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Abstract 
 
In the aerospace and automotive applications driveshafts are manufactured using fiber reinforced 

composite materials. Compared to a conventional metallic driveshaft, a composite driveshaft 

gives higher natural frequencies and critical speeds, and lower vibration. They are also 

lightweight structures, especially when they are tapered. The design of the driveshaft is based on 

its fundamental natural frequency, and tapering the driveshaft can substantially improve the 

value of this natural frequency. In this study, the vibration analysis of the tapered composite 

driveshaft is carried out using the hierarchical finite element formulation, and for this purpose, 

the Timoshenko beam theory is used. In addition, the effects of rotary inertia, transverse shear 

deformation, gyroscopic force, axial load, coupling due to the lamination of composite layers, 

and taper angle are incorporated in the hierarchical finite element model. The potential energy 

and the kinetic energy of the tapered composite shaft are obtained, and then the equations of 

motion are developed using Lagrange’s equation. The finite element solution is validated using 
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the approximate solution based on the Rayleigh-Ritz method. A comprehensive parametric study 

is conducted based on the hierarchical finite element formulation.

NOMENCLATURE

𝑣 Displacement of the shaft in y direction

𝑤 Displacement of the shaft in z direction

𝛽𝑦 Rotation of the shaft around y direction

𝛽𝑧 Rotation of the shaft around z direction

Ω Rotational speed of the shaft

𝜂 Fiber orientation angle

𝛼 Taper angle

𝑥,𝜃,𝑟 Cylindrical coordinate system

𝑥,𝑦,𝑧 Cartesian coordinate system

𝑈𝑐𝑜𝑚𝑝  Total strain energy of the composite shaft element

𝑈𝐵𝑆
Strain energy of the composite shaft that results from the bending moment 

and the shear force

𝑈𝐹 External work done on the shaft due to a constant axial force

𝑇𝑐𝑜𝑚𝑝 Kinetic energy of the composite shaft element

[G] Gyroscopic matrix

[𝑀] Mass matrix

[ ]𝐾 Stiffness matrix



  

[𝐾𝑃] Geometric stiffness matrix due to axial load

𝑣 Translational velocity in y-direction

𝑤 Translational velocity in z-direction

𝛽𝑦 Angular velocity about the y-axis

𝛽𝑧 Angular velocity about the z-axis

𝑘𝑠 Shear correction factor

Mass per unit length

Diametral mass moment of inertia

Polar mass moment of inertia

L Length of the tapered composite element

𝑥 Local axial coordinate of the element

 



  

1 Introduction  

Composite materials are widely being used in aircraft and automobile structures, because they 

have high strength-and stiffness-to-mass ratio, good damping capacity, and high resistance to 

fatigue and corrosion. These characteristics have attracted the manufacturers in aerospace and 

automobile industries, and currently there is a desire to replace the conventional metal driveshaft 

by the shaft that is manufactured using composite materials. It is required of the driveshaft to 

avoid the resonance phenomena during the operation, and this can be achieved by designing the 

composite driveshaft with high bending natural frequency and high first critical speed. In the 

case of the conventional metal driveshaft, it has been found that tapering the driveshaft, in a way 

that the inner and outer diameters of one end is constant and the inner and outer diameters of the 

other end increase with the taper angle, improves the natural frequency and first critical speed. 

Such a tapering can be achieved in the composite driveshaft using filament winding machine and 

fiber placement machine. 

Zinberg and Symonds [1] experimentally obtained the natural frequency and critical speed of a 

boron/epoxy composite shaft, and they compared the results with other results that were obtained 

for an aluminum shaft. The comparison shows the advantages of the composite shaft over the 

aluminum shaft. Chang et al. [2] developed Lagrangian finite element model to perform 

rotordynamic analysis of uniform composite shaft, and the model was based on Timoshenko 

beam theory. Chang et al. [3] studied the vibrations of the rotating composite shafts containing 

randomly oriented reinforcements. Boukhalfa and Hadjoui [4] studied the free vibration of 

uniform composite shaft using the hierarchical finite element method. In addition, Almuslmani 



  

and Ganesan [5] developed a finite element model using Hermitian – conventional finite element 

for rotordynamic analysis of uniform composite shaft. Qatu and Iqbal [6] developed an exact 

solution based on the Euler–Bernoulli beam theory to obtain the natural frequency of a two 

segmented composite driveshaft joined by a hinge; they showed the effect of considering the 

mass of the hinge on the natural frequency. In addition, Chen and Peng [7] used Timoshenko 

beam theory and finite element model to analyse the dynamic behavior of a composite shaft 

subjected to axial periodic forces and to determine the regions of dynamic instability. Librescu et 

al. [8] studied the stability of rotating tapered composite shaft subjected to an axial compressive 

force. The results showed that tapering the composite shaft shifts the domain of divergence and 

flutter instability to larger rotating speeds. 

This paper utilizes hierarchical finite element method (HFEM) to perform rotodynamic analysis 

on tapered composite shaft. The method has been suggested in many papers [4] and [9 -12]. 

Using hierarchical finite element, simple structure such as the tapered composite shaft can be 

represented in one element and variable numbers of hierarchical terms, and the desire accuracy 

degree of result can be accomplished not only by increasing the element numbers as in 

conventional finite element method but also by increasing the number of hierarchical terms. 

Comparing to conventional finite element, HFEM yields more accurate results for eigenvalue 

problems of the same order [11].  Moreover, the hierarchical terms can be represented either in 

trigonometric terms or Legendre orthogonal polynomials terms. Legendre orthogonal 

polynomials generally are used as hierarchical terms in HFEM, however, they limit the use of 

HFEM in high-frequency analysis   because they lead to numerical rounding errors associated 

with floating point arithmetic that increase with increasing order of polynomial [11-12]. In this 



  

paper, hierarchical terms are represented in trigonometric function while the polynomial shape 

function are used to describe the element’s nodal degrees of freedom.

For developing a finite element model of tapered composite driveshaft for rotordynamic analysis, 

in the present work, the hierarchical finite element formulation with trigonometric shape 

functions is used. The new finite element model takes into account the effects of the axial load, 

the rotary inertia, the gyroscopic forces, the taper angle, and the coupling effects due to the 

lamination of composite layers. In addition, Timoshenko beam theory is adopted, so that the 

effect of shear deformation can be considered. After obtaining the equations of motion using 

Lagrange’s equation, the present tapered composite shaft model is validated using Rayleigh-Ritz 

approximate solution for simply supported condition. A comprehensive parametric study is 

conducted to investigate the dynamic behavior of tapered composite driveshaft. 

2 Energy expressions of the tapered composite shaft 

The kinetic energy of the tapered composite shaft finite element, denoted by , can be 𝑇𝑐𝑜𝑚𝑝

written as  

𝑇𝑐𝑜𝑚𝑝 =
1
2 

𝐿

∫
0

𝑚𝑐(𝑥) (𝑣2 + 𝑤2)𝑑𝑥 +
1
2

𝐿

∫
0

𝐼𝑑𝑐(𝑥)(𝛽2
𝑦 + 𝛽2

𝑧)𝑑𝑥 ‒
𝐿

∫
0

𝐼𝑝𝑐(x)Ω𝛽𝑧𝛽𝑦𝑑𝑥
  (1)

where  ,  ,  , , , , , L,  and  are the mass per unit length, diametral mass 𝑣 𝑤 𝛽𝑦 𝛽𝑧 𝑥 Ω

moment of inertia, the polar mass moment of inertia, the translational velocity in y-direction, the 

translational velocity in z-direction, the angular velocity about the y-axis, the angular velocities 



  

about the z-axis, the length of the tapered composite element, the local axial coordinate of the 

element, and the rotational speed of the shaft respectively.  ,  , and  can be expressed as  

𝑚𝑐(𝑥) = 𝜋
𝑛

∑
𝑠 = 1

𝜌𝑠(𝑟 2
𝑜𝑠(𝑥) ‒ 𝑟2

𝑖𝑠(𝑥)) (2)

𝐼𝑑𝑐(𝑥) =
𝜋
4

𝑛

∑
𝑠 = 1

𝜌𝑠(𝑟 4
𝑜𝑠(𝑥) ‒ 𝑟4

𝑖𝑠(𝑥)) (3)

𝐼𝑝𝑐(𝑥) =
𝜋
2

𝑛

∑
𝑠 = 1

𝜌𝑠(𝑟 4
𝑜𝑠(𝑥) ‒ 𝑟4

𝑖𝑠(𝑥)) (4)

where n is the number of the layers in the laminate, and  is the density of the layer, and 

 are the outer radius and inner radius along the length for each single layer of the 

tapered shaft element, respectively. For the linear taper, the outer radius and inner radius for 

each single layer of the tapered shaft element are

𝑟𝑜𝑠(𝑥) = (1 ‒
𝑥
𝐿)𝑟𝑜1 +

𝑥
𝐿𝑟𝑜2

 (5)

𝑟𝑖𝑠(𝑥) = (1 ‒
𝑥
𝐿)𝑟𝑖1 +

𝑥
𝐿𝑟𝑖2

 (6)

where  and   are the inner and outer radii of the smallest diameter of the tapered element 

while  and   are the inner and outer radii of largest diameter of the tapered element as 

illustrated in Figure 1. Figure 2 shows a single lamina deformed into a conical tube with a 

linear taper angle α. The principal material directions are denoted by 1, 2, and 3. The axis 1’ 

extends along the tapered tube surface while 3’- axis is perpendicular to the same surface. The 

fiber angle  is the angle between 1-axis and 1’-axis and the angle between 2-axis and 2’-axis. 𝜂

To obtain the strain energy of the tapered composite shaft, it is required to find the stress-strain 



  

relations in cylindrical coordinate system (x, θ, r). These relations can be obtained by 

considering the stress-strain relations for a lamina in the principal material coordinates and then 

applying a sequence of transformations to take into account the fiber orientation angle and the 

taper angle. Performing this, the stress-strain relations in cylindrical coordinate system (x, θ, r) 

are obtained as 

[𝜎𝑥𝜃𝑟] = [𝑄][𝜀𝑥𝜃𝑟] = [𝑇3][𝑇1][𝑄] [𝑇2] ‒ 1[𝑇4] ‒ 1[𝜀𝑥𝜃𝑟] (7)

Fig.1. Tapered shaft element

where [Q] is the stiffness matrix of a single lamina.  is the transformed stiffness of the layer 

obtained after performing the rotation  about 3-axis in principal material coordinate system (1, 𝜂

2, 3) and then performing the rotation α about 2’-axis in primed coordinate system (1’, 2’, 3’).



