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Ambiguous Persuasion∗

Dorian Beauchêne† Jian Li‡ Ming Li§
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Abstract

We study a persuasion game à la Kamenica and Gentzkow (2011) where players are
ambiguity averse with maxmin expected utility (Gilboa and Schmeidler, 1989). With
no prior ambiguity, a Sender may choose to use ambiguous communication devices.
Our main result characterizes the value of optimal ambiguous persuasion, which is of-
ten higher than what is feasible under Bayesian persuasion. We characterize posteriors
that are potentially plausible when they are generated by ambiguous devices. One
way to construct an optimal ambiguous communication device is by using synonyms,
messages that lead to the same posteriors, in which Sender can hedge himself against
ambiguity while inducing actions from Receiver that would not be possible under stan-
dard Bayesian persuasion. We also show that the use of synonyms are a necessary

∗We are grateful to the Editor, Marciano Siniscalchi, and two anonymous referees for very construc-
tive comments and suggestions that have significantly improved the paper. We are also grateful to Pierre
Fleckinger, Françoise Forges, Sidartha Gordon, Yingni Guo, Sean Horan, Rafael Hortala-Vallve, Maxim
Ivanov, Frédéric Koessler, Marie Laclau, Laura Lasio, Elliot Lipnowski, Sujoy Mukerji, Peter Norman, Ed-
uardo Perez-Richet, Ludovic Renou, Joel Sobel, Jean-Marc Tallon, Vassili Vergopoulos, and two anonymous
referees for their very helpful comments. We also thank audiences at Stony Brook Game Theory Confer-
ence 2016, Midwest Theory conference 2016, 2017, Midwest Political Science Association Conference 2017,
Canadian Economic Theory Conference 2017, Asian Summer Meeting of Econometric Society 2017, RES-
York Symposium on Game Theory 2017, D-TEA 2018, BEAT 2018, Carleton University, Kyoto University,
McMaster University, McGill University, UC Berkeley, National University of Singapore, Université de Mon-
treal, and Université Laval for valuable inputs. This research has benefitted from the research programs
"Investissements d’avenir" ANR-10-LABX-93 and "Jeux et ambiguïté" ANR-12-FRAL-0008-01 granted by
the Agence Nationale de la Recherche (Beauchêne), "Communication avec un public averse à l’ambiguïté"
(FRQSC 2018-NP-206978, Jian Li), and "Scientific research, conflicts of interest, and disclosure policy"
(SSHRC Insight Development 430-2016-00444, Ming Li). Dorian Beauchêne conducted part of the research
while writing his Ph.D. dissertation at Paris School of Economics, and Jian Li conducted part of the research
at McGill University. In addition, Beauchêne thanks CIREQ and Ming Li thanks ISER at Osaka University
for their hospitality, where they have conducted part of the research.

†MAPP Economics. E-mail: dorianbeauchene@gmail.com
‡Corresponding author. School of Economics, Shanghai University of Finance and Economics. E-mail:

jianli02@gmail.com.
§Concordia University and CIREQ. Email: ming.li@concordia.ca.

1



property of optimal and beneficial ambiguous persuasion. We consider two applica-
tions, including the well-known uniform-quadratic example. Our analysis provides a
justification for how ambiguity may emerge endogenously in persuasion.

JEL Classification Numbers: C72, D81, D83.

Keywords: Bayesian persuasion, ambiguity averision, information transmission.

1 Introduction

"If I asked for a cup of coffee, someone would search for the double meaning."

"When I’m good, I’m very good. But when I’m bad I’m better."

-Mae West

"Wording should not be varied capriciously, because in general people assume
that if someone uses two different words they are referring to two different
things."

-Steve Pinker1

Ambiguity is present in many settings of persuasion. Countries often keep their foreign
policy intentionally ambiguous. Manufacturers of brand-name drugs often emphasize the
uncertainty about the effectiveness and safety of their generic competitors.2 Finally, Alan
Greenspan has taken pride in perfecting the art of "Fed-Speak," with which he "would
catch (him)self in the middle of a sentence" and "continue on resolving the sentence in some
obscure way which made it incomprehensible."3

In all the examples above, a sender who controls access to some information chooses how to
communicate with a decision maker who is uninformed—a receiver, whom we will refer to
as "Sender" and "Receiver" hereafter. Such environments have been studied by Kamenica
and Gentzkow (2011) in a "Bayesian persuasion" framework, where Sender persuades Re-
ceiver by selecting a pre-committed communication device (or "signal," in the terminology

1See Pinker (2015).
2Merck, one of the world’s largest pharmaceutical companies, sponsored a dinner-and-talk event for health

professionals in Sault Ste. Marie, Ontario in 2014, where the talk included themes like "Generic medications:
are they really equal?" and "Do generics help or hinder patient care?" and was given by Dr. Peter J. Lin, a
prominent Canadian health commentator and family physician, who had repeatedly questioned the benefits
of generic drugs and the reliability of the Canadian government’s approval procedure for generic drugs.
See Blackwell (2014).

3See Leonard, Devin and Peter Coy, August 13-26, 2012, "Alan Greenspan on His Fed Legacy and the
Economy," BusinessWeek: 65.
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of Kamenica and Gentzkow 2011). In contrast to Kamenica and Gentzkow (2011), who
assume that Sender and Receiver are both expected utility maximizers, we allow Sender and
Receiver to be ambiguity averse and allow the communication device to be ambiguous. We
investigate when and how Sender can benefit from using ambiguous communication devices.

Going back to the example of a brand name drug producing pharmaceutical company
(Sender/"he") who wants to persuade a physician (Receiver/"she") to refrain from pre-
scribing the generic competitor of one of his drugs. The pharmaceutical company could
commission studies on the (in)effectiveness and (un)safety of the generic drug. If the physi-
cian were Bayesian, as Kamenica and Gentzkow (2011) assume, she would form a belief
about the effectiveness and safety of the generic drug based on the results of the studies
and trade it off against the extra expense of the brand-name drug. She will then make
her decision on whether to prescribe the generic drug based on her belief. Under these
assumptions, if the physician is predisposed to prescribing the generic drug, then it is not
possible for the pharmaceutical company to completely dissuade the physician from doing
so. However, as we demonstrate in our example of Section 2, if the physician is ambiguity
averse, in particular, if she is maxmin expected utility (EU) maximizers à la Gilboa and
Schmeidler (1989), and if the pharmaceutical company has ambiguous tests at his disposal,
he is able to achieve just that.

For clarity, we refer to Kamenica and Gentzkow’s (2011) communication devices/signals
as probabilistic devices. In our model, we introduce ambiguous devices. An ambiguous
communication device is a set of probabilistic devices. Upon reception of a message, Receiver
updates her (unique) prior via the full Bayesian rule (à la Pires 2002; Epstein and Schneider
2007), i.e., she updates her prior with respect to each probabilistic device, which yields a set
of posterior beliefs for each message. Sender and Receiver are ambiguity averse à la Gilboa
and Schmeidler (1989)—when evaluating an action/ambiguous device, they compute their
expected utility for any possible posterior belief and rank actions/communication devices
according to their minimum expected utilities.

The use of ambiguous devices carries both opportunities and challenges. First, Sender
benefits from increased leeway regarding how to control the information flow to Receiver.
Therefore, he can induce Receiver to act in such a manner that would not be feasible with
probabilistic devices alone. On the other hand, Sender introduces ambiguity where there was
initially none, which would generically decrease his ex ante utility (given that he commits
to a device before learning anything). It is therefore unclear a priori whether the expert can
strictly benefit from ambiguity.

In this paper, we provide a characterization of Sender’s optimal payoff under ambiguous
persuasion by examining two aspects of the environment. First, we present a "splitting
lemma," namely, a characterization of the possible profiles of posterior sets that are achiev-
able with ambiguous devices, which precisely pins down the extent to which ambiguous
devices expand beyond the Bayes plausibility condition given by Kamenica and Gentzkow
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(2011). Second, we demonstrate that, when using an ambiguous device consisting of a set of
probabilistic devices with different expected payoffs, Sender can approximately achieve the
highest payoff among them. He does so through mixing probabilistic devices via the use of
synonyms, which are messages that induce the same set of posteriors and therefore lead to
the same action from Receiver. In effect, Sender can always hedge against ambiguity created
by his own choices. Consequently, with the construction of synonyms, in optimal ambiguous
persuasion, every probabilistic device will give Sender the same expected payoff. Building
on these two intermediate findings, our main result, Proposition 1, characterizes Sender’s
optimal payoff as the maximal projection of the concave closure of an interim value function,
which is defined as Sender’s interim expected payoff according to one particular posterior
and given that this posterior belongs to Receiver’s posterior set. Therefore, our interim
value function depends on a vector/set of posteriors, which are generated by full Bayesian
updating based on the ambiguous device. Our result is reminiscent of the "concavification"
result of Kamenica and Gentzkow (2011), but the upper bound of the projected concave
closure, as a consequence of synonyms and hedging, is somewhat surprising, which brings
fresh insights that are quite apart from Kamenica and Gentzkow’s.

Further, we show that the use of synonyms (albeit in a weaker sense) is also necessary
for optimal ambiguous persuasion. We demonstrate that generically either the optimal
ambiguous devices use weak synonyms, which are messages that elicit the same Receiver
action, or ambiguous persuasion is not more valuable than Bayesian persuasion.

We then proceed to explore the structure of optimal ambiguous device in two special appli-
cations.

In the first application, we consider the case when Sender has a most preferred action, which
is also "safe" for Receiver, in that it has the highest worst-case payoff for Receiver. Even
though this action might not be ex ante optimal, our splitting lemma suggests that, through
designing an optimal ambiguous device, Sender can create maximum (ex post) ambiguity
at all messages and succeed in persuading Receiver to always take the safe action, which is
not possible under standard Bayesian persuasion.

In the second application, we consider the frequently studied "uniform-quadratic" case made
popular by Crawford and Sobel (1982). We characterize the optimal simple ambiguous sig-
nal structure, where each signal realization is associated with two possible posteriors, both
of which are uniform distributions over intervals. The optimal simple ambiguous signal
structure features an equal partition of state space into finitely many unambiguous inter-
vals and maximal ambiguity within each unambiguous interval. This is very different from
the conclusion from standard Bayesian persuasion, where Sender finds it optimal to per-
fectly reveal all the information to Receiver, despite the conflict of interest between them.
This provides a justification for ambiguity of communication even when Sender appears to
have commitment power (for example, rating agencies, who are long-run players and have
relatively stable rating categories).
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Related Literature

In this paper, we adopt the full-commitment assumptions of Kamenica and Gentzkow (2011)
but extend their model to study ambiguous communication devices. In this respect, a recent
paper by Laclau and Renou (2016) is related to our work. Laclau and Renou (2016) consider
public persuasion, where Sender sends the same (probabilistic) signal to multiple receivers
with heterogeneous prior beliefs, which can be alternatively interpreted as a Bayesian sender
persuading an ambiguity-averse Receiver with multiple priors.4 They characterize a splitting
lemma, the counterpart of Kamenica and Gentzkow’s (2011) concept of Bayes plausibility,
and provide a version of "concavification" for the case of multiple priors and a single prob-
abilisic communication device. We differ from their approach by focusing on the case when
there is no prior ambiguity while Sender may use an ambiguous communication device. As a
result, hedging (via the use of synonyms) plays a unique role in our characterization. We also
assume both Sender and Receiver can be ambiguity averse to ensure symmetric information.

We demonstrate in our applications that Sender may want to commit to ambiguous signals,
even if Sender is himself ambiguity averse and even if he would like to fully reveal informa-
tion to Receiver absent ambiguous signals. Thus, our results can be viewed as providing
a new justification for the widespread use of vague language in interpersonal and organi-
zational communication. Previous work has focused on cheap-talk communication in the
manner of Crawford and Sobel (1982), where Sender does not have commitment power (see
Sobel 2013 for a review). Blume et al. (2007) and Blume and Board (2014) show that the
presence of vagueness may facilitate communication between Sender and Receiver. Kellner
and Le Quement (2017) solve a simplified two actions/two states game where ambiguity is
present in Receiver’s priors but not as a strategic choice of Sender. They show that Sender
would use more messages under this assumption than with the regular Bayesian prior. In a
follow-up paper, Kellner and Le Quement (2018) introduce endogenous ambiguous messages
into the cheap-talk framework of Crawford and Sobel (1982). They demonstrate that the
possibility of ambiguous messages, coupled with ambiguity aversion of Receiver, may im-
prove communication between Sender and Receiver. These two papers’ approach differ from
ours in that they do not assume that Sender can commit. Lipman (2009) argues that it is
puzzling that vagueness of language pervades in seemingly common-interest situations. To
a certain extent, our results in the uniform-quadratic example demonstrate that a common-
interest situation with expected utility maximizers, in the sense that Sender and Receiver
both prefer that information be fully revealed under commitment, can easily turn into one
that is not.5

4Their model can be viewed as an extension of Alonso and Câmara (2016), who introduce into Kamenica
and Gentzkow’s (2011) model disagreement over priors between Sender and Receiver. Alonso and Câmara
(2016) identify conditions under which Sender benefits from persuading Receiver. Relatedly, Lipnowski and
Mathevet (2017) consider a model of Bayesian persuasion where Receiver has psychological preferences,
where beliefs directly enter Receiver’s payoff function.

5Crémer et al. (2007) explain the use of vague language as a consequence of the cost of being precise. See
also Sobel (2015). Ivanov (2010) shows that if the decision maker can control what information an expert
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The introduction of ambiguity aversion into game theoretical models are supported by recent
experimental findings that people dislike betting on an event with unknown probability.6

This phenomenon has attracted significant interest in theory and applications.7 The litera-
ture that explores the role of ambiguity aversion in games and mechanisms has been steadily
growing (Ayouni and Koessler, 2017; Bose et al., 2006; Di Tillio et al., 2016; Frankel, 2014;
Lopomo et al., 2011, 2014; Wolitzky, 2016). Bade (2011) and Riedel and Sass (2014) both
study complete information games where the players, in addition to playing mixed strate-
gies, are allowed to use ambiguous strategies in a manner similar to ours. Most relevant to
ours, Bose and Renou (2014) introduce similar ambiguous devices in a communication stage
preceding a mechanism design problem. Their key insight is that the designer can cleverly
use these devices to exploit the ambiguity aversion of the agents. They show that a wider
set of social choice functions are implementable with ambiguous communication devices.

The rest of our paper is structured as follows: Section 2 illustrates how ambiguous com-
munication devices can be used to benefit Sender. Section 3 introduces the framework and
presents the persuasion game. Section 4 characterizes the value of an optimal ambiguous
communication device, which is the maximal projection of the concave closure of sender’s
interim expected utility function, and demonstrates how to construct an optimal ambigu-
ous device. Section 5 provides two examples in which ambiguous communication devices
with synonyms improve upon Bayesian persuasion. Section 6 discusses some additional
constraints on ambiguous devices such as dynamic consistency and positive value of infor-
mation from ambiguous persuasion. Section 7 concludes. Proofs omitted in the main text
are relegated to the Appendix.

2 An Illustrating Example

We first present an example that demonstrates how ambiguous persuasion improves upon
Bayesian persuasion. Let Sender be a brand name drug producer and Receiver a physician.
The physician could choose between two actions: prescribing the brand name producer’s
drug or prescribing a generic competitor of it. The brand name drug producer always prefers
that the physician prescribe the brand name drug, but the physician’s preference depends
on how effective the generic drug is. Suppose, according to the common prior, the brand
name drug is less risky than the generic drug in the following sense: the brand name drug

can get before communication, then she would give the expert relatively coarse information that also takes
an interval structure.

6For a review of earlier experimental evidence, see Camerer and Weber (1992). For more recent exper-
iments, see for instance Fox and Tversky (1995), Chow and Sarin (2001), Halevy (2007), Bossaerts et al.
(2010), and Abdellaoui et al. (2011).

7Gilboa and Marinacci (2013) survey the vast literature of axiomatic foundations for ambiguity aversion.
Mukerji and Tallon (2004) and Epstein and Schneider (2010) survey economic and financial applications of
ambiguity aversion.
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is always effective and produces some deterministic treatment utility uH to the physician;
the generic drug’s effectiveness is uncertain: in one state denoted as ω = "Effective," it is as
effective as the brand name drug and produces the same high utility uH ; in the other state,
denoted as ω = "Ineffective," it is of low quality and produces a low utility uL (< uH) (due
to unintended side effect, lower effectiveness).8 Normalize and assume the unit price of the
generic drug is 0 and that of the brand name drug is c > 0. Assume that Receiver, the
physician, is well-intentioned and so her payoff is the treatment utility from the drug minus
its cost; while Sender, the brand name drug producer, always prefers that its own drug
be prescribed. The following matrix summarizes the state-and-action-contingent payoffs to
Sender and Receiver. In each entry, the first element is Sender’s payoffs and the second
element Receiver’s payoffs.

