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Abstract 
Numerical Modelling of Detonation Initiation via Shock 

Interaction with Multiple Flames 
Georgios Bakalis 

Detonation in gaseous mixtures is a phenomenon of great importance for explosion safety 

assessment in hydrogen economy and for the development of advanced detonation-based 

propulsion systems. In practical applications, a detonation is generally caused by a deflagration to 

detonation transition (DDT) since a smaller amount of energy is required compared to a direct 

initiation. The key issue of DDT is finding the appropriate mechanisms to rapidly generate the 

detonation waves with a relatively weak ignition source. The objective of this work is to study 

numerically the possibility of DDT resulting from shock-multiple cylindrical flames interaction. 

The numerical setup aims to mimic an array of laminar flames ignited at different spark times, 

artificially inducing chemical activity to stimulate the coupling between the gasdynamics and the 

chemical energy release for the transition of deflagration-to-detonation. Using numerical 

simulations, a number of physical parameters are varied to determine their effect on the run-up 

distance as well as the time until the onset of detonation occurs, and to explore any scaling 

relationship among different them. The two-dimensional Navier-Stokes equations with one-step 

Arrhenius chemistry including the effects of viscosity, thermal conduction and molecular diffusion 

are used for the simulations. For comparison, simulations with Euler equations are also performed. 

The finite-volume operator splitting scheme used is based on the 2nd order Godunov-type, 

Weighted Average Flux (WAF) method with an approximate HLLC Riemann Solver. An Adaptive 

Mesh Refinement (AMR) technique is used to increase the resolution in areas of interest.  The 

simulation results show that the interaction of the weak shock with the first cylindrical flame 

demonstrates very good agreement with the results in the literature and that a single weak shock–

flame interaction was not enough to cause prompt DDT.  However, a high degree of Richtmyer-

Meshkov instabilities induced by repeated shock-flame interactions along with shock-boundary 

interactions generate turbulence that accelerates the flame brush, until eventually a hot spot 

ignition in the unreacted material develops into a multi-headed detonation wave. The simulation 

results also show that DDT is sensitive to the simulation method and that certain simulation 

parameters significantly affect the DDT phenomenon.   
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Chapter 1  

Introduction 

A gaseous detonation is a supersonic combustion-driven wave travelling at a velocity of the 

order of 2 km/s, across which a significant pressure and temperature increase occur in the medium. 

Its initiation and propagation require strong non-linear coupling between a shock wave and energy 

release through chemical reactions (Fickett & Davis 1979). This combustion phenomenon is of 

broad interest to many safety engineering applications and industrial processes in the chemical and 

energy sectors, as well as the military research establishments. The ability to predict the detonation 

sensitivity of explosives, their initiation, and limits are critical to proper risk assessment of 

chemical facilities, mitigation of accidental explosions and the transportation safety of hazardous 

materials (Ng & Lee 2008). On the contrary this self-sustained, supersonic, combustion-driven 

wave is also turning into a viable option for the development of advanced propulsion systems 

which harness the conditions generated by this combustion mode to achieve a high thermal cycle 

efficiency (Kailasanath 2003; Wolanski 2013). An example is the concept of Pulse Detonation 

Engines (PDEs). These engines produce thrust with continuous short bursts and can be used for 

commercial, military and space flight purposes. Compared to jet engines they have higher 

efficiency and can operate at hypersonic speeds. The simple PDE design concepts do not have 

moving parts; therefore, they are deemed to be reliable and have lower maintenance costs (Roy et 

al. 2004). A schematic showing the operation of a PDE is shown in Figure 1.1. 
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Figure 1.1 PDE Cycle, retrieved from http://arc.uta.edu/research/pde.htm 

  

Many fundamental aspects of detonations can be found in the comprehensive monograph by 

Lee (2008). Other comprehensive discussions on recent detonation modeling can be found in 

recent reviews (Shepherd 2009; Oran 2015) and the Springer Volume edited by Zhang (2012). 

Nevertheless, these reviews illustrate that there are still outstanding problems in our understanding 

of detonations, one of it is the lack of quantitative descriptions of detonation initiation, and efficient 

mean to establish a detonation wave for practical applications. 

 

1.1 Initiation of gaseous detonations 

Generally, a detonation can be formed in two ways. One way is by a rapid deposition of a large 

amount of energy into the combustion mixture, referred to as direct initiation (Lee & Higgins 1999; 

Ng & Lee 2003). The detonation is formed instantaneously from the decay of the generated strong 

blast wave, as shown in Figure 1.2. In the limit of an ideal point source energy, the initiation energy 

becomes the sole parameter that determines the possible outcome of the initiation process, i.e., 

whether a detonation can be initiated or not. This method of detonation initiation requires the use 

of a very high energy deposition source, e.g., from a high-voltage capacity spark discharge, a 

condensed phase energetic explosive material, or laser ignition (Lee 1977). Hence, it is not a 

practical way for any realistic propulsion applications. 
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Figure 1.2 Experimental results showing the successful and unsuccessful direct initiation of 

detonation. (Bach et al. 1969) 

 

The other mode of detonation initiation is referred to as deflagration to detonation transition 

(DDT). The Deflagration to Detonation Transition (DDT) is a phenomenon which attracts high 

research interest, with applications in propulsion (Roy et al. 2004) and process safety (Molkov 

2012; Middha & Hansen 2008; Ciccarelli & Dorofeev 2008; Schultz et al. 1999). In fact, since 

direct initiation requires an extremely large energy deposition relative to deflagrative ignition 

(several orders of magnitude more), DDT phenomenon is the most probable cause resulting in the 

formation of detonations in accidental explosions and practically is perhaps the sole initiation 

scheme feasible in detonation-based engine applications. DDT involves an initial ignition of a 

combustible mixture by some relatively weak energy source producing a laminar flame, followed 

by an acceleration through interactions with its boundary. The generation of turbulence resulted 

into a coupled shock wave-reaction zone structure and eventually the onset of a detonation under 

appropriate conditions (Oran & Gamezo 2007). The distance required for the transition is referred 
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to as the DDT or “run-up” distance. The process is illustrated schematically in Fig. 1.3a and an 

experimental observation is given in Figure 1.3b. 

 

 

(a)      (b) 

Figure 1.3 Deflagration-to-detonation transition: a) a schematic illustration by Higgins et al. 

(2001); and b) experimental photographs by Urtiew & Oppenheim (1966) 

 

1.2 DDT process for detonation propulsion 

For the successful and steady operation of detonation-based engines such as pulse detonation 

engines (PDE), repetitive initiation of detonation waves is required (Roy et al. 2004). The 

Deflagration to Detonation Transition is by nature a complicated and stochastic process due to the 

various turbulent and instability mechanisms that cause the transition, from low-speed flame 

propagation, to a high-speed turbulent deflagration and eventually a detonation wave; after a small 

spark has created a deflagration, the transition needs to cover a relatively very long process path 

for the onset of detonation. Experiments in simple straight tubes also showed that in 

the acceleration of a flame to a detonation, the transition or run-up distance required for 
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deflagration-to-detonation transition is highly irreproducible due to the array of turbulent and 

instability mechanisms that play a role in promoting transition to detonation (Lee 2008). Therefore, 

having consistent and repeatable DDT as a viable initiation method in detonation engine 

applications is challenging. The main research goals concerning these engines are to address the 

key issue of finding appropriate mechanisms for rapidly generating detonation waves from DDT 

with a relatively weak ignition source; in other words, to reduce the time and distance required for 

the DDT transition to occur in order to minimize the size of the engineering system, while 

minimizing the required energy and producing reproducible shot-to-shot performance (Roy et al. 

2004; Schultz et al. 1999). Achieving these goals will result in more efficient, compact engines 

which can operate with increased pulse frequency. Up-to-date, the common techniques to facilitate 

the flame acceleration are to modify the boundary condition by inserting a Shchelkin spiral, 

rectangular obstacles or by using jets to promote the generation of turbulence. 

In the literature, a number of computational studies on the initial shock-flame and boundary 

interactions have been performed to describe the fundamentals of DDT process (Oran & Gamezo 

2007; Khokhlov et al. 1999; Khokhlov & Oran 1999; Gamezo et al. 2001). These studies show 

that compressible turbulence and shock-flame interaction are responsible to create the proper 

condition for the final onset of detonation. As in other detonation phenomena, the key mechanism 

in DDT for successful transition to detonation is the close coupling of energy release with the 

gasdynamic flow (Frolov 2006). In the pioneering work by Zel’dovich et al. (1970) the coupling 

originated from the shock-flame and shock-boundary interaction, eventually leading to a 

spontaneous onset of detonation is modeled by an initial gradient of auto-ignition delay time 

through temperature and composition non-uniformities in the pre-conditioned reactive mixture. 

Similar studies were subsequently carried out numerically and theoretically by a number of 

researchers, see Bartenev & Gelfand (2000) and references therein. These factors promote the 

amplification of a high-speed shock through the coherent energy release, later termed by Lee & 

Moen (1979) as the concept of Shock Wave Amplification by Coherent Energy Release 

(SWACER). The latter was used to qualitatively explain the photochemical initiation and turbulent 

jet initiation of gaseous detonations, ‘explosion within the explosion’ at the onset of detonation 

(Lee 2008) and detonation formation from a temperature gradient (Khokhlov et al. 1999; Kapila 

et al. 2002). 
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1.3 DDT enhancement using the concept of multiple sparks 

 In order to promote the coherent coupling between the gas dynamics and energy release to 

control the transition of deflagration to detonation, an engineering concept was previously 

proposed using spatially distributed energy release. The idea is to synchronize the propagation and 

amplification of a weak shock interacting with an array of laminar flames ignited through different 

spark sequences in the reactive mixture to achieve very short distances for DDT in smooth tubes. 