  

[𝑇1] = [ 𝑚2

𝑛2

0
0
0

‒ 𝑚𝑛

    

𝑛2

𝑚2

0
0
0

𝑚𝑛

    

0
0
1
0
0
0

    

0
0
0
𝑚
𝑛
0

    

0
0
0

‒ 𝑛
𝑚
0

  2𝑚𝑛
‒ 2𝑚𝑛

   

0
0
0

 𝑚2 ‒ 𝑛2
] (8)

[𝑇2] = [ 𝑚2

𝑛2

0
0
0

‒ 2𝑚𝑛

    

𝑛2

𝑚2

0
0
0

2𝑚𝑛

    

0
0
1
0
0
0

    

0
0
0
𝑚
𝑛
0

    

0
0
0

‒ 𝑛
𝑚
0

  𝑚𝑛
‒ 𝑚𝑛

   

0
0
0

 𝑚2 ‒ 𝑛2
]  

(9)

[𝑇3] = [ 𝑐2

0
𝑠2

0
‒ 𝑠𝑐

0

      

0
1
0
0
0
0

     

𝑠2

0
𝑐2

0
𝑠𝑐
0

      

0
0
0
𝑐
0
𝑠

      

2𝑠𝑐
0

‒ 2𝑠𝑐
0

𝑐2 ‒ 𝑠2

0

   

0
0
0

‒ 𝑠
0
𝑐
   

]  
(10)

[𝑇4] = [ 𝑐2

0
𝑠2

0
‒ 2𝑠𝑐

0

      

0
1
0
0
0
0

     

𝑠2

0
𝑐2

0
2𝑠𝑐

0

      

0
0
0
𝑐
0
𝑠

      

𝑠𝑐
0

‒ 𝑠𝑐
0

𝑐2 ‒ 𝑠2

0

   

0
0
0

‒ 𝑠
0
𝑐
   

]  
(11)

m = cos ; n = sin 𝜂 𝜂

c = cos α ; s = sin α
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Fig. 2. Single composite lamina deformed into tapered cylinder



  

Based on Timoshenko beam theory, the displacement field of the cross-section of the tapered 

composite shaft can be described by the following equations:                 

𝑢𝑥(𝑥,𝑦,𝑧,𝑡) = 𝑧𝛽𝑦(𝑥,𝑡) ‒ 𝑦𝛽𝑧(𝑥,𝑡) = (𝑟sin 𝜃)𝛽𝑦(𝑥,𝑡) ‒ (𝑟cos 𝜃)𝛽𝑧(𝑥,𝑡) (12)

𝑢𝑦(𝑥,𝑦,𝑧,𝑡) = 𝑣(𝑥,𝑡) (13)

𝑢𝑧(𝑥,𝑦,𝑧,𝑡) = 𝑤(𝑥,𝑡) (14)

where  and  . ,  are the displacements of any point of the 

composite shaft in x, y and z directions, and  are the displacements of a point on the 

reference axis of the shaft in y and z directions and  and  are the rotation angles of the cross-

section about y-axis and z-axis. Using Equations (12) - (14), the strains can be obtained as 

𝜖𝑥𝑥 =
∂𝑢𝑥

∂𝑥 = 𝑧
∂𝛽𝑦

∂𝑥 ‒ 𝑦
∂𝛽𝑧

∂𝑥  (15)

𝜖𝑦𝑦 =
∂𝑢𝑦

∂𝑦 = 0
(16)

𝜖𝑧𝑧 =
∂𝑢𝑧

∂𝑧 = 0 
(17)

𝛾𝑦𝑧 =
∂𝑢𝑧

∂𝑦 +
∂𝑢𝑦

∂𝑧 = 0
(18)

𝛾𝑥𝑧 =
∂𝑢𝑥

∂𝑧 +
∂𝑢𝑧

∂𝑥 = 𝛽𝑦 +
∂𝑤
∂𝑥

(19)

𝛾𝑥𝑦 =
∂𝑢𝑥

∂𝑦 +
∂𝑢𝑦

∂𝑥 =‒ 𝛽𝑧 +
∂𝑣
∂𝑥

(20)



  

The strain components in cylindrical coordinate system (x, θ, r) can be written in terms of the 

strains in the Cartesian coordinate system (x, y, z) as  

[ 𝜖𝑥𝑥
 𝜖𝜃𝜃
𝜖𝑟𝑟
𝛾𝜃𝑟
𝛾𝑥𝑟
𝛾𝑥𝜃

] =   [1
0
0
0
0
0

   

0
ℎ2

𝑔2

‒ 𝑔ℎ
0
0

   

0
𝑔2

ℎ2

𝑔ℎ
0
0

   

0
‒ 2𝑔ℎ
2𝑔ℎ

𝑔2 ‒ ℎ2

0
0

   

0
0
0
0
ℎ
𝑔

   

0
0
0
0
𝑔

‒ ℎ
]  [𝜖𝑥𝑥

𝜖𝑦𝑦
𝜖𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦

]   (21)

where  and . Substituting Equations (15) – (20) into Equation (21), one can 

get 

𝜖𝑥𝑥 = 𝑟 (𝑠𝑖𝑛 𝜃)
∂𝛽𝑦

∂𝑥 ‒ 𝑟(𝑐𝑜𝑠 𝜃)
∂𝛽𝑧

∂𝑥
(22)

𝜖𝜃𝜃 = 0 (23)

𝜖𝑟𝑟 = 0 (24)

𝛾𝜃𝑟 = 0 (25)

𝛾𝑥𝑟 = (𝑠𝑖𝑛𝜃)(∂𝑤
∂𝑥 + 𝛽𝑦) + (cos 𝜃)( ‒ 𝛽𝑧 +

∂𝑣
∂𝑥) (26)

𝛾𝑥𝜃 = (cos 𝜃)(∂𝑤
∂𝑥 + 𝛽𝑦) ‒ (𝑠𝑖𝑛 𝜃)( ‒ 𝛽𝑧 +

∂𝑣
∂𝑥) (27)

By considering Equations (23) – (25) the stress – strain relations in Equation (7) can be written 

as 

 =  [𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝜃𝑟
𝜏𝑥𝑟
𝜏𝑥𝜃

] [𝑄11
𝑄21
𝑄31
𝑄41
𝑄51
𝑄61

   

𝑄15
𝑄25
𝑄35
𝑄45
𝑄55
𝑄65

  

𝑄16
𝑄26
𝑄36
𝑄46
𝑄56
𝑄66

  ]  [𝜀𝑥𝑥
𝛾𝑥𝑟
𝛾𝑥𝜃

] (28)



  

In Timoshenko beam theory, the shear correction factor  is used to adjust the stress state. By 

introducing the shear correction factor    in a way [2] that the stress – strain relations in 

Equation (28) can be modified to include the shear correction factor   and expressed as  

 =   [𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝜃𝑟
𝜏𝑥𝑟
𝜏𝑥𝜃

] [ 𝑄11
𝑄21
𝑄31

𝑘𝑠𝑄41
𝑘𝑠𝑄51
𝑘𝑠𝑄61

   

𝑘𝑠𝑄15
𝑘𝑠𝑄25
𝑘𝑠𝑄35
𝑘𝑠𝑄45
𝑘𝑠𝑄55
𝑘𝑠𝑄65

  

𝑘𝑠𝑄16
𝑘𝑠𝑄26
𝑘𝑠𝑄36
𝑘𝑠𝑄46
𝑘𝑠𝑄56
𝑘𝑠𝑄66

  ]  [𝜀𝑥𝑥
𝛾𝑥𝑟
𝛾𝑥𝜃

] (29)

The strain energy of tapered composite shaft due to bending moments and shear forces is

𝑈𝐵𝑆 =
1
2∭

𝑉
[𝜎𝑥𝜃𝑟]𝑇[𝜀𝑥𝜃𝑟]𝑑𝑉 (30)

Considering Equations (22) - (27) the strain energy  can be written as

𝑈𝐵𝑆 =
1
2∫

𝐿

0
[𝑀𝑦

∂𝛽𝑦

∂𝑥 + 𝑀𝑧
∂𝛽𝑧

∂𝑥 + 𝑄𝑦(∂𝑣
∂𝑥 ‒ 𝛽𝑧) + 𝑄𝑧(𝛽𝑦 +

∂𝑤
∂𝑥)]𝑑𝑥 (31)

where 

𝑀𝑦 = ∫
𝐴

𝜎𝑥𝑥 𝑟 𝑠𝑖𝑛𝜃 𝑑𝐴 (32)

𝑀𝑧 = ‒ ∫
𝐴

 𝜎𝑥𝑥𝑟cos 𝜃 𝑑𝐴 (33)

𝑄(1)
𝑥𝑟 = ∫

𝐴
 𝜏𝑥𝑟sin 𝜃 𝑑𝐴 (34)

𝑄(2)
𝑥𝑟 = ∫

𝐴
 𝜏𝑥𝑟cos 𝜃 𝑑𝐴 (35)

𝑄(1)
𝑥𝜃 = ∫

𝐴
𝜏𝑥𝜃sin 𝜃 𝑑𝐴 (36)



  

𝑄(2)
𝑥𝜃 = ∫

𝐴
 𝜏𝑥𝜃cos 𝜃 𝑑𝐴 (37)

After applying the integrations in Equations (32) – (37), the stress resultants and stress couples 

of the tapered composite shaft are 

𝑀𝑦 = 𝐷11
∂𝛽𝑦

∂𝑥 + 𝐵15𝑘𝑠(𝛽𝑦 +
∂𝑤
∂𝑥) +

1
2𝐵16𝑘𝑠(𝛽𝑧 ‒

∂𝑣
∂𝑥) (38)

𝑀𝑧 = 𝐷11
∂𝛽𝑧

∂𝑥 ‒ 𝐵15𝑘𝑠(∂𝑣
∂𝑥 ‒ 𝛽𝑧) ‒

1
2𝐵16𝑘𝑠(𝛽𝑦 +

∂𝑤
∂𝑥) (39)

𝑄(1)
𝑥𝑟 = 𝐵51 𝑘𝑠 

∂𝛽𝑦

∂𝑥 + 𝑘𝑠 𝐴55(𝛽𝑦 +
∂𝑤
∂𝑥) + 𝑘𝑠 𝐴56(𝛽𝑧 ‒

∂𝑣
∂𝑥) (40)

𝑄(2)
𝑥𝑟 = ‒ 𝐵51 𝑘𝑠 

∂𝛽𝑧

∂𝑥 + 𝑘𝑠 𝐴55(∂𝑣
∂𝑥 ‒ 𝛽𝑧) + 𝑘𝑠 𝐴56(𝛽𝑦 +

∂𝑤
∂𝑥) (41)

