Login | Register

Formation mechanism of porous reaction-bonded silicon nitride with interconnected pores in the presence of MgO

Title:

Formation mechanism of porous reaction-bonded silicon nitride with interconnected pores in the presence of MgO

Pugh, Martin D., Nikonam M., Raheleh and Drew, Robin A.L. (2018) Formation mechanism of porous reaction-bonded silicon nitride with interconnected pores in the presence of MgO. Journal of the European Ceramic Society . ISSN 09552219 (In Press)

[img]
Text (application/pdf)
Pugh 2018.pdf - Accepted Version
Restricted to Repository staff only until 2 November 2020.
Available under License Spectrum Terms of Access.
7MB

Official URL: http://dx.doi.org/10.1016/j.jeurceramsoc.2018.10.0...

Abstract

In porous reaction bonded silicon nitride, whiskers normally grow in globular clusters as the dominant morphology and deteriorate the pore interconnectivity. However, the ceramic microstructure was significantly transformed with the addition of MgO; specifically, the morphology was modified to a combination of matte and hexagonal grains. Microstructural observation along with thermodynamic studies suggest that MgO interfered with the presence and nitridation of SiO(g). Consequently, rather than being involved in the whiskers’ formation, surface silica instead reacted with volatile MgO to form intermediate products. Through these reactions, whisker formation was blocked, and a porous interconnected structure formed which was confirmed by 3D tomography. After heat-treatment at 1700 °C, β-Si3N4 crystallized in a glassy matrix containing magnesium. Resulting samples had an open-pore structure with porosity of 74-84 vol. %, and density of 0.48-0.75 g.cm-3. Combination of high porosity and pore size of <40 μm led to compressive strengths of 1.1 to 1.6 MPa.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Article
Refereed:Yes
Authors:Pugh, Martin D. and Nikonam M., Raheleh and Drew, Robin A.L.
Journal or Publication:Journal of the European Ceramic Society
Date:2018
Funders:
  • Natural Sciences and Engineering Research Council of Canada (NSERC)
Digital Object Identifier (DOI):10.1016/j.jeurceramsoc.2018.10.032
Keywords:Silicon nitride; reaction mechanism; whiskers; magnesium oxide; pore morphology
ID Code:984679
Deposited By: ALINE SOREL
Deposited On:14 Nov 2018 14:12
Last Modified:14 Nov 2018 14:12

References:

L.J. Gibson, M.F. Ashby. Cellular solids, structure and properties (2nd ed.), University of Cambridge (1997), 10.1017/CBO9781139878326

E. Guzi de Moraes, D. Li, P. Colombo, Z. Shen. Silicon nitride foams from emulsions sintered by rapid intense thermal radiation, J. Eur. Ceram. Soc., 35 (2015), pp. 3263-3272, 10.1016/j.jeurceramsoc.2015.02.007

K. Yamamoto, T. Sakai. Effect of pore structure on soot deposition in diesel particulate filter, Comput., 4 (2016), pp. 1-11, 10.3390/computation4040046

I. Sabree, J.E. Gough, B. Derby. Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions, Ceram. Int., 41 (2015), pp. 8425-8432, 10.1016/j.ceramint.2015.03.044

D. Yao, Y. Xia, K.-H. Zuo, D. Jiang, J. Gunster, Y.-P. Zeng, J.G. Heinrich. The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics,, J. Eur. Ceram. Soc., 34 (2014), pp. 3461-3467, 10.1016/j.jeurceramsoc.2014.06.018

K. Bodisova, M. Kasiarova, M. Domanicka, M. Hnatko, Z. Lences, Z. Varchulova Novakova, J. Vojtassak, S. Gromosova, P. Sajgalik. Porous silicon nitride ceramics designed for bone substitute applications, Ceram. Int., 39 (2013), pp. 8355-8362, 10.1016/j.ceramint.2013.04.015

Y.-J. Park, H.-D. Kim. Permeability enhancement in porous-sintered reaction-bonded silicon nitrides, Int. J. Appl. Ceram. Tec., 8 (2011), pp. 809-814, 10.1111/j.1744-7402.2010.02511.x

A. Jena, K. Gupta.Pore structure characterization of ceramic hot gas fiters, Ceram. Eng. Sci. Proc., 22 (2008), pp. 1-8, 10.1002/9780470294703.ch33

J.-F. Despois, A. MortensenPermeability of open-pore microcellular materials, Acta Mater., 53 (2005), pp. 1381-1388, 10.1016/j.actamat.2004.11.031


D.-V. Tuyen, Y.-J. Park, H.-D. Kim, B.-T. Lee. Formation of rod-like Si3N4 grains in porous SRBSN bodies using 6Y2O3-2MgO sintering additives, Ceram. Int., 35 (2009), pp. 2305-2310, 10.1016/j.ceramint.2009.01.010