Such ideas of using external sources to facilitate the onset of a detonation was proposed as early 

as the 1950’s by Zel’dovich & Kompaneets (1955) theoretically and has been applied 

experimentally, notably by Frolov et al. (2003, 2006) using controlled triggering of electric 

ignition, see Figure 1.4.  The time delay of each ignition could be varied within a wide range (from 

10 to 500 μs). The energy of discharges is controlled by the voltage ranging from 1500 to 2500 V. 

The experimental work by Frolov et al. (2003) has proved that the use of relatively weak igniters 

with optimally tuned triggering times can promote detonation initiation in premixed C3H8 + O2 + 

3 N2 and stoichiometric C3H8/Air mixtures at distances as short as 0.6–0.7 m in a 2-inch diameter 

tube at normal initial conditions (at about the cross section CS7 shown in Figure 1.4). Hu et al. 

(2010) also simulated the rapid detonation initiation by sparks modelled by a high-energy region 

with ignition temperature but also with high ignition pressure. These studies demonstrate that the 

initiation technique using multiple sparks has the potential to induce DDT. 

 

Figure 1.4 Experimental detonation facility with controlled triggering of electric discharges 

used by Frolov et al. (2003, 2006) 
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Figure 1.5 Computational setup of the present problem 

 
1.4 Objective of the thesis 

The objective of this work is to study numerically the possibility of deflagration-to-detonation 

transition resulting from shock-multiple flame interaction. In this numerical investigation, the 

phenomenon is described by a relatively weak shock wave travelling along a tube filled with a 

reactive mixture and an array of laminar flames ignited through different spark sequences as a 

means of artificially inducing chemical activity to stimulate the strong coupling required for the 

transition of deflagration-to-detonation. The present numerical work differs from that of Hu et al. 

(2010). The present investigation considers only weak sparks resulting only in the generation of 

laminar flame kernels across which the pressure remains constant. The pressure increase due to 

the high-voltage discharge, as in the experiments by Frolov et al. (2003) and in the simulation by 

Hu et al. (2010) are thus eliminated. The outcome of this numerical work will further solidify 

whether the proposed concept of using multiple weak sparks (while minimizing the input spark 

energy as much as possible) can be a potential approach for propulsion applications. Besides, the 

present investigation is an extension of Khokhlov et al. (1999) which analyzed the flow field 

resulting from the interaction between a weak shock and a single laminar kernel. The possibility 

of deflagration-to-detonation transition resulting from shock-multiple flames interaction – the 

scope of this thesis – has not been explored.  

Using numerical simulations, a number of parameters are varied to determine their effect on 

the run-up distance and the time until the onset of detonation occurs. The shock wave amplification 

by coherent energy release (SWACER) mechanism and others fundamental gasdynamics 

interactions governing the phenomenon are investigated. As shown in many numerical studies, 

modelling DDT is highly sensitive to the numerical details of the simulation and thus gives the 

motivation of the present study to verify various numerical effect on the simulation results. 
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Numerical verifications were made on the shock-multiple flame interaction and subsequent DDT 

and how these processes depend on the numerics. 

 

1.5 Thesis outline 

Current chapter of the thesis introduces the basic concepts and related literature review of the 

subject matter. The methodology used in the present investigation is numerical simulations, 

Chapter 2 is thus devoted to the detailed description of the numerical method and its validation for 

reactive compressible flow simulations. Chapters 3 and 4 present the numerical simulations and 

analyze the flow field from the DDT process, in an extensive parametric fashion. Final chapter is 

the conclusions and recommendations of future work. 
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Chapter 2  
 
Problem Formulation and Numerical 
Method 
 
 

The methodology used in the present investigation is numerical simulations. It is thus 

important to describe the mathematical model and assess the numerical technique used for the 

present simulation, which involves many aspects of the compressible flow with shock dynamics. 

This chapter is therefore devoted to the detailed description of the governing equations and the 

numerical method to seek approximate solutions of the governing equations. To demonstrate its 

robustness and accuracy, the numerical scheme is assessed via the benchmark shock tube tests. 

 

2.1 Mathematical model  

The reactive flow that was studied in this thesis is governed by the unsteady, multi-dimensional 

reactive Navier-Stokes equations: 
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ (𝜌𝜌𝑽𝑽) = 0 

𝜕𝜕(𝜌𝜌𝑽𝑽𝑖𝑖)
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ (𝜌𝜌𝑽𝑽𝑖𝑖𝑽𝑽) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝛻𝛻 ∙ 𝜏𝜏𝑖𝑖 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻�(𝐸𝐸 + 𝑝𝑝) ∙ 𝑽𝑽� = 𝛻𝛻(𝑘𝑘𝑘𝑘𝑘𝑘) + 𝛻𝛻 ∙ �𝜏𝜏𝑽𝑽� + 𝜔̇𝜔𝑄𝑄 

𝜕𝜕𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ (𝜌𝜌𝜌𝜌𝑽𝑽) = 𝛻𝛻 ∙ (𝜌𝜌𝐷𝐷𝐷𝐷𝜆𝜆) − 𝜔̇𝜔 

where 𝐕𝐕 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the particle velocity vector, ρ the density, E is the total energy, p the 

pressure, 𝑘𝑘 the thermal conductivity, 𝐷𝐷 the mass diffusion coefficient, τ the viscous stress tensor, 

i.e., 𝜏𝜏𝑖𝑖,𝑗𝑗 = 𝜌𝜌𝑣𝑣 �𝜕𝜕𝐕𝐕𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝐕𝐕𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� where 𝑣𝑣 is the kinematic viscosity coefficient. For the chemistry part, 𝑄𝑄 
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is the chemical energy release into the system per unit mass of reactant converted and 𝜆𝜆 the local 

concentration of reactant across the domain with λ = 1 for unreacted material and λ = 0 for reacted 

products. The reactive component of the flow is modeled by the last equation, along with the source 

term 𝜔̇𝜔Q in the energy equation. The reactive medium is modelled as a single-gas approximation 

with constant specific heat ratio γ and behaves as an ideal gas with the equation of state: 

𝑇𝑇 =
𝑝𝑝𝑝𝑝
𝜌𝜌𝜌𝜌

 

where T is the temperature, M the molecular weight and R the universal gas constant, respectively. 

The total energy is thus expressed as: 

𝐸𝐸 =
𝑝𝑝

(𝛾𝛾 − 1)
+

1
2
𝐕𝐕 ∙ 𝐕𝐕  

A single step reaction model is used, in which the reactants are considered to convert directly to 

products, without intermediate (chain branching or other) reactions. The reaction rate is given by: 

𝜔̇𝜔 = 𝐴𝐴 ∙ 𝜌𝜌 ∙ 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝐴𝐴
𝑅𝑅𝑅𝑅

� 

where A is a pre-exponential factor and 𝐸𝐸𝐴𝐴 is the activation energy of the system. The transport 

coefficients, i.e., viscosityν, mass diffusivity D, and thermal diffusivity 𝑎𝑎 = 𝑘𝑘 𝜌𝜌𝑐𝑐𝑝𝑝⁄ , where k is the 

thermal conductivity, vary with temperature according to: 

𝑣𝑣 = 𝑣𝑣𝑜𝑜
𝑇𝑇𝑛𝑛

𝜌𝜌
         𝐷𝐷 = 𝐷𝐷𝑜𝑜

𝑇𝑇𝑛𝑛

𝜌𝜌
         𝛼𝛼 = 𝛼𝛼𝑜𝑜

𝑇𝑇𝑛𝑛

𝜌𝜌
 

The parameters νo, Do, and αo are assumed to be constant, and n is a constant exponent. It is worth 

noting that this type of flow model has been used in past work for acetylene, ethylene, and 

hydrogen to solve a variety of combustion and detonation problems involving shock–flame 

interactions and to compute the properties of the cellular structure of detonations, e.g., Khokhlov 

et al. (1999), Gamezo et al. (2001); Oran and Gamezo (2007); Oran (2015); Kessler et al. (2010), 

etc. 
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2.2 Description of the numerical method 

The full unsteady reactive Navier-Stoke equations are described by a set of partial differential 

equations and must be solved numerically using some reliable numerical method. These unsteady 

governing equations describing the dynamics of the reactive flow indeed express a system of 

hyperbolic conservation laws with additional source terms account for the chemical reactions and 

diffusions.  

2.2.1. Operator splitting 

For a system of equations where except for advection there is also diffusion and a reactive 

source, the system can be written in operator form as: 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈 = 𝔸𝔸(𝑈𝑈) + ℝ(𝑈𝑈) + 𝔻𝔻(𝑈𝑈) 

where 𝔸𝔸 is the advection operator, ℝ is the reactive source operator and 𝔻𝔻 is the diffusion operator. 