𝑄(1)
𝑥𝜃 =

1
2𝐵

61 
𝑘𝑠 

∂𝛽𝑦

∂𝑥 + 𝑘𝑠 𝐴65(𝛽𝑦 +
∂𝑤
∂𝑥) + 𝑘𝑠 𝐴66(𝛽𝑧 ‒

∂𝑣
∂𝑥) (42)

𝑄(2)
𝑥𝜃 = ‒

1
2𝐵

61 
𝑘𝑠 

∂𝛽𝑧

∂𝑥 + 𝑘𝑠 𝐴65(∂𝑣
∂𝑥 ‒ 𝛽𝑧) + 𝑘𝑠 𝐴66(𝛽𝑦 +

∂𝑤
∂𝑥) (43)

where

𝐴66(𝑥) =
𝜋
2

𝑛

∑
𝑠 = 1

𝑄66( 𝑟 2
𝑜𝑠(𝑥) ‒ 𝑟2

𝑖𝑠(𝑥) ) (44)

𝐴65(𝑥) =
𝜋
2

𝑛

∑
𝑠 = 1

𝑄65( 𝑟 2
𝑜𝑠(𝑥) ‒ 𝑟2

𝑖𝑠(𝑥) ) (45)

𝐴55(𝑥) =
𝜋
2

𝑛

∑
𝑠 = 1

𝑄55( 𝑟 2
𝑜𝑠(𝑥) ‒ 𝑟2

𝑖𝑠(𝑥) ) (46)

𝐴56(𝑥) =
𝜋
2

𝑛

∑
𝑠 = 1

𝑄56( 𝑟 2
𝑜𝑠(𝑥) ‒ 𝑟2

𝑖𝑠(𝑥) ) (47)



  

𝐵16(𝑥) =
2
3𝜋

𝑛

∑
𝑠 = 1

𝑄16( 𝑟 3
𝑜𝑠(𝑥) ‒ 𝑟3

𝑖𝑠(𝑥) ) (48)

𝐵15(𝑥) =
𝜋
3

𝑛

∑
𝑠 = 1

𝑄15( 𝑟 3
𝑜𝑠(𝑥) ‒ 𝑟3

𝑖𝑠(𝑥) ) (49)

𝐵51(𝑥) =
𝜋
3

𝑛

∑
𝑠 = 1

𝑄51( 𝑟 3
𝑜𝑠(𝑥) ‒ 𝑟3

𝑖𝑠(𝑥) ) (50)

𝐵61(𝑥) =
2
3𝜋

𝑛

∑
𝑠 = 1

𝑄61( 𝑟 3
𝑜𝑠(𝑥) ‒ 𝑟3

𝑖𝑠(𝑥) ) (51)

𝐷11(𝑥) =
𝜋
4

𝑛

∑
𝑠 = 1

𝑄11( 𝑟 4
𝑜𝑠(𝑥) ‒ 𝑟4

𝑖𝑠(𝑥)) (52)

The strain energy  in Equation (31) represents the strain energy of the composite shaft that 

results from the bending moment and the shear force, but when the composite shaft is subjected 

to a constant axial force, the total strain energy of the composite shaft  is given by 𝑈𝑐𝑜𝑚𝑝  

𝑈𝑐𝑜𝑚𝑝 =  𝑈𝐵𝑆 + 𝑈𝐹 (53)

where  is the external work done on the shaft due to a constant axial force P that can be 

written as  

𝑈𝐹 =
1
2∫

𝐿

0
𝑃[(∂𝑣

∂𝑥)2

+ (∂𝑤
∂𝑥)2

]𝑑𝑥 (54)

3 Hierarchical composite shaft element formulation 

The shape functions for hierarchical finite element can be established from polynomial or 

trigonometric functions. In this work the trigonometric function is chosen. Figure 3 illustrates a 



  

hierarchical beam finite element for tapered composite shaft. The element has two nodes and 

each of them have four degrees of freedom (two translational and two rotational). In hierarchical 

finite element method, the transverse displacement field of the beam element in y-direction is 

expressed as 

𝑣 = 𝑐1 + 𝑐2
𝑥
𝐿 +

𝑁

∑
𝑛 = 1

𝑐𝑛 + 2𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿 (55)

ξ=0 ξ=1

1 2

L

X,ξ

Figure 3 Hierarchical beam finite element with two nodes 

The local coordinate x and non-dimensional coordinate ξ are related by 

𝜉 =
𝑥
𝐿  ,  0 ≤  ξ ≤  1 (56)

So, Equation (55) can be written as 

𝑣 = 𝑐1 + 𝑐2𝜉 +
𝑁

∑
𝑛 = 1

𝑐𝑛 + 2sin ( 𝑛𝜋𝜉) (57)

𝑣 = [1 𝜉 sin 𝜋𝜉 …… sin 𝑁𝜋𝜉][
𝑐1
𝑐2
𝑐3
𝑐4
.
.

𝑐𝑁 + 2

] (58)



  

𝑣 = [𝐾𝑣]{𝑐} (59)

where N is the number of the hierarchical terms of displacement. In local coordinate system, the 

nodal displacements in y-direction are 

{𝑞𝑣} = [
𝑣1
𝑣2
𝑣3
𝑣4
.
.

𝑣𝑁 + 2

] = [1
1
0
0
.
.
0

  

0
𝐿
0
0
.
.
0

  

0
0
1
0
.
.
0

  

0
0
0
1
.
.
0

  ..  
.
.  

0
0
0
0
.
.
1

 ] [
𝑐1
𝑐2
𝑐3
𝑐4
.
.

𝑐𝑁 + 2

] (60)

{𝑞𝑣} = [𝐾𝑞𝑣]{𝑐} (61)

The displacement in y-direction can be expressed as 

𝑣 = [𝑓1 𝑓2 𝑓3 𝑓4 …… 𝑓𝑁 + 2][
𝑣1
𝑣2
𝑣3
𝑣4
.
.

𝑣𝑁 + 2

] (62)

𝑣 = [𝑁𝑣]{𝑞𝑣} = 𝑓1𝑣1 + 𝑓2𝑣2 +
𝑁

∑
𝑛 = 1

𝑓𝑛 + 2𝑣𝑛 + 2 (63)

Substituting Equations (59) and (61) into Equation (63) 

 [𝑁𝑣]{𝑞𝑣} =   [𝑁𝑣][𝐾𝑞𝑣]{𝑐} =  [𝐾𝑣]{𝑐} (64)

One can obtain the shape functions of the displacement  as: 

[𝑁𝑣] = [1 ‒ 𝜉 𝜉 sin 𝜋𝜉 sin 2𝜋𝜉 sin 3𝜋𝜉 …… sin 𝑁𝜋𝜉] (65)

where 



  

𝑓1 = 1 ‒ 𝜉 (66)

𝑓2 = 𝜉 (67)

𝑓𝑛 + 2 = sin(n 𝜋𝜉) (68)

where N is the number of the hierarchical terms, n = 1, 2, 3, ...N.

The functions  and  are polynomial functions and they correspond to the nodal displacements 

of the hierarchical element, whilst functions  are trigonometric functions and they 

correspond to the hierarchical terms and contribute only to the internal field of the displacement 

and do not affect the nodal displacement. Repeating the previous procedure, one can obtain the 

shape functions for ,  and . As a result, the displacement vector formed by the variables , 

, and  can be written as:

[ 𝑣
𝑤
𝛽𝑦
𝛽𝑧

] = [[𝑁𝑣]
[0]
[0]
[0]

  

[0]
[𝑁𝑤]
[0]
[0]

  

[0]
[0]

[𝑁βy
]

[0]
  

[0]
[0]
[0]

[𝑁βz
]][ {𝑞𝑣}

{𝑞𝑤}
{𝑞𝛽𝑦

}
{𝑞𝛽𝑧

}] (69)

[𝑁𝑣,𝑤,𝛽𝑦,𝛽𝑧] = [𝑓1  𝑓2  𝑓3………𝑓𝑁 + 2] (70)

{𝑞𝑣} = {𝑣1,𝑣2,𝑣3,………,𝑣𝑁 + 2}𝑇 (71)

{𝑞𝑤} = {𝑤1,𝑤2,𝑤3,………,𝑤𝑁 + 2}𝑇 (72)

{𝑞𝛽𝑦
} = {𝛽𝑦1,𝛽𝑦2,𝛽𝑦3,………,𝛽𝑦(𝑁 + 2)}𝑇 (73)

{𝑞𝛽𝑧
} = {𝛽𝑧1,𝛽𝑧2,𝛽𝑧3,………,𝛽𝑧(𝑁 + 2)}𝑇 (74)



  

Substituting Equation (69) into Equation (1), Equation (31), and Equation (54) and then applying 

the Lagrange’s equations, one can get the equations of motion of free vibration of spinning 

tapered composite driveshaft. In addition to the number of the nodes, the number of the 

generalized co-ordinates depends on the number of the hierarchical terms. So, the generalized 

co-ordinates are 

𝑞1 = 𝑣1 𝑞2 = 𝑣2 𝑞3 = 𝑣3 ……. 𝑞𝑏 = 𝑣𝑁 + 2

𝑞𝑏 + 1 = 𝑤1 𝑞𝑏 + 2 = 𝑤2 𝑞𝑏 + 3 = 𝑤3 ….…. 𝑞2𝑏 = 𝑤𝑁 + 2

𝑞2𝑏 + 1 = 𝛽𝑦1 𝑞2𝑏 + 2 = 𝛽𝑦2 𝑞2𝑏 + 3 = 𝛽𝑦3 ….…. 𝑞3𝑏 = 𝛽𝑦(𝑁 + 2)

𝑞3𝑏 + 1 = 𝛽𝑧1 𝑞3𝑏 + 2 = 𝛽𝑧2 𝑞3𝑏 + 3 = 𝛽𝑧3 ….…. 𝑞4𝑏 = 𝛽𝑧(𝑁 + 2)

(75)

where . Also, the generalized co-ordinates can be expressed as 𝑏 = 𝑁 + 2

{𝑞} = [ {𝑞𝑣}
{𝑞𝑤}
{𝑞𝛽𝑦

}
{𝑞𝛽𝑧

}] (76)

After applying Lagrange’s equations, the equations of motion of free vibration of rotating tapered 

composite driveshaft can be written as 

[𝑀]{𝑞} + [𝐺]{𝑞} + ([𝐾] + [𝐾𝑃]){𝑞} = {0} (77)

where

[𝑀] = [[𝑀11]
[0]
[0]
[0]

  

[0]
[𝑀22]

[0]
[0]

  

[0]
[0]

[𝑀33]
[0]

  

[0]
[0]
[0]

[𝑀44]] (78)



  

[𝐺] = [[0]
[0]
[0]
[0]

  
[0]
[0]
[0]
[0]

  

[0]
[0]
[0]

[𝐺43]
  

[0]
[0]

[𝐺34]
[0]

] (79)

[𝐾] = [[𝐾11]
[0]

[𝐾31]
[𝐾41]

  

0
[𝐾22]
[𝐾32]
[𝐾42]

  

[𝐾13]
[𝐾23]
[𝐾33]
[𝐾43]

  

[𝐾14]
[𝐾24]
[𝐾34]
[𝐾44]] (80)

[𝐾𝑃] = [[𝐾𝑝𝑣]
[  0   ]
[  0   ]
[  0   ]

  

[  0   ]
[𝐾𝑝𝑤]
[  0   ]
[  0   ]

  
[  0   ]
[  0   ]
[  0   ]
[  0   ]

  
[  0   ]
[  0   ]
[  0   ]
[  0   ]] (81)

The mass sub-matrices, gyroscopic sub-matrices, and stiffness sub-matrices for tapered 

composite driveshaft using hierarchical finite element method are given in details in the 

Appendix A.