T. Wan, D. Yao, J. Yin, Y. Xia, K. Zuo, Y. Zeng. The microstructure and mechanical properties of porous silicon nitride ceramics prepared via novel aqueous gelcasting, Int. J. Appl. Ceram. Tec., 12 (2015), pp. 1-11, 10.1111/ijac.12424

J. Zhou, J.-p. Fan, G.-l. Sun, J.-y. Zhang, X.-m. Liu, D.-h. Zhang, H.-j. Wang. Preparation and properties of porous silicon nitride ceramics with uniform spherical pores by improved pore-forming agent method, J. Alloy. Comp., 632 (2015), pp. 655-660, 10.1016/j.jallcom.2015.01.305

L. Yin, X. Zhou, J. Yu, H. WangHighly porous silicon nitride foam prepared using a route similar to the making of aerated food, Int. J. Appl. Ceram. Tec., 13 (2015), pp. 395-404, 10.1111/ijac.12497

L. Yin, X. Zhou, J. Yu, H. Wang. Preparation of silicon nitride foam with three-dimensional interconnected pore structure, Mater. Design., 89 (2016), pp. 620-625, 10.1016/j.matdes.2015.10.020

G. Ziegler, J. Heinrich, G. Wotting. Review, Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, J. Mater. Sci., 22 (1987), pp. 3041-3086, 10.1007/BF01161167

A.J. MoulsonReview, Reaction-bonded silicon nitride: its formation and properties, J. Mater. Sci., 14 (1979), pp. 1017-1051, 10.1007/BF00561287

L. Han, J. Wang, F. Li, H. Wang. Low-temperature preparation of Si3N4 whiskers bonded/reinforced SiC porous ceramics via foam-gelcasting combined with catalytic nitridation, J. Eur. Ceram. Soc., 38 (2018), pp. 1210-1218, 10.1016/j.jeurceramsoc.2017.10.043

L. Li, J.-W. Wang, H. Zhong, L.-Y. Hao, H. Abadikhah, X. Xu, C.-S. Chen, S. Agathopoulos. Novel α-Si3N4 planar nanowire superhydrophobic membrane prepared through in-situ nitridation of silicon for membrane distillation, J. Membr. Sci., 543 (2017), pp. 98-105, 10.1016/j.memsci.2017.08.049


I.C. Jung, S.H. Cho, S.W. Na, J. Lee, H.S. Lee, W.S. Cho. Synthesis of Si3N4 whiskers in porous SiC bodies, Mater. Lett., 61 (2007), pp. 4843-4846, 10.1016/j.matlet.2007.03.063

T. Imai, M. Mabuchi, Y. Tozawa, M. Yamada. Superplasticity in β-silicon nitride whisker-reinforced 2124 aluminium composite, J. Mater. Sci. Lett., 9 (1990), pp. 255-257, 10.1007/BF00725816

J. Dusza, P. Sajgalik, Z. Bastl, V. Kavecansky, J. Durisin. Properties of β-silicon nitride whiskers, J. Mater. Sci. Lett., 11 (1992), pp. 208-211, 10.1007/BF00741423

P. Sajgalik, J. Dusza. High-temperature strength and fracture toughness of Si3N4-β-Si3N4 composites, J. Mater. Sci. Lett., 10 (1991), pp. 776-778, 10.1007/BF00723278

W.S. Park, D.J. Choi, H.D. Kim. Modification of inner pores with silicon carbide whiskers onto the Al2O3 substrate by CVI process, Key Eng. Mat., 287 (2005), pp. 212-219, 10.4028/www.scientific.net/KEM.287.212

Jian-Feng Yang, G.-J. Zhang, N. Kondo, T. Ohji. Synthesis and properties of porous Si3N4/SiC nanocomposites by carbothermal reaction between Si3N4 and carbon,, Acta Mater., 50 (2002), pp. 4831-4840, 10.1016/S1359-6454(02)00350-6

B.-T. Lee, H.-D. Kim. Effect of sintering additives on the nitridation behavior of reaction-bonded silicon nitride, Mater. Sci. Eng. A., 364 (2004), pp. 126-131, 10.1016/j.msea.2003.07.005

Y. Xu, S. Sang, Y. Li, L.L.Y. Zhao, L. Shujing. Pore structure, permeability, and alkali attack resistance of Al2O3-C refractories, Metall. Mater. Trans. A, 45 (2014), pp. 2885-2893, 10.1007/s11661-014-2217-1