In an operator splitting scheme the time-step Δt is assumed to be sufficiently small, thus allowing 

each operator to be applied independently of the others: 

𝑈𝑈�(1) = 𝑈𝑈�𝑡𝑡 + 𝛥𝛥𝛥𝛥𝛥𝛥(𝑈𝑈�𝑡𝑡) 

𝑈𝑈�(2) = 𝑈𝑈�(1) + 𝛥𝛥𝛥𝛥𝛥𝛥�𝑈𝑈�(1)� 

𝑈𝑈�𝑡𝑡+𝛥𝛥𝛥𝛥 = 𝑈𝑈�(2) + 𝛥𝛥𝛥𝛥𝛥𝛥�𝑈𝑈�(2)� 

where A, R, D are the discrete versions of the respective operators above. Because second order of 

accuracy is required, Strang’s fractional step operator splitting approach is being used, which can 

be described by the following steps: 

𝑈𝑈�𝑎𝑎𝑎𝑎 = 𝑈𝑈�𝑡𝑡 +
𝛥𝛥𝛥𝛥
2
𝐴𝐴(𝑈𝑈�𝑡𝑡) 

𝑈𝑈�𝑑𝑑𝑑𝑑 = 𝑈𝑈�𝑎𝑎𝑎𝑎 +
𝛥𝛥𝛥𝛥
2
𝐷𝐷(𝑈𝑈�𝑎𝑎𝑎𝑎) 

𝑈𝑈�𝑟𝑟𝑟𝑟 = 𝑈𝑈�𝑑𝑑𝑑𝑑 + 𝛥𝛥𝛥𝛥𝛥𝛥�𝑈𝑈�𝑑𝑑𝑑𝑑� 

𝑈𝑈�𝑑𝑑𝑑𝑑′ = 𝑈𝑈�𝑟𝑟𝑟𝑟 +
𝛥𝛥𝛥𝛥
2
𝐷𝐷(𝑈𝑈�𝑟𝑟𝑟𝑟) 

𝑈𝑈�𝑡𝑡+𝛥𝛥𝛥𝛥 = 𝑈𝑈�𝑑𝑑𝑑𝑑′ +
𝛥𝛥𝛥𝛥
2
𝐴𝐴�𝑈𝑈�𝑑𝑑𝑑𝑑′� 



12 
 

Additionally, for the present problem in 2-D Cartesian coordinates, the convective part given by 

the Euler equations can be written in the form: 

𝑃𝑃𝑃𝑃𝑃𝑃:𝑈𝑈𝑡𝑡 + 𝐹𝐹(𝑈𝑈)𝑥𝑥 + 𝐺𝐺(𝑈𝑈)𝑦𝑦 = 0   

𝐼𝐼𝐼𝐼: 𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑡𝑡𝑛𝑛) = 𝑈𝑈𝑛𝑛 

where 𝑈𝑈 is the vector of conserved variables and 𝐹𝐹(𝑈𝑈) and 𝐺𝐺(𝑈𝑈) the fluxes in the x and y 

directions. To solve these equations, a similar approach of dimensional splitting can be used. In 

this approach, one dimensional methods are applied in each coordinate direction. The simplest 

version of the approach replaces the above initial value problem (IVP) by a sequence of IVPs, in 

which the flux is considered in one direction at a time: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃: 𝑈𝑈𝑡𝑡 + 𝐹𝐹(𝑈𝑈)𝑥𝑥 = 0
𝐼𝐼𝐼𝐼𝐼𝐼: 𝑈𝑈𝑛𝑛 � → 𝑈𝑈𝑛𝑛+12 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃: 𝑈𝑈𝑡𝑡 + 𝐺𝐺(𝑈𝑈)𝑦𝑦 = 0

𝐼𝐼𝐼𝐼𝐼𝐼: 𝑈𝑈𝑛𝑛+12
� → 𝑈𝑈𝑛𝑛+1 

While the viscous, heat, and diffusion (Navier-Stokes) terms are actually a system of ODEs which 

can be evaluated using a standard second-order finite differencing, the Euler fluxes are needed to 

be evaluated by solving a Riemann problem at cell interfaces using a dedicated hyperbolic solver. 

 

2.2.2 Weighted Average Flux (WAF) scheme 

A variety of efficient high-resolution numerical schemes for hyperbolic systems of partial 

differential equations has been devised in the recent years. Many of these modern high-resolution 

numerical schemes are often based on upwind differencing, which are generally most suitable for 

the numerical solution of systems of hyperbolic conservation laws as they introduce characteristic 

information regarding the local directionality of the flow along the discontinuous interfaces of the 

spatial cells. These upwind differencing schemes generally require the solution of the 

corresponding local Riemann problem to evaluate the flux terms at the cell interfaces and this in 

turn greatly complicates the upwind algorithm (Toro 2006). Beside the exact analytical solutions, 

various methods exist to efficiently calculate approximate solutions to this Riemann problem, such 

as the HLLC, Roe-Pike or Osher solvers, and again details of these can be found in (Toro 2006). 
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In this thesis, the method employed is that of the approximate HLLC solver which will be 

described in the following section. 

 In the context of reactive flow studies, a full description of the phenomena requires reliable 

and highly resolved numerical simulations. In this work, a well-established high-resolution upwind 

scheme, namely the Weighted Average Flux (WAF) scheme by Toro is considered in this 

investigation (Toro 2006; Toro & Billet 2000). This scheme is chosen for its ability to resolve 

shocks and contact surfaces over a very small number of cells and its very low numerical diffusion. 

This particular numerical scheme has also been used successfully in many other detonation studies 

(Nikiforakis & Clarke 1996a,b; Bates 2005; Kindracki et al. 2011). 

 The WAF method is a second-order extension of the Godunov scheme. Consider first a 1-D 

system of partial differential equations written in conservative form, 

𝑈𝑈𝑡𝑡 + 𝐹𝐹(𝑈𝑈)𝑥𝑥 = 0 

where U is the vector of conserved variables and F(U) the convective fluxes. The resulting update 

finite volume formula derived by considering the equivalent integral formulation, 

�[𝑈𝑈𝑈𝑈𝑈𝑈 + 𝐹𝐹(𝑈𝑈)𝑑𝑑𝑑𝑑] = 0 

can be written as: 

𝑢𝑢𝑖𝑖𝑛𝑛+1 = 𝑢𝑢𝑖𝑖𝑛𝑛 +
𝛥𝛥𝑡𝑡
𝛥𝛥𝑥𝑥

�𝐹𝐹
𝑖𝑖−12

− 𝐹𝐹
𝑖𝑖+12
� 

 
Figure 2.1 Discretized domain for computation 
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The resulting formulation can be represented as the discretized domain given in Figure 2.1. As 

with Godunov’s scheme, the WAF method solves the two local Riemann problems 𝑅𝑅𝑅𝑅 (𝑢𝑢𝑖𝑖−1,𝑢𝑢𝑖𝑖) 

and 𝑅𝑅𝑅𝑅 (𝑢𝑢𝑖𝑖,𝑢𝑢𝑖𝑖+1) to obtain the intercell fluxes 𝐹𝐹𝑖𝑖−12
 and 𝐹𝐹𝑖𝑖+12

 and uses the above equation to 

calculate the values at the next step. However, the key difference is that the WAF method computes 

the intercell flux the Riemann problem with data 𝑢𝑢𝑖𝑖 and 𝑢𝑢𝑖𝑖+1 at half the time step, instead of one 

time-step Δt, as can be seen in Figure 2.2. 

 
Figure 2.2 Waves and constant states considered in WAF method 

In Fig. 2.2 it can be seen that this method considers three waves of speeds S1, S2 and S3 that 

separate four constant states: 𝑢𝑢𝑖𝑖 ,𝑢𝑢∗𝐿𝐿 ,𝑢𝑢∗𝑅𝑅 ,𝑢𝑢𝑖𝑖+1. The middle wave is always a contact discontinuity, 

whereas the right and left waves can be either shock or rarefaction waves. The WAF intercell flux 

is represented by an integral average of the physical flux across the full structure of the solution of 

a local Riemann problem. 

𝐹𝐹𝑖𝑖+1/2 =
1
∆𝑥𝑥

� 𝐹𝐹 �𝑈𝑈
𝑖𝑖+12

�𝑥𝑥,
∆𝑡𝑡
2
��𝑑𝑑𝑑𝑑

∆𝑥𝑥/2

−∆𝑥𝑥/2
 

Since the states between waves are constant, the integral average becomes summation of the fluxes 

at each constant state with weight determined by the respective wave speeds, plus integrals of the 

fluxes across any rarefaction waves present. However, for practical purposes, the flux can be 

estimated by approximating the state across the rarefaction wave to be that closest to x = 0 within 

the wave. Hence the integral simplifies to a sum over waves, 

𝐹𝐹𝑖𝑖+1/2 = �𝑊𝑊𝑘𝑘 ∙ 𝐹𝐹𝑖𝑖+1/2
(𝑘𝑘)

𝑁𝑁+1

𝑘𝑘=1
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where 𝐹𝐹𝑖𝑖+1/2
(𝑘𝑘) = 𝐹𝐹�𝑈𝑈(𝐾𝐾)�,  N is the number of waves and 𝑊𝑊𝑘𝑘 , 𝑘𝑘 = 1 − 4, are the normalized 

lengths of the segments A0A1, A1A2, A2A3, A3A4, referred to as weights. These weights can be 

computed from the Courant number as: 

𝑊𝑊𝑘𝑘 =
1
2

(𝑐𝑐𝐾𝐾 − 𝑐𝑐𝐾𝐾−1) , 𝑐𝑐0 = −1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑁𝑁+1 = 1 

The Courant numbers 𝑐𝑐𝑘𝑘 associated with the wave k of speed 𝑆𝑆𝐾𝐾, can be calculated from: 

𝑐𝑐𝐾𝐾 =
𝛥𝛥𝑡𝑡 ∙ 𝑆𝑆𝐾𝐾
𝛥𝛥𝑥𝑥

 

Substituting Wk into the integral average gives an alternative form for the WAF flux: 

𝐹𝐹𝑖𝑖+1/2 =
1
2

(𝐹𝐹𝑖𝑖 + 𝐹𝐹𝑖𝑖+1) −
1
2
�𝑐𝑐𝐾𝐾 ∙ ∆𝐹𝐹𝑖𝑖+1/2

(𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

 

where ∆𝐹𝐹𝑖𝑖+1/2
(𝑘𝑘) = 𝐹𝐹𝑖𝑖+1/2

(𝑘𝑘+1) − 𝐹𝐹𝑖𝑖+1/2
(𝑘𝑘)  is the flux jump across wave K of CFL number CK. This derived 

scheme is second order accurate, therefore from Godunov's theorem it cannot be monotone, and 

spurious oscillations will occur at large gradients (e.g. at shocks). 