Effective Ineffective
Brand name (1, uH − c ) (1, uH − c )

Generic (0, uH ) (0, uL)

The physician and the brand name drug producer share some common prior p(Inffective) =
p0 ∈ (0, 1). Suppose c/p0 > uH−uL > c > 0, and so the physician strictly prefers prescribing
the generic drug without additional information.

First, suppose the brand name producer can only commit to Bayesian messages that are
on average correct. Then by Kamenica and Gentzkow’s (2011) Propositions 4 and 5, the
optimal Bayesian communication device is a tuple (M,π∗) with the following properties:
(i) It suffices to have two messages—M = {e, i}, where m = e corresponds to the message
"generic is effective" and m = i "generic is ineffective." (ii) The mapping from states to
messages is

π(e| Effective) =
p∗ − p0

p∗(1− p0)
, π(i| Effective) =

p0(1− p∗)
p∗(1− p0)

;

π(e| Ineffective) = 0, π(i| Inffective) = 1,

which induces a Bayes plausible distribution over posteriors

pe(Ineffective) = 0,

pi(Ineffective) = p∗,

where p∗ is the posterior that makes her exactly indifferent between the brand name and
the generic drugs,9 that is,

p∗ =
c

uH − uL
.

8See, for example, a 2013 New York Times article covering the Ranbaxy (an Indian drug company that
had sold generic versions of brand name drugs, say Lipitor, in the US market) fraud scandal, which raises
quality concerns about generic drugs (http://www.nytimes.com/2013/05/14/business/global/ranbaxy-in-
500-million-settlement-of-generic-drug-case.html).

9By assumption, p0 < p∗.
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Note that
Prob(m = i) =

p0
p∗

< 1.

Under Bayesian persuasion, the physician will prescribe the brand name drug if and only if
the message is in favor of the brand name (m = i), which occurs with probability Prob(m =

i) ∈ (0, 1).

In contrast, when ambiguous messages are allowed, the brand name producer can persuade
the physician (to prescribe the brand name drug) with probability one. The idea is to struc-
ture communication so that the physician is presented with multiple ways of interpretations
of all messages, with the requirement that each way of interpretation is correct on average
across messages. For example, the brand name producer could sponsor an experimental
test of the generic drug and report the data, while remaining vague on how the data are
generated and therefore how they should be interpreted. A formalization of this idea is a
system with M = {e, i} that admits two likelihood distributions,10 Π = {π, π′}, where

π(m = i| Ineffective) = 1, π(m = e| Effective) = 1;

π′(m = i| Effective) = 1, π′(m = e| Ineffective) = 1.

Following Epstein and Schneider (2007), we assume the physician is a maxmin EU maximizer
and updates her beliefs likelihood-by-likelihood for all elements in Π. Hence for any prior
p0 ∈ (0, 1), she forms sets of posteriors:

Pi(Effective) = {0, 1} ,
Pe(Effective) = {0, 1} .

As we will verify later, these posteriors are also "Bayes plausible." The main takeaway is
that the drug company can design ambiguous messages so that choosing generic always looks
extremely uncertain. Consequently, the MEU physician will prescribe the brand name drug
regardless of the message observed. In this way, the brand name producer does strictly better
by using the ambiguous communication device than using the optimal Bayesian one. More-
over, this simple communication device with maximal ambiguity is optimal, as it induces
the Sender optimal action with probability one.

3 Framework

We now turn to setting up a general framework that formalizes and extends the discussion in
the illustrating example above. We consider a persuasion game between Sender and Receiver
("he" and "she," respectively, as previously mentioned). Let Ω denote the set of states of
the world and A the set of feasible actions. Assume Ω and A are compact subsets of the

10We use a likelihood distribution to model an interpretation of the signal system.
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Euclidean space. Receiver and Sender have continuous utility functions, denoted by u and v,
respectively. Thus, u(a, ω) and v(a, ω) are respectively the utilities of Receiver and Sender,
when Receiver’s action is a ∈ A and the state of the world is ω ∈ Ω.11 Sender and Receiver
share a common prior p0 ∈ ΔΩ with full support.12

Sender sends a message from a finite set M to Receiver, who then takes an action. Sender
does so by committing to a communication device. A probabilistic/Bayesian communication
device π is a function from states of the world to probability distributions over messages.
Thus, π(·|ω) ∈ ΔM and π(m|ω) denotes the probability with which message m is sent
in state ω. Further, let τ(m) =

∑
ω p0(ω)π(m|ω) denote the overall probability with

which message m is sent. An ambiguous communication device consists of a finite set of
probabilistic devices, denoted (πk)K , that are indexed by k ∈ K = {1, ..., |K|}.13 Assume
that the K devices share a common support on M , that is, for all k and j ∈ K and m ∈ M ,
τk(m) > 0 ⇒ τj(m) > 0. Finally, denote by Π the convex hull of (πk)K ,14 which can be
written as

Π = co((πk)K) =

{
π ∈ (ΔM)Ω

∣∣∣∣∣ π =
∑
k∈K

λ(k)πk for some λ ∈ ΔK

}
.

Our interpretation of Sender’s commitment to an ambiguous communication device as fol-
lows. Sender designs K probabilistic devices (M, (πk)K) and sends them to a credible third
party. The third party first draws a ball from an Ellsberg urn containing a large number
of balls labelled 1, 2, . . . ,K. The label of the ball drawn determines which probabilistic
device will be used. Then, the designated probabilistic device generates a message, which
is observed by both Sender and Receiver. Yet, both players are ignorant about the label of
the ball drawn and the composition of the labels of the balls in the Ellsberg urn.

We follow Pires (2002) and Epstein and Schneider (2007) and assume that both Sender and
Receiver form their posteriors using the full Bayesian updating rule. That is, when the prior
is p0 and Sender chooses some ambiguous communication device (M,Π), upon receivering
a message m Sender and Receiver update their beliefs probability by probability and form
the following set of posteriors:

Pm = {pπk
m ∈ Δ(Ω) : pπk

m (·) = p0(·)πk(m|·)∫
ω′ πk(m′|ω′)p0(ω′)dω′ , k ∈ K}. (1)

11If A or Ω is finite, endow it with the discrete topology.
12Let X be a compact subset of a metric space, endowed with the Borel topology. Throughout C(X)

to denote the set of real-valued functions on X, and ΔX to denote the set of probabilities on X endowed
with the topology of weak convergence. The space of closed and convex subsets of ΔX is endowed with the
standard Hausdorff topology. Let Y be a finite subset of a metric space, we use co(Y ) to denote the convex
hull of Y .

13For simplicity of notation, we will use K to denote both the set of probabilistic devices and its cardinality,
whenever there is no confusion.

14Considering of the convex hull of the probabilities is by convention of the MEU model, as only the
convex hull of beliefs can be identified. In our model, equilibrium is unaffected by the choice between (πk)K

and Π, as only the extreme points of the set will be minimizing probabilities for an MEU agent.
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Here pπk
m denotes the Bayesian posterior associated with message m that is induced by

probabilisitic device πk.

The assumption that all probabilistic devices must have common support on M is a con-
sequence of this full Bayesian updating rule (1). To see this, consider the induced set of
ex-ante probabilities that belong to Δ(M × Ω), where

P = co{pk : pk(m,ω) = p0(ω)πk(m|ω), k ∈ K}.

For every message m, Bayesian updating is only defined if p({m} × Ω) > 0. Hence full
Bayesian updating requires that every message m either has zero probability for all p ∈ P

and thus is excluded from updating or has positive probability for all p ∈ P and thus is
updated probability by probability.

Another consequence of full Bayesian updating is that, when the communication device
is ambiguous, the set of posteriors may become less precise than the prior at all realized
messages. This is the case in our introductory example. As illustrated by the following
example (Seidenfeld and Wasserman, 1993), it is a natural consequence of updating with
multiple probabilities.

Example 1 (Dilation). Consider a fair coin that will be tossed twice. Let Hi and Ti

denote the event that the i-th coin toss lands Head and Tail, respectively (i = 1, 2). The
unconditional probability of the second coin toss landing HEAD is clearly 1/2, that is,
p0(H2) = 1/2. However, the players do not know how the two coin tosses are related (for
instance, the coin might or might not have been simply turned over after the first toss).
Hence the players’ belief about the joint probability of two HEADs, Pr(H1 and H2), can
lie arbitrarily in the interval [0, 1/2]. Suppose now the players observe the outcome of the
first coin toss and are asked about their posterior beliefs about the event H2. Then the set
of posteriors is PH1

(H2) = PT1
(H2) = [0, 1]. Note the players’ posterior beliefs about the

event H2 are dilated away from the prior for either realization of the first coin toss.

The rest of our model setup is similar to that of Kamenica and Gentzkow (2011). Our
persuasion game consists of two stages. In the first/ex ante stage, Sender commits to an
ambiguous communication device (M,Π). In the second/interim stage, both players observe
the realized message and Receiver takes an action a. At the end of the game, the true state is
revealed and payoffs are realized. We solve the game by backward induction with a Sender-
preferred tie-breaking rule: (i) In the second stage, Receiver forms a set of posteriors Pm and
takes an action to maximize her maxmin expected utility; If there is a tie, Receiver chooses
the action most preferred by Sender. (ii) In the ex ante stage, Sender chooses an ambiguous
communication device (M,Π) that maximizes his ex ante maxmin expected utility.

In the interim stage, with multiple posteriors upon observing message m, Receiver’s decision
criterion is her interim maxmin expected utility with the probability-by-probability updated
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set of posteriors Pm:

U(a, Pm) = min
pm∈co(Pm)

Epm
[u(a, ω)] = min

pm∈Pm

Epm
[u(a, ω)].15

Her optimal action is given by a∗(Pm) ∈ argmaxa∈A U(a, Pm); when there are multiple
maximizers, without loss assume Receiver picks the action preferred by Sender according
to his expected utility computed by the first posterior16, and this Sender-preferred optimal
action is denoted by â(Pm).

It is worth noting that in the equilibrium we consider, Receiver’s choice of action still
depends solely on the set of posteriors induced by the realized message. The property is
called language invariance by Alonso and Câmara (2016), that is, for any two communication
devices Π and Π′, and any messages m and m′, Receiver will always choose the same optimal
action whenver Pm = Pm′ .

In the ex-ante stage, Sender chooses an ambiguous communication device (M,Π) to maxi-
mize his ex ante maxmin EU. Sender’s value in the persuasion game at prior p0 is17

sup
(M,Π)

min
π∈Π

Ep0
[Eπ[v(â(Pm), ω)|ω]]. (2)

We use V0 to denote Sender’s utility without communication, i.e., V0 = Ep0v(â(p0), ω).

Generalizing Kamenica and Gentzkow’s (2011) technique, an ambiguous communication
device (πk)K can also be expressed as an induced set of distributions over posteriors. Fixing
p0, each probabilistic device πk induces pk = (pπk

m )M , the vector of posteriors at all messages,
and τk ∈ ΔM , the marginal distribution over message space. Then the tuple (τk,pk) is a
distribution over posteriors and by construction it is Bayes plausible, i.e.,

∑
m∈M τk(m)pπk

m =

p0. Let R denote the set of distributions over posteriors induced by these K probabilistic
devices, i.e.,

R = {(τk,pk) ∈ ΔM × (ΔΩ)M : τk(·) =
∫
Ω

p0(ω
′)πk(·|ω′)dω′,pk = (pπk

m )m∈M ,

supp(τk) = supp(τj), ∀πk, πj ∈ (πk)K}.
15Since we focus on maxmin EU, a linear minimization problem subject to a convex set of beliefs, it is

without loss of generality to focus on the extreme points of the belief set. The same argument applies to
Sender’s Maxmin EU.

16The exact label of the chosen probablistic device does not matter, since the ex ante Sender value is
symmetric in labels. This tie-breaking rule is imposed to ensure the desired upper semi-continuity property
of sender’s interim value function.

17 Note that with ambiguous beliefs and our assumption of updating maxmin EU preferences, Sender’s ex
ante and interim preferences might not be dynamically consistent. We follow the solution concept proposed
by Siniscalchi (2011), Stroz-type consistent planning, to address dynamic inconsistencies in a decision-
maker’s preferences—the decision-maker considers all contingent plans that will actually be carried out by
his future preferences and chooses among them the one that is optimal according to his current preferences.
Applied to our setting, consistent planning requires Sender to consider all actions that will be taken by
Receiver and, going backward, choose an ambiguous device according to Sender’s ex ante MEU preferences.
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Denote by R the collection of all such sets R, i.e., sets of distributions over posteriors induced
by some ambiguous device.

We can rewrite Sender’s problem as

sup
R∈R

min
(τk,pk)∈R

Eτk [Epk
m
[v(â(Pm), ω)|m]]. (3)

Here vk(Pm) := Epk
m
[v(â(Pm), ω)|m] is Sender’s utility when computed with respect to the

k-th coordinate of the posterior vector Pm = (p1m, . . . , pkm), assuming Receiver best responds
to posteriors Pm.18

4 A characterization of the value of persuasion

In this section, we present our main result—a characterization of the optimal value Sender
can achieve by using K probabilistic devices. Geometrically, this value is given by the
concave closure of the vk function maximally projected to the first coordinate (See Figures
2–4). In proving this result, we introduce a splitting lemma that specifies the sets of plausible
posteriors and a construction called synonyms that enables Sender to hedge against ex ante
ambiguity. In addition, they provide a way to determine effortlessly the optimal ambiguous
device in two steps. In the first step, we identify the optimal posteriors to elicit. The splitting
lemma (Lemma 1) implies that the required posteriors are plausible. In the second step,
we can construct synonyms by duplicating the messages leading to the optimal posteriors
in such a way that Sender hedges against ex ante ambiguity.

4.1 A useful construction

We begin by characterizing the value function. In Kamenica and Gentzkow’s (2011) model,
the value of optimal Bayesian persuasion is given by V̂ (p0) where V̂ is the concave closure
of the function defined by v(p) = Epv(â(p), ω) the expected payoff of Sender when Receiver
holds the Bayesian posterior belief p ∈ Δ(Ω). In this subsection, we construct a similar
"concavified" function for the case of ambiguous persuasion.

Let K be a finite number of Bayesian devices to be used. For any given vector of beliefs
P = (pk)K , recall that vk(P ) = Epk

v(â(P ), ω) is the payoff of Sender when Receiver holds
ambiguous posterior beliefs P and when computed with respect to the k-th coordinate in the
posterior vector. By construction vk is symmetric across devices,19 without loss of generality
we will focus on v1.

18For simplicity of notation, we make no distinction between the vector of posteriors Pm = (pkm)K and
the set of posteriors that is obtained from collapsing the vector by removing posteriors that are redundant,
noting that Receiver’s payoff depends only on the latter.

19 Note that for all k, j ∈ K, vk(P ) = vj(Pkj) where Pkj is the vector P with the k-th and j-th coordinates
switched.
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Recall that the subgraph of v1 is {(P, z′) ∈ (ΔΩ)
K × R|v1(P ) ≥ z′}. Then, the concave

closure of fuction v1 is

V1(P ) = sup{z′|(P, z′) ∈ co(Subgraph(v1))}.

By definition, if z = V1(P ), then there exists a distribution of posteriors τ ∈ ΔM and a
(stacked) vector of posteriors (Pm)M ∈ (

(ΔΩ)K
)M such that EτPm = P and Eτv1(Pm) =

z.20

Consider now the maximal projection of V1(P ) over ΔΩ, that is, let

V (p) = max
P−1∈(ΔΩ)K−1

V1(p, P
−1).

Our main result is Proposition 1. The first part says that the value of optimal ambiguous
persuasion (with K devices) is determined by the above function. Sender benefits from
ambiguous persuasion relative to Bayesian persuasion if and only if this value function is
greater than the value function from Bayesian persuasion à la Kamenica and Gentzkow
(2011). The second part says that only two probabilistic devices are needed to achieve this
optimal value (while the number of messages M can vary as long as it is an finite integer).

Proposition 1. Sender benefits from ambiguous persuasion if and only if V (p0) > V̂ (p0).
Moreover, V (p0) is independent from K as long as K ≥ 2.

Now, we adapt the illustrating example in Section 2 and demonstrate how to compute the
V function and derive the value of ambiguous persuasion according to Proposition 1.

Example 2. We introduce a third action to the illustrating example in Section 2. Receiver
now (the physician) has three possible choices: a competing generic drug (low action, al),
a reputable old drug of the brand name drug producer (middle action, am), and a new and
more profitable new drug by the same company (high action, ah). As before, there are
two possible states, high (ωh) and low (ωl), which reflects the effectiveness of the new drug
relative to the competing generic drug. In the payoff matrix in Table 1, the first number
of each cell is Sender’s payoff and the second that of Receiver. Given equiprobable low and
high states in prior belief, the default action of Receiver is the middle and safe action, which
yields a payoff of 0 to Sender.

