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Abstract 
 

Responsive Contingency Planning for Supply Chain Disruption Risk Mitigation  

 

Anubhuti Parajuli, PhD 

Concordia University, 2018 

 

Contingent sourcing from a backup resource is an effective risk mitigation strategy under 

major disruptions. The production volumes and speeds of the backup resource are important 

protection design considerations, as they affect recovery. The objective of this dissertation is to 

show that cost-effective protection of existing supply networks from major disruptions result 

from planning appropriate volume and response speeds of a backup production facility prior to 

the disruptive event by considering operational aspects such as congestion that may occur at 

facilities. Contingency strategy are more responsive and disruption recovery periods can be 

shortened through such prior planning.  

The dissertation focuses on disruption risk arising from intelligent or pre-meditated 

attacks on supply facilities. An intelligent attacker has the capability to create worst case loss 

depending on the protection strategy of a given network. Since the attacker seeks the maximum 

loss and the designer tries to identify the protection scheme which minimizes this maximum loss, 

there exists an interdependence between attack and protection decisions. Ignoring this 

characteristic leads to suboptimal mitigation solutions under such disruptions. We therefore 

develop a mathematical model which utilizes a game theoretic framework of attack and defense 

involving nested optimization problems. The model is used to decide optimal selection of backup 
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production volume and the response speeds, the facilities to build such capability within the 

available budget.  

The reallocation of demands from a disrupted facility to an undisrupted facility in a 

contingency strategy leads to congestion of the undisrupted facility, which may result in longer 

lead times and reduced throughput during disruption periods, thereby limiting the effectiveness 

of a contingency strategy. In the second part of the dissertation, we therefore analyze congestion 

effects in responsive contingency planning. The congestion cost function is modeled and 

integrated into the mathematical model of responsive contingency planning developed in the first 

part of the dissertation.  

The main contribution of this dissertation is that a decision tool has been developed to 

plan protection of an existing supply networks considering backup sourcing through gradual 

capacity acquisition. The solution methodology involving recursive search tree has been 

implemented which allows exploring protection solutions under a given budget of protection and 

multiple combinations of response speeds and production capacities of a backup facility. The 

results and analysis demonstrate the value of planning for responsive contingency in supply 

chains subject to risks of major disruptions and provide insights to aid managerial decision 

making. 
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Chapter One: Introduction 
 

1.1 Overview and Motivation  

 

Supply chain disruptions are random occurrences of major discontinuities in supply chain 

operations as a result of natural disasters or intentional and unintentional human actions. 

Disruptions due to operational contingencies such as machine breakdowns and 

transportation/delivery delays are more likely to occur but have less severe economic impacts. 

Disruptions due to natural disasters (e.g. earthquakes, hurricanes, storms, etc.) or the ones due to 

intentional or unintentional human actions (e.g. terrorist attacks, strikes, fire, etc.), on the other 

hand, often lead to severe economic impacts to the supply chains, even though their occurrences 

are rare.   

 

Several instances of high impact supply chain disruptions in the recent years come to 

notice: The Taiwan earthquake in February 2016 affected global electronic supply chain with an 

estimated 25 billion dollars revenue impact. In October 2011, production at several computer 

manufacturers in Asia were halted by catastrophic flooding of hard disk supply facilities located 

at major cities of Thailand. The 2010 eruption of a volcano in Iceland disrupted millions of air 

travelers and affected time-sensitive air shipments (Chopra & Sodhi, 2014). A destructive 

earthquake hit Japan in 2011. Toyota Motor Company halted production at twelve of its 

assembly plants, resulting in a production loss of 140,000 vehicles.  In 2005, the U.S. Gulf Coast 

was hit by hurricane Katrina. Several warehouses and manufacturing plants were shut down in 

the aftermaths, and a severe disruption to the crude oil production occurred in the Gulf of 

Mexico amounting nearly 1.4 million barrels a day (The Economist, 2005). The air traffic 

suspension after September 2001 terrorist attacks in the US, led to a disruption of material flow 

into Ford’s assembly plants causing intermittent shutdowns of its five US plants resulting in a 

13% decline in its fourth-quarter production (Vakharia and Yenipazarli, 2009). In 1998, due to 

the parts shortages following the labor strikes in two of its US manufacturing plants, General 
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Motors (GM) closed its 26 assembly plants resulting in a production deficit amounting to $809 

million in quarterly loss (Simison, 1998). 

 

As the above examples illustrate, disruptions result in serious financial consequences for 

supply chain firms. When high impact disruptions occur, these firms may face several periods of 

reduced production output, critical parts shortages, or inefficient goods distribution. When 

response and recovery mechanisms are not adequate, disruption periods are prolonged and the 

impacts cascade through one echelon of the supply chain to the others. For instance, it took six 

months for Evonik, an automotive resin manufacturer in Marl, Germany to restore its production 

operations after the devastating explosion in one of its manufacturing plant in March 2012. As a 

result of which, the downstream production facilities of Ford and other automakers were 

consequently severely disrupted during this time (Simchi-Levi, Schmidt and Wei, 2014).  

 

 

 
 

Figure 1.1: Cumulative and yearly peer-reviewed journal and review articles on supply 
chain disruption 

 (Source: Scopus database search with keywords “supply chain” and “disruption”) 

 

 

0

20

40

60

80

100

120

140

2005 2007 2009 2011 2013 2015 2017

N
um

be
r o

f a
rt

ic
le

s

Publication year



 

3 

 

Full recovery from high impact disruptive events is often difficult with firms eventually 

losing their market competitiveness and customers apart from the immediate revenue losses 

during downtimes. Empirical studies have shown that significant drop in sales along with 

diminishing stock returns and shareholder wealth for many years may be expected following 

major disruptions (Hendricks and Singhal, 2005). On the other hand, there are evidences where 

firms have gained competitive business advantage through better mitigation and management of 

disruption risks. For example, in 2001, shortages of semiconductor chips due to fire at Philips 

semiconductor plant in New Mexico (USA) resulted in Ericsson losing a significant market ($ 

400 million in lost sales) as compared to its competitor Nokia because of its inferior mitigation 

planning (Latour, 2001).  

 

Disruption risks have also grown in the recent years due to competitive business practices 

focusing on lower costs and leaner supply chains. The practices of just-in-time delivery, 

reduction of product life cycle, growth of global distribution channels and outsourcing make 

supply chains more complex and interdependent but leave little margin of error in operations. 

Risk management activities are however costly and firms need to investigate the trade-off of 

investments for capability improvements and risk reduction (Nooraie & Parast, 2016). These 

practical issues in managing risks, the unavoidability of disruptive events, and their impacts on 

supply chain operations, provide rationale for the study of supply chain disruption risk mitigation 

and management.  A growing interest in this area is evident from the search we conducted with 

keywords “supply chain” and “disruption” utilizing Scopus database. The search results indicate 

an increasing trend in the journal articles and review publications dealing on supply chain 

disruptions, especially in the last decade (Figure 1.1). Neglected in the past by many firms, 

systematic planning and management of disruption risks due to major events such as terror 

attacks or catastrophic natural disasters is nowadays recognized as an important part of their 

business plans (Simchi-Levi, Snyder and Watson.,  2002; Chopra and Sodhi, 2004; Sheffi, 2005). 

 

 Increased threat of terrorism worldwide and more sophisticated and well-devised 

techniques adopted by the adversaries suggest that new and effective mechanisms are required to 

ensure security and resilience of critical systems. The US Department of Homeland Security has 
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identified 17 sectors of critical infrastructure where investments in structural and operational 

resilience should be made for vulnerability mitigation against acts of terrorism, other man-made 

threats and natural disasters. As terrorism or natural catastrophes cannot be prevented altogether, 

the quest for more effective risk mitigation strategies continues to motivate research in this 

direction.    

 

1.2 Risk Mitigation Strategies  

 

Strategies for mitigation and management of major disruption risks can be broadly 

classified as:  a) proactive or preventive strategy and b) reactive or recovery strategy. The 

proactive or preventive risk mitigation strategies focus on appropriate plans and best course of 

actions which are adopted ahead of disruption occurrences so that the system is reliable, secured 

and suffers minimum loss during disruption periods. Such strategies are similar to increasing the 

mean time to failure (MTTF) of the machines or infrastructure systems. Preventive risk 

mitigation strategies follow practices of protecting supply flows through proactive redundancy 

measures such as acquiring redundant suppliers, inventory backup or protection (hardening) of 

supply facilities.  

 



 

5 

 

 
 

Figure 1.2: Disruption cycle with preventive and recovery stages 
 

 

The reactive or recovery strategy is more concerned with the plans and course of actions 

following disruptions. The reactive strategy can be compared to reducing the mean time to repair 

(MTTR) of a failed machine or an infrastructure system. The recovery strategies ensure that the 

system transition from disrupted state to a stable state is fast, whereas preventive strategies 

ensure that it stays in the stable state for longer times, i.e., longer transition to disrupted states. 

This relation is depicted in Figure 1.2.  

 

A common way to evaluate risk mitigation strategies is based on the measures of system 

reliability, robustness, responsiveness and resilience. These terms have been described in 

literatures with varying degrees of similarity. In this dissertation, we adopt the following 

definitions: Reliability is the ability of a supply chain to operate effectively even when parts of 

this system is disrupted (Snyder, 2005). Robustness is the ability of a supply chain to perform 

effectively over all possible future disruption scenarios including some worst scenarios (Klibi, 
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Martel and Guitoni, 2010). Responsiveness is how quickly the supply chain can react/respond to 

disruptions (Klibi, et. al, 2010). Resilience is the ability of a supply chain to quickly recover 

from disruption (Klibi et. al, 2010). Resilience and responsiveness have often been used 

interchangeably because having a resilient supply chain equates to building its responsiveness 

capability, either through flexibility or redundancy measures. 

 

From these definitions, it can be stated that reliability and robustness relate to preventive 

or proactive mitigation, whereas resilience and responsiveness relate to reactive or recovery 

mitigation strategy. As post-disruption recourse actions are limited, supply chain resilience and 

responsiveness cannot however, be enhanced without pro-active planning and positioning of 

recovery and contingent mechanisms. Such mechanisms may include provisions of inventory, 

back up production, redundant supplier, hardening (structural protection) of facilities etc.  In 

other words, strategic and tactical level decisions such as where to hold inventory and its exact 

amount, where to have back up production and its volume or speed, which additional supplier to 

source from, which facilities to protect etc. should be implemented ahead of disruptions.  The 

contingency strategies are more effective and response to disaster events are faster through such 

provisions.  

 

This dissertation studies a responsive contingency planning problem in supply chain risk 

management, which involves pro-active protection plans and actions to enhance the effectiveness 

of a reactive or contingent operations enabling a reliable, robust, responsive and resilient supply 

flows capable of handling major disruptions.  

 

 

1.3 Scope and Objectives 

 

This research focuses on responsive contingency planning for mitigation and 

management of supply chain disruption risks. Achieving a faster and more effective post-

disruption recovery operation is a major objective of such contingency planning. For example, 
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holding strategic inventory ahead of disruptions and recovering disrupted flows through these 

inventories can be considered a responsive contingency approach of risk management as supply 

chains can react to disruptions faster through such provisions. Holding inventory for longer 

periods is however, cost prohibitive and is not appropriate for handling major disruptions that 

last for an extended period (Hopp, Iravani & Liu , 2012). Contingent capacity management 

through back up productions is a strategy that can be utilized under such disruptions. This 

strategy is more cost effective than strategic inventory since it does not lead to the accumulation 

of inventory because backup production can only be initiated after disaster occurrence. Capacity 

of a production facility can be contingently adjusted (ramped up) to partially recover the lost 

capacities due to disruptions or to partially/completely meet the re-routed demands from the 

failed facilities. This is especially facilitated in modern flexible or reconfigurable manufacturing 

system which can make quick capacity changeovers to adjust to the fluctuating demands (Putnik, 

Sluga, Elmaraghy, Teti, Koren, Tolio and Hon, 2013).  

 

A major challenge in contingent backup capacity management is in having the desired 

units of backup production available within a short response time so as to improve disruption 

recovery speeds. Response time is dependent on the manufacturing system structure of a backup 

production facility. A scalable facility is able to quickly ramp up capacities in small increments, 

whereas a facility relying on dedicated equipment to reduce production cost will have a slower 

response time (Nejad, Niroomand, & Kuzgunkaya, 2014). Response speed is related to response 

time and determines how fast a facility can reach its desired level of production.  Response speed 

and back up capacity volumes are critical decision factors in the selection and design of a backup 

production facility. Congestion is another factor that may affect capacity availability of a backup 

production facility during disruptions. The demands originally filled by a disrupted facility is 

shifted to a backup facility under a contingency strategy. This may create demand overload at the 

backup production facility despite its fast ramp-up characteristics. Consequently congestion of 

the backup facility result due to queuing which may affect the lead time and service levels of the 

supply system.  
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In this research, we study the problem of responsive contingency planning in supply 

chains in which post disruption recovery operations can be enhanced through pro-active 

protection of selected facilities and provisions of gradual backup production capacities in these 

facilities. System disruption is realized as intentional attacks on network facilities from a terrorist 

or an intelligent adversary, and therefore the analysis relate to this type of disruption. The main 

objective is to develop a decision tool for strategic and tactical decisions involving system 

security and backup capacity management along with operational decisions of a recourse action 

for handling major disruptions from intentional facility attacks or worst case scenarios. The 

specific goals can be stated as follows:  

 

1. Determine which facilities in the existing supply network to secure and build the 

backup production capability 

 

2. Determine the appropriate level of responsiveness of a contingency strategy through 

the selection of appropriate response speeds and capacity volumes of a backup 

production facility  

 
3. Investigate the impacts of operational characteristic such as congestion on the 

contingent allocation and protection decisions.  

 
 

1.4 Contributions 

 

This dissertation makes several research contributions: 

 

 First, it proposes a modeling construct which is a unified framework for disruption 

recovery and infrastructure security planning in order to achieve a more reliable, robust, 

responsive and resilient supply chain design. By doing this, it extends the scope of protection 

models by adding recovery component to the earlier models which are mostly featured on 

decisions of security or facility hardening.  
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Second, it extends the scope of implicit enumeration algorithm as a solution methodology 

by enabling search tree branching based on multiple levels of protection. In earlier applications 

of this technique, this has been limited to a single level. Consideration of multi levels of 

protection increases the size of the search tree, nevertheless, it enhances the applicability of this 

technique to solving more complex problems. 

 

Third, by considering the protection problem under budget constraint, it is demonstrated 

how the limited budget can be best utilized on security and backup production capability. As no 

distinction is made between the security (hardening) and backup capacity budgets, the decisions 

to add backup capacity to a facility also ensures its security. In other words the costs of security 

are assumed to be lumped into the costs of a backup capacity.  Such an assumption is reasonable 

when contingent backup planning is prioritized over the security of the facility itself, since it 

does not restrict the investment to security at the expense of backup capacity investments.  

 

  Fourth, using different network topologies based on initial base capacity distributions, it 

is investigated whether a centralized or dispersed backup capacity is appropriate for a given 

network. It is shown that dispersed backups contribute more to risk diversification and loss 

mitigation in non-identical capacity network than in networks with identical distribution of initial 

capacity. 

 

Fifth, congestion impacts on protection decisions are evaluated by explicit modeling of 

non-linear congestion costs in the objective function of the proposed tri-level game theoretic 

model. Piecewise linearization of the congestion cost function is developed to reformulate and 

solve this model as a linear problem.  
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1.5 Thesis Outline 

 

The remainder of this thesis is organized as follows: Chapter 2 presents literature study. 

The relevant literature intersecting different research domains are developed and common 

features with existing gaps are identified. In Chapter 3, we study the responsive contingency 

planning problem. Section 3.2 formulates the problem and the key decisions to be made.  Section 

3.3 and 3.4 are concerned with the model formulation and solution methodology development 

respectively. Section 3.5 presents the numerical results and computational efficiency of the 

proposed algorithm. This Chapter ends with a summary in Section 3.6.  

 

In Chapter 4, we analyze the congestion effects in responsive contingency planning. We 

present the congestion cost function and its linearization technique and the revised tri-level 

model under congestion effects along with the solution methodology in Section 4.2.  In Section 

4.3 results and analysis for this part of the dissertation is presented. Chapter concludes with a 

summary in Section 4.4.  The Chapter 5 of the dissertation presents the conclusion and the future 

research avenues.  
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Chapter Two: Literature Review  
 

2.1 Introduction 

 

The related literature to this dissertation intersects research domains in critical 

infrastructure protection, location planning and supply chain risk management. The articles 

covered have a focus towards one or more risk mitigation aspects including reliable, robust, 

responsive or resilient system designs. Specifically, we review reliable facility location models in 

location planning domain, the interdiction-fortification models in critical infrastructure 

protection planning domain and contingent planning models in supply chain risk management. 

The focus of the literature study is to identify the protection or risk mitigation aspects considered  

and their modeling and solution approaches.   

 

2.2 Strategic Design Models of Protection  

 

The supply network vulnerability to disruption can be mitigated by considering risks 

during initial network designs. A large reduction in risk can generally be achieved through a 

relatively small increase in the costs of facility location when their disruption probabilities are 

accounted in the network design stages (Snyder and Daskin, 2007). The objective in such models 

is to achieve a reliable system that can perform at low cost both during disruptions and normal 

times.  

