After the layers, hybrid devices were largely completed, except for the final preparation 

step of PDMS bonding and channel treatment.  The hybrid microfluidic chip was bonded to a slab 

(60 mm x 30 mm) of ~ 0.5 mm thick PDMS (1:10 weight ratio, w/w curing agent to prepolymer).  

Inlets and outlets that were 0.75 mm in diameter were created using a 0.75 mm puncher (Biopsy 

Punch, Sklar, West Chester, PA).  Before bonding, the PDMS slab was plasma-treated for ~1 min 

and then it was exposed to (3-aminopropyl)triethoxysilane 99% in a desiccator for 30 min.  After 

treatment, PDMS was immediately bonded to the device and baked at 160 °C for 20 min.  Before 
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operation, channels were treated with AquapelTM for ~5 min and rinsed with HFE oil mixed with 

0.75% fluoro-surfactant by pipetting.  Syringes were prepared with the following fittings and 

tubing: 1/4-28 to 10-32 PEEK adapter, (10-32) peek union assembly, finger tight micro ferrule 10-

32 coned for 1/32" OD, and PEEK tubing (1/32 inch diameter) from IDEX Health & Science, LLC 

(Oak Harbor, WA).  Gastight glass 500 μL-syringes were purchased from Hamilton (Reno, NV) 

and installed on the neMESYS system (Cetoni, Korbussen, DE). 

 

Figure 4-1. ID2M device fabrication. 
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4.2.3 Device operation 

Device operation comprised of five stages: droplet generation by a flow-focusing or T-

junction configuration followed by droplet mixing, incubation, detection, and sorting. In the first 

stage, droplet generation by flow-focusing was implemented by initializing the flow rates using 

the neMESYS for the aqueous and oil flow rates to 0.0005 [μL/s] and 0.01 [μL/s] respectively.   

For the T-junction configuration, droplets were created on-demand through following steps 

Figure 4-2: (1) the aqueous flow of a second reagent such as water or fluorescein was initialized 

at 0.0005 [μL/s], (2) when the continuous flow reaches the sixth electrode, an AC voltage (15 kHz, 

~200 Vrms) was used to drive the flow to the T-junction, (3) electrodes were actuated sequentially 

(i.e. electrodes are turned on one after another) to drag the fluid to the main channel and finally (4) 

a ~20 nL droplet is formed by both intersecting the oil phase with flow rate of 0.01 [μL/s] and 

actuation of electrodes in two different area as shown in Figure 4-2. After on-demand droplet 

generation, droplets were pressure-driven using the oil phase in the main channel and using 

actuation sequences to drive the droplet into the mixing region. After mixing the droplet with other 

droplet constituents, this mixed droplet was actuated to the main channel which followed an 

incubation step.  After incubation, droplets were passed through a detection region which were 

further sorted by actuation using the optical fiber based sorting region. 

 

Figure 4-2. On-demand droplet generation with T-junction configuration 
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Droplet manipulation was controlled by an automated control system in a MATLAB base 

workspace (Mathworks, Natlick, MA) interfaced to an Arduino Uno for controlling the states of a 

network of high-voltage relays (AQW216 Panasonic, Digikey, Winnipeg, MB). A neMESYS 

software interfaced syringe pump software for fluid flow control, and Flame spectrometer (Ocean 

Optics, Largo, FL) data was collected with the Ocean View spectroscopy software. The ‘hybrid’ 

microfluidic chip is mounted on a pogo pin-control board (104 pins) with a 3D printed base 

platform as reported in our previous paper,178, 197 and was placed on the stage of an inverted IX-73 

Olympus microscope (Olympus Canada, Mississauga, ON). The whole system is imaged live 

through a CMOS camera. The control board delivered AC signals from a high-voltage amplifier 

(PZD-700A, Trek Inc., Lockport, NY) paired with a function generator (33201A Agilent, Allied 

Electronics, Ottawa, ON) to initiate actuation sequences on the device (Figure 4-3).  
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Figure 4-3. ID2M automation system for n-ary sorting. 
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4.3 ID2M microfluidic optical fiber detection interface 

The optical fiber detection interface consists of a Flame spectrometer, two bare fiber (100 μm core) 

with numerical aperture of 0.22, and a multi-channel LED light sources that contains four high-

power (1 mW) LED modules: 470, 530, 590, 627 nm.  In each experiment, a hybrid microfluidic 

device was placed on the pogo-pin holder and two optical fibers were inserted into two fabricated 

300 μm channels that was perpendicular to the direction of the fluid flow (see Figure 4-1).  On the 

other ends of the fiber, one fiber was connected to the multi-channel LED source and the other 

was connected to the Flame spectrometer. These ends were polished carefully using the ocean 

optics termination kit and fitted with an SMA connector by the help of bare boots for guiding the 

bare fiber.  The distance between the fiber and the channel is ~ 200 μm.  All data were collected 

using the Ocean View spectroscopy software (Ocean Optics, Largo, FL) using the following 

settings: integration time was set to 100 ms, boxcar smoothing width = 3, number of scans = 5, 

update rate = 1, and strip chart was enabled to collect data from a single wavelength (530 nm) and 

executed without stopping.  