4 Rayleigh - Ritz solution

To validate the solution from the hierarchical composite tapered shaft finite element model, 

Rayleigh – Ritz method is utilized here. It is developed to obtain an approximate solution for the 

tapered composite shaft. The simply supported condition at the ends of the tapered composite 

shaft is used to obtain the model, and the series solution functions are assumed for 𝑣, 𝑤,𝛽𝑦, and 

 in the form𝛽𝑧

𝑣 = 𝑣𝑒𝑖ω𝑡 (82)

𝑤 = 𝑤𝑒𝑖ω𝑡 (83)



  

𝛽𝑦 = 𝛽𝑦𝑒𝑖ω𝑡 (84)

𝛽𝑧 = 𝛽𝑧𝑒𝑖ω𝑡 (85)

where

𝑣(𝑥) =
𝑛

∑
𝑗 = 1

𝑉𝑗sin
𝑗𝜋𝑥

𝐿 (86)

𝑤(𝑥) =
𝑛

∑
𝑗 = 1

𝑊𝑗sin
𝑗𝜋𝑥

𝐿 (87)

𝛽𝑦(𝑥) =
𝑛

∑
𝑗 = 1

𝐵𝑦𝑗cos
𝑗𝜋𝑥

𝐿 (88)

𝛽𝑧(𝑥) =
𝑛

∑
𝑗 = 1

𝐵𝑧𝑗cos
𝑗𝜋𝑥

𝐿 (89)

Here, n is the number of Ritz terms and  is whirl frequency. To obtain the equations of motion, ω

Equations (82) - (85) must be substituted in Equation (1) and Equation (31) which represent the 

kinetic energy and the strain energy of the tapered composite shaft, respectively. After obtaining 

the energy expressions in terms of the series solution of  and , Lagrange’s equations can 𝑣,𝑤,𝛽𝑦 𝛽𝑧

be used to establish the equations of motion of the tapered composite shaft. The equations of 

motion of free vibration of the rotating tapered composite shaft are

[𝑀𝑟]{𝑞} + [𝐺𝑟]{𝑞} + [𝐾𝑟]{𝑞} = {0} (90)

Where



  

[𝑀𝑟] = [[𝑀𝑉]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

  

[ 0 ]𝑛 × 𝑛
[𝑀𝑊]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

  

[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

[𝑀𝐵𝑦
]𝑛 × 𝑛

[ 0 ]𝑛 × 𝑛

  

[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

[𝑀𝐵𝑧
]𝑛 × 𝑛

]
4𝑛 × 4𝑛

(91)

[𝐺𝑟] = [[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

            

[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

    

[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

[𝐺𝐵𝑦
]𝑛 × 𝑛

[ 0 ]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛
[𝐺𝐵𝑧

]𝑛 × 𝑛
[ 0 ]𝑛 × 𝑛

]
4𝑛 × 4𝑛

(92)

[𝐾𝑟] = [ [𝐾𝑉1]𝑛 × 𝑛
[  0   ]𝑛 × 𝑛
[𝐾𝐵𝑦1]𝑛 × 𝑛
[𝐾𝐵𝑧1]𝑛 × 𝑛

  

[  0   ]𝑛 × 𝑛
[𝐾𝑊2]𝑛 × 𝑛
[𝐾𝐵𝑦2]𝑛 × 𝑛
[𝐾𝐵𝑧2]𝑛 × 𝑛

  

[𝐾𝑉3]𝑛 × 𝑛
[𝐾𝑊3]𝑛 × 𝑛
[𝐾𝐵𝑦3]𝑛 × 𝑛
[𝐾𝐵𝑧3]𝑛 × 𝑛

  

[𝐾𝑉4]𝑛 × 𝑛
[𝐾𝑊4]𝑛 × 𝑛
[𝐾𝐵𝑦4]𝑛 × 𝑛
[𝐾𝐵𝑧4]𝑛 × 𝑛

]
4𝑛 × 4𝑛

(93)

{𝑞} = {𝑉1,𝑉2, …,𝑉𝑛    𝑊1,𝑊2, …,𝑊𝑛    𝐵𝑦1,𝐵𝑦2,…,𝐵𝑦𝑛   𝐵𝑧1,𝐵𝑧2,…,𝐵𝑧𝑛}𝑇 (94)

The mass sub-matrices, gyroscopic sub-matrices, and stiffness sub-matrices for tapered 

composite driveshaft using Rayleigh - Ritz method are given in details in the Appendix B.

5 Campbell Diagram and Critical Speeds  

Synchronous force or excitation is defined as the force, whose frequency is like rotor speed. 

Mostly, the synchronous excitation happens because of the mass unbalance and disk skew [13]. 

Thus, under synchronous force or excitation equation (77) can be written as 

[𝑀]{𝑞} + [𝐺]{𝑞} + ([𝐾] + [𝐾𝑃]){𝑞} = {𝑄} (95)

where   represents the resulting forces and moments of the mass unbalance and the disk {𝑄(𝑡)}

skew.



  

Moreover, Campbell diagram is a map of natural frequencies of the driveshaft that shows the 

variation of the natural frequencies with the rotation speeds; the Campbell diagram is used to 

obtain the critical speeds and natural frequencies. Figure 14 shows a typical Campbell diagram 

where the intersections of the natural frequency curve with the forcing frequency lines represent 

the critical speeds. In addition, beside the Campbell diagram, there are two other methods to 

obtain the critical speeds; one is called the direct method and the other is the iteration method. In 

this paper, the direct method is applied. The critical speeds are taken when one of the natural 

frequencies at a specific speed is equal to the forcing frequency [13]. The forcing frequency can 

be written in terms of rotational speed as 

𝜔𝑓 = 𝑛Ω (96)

where n refers to the level of the lateral force on the shaft. For example, in out of balance n = 1 

and in a four bladed helicopter rotor n = 4. In Equation (95) the force is in form  {𝑄(𝑡)} = {𝑄0}

 , so the solutions of equation (95) will be in form  𝑒𝑗𝜔𝑓𝑡 {𝑞(𝑡)} = {𝑞0}𝑒𝑗𝜔𝑓𝑡

( ‒ Ω2[n2[M] + jn[G]] + jΩn [C] + ( [𝐾] + [𝐾𝑃] )) {q0} = {Q0} (97)

By putting  in equation (96), one can get {𝑄0} = {0}

( ‒ Ω2[n2[M] + jn[G]] + jΩn [C] + (  [K] + [K]𝑃 )) {q0} = {0} (98)

The solution of eigenvalue problem  is in complex form; the real part of  gives the critical  Ω Ω

speed.   

It is noted here that the value of the shear correction factor ( ) is determined using the following 

equation that is available in Reference [15].



  

                                           (99)𝑘𝑠 =
6 𝐸𝑥𝑥 (1 ‒ 𝑚4)(1 + 𝑚2)

𝐺𝑥𝑧 𝑣𝑥𝑧 (2𝑚6 + 18𝑚4 ‒ 18𝑚2 ‒ 2) ‒ 𝐸𝑥𝑥(7𝑚6 + 27𝑚4 ‒ 27𝑚2 ‒ 7)

where

                                                                                                                (100)  𝑚 = 𝑟
𝑅

where is the mean inner radius and  is the mean outer radius of the hollow tapered composite 𝑟 𝑅

shaft.

This equation from Reference [15] gives different values of  based on different values of  for 𝑘𝑠 𝑚

the tapered shafts made of the same composite material. Therefore, because tapered shafts of 

different inner radius and outer radius values are used in the numerical examples given in different 

sections of the paper in the following, correspondingly, the value of  for each numerical example 𝑘𝑠

is different depending on the  value of the shaft of that particular numerical example.𝑚



  

6 Validation

To validate the new hierarchical finite element model, a tapered composite shaft made of 

graphite-epoxy material is considered. The shaft is simply supported at the ends, and the outer 

diameter of the composite shaft at the right end increases with increasing the tapered shaft 

length; Figure 4 shows the graphite-epoxy tapered shaft with two bearings at both ends. The 

material properties and geometric dimensions of the tapered composite shaft are given in Table 1 

and Table 2, respectively. The outer and the inner diameters in Table 2 represent the diameters of 

the shaft at the right end as it is shown in Figure 4.

 Figure 4 The configuration of the tapered graphite - epoxy composite shaft



  

Table 1 Properties of the composite material [2]

Properties Boron-epoxy Graphite-epoxy
E11 (GPa) 211 139
E22 (GPa) 24 11

G12 = G13 (GPa) 6.9 6.05
G23 (GPa) 6.9 3.78

ν12 0.36 0.313
Density (Kg/m3) 1967 1578

Table 2 The geometric dimensions and properties of the tapered composite shaft

Composite Shaft

Length,

L = 2.47 
m

Inner 
Diameter,

ID = 
0.1243m

Outer 
Diameter,

OD = 0.1269 
m

Lay-up from 
inside

[90/45/-45/06/90]

Shear 
correction 
factor,  = 𝑘𝑠

0.503

The natural frequencies of the tapered composite shaft for different taper angles are calculated 

using the hierarchical finite element model. The results are given in Table 3, and they are listed 

with those obtained using Rayleigh-Ritz solution. It can be seen from Table 3 that the difference 

is small between the present model and Rayleigh-Ritz solution in obtaining the natural frequencies. 