 

The underlying facility location problem in most strategic design models is formulated 

either as a p median (Lee 2001, Snyder and Daskin 2005, Berman, Krass and Menezes 2007, Li, 

Zeng and Savachkin 2013) or a fixed charge location problem (Snyder and Daskin 2005, Lim, 

Daskin, Bassambo and Chopra 2010, Cui, Ouyang and Shen 2010, Li and Ouyang 2010, Shen, 

Zhan and Zhang 2011, Aboolian, Cui and Shen 2012, Li et al. 2013).  In p median formulation, 

the number of facilities to be located is known (=p) and there is no fixed set up costs involved in 
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locating these facilities. The expected total costs are formulated as expected costs of 

transportation, i.e., the expected costs of serving customers (e.g. retailers) through facilities (e.g. 

warehouses) measured as demand weighted distances from the customers to the facilities. In 

fixed charge location problems, number of facilities to be located is an endogenous decision as 

fixed costs are involved in locating facilities. The expected total costs are obtained as the sum of 

total fixed costs of facility location (independent of disruptions) and expected transportation 

costs under disruption risks. 

 

The basic strategic design models involve decisions of opening a set of facilities, all of 

which have chances of being disrupted, i.e., all facilities unreliable (Lee 2001, Berman et al. 

2007 and Berman et al. 2009). Some models have considered simultaneous locations of reliable 

and unreliable facilities (Snyder and Daskin 2005, Lim et al. 2010, Cui et al. 2010, Li and 

Ouyang 2010, Shen et al. 2011, Aboolian et al. 2012). Reliable facilities in these models are the 

ones that never get disrupted but their fixed costs of locations are higher than the unreliable 

facilities, otherwise there is no incentive in opening of unreliable facilities. Li et al. (2013) 

considers the problem of locating a set of unreliable facilities in which some unreliable facilities 

can be fortified (protected against disruption) utilizing a limited fortification budget. Therefore 

the decisions involve which facilities to open and which among them to fortify.  

 

 Strategic design models are based on the optimization of some measures of central 

tendency such as expected costs, expected profits, etc. which require explicit incorporation of 

disruption probabilities. Therefore, an implicit assumption in these models is that facility 

disruption probability are known or can be readily estimated. It is either incorporated as a 

scenario probability (q) or as individual facility failure probability (p) parameter. When scenario 

probability is utilized, disruptions are modeled as explicit scenarios, each scenario consist of a 

set of facility disruptions and a known probability. When disruptions are modeled with explicit 

scenarios, assignment of demands is based on these scenarios. Each scenario specifies which 

facility will be disrupted and which will be operational in the planning horizon. If a facility fails 

in a given scenario, demand is routed to the nearest other operational facility. Under scenario 

probabilities, the problem is formulated as a two stage stochastic programming model, where 
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location decisions are made at the first stage before knowing which scenario will occur and the 

assignment of demands is made at the second stage after random disruptions occur. The solution 

of this is based on standard methods in stochastic linear programming (Higle, 2005).  

 

When individual facility failure probability is known,  specific demand assignment rules 

are  defined to route demands from a disrupted facility to the nearest undisrupted facility. Snyder 

and Daskin (2007) consider a “level assignment” rule, in which facilities are arranged at several 

levels in increasing order of distance from the demands. If nearest facility to the demand fails, 

then reassignment is to the next nearest facility at a higher level. This assignment strategy allows 

allocation of demands to a primary facility under normal conditions, and to a set of backup 

facilities when the primary facility is disrupted. However, this approach of modeling disruption 

makes the model complex and intractable when disruption probabilities are non-uniform and the 

number of facilities are large. Therefore most models are formulated on the assumptions of 

identical disruption probability, i.e. all facilities have the same disruption probability. This 

assumption is relaxed in Cui et al. (2010) and Qi et al. (2010). Li and Ouyang (2010) extends 

this by considering correlation effects of facility disruption. The model considers that the 

probability of disruption of a facility is affected by the disruption of a nearby facility.   

 

The design models utilizing probabilistic disruptions and central tendency measures focus 

on reliability improvements. Their solutions lead to network designs that may not perform 

adequately under extreme conditions imposed by a major disruptive event. More robust 

strategies and risk-averse approaches are required to manage major disruptions. A few authors 

have considered robustness in strategic location of facilities so that the network is protected from 

worst case losses under a major disruption (O’Hanley and Church 2011, Peng, Snyder, Lim and 

Liu 2011, Aksen and Aras 2012). Peng et al. (2011) considers opening facilities in the network 

so that the performance under disruption scenario does not deviate much from its performance 

under normal (non-disruption) scenario. They apply a criteria called p-robustness (Snyder and 

Daskin 2006), to optimize performance (costs) subject to a constraint requiring relative regret in 

each disruption scenario to be no more than a worst accepted (p) level. O’Hanley and Church 

(2011) utilizes a maximal covering formulation to locate facilities, which simultaneously 
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maximizes pre-disruption coverage and post disruption worst-case coverage. The model is 

presented in a bi-level framework in which the post disruption worst-case coverage is modeled at 

the lower level in the form of an interdictor who attempts to minimize the coverage through 

attacks on located facilities. At the upper level facility location decisions are made to 

simultaneously maximize the pre and post disruption coverages. Similar to O’Hanley and Church 

(2011), Aksen and Aras (2012) also utilize a bi-level framework, with lower level used to model 

the worst case loss.  However, the underlying formulation is a fixed charge location problem 

unlike the maximum covering formulation in O’Hanley and Church (2011). Their model 

additionally incorporates fortification and capacity expansion decisions integrated with the 

facility location decisions. Strategic design models involving protection or fortification decisions 

have been studied most recently in Bricha and Nourelfath (2013) and Jalali, Seifbarghy and 

Niaki (2018). These models are different to other models in that they apply a different concept of 

contest success function (Hausken, 2011) to model independent facility disruptions. While both 

apply game theoretic modeling approach to seek optimal protection strategy in an uncapacitated 

fixed charge location supply network, the location decisions are made ahead of protection 

decisions in Bricha and Nourelfath (2013) and are based on expected costs (utilities) measures 

(risk neutral), Jalali et al. (2018) considers protection decisions in the design stage by integrating 

the two decisions together and takes a risk averse approach.   

 

It is important to note that while facility location is a major decision in all strategic design 

models, their applicability is limited to the planning of new networks. In existing networks 

facility relocation is not a viable option due to associated costs. Another stream of research 

focuses on protection of systems that are already existing and for which relocating facilities is 

cost prohibitive.  This research stream specifically addresses network and infrastructure security 

and vulnerability mitigation and models are commonly referred as interdiction and fortification 

models. The next section discusses interdiction and fortification models of protection.  
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2.3 Interdiction and Fortification Models of Protection 

 

Interdiction can be defined as a deliberate or intentional attack on the critical elements of 

a network system to disrupt or deteriorate its performance. Interdiction models have been applied 

in the literature to assess system vulnerability to disruptions or to identify the most critical 

elements of the system, whose loss deteriorate the performance the most. Fortification should be 

understood as a mechanism to enhance protection of such critical system components so that 

system disruption can be controlled. Fortification of facilities or infrastructure may involve 

investments for structural reinforcements, for example, seismic designs to protect against 

earthquakes, structural barriers to control flood, etc. It can also be achieved through some 

redundancy in the system, for example strategic stocks or inventory, backup resource, multiple 

sourcing, offshoring business, etc.  The mathematical models that apply protection of the system 

and its components through these fortification measures are commonly known as fortification 

models.  

 

2.3.1 Interdiction models 

 

Interdiction models identify critical facilities (facility interdiction models) or network 

arcs (network interdiction models) whose disruption can create the greatest loss of system 

efficiency. Network interdiction were the earliest problems studied and involve removal of arcs 

from a network commonly involving objectives of minimizing maximum flow between origin 

and destination (Wollmer, 1964) and maximizing the shortest paths between supply and demands 

(Fulkerson and Harding 1977, Israeli and Wood 2002), etc. A survey of network interdiction 

models and their variants can be found in Church, Scaparra, & Middleton (2004).  

 

In the context of facilities, the interdiction models are concerned with the identification of 

critical facilities whose failures represent worst-case system losses (Church et al. 2004; Church 

and Scaparra 2007a, 2007b; Losada et al. 2010a; O’Hanley and Church 2011), Losada et al. 

2012a). The models have been based on two classical facility location models: a) p median b) 
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max covering. The interdiction models with max covering type formulation (r interdiction 

covering problem) involve decisions of identifying a subset (r) of existing facilities whose 

interdiction/disruption can result in a maximal coverage loss. In p median based interdiction 

models (r interdiction median (rIM) models) the decisions involve removing/disrupting r number 

of facilities from the existing set of facilities so as to maximize the total cost of reassignment of 

demands, i.e., the demand weighted distances to the operational facilities post interdiction.  

 

Church et al. (2004) presents MIP formulation of both r interdiction covering and the 

median models. The parameter r is deterministic in these models. Church and Scaparra (2007a) 

and Losada et al. (2012a) extended the study by considering r as probabilistic. Losada et al. 

(2010a) introduced recovery time aspects in the rIM model. Their study demonstrate that worst 

case losses may be underestimated if recovery times are ignored by the models, especially if the 

impacts associated with prolonged disruption are significant.  

 

2.3.2 Fortification models 

 

The worst case losses from a major disruption can be avoided through protection of 

critical facilities identified by the interdiction model. While planning defense under intentional 

attacks (e.g. terror attacks) however, the solutions provided by the interdiction models are not 

always reliable. This is because intelligent adversaries can adjust their actions to circumvent the 

defender’s strategy. This relationship between attack and defense needs to be accounted when 

planning protection against such disruptions (Brown, Carlyle, Salmeron and Wood 2006).  

 

The shortcoming of the interdiction model is addressed through fortification models 

which integrate protection decisions into the mathematical models of interdictions. The models 

take risk averse approach to risk management as fortifications imply protection against possible 

worst-case loss. These models are commonly prescribed in a game theoretic framework to 

capture the elements of dependence and often cast as bi-level optimization models involving 

attack and defense. One of the first models in this direction was proposed by Church and 

Scaparra (2007b) and is called the r-interdiction median model with fortification (rIMF) in 
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which r represents the number of facilities that can be interdicted or attacked. At the upper level 

of this bi-level model, the protection decision involves which of the q facilities to protect by 

optimal allocation of limited protection budget, and at a lower level the decision involves 

identification of the r most critical facilities of an existing p median network.  

 

The mathematical formulation of the rIMF model (Church and Scaparra, 2007b) is 

illustrated here as the model developed in this dissertation is based on similar formulation: 

 

 

 [rIMF]: ( )minimize H z  (2.1) 

subject to 

 j
j J

z q
∈

=∑  (2.2) 

 {0,1}  jz j J∈ ∀ ∈  (2.3) 

where ( )H z  represents the rIM model, i.e., the lower level interdiction problem  

represented as: 

 

 [rIM]: ( ) maximize i ij ij
i I

H z a d x
∈

= ∑  (2.4) 

 1          j js z j J− ≥ ∀ ∈  (2.5) 

 1          ij
j J

x i I
∈

= ∀ ∈∑  (2.6) 

 j
j J

s r
∈

=∑  (2.7) 

        ,
ij

ik j
k T

x s i I j J
∈

≤ ∀ ∈ ∈∑  (2.8) 

 {0,1}         js j J∈ ∀ ∈  (2.9) 

 {0,1}        ,  ijx i I j J∈ ∀ ∈ ∈  (2.10) 
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(notations: I- set of demand nodes indexed by i, J- set of existing facilities indexed by j, ia - 

demand of node i, ijd - distance between node i and j, Tij – set of facilities other than the closest 

facility to i , r- number of facilities to be interdicted) 

 

 

The decisions variables are defined as: 

 

1       if facility  is fortified
0      otherwisej

j
z 
= 


 

1       if facility  is interdicted
0      otherwisej

j
s 
= 


 

1       if demand  is assigned to facility  
0      otherwiseij

i j
x 
= 


 

 

The worst case loss is represented in the objective function of the lower level rIM 

problem (2.4) which maximizes the weighted distance of demands to facilities through the 

interdiction of r unprotected facilities. Corresponding to this, the objective function of the rIMF 

problem (2.1) at the upper level minimizes this loss by optimally protecting q facilities. The 

integrality of protection variables, interdiction variables and the demand assignment variables are 

represented in (2.3), (2.9) and (2.10) respectively. Constraint (2.2) states the cardinality of 

protected facilities. Constraint (2.5) links the upper level problem to the lower level problem and 

prohibits the attack of protected facilities. Constraint (2.6) states that every demand should be 

assigned to exactly one facility. Constraint (2.7) restricts the number of attack to a maximum of r 

facilities. Constraint (2.8) restrict the allocation of demand to a farther facility if the closer one is 

not interdicted.    

 

Several variants to the basic fortification model (rIMF) have subsequently been studied. 

Liberatore, Scaparra, & Daskin (2011) and Liberatore & Scaparra (2011) considered uncertainty 

in the number of possible facility attacks (i.e., r is probabilistic). In Liberatore et al. (2011) the 
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bi-level rIMF with probabilistic r is reformulated into a max-covering type problem. The 

problem is reduced to a single level which minimizes the expected worst case coverage across all 

possible values of r. Considering the difficulty associated with properly estimating the 

probability of the extent of attacks, Liberatore & Scaparra (2011) utilize a worst case regret as a 

performance measure rather than the expected costs measures utilized in Liberatore et al. (2011). 

The regrets considered represent the maximum deviations of a stochastic solution with unknown 

number of attacks to the solutions if these probabilities were known or deterministic. Losada, 

Scaparra, & O'Hanley (2012b) further introduce temporal dimensions to the basic rIMF model 

through facility recovery time and multiple disruption considerations. Partial disruptions were 

introduced through modeling correlation effects of a facility loss (attack) in Liberatore, Scaparra, 

& Daskin (2012) . The percentage of capacity lost by a facility from disruption of a neighbouring 

facility was represented in a correlation matrix which was utilized in determining facility 

capacities after disruptions. Partial disruptions were also modeled in Aksen, Akca & Aras 

(2014).  

 

It is observed that a majority of the protection models have assumed that facilities are 

uncapacitated. Further, most of the models can be considered as static models of protection since 

they do not incorporate temporal aspect of recovery. Table 2.1 summarizes relevant protection 

planning articles on the features of facility (capacitated or uncapacitated), the risk tolerance 

considered (risk averse/risk neutral) and the implied mitigation strategy (preventive/recovery). 

The strategic design models are largely based on risk neutral approach. Such models take a 

preventive risk mitigation focus as their decisions involve facility location or facility location 

with some redundancy placement decisions e.g. inventory, backup supplier, structural 

reinforcements etc. so that the supply network is inherently reliable (Berman et al. 2007, Cui et 

al. 2010, Lim et al. 2010, Qi et al. 2010, Li and Ouyang 2010, Aboolian et al. 2013, Li et al. 

2013, Bricha and Nourelfath 2013). A majority of models that take risk averse approaches also 

have a preventive mitigation focus and ignore temporal aspect of recovery and contingent 

mechanisms (Church and Scaparra 2007, Scaparra and Church 2008, Aksen et al. 2010, 

Liberatore et al. 2011, Liberarotore and Scaparra 2011, Aksen and Aras 2012, Liberatore et al. 

2012, Scaparra and Church 2012, Jalili et al. 2018). Although under a major disaster, these 
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models lead to a more robust supply flows than the risk neutral models because of their worst 

case loss considerations, they are still inadequate from a resilient and responsive design point of 

view due to the exclusion of temporal aspect of recovery in these models.   

 

Losada et al. (2012b) were the first to introduce recovery time dimension in a protection 

model. The protection is implied as a decision to invest or allocate available budget into facilities 

for reducing their recovery times following disruption. A drawback of this model is that it does 

not explicitly model contingent mechanisms or how the recovery can be enhanced. As well, the 

model is less realistic as it considers uncapacitated facilities. Aksen, Piyade, & Aras (2010) and 

Aksen & Aras (2012) incorporate contingent mechanism in a capacitated model which involves 

capacity expansion decisions for contingent rerouting of demands originally handled by a 

disrupted facility. However, they assume that such capacity expansions occur instantaneously. 

The response time in building these capacities are not considered. Therefore their model 

overestimates actual available capacity during disruption periods. 

 

Although lacking in the domains of reliable facility location or critical infrastructure 

protection planning literature, response and recovery aspects of contingent planning have been 

considered in supply chain risk management literature. The relevant literature are discussed in 

the next section.    
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Table 2.1 Relevant Literature Classification 

 

 

 

Inventory 
Backup

Capacity 
Backup

Facility 
Hardening

Facility 
location

Snyder and Daskin (2005) √ √ √
Berman et al . (2007) √ √ √
Church and Scaparra (2007b) √ √ √
Jeon et al . (2008) √ √ √ √
Scaparra and Church 
(2008a, 2008b)

√
√

√

Aksen et al . (2010) √ √ √ √
Cui et al . (2010) √ √ √
Lim et al.  (2010) √ √ √ √
Li and Ouyang (2010) √ √ √ √
Qi et al. (2010) √ √ √ √
Liberatore et al.  (2011) √ √ √
Liberatore and Scaparra (2011) √ √ √
O'Hanley and Church (2011) √ √
Peng et al . (2011) √ √ √
Aksen and Aras (2012) √ √ √ √ √
Liberatore et al . (2012) √ √ √
Losada et al.  (2012b) √ √ √
Mak and Shen (2012) √ √ √ √
Scaparra and Church (2012) √ √ √
Aboolian et al.  (2012) √ √ √
Bricha and Nourelfath (2013) √ √ √ √
Li et al.  (2013) √ √ √ √
Jalali et al.  (2018) √ √ √ √

Mitigation Strategy

Recovery 

Preventive

Capacitated Uncapacitated Risk 
Neutral

Risk 
Averse

Risk Features

Articles

Facility Features
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2.4 Contingent Planning Models of Protection  

 

Several contingent mechanisms of disruption exist, such as inventory, dual sourcing, 

contingent re-routing and backup capacity. The seminal work by Tomlin (2006) considers 

backup capacity and inventory measures for handling demand fluctuations and random 

disruptions. Their model identifies inventory as an appropriate mechanism for frequent and short 

disruptions of the main supplier while dual sourcing is optimal for rare and long or major 

disruptions. Whenever a backup supplier has a flexible capacity, contingent re-routing is a 

preferable mechanism. In considering the flexible backup supplier, it is assumed that the whole 

backup capacity is available only after a response time and there is no supply from the backup 

capacity during the response time.  Hopp and Yin (2006) and Schmitt (2011) also make the same 

assumption as Tomlin on backup capacity availability during the response time. On a different 

premise, Klibi and Martel (2012) propose a discrete stepwise function to represent the gradual 

capacity availability based on the intensity of disruption and time to recovery. A two echelon 

supply chain with production facilities involving dedicated manufacturing system (DMS) and a 

reconfigurable manufacturing systems (RMS) is considered in Niroomand et al. (2012). The 

RMS is considered as a volume flexible backup resource with partial availability of the capacity 

within the response time.  