4.4 On-chip calibration curves – Fluorescein measurement  

To generate on-chip calibration curves, a droplet containing fluorescein (1 mM each in 1M NaOH 

buffer, pH 9) was generated using the flow-focusing configuration with a flow rate of 0.0005 μL/s 

for fluorescein and 0.01 μL for HFE oil.  Next, a droplet of buffer or water (~ 13.5 nL) was 

generated using the T-junction configuration. These droplets were merged and mixed by moving 

them across several electrodes. Depending on the concentration, more buffer droplets were added 

to one fluorescein droplet to create four different concentrations: 1, 0.5, 0.25, and 0.125 mM. After 
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mixing of the droplets, these were detected by using our optical fiber setup and sorted using the 

four different on-demand sorting channels.   

After collecting the time traces of the recorded signals from the optical fiber detection setup 

using Ocean View, the peak intensities were recorded for each concentration. The standard 

deviation was calculated from 20 replicates. 

4.5 EMS Mutagenesis and Generating IL Resistant Yeast Strains 

Before generating mutants, wild-type S. cerevisiae BY4741 yeast cells were stored on agar plates 

containing synthetic defined medium (6.8 yeast nitrogen base without amino acids, 20 g agar, 20 

g 2% glucose, 20 g methionine, 20 g histidine, 20 g uracil, 120 g leucine) at 4 °C.  To initiate 

mutagenesis, the cells were induced using ethyl methanesulfonate (EMS) according to Winston’s 

protocol.198  For mutagenesis, wild-type yeast was grown in 50 mL of synthetic defined medium 

in an Erlenmeyer flask at 30 °C with shaking at 200 rpm for 48 hours. Then, aliquots of 2 × 108 

yeast cells measured on the basis of the optical density (O.D.) at 600 nm was transferred to four 

micro-centrifuge tubes corresponding to technical triplicate and one control sample. The cells were 

washed two times in 1 mL phosphate buffered saline (PBS) and a single time in 1 mL sodium 

phosphate buffer (SPB) (0.1 M- pH 7.0). After centrifugation, the pellets were re-suspended in 1.5 

mL SPB. Four 15mL Falcon tubes (corresponding to three different EMS treatment time) were 

filled with 1 mL SPB and 0.7 mL cell solution of each micro-centrifuge tube. 50 μL of EMS was 

added to three of the 15 mL falcon tubes in a biological safety cabinet.  One falcon tubes related 

to the control sample were kept without EMS addition. All tubes were incubated at 30 °C on a 

shaker (200 rpm) for 30 min. The EMS mutagenesis experiment was repeated for 40, 50, 60, 75, 

and 90 min. Mutagenesis was stopped by adding 8 mL of 5 % (w/v) sterile sodium thiosulfate 
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(STS) solution at each time point. 1 mL aliquots of each falcon tubes were added to a micro-

centrifuge tube and were diluted 1000 times with SD media. 200 μL of the final dilution of the 

yeast cells suspensions was inoculated to solid SD plates at each time point. The plates were sealed 

with parafilm and incubated at 30 °C for colony formation for 48 h.  Cell viability was measured 

by counting the number of colonies and at each EMS time point it was compared to the wild-type 

cells (Figure 4-4). 

 

Figure 4-4. Cell viability measurement in different EMS treatment time 

Yeast viability changes during mutagenesis induced by EMS shaker at 30°C and 200 rpm. 

Standard deviations are indicated in the graph by bars. 

To increase the yeast tolerance to 1-ethyl-3-methylimidazolium acetate, successive 

cultures of BY4741 mutants were stored in SD media supplemented with increasing IL 

concentrations.  