 

2.2.3 Total Variation Diminishing (TVD) version of WAF 

To avoid spurious oscillations appear in the vicinity of a high gradient, an extended WAF 

version was used in this thesis to ensure the scheme satisfies the Total Variation Diminishing 

condition, known as TVD version of the WAF method, in which the wave speeds are limited by a 

limiting function 𝛷𝛷 (Toro 2006). This flux limiter allows the scheme to switch between higher 

order and first order schemes. Therefore, an increased accuracy is achieved, and the creation of 

spurious oscillations is avoided in areas of discontinuity or high-gradient. The flux for the TVD 

WAF method with limiter function 𝛷𝛷𝑖𝑖+1/2
(𝑘𝑘)  is given by: 

𝐹𝐹𝑖𝑖+1/2 =
1
2

(𝐹𝐹𝑖𝑖 + 𝐹𝐹𝑖𝑖+1) −
1
2
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐾𝐾) ∙ 𝛷𝛷𝑖𝑖+1/2

(𝑘𝑘) ∙ ∆𝐹𝐹𝑖𝑖+1/2
(𝑘𝑘)

𝑁𝑁

𝑘𝑘=1

 

where 𝛷𝛷𝑖𝑖+1/2
(𝑘𝑘) = 𝛷𝛷

𝑖𝑖+12
(𝑟𝑟
𝑖𝑖+12

(𝑘𝑘)) is a limiter function and the flow parameter 𝑟𝑟1+1/2 is the ratio of the 

upwind change in the flow to the local change: 
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𝑟𝑟𝑖𝑖+1/2
(𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧𝛥𝛥𝑞𝑞𝑖𝑖−1/2

(𝑘𝑘)

𝛥𝛥𝑞𝑞𝑖𝑖+1/2
(𝑘𝑘)  , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑘𝑘 > 0

𝛥𝛥𝑞𝑞𝑖𝑖+3/2
(𝑘𝑘)

𝛥𝛥𝑞𝑞𝑖𝑖+1/2
(𝑘𝑘)  , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑘𝑘 < 0

 

Δq is the change in some function of the flow variables across the wave, indicating the "strength" 

of the wave. For Euler equations, the chosen flow variable to calculate the flow jumps 𝛥𝛥𝛥𝛥𝑖𝑖+1/2  is 

usually density (q = ρ). For smooth parts of the solution, the flow function will be equal to 1. For 

TVD WAF, many flux limiters are available, e.g., MINBEE, SUPERBEE, Van Leer, etc. In this 

work, van Leer limiter is chosen as given by:  

𝛷𝛷(|𝑐𝑐| , 𝑟𝑟) = �
1 𝑖𝑖𝑖𝑖 𝑟𝑟 ≤ 0

1 −
2(1 − |𝑐𝑐|)𝑟𝑟

1 + 𝑟𝑟
𝑖𝑖𝑖𝑖 𝑟𝑟 > 0

� 

To calculate the intercell flux 𝐹𝐹𝑖𝑖+1 2⁄  , the 𝐹𝐹𝑖𝑖+1 2⁄
(𝑘𝑘)  fluxes and wave speeds 𝑆𝑆𝐾𝐾 must be known. These 

can be found either by the exact solution of the Riemann problem or by approximations to the 

exact solution (approximate Riemann solvers such as HLL, HLLC, etc.) for a pair of initial data 

states (𝑈𝑈𝑖𝑖𝑛𝑛,𝑈𝑈𝑖𝑖+1𝑛𝑛 ). By regarding the numerical solution 𝑈𝑈𝑖𝑖𝑛𝑛 to be piecewise constant across each 

cell, the Riemann problem can be solved at time t = Δt with initial conditions 𝑈𝑈𝑖𝑖𝑛𝑛and 𝑈𝑈𝑖𝑖𝑛𝑛+1 to 

obtain the solution at 𝑈𝑈𝑖𝑖+1/2
𝑛𝑛 , which can then be used to compute 𝐹𝐹𝑖𝑖+1/2

𝑛𝑛  and then to obtain the 

WAF fluxes at every cell boundary for the computation of 𝑈𝑈𝑖𝑖𝑛𝑛+1. 

  



17 
 

2.2.4. Approximate HLLC Riemann Solver 

The Riemann problem for a set of hyperbolic conservation laws deals with the solution for         

t > 0 with initial conditions discontinuous at the origin, i.e., 

𝑈𝑈(𝑥𝑥, 0) = 𝑈𝑈(0)(𝑥𝑥) = �𝑈𝑈𝐿𝐿 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0
𝑈𝑈𝑅𝑅 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0 

The structure of the Riemann problem for the Euler equations consists of three wave families, 

corresponding to the eigenvalues 𝜆𝜆1 = 𝑢𝑢 − 𝑎𝑎, 𝜆𝜆2 = 𝑢𝑢 and 𝜆𝜆3 = 𝑢𝑢 + 𝑎𝑎, as can be seen in Figure 

2.3. The central wave is always a contact discontinuity, the left and right waves can be either a 

rarefaction wave or a shock wave.  

 

 

Figure 2.3 Wave structure for the solution of the 1-D Euler Riemann problem in the x-t plane 

For the purpose of directly computing numerical fluxes, approximate technique is developed 

for solving the Riemann problem approximately and the resulting algorithms have been known as 

Harten, Lax and van Leer (HLL) approximate Riemann solvers. Unlike the analytical approach to 

solve the exact Riemann problem giving a vast amount of information, which is time consuming, 

approximate Riemann Solver gives an approximation for the intercell numerical flux directly, and 

the differences in result are generally negligible. The HLL Riemann solver assumes a single 

constant state between two nonlinear waves (shock or rarefaction) and requires estimates for the 

fastest signal velocities emerging from the initial discontinuity at the interface, resulting in a the 

two-wave model for the solution structure of the problem. The HLLC scheme used in this work is 

a modification of the HLL scheme wherein the missing contacts and shear waves are put back into 



18 
 

the structure of the approximate solver. The HLLC scheme provides a more accurate approach 

with a three-wave model, preserving the solution structure with shock, contact, and shear waves. 

To compute wave speeds of the left-going and right-going waves SL, SR, the pressure-velocity 

based wave estimations presented by Toro (2006) are used to estimate the shock and the rarefaction 

waves accurately. The pressure in the star region is estimated using: 

𝑝𝑝∗ = max (0,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1
2

(𝑝𝑝𝐿𝐿 + 𝑝𝑝𝑅𝑅) −
1
2

(𝑢𝑢𝑅𝑅 − 𝑢𝑢𝐿𝐿)𝜌̅𝜌𝛼𝛼� 

𝜌̅𝜌 =
1
2

(𝜌𝜌𝐿𝐿 + 𝜌𝜌𝑅𝑅) ,𝑎𝑎� =
1
2

(𝑎𝑎𝐿𝐿 + 𝑎𝑎𝑅𝑅) 

The wave speed estimates can then be calculated with: 

𝑆𝑆𝐿𝐿 = 𝑢𝑢𝐿𝐿 − 𝑎𝑎𝐿𝐿𝑞𝑞𝐿𝐿 ,𝑆𝑆𝑅𝑅 = 𝑢𝑢𝑅𝑅 + 𝑎𝑎𝑅𝑅𝑞𝑞𝑅𝑅 

𝑞𝑞𝐾𝐾 = �
1 𝑖𝑖𝑖𝑖 𝑝𝑝∗ ≤ 𝑝𝑝𝐾𝐾

�1 +
𝛾𝛾 + 1

2𝛾𝛾
�𝑝𝑝∗ 𝑝𝑝𝐾𝐾� − 1��

1/2

𝑖𝑖𝑖𝑖 𝑝𝑝∗ > 𝑝𝑝𝐾𝐾
� 

An estimate for the speed of the contact surface was restored in Toro et al. (1994) in term of the 

SL and SR to form the HLLC solver. The speed S* of the middle wave is derived as: 

𝑆𝑆∗ =
𝑝𝑝𝑅𝑅 − 𝑝𝑝𝐿𝐿 + 𝜌𝜌𝐿𝐿𝑢𝑢𝐿𝐿(𝑆𝑆𝐿𝐿 − 𝑢𝑢𝐿𝐿) − 𝜌𝜌𝑅𝑅𝑢𝑢𝑅𝑅(𝑆𝑆𝑅𝑅 − 𝑢𝑢𝑅𝑅)

𝜌𝜌𝐿𝐿(𝑆𝑆𝐿𝐿 − 𝑢𝑢𝐿𝐿) − 𝜌𝜌𝑅𝑅(𝑆𝑆𝑅𝑅 − 𝑢𝑢𝑅𝑅)  

which together with an estimated “star state" between the left and rightmost waves 