 

Response speed of backup production is a critical decision determining the effectiveness 

of protection strategy utilizing contingent capacity adjustments. Wang & Koren (2012) present 

several backup facility configurations affecting the supply chain responsiveness levels in a cost 

and response time trade-off analysis. In a serial configuration, the added capacity can only 

become available after completing the reconfiguration process of all stages. This makes the 

transition to required capacity slow despite the low cost of reconfiguration and the use of simpler 

machine structure. On the other hand, in a pure parallel configuration, each machine could go 

under a reconfiguration process independently, which leads to a faster transition speeds. A higher 

configuration cost may result with parallel configuration since machine structure is more 

complex with each machine required to perform all steps.  
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2.5 Conclusion 

 

The literature review suggests that there have been quite limited study related to 

protection planning of supply chain considering the response and recovery mechanisms. 

Furthermore, most of the study have considered uncapacitated systems and ignore congestion 

effects due to overflow during recovery. Models based on such assumptions are less practical 

and lead to unrealistic protection solutions although they are mathematically more tractable. The 

challenges in solving capacitated and congested network models have yet not been addressed 

adequately in the literature. The fortification models with responsiveness consideration under a 

capacitated facilities and flow congestion effects are non-existent, despite the importance of such 

models in managing major disruption risks.   

 

Relying on the interdiction-fortification framework discussed above, in this dissertation 

we therefore develop a new mathematical model for contingency planning under major 

disruption. In the first part of the dissertation we introduce rIMF type formulation of the 

protection model in which contingency strategy is realized through a backup production with 

response time considerations (Chapter 3).  In the second part of the dissertation (Chapter 4), we 

demonstrate that congestion related costs influence protection decisions and reformulate the 

model to incorporate congestion costs and analyze its impact on protection decisions.  
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Chapter Three: Responsive Contingency Planning under 
Disruption 

 

3.1 Introduction 

 

This chapter introduces the responsive contingency planning model developed for 

managing disruption risks of a capacitated supply network.  The disruption contingencies can be 

implemented more effectively when proper planning is done and appropriate mechanisms are 

identified ahead of the disaster events. Contingent capacity adjustments through back up 

production is proposed as mechanism to enhance recovery. The level of responsiveness of this 

contingent mechanism relies on optimal selection of production volumes and response speeds of 

a backup production. The appropriate level of responsiveness need to be determined ahead of 

disruption so that backup production capability can be designed accordingly and implemented 

during disaster periods.  

 

The developed model provides a unified framework for planning security and recovery in a 

supply network subject to premeditated attacks on its facilities. Supply chain strategic and 

tactical level decision problems involving facility security and backup capacity management are 

solved while the operational level demand assignments are executed in an optimal manner. 

Relying on a game theoretic modeling framework to capture the elements of dependence 

between attacks and defense observed in intentional attacks (Brown et al., 2006), the 

mathematical model is formulated as a tri-level mixed integer optimization problem. A solution 

algorithm based on implicit enumeration of defense strategies is proposed to arrive at decisions 

involving (i) which facilities to protect with backup production capability (ii) what should be the 

volume of a backup production (iii) what should be the response speed of a backup production. 

The material used in this chapter is from Parajuli et al. (2017).  
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The remainder of this chapter is organized as follows: Section 3.2 and Section 3.3 

respectively present the problem and the model formulation. Section 3. 4 discusses the solution 

methodology. In Section 3.5 numerical results and analysis is presented. The chapter ends with a 

summary in Section 3.6.   

 

 

3.2 Problem Formulation 

 

Consider a network of multiple capacitated facilities supplying a set of customers with a 

single product (Figure 3.1). Let I be the set of customer zones. Each customer zone i ϵ I has a 

specific product demand hit in time period t in the planning horizon T. The demands are satisfied 

from the existing set of facilities J, each characterized by a maximum supply capacity vj . Let dij 

represent the distances involved in transporting a unit demand to customer zone i ϵ I from 

facility j ϵ J. These distances are proxies for unit costs of transportation. We assume that the 

facilities are subject to disruptions in which all of its existing capacity is lost for the entire 

recovery period lasting a finite number of time periods t ϵ T. If a facility is disrupted, the 

demands of the customer zones it originally served are rerouted to the next nearest operational 

facility with adequate capacity to accommodate such demands. Demands are split among 

neighboring facilities if a single facility is not capable of fulfilling all of these demands. Unmet 

demands due to inadequate supply capacity are considered lost in the system and incur the cost 

of lost sales.  
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Figure 3.1: Single echelon supply network problem illustration 
 

 

Disruption to the system is modeled as an attack on facilities of the supply network by an 

intelligent attacker who has prior information of the system and is capable of causing maximum 

damage to the system (worst-case). A worst-case system disruption always results from attacks if 

none of the system components (facilities) are protected because the attacker can deploy his 

budget to attack the most vulnerable sets of facilities. System operating costs are maximized 

through such attacks, either because the customer demands need to be assigned to more distant 

facilities, or due to lost sales incurred owing to inadequate system capacity, or both.  

 

To counter attacks and the possible losses, the system planner with limited protection 

budget B designs protection of the network through building security and enhancing recovery. A 

protection cost cjl is involved in securing (fortifying) a facility j with backup production 

capability at a certain level l. The levels of backup capability are determined by the nominal 

volume of production capacities and response speeds of such capacity additions. It is further 

assumed that fortification of facilities is linked to backup production decisions. In other words, 

the decisions to add capacity backups on a facility also implies its fortification. The protection 
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design therefore involves identification of the facilities to be fortified, selecting the optimal 

volume and response speeds of capacity backups in fortified facilities, and the contingent re-

assignment of customer demands to the surviving facilities in order to thwart the impacts of a 

worst-case disruption. 

 

 
 
 

Figure 3.2: Decision stages of the proposed problem 
 

 

As demonstrated in Figure 3.2, the protection design relates to solving strategic to tactical 

level decisions which include securing facilities and deciding on their backup production 

capabilities for contingent capacity adjustments during disruptions. The operational decision is 

the recourse action or the contingent allocation of demands which is a function of facility 

security and the backup production capability, since these two factors together determine the 

effectiveness of a contingency strategy.  
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3.3 Tri level D-A-D model for responsive contingency planning  

 

The responsive contingency planning problem for managing disruptions risks of 

intentional attacks is formulated as a tri-level optimization model within a game-theoretic 

framework. The model conceptually involves a sequential game amongst three players at 

different levels of hierarchy: i) supply chain planner (system defender, D) at the top level 

determines the facilities to be protected with back up production capability to minimize the 

worst-case losses due to disruptions; ii) the interdictor (attacker, A), at the middle level, 

identifies the set of facilities that can be attacked to create the worst-case losses from disruptions; 

and iii) supply chain operator (system user, D) identifies the most cost effective way of operation 

post attacks. Figure 3.3 provides a schematic of the modeling framework of the proposed 

protection planning problem.  

 
 

 

 
Figure 3.3. Tri-level D-A-D model framework 

 

 

The notations of the model are listed in Table 3.1 
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Table 3.1 Notations used in Responsive Contingency Planning Model Formulation 
 

Sets and Parameters: 

I  set of customers (indexed by i)   
J  set of facilities (indexed by j) 
B   total fortification budget  
cjl cost of protection of facility j at level l  
mtl  a multiplier representing the proportion of extra capacity available each time period 

during the response time and after, based on selected response speeds of facilities  
dij distance from customer zone i to facility j  
hit  demand of customer i in time period t 
vjt  base supply capacity of facility j in time period t 
ajl  maximum additional capacity at facility j for corresponding     fortification level l 
ßi unit cost of lost sales for unserved demand from customer i 
r  number of (facility) interdictions 

Decision variables: 

xijt demand quantities from customer zone  i served by facility j in time period t  
sj  1 if facility j is interdicted and 0 otherwise 
zjl  1 if facility j is fortified with capacity backups at level l, 0 otherwise 

uit total unmet demand of customer i in time period t 
 

The decisions made at the upper levels are parameterized at the lower levels. 

Mathematically, this nested decision framework is represented as a hierarchical mixed integer 

optimization problem as follows.  
 

 [DLP]: ( )min  
z

H z   (3.1) 

 subject to: 

 jl jl
j J l L

c z B
∈ ∈

≤∑∑  (3.2) 

 1jl
l L

z
∈

≤∑   j J∀ ∈  (3.3) 

 { }0,1jlz ∈   ,j J l L∀ ∈ ∈  (3.4)  

 where, 
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 [ALP]: ( ) ( ) max ,
s

H z G s z=  (3.5) 

 subject to: 

 j
j J

s r
∈

=∑  (3.6) 

 1j jl
l L

s z
∈

+ ≤∑   j J∀ ∈  (3.7) 

 { }0,1js ∈   j J∀ ∈  (3.8)  

 where, 

 [ULP]: ( )
, 1 1

, min
T T

ij ijt i itx u i I j J t i I t
G s z d x uβ

∈ ∈ = ∈ =

 
= + 

 
∑∑∑ ∑∑  (3.9) 

 subject to: 

 ijt it it
j J

x u h
∈

+ =∑   , 1...i I t T∀ ∈ =  (3.10) 

 ( )1ijt j jt tl jl jl
i I l L

x s v m a z
∈ ∈

 ≤ − + 
 

∑ ∑   , 1...j J t T∀ ∈ =  (3.11) 

 0ijtx ≥  , , 1...i I j J t T∀ ∈ ∈ =  (3.12) 

 0itu ≥   , 1...i I t T∀ ∈ =  (3.13)  

 

 

The decision framework comprises three optimization problems. The system planner or 

the defender level problem (DLP) is represented by Equations (3.1) – (3.4). This part of the 

problem models the defense of the supply network from worst-case attacks. The decisions at this 

level are represented by binary variables zjl which is 1 if a facility j is protected at level l and 0 

otherwise (constraint 4). Levels of protection (l =1…L) represent a selected combination of 

capacity and response speeds that define backup production capability and are therefore 

dependent on the available sizes (volumes) of capacity and response speeds for capacity 

backups; for instance,  2 levels of capacity and 2 levels of response speed will result in four 

levels of protection (L = 4).  
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The problem represented by Equations (3.5) – (3.8) is associated with the attacker level 

problem (ALP). The decisions at this level are represented by binary variables sj which are set to 

1 if the facility is attacked and 0 otherwise. The ALP is concerned with the maximization of 

system loss by controlling the variables sj. Finally the problem represented in Equations (3.9)–

(3.13) is associated with the user level problem (ULP) where the decisions are represented in the 

non-negative flow variables xijt  and a dummy variable representing the unmet demands uit.  

 

The decisions made at the DLP problem are parameterized in the ALP problem. 

Similarly, the decisions made at the DLP and ALP problems are parameterized in the ULP 

problem. The objective of the system planner is to protect the system by minimizing the 

maximum system operational cost the attacker can create (Equation 3.1). The vector of 

protection strategy, Z = (z11, z21,… zJL), corresponds to a vector of investments costs C = (c11, c21, 

….cJL). Hence the system planner is constrained by protection budget B available to him. Further, 

a facility can only be protected at one level.   

 

The objective of the attacker contradicts to that of the system planner. The attacker 

targets a set of unprotected facilities in order to maximally raise the system operational costs 

through his attacks (Equation 3.5). Constraint (3.6) defines the number of facilities that can be 

simultaneously attacked. The DLP problem is linked to the ALP problem through constraint 

(3.7). It prohibits the attack on protected facilities.  

 

Following protection and attacks, the system operator seeks a minimum cost assignment 

of demands to the remaining supply facilities. This is represented in the objective function of the 

ULP (Equation 3.9). This objective function comprises two terms: the first term represents the 

transportation (flow) costs of the demands that are met (cFlow), and the second term represents 

the cost of lost sales (cLS) if the system capacity is inadequate to completely fill the demands. 

Any demands that cannot be met in a given time period due to insufficient system capacity are 

accounted as lost sales units in constraint (3.10). Constraint (3.11) specifies that the total 

demands handled by each facility in each time period cannot exceed the available total capacity 

of that facility. The assumption here is that a facility if protected has its total capacity equal to its 
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base (original) capacity plus the backup capacity, whereas if a facility is attacked, it loses all of 

its base capacity and no demands can be assigned to it. Gradual capacity addition in each time 

period is reflected in the parameter mtl, which is the proportion of selected capacity size (volume) 

that can be added in time period t for a selected response speed or a selected level of protection.  

 

 

3.4 Solution Methodology 

 

In order to identify facilities to be protected and to obtain the optimal capacity and 

response speeds of a backup resource in a contingency strategy, a tree search algorithm is 

presented. This algorithm explores optimal solution of the proposed model through a binary tree 

search procedure.  

 

3.4.1 Background 

 

 Game theoretic attack-defense modeling framework involving bi-level optimization has 

been widely applied for optimizing protection of critical infrastructure with applications in 

supply chains, telecommunications, electric power grids, railways and pipeline networks, etc. 

This modeling framework is suitable for solving resource allocation problems in order to counter 

strategic risks such as malicious attacks (Golany, Kaplan, Marmur and Rothblum, 2009). Bi-

level optimization problems are however, difficult to solve especially when they involve integer 

decisions at both levels (Moore and Bard, 1990). This is because of the nested structure which 

makes the solution of the lower level problem a function of the upper level problem and the 

solution of the upper level problem a function of the lower level problem. Church and Scaparra 

(2007b) applied the bi-level optimization framework to plan for fortification of supply facilities 

which would minimize the worst case losses due to attacks on a finite number of facilities of the 

supply chain network. The difficulty in solving the bi-level problem is handled in this model 

through reformulation into more tractable single level mixed integer linear programming (MIP) 

problem which is solved using the general purpose commercial MIP solver. The limitation of the 
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approach is that only a small sized instances can be solved using this approach since it requires 

seeking integer decisions of protection and demand allocations through explicit enumeration of 

attack scenarios. Scaparra and Church (2008b) develop an alternative MIP formulation and 

exploit the mathematical structure of the reformulated problem to obtain the lower and upper 

bounds which is used to reduce the size of the original model. Decomposition techniques 

involving cutting plane algorithms such as Benders decomposition (Losada et al., 2012b) and 

duality techniques (Wood, 1993) which involves taking dual of the inner problem to formulate it 

in a nested min-min or max-max structure are other common approaches of solving these type of  

problems.  

 

One of the widely used approach for handling these problems is due to Scaparra and 

Church (2008a) who apply implicit enumeration algorithm tailored to the bilevel structure of 

their interdiction fortification problem. The conjecture of this algorithm is that at least one of the 

candidate facilities in the worst case attack should be protected for minimizing the impacts of 

such attacks. Implicit enumeration algorithm utilizes this conjecture in a recursive search tree to 

find the optimal protection strategy. The main advantage of this approach is that it does not face 

the size restrictions or complicated reformulations as in the previous algorithms of Church and 

Scaparra (2007b) and  Scaparra and Church (2008b). This approach has subsequently been used 

in Aksen et al. (2010), Cappanera & Scaparra (2011), Scaparra & Church (2012) and Liberatore 

et al. (2011, 2012).  

 

Our solution methodology is an extension of the implicit enumeration algorithm (IE) in 

Scaparra & Church (2008a). The search process in our algorithm is more extended than that of 

Scaparra & Church due to the considerations of different levels of facility protection. A more 

important difference is that while Scaparra & Church solve a mixed integer problem (MIP) at 

every child nodes of the search tree to identify attacked facilities at the lower level, we solve all 

of the problems as LP. This is possible in our algorithm because we arrive at the solution of the 

attacker’s problem (ALP) by independently solving all of the lower level problems (ULP) for 

each attack scenario. This means attack decisions are inputs to our ULP problem, as a result of 

which it involves only continuous decision variables. Given the fact that computational effort of 
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the IE approach depends on the difficulty of solving the MIP in the lower level interdiction 

problem (Scaparra & Church, 2008a), our approach does not encounter similar difficulty other 

than the need to enumerate feasible attack patterns at each node. This however does not severely 

deteriorate the computational performance of our algorithm. The computational performance is 

reported in Section 3.5.6. In the following sections we provide the details of our solution 

methodology.  

 

 

3.4.2 Algorithm description  

 

In the proposed algorithm, the search tree starts by creating a root node where facilities 

involved in worst-case attack of r facilities is identified. The worst case attack is the attack on 

facilities when there is no protection/fortification involved and the damage to the system is 

maximum. In other words, at the root node we obtain solutions for the attacker level problem 

(ALP) when the system is totally unprotected and hence the attacker is able to create maximum 

loss in the system through the attacks on selected facilities.  