After mutagenesis, random colonies were picked from the plates of the mutants at different 

EMS time point (60, 75, 90 min) and were added to a sterile test tube containing 5 mL synthetic 
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defined medium and 50, 75, 100 mM 1-ethyl-3-methylimidazolium acetate IL. Test tubes were 

incubated for 24 h at 30 °C on a shaker with 200 rpm. Then, a 1 mL aliquots of each test tubes 

along with a wild-type sample were diluted 100 times with SD media and then were plated onto 

several solid SD plates containing 50, 75, 100 mM IL. These plates were sealed in sterile bags and 

incubated for 4-6 days at 30 °C. Colonies were randomly selected from the plates and cultured in 

5 mL SD media at 30 °C.  After 24 h, we measured the OD of the culture and if the OD was greater 

than 0.3, samples were diluted and cultured in different ionic liquid conditions otherwise they were 

discarded. An aliquot (depending on IL concentration) from the 5 mL was added to the wells of a 

microwell plate to make up a final volume of 200 L.  In each well, the OD was measured every 

20 min at 30 °C with shaking at 200 rpm for 48 hours using a Tecan Sunrise microplate reader 

(Tecan, Salzburg, Austria).  Three replicates were measured for each condition. 

4.6 N-ary Sorting of Yeast Mutants library on ID2M Device 

For analyzing the effect of IL on wild-type and mutant yeast on chip, two best performing 

IL tolerant mutant and wild-type yeast were selected and cultured them in regular SD (see EMS 

mutagenesis protocol in previous section) without IL for 48 hours. For single cell encapsulation, 

Poisson distribution (Equation 1-2 and Equation 1-3) was used to calculate the cell density that we 

must have in 1 ml of the primary cell suspension. Given that the average volume of droplets 

generated in our chip was 1.32 × 10-2 μL, and out of three droplets we wanted to have one that 

contains a single cell (i.e. λ=3), the primary cell culture (with 2×108 cells based on OD600 

measurement) was diluted 1000 times with 1 mL SD media containing 1% bovine serum albumin 

(BSA) which is used as a surfactant. Using our neMESYS syringe pump, the diluted cell 

suspension with HFE oil containing 2 % fluorinated surfactant were pumped into the ID2M device. 
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Cell encapsulation was performed through the flow focusing droplet formation with flow rates of 

0.0008 μL/sec and 0.01 μL/sec for cell media and oil, respectively. Using the other inlet on the 

device and the T-Junction droplet generator, droplets of 100mM IL were formed on demand.  

Droplets containing a single cell actuated into the mixing channel by sequentially applying 

electric potential to the electrodes. After trapping the single cell-encapsulated droplet, a second 

droplet of IL was directed to the mixing channel and two droplets were merged and mixed.  Upon 

mixing the droplet with a 100 mM IL, the droplet was trapped into incubation slot using actuation. 

This process was repeated for three other incubation regions.  After trapping all four droplets, the 

ID2M device was removed from the automation system and droplets were incubated for 48 h on a 

hot plate at 30 ᵒC using a humidified chamber.  After incubation, droplets were pulled back to the 

main channel and passed through the optical detection area where the two optical fibers are placed 

perpendicular to the main channel.  According to the absorbance peaks differences, droplets were 

sorted into three groups using the three sorting channels.  Any excess droplets in this procedure 

was actuated to the waste channel. 

4.7 COMSOL simulation  

To investigate the flow velocity and the flow circulation of the filler media (i.e. oil in our 

system) in the mixing area with the sinking channels, we performed a simulation using COMSOL 

Multiphysics V5.3 (COMSOL Inc., Cambridge, MA, USA) with the following parameters (Table 

4.1) and with the following assumptions for simplification: 1) fluid is Newtonian, 2) no-slip 

boundary condition, and 3) the flow in the microfluidic channel is incompressible.  To generate a 

2D model, a CAD file showing the mixing region of ID2M device was imported to COMSOL with 

the same geometry and feature size.  A single phase laminar flow using Navier Stokes model 
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(equation 4-1) was selected as the physics of our stationary study with the assumption that our 

fluid is 3M™ Novec™ 7100 Engineered Fluid. We used quadratic meshes. Wall boundaries and 

inlet and outlet were defined as depicted in Figure 4-5. The inlet velocity of the fluid flow was 

initialized to 0.033 ms-1 and the channel fluid flow was computed and a velocity magnitude plot 

was generated for the main and sinking channels along with the filtering regions. A pressure 

contour plot was also generated.  

Equation 4-1: Navier-Stokes with continuity equation 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢) =  −∇𝑝 +  𝜇∇2𝑢 + 𝐹 

(𝜕𝜌/𝜕𝑡 + 𝛻. (𝜌𝑢) = 0) 

where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and μ is the fluid dynamic 

viscosity. These equations are always solved together with the continuity equation. The first term 

in the equation corresponds to the inertial forces. However, in microfluidics, the effects of the 

inertial forces are negligible compared to the viscous forces; thereby, it can be neglected in the 

previous equation. The second and the third term corresponds to the pressure gradient inside the 

channel and the viscous forces, respectively. Last term represents the external forces applied to the 

fluid.  