The payoffs are such that Receiver prefers the competing generic drug (al) if the probability
of the high state is less than 1/4, and the new drug (ah) if the probability is higher than
3/4, and safe old drug (am) for beliefs in between. The drug company’s preference ranking
is its new drug followed by its own old drug by the competitor’s drug, which payoffs equal

20The maximum attains because V1 is upper semi-continuous. To see this, apply Berge’s theorem of
maximum in each of the following steps: continuity of u(a, P ) implies the best response correspondence
a∗(P ) is upper hemi-continuous; hence v1(P ) = maxa∈a∗(P ) v(a, p1) is also upper semi-continuous; this
implies V1(P ) = sup{τ :∑m τ(m)Pm=P} τ(m)v1(Pm) is upper semi-continuous.
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Table 1: Payoff matrix for Example 2.

ωl ωh

al (−1, 3) (−1,−1)

am (0, 2) (0, 2)

ah (1,−1) (1, 3)

In each cell, the first number is Sender’s payoff and the second is that of Receiver.

Figure 1: The value of Bayesian persuasion. The horizontal axis is the posterior probability
of the low state and the vertical axis is Sender’s payoff.

to 1, 0,−1, respectively. The prior belief is 1/2 and without further information the doctor
will choose the safe old drug.

We first consider how Sender benefits from Bayesian persuasion. Figure 1 gives the con-
cave closure of Sender’s payoffs in the Bayesian case. This provides the value of Bayesian
persuasion as well as the posteriors needed to attain this value. As seen in the figure, he
would want to generate two posteriors 1/4 and 3/4 with equal probabilities. In this case,
he successfully persuades the doctor to prescribe the new brand name drug with probability
1/2, and this is the optimal value of Bayesian persuasion, which yields a value V̂ (p0) = 1/2.
Let the first message be called "high" and second one "middle," each sent with probability
1/2. When receiving the message "high," Receiver is indifferent between ah and am and
takes the former (Sender-preferred) action and prescribes the new brand name drug; when
receiving the message "middle," Receiver is indifferent between am and al and takes the
former (Sender-preferred) action and prescribes the old brand name drug.

We now turn to computing the value of ambiguous persuasion to Sender when two Bayesian
devices are used, which, as we show in Proposition 1, is characterized by the function V .
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Figure 2: v1(P ) Figure 3: V1(P ) Figure 4: V (p)

Figures 2, 3, and 4 illustrate the step-by-step construction of the V function. Firstly, with
two (optimal) Bayesian devices used, the maxmin EU Receiver’s (Sender-preferred) best
response would then be ah if both posteriors are at least 3/4 and al if both posteriors are
less than 1/4, otherwise, she chooses the safe middle action am. Therefore, Sender’s expected
payoff based on his first posterior, as illustrated by Figure 2, is

v1(p1, p2) =

⎧⎪⎨
⎪⎩

1, min{p1, p2} ≥ 3/4;

−1, max{p1, p2} < 1/4;

0, otherwise.

Figure 3 then depicts V1, the concave closure of v1. Finally, Figure 4 illustrates function V ,
the maximal projection of V1 to the first dimension. The last figure depicts what Sender
can achieve using two probabilistic devices. In this example, an optimal ambiguous device
should lead to posterior sets {0, 1/4} (when message "low" is received) and {3/4, 3/4} (when
message "high" is received). The first device would generate posteriors 0 and 3/4 and the
second device will generate posteriors 1/4 and 3/4. Finally, this optimal ambiguous device
yields value V (p0) = 2/3, which is higher than the optimal value of Bayesian persuasion.
We give the precise construction of the ambiguous device in Section 4.3.

The full proof of Proposition 1 is given in appendix A.4. Our proof makes use of two
intermediate results which we will introduce in the next two subsections.

4.2 Splitting lemma

In this subsection, we show that finding an optimal ambiguous device is equivalent to finding
an appropriate profile of posterior beliefs.
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For fixed prior p0, the number of devices K, and the message space M , we look at the
stacked vector/profile of posteriors (pkm)M×K ∈ (ΔΩ)M×K and want to know whether it
can be induced by some ambiguous communication device (M, (πk)K) via full Bayesian
updating.21 Recall that a stacked vector of posteriors (pkm)M×K is probability-by-probability
updated by some ambiguous communication device, if there exists some device (M, (πk)K)

such that for all m ∈ M and k ∈ K,

pπk
m (·) = πk(m|·)p0(·)∫

Ω
πk(m|ω′)p0(ω′)dω′

is just the posterior of Bayesian device πk. As usual, we require the ambiguous device
Π = (πk)K to have common support on M ; i.e., τπk(m) > 0 ⇒ τπj (m) > 0 for all k, j ∈ K,
where τπk(m) =

∫
pπk
m (ω′)p0(ω′)dω′.

Definition 1. We say a stacked vector of posteriors (pkm)M×K ∈ (ΔΩ)M×K is potentially
generalized Bayes plausible (PGBP) if for all k ∈ K there exists some τk ∈ ΔM such that
p0 =

∑
m τk(m)pkm, with supp(τk) = supp(τ j) for all k, j ∈ K.

The notion of PGBP requires that posteriors have to be Bayes plausible device by device
(although the weights on the posteriors could differ across devices).

Our next lemma shows full Bayesian updating via some unobserved ambiguous device
is equivalent to the potentially generalized Bayes plausibility condition. This could be
viewed as the multiple likelihood analogy of the Bayes plausibility condition (Kamenica and
Gentzkow, 2011) or the splitting lemma (Aumann and Maschler, 1995).

Lemma 1. Fix prior p0, K, and message space M . A stacked vector of posteriors (pkm)M×K

is potentially generalized Bayes plausible if and only if (pkm)M×K consists of the probability-
by-probability updated posteriors via some ambiguous device (M, (πk)K) with common sup-
port.

Lemma 1 implies that not every vector of posteriors could correspond to the updated poste-
riors by some ambiguous communication device. It puts a bound on the vector of generalized
Bayes plausible posteriors that Sender could credibly induce. Clearly, Sender has more lee-
way to induce the desirable posteriors than what is constrained by Bayes plausibility under
one probabilistic device, as the posterior weights τk could differ across devices, but this
freedom is not without limit. This is illustrated by the following example.

Example 3. Consider for instance Example 2. Just like Kamenica and Gentzkow’s (2011)
construction, ours is useful to determine sets of posteriors that we would want to generate
from an ambiguous device. In this case, two messages are needed, which we denote by ml

and mh. It follows from Figure 4 that the first device would need to yield posteriors of
21By considering the vector of posteriors conditional on a message m, we keep track of which probabilistic

device each posterior is updated from.
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p1,ml
= 0 and p1,mh

= 3/4. By construction, these are necessarily Bayes plausible. To
define posteriors for a second Bayesian device, one needs to determine the posterior beliefs
needed to have ensured the decision maker took the correct actions at messages 1 and 2,
that is, posteriors in argmaxp vk({p1,ml

, p}) and argmaxp vk({p1,mh
, p}).

In this example, we will take p2,ml
= 1/4 and p2,mh

= 3/4. This therefore provides two sets
of posteriors:

p1(ω|m) ωl ωh

ml 1 0

mh 1/4 3/4

p2(ω|m) ωl ωh

ml 3/4 1/4

mh 1/4 3/4

Those two sets are potentially generalized Bayes plausible as p0 = 1/2 ∈ [0, 3/4] and p0 ∈
[1/4, 3/4]. And indeed, it is possible to find two Bayesian devices which would lead to such
posteriors:

π1(m|ω) ωl ωh

ml 2/3 0

mh 1/3 1

π2(m|ω) ωl ωh

ml 3/4 1/4

mh 1/4 3/4

Furthermore, note that if Sender were to use the ambiguous device Π derived from the
two Bayesian devices above, then receiver would choose ah upon seeing mh and am upon
seeing ml. Note also that Bayesian device 1 sends the two messages with probabilities
τ1 = (2/3, 1/3). So, we have that v1(p1, p2) = 2/3 = V (p0).

Note that, however, our construction does not always lead naturally to potentially general-
ized Bayes plausible posterior sets. Consider for instance the same payoffs but assume the
prior is now equal to 1/8. The interesting set of posteriors we would like to generate are
still {0, 1/4} and {3/4}. However, those sets are not potentially generalized Bayes plausible
given the prior of 1/8. Indeed, 1/8 /∈ [1/4, 3/4]. Lemma 1 therefore suggests that no device
could lead to such sets of posteriors.

We can however consider completing our posterior sets with a third message in order to
ensure potentially generalized Bayes plausibility. First note that the profile of posteriors of
the first probabilistic device is, as remarked above, necessarily Bayes-plausible. Only those
posterior profile resulting from the maximal projection might not be Bayes plausible. As
a result, we propose to complete our posterior sets by {p0, p} where p is chosen so that
co(p, 1/4, 3/4) would be Bayes plausible.

The posteriors generated by the two devices, listed below, are potentially generalized Bayes
plausible.
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p1(ω|m) ωl ωh

ml 1 0

mh 1/4 3/4

mr 7/8 1/8

p2(ω|m) ωl ωh

ml 3/4 1/4

mh 1/4 3/4

mr 1 0

There exists therefore a pair of Bayesian devices that can lead to these sets of posteriors
from p0 = 1/8. Furthermore, by adding p0 to the additional posterior set, we ensure that
the first Bayesian device considered can use the same relative weights on ml and mh as
without this third posterior set. The following two devices lead to the three posterior sets
defined here.

π1(m|ω) ωl ωh

ml 20(1− ε)/21 0

mh (1− ε)/21 1− ε

mr ε ε

π2(m|ω) ωl ωh

ml 3/28 1/4

mh 1/28 3/4

mr 6/7 0

Note that if Sender were to use the ambiguous device Π derived from those two Bayesian
ones, then Receiver will choose am upon seeing ml, ah upon seeing mh, and al upon seeing
mr.

For the second device, a Bayes plausible distribution over posterior is τ2 = (1/8, 1/8, 6/8).
In this case, v2(p1, p2) = 1/8 ∗ 1− 6/8 ∗ 1 = −5/8.

For the first device, we have that lim
ε→0

τ1 = (5/6, 1/6, 0) and lim
ε→0

v1(p1, p2) = 5/6∗(0)+1/6∗1 =

1/6 = V (1/8).

Coupled with Lemma 1, this example shows how one can construct an ambiguous device
whose "maxmax" value to Sender is at least arbitrarily as close to V (p0). In the next
subsection, we show how Sender can use synonyms, messages that lead to the same posterior
sets, in order to hedge against ambiguity and achieve the "maxmax" value as computed by
the best Bayesian device.

4.3 The use of synonyms

In this section, we consider messages that are (strong) synonyms, which are multiple mes-
sages that yield the same set of posterior beliefs. We first introduce a way to construct
strong synonyms from any ambiguous communication device by duplicating the message
space. We then show that Sender can hedge himself against ambiguity by constructing
messages in such a manner.
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First, we define the ⊕ operation over probabilistic devices. Consider two devices, π1 and π2,
which use the same messages in M1. Let M2 be a duplicated set of messages: M1 ∩M2 = ∅
and there exists a bijection b between M1 and M2. Given α ∈ [0, 1], let π′ = απ1⊕ (1−α)π2

be the device that sends a message m1 ∈ M1 with probability απ1(m1/ω) and a message
m2 = b(m1) ∈ M2 with probability (1− α)π2(m1/ω) from state ω.

Consider now an ambiguous device Π = co((π1, π2)). Define Π′ = co((π′
1, π

′
2)) the ambiguous

device such that π′
1 = απ1 ⊕ (1− α)π2 and π′

2 = (1− α)π2 ⊕ απ1. This yields the following
ambiguous device:

Π′ π′
1 π′

2

m1 ∈ M1 απ1(m1/ω) (1− α)π2(m1/ω)

b(m1) ∈ M2 (1− α)π2(m1/ω) απ1(m1/ω)

The posterior set of beliefs induced by Π′ are the same for messages m1 and b(m1). In that
sense, m1 and its equivalent m2 = b(m1) are strong synonyms. Furthermore, these posterior
sets are the same as those induced by the original ambiguous device Π. As a result, Π′ and
Π induce the same actions from Receiver.

Suppose now Sender considers such a probabilistic device π′
1 while Receiver still best re-

sponds to posterior beliefs by ambiguous device Π′. Let V (π′
1) be the value of such a device.

We define V (π1) likewise. One interesting feature of the ⊕ operation is that the value of
probabilistic devices is linear with regards to it.

Lemma 2. The value function is linear with respect to the ⊕ operation: V (απ1⊕(1−α)π2) =

αV (π1) + (1− α)V (π2).

Proof. See Subsection A.2.

Using Lemma 2, the value of Π′ is V (Π′) = αV (π1) + (1−α)V (π2). Without loss assuming
that V (π1) > V (π2), then by picking α ever closer to 1, the value of Π′ converges to that
of π1. Also V (π′

1) and V (π′
2) both approximate the same value of max{V (π1), V (π2)} as

α → 1. From this we have the following lemma.

Lemma 3. Given an ambiguous device Π = co((πk)K), there exists a sequence of devices
(Π′

n)n∈N = {co(π′
k,n)K}n∈N using synonyms such that lim

n→+∞ V (Π′
n) = sup

π∈Π
V (π). Moreover,

limn→∞ V (π′
k,n) = sup

π∈Π
V (π) for all k.

Proof. See Subsection A.3 for a proof for the general case (more than two probabilistic
devices).
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Observe that in the sequence of ambiguous devices with synonym construction, the values of
all probabilistic devices converge to the same limit. At an optimal ambiguous device, Sender
must be indifferent among all the probabilistic devices used; otherwise he could always use
synonyms to attain the highest value.

Below, we continue with our running example to show how the previous ambiguous device
can be modified.

Example 4. In our running example, the construction of V led us to consider the following
ambiguous device:

π1(m|ω) ωl ωh

ml 2/3 0

mh 1/3 1

π2(m|ω) ωl ωh

ml 3/4 1/4

mh 1/4 3/4

These devices lead to the following distributions over posteriors:

τ1(m) p1(ωh|m)

ml 1/3 0

mh 2/3 3/4

τ2(m) p2(ωh|m)

ml 1/2 1/4

mh 1/2 3/4

Recall the value of the mentioned optimal ambiguous device is V (1/2) = 2/3. Sender’s ex-
pected value of the ambiguous device when computed with regard to π1 (assuming Receiver
reacts to posteriors generated by both devices) is V (π1) = 2/3; while the value when com-
puted with regard to π2, V (π2), is however 1/2. Sender’s maxmin value of the ambiguous
device Π is therefore only 1/2.

Nevertheless, by Lemma 3, one can then use synonyms to increase the value of the ambiguous
device to a value arbitrarily close to 2/3. To see this, consider the following devices that use
duplicated messages ml and mh:

π′
1(m|ω) ωl ωh

ml α · 2/3 0

mh α · 1/3 α

m′
l (1− α) · 3/4 (1− α) · 1/4

m′
h (1− α) · 1/4 (1− α) · 3/4

π′
2(m|ω) ωl ωh

ml (1− α) · 3/4 (1− α) · 1/4
mh (1− α) · 1/4 (1− α) · 3/4
m′

l α · 2/3 0

m′
h α · 1/3 α

These devices lead to the following distributions over posteriors:

τ ′1(m) p1(ωh|m)

ml α · 1/3 0

mh α · 2/3 3/4

m′
l (1− α) · 1/2 1/4

m′
h (1− α) · 1/2 3/4

τ ′2(m) p2(ωh|m)

ml (1− α) · 1/2 1/4

mh (1− α) · 1/2 3/4

m′
l α · 1/3 0

m′
h α · 2/3 3/4

20



In this case, Receiver will best respond with am upon seeing ml or m′
l, which takes place

with (joint) probability 1/2 − α/6 under either π′
1 and π′

2; and best respond with ah upon
seeing mh or m′

h, occuring with probability α2/3 + (1− α)1/2 under either devices.

Hence the value of this ambiguous device is α2/3+(1−α)1/2. By taking α arbitrarily close
to 1, we can get a value arbitrarily close to 2/3.

In the more complicated case where p0 = 1/8, one can also apply Lemma 3 in the following
manner:

π′
1(m|ω) ωl ωh

ml α · 20ε/21 0

mh α · ε/21 αε

mr α(1− ε) α(1− ε)

m′
l (1− α) · 3/28 (1− α) · 1/4

m′
h (1− α) · 1/28 (1− α) · 3/4

m′
r (1− α) · 6/7 0

π′
2(m|ω) ωl ωh

ml (1− α) · 3/28 (1− α) · 1/4
mh (1− α) · 1/28 (1− α) · 3/4
mr (1− α) · 6/7 0

m′
l α · 20ε/21 0

m′
h α · ε/21 αε

m′
r α(1− ε) α(1− ε)

The induced distributions over posteriors are:

τ ′1(m) p1(ωh|m)

ml α · 5ε/6 0

mh α · ε/6 3/4

mr α(1− ε) 1/8

m′
l (1− α) · 1/8 1/4

m′
h (1− α) · 1/8 3/4

m′
r (1− α) · 3/4 0

τ ′2(m) p2(ωh|m)

ml (1− α) · 1/8 1/4

mh (1− α) · 1/8 3/4

mr (1− α) · 3/4 0

m′
l α · 5ε/6 0

m′
h α · ε/6 3/4

m′
r α(1− ε) 1/8

Again Receiver will choose action am upon seeing ml,m
′
l, action ah upon seeing mh,m

′
h,

and action al upon seeing mr,m
′
r. In this case, the value of this ambiguous device is given

by (αε · 1/6 − 5/8 · (1 − α) − α(1 − ε)) which converges to V (1/8) = 1/6 when α and ε

converge to 1.