 

A pseudo code for implementing root node algorithm is presented in Table 3.2. At its 

initialization, all the protection variables zjl in the root node are set to zero and all the 

combinations of attack scenarios involving r facility attacks are enumerated. Every attack 

scenario p involves a vector of facility attacks (sj). For every attack scenario p, the user level 

problem (ULP) can be solved using a commercial LP solver. Note that solving ULP does not 

involve any integer decisions as the attack and protection decisions are parameterized at this 

level. After solving ULP for all attack scenarios, the corresponding values of total transportation 

costs and the total lost sales costs are normalized with respect to their ranges. Steps 6-10 in Table 

2 illustrate normalization of costs after ULP is solved for all attack scenarios. Normalization 

scales the two cost components (cost of lost sales and the transportation or the flow costs) 

between 0 and 1, so that any decision bias due to scale differences in their absolute values are 

avoided.  
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In this algorithm, the ALP problem is not solved explicitly but its solution is obtained by 

solving several instances of ULP problems, which are linear programming problems (LP) with 

all non-integer decision variables. The ALP solution is obtained through a sequence of steps: a) 

solution of multiple instances of ULP (as many as the number of feasible attack scenarios) b) 

normalization of costs across all scenarios and c) identification of attack scenario with highest 

normalized total cost. The attack scenario leading to maximum normalized total costs is 

considered the worst-case attack scenario, and hence the ULP solutions for this scenario are also 

the solutions of the ALP problem for this node.  

 

 

Table 3.2 Root Node Algorithm 
 

Pseudo-code: Solving attacker problem (ALP) at root node  

1. ∀ 𝑗𝑗, 𝑙𝑙  𝑧𝑧𝑗𝑗𝑗𝑗  ← 0 
2. enumerate P = nCr attack combinations 
3. for p = 1 ….., P \\ attack scenarios 
4.    Solve ULP for (𝑆𝑆𝑝𝑝, 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝)  
5. end for 
6. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← minimum (𝑐𝑐𝑐𝑐𝑐𝑐1, … . 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃); 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← minimum (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1, … . 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃) 
7. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← maximum (𝑐𝑐𝑐𝑐𝑐𝑐1, … . 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃); 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← maximum (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1, … . 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃) 
8. for p = 1…P 
9.    𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 ← � 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� ; 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 ← � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� \\ normalization of 
costs 
   𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝  ← 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑝𝑝 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 \\ normalized total cost 
end for 

10. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← maximum (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1, … .𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑃𝑃) 
11.  𝑆𝑆∗ ← { 𝑆𝑆𝑝𝑝: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚};  

𝑐𝑐𝑐𝑐𝑐𝑐∗← { 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}; 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗← { 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}; 

12. return (𝑆𝑆∗,  𝑐𝑐𝑐𝑐𝑐𝑐∗,  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗) \\ optimal ALP solution at the root node  

 

 



 

36 

 

The facilities attacked in the worst-case attack scenario (𝑆𝑆∗) obtained as a solution to the 

ALP problem in the root node, should be the constituents for protection if worst-case loss is to be 

avoided. This is as per the observation made in Scaparra & Church (2008). The rationale for this 

is that for avoiding worst-case loss, one of the facilities from the attacked member set in the 

worst-case attack has to be protected. If this is not the case, then the attacker is always free to 

attack facilities in this set and create maximum loss. The enumeration tree therefore proceeds 

from the root node by binary branching on protection variables, which are one of the facilities j 

from among the candidate sets ( 𝑆𝑆∗) identified in the root node solution. The flow chart of the 

search tree is illustrated in Figure 3.4. 

 

 In the left branch of the enumeration tree the decision is to protect facility j at a selected 

level of protection. The facility to protect is selected arbitrarily from the candidate sets in the 

root node. As protection costs vary depending on the selected protection level, it is necessary to 

compute the remaining budget at each node before branching from it. If the remaining budget is 

inadequate to protect any of the candidate facilities, then this node is fathomed and becomes a 

leaf node (i.e., a node without any child node). If the budget is adequate for protecting a selected 

facility, sub-branches are created along this branch for each allowable protection level. The sub-

branch is pruned if this level of protection cannot be achieved. For example, if there are four 

levels of protection available, depending on the budget available there can be up to four sub-

branches each leading to a child node. In each of these sub-branches, the corresponding zjl 

variable is set to 1, which indicates that the selected facility j is protected at a level l along that 

branch. The ULP is then solved at each of these child nodes by iteratively calling a commercial 

LP solver for each feasible attack scenario. Feasible scenarios are all the different combinations 

of attack scenarios involving r facility attacks from a set of n unprotected facilities. Once the 

ULP is solved for all feasible attack scenarios, the two cost components are normalized and the 

worst-case attack scenario is identified as the one leading to the maximum total normalized 

costs. Identification of the worst case attack scenario provides new sets of candidate facilities to 

be protected in the next stage.  
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Figure 3.4: Flowchart of the search tree 
 

 

The search tree progresses according to a depth-first strategy: at every node, arbitrarily 

selecting facilities to protect from the candidate sets; creating new child nodes for every level of 

protections that the budget allows; and fathoming those nodes with inadequate budget for further 

protection. At every unfathomed child node that follows, the LP solver is called iteratively for 

solving ULP with all feasible attack scenarios, taking into account the facilities protected until 

this node. After solving ULP for all attack scenarios, costs are normalized and solutions to the 

ALP problem is obtained. The size of the feasible attack scenarios for solving ULP reduces with 
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the depth of the search tree. This is because more number of facilities are protected further down 

the tree and therefore cannot be attacked.  

 

In the right branch to every parent node, a child node is reached by first setting all 

protection variables corresponding to facility j protected on the left branch to zero (i.e., zjl = 0 for 

every l) and updating the candidate sets for protection by eliminating facility j from it. If the 

updated set is empty, this child node becomes a leaf node. Otherwise, branching from this node 

is continued in the aforementioned manner. The tree search terminates when there are no nodes 

remaining for further branching in any of the branches (i.e., all nodes are leaf nodes). This can 

happen for two reasons: either the candidate sets for protection are empty, or the budget is 

inadequate for further protection of a candidate facility identified in the parent node. 

 

At the termination of the search tree, the costs of lost sales (cLS) and the transportation 

costs (cFlow) obtained as an optimal ALP solution at each leaf nodes are normalized to scale 

these costs between 0 and 1 by comparing all leaf node solutions (refer to Section 4.2.2). The 

leaf node with smallest normalized total cost is selected as the optimal solution to the tri-level 

problem. The optimal sets of facilities to be protected and their corresponding levels of backup 

capacity and response speeds are obtained by backtracking the path from that node to the root 

node.  

 

3.4.3 Illustration of the proposed methodology 

 

The proposed methodology is illustrated by generating a binary tree to solve a simple 

problem with five facilities, and ten demand zones. The five facilities are located in five states in 

the US (NY, CA, IL, TX and PA). Among these facilities, two facilities are to be interdicted by 

the attacker (r = 2). Two levels of capacity volumes (high, low) and two levels of response speed 

levels (high, low) are considered, the combination of which leads to four different levels (l) of 

protection. The levels of protection are designated as: level 1—high capacity volume with high 

response speeds; level 2—high capacity volume with low response speeds; level 3—low capacity 

volume with high response speeds; and level 4—low capacity volume with low response speeds.  
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The available protection budget (B) is assumed to be just sufficient to allow capacity 

additions up to two facilities when the lowest levels of available capacity volume and response 

speeds are selected. The costs of protection have been considered to be independent of facilities 

but are dependent on the selected volume and response speeds of capacity backups.  

 

The illustrative problem highlights the branching and pruning rules, cost data 

normalization and identification of optimal defense strategy through backtracking.  

 

3.4.3.1 Branching, pruning and nodes traversal 

The enumeration tree corresponding to this illustrative problem is depicted in Figures 

(3.5a) – (3.5c). Every node of this enumeration tree is characterized by the following facility and 

costs data:  

 

• Candidate sets of facilities for protection in the next stage (S): this includes a set of 

facilities attacked in the optimal attack, which maximizes the value of total normalized 

costs. 

• Cost of lost sales (cLS), which is the absolute numerical value of total lost sales costs 

(i.e., computation of expression ∑∑
∈ =Ii

T

1t
itiuβ  under the optimal attack scenario for this 

node). 

• Flow costs (cFlow), which is the absolute numerical value of transportation (flow) costs  

(i.e., computation of expression ∑∑∑
∈ ∈ =Ii Jj

T

1t
ijijtdx  under the optimal attack scenario for this 

node). 

 

Additionally, for creating new branches and for progression of the search tree, the algorithm 

needs to keep track of the following information at every node along every branch:  
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• Sets of facilities protected up to the current node with their levels of protection (i.e., list of 

zjl variables that are set to 1 in this branch until the progression to this node). 

• Remaining budget after protection of facilities until this node in this branch. 
 

At the root node of the tree in Figure (3.5a), the attacker problem is solved without any 

facilities being protected by the defender. The worst-case attack plan is obtained for S*= {CA, 

TX}. Among these two facilities, the facility at CA is arbitrarily selected for protection. The 

available budget is enough to protect CA at any of the 2, 3, or 4 levels of protection except level 

1 for which the budget falls short. So three new nodes B, C and D are created in this branch 

corresponding to protection of CA at levels l = 2, 3 and 4 respectively. Note that node A is never 

reached due to insufficient budget for l = 1 level of protection, and this branch is therefore 

pruned (shown with a zigzagged line). The attacker level problem is solved at each of the nodes 

B, C, and D given that the facility at CA is protected at level 2 for node B, at level 3 for node C 

and at level 4 for node D. This gives rise to S = {IL,TX} for each of the nodes B, C and D.  

 

 

 
 

Figure 3.5a: Root node and initial branching of the search tree 
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Figure 3.5b: Continuation of search tree from left branch of the root node 
 

 

 

 

 
Figure 3.5c:  Continuation of search tree from right branch of the root node 

 

 



 

42 

 

The other child node obtained from the root node corresponds to the branch ZCA,l = 0 (i.e., 

the facility at CA is not protected at any level l which leaves S = {TX}. Since no budget is used 

so far in this branch, the available budget is adequate to protect TX at levels 2, 3, 4 but not 1. 

Hence the branching is continued from this node. On the left branch corresponding to ZTX,l = 1 , 

three new nodes F, G and H are created corresponding to the three levels of protection that can 

be attained. Node E is never reached due to insufficient budget for protection of the TX facility at 

level l = 1, hence this branch is pruned. The right branch from this node corresponds to ZTX,l = 0 

(i.e., the facility at Texas is not protected at any level and thus this branch leads to a node with S 

= {Ø}. Hence this node is fathomed.  

 

The remaining budget at nodes B, C, F and G in Figure 3.5a are insufficient to protect 

further facilities. So these nodes become leaf nodes at this stage. For nodes D and H, the 

remaining budget allows further protection of a facility at l = 4. Figures 3.5b and 3.5c show the 

continuation of branching from these nodes. At node D, the facility at IL is arbitrarily selected 

for protection along the left branch. The available budget only allows a level l = 4 protection for 

this facility, which leads to the node L where the attacker problem can be solved by setting ZCA,4 

=ZIL,4 = 1. This leads to S = {NY,PA}; however, the remaining budget is insufficient for further 

protection of a facility. Hence node L becomes a leaf node. The right branch from node D 

corresponds to ZIL,l = 0, which leads to a node with S = {TX}. Continuing branching on this node 

leads to a leaf node P with S = {NY, PA} on the left branch and a fathomed node with S = {Ø} on 

the right branch.  

 

The node H with S = {CA, IL} is reached from the path with ZCA,l = 0. Hence the 

protection of CA is not allowed in node H or any other child node along this path. This leaves IL 

as the only candidate for branching from node H. The available budget is sufficient to protect IL 

at level l = 4. The left branch from this node, corresponding to protection of IL, leads to node T 

with S = {NY, CA}. Node T becomes a leaf node as the available budget becomes insufficient for 

further protection at this stage. The right branch from node H leads to another fathomed node 

with S = {Ø}, because both CA and IL cannot be protected in this branch.  
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At its termination this enumeration tree results in seven leaf nodes—B, C, F, G, L, P and T—

each with a unique values of  S, cLS and cFlow obtained as ALP solution in these nodes. 

 

 3.4.3.2 Normalization of costs data at the leaf nodes 

 

In order to obtain the optimal solution of the defender, costs data for the seven sets of leaf 

nodes are normalized with respect to the range of values obtained. Normalized values of lost 

sales costs (normcLSn), flow costs (normcFlown) and the total costs (normTotaln) for each node n 

in the set of all the leaf nodes N are obtained using the formulas in Equations (3.14)–(3.16). 
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 n n nnormTotal normcLS normcFlow= +      (3.16) 

 

 

The normalized costs at the leaf nodes for this example are presented in Table 3.3.  
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Table 3.3 Values of normalized costs obtained at the leaf nodes of the IE tree 

 

Nodes cLS cFlow normcLS normcFlow normTotal 

B 505 121 0.16 0.31 0.47 

C 568 96 0.34 0.02 0.36 

F 685 117 0.67 0.27 0.94 

G 748 94 0.85 0.00 0.85 

L 450 110 0.00 0.19 0.19 

P 520 180 0.20 1.00 1.20 

T 800 120 1.00 0.30 1.30 

Min 450 94 0 0 0.19 

Max 800 180 1 1 1.30 
 

 

3.4.3.3 Selection of optimal defense strategy 

 

The minimum normalized total costs is obtained for the leaf node L (Table 3.3). Therefore 

this node is selected as the optimal solution for the defender. Backtracking the tree from this 

node to the root node, we obtain facilities at IL and CA as optimal sets of facilities that can be 

protected within the available budget. Further, it can be observed that the protection budget is 

best utilized by adding low level of capacity and low response speeds to both the facilities (i.e., 

both facilities receive level l = 4 of protection. The optimal defense strategy is thus to protect two 

facilities (IL and CA) with low levels of capacity and response speeds. As a result of this 

protection, the attacker will target to attack facilities at NY and PA which will lead to a maximum 

system operational costs. 
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3.5 Results and Analysis 

 

This section reports and discusses computational results obtained with the proposed 

solution methodology. The algorithm was coded in Java and all the problem instances were 

solved using ILOG CPLEX 12.6 solver (using Concert Technology) on a Dell Latitude E5430 

station with an Intel Core i5-3340M processor at 2.7 GHz and 8 GB of RAM running Windows 7 

operating system.  

 

 

3.5.1 Problem instance generation 

 

The test problems for numerical analysis are derived from the data of the largest 

metropolitan areas (by population) according to the US Census Bureau for 2000 (Daskin, 2004). 

The demands are proxy to population and are obtained by dividing the population of the cities by 

103 rounded to the nearest integer. The original network is constructed first by ranking customer 

zones on the basis of its population (demands) size and opening of J  facilities in these zones in 

the order of their ranking. In the problems considered, the demands and facility base capacities 

are held constant for every time periods. The unit costs of transportation from a customer 

demand zone i to facility location j is considered to be proportional to the distances and is 

presented in Appendix 1. The unit cost of lost sales are set at 2% higher than the maximum 

distances of all facility-demand pairs, calculated as: 1.02* max (dij). This ensures that lost sales 

are incurred only if system capacity is inadequate to handle all of the demands.  

 

3.5.1.1 Facility base capacity 

 

 Two different supply networks are considered which have the same total system capacity 

but differ in their distributions of initial (base) facility capacities. In the first network, every 

facility has the same initial capacity every time period.  This is computed by dividing the sum of 
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total demands and built-in slack (idle capacity) by the total number of facilities (3.17). This 

relation means the original network is always capable of meeting the demands fully if all of the 

facilities are functioning. The parameter α in (3.17) represents the idle capacity of the system 

(i.e., system capacity in excess of total demands).  
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The second network (network 2) has non-identical facility capacities but the same total 

system capacity as of network 1.  Initial facility capacities for this network are assigned such that 

every open facility is able to completely satisfy demand of its nearest customer zone. For every 

time period t, the base facility capacity for a facility j in this network is therefore computed as 

total demand of its nearest customer zone with a finite increment λt (3.18).  
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 where λt is calculated as: 

 
( ) ( )1 1
1 : , ,  min

 
I J

it kt kj i iji j
t

h h k i I d d

J

α
λ = =

 + − ∈ =
 =
 
 

∑ ∑  (3.19)  

 

 Any remaining system capacity after satisfying the nearest demands to every facility are 

evenly distributed amongst all open facilities. This equally distributed remaining system capacity 

is represented by parameter  λt in Equation (3.19).  
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3.5.1.2 Backup capacity volumes and response speeds 

 

It is assumed that finite capacity sizes are available for backup capacity additions at low 

(1000 units) and high levels (2000 units). The amount of these backup capacities available 

during the recovery phase depends on response speeds of capacity additions. Capacity additions 

at higher speeds is assumed to take two time periods, whereas at slower speeds three time 

periods are required to add the same amount of capacity. The proportion of capacity mtl that can 

be added each time period at high and low response speeds therefore varies. A time horizon of 

four time periods is considered, for which the proportion of capacities that can be added each 

time period is shown in Table 3.4.  

 

 

Table 3.4 Proportions of capacity added each time period at high and low response speeds 
 

 T1 T2 T3 T4 

Hi 1/2 1 1 1 

Lo 1/3 2/3 1 1 

 

 

3.5.1.3 Capacity addition costs 

 

Unit cost of capacity additions is assumed to have a linear relationship with response 

time. These costs are set at 1 and 2/3 monetary units respectively for the high and low response 

speeds, corresponding to response times of two and three time periods. Adding more capacities 

faster would therefore ensure a highest level of protection but would also lead to higher costs of 

protection, and vice versa. Costs of protection at several combinations of capacity and response 
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speeds (from high to low) are therefore obtained by multiplying the extra capacity sizes (units) 

by unit costs of adding capacity at selected response speeds.  