 Table 4.1. Simulation parameter 

Parameter Value unit 

Oil density (𝝆) 1614 Kg.m-3 

dynamic viscosity (𝝁) 0.00124 Pa.s 

Inlet velocity (u0) 0.033 m.s-1 
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Figure 4-5. Imported CAD design with the boundary conditions. 
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Chapter 5. Validation of the ID2M platform 

This chapter consists of my results and discussion. Three steps were involved in developing 

the ID2M platform. First, device characterization and optimization was essential to produce the 

ID2M platform for n-ary sorting. Next, the ID2M platform was validated as a robust on-demand 

sorting system by multiple sorting of fluorescein droplets of different concentrations. Finally, the 

ID2M platform was demonstrated to hold promise in screening a library of yeast mutants with an 

ultimate goal of discovering the most tolerant mutant to IL.  

5.1 ID2M Design: Device Characterization and Optimization 

We have developed a new architecture mating droplet microfluidics (useful for generating and 

sorting droplets) to digital microfluidics (useful for on-demand droplet manipulation and 

individual control).  The new ID2M device were formed by creating a single-plate DMF device 

(i.e. the ground and driving electrodes are on the same plane) and fabricating a network of channels 

consisting of inlets and outlets for generating and sorting droplets respectively and an area for 

droplet mixing.  An exploded view is shown in Figure 4-1, as depicted, the digital microfluidic 

device is defined by the bottom substrates that consists of 104 patterned electrodes, the dielectric 

layer (substrate 1 and 2), the network of channels which is defined by a SU-8 fabricated layer, and 

a slab of PDMS with inlets and outlets (substrates 3 and 4). This new multilayer integrated 

architecture facilitates pressure-based and on-demand droplet generation using flow focusing and 

T-junction configurations, droplet mixing, and droplet incubation and sorting.  This represents a 

significant advantage over other types of droplet-to-digital methods which relied on two separate 

design configurations (which can cause difficulties in moving the droplet from one platform to the 

other).161-163, 168 



60 

 

 The new device was designed such that the two microfluidic paradigms are stacked 

together – pressure based oil flow to move the droplets in the main channel and electrostatic droplet 

movement to the mixing, incubation, and sorting regions (i.e. away from the main channel).  As 

shown in Figure 5-1, the main channel is highlighted in red in which normal operation starts with 

droplet generation using flow-focusing techniques. Next, this droplet is actuated away from the 

main channel and moved to the mixing area to merge with other droplets. For example, a droplet 

containing dilution buffer is generated on-demand via actuation from the T-junction, actuated to 

the mixing area, and merged and mixed with the former droplet to create a droplet of different 

concentration. After generating the concentration of interest, these droplets can be actuated to the 

main channel and can be stored in the incubation pockets and eventually n-ary sorted in one of the 

channels using electrostatic actuation. Droplets containing analytes or proteins are manipulated 

without the addition of Pluronics or any other surfactant that is typically added to the droplets for 

digital microfluidic operation.169, 199 Furthermore, the droplets are manipulated without pressure- 

or valve-based control (which is main driving force for manipulating droplets in droplet 

microfluidics), they are manipulated by application of electric potential allowing individual 

addressability of the droplets. There are groups who have demonstrated the addition of electrodes 

in devices containing microchannels. In these studies, the electrodes are used to direct bulk fluid 

flow 164 or to form liquid channels.200, 201 In this work, the electrodes are used to provide direct 

droplet control for droplet generation, mixing, and sorting for droplet microfluidic systems that 

are usually dependent on tuning input flow rates. 
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Figure 5-1. ID2M device operation. 

A photo of the device with schematics depicting the operations of the device, namely droplet 

dispensing (using T-junction and flow focusing), droplet mixing, droplet incubation, droplet 

detection, and droplet n-ary sorting. 

 As shown in Figure 5-1, the central feature of this device is the incorporation of electrodes 

for droplet manipulation without the dependence of tuning input flow rates. Thus, in this scheme, 

droplets are manipulated on demand in the regions that require specific operations – i.e. generation, 

mixing, incubation, and sorting.  In initial electrode designs, we followed the one-electrode design 

on the bottom plate with alternating ground and driving potentials. 166, 201 However, droplets in the 

main channel are not able to overcome the pressure generated from the oil flow rate and be actuated 

into the mixing, incubation, or sorting regions. The coplanar electrode configuration with 

overlapping regions, as shown by some groups, 202-204 showed optimal operation as droplets are 

easily actuated into the region of interest on the device. The introduction of a grounding electrode 

or to a grounding electrode line may not be able to generate the highest applied force as compared 
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to other electrode designs, 202 but the selected design is easiest to fabricate and is capable to 

overcome the applied pressure on the droplet (i.e. the oil flow rate) in our system (which are 

generally 0.0005 – 0.05 μL/s). 