𝑈𝑈∗𝐾𝐾 = 𝜌𝜌𝐾𝐾 �
𝑆𝑆𝑘𝑘 − 𝑢𝑢𝐾𝐾
𝑆𝑆𝐾𝐾 − 𝑆𝑆∗

�

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑆𝑆∗
𝑣𝑣𝐾𝐾
𝑤𝑤𝐾𝐾

𝐸𝐸𝐾𝐾
𝜌𝜌𝛫𝛫

+ (𝑆𝑆∗ − 𝑢𝑢𝐾𝐾) �𝑆𝑆∗ +
𝑝𝑝𝐾𝐾

𝜌𝜌𝛫𝛫(𝑆𝑆𝐾𝐾 − 𝑢𝑢𝐾𝐾)�⎦
⎥
⎥
⎥
⎥
⎤

 

allows for the simple expression of the HLLC flux between two cells, 

𝐹𝐹
𝑖𝑖+12

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =

⎩
⎨

⎧
𝐹𝐹(𝑈𝑈𝐿𝐿) 0 ≤ 𝑆𝑆𝐿𝐿
𝐹𝐹∗𝐿𝐿 = 𝐹𝐹(𝑈𝑈𝐿𝐿) + 𝑆𝑆𝐿𝐿(𝑈𝑈∗𝐿𝐿 − 𝑈𝑈𝐿𝐿) 𝑆𝑆𝐿𝐿 ≤ 0 ≤ 𝑆𝑆∗
𝐹𝐹∗𝑅𝑅 = 𝐹𝐹(𝑈𝑈𝑅𝑅) + 𝑆𝑆𝑅𝑅(𝑈𝑈∗𝑅𝑅 − 𝑈𝑈𝑅𝑅) 𝑆𝑆∗ ≤ 0 ≤ 𝑆𝑆𝑅𝑅
𝐹𝐹(𝑈𝑈𝑅𝑅) 𝑆𝑆𝑅𝑅 ≤ 0
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By applying the WAF scheme directly to the HLLC approximate Riemann solver, the numerical 

flux at the interface boundary can be written as: 

𝐹𝐹
𝑖𝑖+12

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑊𝑊𝑊𝑊𝑊𝑊 =
1
2

(𝐹𝐹𝐿𝐿 + 𝐹𝐹𝑅𝑅) −
1
2
⎣
⎢
⎢
⎡ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶1) ∙ 𝛷𝛷(1) ∙ (𝐹𝐹∗𝐿𝐿 − 𝐹𝐹𝐿𝐿)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶2) ∙ 𝛷𝛷(2) ∙ (𝐹𝐹∗𝑅𝑅 − 𝐹𝐹∗𝐿𝐿)

𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶3) ∙ 𝛷𝛷(3) ∙ (𝐹𝐹𝑅𝑅 − 𝐹𝐹∗𝑅𝑅) ⎦
⎥
⎥
⎤
 

 

2.3 Adaptive Mesh Refinement (AMR)  

For reactive flow simulations, it is often necessary having high resolutions in order to ensure 

that detailed features within the reactive flow structure are properly resolved. However, the use of 

very small time steps and uniform fine grid of cells in a long computational domain requires a 

much larger amount of computer resources. For reactive flow problems, high resolutions are in 

fact only needed in part of the computational domain as most reactions are often completed in a 

narrow, localized region. It is thus more economical to refine only in this region and use coarser 

resolutions elsewhere, hence reducing the computational demands without sacrificing accuracy. 

The adaptive mesh refinement (AMR) technique originally developed by Berger & Oliger 

(1984) allows the mesh resolution to dynamically increase in specific areas of the domain, where 

improved resolution is required to resolve developing features, while leaving less interesting parts 

of the domain at lower resolutions. This technique uses a hierarchical system of grids, meaning 

that a finer grid is placed over the coarser grid in the required areas, as can be seen in Figure 2.4. 

The refinement process can be repeated recursively from coarser ones until no refinement is needed 

or the finest refinement level is reached. An optimal time-stepping for each grid is achieved with 

refinement of the sub-grids in both time and space, thus resulting in reduced truncation error. 

Interpolation and flux correction at grid edges allow for conservation laws to be maintained and a 

synchronization between grids at different levels to be achieved. Each sub-grid at different 

refinement level in the hierarchy is uniform and its solution can be advanced individually using 

the numerical integration scheme with time step adaptively modified by the same refinement factor 

as in space. More accurate solutions at finer level grids are projected back onto the coarser meshes 

when they both advanced to the same time step. In order to follow moving features of the flow, all 

adaptively refined sub-grids are regenerated after a specific number of time steps on the base grid 

level. The re-gridding procedure in the AMR algorithm therefore dynamically creates, moves and 
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destroys sub-grids in the hierarchy so that refined regions occur only where they are needed as the 

computation progresses.  

 The domain areas requiring refinement are identified by an indicator function, which measures 

the total error produced locally by the simulation at the coarser grid. In compressible flows, an 

estimator of this error is the numerical density gradient. Cells are flagged for refinement if: 

��
𝜌𝜌𝑖𝑖+1,𝑗𝑗 − 𝜌𝜌𝑖𝑖−1,𝑗𝑗

𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖−1
�
2

+ �
𝜌𝜌𝑖𝑖,𝑗𝑗+1 − 𝜌𝜌𝑖𝑖,𝑗𝑗−1
𝑦𝑦𝑗𝑗+1 − 𝑦𝑦𝑗𝑗−1

�
2

> 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 

where 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 is the reference error. Reducing the reference error leads to more areas of the domain 

requiring refinement, therefore the computational time increases. 

 

Figure 2.4 Hierarchical series of Cartesian grids for adaptive refinement in two-dimensional 

configuration. (Ng 2005) 

 Further technical details of the AMR algorithm applying to general hyperbolic systems of 

conservation laws can be found in articles by Berger & co-workers (Berger & Oliger 1984; Berger 

& Colella 1989; Berger & LeVeque 1998; etc.) and are not discussed in any depth here. In the 

present study, the TVD-WAF method has been implemented in an existing framework AMR C++ 

code originally developed by Hern (1999) and improved by Bates (2005).  
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2.4 Computational time step 

 In this study, the CFL (Courant, Friedrichs, Lewy) number is chosen before beginning the 

simulations with a value equal to 0.9. As discussed early, the time step is computed based on CFL 

number for each time step from the equation: 

Δ𝑡𝑡 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐
Δ𝑥𝑥

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛)  

where Δ𝑥𝑥 is the mesh spacing & 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛)  the maximum wave speed present at time level n, given by 

equation: 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛) = max

𝑖𝑖
{|𝑢𝑢𝑖𝑖𝑛𝑛| + 𝑎𝑎𝑖𝑖𝑛𝑛} 

 

2.5 Numerical scheme validation 

2.5.1. Sod’s shock tube problem  

The standard benchmark test to assess the accuracy of the WAF method in solving the Riemann 

problem is the canonical Sod’s problem. This is a shock tube, closed at the two ends and it initially 

has a diaphragm, located at 0.3, separating two distinct areas with specific initial conditions 

(pressure, velocity and density). The initial conditions considered for this problem are 

(𝜌𝜌𝐿𝐿 ,𝑢𝑢𝐿𝐿 ,𝑃𝑃𝐿𝐿) = (1, 0, 1) and (𝜌𝜌𝑅𝑅 ,𝑢𝑢𝑅𝑅 ,𝑃𝑃𝑅𝑅) = (0.1, 0, 0.1). At t = 0 the diaphragm is removed, and 

the resulting flow is computed using the WAF method, along with an approximate HLLC Riemann 

solver and a van Leer limiter. The CFL number was chosen equal to 0.9, γ = 1.4 and 100 cells for 

the domain. The solution of this problem after t = 0.2 s and 56 time-steps can be seen in Figure 

2.4. 
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Figure 2.5 Density, velocity and pressure plots for exact and approximate solution of Sod’s 

shock tube problem  
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From the above figures the presence of a right shock wave, a contact discontinuity and a left sonic 

rarefaction wave can be seen. The solution has high accuracy and because of the Van Leer limiter, 

there are no spurious oscillations. The right shock wave, located at ≈0.7, can be identified since 

𝑝𝑝∗ > 𝑝𝑝𝑅𝑅. It is compressive in nature and it results in very rapid changes of physical quantities. The 

central contact discontinuity is located at ≈0.5. Pressure and velocity remain the same, whereas 

density changes. Finally, the left rarefaction wave is located between ≈0.3 (fan tail) and ≈0.1 (fan 

head). It can be identified by 𝑝𝑝∗ ≤ 𝑝𝑝𝐿𝐿 and there is a smooth transition of pressure, velocity and 

density. 

 

2.5.2. One-dimensional pulsating detonation 

Instabilities associated with the one-dimensional planar ZND structure have been revealed by 

Erpenbeck (1962, 1964) via a linear stability analysis. The non-linear intrinsic oscillatory behavior 

of one-dimensional detonations with simple chemistry has also been shown numerically by Fickett 

& Wood (1966) using the method of characteristics. Since then, more thorough studies on one-

dimensional pulsating detonations have been carried out by numerous researchers (see, for 

example, Bourlioux et al. 1991; He & Lee 1995; Sharpe & Falle 1999; etc.) and this canonical      

1-D unsteady detonation problem has become a widely used benchmark problem for assessing 

high-resolution numerical schemes for detonation simulations. Therefore, this problem is used to 

evaluate the performance of the described TVD-WAF method together with the operator splitting 

in the context of detonation simulation. 