 

3.5.2 Flow re-allocation vs contingent rerouting operation 

 
Supply flow re-allocation is a contingency operation that allows entire supply flows to be 

re-allocated with an objective of minimizing total operational costs under disruptions. This is 

different to contingent re-routing operation where only the disrupted supply flows are routed to 

the surviving facilities, other network flows remaining undisturbed. We demonstrate the 

comparative effectiveness of the two mechanisms for risk mitigation utilizing a small network 

involving seven facilities, ten demand zones and attack of a single facility. This small network 

size is chosen for the ease of mapping supply flows graphically so that effect of the two different 

contingency operations can be demonstrated clearly. The demands, facility capacities (non-

identical) and distance data are obtained as described in Section 5.1 and are provided in 

Appendix 1.  

 

Figure 3.6a shows the supply flow configuration of an original network under 

consideration when there is no attack and no protection. This configuration is obtained by 

solving the ULP problem by setting all the protection and interdiction variables to zero. In this 

configuration the demands of each customer zone is exactly met from one or more nearest 

facilities. With respect to this original network we consider two cases of contingency operations 

when one of the facilities (NY) is attacked.  
 



 

49 

 

 
 

Figure 3.6a: Supply flows of an original network 
 

Figure 3.6b shows the configuration when a facility at New York, NY is attacked, and the 

contingency operation involves redesign of network through supply re-allocations (Case I ). New 

assignments from that of the original network are shown as dotted lines. This configuration can 

be obtained by solving the ULP problem by setting the interdiction variable corresponding to the 

attacked facility NY to 1 i.e.,  sNY  = 1, while keeping all other protection and interdiction 

variables as zero.  

 

  

Figure 3.6b: Supply flows of a redesigned 
network with flow re-allocations 

 

Figure 3.6c: Supply flows of a network with  
contingently rerouted flows after disruption 

 

The configuration in Figure 3.6c results when the facility at NY is attacked (sNY  = 1), but 

the contingency plan involves only rerouting of supply originally handled by NY (Case II). 
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This requirement means only the demands of New York, NY and Detroit, MI customer zones 

can be reassigned. The new assignments of this network are shown as dotted lines (Detroit 

demand is contingently assigned to the San Diego, CA facility while NY demand is partly 

fulfilled from facilities at San Diego, CA and Los Angeles, CA.  
 

 

 

Table 3.5 Operational costs under two different contingency operations 

Cases cLS cFlow 

Case I: Flow Re-allocation 73,555,000 12,037,000 

Case II: Contingent Rerouting 73,555,000 17,860,000 

 

Table 3.5 provides operational costs involving lost sales costs (cLS) and the 

transportation costs (cFlow) under the two cases of contingency operations illustrated through 

Figure 3.6b and Figure 3.6c. As can be observed in these results, contingency operation that 

relies on redesigned network through supply re-allocations is more cost effective than the 

operation that relies only on re-routing of disrupted flows. In this example, redesign through re-

allocation of flows yielded approximately 32 % more reduction in system operational costs than 

re-routing of disrupted flows only.  

 

Re-allocations allow flow exchanges which lead to a new optimal flow configuration 

under disruptions. For instance, in the network of Figure 3.6b, after attack of NY, a facility at 

Philadelphia, PA starts to partially serve demands of NY and therefore the PA facility no longer 

serves the demands of Detroit, MI which is now served by a facility at Chicago, IL. This 

exchange of flows will result in lower total network costs of transportation as compared to the 

contingent re-routing approach which allow only demands originally handled by NY facility to 

be re-routed. Note that such an exchange would be unnecessary when one ignores facility 

capacity limits (uncapacitated) since any amount of disrupted flows can then be contingently re-
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routed to the next nearest facility. Therefore, contingent rerouting, which is an appropriate 

recourse solution for an uncapacitated system, may not be appropriate for a capacitated system. 

Redesign of network flows through supply re-allocations is a more effective flow mechanism 

than contingent re-routing in capacitated systems.  

 

The effectiveness of such contingency operations can be further enhanced through 

capacity backup provisions. This is because more supply flows can be recovered through backup 

productions and contingent capacity adjustments. Since response speeds impact the available 

capacity during recovery, appropriate selection of response speeds are necessary in planning 

such contingency strategies. Under a limited budget of protection, the main trade-off of response 

speed is with capacity volumes. At slower speeds, transitions to the desired capacities are slower 

and disruption impacts are prolonged even though the costs of such response speeds are low. At 

higher speeds desired capacities can be achieved faster. This however raises protection costs.  

 

In the following sections we investigate optimal protection strategies for risk mitigation 

with respect to attack, protection budget and backup capacity features. Two types of networks 

with different initial capacity layouts are studied, the first network has identical distribution of 

initial capacities, while the second network is more generic with varying initial facility 

capacities. The network analyzed consists of 15 customers and 10 facilities for which the input 

parameters are derived as explained in Section 3.5.1. The two networks are equivalent in terms 

of the total system capacity, total demands and capacity slacks, hence the results are comparable.  

 

3.5.3 Protection of networks with identical facility capacities 

 

In identical capacity networks, losing any facility will result in the same units of capacity 

loss. The disruption risks of such networks can be considered to be more evenly distributed 

among facilities than similar networks with non-identical capacity. The two networks are 

therefore amenable to different protection strategies. Table 3.6 summarizes the optimal 

protection strategies for different levels of attacks and protection budgets (expressed in monetary 

units) for the network with identical capacity. Under the different combinations of protection 
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budget and attack levels, it displays the optimal sets of facilities protected with levels of 

protection (Zjl), facility sets that would be attacked as a consequence of this protection strategy 

(Sj), the units of lost sales (uLS), flow units (uFlow), total cost of lost sales (cLS), total flow costs 

(cFlow) and average flow distances/costs (đ).  

 

The total operational costs of this network under varying budget levels are plotted for 

different attack levels in Figure 3.7. The total operational costs tend to grow when attacker 

capability is raised. Under this network, the attacker chooses to attack facilities that raise 

transportation costs the most. This rule is specific to networks where every facility has the same 

amount of initial capacity and penalties per unit lost sales are uniform and independent of 

customer locations or their demand sizes. This is because total cost of lost sales will remain 

unaffected irrespective of which sets of facilities in the network are attacked as long as the 

number of attacks are the same. The attacker can thus maximize benefits by attacking facilities 

that raise transportation costs the most. Consequently, protection efforts are concentrated in 

securing such facilties.  
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Table 3.6 Results of protection on an identical capacity network 

Budget 
Level 
(B) 

Attack 
Level  

(r) 
Zjl Sj uLS uFlow cLS cFlow đ 

B = 0 1 - 1 6472 107280 16,982,500 36,205,500 337 

 2 - 1,5 18392 95360 48,260,600 35,287,200 370 

 3 - 1,5,10 30312 83440 79,538,700 29,737,700 356 

 4 - 1,3,5,10 42232 71520 110,817,000 24,835,900 347 

B = 670 1 1(4) 5 3472 110280 9,110,530 35,302,100 320 

 2 1(4) 5,10 15392 98360 40,388,600 29,752,600 302 

 3 1(4) 3,5,10 27312 86440 71,666,700 24,850,800 287 

 4 1(4) 2,3,5,7 39232 74520 102,945,000 20,637,800 277 

B = 1340 1 1(4), 5(4) 10 1236 112516 3,243,260 29,343,400 261 

 2 1(4), 5(4) 3,10 12392 101360 32,516,600 25,545,400 252 

 3 1(4), 5(4) 2,3,7 24312 89440 63,794,700 21,332,400 239 

 4 1(4), 2(4) 3,5,8,10 36232 77520 95,072,800 18,633,200 240 

B = 2010 1 1(2), 5(4) 10 628 113124 1,647,870 25,034,500 221 

 2 1(2), 5(4) 3,10 9392 104360 24,644,600 25,548,400 245 

 3 1(2), 2(4), 5(4) 3,8,10 21312 92440 55,922,700 19,327,900 209 

 4 1(2), 2(4), 5(4) 3,6,7,10 33232 80520 87,200,800 15,809,400 196 

B = 2680 1 1(2), 5(2) 2 298 113454 78,1952 22,928,200 202 

 2 1(4),2(4),3(4),5(4) 7,10 6392 107360 16,772,600 24,074,800 224 

 3 1(4),2(4),3(4),5(4) 6,7,10 18312 95440 48,050,700 17,571,600 184 

 4 1(4),2(4),3(4),5(4) 4,8,9,10 30232 83520 79,328,800 9,688,960 116 
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Figure 3.7: Total operational costs for network with identical facility capacities 
.  

 

3.5.4 Protection of a network with non-identical facility capacities 

 
In networks with non-identical facility capacities, protection is managed through securing 

both high capacity facilities and facilities that are critical to minimizing average flow distances. 

Optimal protection strategies of the identical capacity network cannot therefore be substituted for 

protecting these networks. The optimal protection strategies for non-identical capacity network 

are analyzed with respect to different combinations of protection budget and attack levels and the 

results are summarized in Table 3.7.  
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Table 3.7 Results of protection on a non-identical capacity network 

Budget 
Level 
(B) 

Attack 
Level  

(r) 
Zjl Sj uLS uFlow cLS cFlow đ 

B = 0 1 - 1 28952 84800 75,970,000 10,345,600 122 

 2 - 1,3 42952 70800 112,706,000 9,063,540 128 

 3 - 1,3,5 51352 62400 134,748,000 8,877,430 142 

 4 - 1,2,3,5 68552 45200 179,880,000 7,051,860 156 

B = 670 1 1(4) 2 8752 105000 22,965,200 19,282,600 184 

 2 1(4) 2,7 15952 97800 41,858,000 18,617,100 190 

 3 1(4) 2,6,7 23552 90200 61,800,400 16,103,600 179 

 4 1(4) 2,3,6,7 37552 76200 98,536,400 10,179,400 134 

B = 1340 1 1(4), 2(4) 3 2552 111200 6,696,450 16,507,100 148 

 2 1(4), 2(4) 3, 10 8552 105200 22,440,400 15,235,200 145 

 3 1(4), 2(4) 3, 5, 9 16952 96800 44,482,000 12,055,600 125 

 4 1(4), 2(4) 3, 4, 8, 9 26952 86800 70,722,000 9,332,140 108 

B = 2010 1 1(4), 2(4), 3(4) 4 248 113504 650,752 10,625,300 94 

 2 1(4), 2(4), 3(4) 4,6 3552 110200 9,320,450 14,643,800 133 

 3 1(4), 2(4), 10(4) 3,4,8 17152 96600 45,006,800 10,538,600 109 

 4 1(4), 2(4), 3(4) 4,6,8,9 17552 96200 46,056,400 12,017,000 125 

B = 2680 1 1(4), 2(2),3(4) 4 0 113752 0 10,622,800 93 

  2 1(4), 2(4),10(2) 3,4 6952 106800 18,242,000 12,085,600 113 

  3 1(4), 2(4),10(4),8(4) 3,4,9 13752 100000 36,085,200 11,235,500 112 

  4 1(4), 2(4), 3(4), 4(4) 6,7,8,9 11352 102400 29,787,600 12,803,900 125 
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Figure 3.8:  Total operational costs for network with non-identical facility capacities 

 

 

The operational costs increase when attack levels are higher but decrease when the 

protection budget is raised. The total operational costs of this network is plotted against available 

protection budget and attack levels in Figure 3.8. Although the decreasing trend of operational 

cost is observed for raising protection, this result is less intuitive in the specific case involving 

two facility attacks.  The total operational costs seems to grow under protection involving a 

higher budget level (B = 2680) than with a lower budget level (B = 2010). This solution is 

however superior with respect to both average flow distances and lost sales than other solutions 

at this budget level, which results due to the selection of optimal strategy based on normalized 

total costs. This can be explained by looking at two competing feasible strategies obtained for 

this problem as follows: Consider two feasible protection strategies A and B with a budget level 

of B = 2680. Table 3.8 provides the total cost in absolute values obtained with a feasible strategy 

A, involving four facility protection at the lowest levels of capacity and response speeds. The 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

r=1 r=2 r=3 r=4

To
ta

l o
pe

ra
tio

na
l c

os
ts

 (x
10

5 )

Attack levels

B=0

B=670

B=1340

B=2010

B=2680



 

57 

 

total cost obtained by selecting this strategy is the minimum among all feasible strategies that 

can be obtained at this budget level. Strategy B, however, results in the minimum normalized 

total costs with respect to all the feasible protection strategies at this budget level, and hence is 

selected as an optimal strategy, even though its total cost in absolute values is higher than that 

obtained for strategy A. Note that normalization is done to uniformly scale the two cost 

components (between 0 and 1), and hence to avoid any dominance of one cost component 

(higher values) over the other when protection decisions are made.  

 

 

Table 3.8 Illustration of results of two competing strategies in a non-identical capacity 
network 

Strategy Zjl Sj cLS cFlow cTotal đ 
A 1(4)+2(4)+3(4)+6(4) 4, 8 5,500,000 15,500,000 21,000,000 139 
B 1(4)+2(4)+10(2) 3, 4 18,200,000 12,100,000 30,300,000 113 

 

 

It can further be observed from Table 3.8 that selecting strategy B reduces the average 

flow distances but increases lost sales units  (i.e., fewer demand units are satisfied in this strategy 

as compared to strategy A). This will increase the total cost of disruption (cTotal), since unit 

costs of lost sales are higher compared to unit flow costs. Nevertheless, by avoiding the 

dominance of the lost sales cost component, strategy B leads to a lower transportation (flow) 

costs for customers who are served. If the strategy selection were based on absolute total costs 

rather than normalized costs, the resulting solution would lead to higher costs of serving 

customers due to increased flow distances. Selecting strategies based on normalized costs 

reduces such tendencies.  

 

Comparing experimental results of the two networks, it can be observed that the total 

operational costs of identical capacity networks are lower than that of a network with non-

identical capacities under no budget of protection (B=0). These results suggests that identical 

capacity network is more cost effective to operate if protection budget is non-existent.  Raising 

the level of protection however, marginal reductions in operational costs for this network is 
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much lower than that can be achieved from such protections in a non-identical capacity network. 

This effect can be observed by comparing the graphs in Figure 3.7 and Figure 3.8. These results 

indicate protection strategies are dependent on network characteristic of initial facility layout. In 

distance based network designs, transportation costs can be lowered if high capacity facilities are 

located in densely populated areas and low capacity facilities in less populated areas. Such high 

capacity facilities are strong candidates for attacks, particularly if post disruption demand 

allocations significantly raise travel costs. Protection strategies of non-identical capacity 

networks seek for trade-off solutions that balance the loss of high capacity facility against the 

loss of travel distances.  

 

3.5.5 Centralized vs distributed backups  

 

An important issue in contingent capacity adjustments through capacity backups is 

whether such backup capacities should be confined to a fewer facilities (centralized) or 

distributed over many to enable cost effective contingency strategies. The observation made 

from the above results suggests that one of the determinants is the capability of the attacker or 

the size of the attacks (r). A more offensive attacker is able to strike more facilities causing 

larger capacity losses. Under this condition, it is important for the defense planner to fortify as 

many facilities as possible so that maximum amount of existing capacities are preserved. This is 

true especially when available backup capacity volumes for contingent capacity adjustments are 

low as compared to capacities that may be lost from attacks. Planning denfense against more 

capable attacker therefore necessitates spreading out protection budget over many facilities. This 

means contingent capacity adjustments are done at several facilities by utilizing low capacities 

and slower speeds rather than confining such adjustments to fewer facilities with high capacities 

and higher speeds.  

 

Under a less offensive attack, recovering capacities faster is a more important priority 

than recovering more units of capacities since less capacities are lost from attacks. Contingent 

capacity adjustments can be done by utilizing higher response speeds and capacities of backups 

which centralizes backup over few facilities. These inferences can be drawn from the above 
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results. For instance,  when r = 1, 2, and under a budget level of B = 2680, Table 3.7 results 

show that, an optimal protection plan involves adding backups at three facilities; whereas when 

attacker capability is increased further (r = 3, 4) , it is necessary to spread backups to four 

facilities.  

 

The decision to centralize or distribute backup is also influenced by the available sizes 

(volumes) of backup capacities. If the range of available sizes differ widely, recovery through 

high volume and high response speed become more efficient, which result in centralized 

backups. This is illustrated in the following example. Consider protection in an identical facility 

capacity network under a protection budget of  B = 2680 and attack of two facilities (r = 2). The 

identical capacity network is chosen for this illustration to avoid any influence on the results due 

to initial capacity variations. Table 3.9 shows the results of optimal protection under two 

different settings of available backup capacity for this problem. Under the first setting the range 

of available volumes is small (high volume =2000 units, low volume=1000 units). The optimal 

protection plan obtained under this backup capacity availability involves protecting four facilities 

at low capacity and response speeds, i.e. distributed backup.  

 
 

Table 3.9 Effect of varying backup capacity sizes on optimal protection 
 

Backup 
capacity sizes Zjl Sj uLS uFlow cLS cFlow đ 

H: 2000 units 
L: 1000 units 1(4), 2(4), 3(4), 5(4) 7,10 6392 107360 16,772,600 24,074,800 224 

H: 2500 units 
L: 500 units 1(1), 5(4) 2,7 8142 105610 21,364,600 25,497,000 241 

 

 

Under the second setting the range of available volumes is increased (high volume 

=2500, low volume=500). As a result of this variation, the optimal protection changes from a 

distributed backup plan of the initial setting to a centralized one in which only two facilities are 

protected by utilizing higher volumes and higher available response speeds.  
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The above results have demonstrated that decisions to centralize or distribute backups are 

dependent on how the network capacities are affected due to attacks as well as what capacity 

sizes are available for contingent adjustments. When planning defense under more offensive 

attacks, it is generally preferable to distribute the available backup, unless the low volume and 

speeds of contingent capacity adjustment through such plans outweigh the benefits gained from 

securing more units of existing capacities. 