Finally we observe that the value of ambiguous persuasion is the same regardless of the
number of Bayesian devices used (so long as two are used).

Corollary 1. For every ambiguous device (πk)K there is an ambiguous device with only two
probabilistic devices and attains the same value.

Proof. Let Π = (πk)K be an ambiguous device of value V . By Lemma 3, it is without loss to
assume that the value of Π when computed from any of the K probabislitic devices, V (πk),
is the same. For all m, there exists22 p̃m ∈ Pm such that â({p̃m}) = â(Pm) = â([p̃m, p1]).
The rest of the construction mimics that of the characterization proof.

22This is a simple application of Kakutani’s fixed point theorem and is a known result.
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4.4 The necessity of synonyms

In the previous subsection, we have shown how Sender may use synonyms to approach the
highest value among several probabilistic devices. In this subsection, we investigate whether
synonyms are necessary for optimal ambiguous persuasion to be beneficial and prove that
this is generically true.

We start by introducing a distinction between strong synonyms and weak synonyms. So far,
we have focused on strong synonyms, which, as previously mentioned, are multiple messages
that lead Receiver to hold the same set of posterior beliefs. In contrast, multiple messages
are said to be weak synonyms if they lead Receiver to take the same action. Note that all
strong synonyms are also weak synonyms but the converse is not true. Furthermore, strong
synonyms are a characteristic of the communication device and are immune to changes in
Receiver’s payoffs whereas weak synonyms are a characteristic of both the communication
device and Receiver’s payoffs.

In this subsection, we show that under two technical assumptions imposed to rule out
corner cases, if ambiguous persuasion is beneficial (compared to Bayesian persuasion), then
the optimal ambiguous device uses weak synonyms.23 That is, an ambiguous device that
is both optimal and beneficial cannot be straightforward à la Kamenica and Gentzkow
(2011).24 Since for every Bayesian device there exists an equivalent straightforward device,
the (generic) necessity of weak synonyms distinguishes ambiguous persuasion from Bayesian
persuasion.

The result may not however hold in some special cases. For instance, if two actions are so
similar to the point of redundancy, then messages leading to these actions could de facto
perform the same role as two weak synonyms. However, in these cases, small perturbations
of payoffs would break the pattern.

Before ruling out these corner cases with two assumptions, we introduce the following no-
tation.

For an arbitrary k, let v be the maximal projection of vk. By construction, note that V can
also be defined as the concave closure of v. Indeed, V is defined as the maximal projection
of the convex hull of vk. Given both steps are a maximization, it does not matter in which
order these two steps are taken.

Let H0 be a supporting hyperplane of the subgraph of function V at point (p0, V (p0)),
23In order to state there exists an "optimal" ambiguous device, we may assume that when a probabilistic

device never sends a message in expectation, the posterior resulting from this device at the given message
can be chosen arbitrarily. This can be argued as one could construct a sequence of devices that have this
posterior at said message with the probability that this message is sent converging to 0.

24A device is said to be straightforward if each message leads to a single different action, that is, if it does
not use weak synonyms.
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defined by

H0 = {(p, v) ∈ ΔΩ× R : 〈p, ξ〉 − v = 〈p0, ξ〉 − V (p0), where ξ ∈ ∂V (p0)}.
Such a hyperplane exists as V is concave by construction (and its subgraph is a convex
set) and (p0, V (p0)) is included in subgraph(V ). Note that such a hyperplane is unique if
and only if V is differentiable at p0. Our first assumption relates to the uniqueness of this
hyperplane.

Assumption 1. V is differentiable at p0.

To see why Assumption 1 is not restrictive for us, first observe that it is satisfied in all the
examples discussed in this paper. Moreover, note that if v(p0) < V (p0), then it must be
that V is linear at p0. Thus differentiability is satisified whenever the optimal ambiguous
device is valuable.

We now introduce a new concept of a relevant posterior. We say that a posterior is relevant if
(p, v(p)) ∈ H0. Lemma 4 below will show that, for an optimal device that yields value V (p0),
any posterior that may be induced with non-zero probability must be revelant. Furthermore,
by the definition of v, for any posterior p, there exists an action a such that Epv(a, ω) = v(p)

and a = â(P ) for some posterior set P that includes p. We denote a(p) the set of such
actions. We say that an action-posterior pair (a, p) is relevant if p is relevant and a ∈ a(p).
Relevant action-posterior pairs are of interest to us as those are the only ones that can arise
in equilibrium with non-zero probability for any of the Bayesian devices.

Lemma 4. Let Π = (πk)K be an optimal ambiguous device. If a message is sent with
non-zero probability from one of the Bayesian devices πk, then the action taken by Receiver
and the posterior belief associated with the Bayesian device at said message form a relevant
action-posterior pair.

Proof. See Subsection A.5.

The intuition of the result is that if the action and posterior does not form a relevant action-
posterior pair, then the resulting expected payoff of Sender will be strictly lower than V (p0),
contradicting the fact that Π is an optimal ambiguous device.

We can now state our second assumption that rules out corner cases.

Assumption 2. If an action-posterior pair (â, p̂) is relevant, then for sufficiently small ε > 0

and all perturbation (η)ω ∈ [−ε, ε]Ω that modifies payoff of â to vε(â, ω) = v(â, ω)+ηω such
that H0 remains unchanged, (â, p̂) must also be relevant for the perturbed game.

Assumption 2 requires that relevant action-posterior pairs must still be relevant for small
perturbations to the actions’ payoffs to Sender. Figure 5 illustrates how this assumption is
satisfied in our running example, and Figure 6 illustrates in three cases how it may fail.
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Figure 5: An action-posterior pair that remains relevant after a perturbation. The full dots
correspond to relevant action-posterior pairs for the original v function in solid black line.
The black dashed line corresponds to a small perturbation of Sender’s payoffs which moves
the hyperplane H0 downward from the bright red dotted line to the dim red dotted line. The
bright red dot—the action-posterior pair that is relevant in the original game—is lowered to
the dim red dot in the perturbed game. The latter is still relevant as it is on the perturbed
hyperplane H0.

Figure 6: Three examples where Assumption 2 is not satisfied. In each case, the red dot
corresponds to an action-posterior pair that is relevant in the original game but no longer
so after a small perturbation of payoffs illustrated by the dashed line. In each case the
perturbation was chosen so that V and therefore H0 was left constant.
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Proposition 2. Suppose Assumptions 1 and 2 hold. Then, either there is no value to
ambiguous persuasion (beyond that of Bayesian persuasion), or the optimal ambiguous device
uses weak synonyms.

Proof. See Subsection A.6.

A sketch of the proof for the case of two devices is as follows. Suppose Π = {π1, π2} is
an optimal straightforward ambiguous device that does not use weak synonyms. Then, As-
sumption 2 implies that the set of action-posterior pairs occurring with non-zero probability
must be the same for both devices. To see this, assume it is not the case and there can be
two types of violations: first, there is an action a that occurs with positive probability under
device π1 (paired with relevant posterior p) but occurs with probability zero under device
π2; second, an action played with non-zero probability is associated with different relevant
posteriors induced by the two devices. To rule out the first type of violation, one could intro-
duce a small perturation to Sender’s value at action a in the manner of vε(a, ·) = v(a, ·)− ε

without affecting sender’s payoff at other actions. Since action a is played with probability
zero under the second device, in the perturbed game the value of the second device and
hence the optimal value from the two devices remain the same. By straightforwardness, the
values of v at all other relevant posteriors associated with other messages that are sent with
non-zero probabilities remain the same, and so is the value h0(p), where h0(·) is defined such
that (p, h0(p)) ∈ H0. Yet v̄ε(p) < v̄(p), implying that (p, v̄ε(p)) falls below the hyperplane
H0 and hence (a, p) is no longer a relevant pair, which is a contradiction. Therefore, the
set of actions occurring with non-zero probability in equilibrium must be the same for the
two devices. The second type of violation can also be ruled out by a similar perturbation
argument. Combining the previous observation and the fact that in a straightforward de-
vice only one message can be associated with a relevant action-posterior pair, we have the
posterior set at each message must be a singleton. Therefore, Sender can build a Bayesian
device that leads to the same actions by Receiver and yields the same value—ambiguous
persuasion has no extra value.

The main reason why (weak) synonyms can solve the conundrum exposed in the proof is
the fact that allowing weak synonyms lets π1 and π2 use two different messages to lead to
the same relevant action-posterior pair.

5 Examples

5.1 When Sender-optimal Action Is Receiver-safe

In the introductory example (Section 2), Sender has an optimal action—prescribing the
brand name drug—that is also a safe default for Receiver. In this case, Sender can benefit
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from sending two ambiguous messages that are synonyms, as both messages generate the
same set of posteriors. In this section, we generalize the intuition to the case with finitely
many states and actions.

We first introduce a few assumptions.

Assumption 3. Sender has a state-independent optimal action, i.e., there is some â ∈ A

such that v(â, ω) ≥ v(a, ω) for all a ∈ A and ω ∈ Ω.

Assumption 4. minω u(â, ω) ≥ minω u(a, ω) for all a ∈ A.

Assumption 5. Receiver will not choose â without persuasion, i.e., there is some a ∈ A

such that Ep0
[u(a, ω)] > Ep0

[u(â, ω)].

A familiar special case of Assumption 3 is that Sender’s preferences are state-independent,
v(a, ω) = v(a) for all ω. Assumption 4 requires action â is also the "safest" for Receiver
in the sense that it yields the highest worst-case payoff. To focus on the interesting case,
Assumption 5 just requires with only prior information, Receiver will not choose â.

Proposition 3. Under Assumptions 3–4, there exists an optimal ambiguous communication
device Π∗ that ensures that Receiver always take the Sender optimal action â.

Under Assumptions 3–5, Sender will do strictly better with Π∗ than with any Bayesian
communication device.

Proof. Let n = |Ω| and pick some M = {m1,m2, . . . ,mn}. Fix any prior p0 ∈ Δ(Ω) with full
support. Consider the profile of posteriors Pm equal to the extreme points of Δ(Ω) for all
m ∈ M . By Lemma 1, there exists some set of likelihoods Π that induces these posteriors.
By Assumption 4, for all a = â, there is some ωa such that

min
ω

u(a, ω) ≤ u(a, ωa) < u(â, ωa) = ū = min
ω

u(â, ω),

and hence Receiver will choose â at all message m ∈ M . Under Assumption 3, this commu-
nication device (M,Π) is Sender optimal.

Now, we show that, under Assumption 5, ambiguous messages are also necessary to achieve
Sender optimal outcome above. Let (τ,p) be the Bayes-plausible distribution of posteriors
induced by some (unambiguous) Bayesian information structure π∗. Our goal is to show
that there always exists a posterior pm with τ(m) > 0 under which â is not an optimal
action for Receiver and hence not chosen by her. Suppose instead action â is chosen under
every posterior pm such that τ(m) > 0, that is,

Epm
u(â, ω) ≥ Epm

u(a, ω) for all a.

Since (τ,p) is Bayes-plausible, p0 =
∑

s psm(s). This implies

Ep0
u(â, ω) =

∑
m

τ(m)Epm
u(â, ω) ≥

∑
m

τ(m)Epm
u(a, ω) = Ep0

u(a, ω)

26



for all a, contradicting Assumption 5.

In this example, Sender hedges against any ex ante ambiguity by sending |M | = |Ω| messages
that are strong synonyms to begin with—they generate the same posterior set featuring
maximal ambiguity, i.e., Pm = Δ(Ω). In response, an ambiguity-averse Receiver will take
the Sender preferred action â at all messages, because it is also the safest choice for her.
Sender succeeds in persuasion by muddying the waters.

5.2 Crawford and Sobel’s (1982) uniform quadratic case

Consider the leading example of Crawford and Sobel (1982), where Sender’s and Receiver’s
payoffs are respectively

v(a, ω) = −(a− ω)2,

u(a, ω, b) = −(a− (ω + b))2.

Assume that the random variable ω is uniformly distributed on the interval [0, 1]. Let upper
case letters U and V denote expected payoffs of Receiver and Sender, respectively.

As Crawford and Sobel (1982) remark, it is straightforward to show that the optimal prob-
abilisitc communication device for Sender is to fully disclose ω to Receiver.25 To see this,
let m be the realized message, then Receiver would take an action

a∗(m) = E(ω|m) + b

upon observing m. Also, â(m) = a∗(m) as the best response is unique. Thus, Sender must
choose a communication device to solve the maximization problem

max
π

E v (â(m), ω) = −E (â(m)− ω)
2
,

which becomes

E [E(ω|m)− ω]
2
+ b2,

and minimized when
E(ω|m) = ω.

Now, we investigate whether it is possible for Sender to do strictly better using ambiguous
devices, even if Sender is ambiguity averse himself.

25Throughout the paper we assume that M is finite. To reconcile this assumption with the optimal
probabilistic device here, consider a finite but large message space M = {m1,m2, . . . ,mN}, where each
mn maps to a posterior uniformly distributed on the interval [(n − 1)/N, n/N ]. The Sender’s value under
optimal Bayesian persuasion can be approximated by letting N → +∞. In the case of the optimal simple
ambiguous device, M is finite.
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We focus our attention on simple ambiguous communication devices, which are characterized
by a message set M = {m1A,m1B , . . . ,mnA,mnB}, a partition of the [0, 1] interval with 2n

cells {[yi−1, yi−1 + ci], (yi−1 + ci, yi) : i = 1, . . . , n} with y0 = 0 and yn = 1,26 as well as
probabilistic devices Π(y, c) = {π, π′}. Denote by Ii = [yi−1, yi), IiA = [yi−1, yi−1 + ci],
IiB = (yi−1 + ci, yi), and li = yi − yi−1 for all i = 1, . . . , n. The probabilistic devices π and
π′ we consider are of the form

1. π({miA,miB}|ω) = π′({miA,miB}|ω) = 1ω∈Ii ;

2. π(miA|ω) = 1 if ω ∈ IiA, and π(miB |ω) = 1 if ω ∈ IiB ;

3. π(miA|ω) = 1ω∈Ii − π′(miA|ω).

Note that communication device π generates miA if and only if the state is in IiA and miB if
and only if the state is in IiB , while communication device π′ does the reverse and generates
miA if and only if the state is in IiB and miB if and only if the state is in IiA. The induced
posteriors for messages miA and miB are both {Uni(IiA), Uni(IiB)}, where Uni(IiA) and
Uni(IiB) refer to the uniform distributions on IiA and IiB , respectively. In other words,
messages miA and miB are strong synonyms. Our construction borrows from Kellner and
Le Quement (2018), who show that using the above devices there exist Pareto-improving
cheap-talk equilibria when Sender is allowed to send ambiguous messages.

To characterize the optimal simple ambiguous communication device, we first compute Re-
ceiver’s optimal action after observing message miA or miB . Observe that the functions u

and v are translation invariant in (a, ω), in that

v(a, ω) = v(a− t, ω − t),

u(a, ω, b) = v(a− t, ω − t, b),

for all t ∈ R. Therefore we may focus on the simplified case below and use translation to
obtain results for {miA,miB} and {IiA, IiB}. Let I = [0, l), IA = [0, c], and IB = (c, l) for
c ∈ I and let the signals π and π′ be analogously defined as above. The following lemma
characterizes Sender’s optimal choice of cutoff c.

Lemma 5. Sender’s optimal cutoff is

c∗(l, b) =

{
0, if l ≤ 6b;
l
2 − 3b, if l ≥ 6b,

and correspondingly, Receiver’s optimal action is

a∗(l, b) =

{
l
3 + b, if l ≤ 6b;
l
2 , if l ≥ 6b.

26 In this definition, to be rigorous, we have another partition cell [yn, yn] = {1}. Alternatively, we could
also make InB = (yn−1 + c, yn] = (yn−1 + c, 1]. However, since it does not impact payoffs of either player,
we leave out any discussion about what occurs at yn = 1.
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In the uniform-quadratic case, Receiver always has a unique optimal response a∗(l, b), which
is the same as â(l, b).

We say a simple ambiguous communication device Π(y, c) = {π, π′} is symmetric if y =

(0, 1/n, . . . , (n− 1)/n, 1) and c = (c, . . . , c) for some n ∈ N and c ∈ [0, 1/n). We use
Π(1/n, c) to denote such a symmetric ambiguous communication device.

Lemma 6. For all simple ambiguous communication device Π(y, c), there exists a symmetric
simple ambiguous communication device Π(1/n, c) such that V (Π(1/n, c)) ≥ V (Π(y, c)).

The above lemma implies that we may without loss of generality focus on ambiguous com-
munication devices that are symmetric. The induced posteriors for messages miA,miB are
{[(i− 1)/n, (i− 1)/n+ ci] , ((i− 1)/n+ ci, i/n)}, where [(i − 1)/n, (i − 1)/n + ci] refers to
the uniform distribution on [(i− 1)/n, (i− 1)/n+ ci], and vice versa for ((i− 1)/n+ ci, i/n).
Again, this can be generated by a pair of messaging technologies as described above.