 In initial work, the design and fabrication protocol for the ID2M devices was optimized to 

address two challenges: adhesion of the dielectric, channel, and PDMS layers during fabrication 

and to ensure droplets can be controlled by application of electric potentials in the in the mixing 

area.  For the former challenge, we found that introducing finger-like structures on the boundary 

of the layer to prevent peeling from the substrate (Figure 5-2).  In initial fabrication procedures, 

we found that if each layer did not have these finger-like structures, the layer will start to peel or 

crack and remove features from the layer below during the process of hard-baking. These cracks 

are mostly made by internal stresses. High evaporation and heating/cooling rate in addition to 

temperature difference in different layers of SU8-5 causes residual stresses in the layer.205 Adding 

finger-like structures gives more flexibility to the layer to bear the temperature difference and also 

a bigger perimeter for evaporation and releasing the developer’s vapor.  

 

Figure 5-2. Finger-like structures on the boundary of the negative resist layer. 

(a) Very small cracks distributed in the resist layer fabricated with the mask without fingers, (b) 

and (c) 10X and 20X image of the same layer fabricated with mask design with fingers d) Mask 

design with finger-like boundaries. 
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In the final design, each of the layers contained 300 μm repeated finger structures on the boundary 

to ensure stability of the layers during the hard bake process.   

In addition, for increasing the adhesion of the PDMS slab to the SU-8 layer, we tried a 

previously established method using (3-aminopropyl)triethoxysilane (APTES). 206 After plasma 

treatment of the PDMS, the slab were exposed to the vapor of APTES in a desiccator for 30 min. 

So the -NH2 group from the APTES molecule on the plasma activated PDMS surface reacted with 

the epoxy group from the SU-8 surface. A strong bonding was achieved between PDMS and SU-

8 layer. For the latter challenge, we found that adding sinking channels in the mixing area is 

necessary to slow down the flow rate and to enable droplets to be actuated from the main channel 

to the mixing area.  In our initial designs, we created a side channel (i.e. a channel branching out 

of the main channel) with the co-planar electrodes; however, droplets were not capable to be 

moved by actuation from the main channel. We explored increasing the voltage 207; however the 

higher voltage tend to cause dielectric breakdown in the oil phase.   

a  b  

Figure 5-3. COMSOL simulation - Mixing channel design. 

(a) Schematic of the multiple sink channels in mixing area (b) COMSOL Simulation of the oil flow 

velocity in the mixing area, indicating a visible decrease in its velocity. 

Sink channels 
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Figure 5-4. COMSOL simulation - Pressure contour in sinking channels. 

We added multiple sink channels 208 to create flow eddies from the main flow channel 

which allow the oil phase to have multiple flow paths (Figure 5-3 and Figure 5-4). This reduction 

in oil flow rate enables droplets in the main channel to be actuated into the mixing channel.  The 

sink channels are particularly important when a droplet is already in the mixing area since the 

droplet acts as a plug (i.e. increase the hydrodynamic resistance).209 Since the hydrodynamic 

resistance in the mixing channel is higher than the main channel when a droplet is present, the 

generated droplets favour flow in the main channel.  Alternatively, having multiple sink channels, 

this reduces the resistance in the mixing channel, leading to mixing of the droplets in this area. 

An additional challenge for device operation was optimization of the configuration of the 

n-ary sorting channels. Sorting in droplet microfluidics typically follows a Y-shaped 

configuration,60, 210 in which droplets are discriminated by two physical characteristics.  There has 
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been interest in sorting droplets in additional states (i.e. more than two states) since this can expand 

the range of droplets being detected and analyzed. 123, 211, 212 However, Y-channels have a tendency 

to create a stagnation zone (i.e. an area where the droplet faces an uncontrolled choice for an outlet) 

and biases like asymmetric presence of drops (creating different resistances) when it is expanded 

to more than two channels. 213 In response to this challenge, we adapted a different strategy that 

enable multiple sorting (i.e. n-ary) possibilities. Instead of Y-shaped channels, we designed a 

symmetrical T-channel that consists of four different sorting areas. Pressure-driven droplets are 

detected using the optical interface and flow toward the sorting region which are actuated to their 

respective channel for collection.  In the future, we may design rails 214 or linear electrodes 200 with 

the symmetric T-channels to reduce the footprint and to increase the number of sorting channels.  