C. Kawai, A. Yamakawa. Network formation of Si3N4 whiskers for the preparation of membrane filters, J. Mater. Sci. Lett., 17 (1998), pp. 873-875, 10.1023/A:1006619413144

L. Yuan, J. Yu, S. Zhang. Effect of pore-forming agent on porous reaction-bonded silicon nitride ceramcis, IOP Conf, Ser.: Mater. Sci. Eng., 18 (2011), pp. 1-4, 10.1088/1757-899X/18/22/222011


A. Alem, M.D. Pugh, R.A.L. DrewOpen-cell reaction bonded silicon nitride foams: Fabrication and characterization, J. Eur. Ceram. Soc., 34 (2014), pp. 599-609, 10.1016/j.jeurceramsoc.2013.09.011

M. Muller, W. Bauer, R. Knitter. Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reaction-bonding process, Ceram. Int., 35 (2009), pp. 2577-2585, 10.1016/j.ceramint.2009.02.013

A. Alem, R.A.L. Drew, M.D. Pugh. Sintered reaction-bonded silicon nitride foams with a high level of interconnected porosity, J. Mater. Sci., 50 (2015), pp. 570-576, 10.1007/s10853-014-8613-5

C. Gazzara, D. Messier. Determination of phase content of Si3N4 by X-ray diffraction analysis, Am. Ceram. Soc. Bull., 56 (1977), pp. 777-780, https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017528898&partnerID=40&md5=53f5c5af80d1bb3c0031258ca935056e

X. Xi, H. Xiong, W. Guo, Q. Jiang, Y. Cheng, H.-T. Lin. Effect of nitrogen pressure on preparation of β-Si3N4 whiskers, Ceram. Int., 43 (2017), pp. 10610-10613, 10.1016/j.ceramint.2017.05.038

M.-J. Wang, H. Wada. Synthesis and characterization of silicon nitride whiskers, J. Mater. Sci., 25 (1990), pp. 1690-1698, 10.1007/BF01045372

C. Kawai, A. Yamakawa. Crystal growth of silicon nitride whiskers through a VLS mechanism using SiO2-Al2O3-Y2O3 oxides as liquid phase, Ceram. Int., 24 (1998), pp. 135-138, 10.1016/S0272-8842(97)00042-4

G. Yao, Y. Li, P. Jiang, X. Jin, M. Long, H. Qin, R.V. Kumar. Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation, Solid State Sci., 66 (2017), pp. 50-56, 10.1016/j.solidstatesciences.2017.03.002

G.R. Terwilliger, F.F. Lange. Hot-pressing behavious of Si3N4, J. Am. Ceram. Soc., 57 (1974), pp. 25-29, 10.1111/j.1151-2916.1974.tb11356.x


G.W. Brindley, R. Hayami. Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2, Philos. Mag., 12 (1965), pp. 505-514, 10.1080/14786436508218896

T. Sasamoto, H.-L. Lee, T. Sata. Effects of porosity on vacuum-vaporization of magnesia, J. Ceram. Assoc., 82 (1974), pp. 603-610, 10.2109/jcersj1950.82.951_603

M.D. Pugh, A.J. Moulson. Vapour transport of magnesia into reaction-bonded silicon nitride, J. Mat. Sci., 30 (1995), pp. 1425-1428, 10.1007/BF00375242

R.H. Lamoreaux, D.L. Hildenbrand. High-temperature vaporization behavior of oxides ll. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd and Hg, J. Phys. Chem. Ref. Data., 16 (1987), pp. 419-443, 10.1063/1.555799

H.M. Jennings. Review, On reactions between silicon and nitrogen, J. Mater. Sci., 18 (1983), pp. 951-967, 10.1007/BF00551961

J.L. de la Pena, M.I. Pech-Canul. Microstructure and kinetics of formation of Si2N2O and Si3N4 into Si porous preforms by chemical vapor infiltration (CVI), Ceram. Int., 33 (2007), pp. 1349-1356, 10.1016/j.ceramint.2006.05.006

P. Kroll, M. Milko. Theoretical investigation of the solid state reaction of silicon nitride and silicon dioxide forming silicon oxyniride under pressure, Z. Anorg. Allg. Chem., 629 (2003), pp. 1737-1750, 10.1002/zaac.200300122

B. Bill, H. Heping. The influence of different oxides on the formation of Si2N2O from SiO2 and Si3N4, J. Eur. Ceram. Soc., 6 (1990), pp. 3-8, 10.1016/0955-2219(90)90028-E

Z.K. Huang, P. Greil, G. Petzov. Formation of silicon oxinitride from Si3N4 and SiO2 in the presence of Al2O3, Ceram. Int., 10 (1984), pp. 14-17, 10.1016/0272-8842(84)90017-8
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top