 The computational setup follows Bourlioux et al. (1991) by fixing the dimensionless 

parameters with the values Q/RT = 50; γ = 1.2; Ea/RT = 50 and overdriven factor f = 1.6 (i.e.,             

f = (D/Dcj)2 where D is the overdriven detonation velocity and Dcj is the minimum Chapman-

Jouguet detonation velocity which can be obtained analytically using the thermodynamic 

equilibrium calculation. These parameter choices, according to a number of linear stability 

analyses, give a single instability mode. Various numerical computations also show that the 

nonlinear manifestation of this instability is a regular periodic pulsating detonation (Bourlioux et 

al.1991; He & Lee 1995; etc.). A grid resolution of 20 points per L1/2 (the characteristic reaction 

length behind the shock where half of the reactants are being consumed) is used. This resolution 

is usually required for reasonably accurate resolution of the detonation wave with an overdrive of      
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f = 1.6 if an upwind numerical scheme is used as found by Hwang et al. (2000). The sub-plot in 

Figure 2.6 shows the leading shock pressure versus position plot generated using the WAF scheme. 

After the transient development due to the initial conditions used, it correctly predicts the single 

instability mode of the detonation front. From the same plot, one can look at the peak pressure 

magnitude reached during the limit-cycle pulsations. The present result agrees closely with the 

peak pressure value of ~98.6 as first predicted by Fickett & Wood (1966) and those obtained from 

other various numerical schemes (Hwang et al. 2000).  
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Figure 2.6 Resolution study of one-dimensional pulsating detonation 
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2.6 Summary 

 In this chapter, the mathematical model governing the reactive flow dynamics of shock-

multiple flames interaction is presented. The applicability of a high-order upwind scheme, namely 

the WAF scheme, to solve numerically the governing equations for the simulation is also 

presented. The numerical scheme is also incorporated with adaptive mesh refinement. The Berger 

& Oliger’s adaptive refinement technique improves the efficiency of numerical simulations of 

systems of partial differential equations by allowing the size of time steps and grids to vary 

adaptively according to the requirement of the evolving solution. Computational resources are not 

wasted in maintaining uninteresting parts of the solution at unnecessarily high resolutions. The 

numerical code is verified by applying to two canonical problems of compressible flows, namely 

the Sod’s shock tube and one-dimensional pulsating detonation problem. 
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Chapter 3  
 
Simulation Results of Shock-Multiple 
Flames Interaction 
 

3.1 Introduction 

The motivation of this thesis is focused on the question: Can DDT be induced by shock 

multiple-flame interaction? In this chapter, a series of computational simulations was performed 

to study the interaction of a planar shock with multiple cylindrical flame kernels, with the purpose 

of determining whether these interactions can cause a transition from deflagration to detonation 

(DDT). The essential flow features of the deflagration-to-detonation transition (DDT) resulted 

from such interaction between a weak shock with multiple laminar flame kernels are revealed and 

discussed. 

 

3.2 Computational setup 

The present simulation is carried out in two-dimensional configuration to look at shock-

multiple cylindrical flame interactions. The governing equations, i.e., the reactive Navier-Stokes 

equations with a single-step Arrhenius chemistry, that describe the system and the numerical 

method used to approximate numerically the solutions, i.e., HLLC-TVD WAF with Strang’s 

fractional operating splitting, are well detailed in Chapter 2.  

 Different material and chemistry properties of the reactive mixture are chosen to model a 

stoichiometric acetylene-air mixture and are detailed in Table 3.1. The majority of these values are 

adapted from Khokhlov et al. (1999), only with the transport properties and pre-exponential rate 

factor updated to match better the laminar flame speed and thickness (Bates 2005). 
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Figure 3.1 Schematic of the computational setup for the two-dimensional simulation 

 

The schematic of the computational setup for the two-dimensional simulations is again shown in 

Figure 3.1 with a computational domain denoted by Lx × Ly, an initial flame radius r, incident 

shock Mach number Mo, and distance between discrete flames l. The circles shown in Figure 3.1 

represent initial flame kernels ignited before the shock passage.  These are embedded in the 

 Mixture parameters Value 

 Initial pressure po 1.33 x 104 Pa 

 Initial temperature To 293 K 

 Initial density ρo 1.58 x 10-1 kg/m3 

 Flame temperature Tf 2340 K 

 Specific heat ratio γ 1.25 

 Molecular weight M 29 

 Chemical heat release Q 35.0 RTo/M 

 Activation energy Ea 29.3 RTo 

 Pre-exponential constant A 5 x 108 m3/kg-s 

 Constant exponent n 0.7 

 Transport constants νo,  Do and αo 2.4 x 10-7  

Table 3.1 Initial condition and mixture model parameters (adapted from Khokhlov et al. 1999 

and Bates 2005) 
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computational domain to approximate a sequence of low energy ignitions. For simplicity, these 

are set up as a discontinuity between cold reactants and hot products at constant pressure and 

adiabatic flame temperature Tf. The simulation is restricted to half of the domain, with a symmetry 

plane or reflective boundary condition applied along the lower boundary to minimize the 

computational expense. The top boundary is a non-slip solid wall for the Navier-Stokes 

computation. The left and right boundaries are transmissive. Unless specified otherwise, five levels 

of AMR grid refinement are used (2, 2, 2, 2, 2). The base resolution combined with AMR gives an 

effective resolution with Δx in the highest level equal to 47 μm. 

 Initially 12 flame kernels were considered in a computational domain with height                          

Ly = 16.5 mm and total length Lx = 0.36 m. The choice is similar to the number of lateral ports for 

electrical igniters used experimentally in Frolov et al. (2003). The kernels were evenly spaced, 

separated by a distance l = 18 mm from each other (center to center). The initial radius of the 

kernels, referred to as flame amplitude, was set equal to r = 4.5 mm. The first kernel is located at 

a distance l2 = 9 mm from the left boundary. A weak planar shock which has a velocity Mo = 1.8 

is placed upstream of the first kernel, at a distance l1 = 6 mm from the left boundary. Downstream 

of the shock wave the flow speed is set everywhere as zero, whereas upstream of the shock the 

flow properties are determined by the Rankine-Hugoniot condition. 
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3.3 Initial interactions 

 The driven shock reaches and interacts successively with the flame kernels as can be seen in 

Figure 3.2 and Figure 3.3. The pressure and the Schlieren-type density gradient plots from the 

Navier-Stokes simulations are first present in Figure 3.2. The Schlieren plots are used to provide 

visual identification of shocks, contacts and rarefaction waves within the flow and can be modelled 

numerically using the formula:  

𝜑𝜑 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜖𝜖
|∇𝜌𝜌|

max(|∇𝜌𝜌|)
� 

where 𝜖𝜖 is an amplification factor for small gradients ranging from 20 to 100.  

These figures first show the early evolution of the incident weak shock after interaction with 

the first few discrete flames. The interaction with the first flame kernel leads to the deformation of 

the kernel. Unburned cold material enters the hot burned region of the bubble and creates a funnel, 

as a result of the Richtmeyer-Meshkov (R-M) instability, occurring due to the acceleration of two 

fluids with different densities. This deformation leads to an initially reduced flame surface, which 

along with a reduced flame thickness, cause a reduction of the energy release rate. After the initial 

reduction, the flame surface starts to gradually increase, along with the energy release rate. The 

negative vorticity at the edges of the flame bubble, which has an increased strength at the upper 

edge due to higher angle of interaction with the shock, as can be seen in Figure 3.3, contributes to 

the flame surface increase by aiding the expansion of the flame vertically, and therefore the 

subsequent rise of the energy release rate.  

The Schlieren plots of Figure 3.2 show that after the incident shock reaches the flame kernel, 

the top part continues to propagate downstream outside the kernel, whereas the bottom part of the 

shock is partially diffracted inside the kernel and partially reflected as a circular wave. A portion 

of this circular wave moves upstream as a rarefaction wave and the rest, after it reflects at the top 

boundary, either travels perpendicular to the initial shock or joins and amplifies the leading shock 

wave. Inside the flame kernel, the shock travels at a higher speed compared to the top part, and 

after multiple reflections and diffractions, a shock emerges from the right side of the bubble, 

followed by subsequent faster waves that join the leading wave and further amplify its strength. 

This is evident by the pressure increase behind the leading shock at later times in the pressure plots 
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of Figure 3.2. Similar shock reflections and diffractions repeat for the all the subsequent kernels 

as they interact with the shock waves. 

 Other noticeable features are that the other laminar, cylindrical flames in front of the shock are 

seen to have maintained their circular shape as they continue to burn outwards. Additionally, it is 

clear that a single weak shock–flame interaction was not enough to prompt DDT as concluded in 

Khokhlov et al. (1999). 

 

 

Figure 3.2: Pressure and Schlieren plots, early shock-flame interactions 
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Figure 3.3: Temperature and vorticity plots, early shock-flame interactions 
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3.4 Multiple shock-flame interactions 

The shock wave proceeds to interact with the rest of the flame kernels, resulting to intense 

mixing, turbulence and coalescence of flames to form a larger flame brush. The flame surface 

gradually increases, and along with an increased generation of turbulence they lead to a higher 

energy release rate. This in turn leads to an increase of flame speed and the transformation of the 

laminar flame brush to turbulent. In order for a successful DDT to occur, the flame brush has to 

continue accelerating, until achieving a critical deflagration speed, which corresponds to a sudden 

change to the mode of chemical reaction propagation. This deflagration velocity is of the order of 

half the CJ detonation speed VCJ. The deflagration is able to propagate at this supersonic speed, 

relative to fixed laboratory coordinates, due to the precursor shock ahead of it. This means that the 

reactants ahead of the flame are not at rest, and therefore the propagation speed of the reaction font 

relative to the reactants is subsonic, in accordance to the subsonic nature of a deflagration wave. 