 

3.5.6 Algorithm performance 

 

Computational performance and robustness of the proposed algorithm is evaluated under 

larger networks. The number of customer zones (demands) and facilities were varied to study the 

effect of these variations on algorithm performance. The experiments were conducted for all 

combination of five level of attacks  (r = 1 to 5) , four levels of budget  (B=670, 1340, 2010, 

2680), three levels of demands (I=25, 35, 50) and three levels of facility (J=10,15,20). The 

demands, distance and facility capacities were derived as explained in Section 5.1 and are 

provided in Appendix. All of the experiments were conducted under identical settings. The 

computational results are summarized in Table 3.10. All problem instances provided in this 

Table could be solved to optimality in a reasonable amount of computational time.  

 

Increasing the size of the number of facilities (J) and the number of demands (I) both 

increase the size of the ULP problem to be solved at each iteration because it increases the 

number of variables and constraints of the problem. The depth and the breadth of the binary 

search tree is independent of these parameters but increases with the increase of attack level r 

and the budget level B. The computational time of the algorithm is therefore sensitive to these 

parameters.  
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Table 3.10 Computational performance of the algorithm on larger networks 

Budget Problem  
instance 

Sj  Zjl  Total  Cost( x106 )  CPU time(s) 
I=25 I=35 I=50  I=25 I=35 I=50  I=25 I=35 I=50  I=25 I=35 I=50 

                 B=670 10.1 2 2 2 
 

1(4) 1(4) 1(4) 
 

24.00 38.20 73.96 
 

0.10 0.20 0.30 

 
10.2 2,7 2,7 2,7 

 
1(4) 1(4) 5(4) 

 
41.10 66.20 111.28 

 
0.20 0.25 0.3 

 
10.3 2,3,4 1,3,10 2,6,7 

 
1(4) 5(4) 1(4) 

 
43.80 145.40 147.71 

 
0.25 0.35 1 

 
10.4 2,4,6,7 1,2,3,7 2,3,6,7 

 
1(4) 5(4) 1(4) 

 
90.20 129.77 196.59 

 
1 1 2 

 
10.5 1,4,6,7,9 1,2,3,7,10 2,3,6,7,10 

 
1(4) 5(4) 1(4) 

 
115.00 235.70 229.92 

 
1 1 2 

 
15.1 2 2 2 

 
1(4) 1(4) 1(4) 

 
10.80 22.20 52.20 

 
0.15 0.25 0.35 

 
15.2 2,7 2,3 2,7 

 
1(4) 1(4) 5(4) 

 
20.50 29.66 79.80 

 
0.25 0.3 1 

 
15.3 2,6,7 1,3,10 2,6,7 

 
1(4) 5(4) 5(4) 

 
34.80 111.40 107.90 

 
1 3 4 

 
15.4 2,3,4,6 1,3,10,12 2,7,11,13 

 
1(4) 5(4) 5(4) 

 
38.20 133.00 124.80 

 
6 11 14 

 
15.5 2,3,4,6,7 1,3,10,12,15 2,6,7,11,13 

 
1(4) 5(4) 5(4) 

 
66.20 154.20 153.20 

 
17 24 33 

 
20.1 2 2 1 

 
1(4) 1(4) 2(4) 

 
13.40 29.60 84.90 

 
0.3 0.35 0.4 

 
20.2 2,7 1,3 2,11 

 
1(4) 2(4) 7(4) 

 
24.50 46.28 73.50 

 
0.35 1 2 

 
20.3 2,6,7 2,3,4 7,11,13 

 
1(4) 1(4) 2(4) 

 
36.90 54.90 63.30 

 
5 9 15 

 
20.4 1,2,3,7 1,3,5,18 6,7,11,13 

 
5(4) 2(4) 2(4) 

 
82.50 110.30 84.60 

 
29 47 69 

 
20.5 1,2,3,6,7 2,6,11,13,16 2,6,11,13,16 

 
5(4) 7(4) 7(4) 

 
104.20 79.20 123.50 

 
112 171 234 

                 B=1340 10.1 3 3 3 
 

1(4),2(4) 1(4),2(4) 1(4),2(4) 
 

21.80 28.20 53.15 
 

0.2 0.3 0.5 

 
10.2 3,10 3,4 3,10 

 
1(4),2(4) 1(4),2(4) 1(4),2(4) 

 
29.40 37.71 86.48 

 
0.25 0.35 1 

 
10.3 2,3,4 2,4,6 3,4,8 

 
1(4),5(4) 1(4),7(4) 1(4),2(4) 

 
40.20 83.30 129.04 

 
1 2 3 

 
10.4 2,4,7,9 2,4,6,9 3,4,8,9 

 
1(4),6(4) 1(4),7(4) 1(4),2(4) 

 
71.30 115.00 166.14 

 
3 4 5 

 
10.5 2,4,7,8,9 2,4,6,8,9 3,4,8,9,10 

 
1(4),6(4) 1(4),7(4) 1(4),2(4) 

 
102.70 151.60 199.47 

 
3 4 5 

 
15.1 3 4 3 

 
1(4),2(4) 1(4),2(4) 1(4),2(4) 

 
10.30 17.10 32.40 

 
0.3 0.35 0.6 

 
15.2 4,9 4,9 3,4 

 
1(4),2(4) 1(4),2(4) 1(4),2(4) 

 
17.20 26.80 65.20 

 
0.4 1 3 

 
15.3 4,8,9 3,4,5 2,11,13 

 
1(4),2(4) 1(4),2(4) 1(4),7(4) 

 
26.20 40.61 89.60 

 
6 10 18 

 
15.4 2,3,4,5 3,4,8,9 3,4,8,9 

 
1(4),6(4) 1(4),2(4) 1(4),2(4) 

 
25.98 64.90 118.80 

 
26 45 64 

 
15.5 3,4,5,8,9 3,4,5,8,9 3,4,8,9,12 

 
1(4),2(4) 1(4),2(4) 1(4),2(4) 

 
46.78 90.80 140.90 

 
71 110 163 

 
20.1 6 6 1 

 
1(4),2(4) 1(4),2(4) 2(3) 

 
6.76 13.60 83.90 

 
0.3 0.35 0.45 

 
20.2 4,9 6,7 6,7 

 
1(4),2(4) 1(4),2(4) 2(4),11(4) 

 
10.10 20.80 42.40 

 
2 3 7 

 
20.3 4,8,9 3,4,5 6,7,13 

 
1(4),2(4) 1(4),2(4) 2(4),11(4) 

 
16.40 17.19 58.00 

 
20 32 52 

 
20.4 4,8,9,16 3,4,6,7 2,6,13,16 

 
1(4),2(4) 1(4),2(4) 7(4), 11(4) 

 
22.70 43.30 96.90 

 
124 195 270 

 
20.5 2,3,4,5,6 3,4,6,8,9 2,4,8,11,13 

 
1(4),7(4) 1(4),2(4) 6(4),7(4) 

 
34.10 61.40 122.40 

 
540 753 1095 

                 B=2010 10.1 6 6 7 
 

1(4),2(4),3(4) 1(4),2(4),3(4) 1(4),2(4),3(4) 
 

15.60 22.90 40.73 
 

0.3 0.4 0.5 

 
10.2 6,7 3,4 3,4 

 
1(4),2(4),3(4) 1(4),2(4),5(4) 1(4),2(4),10(4) 

 
21.00 34.08 83.83 

 
1 2 3 

 
10.3 2,4,5 3,4,5 3,4,8 

 
1(4),3(4),6(4) 1(4),2(4),10(4) 1(3),2(4) 

 
24.87 64.10 128.02 

 
4 7 8 

 
10.4 4,6,8,9 4,6,8,9 3,4,8,9 

 
1(4),2(4),3(4) 1(4),2(4),3(4) 1(4),2(4),10(4) 

 
42.17 85.10 158.64 

 
8 15 17 

 
10.5 2,3,5,6,10 3,5,8,9,10 3,5,6,7,10 

 
1(4),4(4),7(4) 1(4),2(4),4(4) 1(4),2(4),8(4) 

 
99.50 123.00 186.64 

 
9 13 17 

 
15.1 6 3 4 

 
1(4),2(4),3(4) 1(4),2(4),4(4) 1(4),2(4),3(4) 

 
9.10 15.90 26.78 

 
0.35 0.45 0.6 

 
15.2 3,12 3,5 3,5 

 
1(4),2(4),4(4) 1(4),2(4),4(4) 1(4),2(4),4(4) 

 
14.70 21.30 53.60 

 
2 4 10 

 
15.3 3,10,12 3,5,6 3,5,10 

 
1(4),2(4),8(4) 1(4),2(4),4(4) 1(4),2(4),4(4) 

 
20.20 25.58 77.20 

 
20 43 65 

 
15.4 2,3,5,6 3,4,5,10 3,4,5,9 

 
1(4),4(4),7(4) 1(4),2(4),9(4) 1(4),2(4),8(4) 

 
22.87 57.60 111.70 

 
91 150 247 

 
15.5 3,5,6,8,9 3,6,7,8,9 3,4,9,10,12 

 
1(4),2(4),4(4) 1(4),2(4),3(4) 1(4),2(4),8(4) 

 
28.30 68.30 129.30 

 
297 461 743 

 
20.1 3 4 3 

 
1(4),2(4),6(4) 1(4),2(4),6(4) 1(4),2(2) 

 
6.57 12.20 25.15 

 
0.4 0.45 1 

 
20.2 3,19 4,9 3,4 

 
1(4),2(4),9(4) 1(4),2(4),6(4) 1(4),2(4),7(4) 

 
9.48 18.20 46.70 

 
6 10 24 

 
20.3 7,11,13 4,8,9 3,4,8 

 
1(4),2(4),9(4) 1(4),2(2) 1(4),2(2) 

 
13.30 26.40 68.50 

 
76 106 195 

 
20.4 6,7,11,13 3,5,6,7 3,4,8,9 

 
1(4),2(4),9(4) 1(4),2(4),4(4) 1(4),2(4),6(4) 

 
21.50 26.01 88.70 

 
612 893 1073 

 
20.5 2,3,4,5,9 3,4,6,7,9 4,7,8,9,11 

 
1(4),6(4),7(4) 1(4),2(4),8(4) 1(4),2(4),6(4) 

 
21.89 54.40 94.30 

 
2245 3509 4367 

                 B=2680 10.1 10 7 4 
 

1(4),2(4),3(4),6(4) 1(4),2(4),3(4),6(4) 1 (4), 2 (3), 3 (3) 
 

15.00 21.40 34.57 
 

0.4 0.5 0.65 

 
10.2 4,9 4,8 3,4 

 
1(4),2(4),3(4),6(4) 1(4),2(4),3(4),6(4) 1(4),2(4),10(2) 

 
20.70 31.10 76.60 

 
2 5 7 

 
10.3 6,7,8 5,6,7 4,6,7 

 
1(4),2(4),3(4),4(4) 1(4),2(4),3(4),4(4) 3(4),1(4),2(4),8(4) 

 
22.90 38.36 98.30 

 
24 20 25 

 
10.4 5,6,7,8 3,5,6,7 3,4,6,9 

 
1(4),2(4),3(4),4(4) 1(4),2(4),4(4),10(4) 1(4),2(4), 8(4),10(4) 

 
24.46 82.00 149.00 

 
28 33 42 

 
10.5 5,6,7,8,9 5,6,7,8,9 5,6,7,8,9 

 
1(4),2(4),3(4),4(4) 1(4),2(4),3(4),4(4) 1(4),2(4),3(4),4(4) 

 
41.10 92.60 156.64 

 
29 33 45 

 
15.1 4 6 6 

 
1(4),2(4),3(4),6(4) 1(4),2(4),3(4),4(4) 1(4),2(4),3(4),4(4) 

 
8.95 15.30 23.70 

 
0.45 0.55 0.65 

 
15.2 8,9 8,9 3,5 

 
1(4),2(4),3(4),4(4) 1(4),2(4),3(4),4(4) 1(2),2(4), 4(4) 

 
11.60 20.30 45.90 

 
7 11 25 

 
15.3 6,8,9 3,5,7 3,5,10 

 
1(4),2(4),3(4),4(4) 1(4),2(4),4(4),6(4) 1(3),2(4),4(4) 

 
14.70 21.70 75.90 

 
75 119 246 

 
15.4 2,3,5,8 6,7,8,9 4,6,7,9 

 
1(4),4(4),6(4),7(4) 1(4),2(4),3(4),4(4) 1(4),2(4),3(4),8(4) 

 
18.31 33.72 88.90 

 
350 510 1091 

 
15.5 3,5,6,7,8 4,5,6,8,9 3,5,8,9,10 

 
1(2),2(4),4(4) 1(4),2(4),3(4),7(4) 1(4),2(4),4(4),12(4) 

 
18.36 60.30 119.20 

 
1042 1747 3130 

 
20.1 14 4 7 

 
1(4),2(4),3(4),6(4) 1(4),2(4),6(2) 2(4),1(4),3(4),6(4) 

 
6.33 11.70 24.00 

 
0.5 0.65 0.7 

 
20.2 6,7 7,11 3,4 

 
1(4),2(4),3(4),9(4) 1(4),2(4),4(4),6(4) 2(4),13(4), 6(4), 1(4) 

 
8.86 16.10 39.90 

 
16 26 55 

 
20.3 3,12,19 6,7,13 3,6,7 

 
1(3),2(3),4(4) 1(4),2(4),4(4),11(4) 1(4),2(2),4(4) 

 
13.20 24.10 57.40 

 
196 339 568 

 
20.4 3,10,12,19 3,5,7,8 3,4,8,9 

 
1(4),2(4),6(4),8(4) 1(4),2(4),4(4),6(4) 2(4),6(2),1(4) 

 
17.10 17.25 82.50 

 
2166 4131 4311 

 
20.5 2,3,5,8,9 4,5,7,8,9 3,4,8,9,16 

 
1(4),4(4),6(4),7(4) 1(4),2(4),3(4),6(4) 1(4),2(4),19(4),6(4) 

 
15.29 31.66 98.40 

 
8550 16541 17227 
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3.5.6.1 Effect of raising budget levels (B) on computational time under different network sizes 

 

The average CPU time under varying levels of protection budget with respect to demand 

sizes (I) and number of facilities (J) are shown in Table 3.11a and Table 3.11b respectively. The 

average CPU times are computed from the results shown in Table 3.10. The values in Table 

3.11a represents the mean computational time across all attack levels and facility levels for each 

settings of budget level and demand level. The values of Table 3.11b is the mean computational 

time across all attack levels and all demand levels for each setting of budget level and facility 

level.   As expected, the CPU times increase when budget levels are increased. This is because 

more number of facilities can be protected at higher budgets which will increase the depth of the 

search tree and consequently the number of nodes at which the ULP needs to be solved. 

Comparing the values across the two tables, shows that changing the number of facilities has 

more influence on computational effort than changing the number of demand. For the same level 

of protection, it is observed in these results that a network with 20 facilities raises the average 

CPU time by almost seven folds than the network with 15 facilities. Although changing the 

number of demands, also raises the CPU time, it is less dominant than changing the number of 

facilities.  

 

 

Table 3.11 Variation of CPU time with respect to budget levels under different demand and 
facility levels 

 

Budget Level 
(a) Number of Demand Zones (b) Number of Facilities 

I=25 I=35 I=50 J=10 J=15 J=20 
B=670 11 18 25 1 8 46 
B=1340 53 77 112 2 34 206 
B=2010 225 348 451 7 142 874 
B=2680 832 1568 1785 20 557 3609 
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3.5.6.2 Effect of raising attack levels (r) on computational time under different network sizes 

 

The variations in average CPU time with respect to the number of attacks and the demand 

levels is depicted in Table 3.12a. The averages are obtained from Table 3.10 by computing the 

mean CPU time across all levels of budget and number of facilities. The results show that the 

computational effort is increased when attack levels are raised. At lower level of attacks, 

computations are quite fast irrespective of the demand levels.   

 

 

Table 3.12 Variation of CPU time with respect to attack levels under different demand and 
facility levels 

 

Attack levels 
(a) Number of Demand Zones (b) Number of Facilities 

I=25 I=35 I=50 J=10 J=15 J=20 
r=1 0.31 0.40 0.56 0.36 0.42 0.49 
r=2 3.12 5.33 11.53 1.86 5.41 12.70 
r=3 35.69 57.53 100.00 7.97 50.83 134.42 
r=4 287.00 502.92 600.42 13.25 217.08 1160.00 
r=5 1076.33 1947.25 2255.08 13.50 653.17 4612.00 

 

 

Table 3.12b demonstrates the effect of varying attack levels when the average CPU time 

is computed across all demand levels and budget levels. Comparing results in Table 3.12a and 

3.12b, it can be seen that neither the increase in number of facilities nor the number of demands 

significantly affect the solution times if the attack levels are low. When attack levels increase, 

solution times increase. Higher facility levels are quite dominant in raising computational effort 

of the algorithm than raising the demand levels. This is similar to observation made in Section 

5.3.1 under varying budget levels.  
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3.6 Chapter Summary 

 

In this Chapter, we examined the problem of responsive contingency planning under a 

major disruption from intentional attack on supply facilities. The tri-level game theoretic model 

was developed in which facility security and disruption recovery aspects were integrated. The 

contingent mechanism to enhance recovery was considered through backup production, the 

appropriate volume and response speeds for which were involved as model decisions. We further 

developed implicit enumeration algorithm utilizing the structure of the problem which enabled 

solving the proposed model for developing protection strategies for risk mitigation. Through a 

small illustrative example involving single facility attack, we first demonstrated the demand 

routing characteristic optimal under a capacitated system. In particular, the importance of flow 

re-allocations rather than contingent re-routing in a capacitated network was demonstrated. As 

well, it was shown that instantaneous capacity addition assumptions leads to capacity 

overestimations and inappropriate mitigation solutions and inadequate recourse actions during 

major disruptions.  