In addition, it can be observed from the table that the natural frequencies increase with increasing 

the taper angle; for example, at 0o of taper angle the first forward natural frequency is 666 Hz and 

when the taper angle increases to 2o and 3o, the first forward natural frequency increases by 25% 

and 40%, respectively. This increase in the natural frequencies happens because the circumference 

of the cross-section increases through the length of the shaft from the left end to the right end when 

increasing the taper angle. This means the amount of composite material increases through the 

length of the shaft when increasing the taper angle, which makes the tapered composite shaft stiffer 



  

than the uniform composite shaft. In this analysis six elements of equal lengths and ten hierarchical 

terms were used for the hierarchical finite element model while for Rayleigh-Ritz solution five 

Ritz terms were enough for convergence. 

In addition, Table 4 shows the first critical speeds of the tapered composite shaft for different taper 

angles, and a good agreement between the results calculated using the hierarchical finite element 

model and the Rayleigh-Ritz solution can be observed.

In addition, a numerical example of hollow tapered shaft made of homogeneous isotopic material 

is presented here. Figure 5 shows the hollow tapered shaft and it is simply supported at the ends. 

At the right end of the tapered shaft, as illustrated in Figure 5, the inner and outer diameters are 

0.05 m and 0.1 m respectively, and the length is 1 m. The taper angle of the shaft is chosen to be 

15o. The Young’s modulus, mass density, and Poisson’s ratio are taken to be 200 GPa, 7810 

Kg/m3, and 0.3 respectively. Four equal-length elements with 10 hierarchical terms are considered 

for this analysis. The first natural frequency of the tapered shaft at 10000 RPM is presented in 

Table 5 along with the results obtained in Ref. [14]. The present results show good agreement with 

the results given in Ref. [14]. 



  

Table 3 The natural frequencies in Hz of the tapered composite shaft at 10000 rpm with different

taper angles obtained using finite element method and Rayleigh-Ritz method.

Taper angle Mode Hierarchical finite element Rayleigh-Ritz method

BW1 664 663.76

FW1 666 666.10

BW2 2170 2168.3
0o

FW2 2176 2172.6

BW1 758 759.96

FW1 761 762.93

BW2 2370 2369
1o

FW2 2375 2373.4

BW1 830 839

FW1 834 843

BW2 2513 2517
2o

FW2 2519 2522

BW1 885 905.40

FW1 890 909.63

BW2 2618 2630
3o

FW2 2625 2635



  

Table 4 First critical speed in rpm of the tapered composite shaft with different taper angles

using finite element method and Rayleigh-Ritz method

Taper angle, degrees Hierarchical Finite element Rayleigh-Ritz method
0 39626 39617
1 45160 45285
2 49344 49901
3 52447 53765

Table 5 First natural frequency in Hz at 10000 RPM for a shaft made of an isotropic material 

Frequency mode Hierarchical Finite element Ref. [14] Difference %
FW 422 442.54 4.7
BW 416 395.35 5

Figure 5 Hollow tapered shaft made of isotropic material



  

7 Numerical examples  

In the section 3, the hierarchical finite element model was established for vibration analysis of 

the tapered composite shaft. It is important to assess the models in terms of its ability to predict 

the natural frequencies and the critical speeds of the tapered composite shaft, so in the previous 

section the finite element model was validated using Rayleigh-Ritz formulation and a good 

agreement between these models was observed.

Therefore, the hierarchical finite element model is credible enough to perform rotordynamic 

analysis and to study the effects of different parameters, such as the taper angle, fiber orientation, 

and axial load, on the natural frequencies and the critical speeds of the tapered composite shaft. 

Herein, three cases of the tapered composite shaft are considered to perform rotordynamic 

analysis; the effects of different parameters, such as the taper angle, fiber orientation, and axial 

load, on the natural frequencies and the critical speeds of these two tapered composite shafts are 

studied in this section. 

7.1 Tapered Composite Shaft-Disk System Case A

In this section, rotordynamic analysis of tapered composite shaft-disk system is performed using 

the hierarchical finite element model. The tapered composite shaft has a disk at its middle and 

two bearings at the ends; the configuration of the tapered composite shaft is illustrated in Figure 

6. The shaft is made of a graphite-epoxy composite material, and the geometric properties of the 

composite shaft are given in Table 6. Different taper angles are considered in the analysis. The 

inner and outer diameters at the right end of the shaft do not change with changing the taper 

angle, while at the left end they increase when increasing the taper angle. The tapered composite 



  

shaft is modeled by eight elements of equal length using the hierarchical finite element model, 

respectively. 

Figure 6 The configuration of the tapered graphite - epoxy composite shaft 

Table 6 The geometric dimensions and properties of the tapered composite shaft

Composite Shaft

L = 0.72 
m

ID = 0.028 
m

OD = 0.048
m

Lay-up from inside
[90/45/-45/06/90]

Shear correction 
factor,  = 0.56𝑘𝑠

Disk

Mass,
m = 2.4364  Kg

Diametral mass moment of 
inertia,  Id = 0.1901 Kg.m2

Polar mass moment of inertia,
Ip = 0.3778 Kg.m2

Bearing

Kyy =  Kzz  = 17.5  MN/m Czz = Cyy  = 500  N.s/m



  

Table 7 shows the first critical speeds of the tapered composite shaft for different taper angles, and 

it can be seen from the table that the first critical speed increases when increasing the taper angle. 

However, Figure 7 shows that the increase in the first critical speed when increasing the taper angle 

does not continue because the first critical speed reaches its maximum at 10o taper angle and then 

starts to drop off when increasing the taper angle; to understand why this happens, one needs to 

return to Equations (44) – (52) and to look at Figure 7. The equations represent the  matrix 𝐴𝐵𝐷

that depends on the stiffness and the radius of the layer. Whereas, Figure 8 – Figure 11 represent 

the material stiffnesses for each single layer of the tapered composite shaft; from the figures it is 

clear that  is much higher than  and  for all the layers and the taper angles, 𝑄11 𝑄15, 𝑄16, 𝑄55 𝑄66

and  decreases with increasing the taper angle except for the layer with fiber orientation of 90o. 𝑄11

Consequently, in Figure 7 the inner and the outer radii of the layer control the first critical speed 

for taper angle of   while  controls the first critical speed for taper angle of 0𝑜 ≤ 𝛼 ≤ 10𝑜 𝑄11 10𝑜

.     < 𝛼 ≤ 20𝑜

Table 7 The first critical speed in rpm of the tapered composite shaft for different taper angles.

Taper angle Hierarchical finite element
0o 7295
1o 90710
2o 11467
3o 12820
4o 13855



  

Figure 7 The first critical speeds of the tapered composite shaft for different taper angles 

determined using Hierarchical finite element model

 Figure 8   and  for the layer of graphite-epoxy with fiber orientation angle 𝑄11, 𝑄15, 𝑄16, 𝑄55, 𝑄66

of 0o  



  

Figure 9   and  for the layer of graphite-epoxy with fiber orientation angle 𝑄11, 𝑄15, 𝑄16, 𝑄55, 𝑄66

of 90o  

Figure 10  and  for the layer of graphite-epoxy with fiber orientation angle 𝑄11, 𝑄15, 𝑄16, 𝑄55, 𝑄66

of 45o  



  

Figure 11   and  for the layer of graphite-epoxy with fiber orientation angle 𝑄11, 𝑄15, 𝑄16, 𝑄55, 𝑄66

of - 45o  

7.1.1 Effect of The Disk Position on First critical speed

 Moreover, the effect of the disk position on the first critical speed is studied. Figure 12 shows the 

tapered composite shaft with different disk positions. Table 8 illustrates the first critical speed of 

the tapered composite shaft for different disk positions and taper angles. For taper angles of 0o and 

1o the maximum value of the first critical speed happens when the position of the disk is located 

at the center, while for taper angles between 2o and 4o the maximum value of the critical speed 

happens when the disk is located at 4L/10 from the left end. It can be said for high taper angles 

that the critical speed reaches its maximum as the disk approaches the left bearing where the inner 

and outer diameters are smaller than that at the right end. 



  

3L/10

4L/10

5L/10

Figure 12 Tapered composite shaft with different positions of the disk.

Table 8 First critical speed in rpm of the tapered composite shaft for different taper angles and 

positions of the disk

The position of the disk Taper angle, 
degrees 3L/10 4L/10 5L/10 6L/10 7L/10

0 5748 6602 7328 6602 5748
1 8144 9570 9760 8889 8159
2 10448 12011 11537 10829 10273
3 12532 13511 12903 12405 12033
4 14224 14408 13935 13639 13440
5 15285 15002 14699 14573 14527

7.1.2 Layers Stacking Sequence Effect 

Furthermore, the effect of the stacking sequence of the layers on the first critical speed of the 

tapered composite shaft is analyzed. Table 9 illustrate the first critical speed for different 

stacking sequences and taper angles. The lay-up for the layers starts from inside, and there are 

ten layers with four different fiber orientation angles.

The layers near the outer surface have larger circumferences and volumes than those near the 

inner surface of the shaft, and they resist more bending moment than those layers that near form 

the inner surface; as a result, the outer surface layers control the stiffness of the shaft.



  

Consequently, it can be observed from Table 9 that laying up the layers that have high stiffness 

near the outer side of the shaft increases the critical speed. For example, at a taper angle of 4o, 

the first critical speed of the configuration [06
o /90o/45o/-45o/90o] is 13474 rpm, and in this 

configuration the layers that have fiber orientation of 0o are laid up on the inner side of the shaft. 

The layers with fiber orientation of 0o have higher stiffness than other layers, so laying up them 

near the outer surface increases the critical speed. Thus, the configuration [90o/45o/-45o/90o/06
o], 

where the layers with 0o fiber orientation are laid-up on the outer side of the shaft, has higher 

first critical speed than the other configurations in Table 9. Moreover, it can be observed from 

the Table that the difference between the first critical speeds of the configurations A and E 

decreases when increasing the taper angle; for example, at 00, 2o, and 4o the differences in first 

critical speeds between the configurations A and E are 19%, 9.4%, and 5.1%, respectively. This 

is an indication that increasing the taper angle eliminates to some extent the effect of stacking 

sequence on the first critical speed and the natural frequencies.  