The dominant mechanisms involved in the acceleration of the flame brush are different for low 

and high flame speeds. In low speeds, flame stretching and folding due to thermal expansion and 

fluid instabilities distort and increase the flame surface, leading to an increase of the energy release 

rate. In higher speeds, flame acceleration is mainly due to the burn out rate of flame folds, caused 

by the increased presence of small-scale turbulence which can be seen in the last panel of Figure 

3.4. The interaction with the boundary layer also contributes to the flow acceleration. The 

boundary layer contains a velocity gradient that leads to the bifurcation of the shock wave, thus 

creating a recirculation zone which accelerates the flow.  

The flow ahead of the flame brush is affected by compression waves that have been generated 

by the deflagration process and propagate downstream. These waves increase the temperature of 

the reactants, leading to increased reaction rate. However, temperature increase plays only a minor 

role in the phenomenon. Although it leads to higher flame velocity, it also leads to higher Mach 

number and therefore higher flame speed is required to generate shock waves. Increased 

temperature also results in reduced density of unreacted mixture, and therefore reduced energy 

release rate. The compression waves ahead of the flame brush also affect the flame kernels, and as 

a result they move downstream and slightly deform, becoming less circular on their left side. It 
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should be noted also that until the flame kernels interact with the incident shock, they continue to 

burn outwards due to heat and mass diffusion and increase in size. 

In the temperature fields of Figure 3.5, the flame brush development after multiple interactions 

is shown. Between the flame kernels and the top boundary an induction zone of initially increased 

size exists, however it gradually reduces in size due to the elongation of the flame brush in the y 

direction.  

 

Figure 3.4: Vorticity development after multiple interactions 

 

Figure 3.5: Temperature development after multiple interactions 
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3.5 Onset of detonation 

Following the acceleration of the flame brush to a critical deflagration speed, the second 

requirement of the DDT process has to be met: The creation of proper local conditions, so that an 

explosion can occur, followed by proper amplification which will lead to the formation of a 

detonation wave. The amplification mechanism is known as Shock Wave Amplification by 

Coherent Energy Release (SWACER). This mechanism relies on the chemical energy being 

released in coherence with the generated shock wave, therefore strengthening the shock as it 

propagates. 

In Figure 3.6 the onset of detonation for this simulation can be seen. Unreacted material is 

constrained between two highly turbulent flame brushes. A blast wave is generated at the point of 

minimum induction time and directed outwards, towards the gradient of reactivity. This spherical 

wave is a combination of a detonation, a retonation and a transverse wave. The transverse wave 

reflects at the top and bottom boundaries and the retonation wave propagates upstream in the 

combustion products. The detonation wave continues to amplify and propagate downstream in the 

preconditioned mixture behind the leading shock wave, until it fully develops to a multi-headed 

detonation wave. It should be noted that the detonation formed at this hot spot is initially highly 

overdriven, similarly to the direct initiation of a spherical detonation. 

 

Figure 3.6: Temperature plots, onset of detonation 
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In Figure 3.7, Schlieren plots focused at the location where the onset of detonation occurs are 

presented. The retonation wave travelling upstream can be seen in the second image. Also it can 

be seen that the initial spherical blast wave is followed by multiple reflections and diffrations at 

the boundaries and the flame brush. In the last panel, the frontal cellular structure of the fully 

developed multiheaded detonation wave is shown. 

 

 

Figure 3.7: Schlieren plots focused at the onset of detonation 
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3.6 Resolution study 

In order to verify whether the grid resolution is adequate and does not significantly affect the 

results, one more simulation was performed with increased grid resolution. An additional AMR 

level was added, leading to a resolution of Δx = 23.5 μm at the highest level. The results can be 

seen in the temperature plots of Figure 3.8. In general, the flow development is similar to the 

original resolution simulation, with close run-up distance and onset time. In both cases onset of 

detonation occurs in unreacted material that is confined between turbulent flame brushes. Due to 

the higher resolution, finer details of the flow appear, and the flame brush surface appears to be 

more wrinkled compared to the normal resolution simulations. These additional small wrinkles 

mean that an increased flame surface is present, which leads to a higher energy release, and thus a 

faster acceleration of the flame brush. This explains the slightly earlier position of the hot spot in 

this simulation. Therefore, as demonstrated, the original grid resolution of Δx = 47 μm is sufficient 

for the simulation of the phenomenon. 

 

 

Figure 3.8: Temperature plots, onset of detonation for Navier-Stokes simulation with double 

resolution 

 

  



37 
 

3.7 Physical diffusion and viscous effects 

A simulation with the effects of viscosity, thermal conduction and molecular diffusion 

removed from the governing equations is performed to determine their impact on DDT. The results 

of the simulation can be seen in Figure 3.9. Multiple wave reflections between the bottom 

boundary and the flame brush surface lead to the conditioning of the fuel-air mixture and the onset 

occurs at the reflective boundary. The transition to a detonation wave does not occur inside the 

domain boundaries. However, based on the onset of detonation that occurs at the symmetry 

boundary near the end of the domain, the detonation wave will likely form outside the domain 

boundaries. Compared to the simulation with Navier-Stokes equations, the onset of detonation 

occurs further downstream and at significantly later time. These results therefore indicate that the 

suppression of turbulence and of the burning rate strongly affects the DDT phenomenon. 

 

 

Figure 3.9: Temperature plots, onset of detonation for Euler equations  
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3.8 Summary 

The present resolved, two-dimensional numerical simulations have been obtained to observe 

the propagation of a weak incident shock wave into multiple cylindrical flames and its subsequent 

amplification via intense wave interactions and reflection. The simulation results demonstrate that 

DDT is possible via a series of shock-flame interactions. In the Navier-Stokes simulation, the onset 

of detonation is observed from the development of a hot spot ahead of the flame brush through an 

increase in the energy release caused by the increase of flame surface area and the higher shock 

temperatures from amplifying shock near the top wall through pressure wave reflection and 

coalescence. In the absence of physical diffusion and viscosity where turbulence and the burning 

of the turbulent flame brush is suppressed, the Euler simulation also show that the intense flow 

fluctuations generated by the interactions of shocks, boundary and flames can still create the 

conditions under which deflagration-to-detonation can be realized. 
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Chapter 4  

Parametric Study 

 

4.1 Introduction 

DDT in a smooth tube is a stochastic and sensitive phenomenon which can vary significantly 

even under a small parameter change, leading to different characteristics (run-up distance and 

onset time), whereas the transition might not even occur inside the domain boundaries, as was 

demonstrated previously for the simulation with Euler equations. For that reason, a series of 

numerical simulations were performed in which certain parameters were modified to determine 

their impact on DDT and identify the changes that could lead to a reduction of the run-up distance 

and time the onset of detonation occurs.  

 

4.2 Channel height  

The first simulation parameter under consideration was the domain height. The values that 

were considered were between 12 mm and 16.5 mm, since that was the highest value for which 

DDT would occur inside the domain and was not affected by the domain resolution, as was 

demonstrated in Chapter 3. The choice of reducing the domain height was made in order to increase 

the effect of shock-boundary layer interaction in the transition process and was indicated by the 

increased size of the induction zone near top boundary at the original simulation. The results of 

the simulations can be seen in Figure 4.1 & Figure 4.2.   
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Figure 4.1: Run up distance dependence on domain height variation  

 

Figure 4.2: Onset time dependence on domain height variation  

 

As can be seen in these figures, reducing the domain height from the initial value of 16.5 mm 
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time equal to 222 μs. Further reduction of the domain height leads to a significant increase of run 

up distance, whereas onset time varies only slightly. 

Figure 4.3 shows the temperature plots at the onset of detonation for three simulations with 

13.5 mm, 14.25 mm and 16.5 mm domain heights. For the simulation with the minimum run up 

distance, the onset of detonation occurs above 10th flame kernel, where a local explosion is induced 

near the top solid boundary due to viscosity and wave reflections. The minimal run up distance 

observed is a result of the increased contribution of the shock-boundary interaction in the transition 

process as well as the proper synchronization of the chemical energy release with the shock wave. 

Reducing the channel height promotes compression wave reflections and the role of turbulence 

induced by the boundary layer becomes more significant. 

 

 

Figure 4.3: Temperature plots at the onset of detonation for 13.5 mm, 14.25 mm and 16.5 mm 

domain height 
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4.3 Flame amplitude  

The second parameter to be modified was the amplitude of the flame kernels. Practically, this 

parameter can be controlled by different spark ignition times in real experiment. For this series of 

simulations, the domain height was considered equal to 15 mm, 5 levels of AMR were used with 

the same resolution at the top level as previously. The amplitude values considered were between 

4.4 mm and 6.6 mm. The results from these simulations can be seen in Figure 4.4 and Figure 4.5. 

 

 

Figure 4.4: Run up distance dependence on flame amplitude variation 
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Figure 4.5: Onset time dependence on flame amplitude variation 

Increasing flame amplitude has a positive impact on DDT. Larger flame amplitude implies larger 

flame surface; the RM instabilities from the shock-flame interaction will also become severe as 

the flame amplitude increases. As the amplitude is increased, the values of distance and time start 

to gradually reduce, until the flame amplitude of 5.4 mm. Then, there is a significant reduction 

when flame amplitude is increased from 5.4 mm to 5.8 mm, followed by a slight reduction until 

6.2 mm and finally a significant increase for higher values. Similarly to the domain height 

variation, this time and run-up distance reduction up to 6.2 mm is due to the increased effect of 

shock-boundary layer interaction, whereas the increase in the end is due to the effect on the 

formation of the Mach stem, and therefore DDT can not occur as easily.  