Proposition 4. In the uniform-quadratic case, considering the set of simple ambiguous
communication devices,

1. Sender always benefits from sending ambiguous messages;

2. there exists an n∗(b), such that among the simple ambiguous communication devices,
Π(1/n∗(b), 0) achieves the highest payoff for Sender;

3. Receiver’s participation constraint is satisfied if and only if the number of intervals is
greater than or equal to 2.

The optimal information structure we characterize in Proposition 4 satisfies both equal
intervals and maximum ambiguity, in the terminology of Kellner and Le Quement (2018)
(KLQ hereafter).27 Equal intervals refers to the fact that the state space [0, 1] is divided into
equal-length intervals as a first step, and each interval is assigned a cutoff for constructing
the simple ambiguous communication device. Maximum ambiguity refers to the fact that the
cutoff chosen for each interval is at an endpoint of the interval. Given our assumption that
Sender has full commitment, unlike KLQ, we place no incentive compatibility requirement on
Sender.28 In our characterized optimal information structure, the state space [0, 1] is divided

27For expositional convenience, in this paper we employ a setup in which Receiver has a positive bias
relative to Sender. Our discussion of KLQ’s results here also employs our setup rather than theirs, where
Sender has a positive bias relative to Receiver. However, our setup is equivalent to a setup in which Sender
has a negative bias relative to Receiver. In our setup, each equilibrium in the communication game is the
mirror image of an equilibrium when Sender has a positive bias relative to Receiver. The unique equilibrium
we characterize under ambiguous persuasion is also the mirror image of that when Sender has a positive bias
relative to Receiver.

28Since KLQ focus on cheap-talk communication, Sender’s incentive compatibility constraints have to be
satisfied. Thus, equal intervals and maximum ambiguity cannot both hold unless l = 6b, which is only
possible if 6b = 1/n for some integer n. Furthermore, it is not necessarily that this equilibrium is the most
informative when this is the case. See Appendix A.10 for a detailed analysis.
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into n∗(b) equal-length intervals, and then within each interval, Sender creates maximum
ambiguity by setting the cutoff at the leftmost point of that interval. By so doing, Sender
is able to induce Receiver to take an action that is closer to his most preferred action for
each interval.

Our characterization demonstrates that endogenous ambiguity serves a purpose for Sender.
Without such possibility, the best Sender could do is to completely reveal all the information
to Receiver. However, with such possibility, Sender faces a tradeoff between being precise and
being ambiguous, the former to reduce the likelihood that decisions made by Receiver are too
far away from the state of the world, and the latter to take advantage of Receiver’s ambiguity
aversion to sway her decision towards Sender’s ideal action. Consequently, committing to
being fully precise is no longer desirable, as is the case under expected utility, and instead
Sender finds it optimal to maintain some degree of flexibility of communication devices and
hence their interpretations.

6 Discussion

6.1 Dynamic Consistency

It is well known that with full Bayesian updating, ambiguity averse decision makers can
be dynamically inconsistent (Epstein and Schneider, 2003). In this section, we consider the
set of ambiguous communication devices that induce consistent behavior from any receiver.
We say that an ambiguous device is dynamically consistent if any decision maker would
play in a dynamically consistent manner when receiving messages from such an ambiguous
device. By choosing a dynamically consistent ambiguous device Sender can make sure that
it is accepted by any receiver, which is useful if Sender is speaking in public to a group
of receivers with different payoffs or if he is uncertain about the payoff of the particular
receiver he is communicating to. Yet we show that such a set of dynamically consistent
devices, though not empty, does not allow the expert to benefit from ambiguous persuasion.

For this purpose, let U(a,Π) = min
π∈Π

∑
ω p0(ω) [

∑
m π(m|ω) u(am, ω)] be the ex-ante maxmin

EU of Receiver when she plays strategy a ∈ AM .

Definition 2. Communication device Π is dynamically consistent if for all a ∈ AM and
u : A× Ω → R and for all m, U(a1m, Pm) ≥ U(a2m, Pm) ⇒ U(a1,Π) ≥ U(a2,Π).

In a more general model, Epstein and Schneider (2003) show that dynamic consistency
is equivalent to rectangularity of the priors. Note that rectangularity is defined in their
paper over the full state space Ω × M .29 We adapt here their definition to our frame-

29Rectangularity must also be defined for a given filtration. In this case, the filtration is naturally {Ω ×
{m}}M .
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work. Let P̂0 = {p|p(ω,m) = p0(ω)π(m|ω) for π ∈ Π} be the set of priors in the full
state space and P̂m = {p|p(ω,m) = pπ(ω) and p(ω,m′ = m) = 0 for π ∈ Π} the set
of posteriors in the full state space. The definition of rectangularity from Epstein and
Schneider (2003) is that P̂0 = {∑m q(m)pm|q ∈ P0, (pm)M ∈ P̂m}. This is equivalent to
{p0} = {∑m π(m)pπm

(·|m)|(π, (πm)M ) ∈ ΠM+1} in the restricted state space used here.

Definition 3. Π is said rectangular with respect to p0 if for all (π, (πm)M ) ∈ ΠM+1,
p0 =

∑
m π(m)pπm .

Rectangularity makes sure the set of priors (in the full state space) is "complete" in the
sense that any profile of posteriors can be obtained from the set of priors, with any profile
of weights possible. Note that P0 in this case must necessarily be the singleton {p0} so that
the definition of rectangularity collapses to:

Lemma 7. Π is rectangular if and only if Pm is a singleton for all m.

Proof. We only prove the direct implication here. Assume by contraposition that there
exists m such that pπ(·|m) = pπ′(·|m), then p = π(m) · pπ′(·|m) +

∑
m′ �=m

π(m′) · pπ(·|m′) is

different from p0.

As in Epstein and Schneider (2003), rectangularity is, here, equivalent to dynamic consis-
tency. The following result is a Corollary of their representation theorem.

Corollary 2. Π is dynamically consistent if and only if Π is rectangular.

Proof. See Subsection A.11.

If the expert is restricted to dynamically consistent devices, then, from Lemma 7, he may use
only rectangular devices. Note that rectangular devices are not equivalent to probabilistic
devices. Indeed, if a rectangular device uses more messages than there are states of the
world, there is some more freedom to choose different weights from one probabilistic device
to another. Nevertheless, any action that such a device would entail could have been induced
by a risky device as well. Unsurprisingly then, Sender cannot benefit from ambiguous
persuasion if he is restricted to rectangular devices.

Proposition 5. If Sender is restricted to dynamically consistent/rectangular devices, then
there are no gains to playing ambiguous strategies.

Proof. Let π ∈ argmin
π∈Π∗

V (π, â). Then playing the probabilistic strategy π induces the same

strategy of Receiver (given rectangularity implies singleton posteriors) and thus V ({π}) =
V (Π∗).
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Note that the restriction to dynamically consistent devices is a strong one, which entails
two conditions. First, it imposes a constraint on Receiver’s preferences over actions that
she does not take in equilibrium. Second, it imposes dynamic consistency not only on the
strategy of Receiver who faces Sender, but also on that of any receiver.

Our next subsection looks at devices that result from mild relaxation of both conditions,
while still ensuring the particular Receiver has consistent preferences in equilibrium. We
show that they are not valuable to Sender. Then, we show more substantial weakening of
either of the two conditions would allow the expert to benefit from ambiguous persuasion.
Subsection 6.3 relaxes the first condition, while Subsection 6.4 relaxes the second.

6.2 Weak dynamic consistency

In this section, we look at a weaker condition, which only requires the particular Receiver’s
preferences over actions to be consistent on the equilibrium path.

Fix some ambiguous device Π, it induces a set of distributions over posterior R that is
generalized Bayes plausible. Let (Pm)m∈M be the profile of posterior sets projected from R

to the restricted domain (ΔΩ)M and âm = â(Pm) be the (sender-preferred) optimal action
by Receiver at posterior set Pm. Denote by Q∗

m the set of posteriors from Pm that supports
the optimality of âm, i.e.,

Q∗
m := {qm ∈ co(Pm) : Eqm [u(âm, ω)] ≥ Eqm [u(a, ω)] ∀a ∈ A}.

In words, Q∗
m is the set of posteriors at which an SEU Receiver with some equivalent posterior

q∗m ∈ Q∗
m would choose the same optimal action as an MEU Receiver with posteriors Pm.

Example 5. In Section 2’s example, the set of posteriors are Pm = co{(0, 1), (1, 0)} and Re-
ceiver’s best response is to choose brandname at both messages. Hence the set of posteriors
supporting âm =brandname is Q∗

m = {(p, 1− p) : p ∈ [0, 1− c
uH−uL

]} for m = e, i.

The consistency closure of R is R̄ = {(τ,p) ∈ ΔM×(ΔΩ)M : p ∈ (Pm)m∈M ,
∑

m τ(m)pm =

p0}.

Definition 4. The ambiguous device Π is semi-rectangular if its induced set of distributions
over posterior satisfies R = R̄.

The next proposition says that for a semi-rectangular ambiguous device to be valuable, there
must not be an "equivalent" Bayes plausible distribution of posterior supporting the same
receiver strategies. Otherwise, a Bayesian device could mimic the same receiver responses
and be more valuable for Sender.
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Proposition 6. If an ambiguous communication device Π is semi-rectangular and there
exists a potentially Bayes plausible selection from (Q∗

m)M , then the device Π has no value
beyond Bayesian persuasion.

Proof. See Subsection A.12.

Note that both conditions are weaker than dynamic consistency. Semi-rectangularity re-
quires the set of distributions of posteriors R to include all plausible mixtures of its projected
posteriors. The other condition on the existence of a potentially Bayes plausible profile of
posteriors is implied by rectangularity and it suggests that the same profile of receiver ac-
tions can be induced by the ambiguous device and some probabilistic device. This condition
is clearly violated in our introductory example, as Q∗

m = {(p, 1 − p) : p ∈ [0, 1 − c
uH−uL

]}
for m = e, i but 1 − c

uH−uL
< p0, and hence (Q∗

m)M is not potentially generalized Bayes
plausible.

6.3 Positive Value of Information

In this section, we consider a weaker condition than dynamic consistency on Π, namely
that the value of information must be positive. Whereas before we asked that each strategy
profile be ranked in the same order ex ante and ex post, here we ask only that their ranking
with the default action be the same. In other words, all receivers must benefit from the
ambiguous device.

Definition 5. Π is valuable (to Receiver) if for all utility function u : A×Ω → R, U(Π) ≥ U0.

Schlee (1997) shows that valuableness is equivalent to dynamic consistency when payoffs
may depend on the full state space. In this paper, however, payoffs must be constant on
the message dimension of the full state space. This restriction on the framework breaks the
equivalence between dynamic consistency and valuableness. As a result, it is possible to
benefit from ambiguous persuasion that would be valuable to any receiver.

Consider for example the following payoffs, where a priori the two states ωl and ωh are
equally likely.

ωl ωh

al −1; 1 −1;−2

am 0; 0 0; 0

ah 1;−2 1; 1

There are two optimal probabilistic devices here. Note that, as in the previous examples,
probabilities refer to the probability that the high state occurs. The first one, denoted
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π1, yields the posteriors 0 at the low message, with probability 1/4, and 2/3 at the high
message, with probability 3/4. The second one, denoted π2, yields the posteriors 1/3 at the
low message and 2/3 at the high message with equal probability. In both cases, V (π1) =

V (π2) = 1/2.

We now construct an ambiguous device Π from which Sender would benefit as in section 4
using the probabilistic device π1 which yields the posteriors 1/6 at the low message, with
probability 1/3, and 2/3 at the high message, with probability 2/3. Now consider the
ambiguous device Π = co((π1, π2)). Receiver plays the middle action at the low message.
The value of this device, when computed with regard to π1 is v1(Π) = 2/3. Thus Sender
could benefit from ambiguous persuasion by using synonyms. Before doing so however, we
transform Π into a valuable communication device.

Consider now the ambiguous device Π′ = co( 23π ⊕ 1
3π1;

2
3π ⊕ 1

3π2). This device leads to
the posterior sets {0}, [1/6; 1/3] and {2/3}. Furthermore, this device can be shown to
be valuable. The key idea is that any loss of utility from ambiguous information (at the
[1/6; 1/3] posterior) would be partly offset by the gains at the {0} posterior. If the message
(at 0) is sent sufficiently often compared to the ambiguous message, the gains can be shown
to always offset the losses.

For Receiver to lose utility at the ambiguous message, it must be that he chooses an action
which is different from the default at that message. Furthermore, this action may not strictly
dominate the default action at that posterior. In the worst case, the default action and the
chosen action are equivalent at the 1/6 posterior. The maximum loss possible is therefore
equal to a|1/3− 1/6| where a is the difference of slope between the payoffs of both actions.
On the other hand, the gains of playing the new action instead of the default one at posterior
0 is therefore a|1/6− 0|. The expected gains and losses from this ambiguous device are then
at worst aπ({0})|1/6−0|−aπ([1/6, 1/3])|1/3−1/6| where π must be the probabilistic device
that yields the posterior 1/3. Indeed, under the other probabilistic device, both the default
action and the chosen action are equivalent at the induced posterior of 1/6. In our example,
this gives a(1/6 ∗ 2/3 ∗ 1/4− 1/6 ∗ 1/2 ∗ 1/3) = 0. This explains why in the construction of
Π′, a weight larger than 1/3 was not attributed to π1 and also why it was not possible to
choose a device π1 which would have led to a posterior of much less than 1/6.

Subsection A.13 proves more rigorously a (slightly) more general result30.

Note that although Π′ is valuable, it is not proven yet that Sender benefits from it. Indeed,
we have for the moment that V (Π′) = min(2/3∗1/2+1/3∗2/3; 2/3∗1/2+1/3∗1/2) = 1/2.
Nevertheless, given the (ex ante) utilities of Receiver and Sender are both linear in the ⊕
operation, it follows that valuableness is preserved when using synonyms as in Lemma 3.
Thus, Sender can use synonyms to capture, with a valuable ambiguous device, the value of
5/9 > 1/2.

30We have here that p = 1/6, p = 1/3, pl = 0 and π(m) = 1/2 ∗ 1/3 and π(l) = 2/3 ∗ 1/4.
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6.4 Participation Constraint

In this section, we relax the condition that an ambiguous device must be satisfactory for all
receivers. We present two methods which can allow Sender to modify an ambiguous device
in order to satisfy a particular receiver’s participation constraint: U(Π) ≥ U0 for a given u.
In this case, Receiver would rather listen to the chosen ambiguous device Π than no listen
at all.

One first solution is to mix (in the ⊕ sense) the optimal ambiguous device (without par-
ticipation constraint) with a probabilistic one in the same manner as the synonyms were
created. This method should be reminiscent of the previous section. However, the valuable
condition above restricted the set of ambiguous devices one could use. Indeed, in the above
example, it would not have been possible to have the ambiguous posterior to have the value
[0, 1/3]. The following result lifts this constraint.

Proposition 7. If Sender benefits from ambiguous persuasion (if V̄ (p0) > V̂ (p0)) and
Receiver benefits from the optimal Bayesian persuasion, then there exists some ambiguous
device that benefits Sender and satisfies Receiver’s participation constraint.

Proof. Let Π be the optimal ambiguous device and π be the optimal probabilistic device.
Let Π′ = αΠ⊕ (1− α)π be the ambiguous device where each of its probabilistic devices are
mixed with the optimal risky one. The value of this new device is necessarily greater than
the value of the optimal risky device. Thus, for all α > 0, V (Π′) > V (π). Furthermore,
Receiver’s value of said device is U(Π′) = αU(Π) + (1 − α)U(π). Given U(π) > U0 by
assumption, it is always possible to find α > 0 such that U(Π′) ≥ U0.

Consider for example the game represented by the following Figure 7 that provides the v̂

function. In this case, Receiver would benefit strictly from probabilisitc persuasion compared
to no communication. Thus, if it happens that Sender benefits from ambiguous persuasion31,
it is possible to find an ambiguous device that benefits Sender while Receiver is willing to
listen.

A second method, which is illustrated by the second example, is to restrict Sender to "value-
increasing" messages. Let p−1(a0) = {p ∈ Δ(Ω)|∀a ∈ A, u(a0, p) > u(a, p)} be the set of
priors under which the default action is strictly preferred to other actions. A message is
value-increasing (to Receiver) if u(â(Pm), pm) ≥ u(a0, pm) for all posteriors in Pm. The
following characterization applies:

31If the high action is the safest one for the decision maker, then the first example’s method would work.
If the default action is the safest one, then the second example’s method would work as well. The only case
where ambiguous persuasion would have no benefit here is if the safest action was the low action.
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Figure 7: The value of ambiguous persuasion

Proposition 8. A message is value-increasing (to Receiver) if and only if Pm∩p−1(a0) = ∅
or â(Pm) = a0. Additionally, if Π uses only value-increasing messages, then Receiver benefits
from listening to device Π.