5.2 Proof-of-Concept: On-chip calibration  

The unique system that we have reported here makes it straightforward to integrate sample 

processing with incubation and n-ary sorting. As shown in Figure 5-5, droplets can be generated 

through flow-focusing geometry or by on-demand generation using T-junction (frame 1 and 2), 

stored (frame 3-I), merged (frame 3-II), mixed (frame 3-III), incubated (frame 4), and sorted (frame 

5). We investigated the relation between the droplet size and the oil flow rate at a constant flow 

rate of water (Figure 5-6). In the hydrodynamic mode, droplet size decreases with increasing the 

oil flow rate, as expected, due to a bigger shear force cause by the liquid flow. However, in the 

electrically controlled droplet generation, as we increase the oil flow rate, due to the presence of 

the electric field, droplet will be hold in the place and stretched instead of breaking at the corner 

point of the T-juntion channel, resulting in a larger droplet.  
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Mixing and sorting are particularly useful capabilities, as most droplet microfluidic 

systems are incapable of generating dilutions of droplets and sorting them into multiple channels.  

In the design reported here, after droplet generation, droplets can be actuated to the mixing area 

and merged with another droplet (Figure 5-5, frame 3) and transferred to the main channel area for 

sorting and analysis (Figure 5-5, frame 5). To illustrate this, we used this method to generate 

calibration standards on this platform with sorting analysis. 
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Figure 5-5. Device operation for sorting fluorescein droplets of different concentrations.  

Frame (1) and (2) illustrates droplet formation in a hydrodynamic and on-demand fashion. Frame 

(3) shows the mixing process of two droplets in three steps. Frame (4) displays incubation station 

and Frame (5) shows two of the channels for n-ary sorting 
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Figure 5-6. Droplet size versus oil flow rate at a constant water flow rate. 

Droplet size varies with oil flow rate at both on-demand and hydrodynamic mode enabling 

generation of droplets with various sizes.  

 Dilutions were formed by merging a droplet containing analyte (fluorescein) with a droplet 

of diluent (buffer).  This merged droplet was mixed (by moving the merged droplet in a linear 

pattern – up-and-down – for several seconds 215) producing a droplet with a 2x dilution of analyte.  

This droplet was analyzed by optical detection (Figure 5-7) and sorted for further processing.  

Subsequent droplets of analyte with different concentrations (4x and 8x) followed the similar 

protocol except the droplet containing fluorescein was mixed with two, three, or four droplets of 

diluent respectively (Figure 5-8).  Note that this type of process, which includes on-demand droplet 

generation and mixing to create different droplets of different concentration of analytes was only 

made possible with the integration of digital microfluidics.  Such operations were not possible with 

typical droplet microfluidic platforms unless we increase the number of inlets and injectors or 



69 

 

reinject droplets into the device.114 The devices used in this experiment were done in droplet-in-

channels with minimal inlets, which allowed for a maximum 8x dilution of stock analyte.  In the 

future, more dilutions could be implemented or mixing different types of analytes could be 

implemented by using these devices. 

 

Figure 5-7. The integrated optical detection system. 

Two optical fiber were place inside the same channel perpendicular to the main fluid channel. 

 

Figure 5-8. N-ary sorting of fluorescein droplets with different concentrations. 

 

 Figure 5-9 summarizes the results from this experiment with fluorescein.  As the droplets 

pass the optical fiber setup, the emitted fluorescence from the droplet was detected by the 
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spectrometer which outputted arbitrary units proportional to the emitted fluorescence of the 

droplet.  As shown in Figure 5-9, the yellow curve depicts droplets that have minimal emitted 

fluorescence (i.e. droplets of diluent without fluorescein). The blue curve shows the fluorescence 

intensity for different concentration of fluorescein.  

As expected, the highest fluorescein concentration (1 mM) showed the highest signal with 

a sorting threshold ~1900 arbitrary units and the lower fluorescein concentration (0.125 mM) 

showed the lowest signal with a threshold of ~ 700.   

 

Figure 5-9. Fluorescence intensity of individual droplets during microfluidic sorting.  

A calibration curve (N = 10) was generated by plotting the ratio of analyte peak intensity 

as a function of analyte concentration (Figure 5-10). The precision in each measurement (RSD = 

3.2%, 4.6 %, 7.5%, and 10.7% for the stock, 2x, 4x, and 8x dilution, respectively) and the 

correlation coefficient (R2 = 0.99) demonstrates that the method is reproducible and linear.  

Furthermore, we measured the sorting efficiency by sorting positive-fluorescein (1 mM) vs. 



71 

 

negative-fluorescein droplets and obtained ~96 % efficiency for positive bright which is similar to 

other reported sorting efficiencies. Errors in sorting mostly arised by droplet breakage in the 

entrance of two neighbor channels. In addition, manual actuation of the related sorting electrodes 

with delay, was another issue causing the false results, as the actuation was not automated and 

integrated with the detection system to be done precisely on time.  