Table 9 The first critical speed in rpm of the tapered composite shaft for different taper angles 

and stacking sequences determined using hierarchical finite element model

Taper angle, degreesConfiguration Stacking sequence 0o 1o 2o 3o 4o

A [06
o /90o/45o/-45o/90o] 6456 8920 10787 12265 13418

B [90o/06
o /45o/-45o/90o] 6798 9260 11099 12538 13653

C [90o/45o/06
o /-45o/90o] 7032 9477 11278 12676 13751

D [90o/45o/-45o/06
o/90o] 7295 9710 11467 12820 13855

E [90o/45o/-45o/90o /06
o] 7668 10059 11776 13084 14078



  

7.1.3 Campbell Diagram and Mode Shape 

In addition, Figure 13 – Figure 18 illustrate the mode shapes and Campbell diagrams for the 

tapered composite shaft with configuration of [90o/45o/-45o/06
o/90o] for three different taper 

angles. It can be observed that increasing the taper angle increases the natural frequency and 

affects the mode shape. These figures were obtained using the hierarchical finite element model.

Figure 13 The mode shapes of the tapered composite shaft with taper angle of 0o at 6000 rpm



  

Figure 14 Campbell diagram of the tapered composite shaft with taper angle of 0o.

Figure 15 The mode shapes of the tapered composite shaft with taper angle of 3o at 6000 rpm



  

Figure 16 Campbell diagram of the tapered composite shaft with taper angle of 3o.

Figure 17 The mode shapes of the tapered composite shaft with taper angle of 5o at 6000 rpm



  

Figure 18 Campbell diagram of the tapered composite shaft with taper angle of 5o.

7.2 Tapered composite shaft Case B

In the following example, vibration of a tapered composite shaft subjected to different effects is 

studied. The tapered composite shaft is fixed by a bearing at one end and is free at the other end. 

The shaft is made of boron-epoxy composite material, and the properties of the composite 

material are listed in Table 1. The tapered composite shaft is made of ten layers, and the 

thickness of each layer is 0.025 mm. Also, the length of the shaft L is 0.5 m and the inner 

diameter di at the free end is 1 cm. Seven elements of equal length are considered for the 

analysis. The value of the shear correction factor  is calculated as explained before and is taken 

to be 0.5 for the shafts of all sub-cases considered in the following.   



  

7.2.1 Effect of length on natural frequencies and first critical speed

In this section, the effect of the length on the natural frequencies and first critical speed of the 

tapered composite shaft is discussed. Figure 19 shows the configuration of the tapered composite 

shaft with different lengths. The length of the tapered composite shaft changes from L to 0.7 L 

by 10 percent every time, and the natural frequencies and critical speeds were obtained for 

different taper angles for each length. The inner diameter at the free end of the tapered composite 

shaft is kept at 1 cm, whereas the inner diameter of the other end changes with the changing 

taper angle and length.  The stiffness of the bearings Kyy and Kzz are 10 GN/m. The 

configuration of the tapered composite shaft is [90o/45o/-45o/06
o/90o] and the lay-up starts from 

inside. Table 10 shows the natural frequencies of the tapered composite shaft with different 

lengths and taper angles. Two rotational speeds, 0 rpm and 5,000 rpm, are considered to 

calculate the natural frequencies. One can observe from the table that the natural frequencies 

increase when the length decreases or when the taper angle increases.

Furthermore, Table 10 shows that, in this example, the gyroscopic effect does not influence the 

natural frequency. For instance, the first backward natural frequency at 0 rpm and 5,000 rpm are 

almost the same for all taper angles. The natural frequencies in Table 10 are obtained using the 

hierarchical finite element. Moreover, Figure 20 shows the first critical speeds obtained using the 

hierarchical finite elements. From the figures, the difference between the first critical speeds 

increases with an increasing taper angle.



  

L

0.9 L

0.8 L

0.7 L

Figure 19 Different lengths of the tapered composite shaft.



  

Table 10 Natural frequencies in Hz of the tapered composite shaft with different lengths

Taper angle, degreesLength,
m

Rotational speed
(rpm)

Mode

0o 1o 2o 3o 4o 5o

BW1 416 737 1235 1272 1483 16580 FW1 416 737 1235 1272 1483 1658
BW1 415 737 1022 1271 1482 1657L = 0.5

5000 FW1 416 738 1024 1273 1484 1660
BW1 511 864 1175 1444 1672 18600 FW1 511 864 1175 1444 1672 1860
BW1 511 864 1175 1444 1671 18590.9 L

5000 FW1 512 865 1177 1446 1673 1862
BW1 644 1035 1376 1669 1914 21180 FW1 644 1035 1376 1669 1914 2118
BW1 644 1034 1375 1667 1913 21170.8 L

5000 FW1 644 1036 1377 1669 1915 2120
BW1 835 1272 1648 1968 2236 24580 FW1 835 1272 1648 1968 2236 2458
BW1 835 1271 1647 1968 2235 24570.7 L

5000 FW1 836 1273 1649 1970 2237 2459

Figure 20 First critical speeds for different lengths determined using hierarchical finite element



  

7.2.2 Effect of shaft diameter on natural frequencies and first critical speed  

In this section, the effect of the inner diameter on the natural frequencies and first critical speed 

is analyzed. The length of the tapered composite shaft L is fixed at 0.5 m and the configuration 

of the tapered composite shaft and the stiffness of the bearing are the same as in section 7.2.1. To 

see its influence on the natural frequencies and first critical speed of the rotating tapered 

composite shaft, the inner diameter di at the free end is 1 cm and it is varied form di to 0.7di. The 

natural frequency results are illustrated in Table 11, and it can be observed that the natural 

frequency decreases when the inner diameter at the free end decreases.

In addition, the first critical speeds of the tapered composite shaft are represented in Figure 21. 

These show that reducing the inner diameter at the free end reduces the critical speed. Also, 

when the taper angle increases, the difference between first critical speeds decreases. For 

instance, when the taper angle is 0o the first critical speeds of the tapered composite shaft 

obtained using the hierarchical finite element are 24,952 rpm and 19,427 rpm for inner diameters 

di and 0.7 di, respectively. But, when the taper angle is 5o the first critical speeds become 98,457 

rpm and 96,671 rpm for di and 0.7 di, respectively. The difference between first critical speed 

values for 5o is less than the difference for 0o.



  

Table 11 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm for different 

diameters obtained using hierarchical finite element.

Taper angle, degreesDiameter,
cm Mode

0o 1o 2o 3o 4o 5o

BW1 415 737 1022 1271 1482 1657di =1 cm FW1 416 738 1024 1273 1484 1660
BW1 385 709 998 1252 1467 16470.9 di FW1 386 710 1000 1254 1469 1649
BW1 354 680 9744 1232 1452 16360.8 di FW1 355 681 975 1234 1455 1639
BW1 323 651 950 1213 1438 16240.7 di FW1 323 653 951 1210 1440 1629

Figure 21 First critical speeds for different diameters obtained using hierarchical finite element



  

7.2.3 Effect of fiber orientation on the natural frequencies and first critical speed

In the following example, the influences of ply orientation angle on natural frequencies and first 

critical speed of the tapered composite shaft are studied. The configuration and material 

properties of the tapered composite shaft from section 7.2.1 are considered. The ten layers have 

the same fiber orientation, and the lamination angles vary from 0o to 90o to investigate their 

effects on the natural frequencies and the first critical speed. 

Table 12 presents the natural frequency of the tapered composite shaft with different lamination 

angles. According to the results in the tables, the natural frequencies and first critical speed of the 

tapered composite shaft decrease with increasing fiber orientation angles of the layers and vice 

versa. Moreover, Figure 22 shows the first critical speeds that were obtained using hierarchical 

finite element. According to the results in Figure 22, at 0o taper angle, the first critical speeds of 

the tapered composite shaft are close to each other for fiber orientation angle 45 o  90o, for ≤ 𝜂 ≤

example the first critical speed for 45o and 90o are 14796 rpm and 13934, respectively, and the 

difference between the two first critical speeds is 5.8 %.  However, when the taper angle is 5o, 

the variation between the first critical speeds for fiber orientation angle 45o  90o is clearly ≤ 𝜂 ≤

noticeable where the first critical speed for 45o is 70189 rpm and for 90o is 63428 rpm and the 

difference between the two critical speeds is 9.8 %.



  

Table 12 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with different 

fiber orientation angles obtained using hierarchical finite element 

Taper angle, degreesFiber orientation 
angle Mode

0o 1o 2o 3o 4o 5o

BW1 469 810 1078 1281 1431 15420o
FW1 469 811 1079 1282 1432 1543
BW1 244 445 640 831 1016 119245o
FW1 245 446 642 832 1019 1196
BW1 236 432 624 813 999 117960o
FW1 237 433 626 816 1002 1183
BW1 232 420 599 769 928 107390o
FW1 232 421 601 771 930 1076

Figure 22 First critical speeds for different fiber orientation angles based on hierarchical finite 
element



  

7.2.4 Effect of the stiffness of the bearing on the first critical speed

This section shows how a bearing’s stiffness can influence the first critical speed of the tapered 

composite shaft. This analysis is conducted using the tapered composite shaft from section 7.2.1. 

The stiffness of the bearing varies from 0.01 MN/m to 10 GN/m. Figure 23 presents the variation 

of the first critical speed of the tapered composite shaft for various levels of bearing stiffness. 

The figure shows that, at low bearing stiffness, increasing the taper angle decreases the first 

critical speed; despite the fact that, at high bearing stiffness, increasing the taper angle increases 

the first critical speed. In addition, it can be observed from the figure that at a small taper angle 

the required stiffness for the bearing to be considered as simply supported condition, which is the 

condition that increasing the stiffness of the bearing does not affect the first critical speed and the 

natural frequencies any more, is lower than the stiffness required for the bearing at large taper 

angle.



  

Figure 23 First critical speed for different bearing stiffness values determined using 

hierarchical finite element.

7.2.5 Effect of axial load on natural frequencies and first critical speed

To study the consequence, on the natural frequencies and first critical speed, of applying axial 

load, the tapered composite shaft in section 7.2.1 is considered. The tensile and compressive 

loads are applied at the free end of the tapered composite shaft, and the compressive loads are 

less than the buckling loads. The results of the natural frequencies and first critical speed of 

applying the tensile and compressive loads on the tapered composite shaft are illustrated in Table 

13, Table 14 and Figure 24 – Figure 26. The natural frequencies and critical speeds are obtained 

using the hierarchical finite element.



  

According to the results in the tables and figures, the tensile load increases and the compressive 

load decreases the natural frequency and critical speed. This is because the tensile load increases 

the stiffness of the tapered composite shaft, while the compressive load decreases it. In addition, 

increasing the taper angle increases the natural frequency and the first critical speed for both the 

tensile and compressive loads.