Proof. See Section A.14.

The main interest of this characterization is that it allows us to assign a weight of −∞ to
ṽk(Pm) if Pm is not a value-increasing message. Thus, using the characterizations from the
propositions and lemmas of Sections 4 directly would ensure that the resulting ambiguous
device satisfies the participation constraint of Receiver.

This Proposition is also of interest as it is possible that Receiver plays in a dynamically
consistent manner. Indeed, this is the case for the running example presented in Section 4.
In order to ensure dynamic consistency in a given game, one could simply use the restriction
that Receiver holds a weakly dominant action at each posterior set: Pm ∩ p−1(a) = ∅ or
â(Pm) = a for all actions a ∈ A.

Furthermore, using this method and dropping valuableness enables Sender to get a payoff
of 3/4 in the game presented in Subsection 6.3 instead of 5/9.
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6.5 Other ambiguity preferences

In this paper, the set of beliefs is interpreted as "objective ambiguity" created by the device
that Sender designs. Hence, assuming maxmin EU equates the objective and subjective sets
of beliefs, and thus may be considered too extreme by some. Therefore, it is natural to ask
whether our main characterization is robust to a wider range of ambiguity sensitivity with
regard to Sender’s and especially Receiver’s preferences. We explore these questions in the
subsection.

We first consider a wide class of ambiguity preferences for Sender. For a given ambiguous
device Π = co((πk)K), let v = {Ep0

[Eπk
[v(â(Pm), ω)|ω]]}K be the vector of Sender-expected

utility for each individual probabilistic devices. We only impose the assumption that Sender’s
preferences are such that the value of a device Π must be between the minimum and the
maximum value of probabilistic devices. That is, for any ambiguous device Π, min

v∈v
v ≤

V (Π) ≤ max
v∈v

v where v is the vector of expected utilities as defined previously. We call it

the Betweenness assumption.32

Corollary 3. If Sender’s preferences satisfy Betweenness, then Sender benefits from am-
biguous persuasion if and only if V (p0) > V̂ (p0).

Proof. See Appendix A.15.

Intuitively, this result stems directly from the fact that Sender can perfectly hedge against
ambiguity with synonyms. As a result, his exact preferences regarding ambiguity are irrele-
vant to the value of ambiguous persuasion.

Consider now Receiver’s preferences. Receiver’s preferences only matter insofar as they
determine which action Receiver would take at any given posterior set. As a result, so
long as the construction of function V reflects the actions actually taken by Receiver, the
characterization result does not depend on Receiver’s form of ambiguity preferences.

The only assumption needed here is that Receiver’s choice of action depends only on the
posterior set of beliefs as obtained from full Bayesian updating.

Corollary 4. If Receiver’s preferences at any posterior set U(a, Pm) only depend on the full
set Pm, then Sender benefits from ambiguous persuasions if and only if V U (p0) > V̂ (p0).

32 The betweenness assumption holds in many utility representations in the literature. For example, it
covers the α-min representation as in Gajdos et al. (2008), the α-MaxMin as in Jaffray and Philippe (1997),
Choquet-Expected utility with convex or concave capacity of Schmeidler (1989) (with the core of the capacity
or the core of its dual included in the belief set P ), subjective expected utility of Anscombe and Aumann
(1963) (with the subjective belief included in P ), variational preferences of Maccheroni et al. (2006) (with
the domain of the cost function included in P ), and the smooth ambiguity preferences of Klibanoff et al.
(2005) (with the support of the the second-order belief included in P ).
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Proof. Note that Receiver’s preferences only influence V U (p0) via her best response function
âU (Pm). We can modify Sender’s interim expected utility according to device k to vk(Pm) =

Epm,k
[v(âU (Pm), ω)], and the rest of the proof is analogous to that of Proposition 1.

Note that the value of ambiguous persuasion varies with Receiver’s preferences, as indicated
by the subscript U . Consider for instance the introductory example (Sect. 2) and assume
Receiver is ambiguity seeking. In this case, Receiver would then never take the safe action
when ambiguity is present and hence Sender may not benefit from ambiguous persuasion.
The construction of V U would however reflect this as well so that, in this case, one would
have V U (p0) = V̂ (p0).

Furthermore, by stating that Receiver’s preferences depend on the likelihood-by-likelihood
posterior sets only, we do not preclude Receiver from taking into consideration only a sub-
set of these posterior sets in order to determine his optimal action. For instance, sup-
pose Receiver is an α-min decision maker (Gajdos et al., 2008) with utility U(a, Pm) =

minp∈φ(Pm) Ep[u(a, ω)], where φ(Pm) = αPm + (1−α)s(Pm) and s(Pm) is the Steiner point
of Pm. The following example shows our construction of V̄ would still work here.

Example 6. Consider the introductory example and now Receiver has the extreme case of
α-min EU where α = 0. Then â([p, p]) = brand name if and only if p+ p ≥ 2p∗.33 Assume
p0 = 1/2 and Receiver’s threshold belief is p∗ = 7/8. In this case, as illustrated by Figures
8 and 9, which depict the concave closure of v1 and the value of ambiguous persuasion with
0-min EU receiver repsectively, the value of ambiguous persuasion is V (p0) = 2/3. This
value is obtained by eliciting the posterior sets Pml

= {0} and Pmh
= [3/4, 1]. In contrast,

the value of Bayesian persuasion would in this case be V̂ (p0) = 4/7 < 2/3.

In contrast, our characterization no longer applies if Receiver’s preferences at a posterior
set Pm do depend on the particular message m at which it was achieved. This would be the
case if Receiver updates his beliefs via the maximum likelihood rule (Gilboa and Schmeidler,
1993).

Example 7. For example, consider the following two ambiguous devices, where prior belief
is p0(ωh) = 1/2.

π1(m/ω) ωl ωh

ml 1 1/3

mh 0 2/3

π2(m/ω) ωl ωh

ml 0 2/3

mh 1 1/3

In this case, ml is sent with probability 2/3 from device 1 and 1/3 from device 2. As a
result, only the posterior resulting from device 1 is kept in the posterior set: Pml

= {1/4}.
33Given the Steiner point of a segment is its midpoint (Gajdos et al., 2008), s([p, p]) =

p+p

2
.
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Figure 8: V1(P ). Figure 9: V (p).

For the same reason, Pmh
= {1/4}. Hence the maximum likelihood updated posterior sets

are Pml
= Pmh

= {1/4}. These are evidently not potentially generalized Bayes plausible.

However, the following device would lead to the same posterior set Pml
= [0, 1/4] under

both likelihood-by-likelihood updating and maximum likelihood updating, as message ml is
sent with probability 1/2 from both devices. Similarly, Pmh

= [3/4, 1] and the posteriors
generated by maximum likelihood updating are potentially generalized Bayes plausible.

π1(m/ω) ωl ωh

ml 1 0

mh 0 1

π2(m/ω) ωl ωh

ml 3/4 1/4

mh 1/4 3/4

Although our main characterization result does not apply if Receiver uses maximum likeli-
hood updating, Sender could still benefit from ambiguous persuasion. This includes cases
where ambiguous persuasion is not beneficial with likelihood-by-likelihood updating.

For instance, consider a case when Receiver takes a safe action if p > 1/4 and a risky action
if p ≤ 1/4, which lead to Sender payoffs of 0 and 1, respectively. The device described above
therefore has value of 1 to Sender if Receiver uses maximum likelihood updating. However,
with probability-by-probability updating, our characterization result implies that Sender
cannot benefit from ambiguous persuasion.

Finally, note that because we assume Sender is only interested in its ex ante valuation, the
updating rule used by Sender is irrelevant.
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7 Conclusion

In this paper, we investigate communication between an informed sender and an uninformed
receiver, when the former can fully commit to his communication strategy. We show that
the sender can often beneficially introduce ambiguity in his communication strategy, when
agents are ambiguity averse à la Gilboa and Schmeidler (1989). The result could provide
a justification for why in various situations of persuasion, the information provided by the
expert is ambiguous and subject to multiple interpretations. An interesting feature of am-
biguous persuasion is that the expert can make use of synonyms, duplicated messages that
induce the same beliefs, and hedge himself against ambiguity. In fact, the use of synonyms
(albeit in a weaker sense) turns out to be a necessary component of an optimal ambiguous
persuasion device.

This key insight is robust to a valuableness requirement, consideration for more sophisticated
receivers who can choose whether to listen to the expert, and a variety of ambiguity-averse
preference models beyond the maxmin EU model.

We also explore its implications in two examples. In the first one, the expert can deliberately
use ambiguity to muddy the waters and persuade Receiver to take a safe action, which is
not ex ante optimal. In the second one, in Crawford and Sobel’s (1982) "uniform-quadratic"
setting, a biased expert can achieve a strictly higher payoff by sending imprecise information
enhanced by ambiguity, so as to influence the receiver to take actions that are more in line
with the expert’s ideal actions. In the latter case, an interesting observation is that, with
the possibility to commit, full revelation would be optimal and “vagueness” would disappear
under expected utility. Nevertheless, this is no longer the case when ambiguity is present.

A Appendix: Proofs

A.1 Proof of Lemma 1

Proof. "If". Suppose (pkm)M×K consists of probability-by-probability updated posteriors
from some K-ambiguous device (M, (πk)K) with common support on M , we want to verify
PGBP. By assumption, we have

pkm(ω) = pπ
k

m (ω) =
πk(m|ω)p0(ω)∫

Ω
πk(m|ω′)p0(ω′)dω′ , ∀m, k, ω.

Also, the marginal probabilities on M by device k are τk(m) =
∫
Ω
πk(m|ω′)p0(ω′)dω′ for all

m. By the common support property of (πk)K , supp(τk) = supp(τ j) for all k, j. For every
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device k ∈ K, we can verify that Bayes plausibility holds, i.e.,

∑
m′

τk(m′)pkm′(ω) =
∑
m′

[∫
Ω

π(m′/ω′)p0(ω′)dω′
]
pkm′(ω)

=
∑
m′

[∫
Ω

π(m′/ω′)p0(ω′)dω′
]

πk(m′/ω)p0(ω)∫
Ω
πk(m′/ω′)p0(ω′)dω′ = p0(ω),

for all ω.

"Only if". Suppose (pkm)M×K satisfies PGBP, with τk being the weights such that
∑

m τk(m)pkm =

p0 for each k ∈ K. Then, we can construct K probabilistic devices such that πk(m/ω) :=
τk(m)pk

m(ω)
p0(ω) for each k ∈ K. This constructs an ambiguous device (M, (πk)K) with common

support on M , i.e., supp(τk) = supp(τ j) for all k, j ∈ K. Then, for each k ∈ K, the Bayesian
posteriors of device πk are

pπk
m (ω) =

πk(m/ω)p0(ω)∫
Ω′ πk(m/ω′)p0(ω′)dω′ =

πk(m/ω)p0(ω)

τk(m)

=
τk(m)pkm(ω)p0(ω)

τk(m)p0(ω)
= pkm(ω),

for all ω. Moreover, the induced marginal distribution on M is

τπk(m) =

∫
Ω

πk(m/ω′)p0(ω′)dω′ =
∫
Ω

τk(m)pkm(ω′)
p0(ω′)

p0(ω
′)dω′

= τk(m)

∫
Ω

pkm(ω′)dω′ = τk(m),

for all k,m. Hence, (M, (πk)K) inherits the common support property from (τk)K . Hence,
we find an ambiguous device (M, (πk)K), satisfying the common support property, whose
probability-by-probability updated vector of posteriors (pπk

m )M×K equals to (pkm)M×K .

A.2 Proof of Lemma 2

Proof. Let π′
1 = απ1 ⊕ (1 − α)π2 and π′

2 = (1 − α)π2 ⊕ απ1. In order to avoid confusion,
I denote here âm(Π) the strategy of Receiver when he receives message m, which was sent
through the ambiguous communication device Π. Let Π = {π1, π2} and Π′ = {π′

1, π
′
2}.

Note that âm1(Π
′) = âm1(Π) as the posterior belief at m1 of Receiver when π′

1 is the Bayesian
device is given by

p0(.)π
′
1(m1/.)

π′
1(m1)

=
p0(.)απ1(m1/.)

απ1(m1)
=

p0(.)π1(m1/.)

π1(m1)

and is therefore equal to the posterior belief at m1 when π1 is the Bayesian device, and
posterior belief at m1 of Receiver when π′

2 is the Bayesian device is equal to the posterior
belief at m1 when π2 is the Bayesian device. Likewise, âb(m1)(Π

′) = âm1
(Π).
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V (π′
1) =

∫
ω

p0(ω)

[ ∑
m∈M

π′
1(m/ω) v(âm(Π′), ω)

]
dω

=

∫
ω

p0(ω)

[ ∑
m1∈M1

π′
1(m1/ω) v(âm1(Π

′), ω) +
∑

m2∈M2

π′
1(m2/ω) v(âm2(Π

′), ω)

]
dω

=

∫
ω

p0(ω)

⎡
⎣ ∑
m1∈M1

απ1(m1/ω) v(âm1
(Π), ω) +

∑
b(m1)∈M2

(1− α)π2(m1/ω)v(âb(m1)(Π), ω)

⎤
⎦ dω

=

∫
ω

p0(ω)

[ ∑
m1∈M1

απ1(m1/ω) v(âm1
(Π), ω) +

∑
m1∈M1

(1− α)π2(m1/ω)v(âm1
(Π), ω)

]
dω

= α

[∫
ω

p0(ω)

( ∑
m1∈M1

π1(m1/ω) v(âm1
(Π), ω)

)]
dω

+(1− α)

[∫
ω

p0(ω)

( ∑
m1∈M1

π2(m1/ω)v(âm1(Π), ω)

)]
dω

= αV (π1) + (1− α)V (π2)

Similarly, V (π′
2) = (1− α)V (π2) + αV (π1).

A.3 Proof of Lemma 3

Proof. First, we define the ⊕ operation for more than two devices. Given a finite family of
probabilistic devices (πk)K that all use the same messages in M1, let Mk for k ∈ K\{1} a
series of sets of messages duplicated from M1: there exists K − 1 permutations bk from M1

to Mk.

Given a probability function λ over K, we denote π′ = λ(1)π1 ⊕ λ(2)π2 ⊕ ... ⊕ λ(K)πK =⊕
k λ(k)πk as the device which sends a message m1 from M1 with probability λ(1)π1(m/ω)

from state ω and messages mk = bk(m1) ∈ Mk with probability λ(k)πk(m1/ω) from state
ω.

Let Π = co((πk)K). Assume without loss of generality that V (π1) = maxk∈K V (πk). Let
Π′ = co((π′

k))K be the ambiguous device that uses messages in ∪kMk.

For some value α ∈ [0, 1], define π′
k as the probabilistic device such that

π′
k :=

1− α

K − 1
πk ⊕ . . .⊕ 1− α

K − 1
πK ⊕ . . .⊕ απ1 ⊕ 1− α

K − 1
π2 ⊕ . . .⊕ 1− α

K − 1
πk−1.

Below is this device in matrix form:
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Π′ π′
1 π′

2 ... π′
K

m1 ∈ M1 απ1(m1/ω)
1−α
K−1π2(m1/ω) ... 1−α

K−1πK(m1/ω)

b2(m1) ∈ M2
1−α
K−1π2(m1/ω)

1−α
K−1π3(m1/ω) ... απ1(m1/ω)

... ... ... ... ...
bK(m1) ∈ MK

1−α
K−1πK(m1/ω) απ1(m1/ω) ... 1−α

K−1πK−1(m1/ω)

From lemma 2, the value of device π′
k, V (π′

k), is αV (π1) +
1−α
K−1

∑
k �=1 V (πk) for all k ∈ K.

As a result, V (Π′) = αV (π1) +
1−α
K−1

∑
k �=1 V (πk).

Thus, lim
α→1

V (Π′) = supk V (πk) = supπ∈Π V (π).

For the second part, note that V (π′
k) = αV (π1) +

1−α
K−1

∑
k �=1 V (πk) and the conclusion

follows as α → 1.

A.4 Proof of Proposition 1

Proof. If. To prove that Sender benefits if V (p0) > V̂ (p0), we show that, for arbitrarily
small ε, there exists an ambiguous device Π such that V (Π) = V (p0)− ε.

Let P̃−1 = co(p̃k)k≥2 ∈ argmax
P−1∈Δ(Ω)K−1

V1((p0, P
−1)).

By construction of V1, there exists τm and p1m such that:

∑
m

τmp1m = p0

∀k ≥ 2,
∑
m

τmpkm = p̃k

By construction, {p1m} are potentially Bayes plausible with respect to p0. This implies there
exists a Bayesian device π1 that leads to those posteriors.

Consider now the posterior sets (P̃−1
m ). Assume first these posterior sets are potentially

generalized Bayes plausible. In this case, from Lemma 1, there exists a set of K−1 Bayesian
devices (πk)k≥2 that lead to these posterior sets. As a result, the ambiguous device defined
by co(π1, πk≥2) is an ambiguous device whose value for Sender, when computed with regard
to π1 is equal to V (p0).