 

Figure 5-10. Fluorescein standard curve constructed on ID2M. 
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5.3 Application: Studying the Effect of IL on Two Yeast Mutants 

As an application of this work, we examined the effects of ionic liquid (IL) on wild-type 

and mutant yeast cells.  Ionic liquid has been used as a promising pretreatment method for breaking 

down polysaccharides from typical feedstocks (e.g., lignin). After this treatment, the 

polysaccharides are easier to be taken up by micro-organisms, for sustainable production of 

renewable biofuels. 216, 217 Typically, there has been a wide range of available ILs that are suitable 

for effectively breaking down the required biomass. 183, 218 However, a major disadvantage with 

current commonly used ILs (especially imidazolium ILs) is their inherent microbial toxicity which 

can either arrest growth of microbial cells, like E.coli or S. cerevisiae, or inhibit biofuel-related 

enzymes which can reduce the overall yield of biofuel production. 185, 219 Hence, there is much 

interest in investigating the mechanisms of tolerance for microbes to different levels of IL.   

Here, we compare the effects of IL on wild-type and mutant yeast cells and show the ability 

to interrogate each cell type with different IL concentrations and to sort cells based on their growth 

differences.  To our best knowledge, this is the first time that micro-organisms have been selected 

for ionic liquid resistance on-chip, by culturing, mixing with ionic liquid and sorting based on 

multiple conditions (i.e. not binary). As a first step, we performed a mutagenesis of S. cerevisiae 

BY4748 (via ethyl methylsulfonate treatment) and verified growth rates under different IL 

concentrations (Figure 5-11). Wild-type and the two mutants that have higher IL tolerance are 

chosen to be used for further on-chip testing. The strains were then cultured with and without 100 

mM ionic liquid. As shown in Figure 5-12, both mutant cells showed higher growth rate ( ~1.7 

and ~2.6 cells per hour for mutant #1 and mutant #2, respectively) compared to the wild-type yeast 

growth rate (very minimal) during the 48 hours incubation in 100 mM ionic liquid.  In fact, the 

wild-type cells exhibited virtually no detectable growth in ionic liquid conditions. When the wild 
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type cells were cultured without ionic liquid, it showed faster rates than both mutant cells. We 

hypothesize that mutations related to this tolerance could be due to mutations in areas that are 

related to efflux pumps (i.e. to bring IL in-and-out of the cells) 220 and to transcriptional regulators 

that are related to stabilizing stress response.221  

 

Figure 5-11.  Wild-type and mutant yeast growth in SD media containing IL.  

Wild-type and two mutant yeast growth based on OD600 measurement after 45 hours incubation 

at 30°C in SD media containing different concentrations of IL. 

 Clearly, more work is required to determine the location of the mutations using a whole-

genome sequencing and a bioinformatics analysis comparing all mutants and wild-types, 196 but 

this experiment confirmed that we are capable of obtaining three different strains that will be used 

to show the utility of our device. 
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Figure 5-12. Growth curve for the two mutants and WT-Yeast 

Average cell densities (OD600) are reported from 3 independent biological replicates after 48 hr 

of incubation at 30°C in SD media containing 100 mM IL. 

After selecting the clones, we continue with the on-chip procedure. As shown in Figure 

5-13, we first encapsulated droplets containing single cells and actuated them into the mixing 

channel.  These droplets were mixed with a droplet of 100 mM IL which was generated from the 

on-demand T-channel configuration. The droplet was incubated in one of the four trapping regions 

(Figure 5-14). We have further planned to analyze the droplet after incubation for 2 days by 

absorbance and sort by their growth (i.e. cell number).  

We expect mutant-type cells to show a significant difference in the cell density compared 

to wild-type cells matching with the growth rate results in macro scale. Similar to the fluorescein 

droplet detection protocol, the absorbance of these droplets will be measured as the droplets passed 

through the optical fiber region (aligned face-to-face) on the device. We anticipate droplets’ 
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signals will be increased as the cell density increases while the signal for the oil phase remains 

constant as the background media. 

 

Figure 5-13. Schematic of the ID2M work flow for sorting the yeast mutant library. 

  

Figure 5-14. Trapping droplets containing yeast cell for incubation. 



76 

 

Indeed, sensitivity of the signals depend on fiber alignment and background. We propose that 

improvement on the optical setup 222 or device fabrication 223 can increase the sensitivity of our 

design and expanding the range of cell densities being observed. 
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Chapter 6. Concluding Remarks and a Look to the Future 

In this section, we recapitulate the hallmarks of the thesis and vent the merits of the ID2M platform 

as a versatile screening system. In addition, we assess the limitations of this work and evaluate the 

future work related to the ID2M platform. 