Figure 24 First critical speed of the tapered composite shaft with taper angle of 0o for different 

axial loads obtained using hierarchical finite element



  

Figure 25 First critical speed of the tapered composite shaft with taper angle of 2o for different 

axial loads obtained using hierarchical finite element

Figure 26 First critical speed of the tapered composite shaft with taper angle of 5o for different 

axial loads obtained using hierarchical finite element



  

Table 13 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with different 

tensile loads using the hierarchical finite element

Taper angle, degreesTensile 
Load
(KN)

Mode
0o 1o 2o 3o 4o 5o

BW1 433 744 1027 1274 1484 16591 FW1 434 746 1029 1276 1486 1662
BW1 463 759 1037 1281 1489 16643 FW1 464 760 1038 1283 1491 1665
BW1 545 802 1064 1301 1504 16759 FW1 546 803 1066 1303 1507 1677

Table 14 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with different 

compressive loads using hierarchical finite element

Taper angle, degreesCompressive
Load (KN) Mode

0o 1o 2o 3o 4o 5o

BW1 398 729 1018 1268 1479 16551 FW1 398 731 1019 1270 1481 1658
BW1 361 713 1008 1261 1474 16513 FW1 362 715 1006 1263 1477 1654
BW1 214 662 977 1240 1459 16399 FW1 214 663 979 1242 1461 1641



  

7.3 Hybrid tapered composite shaft-disk system

A hybrid composite shaft-disk system with shaft sections of different geometry is considered and 

studied. The hybrid system consists of three different composite shaft sections and a disk, and the 

shaft is supported on two bearings. The first shaft section is cylindrical in shape and is of uniform 

diameter along its length. At one end it is supported on a bearing while at the other end it is 

connected to a tapered shaft section which is the second shaft section. The largest-diameter end of 

the tapered shaft section is connected to the first shaft section while the smallest-diameter end is 

connected to the third shaft section that has a uniform diameter along its length. The second bearing 

is positioned at the center of the third section, and the disk is located at the free end of the third 

shaft section. The hybrid composite shaft-disk system is shown in Figure 27. Such a hybrid shaft-

disk system would be required in practice to support the shaft properly in bearings that are 

cylindrical and of uniform size. The dimensions and configuration of the hybrid shaft-disk system 

are presented in Table 15. The hybrid shaft is made of a graphite-polymer composite material the 

mechanical properties of which are given in Table 1.



  

Figure 27 Hybrid composite shaft-disk system 

Table 15 Dimensions and configuration of hybrid composite shaft-disk system

Composite Shaft 
Lay-up configuration [90,45, -45, 06, 90]

Outer diameter (3rd section) 0.04 m
Inner diameter (3rd section) 0.03 m
Taper angle (2nd section) 2o

Wall thickness (All sections) 0.005
Shear correction factor 0.525

Disk
Outer Diameter 0.2 m
Inner Diameter 0.04 m

Thickness 0.02 m
Density 7810 Kg/m3

Bearing
Kxx = Kyy 10 MN/m
Cxx = Cyy 500  N.s/m



  

For the cases of varying L2/L1 and L2/L3 length ratio values, the smallest mean diameter of the 

tapered section does not change with increasing the ratio value because it is connected to the third 

section which has a fixed mean diameter value, while the largest mean diameter of the shaft 

changes according to the change in the ratio value. Moreover, since the largest-diameter end of the 

tapered section is connected to the first section of the hybrid shaft, the inner and outer diameters 

of the first and second shaft sections remain the same. Figure 28 illustrates the diameter change 

corresponding to the change in the length ratio value. 

The hybrid composite shaft is divided into 12 elements in such a way that each shaft section 

consists of 4 elements. The length of the element remains the same within each shaft section, but 

it is of different value from one shaft section to another section depending on the length of the 

shaft section.

Natural frequencies corresponding to different rotational speeds for the system with hybrid shaft 

of different length ratio values are presented in Tables 16 - 18. Also, the first critical speeds for 

the three cases of hybrid shaft-disk system with different length ratio values are listed in Table 19. 

For the cases with varying L2/L1, L2/L3, and L1/L3 ratio values, the natural frequencies and first 

critical speed show a decreasing trend with increasing ratio value. In fact, increasing the ratio value 

leads to the increase in the total hybrid shaft length. It is noted here that the inner and outer diameter 

values of the third shaft section were fixed for all the ratio values of the three cases.



  

It is observed from Figure 28 that, as the L2/L1 ratio value does increase, the diameters of the first 

section and the total length of the hybrid composite shaft do increase as well. Although increasing 

the diameters result in adding more volume of the composite material to the shaft which 

consequently increase both the stiffness and mass of the shaft, the natural frequencies and critical 

speeds decrease as the L2/L1 ratio increases, due to the combined effects of stiffness and mass 

increase and their distributions along the longitudinal axis of the shaft.

Table 16 Natural frequencies in Hz for different rotational speeds (L1 = 0.5 m, L3 = 0.3 m)

L2/L1Rotational 
speed (rpm) Mode

0.2 0.4 0.6 0.8
BW1 74.20 73.10 71.80 70.600
FW1 74.20 73.10 71.80 70.60
BW1 71.47 70.34 69.11 67.885000
FW1 76.80 75.75 74.57 73.38
BW1 68.74 67.58 66.32 65.0910000
FW1 79.35 78.35 77.21 76.04

Table 17 Natural frequencies in Hz for different rotational speeds (L1 = 0.5 m, L3 = 0.3 m)

L2/L3Rotational 
speed (rpm) Mode

0.2 0.4 0.6 0.8
BW1 74.50 74.00 73.30 72.500
FW1 74.50 74.00 73.30 72.50
BW1 71.84 71.27 70.58 69.855000
FW1 77.12 76.61 75.98 75.29
BW1 69.12 68.52 67.82 67.0810000
FW1 79.65 79.17 78.56 77.90



  

Table 18 Natural frequencies in Hz for different rotational speeds (L2 = 0.1 m, L3 = 0.3 m)

L1/L3Rotational 
speed (rpm) Mode 0.2 0.4 0.6 0.8

BW1 200 176.35 153.47 132.88
0

FW1 200 176.35 153.47 132.88
BW1 197.51 172.64 149.22 128.59

5000
FW1 202.34 179.55 157.26 136.82
BW1 194.35 168.36 144.51 123.99

1000
FW1 204.20 182.31 160.63 140.42

Table 19 First critical speed for the three cases

Critical speed (RPM)
Ratio

0.2 0.4 0.6 0.8
L2/L1 4310 4250 4174 4103
L2/L3 4331 4298 4259 4217
L1/L3 11593 10096 8744 7575

Figure 28 The hybrid composite shaft-disk system configuration with different L2/L1 ratio values



  

8 Conclusion  

In this paper new finite element model have been developed for rotordynamic analysis of the 

tapered composite shaft. The model developed using the hierarchical finite element formulation. 

The hierarchical finite element model is based on Timoshenko beam theory, and the effects of 

rotary inertia, transverse shear deformation, gyroscopic force, axial load, coupling due to the 

lamination of composite layers, and taper angle are incorporated in the finite element model of 

the tapered composite shaft.  In addition, hierarchical terms are represented in trigonometric 

function while the polynomial shape function are used to describe the element’s nodal degrees of 

freedom.

To validate the hierarchical finite element model, Rayleigh - Ritz method is used to obtain an 

approximate solution for simply supported tapered composite shaft. In section 6, a numerical 

example is given, and it is found that the bending natural frequencies and first critical speeds, for 

different taper angles of the tapered composite shaft, determined using Rayleigh-Ritz method are 

in agreement with those obtained using the hierarchical finite element model. 

The tapered composite shaft means that the inner and outer diameters of one end are constant 

while the inner and outer diameters of the other end increase with increasing the taper angle. 

Consequently, it is found that increasing the taper angle increases the bending natural 

frequencies and first critical speed of the tapered composite shaft. However, it is seen from the 

numerical results of Case A in section 7 that this direct relationship between the first critical 

speed and the taper angle does not sustain because the first critical speed reaches its maximum 

value at 10o and then starts to drop off with increasing the taper angle.     



  

In section 7, extensive parametric study of the rotordynamic response of tapered composite shaft 

is presented, and the effects of stacking sequence, fiber orientation angles, taper angle, axial 

load, bearing stiffness, the inner diameter, and the length of the tapered composite shaft are 

studied. The important points that can be said about the results in section 7 are the following:

 Stacking the layers that have high stiffness near the outer surface of the shaft increases 

the natural frequencies and first critical speed; because the layers near the outer surface 

have higher volume and circumference than those near the inner surface of the shaft.  

 Increasing the taper angle when using low stiffness bearing decreases the first critical 

speed; whereas, increasing the taper angle when using high stiffness bearing increases 

the first critical speed. 

 The natural frequencies and first critical speed of the tapered composite shaft increase 

with applying tensile load and decrease with applying compressive load along the axial 

coordinate of the tapered composite shaft.  

 Decreasing the length of the tapered composite shaft and increasing the diameter 

increase the natural frequencies and the first critical speed and vice versa.
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Appendix A 

[𝑀11] = 𝐿
1

∫
0

𝑚(𝜉) [𝑁𝑣]𝑇[𝑁𝑣]𝑑𝜉 (A.1)

[𝑀22] = 𝐿
1

∫
0

𝑚(𝜉) [𝑁𝑤]𝑇[𝑁𝑤]𝑑𝜉 (A.2)

[𝑀33] = 𝐿
1

∫
0

𝑚(𝜉) [𝑁βy]
𝑇[𝑁βy

]𝑑𝜉 (A.3)

[𝑀44] = 𝐿
1

∫
0

𝑚(𝜉) [𝑁βz]
𝑇[𝑁βz

]𝑑𝜉 (A.4)

[𝐺34] =‒ 𝐿Ω
1

∫
0

𝐼𝑝(𝜉) [𝑁βy]
𝑇[𝑁βy

]𝑑𝜉 (A.5)

[𝐺43] = 𝐿Ω
1

∫
0

𝐼𝑝(𝜉) [𝑁βz]
𝑇[𝑁βz

]𝑑𝜉 (A.6)

[𝐾11] =
1
𝐿

1

∫
0

𝑘𝑠(𝐴55(𝜉) + 𝐴66(𝜉)) [𝑁 '
𝑣]𝑇[𝑁 '

𝑣]𝑑𝜉 (A.7)



  

[𝐾13] =‒
1

2𝐿

1

∫
0

𝑘𝑠𝐵16(𝜉) [𝑁 '
𝑣]𝑇[𝑁 '