Assume now that the posteriors (P̃−1
m )M are not potentially generalized Bayes plausible.

In this case, it is possible to extend these profile of posterior sets so that they would be.
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Construct the posterior set in the following manner: for each k ≥ 2, let pkmr
be a distribution

such that p0 ∈ co(pkmr
, (pkm)M ); this is feasible as long as p0 is of full support in Δ(Ω).

Otherwise, then one would restate the problem to only those states of the world that may
occur.

In this manner, one has that (P̃−1
m )M∪{mr} is potentially generalized Bayes plausible where

P̃−1
mr

= (pkmr
)k≥2. Using Lemma 1, there exists a set of Bayesian devices (πk)k≥2 which

leads to these posteriors. Let π′
1 be the Bayesian device that sends message m ∈ M with

probability ετ1(m) and message mr with probability 1 − ε. By construction, the value of
Π = (πk)k∈K would therefore be equal to εV (p0) + (1− ε)v(a0, p0).

In either case then, it is possible to create an ambiguous communication device such that
its value, when computed with regard to π1, is arbitrarily close to V (p0).

Finally, using Lemma 3, one can construct an ambiguous communication device whose
(maxmin) value is arbitrarily close to V (p0), which ends the proof.

Only if. In this section, we show that V (p0) is the maximum value that can be obtained.

Let Π = co(πk)k∈K be an ambiguous device. Let Pm = (pkm)k∈K be the posterior sets
resulting from this ambiguous communication device and τk the distribution over messages
from Bayesian device πk. Let v∗ = mink

∑
m τk(m)vk(Pm) be the value of said device.

Assume without loss of generality that device π1 yields the highest Sender utility, i.e.,
1 ∈ argmax

k
(
∑

m τk(m)vk(Pm)).

v∗ = min
k

∑
m

τk(m)vk(Pm)

≤ max
k

∑
m

τk(m)vk(Pm)

=
∑
m

τ1(m)v1(Pm)

≤ max
P−1

m

∑
m

τ1(m)v1(p
1
m, P−1

m )

≤ max
P−1

m

V1(p0, P
−1
m )

= V (p0),

where the last ≤ follows from V1 is the concave closure of v1 and p0 ∈ co((p1m)M ).

By Corollary 1, the value of V (p0) is independent from K as long as K ≥ 2.
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A.5 Proof of Lemma 4

Proof. By definition of v, there exists a profile of posteriors (p1m) and posterior set (P 2
m)

such that p0 = Eτ1p1m and V (p0) = Eτ1Ep1
m
v(â(co(p1m, P 2

m)), ω) by construction of V .

Note that if Ep1
m
v(â(co(p1m, P 2

m)), ω) < v(p1m), then it must be that τ1(m) = 0. If this were
not the case, one could construct a better ambiguous device by leaving π1 unchanged while
modifying (πk)k �=1 so that â(co(p1m, P 2

m)) = a(p1m), and keeping other posterior sets at other
message m′ = m unchanged.34 This new device has a strictly greater value than the original
one when evaluated using π1, and hence (by our main characterization) one can construct an
ambiguous device using synonyms with this greater value. This contradicts the optimality
of the original device.

Therefore at an optimal device if τ1(m) > 0, then Ep1
m
v(â(co(p1m, P 2

m)), ω) = v(p1m). As a
result, posterior p1m and also the pair (â(co(p1m, P 2

m)), p1m) are relevant.

For all m, define h0(p
1
m) as the value such that (p1m, h0(p

1
m)) ∈ H0.35 By definition of H0

and concavity of V , it must be that v(p1m) ≤ h0(p
1
m) for all m.

Suppose posterior p1m′ is not relevant for some message m′ such that τ1(m′) > 0 at some
optimal ambiguous device. By definition, v(p1m′) < h0(p

1
m′). As a result, Eτ1v(p1m) <

Eτ1h0(p
1
m) = h0(p0) = V (p0). This contradicts the optimality of the ambiguous device.

Thus at an optimal device if τ1(m′) > 0, then its related posterior p1m′ is also relevant.

A.6 Proof of Proposition 2

Proof. We proceed in two cases.

Consider first the case where V (p0) = v(p0) and hence p0 is relevant. In this case, under
an optimal ambiguous device, an action a0 would always be chosen by Receiver. No other
action could be played in equilibrium with non-zero probability as it would not be relevant
if payoffs of action a0 were increased by an infinitesimal amount. In equilibrium, either
a unique uninformative message is sent so that there are no gains to (ambiguous or even
Bayesian) persuasion or there are several messages leading to the same action as our lead
example — weak synonyms are necessary.

Then consider the case where V (p0) > v(p0) as in example 2.
34In the case where this necessitates a non Bayes plausible posterior set profile, then one can add a

redundant message that would never be sent from π1 to make the posterior sets plausible again—a trick we
used in the characterization proof.

35Even if Assumption 1 is relaxed and H0 is not unique, one can still take the minimum of these values.
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Let Π = (πk)K be an optimal ambiguous device that uses no weak synonyms. This implies
that there are no messages m and m′ at which Receiver takes the same action a and for
which m is sent with non-zero probability from at least one device and m′ is sent with
probability non-zero from at least one, potentially other, device.

Let Ak = (akm, pkm)m/τk(m)>0 be the set of action-posterior pairs that result from πk with
non-zero probability. These are necessarily relevant from lemma 4. We can show that for
any k = k′, Ak = Ak′ .

To do this, we first prove a lemma, which says that if an action is elicited with non-zero
probability in one Bayesian device then it must be elicited with non-zero probability in all
other Bayesian devices.

Lemma 8. If (a, p) ∈ Ak then (a, p′) ∈ Ak′ for some p′.

Proof of lemma 8. Suppose the statement is false for some (a, p). Denote by m the
message at which action a is chosen by Receiver when πk is used. Hence action a is played
with positive probability under Bayesian device πk but with zero probability under device
πk′ .

We perturbe the game by decreasing sender’s payoff to the action a by an arbitrarily small
amount, that is,

vε(a, ·) = v(a, ·)− ε

vε(a′, ·) = v(a′, ·) for a′ = a.

for small ε > 0. In this case, the value V (p0) should not change after the perturbation. To
see this, the value of device Π when evaluate by device πk′ , V (πk′), would not change since
action a was played with probability zero under device πk′ . Furthermore, by optimality of
the ambiguous device, this value of device Π when evaluated by device πk′ must always equal
to V (p0) before and after the perturbation. As a result, we can show that the decrease in
payoffs at action a does not modify the hyperplane H0.

Denoting hε
0 the value function along H0 in the perturbed game, we have that hε

0(p0) =

h0(p0) since H0 remains unchanged. Let M(a) be the set of messages such that the posteriors
under device k namely pkm form a relevant action-posterior pair (a, pkm) with a.36 Thus the
value at all other action-posterior pairs used by πk with actions differ from a have not
decreased either. That is, for all m′ /∈ M(a), we have hε

0(p
k
m′) = h0(p

k
m′).

Then for device k, the fact that H0 is an hyperplane and p0 =
∑

m∈M τ(m)pkm in device k

36Note that for Lemma 8 we don’t need the device to be straightforward.
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imply

h0(p0) =
∑

m∈M(a)

τ(m)h0(p
k
m) +

∑
m′ /∈M(a)

τ(m′)h0(p
k
m′)

hε
0(p0) =

∑
m∈M(a)

τ(m)hε
0(p

k
m) +

∑
m′ /∈M(a)

τ(m′)hε
0(p

k
m′)

By Assumption 2, all the relevant action posterior pairs should remain relevant so for all
m ∈ M(a),

hε
0(p

k
m) = vε(pkm) = v(pkm)− ε.

This contradicts h0(p0) = hε
0(p0) and finishes the proof the the Lemma 8.

Lemma 9. Ak = Ak′ for all k and k′.

Proof of Lemma 9. Suppose not, then there is some (a, p) ∈ Ak and (a, p) /∈ Ak′ for some
k′. Then, from Lemma 8, there must be some p′ = p such that (a, p′) ∈ Ak′ . Therefore both
(a, p) and (a, p′) are relevant.

Without loss of generality, assume p′(ω) < p(ω).37 Consider the following perturbation:

vε(a, ω) = v(a, ω)− ε

vε(a, ω′) = v(a, ω′) +
p′(ω)

1− p′(ω)
ε for ω′ = ω

vε(a′, ·) = v(a′, ·) for a′ = a.

It decreases Sender’s payoff of action a at ω by an arbitrarily small ε and increase it in other
states by p′(ω)

1−p′(ω)ε such that Ep′vε(a, ω) is left unchanged. If Assumption 2 is satisfied and
ε is small enough, then (a, p′) and (a, p) would still be relevant in this perturbed game.

Yet, by the same reasoning as before the value of the ambiguous device when evaluated with
πk′ as well as the optimal value of Π will not change so that hε

0(p0) = h0(p0). And as before,
we have that hε

0(p
k
m′) = h0(p

k
m′) for all pkm′ = p such that (ak, p

k
m′) ∈ Ak for some ak = a.

Again this relies on the fact that the ambiguous device uses no weak synonyms so no other
action-posterior pair in Ak would be modified in this perturbation. We therefore have that
hε
0(p) = h0(p). Yet, by construction, we have that Epv

ε(a, ω) < Epv(a, ω) = v(p) = h0(p).
Thus, (a, p) is not relevant in the perturbed game, in contradiction with Assumption 2. This
ends the proof of Lemma 9.

Because we assumed that Π did not use weak synonyms, it must be that every relevant
action posterior pair (a, p) must be induced from a distinct message. Hence the lemma
above implies that at each message (that is sent with non-zero probability by any πk) the
posterior set Pm is a singleton.

37In this proof we assume without loss that posteriors have finite support on Ω. If Ω is a continuum and p

and p′ are atomless, one can find some measurable event B ⊆ Ω where p′(B) < p(B) and the same argument
applies.
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As a result, Π elicits exactly the same actions as some Bayesian device π. There is therefore
no gains to ambiguous persuasion (over that of Bayesian persuasion).

A.7 Proof of Lemma 5

Proof. Given the set of posteriors {IA, IB}, if Receiver takes an action x + b, Receiver’s
maxmin EU can be written as (with a slight abuse of notation)

U(x+ b) = min
{
E[0,c]u(x+ b, ω, b),E(c,l)u(x+ b, ω, b)

}
,

= min
{−x2 + 2xE[0,c]ω − E[0,c]ω

2,−x2 + 2xE(c,l)ω − E(c,l)ω
2
}
,

≡ min {h1(x), h2(x)} .

Note that h1 and h2 are both concave quadratic functions with maxima at c/2 and (c+ l)/2

respectively. In addition, h1(x) ≤ h2(x) if and only if

2xE[0,c]ω − E[0,c]ω
2 ≤ 2xE[c,1]ω − E[c,1]ω

2, (4)

which simplifies into

x ≥ l + c

3
≡ x∗. (5)

Note that x∗ is clearly in (c/2, (l + c)/2), i.e., between the maximum points for h1 and h2.
By properties of quadratic functions, we know:

- Receiver’s expected payoff Eu(x + b) = h2(x) for x ≤ x∗ and Eu(x + b) = h1(x) for
x ≥ x∗.

- The function h1 is decreasing to the right of x∗ and h2 increasing to the left of x∗.

From these statements, we may conclude U(x + b) increases up to x∗ and then decreases.
Therefore, it reaches its maximum at x∗. So, we conclude that Receiver’s unique optimal
action when observing mA is

x∗ + b =
l + c

3
+ b. (6)

Hence â = a∗ = l+c
3 + b.

Sender’s ex-ante utility is

V (Π(c), b) = −Ep0

(
l + c

3
+ b− ω

)2

.
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Since V (Π(c), b) is a concave function of c, the interior sender optimal cutoff c∗(b) is deter-
mined by the first order condition

∂V (Π)

∂c
= − ∂

∂c
E[0,l)[

c

3
+ b+

l

3
− ω]2 = 0

⇒ −E[0,l)[
2c

9
+

2

3
[(b+

l

3
− ω)] = 0

⇒ c

3
+

(
b+

l

3
− E[0,l)[ω]

)
= 0

⇒ c =
l

2
− 3b.

Combined with the domain restriction that c ∈ [0, l), we obtain the desired result.

A.8 Proof of Lemma 6

Proof. Consider an interval of length l and we have found above the optimal c that maximizes
the expected payoff of Sender, given that Receiver optimally responds. Let us define

Ṽ1(l) ≡
∫ l

0

v (a1(l), ω) dω = − 1

12
l3 −

(
b− l

6

)2

l.

Ṽ2(l) ≡
∫ l

0

v (a2(l), ω) dω = − 1

12
l3.

Ṽ (l) ≡
∫ l

0

v (â(l), ω) dω.

Thus,

Ṽ (l) =

{
Ṽ1(l), if l ≤ 6b;

Ṽ2(l), if l > 6b.

Thus, Ṽ is the contribution to Sender’s expected payoff from an interval of length l with c

optimally chosen by Sender.

Note the function Ṽ satisfies

Ṽ ′
1(l) = −1

3
(l − b)2 − 2

3
b2,

Ṽ ′
2(l) = − l2

4
,

Ṽ ′′
1 (l) =

2

3
(b− l),

Ṽ ′′
2 (l) = −1

2
l.

Furthermore,

Ṽ ′
1(6b) = Ṽ ′

2(6b).
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Therefore, we conclude that the function Ṽ ′ is (i) continuously differentiable, (ii) decreasing
on [0, b) and increasing on (b, 1], and (iii) symmetric about b on [0, 2b], i.e., Ṽ ′(l) = Ṽ ′(2b− l)

for all l ∈ [0, 2b]. The function Ṽ is twice continuously differentiable, convex on [0, b] and
concave on [b, 1].

For an arbitrary simple ambiguous communication device (M,Π(y, c)) with 2n messages,

V (Π(y, c)) ≤ V (Π(y, c∗(y))) =
n∑

i=1

Ṽ (li).

We will discuss in two cases.

Case (i): If li ≥ b for all i = 1, . . . , b, then by concavity of Ṽ on [b, 1]

n∑
i=1

Ṽ (li) ≤ nṼ (
1

n
) = V (Π(1/n, c∗(n))).

Hence Sender would prefer the symmetric ambiguous communication device Π(1/n, c∗(n)).

Case (ii) If li < b for some i. Since the order of the intervals I1, . . . , In does not matter for
V , without loss of generality we assume l1 ≤ ... ≤ li ≤ b ≤ li+1 ≤ . . . ≤ ln.

Start from I1 and move right towards intervals with higher indices. If interval Ii has length
li ≥ b, then move to the next without change. If li < b, then make either of the two
operations on intervals Ii and Ii+1: (i) If li + li+1 < 2b then combine Ii and Ii+1 into one
and relabel the new interval [yi−1, yi+1) as I ′i and continue from the new interval I ′i; (ii) If
li + li+1 ≥ 2b, then adjust the intervals to I ′i = [yi−1, yi−1 + b) and I ′i+1 = [yi−1 + b, yi+1)

and then move right to the interval Ii+2 . Repeat the operations until the last interval In.
And if ln < b, either combine or adjust In with its left adjacent interval. This leads to new
partition {I ′1, . . . , I ′n′} of [0, 1] such that each cell have length no less than b, i.e., l′i ≥ b for
all i = 1, . . . , n′. Then we are back to case (i).

We finish the proof by showing that either combining or adjusting two intervals as defined
above increase sender’s ex-ante utility V . Formally, for all l < b and l′ ∈ [0, 1]

Ṽ (l + l′) ≥ Ṽ (l) + Ṽ (l′) if l + l′ < 2b, (7)

and
Ṽ (b) + Ṽ (l + l′ − b) ≥ Ṽ (l) + Ṽ (l′) if l + l′ ≥ 2b. (8)

To prove inequality (7), note that if l + l′ < 2b, then

Ṽ (l + l′) = Ṽ (l′) +
∫ l+l′

l′
Ṽ ′(s)ds.
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If l′ ≥ b, let δ = 2b− l − l′ > 0 and

Ṽ (l) =

∫ l

0

Ṽ ′(s)ds =
∫ 2b

2b−l

Ṽ ′(s)ds =
∫ l+l′

l′
Ṽ ′(s+ δ)ds <

∫ l+l′

l′
Ṽ ′(s)ds,

where the second equality follows from the property Ṽ ′(l) = Ṽ ′(2b− l) for all l ∈ [0, b], and
the inequality follows from Ṽ ′ is strictly decreasing on (b, 1].

If l′ < b ≤ l + l′, then∫ l+l′

l′
Ṽ ′(s)ds =

∫ b

l′
Ṽ ′(s)ds+

∫ l+l′

b

Ṽ ′(s)ds

>

∫ l

l−b+l′
Ṽ ′(s)ds+

∫ 2b

2b−(l−b+l′)
Ṽ ′(s)ds

=

∫ l

l−b+l′
Ṽ ′(s)ds+

∫ l+l′+b

0

Ṽ ′(s)ds =
∫ l

0

Ṽ ′(s)ds = Ṽ (l),

where the inequality follows from V ′ is decreasing on [b, 1] and strictly increasing on [0, b),
and where the penultimate equality follows from the property Ṽ ′(l) = Ṽ ′(2b − l) for all
l ∈ [0, b].