 

Figure 4.6: Temperature plots at the onset of detonation for 4.4 mm, 5.2 mm and 5.8 mm flame 
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4.4 Flame kernel spacing 

In this series of simulations the distance between flame kernels was modified for a domain 

height equal to 15 mm, 5 AMR levels and the same resolution Δx = 47 μm at the highest level. 

Similarly to the flame amplitude, practical flame kernel spacing is achieved by using different 

spark distance and properly controlling the spark timing to generate each flame kernel. When the 

distance between flame kernels is shorter then there are more shock-flame interactions per unit 

length, which results in increased acceleration of the flame brush. On the contrary, Mach stems 

can form when the distance between the flame kernels is large enough and thus DDT is more likely 

to occur. The combination of these two effects leads to the results shown in Figure 4.7 and Figure 

4.8. 

 

 

Figure 4.7: Run up distance dependence on flame kernel spacing variation 
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Figure 4.8: Onset time dependence on flame kernel spacing variation 

The results show that increasing the flame spacing leads to a reduction of run up distance and time 

with minimum values for flame spacing 20.5 mm, followed by an increase for higher flame spacing 

values. In Figure 4.9 the temperature plots for 17 mm, 19 mm and 20.5 mm are shown. The 

minimum run-up distance corresponds to an onset of detonation near the top boundary. For the    

17 mm case, which has the maximum run up distance, the onset of detonation is a result of the 

multiple wave reflections between the bottom reflective boundary and the flame brush and occurs 

almost simultaneously at two locations at the reflective boundary. 

 

Figure 4.9: Temperature plots at the onset of detonation for 17 mm, 19 mm and 20.5 mm flame 

kernel distance 

  

200

220

240

260

280

300

320

340

16 17 18 19 20 21 22 23 24

O
ns

et
 ti

m
e 

[μ
s]

Flame spacing [mm]

DDT dependence on flame spacing



46 
 

4.5 Shock wave position 

As previously mentioned, the flame surface has been modeled as a contact discontinuity 

between the unburned cold reactants and hot combustion products. Having a discontinuity instead 

of a distribution could potentially affect the DDT phenomenon. For that reason, the incident shock 

wave was placed further upstream, while maintaining all other parameters same, in order to allow 

the flame kernels to create a distribution near the flame surface in the additional time until the first 

shock-flame interaction occurs. The shock placements considered were at 1 mm and 3 mm distance 

from the left boundary and the results were compared to the original 6 mm placement. 

 

 

Figure 4.10 : Run up distance dependence on shock wave position 
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Figure 4.11: Onset time dependence on shock wave position 

 

As can be seen in Figure 4.10 & Figure 4.11, shock wave placement has no significant effect and 

run up distance is essentially constant. The small onset time difference can be attributed to the 

additional required time until the shock begins interacting with the first flame kernel. Therefore, 

modeling the flame surface as a contact discontinuity compared to a distribution does not affect 

the phenomenon.  
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4.6 Incident shock strength 

In this series of simulations the incident shock speed was reduced to a value of Mo = 1.6, while 

maintaining all other parameters constant. These simulations showed that this weaker incident 

shock can induce DDT and that the onset time was higher for all simulations. However, the effect 

on run-up distance was not clear, since there were numerical simulations with higher run-up 

distance and others with lower one. This demonstrated the need for further examination and for 

additional simulations to be performed. For that purpose, modifications of the domain height, 

flame spacing and the flame amplitude were performed for incident shock velocity Mo = 1.6, and 

the results were compared to the ones for the original Mo = 1.8 shock speed, as can be seen in 

figures 12- 17.  

Looking at those figures, the simulations with Mo = 1.6 demonstrate similar behaviour, 

however they appear to be more sensitive, with larger variations of characteristics and the graphs 

appear shifted compared to the originals. This shifting can be attributed to the required proper 

synchronization of the chemical energy release with the propagating shock. The comparison of the 

lowest characteristic values for Mo = 1.6 and Mo = 1.8 shows that increasing the incident shock 

velocity accelerates DDT and moves the location of the hot spot further upstream. A stronger 

incident shock results in higher temperature of the shocked reactants, and therefore a lower 

induction time, meaning that smaller hot spots can auto-ignite. 
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Figure 4.12: Run up distance dependence on flame kernel spacing for incident shock velocities 

Mo = 1.6 and Mo = 1.8 

 

 

Figure 4.13: Onset time dependence on flame kernel spacing for incident shock velocities        
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Figure 4.14: Run up distance dependence on flame kernel amplitude for incident shock velocities 

Mo = 1.6 and Mo = 1.8 

 

 

Figure 4.15: Onset time dependence on flame kernel amplitude for incident shock velocities    

Mo = 1.6 and Mo = 1.8 
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Figure 4.16: Run up distance dependence on domain height for incident shock velocities          

Mo = 1.6 and Mo = 1.8 

 

 

Figure 4.17: Onset time dependence on domain height for incident shock velocities Mo = 1.6 and 

Mo = 1.8 
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4.7 Number of flame kernels  

Finally, the simulations with domain height, flame amplitude and spacing modifications were 

repeated for an incident shock wave interacting with 10 flame kernels instead of 12, in order to 

determine the effect of a reduced number of shock-flame interactions in the phenomenon. The 

results from these simulations can be seen in Figures 18-20. 

 

Figure 4.18: DDT dependence on flame kernel amplitude for 10 and 12 flame kernels 

 

Figure 4.19: DDT dependence on domain height for 10 and 12 flame kernels 
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Figure 4.20: DDT dependence on flame kernel spacing for 10 and 12 flame kernels 

As can be seen in figures, almost all 12 kernel simulations demonstrated equal or lower run up 

distance and time compared to the 10 kernels simulations.  This difference of run up distance and 

onset time can also be seen in the temperature plots of Figure 4.21, which shows the onset of 

detonation for 10 and 12 kernel simulations and 16.5 mm domain height.  

 

Figure 4.21: Temperature plots at onset of detonation for 12 flame kernels (top) and 10 flame 

kernels (bottom) 

These results can be attributed to the effect that the increased number of interactions has on the 

deflagration speed, which is similar to the effect the number of obstructions has in a channel 

(Gamezo et al, 2008). More interactions result in more perturbations, which induce further mixing 

and therefore further acceleration of the flame brush. If the flame brush has accelerated 

sufficiently, then a shallower gradient can cause an explosion that will result to the formation of a 

detonation wave. For the 10 kernels simulations, ending the flame kernels sooner results to a rapid 

deceleration of the flame brush, since the large-scale flame folds burn out and new ones do not 

form. Therefore, an explosion is less likely to occur, since a steeper gradient of reactivity is 

required.  
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4.8 Summary 

In order to assess the influence of various physical parameters on the transition event and to 

explore any scaling relationship among them, a parametric study is performed with a range of 

simulations considering varying domain size, ignited flame arrangements and initial conditions. 

Practically in real experiments, these parameters can be varied physically by controlling the 

ignition time and distance between each spark. The present study demonstrates that these 

aforementioned parameters can significantly control DDT and it is possible to optimize these 

parameters to achieve DDT at short run-up distance to obtain a self-propagation detonation. 
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Chapter 5  
Conclusion 

5.1 Concluding remarks  

In this Thesis resolved 2-D Numerical simulations were obtained for a planar shock wave 

interacting with multiple flame kernels. The results of the simulations demonstrated that these 

interactions amplify the leading shock wave and accelerate the flame brush, resulting in a 

deflagration to detonation transition (DDT). As seen in the simulations, DDT is divided in four 

phases, the creation of the deflagration, the acceleration of the flame brush, the formation of 

explosion centers along with necessary amplification, and the final formation of detonation wave. 

For Navier-Stokes simulations, the acceleration of the flame brush is promoted by the intense 

turbulence generated through shock-flame and shock-boundary interactions. The explosion center 

develops ahead of the flame brush in the unreacted shocked material as a result of pressure wave 

reflections and coalescence and higher post shock temperatures near the top boundary. In the Euler 

simulations, although the flame acceleration and the formation of hot spot are affected by the 

suppression of turbulence and burning rate, DDT can still be achieved by the flow fluctuations 

generated through shock flame and shock boundary interactions. The explosion center for these 

simulations occurs later and further downstream compared to N-S simulations.   

Finally, through a series of numerical simulations it was demonstrated that DDT is 

significantly affected when certain key parameters are modified. The parameters considered were 

the domain height, flame amplitude, flame spacing, number of flame kernels and incident shock 

speed. Modifying these parameters affects the acceleration process and the formation of hot spots, 

resulting in reduced run up distance and onset of detonation time for certain parameter values. The 

simulations with reduced incident shock speed also showed that a strong shock is not required for 

DDT, only the proper synchronization of the chemical energy release rate with the propagating 

shock wave. 
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5.2 Future work 

Suggestions for continuation of this work involve modifying additional simulation parameters, 

such as flame temperature and activation energy, to determine their effect on DDT. For the domain, 

further modifications that could be examined include variable spacing between kernels and varying 

kernel diameter. Having varying kernel placements would allow to have denser placement for the 

initial shock-flame interactions in order to create more perturbations, increase the energy release 

rate and therefore accelerate the flame brush faster, and then place the following kernels further 

apart so that Mach stems can form and DDT can occur more easily. Different kernel sizing could 

aid in trapping or constraining unreacted material, therefore creating an explosion that would lead 

to the formation of the detonation wave. Finally, the current numerical framework should be 

further improved by using higher order schemes, inclusion of a turbulence model, use of a multiple 

step chemical kinetic model and higher resolution, which will allow to better resolve the boundary 

layers and turbulence. These modifications will inevitably increase the computational cost, 

therefore parallel CPU or GPU computing should also be explored to accelerate the simulation 

run-time. 
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