6.1 Conclusion 

In this thesis, we report the first integrated droplet-digital microfluidic platform enabling on-

demand droplet generation, mixing, incubation, and n-ary sorting for screening clonal libraries of 

microorganism. First we optimized microfabrication procedures related to ID2M to accommodate 

cell encapsulation using flow focusing configuration, droplet dilution using sequential mixing with 

individual addressability, and droplet sorting into multiple level based on their fluorescent or 

absorbance signals. An optical detection system consisting of a flame spectrometer and optical 

fibers was integrated to the system and droplet manipulation was automated by an automated 

control system in a MATLAB base workspace. We optimized and validated our system for n-ary 

sorting by constructing a fluorescein standard curve through sequential dilutions on chip. After 

successful proof-of-concept n-ary sorting, we demonstrated an EMS mutagenesis at macro scale 

to produce mutants of S. cerevisiae BY4748 that are tolerant under high concentration of ionic 

liquid. Then, we selected two highly IL-tolerant mutants with WT yeasts for performing an n-ary 

sorting on our platform. We were able to demonstrate single cell encapsulation, mix them with 

100 mM IL droplets, and incubate them on chip for 48 h. We plan to perform n-ary sorting of this 

clonal library on ID2M platform using their related cell density and absorbance peaks. The method 

reported here enables a wide variety of droplet operations that is typically not possible with droplet 

or digital microfluidic systems – encapsulation, mixing (to generate different ionic liquid 
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concentrations), culture and incubation, and n-ary sorting. Together the new methods described 

here may be particularly useful for high-throughput applications that require a creation of different 

drug concentrations or clonal libraries and sorting them at multiple levels. 

6.2 Future Perspectives 

Hybrid microfluidics has been used as a novel strategy to address some of the limitations in droplet 

and digital microfluidics. While hybrid microfluidics has a great potential to have the combination 

of high throughputs and individual controllability, there are still some drawback that requires 

optimization of the system.  

Hybrid microfluidics has mostly been limited by their complex fabrication procedure. 

Performing microscale photolithography for multiple layers (in a separate mode or integrated as a 

single device), requires advanced cleanroom facilities and expertise, not to mention the cost of the 

whole process. Additionally, precise alignment of the microscale features on different layers is 

another concern. However, this limitation can be attributed to the immaturity of the fabrication 

technology today. There have been lots of researches on low-cost, rapid-prototyping of digital 

microfluidics devices in copper substrates without any conventional cleanroom equipment, but 

this technique is usually deficient in its resolutions (minimum feature size of 50 micron). 

Currently, our ID2M platform has a minimum feature size of ~ 10 microns, which could be seen 

as a limiting factor for switching from cleanroom to a rapid prototype fabrication technique. 

However, now that the platform has been functionally tested and validated, we can consider 

strategies for more efficient electrode designs and bigger features that also empowers the platform 

for tolerating higher voltages. 
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Another concerning issue is the low throughput of this primary ID2M platform which is a 

limiting factor in high throughput screening (HTS) applications. To address this issue, there are 

three main factors that needs to be optimized:  

First, for a high-throughput droplet microfluidics (i.e. faster droplet generation and 

manipulations), higher flow rate of the fluids is required. However, increasing the flow rate will 

consequently result in larger hydrodynamic forces inside the channel, meaning that we must also 

apply higher electric potential to make electrostatic the dominant force in controlling droplets 

movement. As previously mentioned, our ID2M platform consists of small electrodes that limits 

the level of applied voltage, because increasing the voltage for small-area electrode, results in 

burning. So, changing the DMF layer design to accommodate larger electrodes would be one 

possible solution.  

Another factor affecting the throughput of ID2M, is the integrated detection system which 

is presently optical fibers and a flame spectrometer. Integrating a photosensor along with a more 

focused light source such as lasers can provide a detection system with higher sensitivity and faster 

response time that is necessary for HTS.  

Integrating the detection system and the syringe pump with the automation setup, is the 

other factor that can help increasing the throughput. Now, starting the liquid flow and actuation of 

the electrodes is manually performed, meaning that a good time distance is required between 

droplets to avoid delays or wrong actuation in operating the system. Therefore, integration will 

make full automation of the system possible, thus resulting in a higher throughput.  

In the future, we envision a consolidated high throughput screening platform streamlining 

on-demand mixing, incubation, and n-ary sorting of microorganism enabling applications like 

directed evolutions to be fully done on a chip. To our knowledge, such a consolidated automated 



80 

 

screening platform has not yet been developed and would hold tremendous value in the directed 

evolution community.  
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