βy]𝑑𝜉 (A.8)

[𝐾14] =
1

∫
0

[ ‒
1
𝐿𝑘𝑠𝐵

15
(𝜉) [𝑁 '

𝑣]𝑇[𝑁 '
βz] ‒ 𝑘𝑠(𝐴55(𝜉) + 𝐴66(𝜉)) [𝑁 '

𝑣]𝑇[𝑁βz
]]𝑑𝜉 (A.9)

[𝐾22] =
1
𝐿

1

∫
0

𝑘𝑠(𝐴55(𝜉) + 𝐴66(𝜉)) [𝑁 '
𝑤]𝑇[𝑁 '

𝑤]𝑑𝜉
(A.10

)

[𝐾23] =
1

∫
0

[1
𝐿𝑘𝑠𝐵

15
(𝜉) [𝑁 '

𝑤]𝑇[𝑁 '
βy] + 𝑘𝑠(𝐴55(𝜉) + 𝐴66(𝜉)) [𝑁 '

𝑤]𝑇[𝑁βy
]]𝑑𝜉

(A.11

)

[𝐾24] =‒
1

2𝐿

1

∫
0

𝑘𝑠𝐵16(𝜉) [𝑁 '
𝑤]𝑇[𝑁 '

βz]𝑑𝜉
(A.12

)

[𝐾31] =‒
1

2𝐿

1

∫
0

𝑘𝑠𝐵16(𝜉) [𝑁 '
βy]

𝑇[𝑁 '
𝑣]𝑑𝜉

(A.13

)

[𝐾32] =
1

∫
0

[1
𝐿𝑘𝑠𝐵

15
(𝜉)[𝑁 '

βy]
𝑇[𝑁 '

𝑤] + 𝑘𝑠(𝐴55(𝜉) + 𝐴66(𝜉)) [𝑁βy]
𝑇[𝑁 '

𝑣]]𝑑𝜉
(A.14

)

[𝐾33]

=
1

∫
0

[1
𝐿𝐷11(𝜉) [𝑁 '

βy]
𝑇[𝑁 '

βy] + 𝑘𝑠𝐵15(𝜉) ([𝑁 '
βy]

𝑇[𝑁βy
] +  [𝑁βy

]𝑇[𝑁 '
βy]) +  𝑘𝑠𝐿(𝐴55(𝜉)

+ 𝐴66(𝜉)) [𝑁βy
][𝑁βy

]]𝑑𝜉

(A.15

)

[𝐾34] =
1

∫
0

[1
2𝑘𝑠𝐵

16
(𝜉) [𝑁 '

βy]
𝑇[𝑁βz

] ‒
1
2𝑘𝑠𝐵

16
(𝜉) [𝑁βy]

𝑇[𝑁 '
βz]]𝑑𝜉

(A.16

)

[𝐾41] =
1

∫
0

[ ‒
1
𝐿𝑘𝑠𝐵

15
(𝜉) [𝑁 '

βz]
𝑇[𝑁 '

𝑣] ‒ 𝑘𝑠(𝐴55(𝜉) + 𝐴66(𝜉)) [𝑁 '
βz]

𝑇[𝑁 '
𝑣]]𝑑𝜉

(A.17

)



  

[𝐾42] =‒
1

2𝐿

1

∫
0

[𝑘𝑠𝐵16(𝜉) [𝑁 '
βz]

𝑇[𝑁 '
𝑤]]𝑑𝜉

(A.18

)

[𝐾43] =
1

∫
0

[1
2𝑘𝑠𝐵

16
(𝜉) [𝑁βz]

𝑇[𝑁 '
βy] ‒

1
2𝑘𝑠𝐵

16
(𝜉) [𝑁 '

βz]
𝑇[𝑁βy

]]𝑑𝜉
(A.19

)

[𝐾44]

=
1

∫
0

[1
𝐿𝐷11(𝜉) [𝑁 '

βz]
𝑇[𝑁 '

βz] + 𝑘𝑠𝐵15(𝜉) ([𝑁 '
βz]

𝑇[𝑁βz
] +  [𝑁βz]

𝑇[𝑁 '
βz]) +  𝑘𝑠𝐿(𝐴55(𝜉)

+ 𝐴66(𝜉)) [𝑁βz
][𝑁βz

]]𝑑𝜉

(A.20

)

[𝐾𝑝𝑣] =
1

∫
0

𝑃  [𝑁 '
𝑣]𝑇[𝑁 '

𝑣]𝑑𝜉
(A.21

)

[𝐾𝑝𝑤] =
1

∫
0

𝑃  [𝑁 '
𝑤]𝑇[𝑁 '

𝑤]𝑑𝜉
(A.22

)

Appendix B

[𝐻] = [𝐻1   𝐻2…… 𝐻𝑛]1 × 𝑛 = [sin
1𝜋𝑥

𝐿     sin
2𝜋𝑥

𝐿 …… sin
𝑛𝜋𝑥

𝐿 ]
1 × 𝑛

(B.1)

[𝐹] = [𝐹1   𝐹2…… 𝐹𝑛]1 × 𝑛 = [cos
1𝜋𝑥

𝐿     cos
2𝜋𝑥

𝐿 …… cos
𝑛𝜋𝑥

𝐿 ]
1 × 𝑛

(B.2)

[𝑀𝑉]𝑛 × 𝑛 =
𝐿

∫
0

𝑚(𝑥) [𝐻]𝑇[𝐻]𝑑𝑥 (B.3)



  

[𝑀𝑊]𝑛 × 𝑛 =
𝐿

∫
0

𝑚(𝑥) [𝐻]𝑇[𝐻]𝑑𝑥 (B.4)

[𝑀𝐵𝑦
]𝑛 × 𝑛 =

𝐿

∫
0

𝑚(𝑥) [𝐹]𝑇[𝐹]𝑑𝑥 (B.5)

[𝑀𝐵𝑧
]𝑛 × 𝑛 =

𝐿

∫
0

𝑚(𝑥) [𝐹]𝑇[𝐹]𝑑𝑥 (B.6)

[𝐺𝐵𝑧
]𝑛 × 𝑛 =‒ Ω

𝐿

∫
0

𝐼𝑝(𝑥) [𝐹]𝑇[𝐹]𝑑𝑥 (B.7)

[𝐺𝐵𝑦
]𝑛 × 𝑛 = Ω

𝐿

∫
0

𝐼𝑝(𝑥) [𝐹]𝑇[𝐹]𝑑𝑥 (B.8)

[𝐾𝑉1]𝑛 × 𝑛 =
𝐿

∫
0

𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝑥)) [𝐻']𝑇[𝐻']𝑑𝑥 (B.9)

[𝐾𝑉3]𝑛 × 𝑛 =‒
1
2

𝐿

∫
0

𝑘𝑠𝐵16(𝑥) [𝐻']𝑇[𝐹']𝑑𝑥
(B.10

)

[𝐾𝑉4]𝑛 × 𝑛 =
𝐿

∫
0

[ ‒ 𝑘𝑠𝐵15(𝑥) [𝐻']𝑇[𝐹'] ‒ 𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝑥)) [𝐻']𝑇[𝐹]]𝑑𝑥
(B.11

)

[𝐾𝑊2]𝑛 × 𝑛 =
𝐿

∫
0

𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝑥))  [𝐻']𝑇[𝐻'] 𝑑𝑥
(B.12

)



  

[𝐾𝑊3]𝑛 × 𝑛 =
𝐿

∫
0

[𝑘𝑠𝐵16(𝑥)  [𝐻']𝑇[𝐹'] + 𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝑥))   [𝐻']𝑇[𝐹]]𝑑𝑥
(B.31

)

[𝐾𝑊4]𝑛 × 𝑛 =‒
1
2

𝐿

∫
0

[𝑘𝑠𝐵16(𝑥) [𝐻']𝑇[𝐹']]𝑑𝑥
(B.41

)

[𝐾𝐵𝑦1]𝑛 × 𝑛 =‒
1
2

𝐿

∫
0

[𝑘𝑠𝐵16(𝑥) [𝐹']𝑇[𝐻']]𝑑𝑥
(B.51

)

[𝐾𝐵𝑦2]𝑛 × 𝑛 =
𝐿

∫
0

[𝑘𝑠𝐵15(𝑥) [𝐹']𝑇[𝐻'] + 𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝑥))[𝐹]𝑇[𝐻']]𝑑𝑥
(B.61

)

[𝐾𝐵𝑦3]𝑛 × 𝑛

=
𝐿

∫
0

[
𝐷11(𝑥)  [𝐹']𝑇[𝐹'] + 𝑘𝑠𝐵15(𝑥) ([𝐹']𝑇[𝐹] +  [𝐹]𝑇[𝐹']) +  𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝑥)) [𝐹]𝑇[𝐹]

]𝑑𝑥

(B.71

)

[𝐾𝐵𝑦4]𝑛 × 𝑛 =
𝐿

∫
0

[1
2𝑘𝑠𝐵

16
(𝑥) [𝐹']𝑇[𝐹] ‒

1
2𝑘𝑠𝐵

16
(𝑥)[𝐹]𝑇[𝐹']]𝑑𝑥

(B.18

)

[𝐾𝐵𝑧1]𝑛 × 𝑛 =
𝐿

∫
0

[ ‒ 𝑘𝑠𝐵15(𝑥) [𝐹']𝑇[𝐻'] ‒ 𝑘𝑠(𝐴55(𝑥) + 𝐴66(𝜉)) [𝐹]𝑇[𝐻']]𝑑𝑥
(B.91

)

[𝐾𝐵𝑧2]𝑛 × 𝑛 =‒
1
2

𝐿

∫
0

[𝑘𝑠𝐵16(𝑥) [𝐹']𝑇[𝐻']]𝑑𝑥
(B.20

)



  

[𝐾𝐵𝑧3]𝑛 × 𝑛 =
1
2

𝐿

∫
0

[𝑘𝑠𝐵16(𝑥) [𝐹]𝑇[𝐻'] ‒ 𝑘𝑠𝐵16(𝑥)[𝐹']𝑇[𝐻]]𝑑𝑥
(B.21

)

[𝐾𝐵𝑧4]𝑛 × 𝑛

=
𝐿

∫
0

[
𝐷11(𝑥) [𝐹']𝑇[𝐹'] + 𝑘𝑠𝐵15(𝑥) ([𝐹']𝑇[𝐹] + [𝐹]𝑇[𝐹']) + 𝑘𝑠(𝐴55(𝑥) +  𝐴66(𝑥)) [𝐹]𝑇[𝐹]]
𝑑𝑥

(B.22

)