If l + l′ ≤ b, then ∫ l+l′

l′
Ṽ ′(s)ds >

∫ l

0

Ṽ ′(s)ds = Ṽ (l).

To prove inequality (8), note that if l + l′ ≥ 2b,

Ṽ (b)− Ṽ (l) =

∫ b

l

Ṽ ′(s)ds =
∫ b+(b−l)

b

Ṽ ′(s)ds,

where the last = is due to the property Ṽ ′(l) = Ṽ ′(2b− l) for all l ∈ [0, b], and

Ṽ (l′)− Ṽ (l + l′ − b) =

∫ l′

(l+l′−b)

Ṽ ′(t)dt <
∫ b+(b−l)

b

Ṽ ′(s)ds,

where the inequality is due to Ṽ ′ is decreasing on [b, 1].

A.9 Proof of Proposition 4

Proof. By symmetry, and following the calculation preceding Lemma 6, we have that Re-
ceiver’s optimal action upon observing either message mi,A or message mi,B is

âi =

{
i−1
n + 1

3n + b, if 1/n ≤ 6b;
i−1
n + 1

2n , if 1/n ≥ 6b.
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Note that Sender’s expected payoff can be written

V (Π(c), b) = −
n∑

i=1

∫ i/n

(i−1)/n

[âi − ω]
2
dω.

By symmetry, when b ≤ 1/(6n), Sender’s expected payoff from the optimal simple ambiguous
communication device is

V (Π(c), b) = −n

∫ 1/n

0

[
1

2n
− ω

]2
dω,

= − 1

12n2
,

< − 1

36n2
≤ −b2.

So it cannot dominate full disclosure of information without ambiguity. When b ≥ 1/(6n),
Sender’s expected payoff from the optimal simple ambiguous communication device is

V (Π(c), b) = −n

∫ 1/n

0

[
1

3n
+ b− ω

]2
dω,

= −n

∫ 1/n

0

[
1

2n
− ω + b− 1

6n

]2
dω,

= −
[
b2 − 1

3n
b+

1

9n2

]
,

which is greater than or equal to Sender’s payoff under full disclosure if and only if

b ≥ 1

3n
.

Now, we consider Sender’s optimal choice of n, note that as long as b ≥ 1/(3n), or n ≥
1/(3b), Sender’s expected payoff is better than or equal to that under full disclosure, while
if b ≤ 1/(3n), or n ≤ 1/(3b), his expected payoff is worse.

Therefore, to maximize his expected payoff, Sender would choose n ≥ 1/(3b) > 1/(6b),
which implies that

â1 = a∗1 ≡ x∗
1 + b =

1

3n
+ b,

and Sender’s expected payoff is

V (Π(c), b) = −
[
b2 − 1

3n
b+

1

9n2

]
,

= −
(

1

3n
− b

2

)2

− 3

4
b2, (9)

which is maximized when

1

3n
=

b

2
,
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or

n = n̂(b) ≡ 2

3b
.

So the optimal choice of n for Sender, n∗(b), is the integer closest to n̂(b) ≡ 2/(3b). Note
that Sender’s highest expected payoff is

−3

4
b2

when n̂(b) is an integer and greater than or equal to

−13

16
b2,

when n̂(b) ≥ 1, and greater than or equal to

−b2

even when n̂(b) < 1 (or b > 2/3) because when n = 1

V (Π(c), b) = −1

9
+

1

3
b− b2 > −b2.

Our conclusion is that using ambiguous messages definitely improves upon Sender’s expected
payoff under full disclosure, −b2.

Now we want to check Receiver’s participation constraint: at Sender-optimal simple am-
biguous communication device, Receiver’s ex-ante utility is higher than the case when she
gets no information at all. This condition guarantees Receiver still prefers receiving the
ambiguous message, even if she could opt out ex-ante.

Let π0 denote the null information. Receiver’s optimal action is â(π0) =
1
2 + b. Her ex-ante

utility is

U(π0, b) = −
∫ 1

0

(
1

2
− ω)2dω =

∫ − 1
2

1
2

x2dx = − 1

12
.

Consider the n-equal-partition simple ambiguous communication device described above.
Note that b ≥ 1/(6n), c∗1 = 0 and â1 = x∗

1 + b = 1/(3n) + b.

When b ≥ 1/(6n), the receiver’s ex-ante expected payoff from the optimal ambiguous com-
munication device is

U(Π(c), b) = −n

∫ 1/n

0

[
1

3n
− ω

]2
dω,

= −n

∫ 1/n

0

[
1

9n2
− 2ω

3n
+ ω2

]
dω,

= − 1

9n2
,

which is greater than or equal to Receiver’s payoff at no information if and only if n ≥ 2.
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Coupled with our conclusion that Sender’s payoff can never exceed the full-disclosure payoff
when n ≤ 1/(3b), if Receiver’s participation constraint is to be respected, then Sender finds
it optimal to fully disclose information to Receiver if and only if n∗(b) = 1, which, by (9),
holds when

1

3 · 1 − 1

3n̂(b)
≤ 1

3n̂(b)
− 1

3 · 2 ,

or

b ≥ 1

2
.

When n∗(b) ≥ 2, Sender will choose the simple ambiguous communication device given
above.

A.10 Discussion of KLQ

KLQ consider cheap-talk communication, where Sender cannot commit to a communication
rule. Therefore, the IC constraint of Sender has to be respected, Receiver must choose an
action equal to the midpoint of each interval, behaving as if she had no bias relative to
Sender.

Thus, according to our (and KLQ’s) characterization of Receiver’s best response in (6), it
must be that

l + c

3
+ b =

l

2
,

or

c =
l

2
− 3b.

This has two implications. First, the length of each interval must be at least equal to 6b.
Second, unless l = 6b, the equal length equilibrium does not satisfy maximum ambiguity.
The first implication in turn requires that, in order for there be at least two intervals in
an equilibrium, b must be lower than 1/12, which is a more stringent requirement than
the Crawford-Sobel threshold for informative equilibria, 1/4. In a maximum ambiguity
equilibrium, the cutoffs can be obtained by using (6) and Sender’s incentive compatibility
constraint. Let us focus on two adjacent intervals of length l and l′, we must have

l −
(
l + c

3
+ b

)
=

[
l +

(
l′ + c′

3
+ b

)]
− l,

where c = c′ = 0. The equation simplifies into

l −
(
l

3
+ b

)
=

(
l′

3
+ b

)
,

l′ = 2l − 6b.
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Again, this demonstrates that a maximum ambiguity equilibrium can be equal length if and
only if each interval is of length 6b. The above equation defines all the cutoff partitions
recursively, analogous to what Crawford and Sobel (1982) do. The equilibrium has the
maximum number of intervals is when the shortest interval in the partition has zero length.

A.11 Proof of Corollary 2

Proof. Dynamic Consistency ⇐ Rectangularity. See Epstein and Schneider (2003).

Dynamic Consistency ⇒ Rectangularity. By contradiction, if Π is not rectangular then P0

the set of priors defined over Ω ×M is not rectangular à la Epstein and Schneider (2003).
Thus, from Epstein and Schneider (2003), there exists f1 and f2 two acts in R

Ω×M such
that f1 � f2 and for all message m, f1 ≺Ω×{m} f2. Let ak,m be an action that generates
utilities u(ak,m, ω) = fk({ω} × {m}). Thus, whereas the optimal ex post strategy is given
by (a2,m)m, it is beaten by (a1,m)m at the ex ante stage.

A.12 Proof of Proposition 6

Proof. Suppose that R = R̄ and there exists a potentially Bayes plausible selection (q∗m)M ∈
(Q∗

m)M of the supporting posteriors. By potential Bayes plausibility, there exists τ̄ ∈ ΔM

such that
∑

m τ̄(m)q∗m = p0. By definition of a consistency closure, (τ̄,q∗) ∈ co(R̄).

Then Sender can do at least as well with Bayesian persuasion (τ̄,q∗) compared to ambiguous
persuasion with R. To see this,

v(τ̄,q∗) =
∑
m

τ̄(m)Eq∗mv(â(q∗m), ω)

=
∑
m

τ̄(m)Eq∗mv(â(Pm), ω)

≥ min
(τ,p)∈co(R̄)

∑
m

τ(m)Epm
v(â(Pm), ω)

= min
(τ,p)∈R̄

∑
m

τ(m)Epmv(â(Pm), ω)

= min
(τ,p)∈R

∑
m

τ(m)Epmv(â(Pm), ω)

= v(R).

A.13 Proof for the example of Section 6.3

Proposition 9. Assume Π = conv(π, π) is a device using only three messages for two states
of the world. Probabilities are given by the probability of the high state occurring. A low
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message yields the unique posterior pl, the middle message yields the posterior set [p, p]

and the high message yields the unique posterior ph with pl < p < p < p0. Let π be the
probabilistic device that yields the posterior p at the middle message. Then Π is valuable if
and only if

- p0 < p ⇒ ph−p
p−p ≥ π(m)

π(h) and

- p0 > p ⇒ p−pl

p−p ≥ π(m)
π(l)

The following provides an intuition of this result. Consider for example Figure 10 which
shows the utilities from two actions a0 and a1, assuming a0 is picked at p0. In this case,
a1 is picked both at message "m", the ambiguous outcome, and at message "h", the risky
outcome. G denotes the gain at message "h" from playing a1 instead of a0. Likewise, L
is the loss of picking a1 instead of a0 at message "m" when evaluated at p. For the net
effect to be positive, the weights attributed to each outcome ex ante, which can be shown
to be π(m) and π(h), must be so that π(h)G− π(m)L ≥ 0 or in other terms that the ratio
of gains to losses G/L must be greater than the relative frequencies of losing vs winning
π(m)/π(h). From the figure and Thales’ theorem, we have that G/L = G′/L′ which yields
the left hand side of the inequality in the proposition as one can further prove that this is
the worst possible case given Π. Thus it is possible to have a valuable non-rectangular signal
by making sure there is some non-ambiguous information that is sufficiently better than the
present ambiguous information (sufficiently more spread out) that is attained sufficiently
often.

Proof. We first show that the result holds when there are only two actions a0 and a1 available
and then extend the result to more actions.

We assume here that Π is embedded and that p0 ≤ p. We then compute the value of
information dependent on the utilities and show that this is positive if and only if ph−p

p−p ≥
π(m)
π(h) .

Without loss of generality, let a0 yield the utilities a > 0 in ω2 and 0 otherwise. Let a1 yield
the utilities b in ω2 and c in ω1 such that c ≥ 0 and b ≤ a. If this were not the case, then
one action would be dominated by the other and the same action would be played.

Assume now that p = a−b
a+c−b , the probability under which both actions are indifferent to the

decision maker, is not in [p; p]. In this case, ambiguity has no bearing and so the value of
information is positive.

Assume now that p ∈ [p; p]. Assume further that p ≥ p0. At equilibrium, the actions chosen
by the decision maker are a0 without information and at message "l", a1 at message "h"
while he plays a1 with probability σ(a, b, c) = a

a+c−b if b ≤ c and 1 otherwise.
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Figure 10: Gains and Losses from Embedded Information

Let G(a, b, c) be the decision maker’s gain over playing a0 at message "h". We have

G(a, b, c) = b− a+ ph(a+ c− b).

Given ph ≥ p = a−b
a+c−b by assumption, this is indeed a gain. Let L(a, b, c) be the loss incurred

at "m" when evaluated at p̃

L(a, b, c, p̃) = (1− p̃)a− σ(a, b, c).[p̃c+ (1− p̃)b]− (1− σ(a, b, c))(1− p̃)a.

I now show that U0 > U(Π) is equivalent to π(h)G(a, b, c)− π(m)L(a, b, c, p) < 0. Compute
the ex ante utility:

U(Π) = min
π∈Π

π(l)u(a0, pl) + π(h)u(a1, ph) + π(m)u(σ, pπ)

First assume that U(Π) is minimized at π:

U(π) = π(l)u(a0, pl) + π(h)u(a1, ph)︸ ︷︷ ︸
>u(a0,ph)

+ π(m) u(σ, p)︸ ︷︷ ︸
≥u(a0,p)
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Thus, this would imply U(Π) > U0. Assume now that π is such that pπ = p. Given
Π = conv(π, π), there exists λ such that π = λπ + (1− λ)π. Thus by linearity,

U(λ) = λU(π) + (1− λ)U(π).

Thus given U(π) > 0, U(λ) < U0 ⇒ U(π) < U0. Computing U(π)−U0 yields π(h)G(a, b)−
π(m)L(a, b, c, p). I now shorten L(a, b, c, p) to L(a, b, c) for brevity.

G is increasing in c as c > 0. If b ≥ c, then σ(a, b, c) = 1 and L is decreasing in c. If c ≥ b,
then38

L(a, b, c) = σ(a, b, c)[a− b− p(a+ c− b)].

Thus, given σ(a, b, c) is decreasing in c, L is the product of two decreasing functions in c so
is decreasing in c. Thus, one has

π(h)G(a, b, c)−π(m)L(a, b, c) < 0 ⇒ π(h)G(a, b,
(1− p)(a− b)

p
)−π(m)L(a, b,

(1− p)(a− b)

p
) < 0

As (1−p)(a−b)
p is the smallest value of c compatible with p ∈ [p; p]. Note that in this case,

σ(a, b, c) = 1. This gives us two new functions:

G(a, b) = b− a+ ph(a+
(1− p)(a− b)

p
− b) = (a− b)

[
ph
p

− 1

]

L(a, b) = a− b− p(a+
(1− p)(a− b)

p
− b) = (a− b)

[
1− p

p

]
.

Given π(h)G(a, b) − π(m)L(a, b) < 0 ⇔ G(a,b)
L(a,b) < π(m)

π(h) , one therefore has that there exists
utilities with negative value of information for Π if and only if

G(a, b)

L(a, b)
=

[
ph

p − 1
]

1− p

p

=
ph − p

p− p
<

π(m)

π(h)

Note if p had been smaller than p0, the condition would be that p−pl

p−p ≥ π(m)
π(l) .

In conclusion,

- If p0 < p and ph−p
p−p < π(m)

π(h) , then one can construct utilities that yield negative value
of information39.

- Thus Π valuable implies condition (1) in the proposition. The exact same argument
is used to show that Π valuable implies condition (2).

38

L(a, b, c) = (1− p)a− a
a+c−b

.[pc+ (1− p)b]− (1− a
a+c−b

)(1− p)a

= a
a+c−b

[(1− p)(a+ c− b)− pc− (1− p)b− (1− p)(a+ c− b) + (1− p)a]

= σ(a, b, c)[−pc− (1− p)b+ (1− p)a]

= σ(a, b, c)[a− b− p(a+ c− b)]
39Pick a and b randomly and c =

(1−p)(a−b)
p

.

58



- If conditions (1) and (2) apply, then as shown above, no utilities can yield negative
information which proves the other direction of the proposition.

- This has been proved when only two actions were available. To extend the result,
realize that given d actions, one can construct similar decision problems for actions
that yield the same payoffs as any mixed strategy among the d actions. Thus, if one
were to take a0 the action that yields the same payoffs as the action taken without
information in the full game and a1 the action that yields the payoffs of the mixed
strategy taken in the original game at "m", then our result applies to this new game.
In both games U0 is left unchanged and U(Π) is smaller in the small game as it has
in effect stopped the decision maker from choosing optimally at "h" and "l" without
modifying the payoffs at "m". Given the new U(Π) is greater than U0, then so must
be the former.

A.14 Proof of Proposition 8

Proof. For the first component, if â(Pm) = a0 then Pm is obviously value-increasing. Oth-
erwise, assume by contradiction that there exists pm ∈ Pm ∩ p−1(a0), then by definition of
p−1(a0), u(a0, pm) > u(â(Pm), pm).

For the second component. Let Π use only value-increasing messages. Then the value to
Receiver is given by

U(Π) = min
k

∑
m

τkmu(â(Pm), pkm)

≥ min
k

∑
m

τkmu(a0, p
k
m)

≥ min
k

u(a0, p0) ≥ U0

A.15 Proof of Corollary 3

Proof. Proposition 1 shows there exists a sequence of devices such that their MaxMin value
(for a sender) converges to V (p0). Note that this MaxMin value is, by definition, equal to
min
v∈v

v as defined above. As a result, given Sender’s utility is greater than min
v∈v

v for each

device in the sequence, then the value of ambiguous persuasion is greater or equal to V (p0).

Furthermore, Lemma 3 showed that for any given device of MaxMax value max
v∈v

v, there
exists a sequence of devices such that their MaxMin value converge to max

v∈v
v. This implies

that the value of ambiguous persuasion to an ambiguity seeking sender cannot be greater
than to an ambiguity averse sender. As a result, V (p0) is an upper bound on the value of
max
v∈v

v and therefore an upper bound on the value of any sender whose preferences satisfy
betweenness.
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