 

We presented two hypothetical networks with different initial capacity distributions to 

demonstrate that network topologies affect its vulnerability to disruptions and contingency 

strategies of protection can be different under varying network configurations. It was 

demonstrated that identical capacity distributions have risk diversification effect, and are 

effective for controlling losses under a major disruptions. However, the relative efficiency 

improvements through protection are lower for such networks than networks with non-identical 

capacity distributions in its facilities. Through this analysis, we also observed that planning 

against a more capable adversary (higher number of attacks), protection needs to be dispersed or 

decentralized in order to spread out risk.  

 

We further examined the computational performance of the developed algorithm with 

respect to the variations in the budget of protection, number of attacks, number of facilities and 
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number of demands. It is observed that computational time increase with the increase of budget 

level, attack levels, number of facilities or the number of demands. Raising the protection budget 

or the attack level lead to increase in the size of the search tree which affect the computational 

time. As well, increasing number of facilities and the number of demands both raise computation 

time but the effect of raising the number of facilities is higher than the effect of raising the 

number of demands. The solution time for problem size involving up to fifty demands, twenty 

facilities, four levels of protection budget and five levels of attacks have been reported. Since 

protection budget are normally tight and simultaneous attacks on multiple facilities are limited to 

a few facilities, the test problem sizes are practical. The optimal solution with the largest values 

for each parameter (I = 50, J = 20, r =5 and B=2680) was obtained in less than 5 hours of CPU 

time. Considering the fact that it is a strategic long term decision, the CPU time is acceptable. 
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Chapter Four: Analyzing Congestion Effects in Responsive 
Contingency Planning 

 

4.1 Background 

 

The level of responsiveness of a backup supplier is one of the important considerations in a 

contingency strategy relying on backup sourcing. The supply network may incur significant short 

term losses through lost sales if backup production is not adequately responsive to fill customer 

demands. In the long term, the incurred losses may result in losing market share to the 

competitors.  However, despite the responsiveness of a backup supplier, rerouting the affected 

demand at the beginning of the response period will create an overflow when the backup 

capacity is not fully available. As a result of this overflow, the congestion effects build up which 

would increase lead time and lower throughput during the response period.  

 

Congestion in the system is a general consequence of a mismatch between demand arrival 

rates and production rates at facilities. Contingency strategies relying on backup production 

should consider this effect in order to get a better representation of the available system capacity 

during disruption periods. This will enable proper identification of appropriate levels of response 

speed and production volumes at backup facilities necessary for optimal protection design and 

flow recovery.  

 

The literature deals with congestion effects through its implicit modeling using queueing 

systems and capacity constraints or through explicit modeling by including it in the objective 

function of an optimization model. In the implicit approach, congestion effects are incorporated 

by introducing expected queue lengths (WIP) or waiting times derived using queueing models as 

constraints. This approach is taken in most capacity planning and strategic design models 

involving facility location decisions. In capacity planning, Bitran and Tirupati (1989) introduced 

congestion effects for the first time by developing a model to minimize total capacity costs in 
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which WIP level was computed using GI/G/m queueing system and a capacity constraint was 

imposed to limit it to a target level. Marianov and Serra (2003) apply this approach in a hub and 

spoke network topology where the hubs are modeled as M/D/c queueing system and congestion 

is captured using a probabilistic capacity constraint that limits the queue length at hub facilities.  

 

Congestion effects are modeled with explicit incorporation of congestion related costs in 

the objective function of the optimization models in many articles. Amiri (1997) considered a 

service facility location problem in which service facilities are modeled as M/M/1 queue. The 

model incorporates the cost of waiting time in the objective function of a cost minimization 

problem which include transportation costs and fixed costs of facility location. Wang, Batta and 

Rump (2002) also model service facilities as M/M/1 queueing system in the immobile server 

facility location problem but they additionally include a constraint which bounds the waiting 

time at each facility to a desired limit. This model therefore allows a better control of congestion 

than in Amiri (1997). The M/M/1 queue is also applied in Zhang, Berman and Verter (2009) to 

deal with congestion effects in preventive healthcare facilities. Vidyarthi and Kuzgunkaya (2015) 

study similar problem using a more general M/G/1 queues in order to deal with situations with 

different coefficient of variations in service times. Clearing function is utilized to model 

congestion effects on available capacity (throughput) in a few articles. Clearing function is 

introduced by Karmarkar (1989) and provide throughputs as a function of WIP and the service 

rates at facilities. Kim (2012) utilizes this function to estimate the capacity levels of facilities 

under congestion. The WIP is computed by considering facilities as a GI/G/1 queueing models. 

The model involves a facility location problem which simultaneously minimizes congestion cost 

(the order waiting cost due to congestion), the fixed costs and the transportation costs. Nejad et 

al. (2014) also utilize clearing function to model congestion in a responsive contingency 

planning problem involving backup supplier. The WIP for the clearing function is derived using 

a M/G/1 queueing system. The appropriate level of capacity of a backup supplier is estimated 

using this clearing function.  

 

The application of queueing models facilitate congestion effect analysis under demand 

variability and stochastic processing times. When this is not the case, congestion effects can be 
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handled using appropriate other functions that model flows to the facilities. Elhedhli and Hu 

(2005) explicitly model congestion costs on the objective function using a convex cost function 

that increases exponentially as more flows are routed to facilities (hubs). Camargo, Miranda, 

Ferreira and Luna (2009) also propose a generalized convex cost function to model congestion 

under a deterministic demand at the hubs.  In a closely related article involving competitive 

facility location in a distribution netwrok, Konur and Geunes (2011, 2012) also introduce convex 

cost functions in the objective function of their model to capture traffic congestion cost on the 

distribution network link.  

 

Most of the relevant articles consider handling congestion under a common problem of 

matching supply with demand, despite the different approaches in modeling. With the exception 

of Nejad et al. (2014) none of the aforementioned articles focus on the management of major 

disruptions. In this Chapter we focus on the management of major disruption risks under 

congestion effects. In particular, we investigate the congestion impacts on responsive 

contingency planning under the risk of a major supply disruption. The remainder of the Chapter 

is organized as follows: Section 4.2 discusses the congestion cost function utilized in this work, 

its linearization technique and the re-formulation of the tri-level model and its solution. Section 

4.3 presents results and analysis. Chapter summary is presented in Section 4.4.  

 

4.2 Congestion integrated responsive contingency planning model  

 

The responsive contingency planning model under congestion applies the same 

framework as the model presented in Chapter 3. The overall problem is presented in a game 

theoretic defender-attacker-defender principle but in this case, the recourse plan involves 

consideration of congestion related costs. In other words, within the D-A-D framework 

developed in Chapter 3, in the model presented here, the user level problem is solved with an 

additional cost term related to congestion in the objective function. We first present the 

congestion cost function and its linearization.  

 



 

69 

 

4.2.1 Congestion cost function  

 

Congestion affects supply flows of a facility, the cause and effect of which can be 

represented as shown in Figure 4.1. When more flows are directed to a facility, congestion levels 

grow, whereas increased congestion leads to reduced throughput. Therefore as more flows are 

directed to a facility, the congestion costs tend to grow. This relationship can be represented 

using a convex cost function as provided in (4.1): 

 

 ( ) qf wφ φ=  (4.1) 

 

where φ  is the amount of flow to a facility and w and q  are positive constants with q ≥  1.  

 

The congestion cost function (4.1) does not consider the capacity limit on facilities, 

however it implies that congestion costs increase in flow volume at an increasing rate and 

reflects the nature of facility congestion in supply systems. Similar function is applied in Konur 

and Geunes (2011, 2012) to represent traffic congestion in a distribution network design of a 

competitive supply chain. Elhedhli and Hu (2005) also apply this kind of function for computing 

congestion costs in a hub location problem. The rationale of using such convex cost functions is 

consistent with the study of Weisbrod, Vary and Treyz (2001) which investigates the sensitivity 

of congestion by industry sectors. Their study mentions that higher level of congestion are 

associated with companies with volume flows or higher shipping levels.  

 

Supply flows Congestion

+

- +

+

cause

effect

 
Figure 4.1: Representing congestion with a cause and effect relationship 
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Using the notations in Table 3.1, the total flow directed to a facility j at each time period t 

can be expressed as:  

 

 jt ijt
i I

xφ
∈

= ∑   (4.2) 

 

 

Using relations (4.1) and (4.2) the congestion cost function for every facility j at each time period 

t can therefore be expressed as: 

  

 ( )( )
q

q
jt jt ijt

i I
f w w xφ φ

∈
= = ∑   (4.3) 

 

This function (4.3) is non-linear and convex. The linear approximation of congestion cost 

function ( )jtf φ   near a given flow  k
jtφ  is obtained from the equation of the tangent line:  

 

 ( ) ( ) 1
( ) ( )( ) (1 )

q qk k k k k
jt jt jt jt jt jt jtf f w q wqφ φ φ φ φ φ φ

−
′+ − = − +   (4.4) 

The linear approximation of the congestion cost function ( )jtf φ  corresponds to the maximum of 

a set of piecewise linear and tangent hyperplanes.  

   

 ( ) ( ) ( ) ( )1

max (1 )
j

q q
k k

jt ijt ijt ijtk K i i i
f w q x wq x xφ

−

∈

 ≈ − +∑ ∑ ∑ 
 

  (4.5) 

Here kϵKj represents the infinite sets of points where tangent line equations can be written for 

estimating the function.      
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4.2.2 Model formulation  

 

Using the same set of notations as in Section 3.3, we formulate the tri-level responsive 

contingency planning model under congestion. In this model structure, the user level problem 

corresponds to decisions where the system user (defender) chooses allocations for each demand 

facility pair and the corresponding lost sales units to solve the underlying cost minimization 

problem. The attacker level corresponds to the worst case attack where the attacker selects an 

attack scenario s from a feasible attack scenario set S to maximize costs, while the defender level 

problem involves defender’s choice of a protection solution z from a feasible solution set Z to 

minimize the costs. The model therefore seeks an optimal protection z ϵ Z by solving the nested 

optimization problem (4.6)  

 

, ,
min max min ( , , , )

z Z x u X Us S
Costs z s x u

∈ ∈∈
  (4.6) 

 

This nested structure is similar to the problem formulated in Chapter 3, except the 

additional cost term introduced due to congestion which affects the user level problem. The 

defender level and the attacker level problems are therefore structurally similar and identical to 

the formulations of a responsive contingency planning model developed in Section 3.3. We 

rewrite here the formulations of these two levels and develop a modified formulation for the user 

level problem.  

 

 

4.2.2.1 Defender level problem 

 

This layer of problem is concerned with optimal utilization of available budget to secure 

facilities and determine the level of responsiveness and volume of backup production. The model 

is written as follows: 
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   ( )min  
z

H z   (4.7) 

 s.t. 

 jl jl
j J l L

c z B
∈ ∈

≤∑∑  (4.8) 

 1jl
l L

z
∈

≤∑   j J∀ ∈  (4.9) 

 { }  0 ,  1jlz ∈   ,j J l L∀ ∈ ∈  (4.10)  

 

The defender objective function (4.7) minimizes the maximum network costs due to 

attacks by selecting facilities to protect with production backups. Constraint (4.8) mentions that 

protection budget cannot be exceeded. Constraint (4.9) ensures that every facility is protected 

with only one level of protection. Constraint (4.10) sets a binary restriction on protection 

variable.  

 

4.2.2.2 Attacker level problem 

 

The assumption made at this level is that the attacker knows the congestion related costs 

that the network may suffer under an optimal contingency strategy following attacks. Since the 

congestion costs are accounted at the user level, the attacker problem under congestion is 

structurally similar to the problem developed in Section 3.3. It involves attacker’s objective of 

creating maximum network operation costs through the selection of optimal attack scenario s, 

given the protection decisions z of the defender. The model is written as follows: 

 

 

            ( ) ( ) max ,
s

H z G s z=  (4.11) 

 s.t. 

 j
j J

s r
∈

=∑  (4.12) 

 1j jl
l L

s z
∈

+ ≤∑   j J∀ ∈  (4.13) 
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 { }  0 ,  1 js ∈   j J∀ ∈  (4.14)  

    

Objective function (4.11) maximizes the network operation cost for the system user. 

Constraint (4.12) represents that attacker has capability of attacking only a finite number (r) of 

facilities. Constraint (4.13) prohibits attacks of protected facilities. Constraint (4.14) imposes 

binary restriction on the attack variable.  

 

4.2.2.3 User level problem  

 

The user level problem allocates demands to facilities in order to minimize the total costs 

of network operation, given the attack and protection solutions. The total costs include the 

transportation costs, the lost sales costs and the congestion costs. The model can be written as 

follows: 

            
, 1 1 1

( , ) min
qT T T

ij ijt i it ijtx u i I j J t i I t j J t i I
G s z d x u w xβ

∈ ∈ = ∈ = ∈ = ∈

  = + +     
∑∑∑ ∑∑ ∑∑ ∑   (4.15) 

s.t. 

ijt it it
j J

x u h
∈

+ =∑   , 1...i I t T∀ ∈ =  (4.16) 

( )1ijt j jt tl jl jl
i I l L

x s v m a z
∈ ∈

 ≤ − + 
 

∑ ∑   , 1...j J t T∀ ∈ =  (4.17) 

0ijtx ≥   , , 1...i I j J t T∀ ∈ ∈ =  (4.18) 

0itu ≥   , 1...i I t T∀ ∈ =  (4.19) 

 

Objective function (4.15) minimizes the transportation costs, lost sales costs and the 

congestion costs of network operation given the protected and attacked facilities of the network. 

Congestion cost is expressed in the third term
1

qT

ijt
j J t i I

w x
∈ = ∈

 
 
 

∑∑ ∑ ,   which is a convex and non-

linear function, which is further explained in Section 4.2. Constraint (4.16) ensures that unmet 

demands are accounted as lost sales so that lost sales penalty can be applied. Constraint (4.17) 
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ensures that the flows (allocated units) are no higher than the facility capacity including the base 

capacity and the backup production if that facility is protected.  It also ensures that there is no 

allocation to an attacked facility. Constraint (4.18) and (4.19) are non-negativity constraints for 

allocation and lost sales decisions.  

 

The compact version of the overall tri-level protection design model with congestion can 

be expressed as follows: 

 

 ( ), 1 1 1
min max min

qT T T

ij ijt i it ijtz x us i I j J t i I t j J t i I
d x u w xβ

∈ ∈ = ∈ = ∈ = ∈

  + +∑ ∑ ∑ ∑∑ ∑ ∑ ∑  
  

  (4.20) 

 s.t. (4.8)-(4.10), (4.12)-(4.14), (4.16)-(4.19) 

 

As the congestion cost term (third term) expressed in (4.20) is non-linear, it is substituted 

with a linear approximation function presented in Section 4.2. Using the linearized congestion 

cost function (4.5), the tri level model (4.20) is written as: 

 

1

, 1 1 1
min max min max (1 )

q qT T T
k k

ij ijt i it ijt ijt ijtz x us ki I j J t i I t j J t i i i
d x u w q x wq x xβ

−

∈ ∈ = ∈ = ∈ =

          + + − +                 
∑∑∑ ∑∑ ∑∑ ∑ ∑ ∑

  (4.21) 

 s.t. (4.8)-(4.10), (4.12)-(4.14), (4.16)-(4.19) 

   

  

 Replacing the congestion term in (4.21) with 
jtη  and adding constraint (4.23), the tri-

level model (4.21) is equivalent to: 

 

 
, 1 1 1

min max min
T T T

ij ijt i it jtz x us i I j J t i I t j J t
d x u wβ η

∈ ∈ = ∈ = ∈ =

  
+ +     

∑∑∑ ∑∑ ∑∑  (4.22) 

 s.t. (4.8)-(4.10), (4.12)-(4.14), (4.16)-(4.19) 
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 ( )
1

1
q q

k k
jt ijt ijt ijt

i i i
q x x q xη

−
     − ≥ −     
     
∑ ∑ ∑  , , 1...jj J k K t T∀ ∈ ∈ =  (4.23) 

 

We further note that it is necessary to ensure high costs of congestion do not cause the 

system to incur lost sales at the expense of unutilized capacity (in order to reduce total network 

costs). To this end, the constraint (4.24) is introduced in the user level problem to bound lost 

sales .Constraint (4.24) implies an upper bound of zero for lost sale units if total system capacity 

is higher than total demands and a positive difference if total demands are higher than total 

system capacity. 

 

 ( )max 0, 1it it j jt tl jl jl
i I i I j J l

u h s v m a z
∈ ∈ ∈

  ≤ − − +  
  

∑ ∑ ∑ ∑   (4.24) 

 

A big M variable and a binary variable 
ty   are introduced to linearize (4.24) with the 

following three constraints:  

 

 ( )1t it j jt tl jl jl
i I j J l

My h s v m a z
∈ ∈
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 ( ) ( )1 0it it j jt tl jl jl t
i I i I j J l

u h s v m a z y
∈ ∈ ∈

  − − − + ≤  
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∑ ∑ ∑ ∑   (4.24c) 

 

 Adding these sets of constraints, the complete tri-level game theoretic responsive 

contingency planning model (MILP) under congestion can therefore be expressed as follows: 

 

 [TLM]: 
, 1 1 1

min max min
T T T

ij ijt i it jtz x us i I j J t i I t j J t
d x u wβ η

∈ ∈ = ∈ = ∈ =

  
+ +     

∑∑∑ ∑∑ ∑∑  (4.25) 

 s.t. (4.8)-(4.10), (4.12)-(4.14), (4.16)-(4.19), (4.23), (4.24a)-(4.24c)  
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4.2.3 Solution Methodology 

 

Implicit enumeration algorithm is applied on a binary search tree to solve the tri-level 

responsive contingency planning model under congestion effects [TLM].  The algorithm is 

similar to the one developed in Chapter 3, but we remove the cost normalization procedure, so 

that the impacts of congestion on protection decisions and its trade-off with the other costs can 

be better understood, as this is the main objective in  this part of the dissertation.  

 

With these changes, the enumeration tree corresponding to an illustrative problem 

involving five facilities located in five states in the US (NY, CA, IL, TX and PA) and two facility 

attacks (r = 2) is depicted in Figure 4.2. Every node of this enumeration tree is now characterized 

by a) total network cost (cTot) involving the sum of transportation cost, lost sales cost and the 

congestion cost b) attacked facilities (S) , which are the candidate facilities for protection in the 

next stage and c) the remaining budget of protection (Brem). Note that in this part of the problem, 

the attacker’s objective is to maximize the total costs as opposed to the normalized total costs 

which we considered in Chapter 3. The search tree progression, branching, pruning and 

fathoming of nodes are however, similar to the one discussed in Section 3.4, so its detailed 

explanation is omitted in this section.  
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Figure 4.2: Congestion model solution binary search tree illustration 

 
 

Considering two levels of capacity (high, low) and two levels of response speed (high, 

low) generates four different levels (l) of facility protection with backup production capability. In 

this example we assign ten units of budget (arbitrary) for protection and each level of protection 

consumes the budget as follows: level 1=10 units; level 2= 8 units; level 3= 6 units; level 4= 5 

units. Under given budget and the costs of protection, this enumeration tree results in nine leaf 

nodes at its termination ( A, B, C, E, F, G, L, P and T), each with a unique values of S and cTot 

obtained as solutions to the attacker problem. Backtracking from the leaf node with least total 

network cost, i.e. node L (with a cTot=100), we obtain optimal protection solution as securing 

both IL and CA with backup production at level 4, i.e., we select low volume capacity and low 

response speeds for backup production by securing these two facilities. Consequently, the 
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attacker will interdict facilities NY and PA inorder to create the maximum possible cost to the 

system operator under this protection scenario.  

 

4.3 Results and Analysis 

 

In this section, computational results and managerial insights are presented. In this part of 

the dissertation, the experiments were solved using ILOG CPLEX 12.6 solver implemented 

using Java and Concert Technology on a Dell Latitude E5430 station with an Intel Core i5-3340 

M processor at 2.7 GHz and 8 GB of RAM running Windows 7 operating system.  The demands 

and distances data are derived from the US Census Bureau 2000 dataset (Daskin, 2004). The 

backup capacity volumes and response speeds and capacity addition costs are computed in a 

similar way as in Section 3.5 of Chapter 3. Facility base capacities are assumed identical and its 

computation also follows discussions on Section 3.5. The data are presented in Appendix A.  

 

An illustrative example is presented using 15 demand nodes (i=15) and 10 facilities 

(j=10). The 10 facilities and the 15 demand nodes network used for this illustrative example is 

graphically represented in Figure 4.3 (small circles represent demand nodes and larger circles 

represent facilities; concentric circles represent the existence of both demands and facility at the 

same location). This network is constructed by ranking demand nodes by population size and 

opening of ten (j=10) facilities in the top ten demand zones. The network is utilized to 

demonstrate the flow allocation characteristic under congestion effects and highlight the 

significance of considering congestion in protection designs for disruption risk mitigations. We 

further investigate the trade-off between the congestion cost and other operational costs and 

analyze network performance under varying levels of attacks and congestion severity. The 

computational efficiency of the algorithm is tested on larger network sizes and the results are 

presented.  
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Figure 4.3:  Demand and facility locations considered for congestion model analysis  
 

 

4.3.1 Characteristic of supply flow allocations under congestion  

 

The more demands are shifted to a facility, the higher is its congestion level. The 

allocations that are more balanced across facilities tend to lower costs of congestion. The supply 

flow allocation under congestion effect is demonstrated in Table 4.1. This Table lists the total 

flows allocated to facilities under both the traditional model which ignores congestion related 

costs and the model which incorporates congestion costs. The traditional model is based on the 

minimization of lost sales costs and the transportation costs in the ULP problem and ignores the 

impacts of congestion. The results are compared for varying congestion profiles i) low (w= 0.1, 

q=1.1) ii) medium (w=1, q=1.5) and iii) high (w=10, q=2.0), subject to a given budget (B=2680 

monetary units) and attack level (r=1).  
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Table 4.1 Supply flow allocations of traditional and congestion model 

Facilities Traditional model 

Congestion model 
Low 

 Congestion 
(w=0.1, q=1.1) 

Medium 
Congestion  

(w=1, q=1.5) 

High 
Congestion 

(w=10, q=2.0) 
1.New York, NY  20652 20652 20652 12780 

2.Los Angeles, CA 0 0 0 0 

3.Chicago, IL 13652 13652 13652 12660 

4.Houston, TX  10766 10766 10766 12540 

5.Philadelphia,PA  16652 16652 16652 12780 

6.Phoenix, AZ  13652 13652 13652 12660 

7.San Diego, CA  13652 13652 13652 12660 

8.Dallas, TX  8195 8195 7890 12540 

9.San Antonio TX  6984 6984 7289 12472 

10.Detroit, MI 9547 9547 9547 12660 

 

 

Table 4.2 Comparison of solutions of traditional and congestion model 

 Traditional model  

Congestion model  
Low  

Congestion 
(w=0.1, q=1.1) 

Medium  
Congestion  

(w=1, q=1.5) 

High  
Congestion 

(w=10, q=2.0) 
Sj 2 2 2 2 

Zjl 1(1), 5(4) 1(1), 5(4) 1(1), 5(4) 1(4), 3(4), 5(4), 10(4) 
cTot 17,552,758 17,578,374 24,207,733 3,626,415,156 

fRatio 2.96 2.96 2.83 1.02 
 

It is observed from Table 4.1 that optimal supply allocations of a congestion model 

increasingly differ from the traditional model as congestion severity grows.  For example, the 

allocated supplies of a traditional model and the congestion model are identical for all facilities 

under low levels of congestion, while they are different for two facilities, i.e., San Antonio, TX 

and Detroit, MA facilities under medium congestion level. Increasing congestion further (high 



 

81 

 

congestion level), it is observed that the allocations of a congestion model and the traditional 

models differ for every surviving facilities.  

 

Table 4.2, provides the optimal protection strategies (zjl), resulting attacks (sj), as well as 

total network costs (cTot) and maximum/minimum flow ratios (fRatio) obtained for this analysis 

under both traditional and congestion models. The flow ratio (fRatio) is a metric that is used to 

evaluate the balance of flows into facilities of the given network which affects the networks costs 

of congestion. A decreasing flow ratio with increasing congestion severity as demonstrated in 

this Table 4.2 indicate a more balanced flow allocations at higher congestion levels. As well, the 

optimal protection strategies under high congestion are observed to be different from traditional 

model while it is identical under low and medium levels of congestion. As balanced flow 

allocation ensure low costs of congestion, the protection design strategies that facilitate flow 

balance are generally preferable under high congestion severity. Therefore, designs which 

distribute available backup capacity in small units to many facilities, are desirable for flow 

balance and for minimizing the network congestion costs. 

 

 

4.3.2  Value of incorporating congestion  

 

In this section we investigate what compromise on the network costs will be made if the 

decision maker relies on conventional solutions and whether protection strategies and allocation 

decisions of a conventional model can be substituted for a model which considers congested 

network. The cost benefits signify the value of considering congestion in protection design 

models.  

 

Under the same levels of budget of protection (B=2680) and attacks (r=1) we compute 

the congestion value index (φ) which indicates the relative change in the total network costs 

when the flow allocations and protection strategy of a traditional model ignoring congestion is 

utilized for designing protection of a network which can be congested. It can be expressed as: 
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( )  ts cs cscTot cTot cTotϕ = −                                                                (4.26) 

 

The term 
cscTot   in the above expression represents the total costs (optimal objective 

function value) obtained from the model that considers congestion. The term 
tscTot   represents 

the total cost obtained when the protection strategy and allocations of a traditional model is 

substituted for the problem involving congestion.  In Table 4.3 we summarize the results for 

different congestion profiles. 

 

 
Table 4.3 Variations in total costs under congestion model and traditional model for 

varying congestion profiles 

Congestion profiles  cTotts cTotcs φ (%) 
w=0.1, q=1.1 17,578,374 17,578,374 0 
w=1, q=1.1 17,808,919 17,808,919 0 
w=10, q=1.1 20,114,369 20,114,369 0 
    
w=0.1, q=1.5 18,218,284 18,218,284 0 
w=1, q=1.5 24,208,019 24,207,733 0.002 
w=10, q=1.5 84,105,367 83,917,369 0.224 
    
w=0.1, q=2.0 57,452,123 57,051,093 0.703 
w=1, q=2.0 416,546,404 389,161,124 7.037 
w=10, q=2.0 4,007,489,218 3,626,415,156 10.508 

 
 

In this illustrative example, the given network may incur up to 10% less in total costs by 

considering congestion effects.  The higher the congestion severity, greater is the congestion 

value index. Therefore, when congestion associated costs are high, it may be cost effective to 

rely on protection designs and models that take congestion effects into account, whereas decision 

makers may rely on traditional models under low congestion severity.  

 

 
4.3.3 Congestion cost trade-off analysis  
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A trade-off among congestion costs, costs of transportation and cost of lost sales is 

involved when designing protection under congestion. As the choice of parameters w and q 

affect congestion costs, we analyze the cost trade-offs with respect to these parameter variations. 

The protection strategies and the resulting costs under varying values of congestion parameters 

(w=0.1, 1, 10 and q=1.1, 1.5, 2.0, 2.5) are summarized in Table 4.4. The operational costs and 

congestion cost variations under these congestion profiles are graphically demonstrated in Figure 

4.4a-f.  

 

Congestion cost trades off with transportation costs if the network incurs no lost sales. 

This is the case when attacks are low (i.e., r=1, r=2 in Table 4.4) and where capacity losses can 

be fully compensated, either from the slack system capacity or through the available backup 

protection. The transportation costs are more dominant than the congestion costs for smaller w 

and q, i.e., low congestion severity. Under low congestion severity, the optimal protection 

strategies and flow allocations of a congestion model may not differ from a traditional model and 

both models can result in same total transportation costs.  However, as can be observed in Table 

4.4, as congestion severity increases (increasing w and q), the flow allocations of a congestion 

model start to deviate from the traditional model. As congestion costs become more dominant, 

the model tries to balance flows in order to reduce this cost, which leads to a lower flow ratio 

than obtained in a traditional model. Since some demands are shifted to facilities other than their 

closest ones, the network cost of transportation increases.   

 

The congestion cost trade-off is with both the cost of lost sales and the transportation 

costs under increased attack levels.  As more capacities are lost under increased attacks, the 

surviving facilities tend to be fully utilized and cost of lost sales may be incurred due to unmet 

demands. Reductions of congestion costs through demand shifts or network flow balance are 

impossible under this scenario. Recovering lost capacities through a high volume backup 

protection, i.e., centralized protection, is not a preferred protection strategy of such networks due 

to the risks of increased congestion costs for its unbalanced flow distribution. A simultaneous 

reduction of congestion costs and the lost sales can be generally achieved through a decentralized 
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backup strategy. Such a strategy will yield low congestion costs for its more balanced flow 

distribution amongst the protected facilities.  

 

As demonstrated in Table 4.4, a tendency towards decentralizing protection is therefore 

observed under higher attack levels and a limited protection budget. However, under high 

congestion severity (high w and q), marginal increase in congestion costs for unit flow recovered 

are much higher than decrease of lost sales costs through recovery. Under this condition, the 

congestion model may prescribe a protection strategy where recovered capacity volumes are 

lower compared to a decentralized protection. Such a strategy obviously raises the cost of lost 

sales but it is the dominance of congestion costs which makes this strategy favorable over a 

decentralized protection strategy.  In the illustrative example, this scenario arises typically at 

congestion parameter settings of w=10 and q greater than or equal to 2. As demonstrated in 

Table 4.4, under w=10 and q=2.5 and r=3, the cost of lost sales of the selected strategy (zjl: 1(3), 

5(4), 6(4)) was about 40% higher than what can be achieved under a decentralized protection 

strategy (zjl: 1(4), 2(4), 3(4), 5(4)) at this attack level. Nevertheless, this strategy was still 

selected for its lower congestion cost (about 5% lower than of the decentralized strategy).   

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Cost trade-offs in optimal protection design  
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r w q Sj Zjl cTot cFlow cLS cCong fRatio

1 0 - 2 1(1),5(4) 17,552,758 17,552,758 0 0 2.96

1 0.1 1.1 2 1(1),5(4) 17,578,374 17,552,758 0 25,616 2.96

1 0.1 1.5 2 1(1),5(4) 18,218,284 17,552,758 0 665,526 2.96

1 0.1 2 3 1(2),5(2) 57,051,093 17,797,897 0 39,253,196 2.53

1 0.1 2.5 2 1(4),3(4),5(4),10(4) 2,052,546,943 31,881,848 0 2,020,665,095 1.02

1 1 1.1 2 1(1),5(4) 17,808,919 17,552,758 0 256,161 2.96

1 1 1.5 2 1(1),5(4) 24,207,733 17,553,673 0 6,654,061 2.83

1 1 2 2 1(4),3(4),5(4),10(4) 389,161,124 27,192,724 0 361,968,400 1.26

1 1 2.5 2 1(4),3(4),5(4),10(4) 20,236,919,203 32,218,681 0 20,204,700,523 1.01

1 10 1.1 2 1(1),5(4) 20,114,369 17,552,758 0 2,561,611 2.96

1 10 1.5 2 1(1),5(4) 83,917,369 17,782,906 0 66,134,463 2.53

1 10 2 2 1(4),3(4),5(4),10(4) 3,626,415,156 31,882,196 0 3,594,532,960 1.02

1 10 2.5 2 1(4),3(4),5(4),10(4) 202,079,223,907 32,218,681 0 202,047,005,227 1.01

2 0 - 6,7 1(4),2(4),3(4),5(4) 26,194,341 26,194,341 0 0 1.45

2 0.1 1.1 6,7 1(4),2(4),3(4),5(4) 26,220,147 26,194,341 0 25,806 1.45

2 0.1 1.5 6,7 1(4),2(4),3(4),5(4) 26,879,754 26,194,341 0 685,413 1.45

2 0.1 2 6,7 1(4),2(4),5(4),10(4) 67,641,122 26,270,375 0 41,370,747 1.44

2 0.1 2.5 3,8 1(4),2(4),5(4),10(4) 2,450,288,382 32,055,666 0 2,418,232,716 1.09

2 1 1.1 6,7 1(4),2(4),3(4),5(4) 26,452,401 26,194,341 0 258,060 1.45

2 1 1.5 6,7 1(4),2(4),3(4),5(4) 33,048,473 26,194,341 0 6,854,132 1.45

2 1 2 3,8 1(4),2(4),5(4),10(4) 435,928,468 29,762,852 0 406,165,616 1.19

2 1 2.5 3,8 1(4),2(4),5(4),10(4) 24,213,087,019 32,289,098 0 24,180,797,921 1.09

2 10 1.1 6,7 1(4),2(4),3(4),5(4) 28,774,942 26,194,341 0 2,580,601 1.45

2 10 1.5 6,7 1(4),2(4),5(4),10(4) 94,671,602 26,251,052 0 68,420,550 1.44

2 10 2 3,8 1(4),2(4),5(4),10(4) 4,082,226,728 31,822,248 0 4,050,404,480 1.09

2 10 2.5 3,8 1(4),2(4),5(4),10(4) 241,840,268,307 32,289,098 0 241,807,979,209 1.09

3 0 - 6,7,10 1(4),2(4),3(4),5(4) 33,395,008 25,969,408 7,425,600 0 1.22

3 0.1 1.1 6,7,10 1(4),2(4),3(4),5(4) 33,419,578 25,969,408 7,425,600 24,570 1.22

3 0.1 1.5 6,7,10 1(4),2(4),3(4),5(4) 34,064,760 25,969,408 7,425,600 669,752 1.22

3 0.1 2 6,7,10 1(4),2(4),3(4),5(4) 75,225,321 25,969,408 7,425,600 41,830,313 1.22

3 0.1 2.5 3,8,10 1(3),5(4),6(4) 2,515,715,051 30,609,728 10,425,600 2,474,679,723 1.26

3 1 1.1 6,7,10 1(4),2(4),3(4),5(4) 33,640,711 25,969,408 7,425,600 245,703 1.22

3 1 1.5 6,7,10 1(4),2(4),3(4),5(4) 40,092,529 25,969,408 7,425,600 6,697,521 1.22

3 1 2 3,8,10 1(3),5(4),6(4) 440,407,860 30,609,728 10,425,600 399,372,532 1.26

3 1 2.5 3,8,10 1(3),5(4),6(4) 24,787,832,559 30,609,728 10,425,600 24,746,797,231 1.26

3 10 1.1 6,7,10 1(4),2(4),3(4),5(4) 35,852,035 25,969,408 7,425,600 2,457,027 1.22

3 10 1.5 6,7,10 1(4),2(4),3(4),5(4) 100,370,218 25,969,408 7,425,600 66,975,210 1.22

3 10 2 3,8,10 1(3),5(4),6(4) 4,034,760,648 30,609,728 10,425,600 3,993,725,320 1.26

3 10 2.5 3,8,10 1(3),5(4),6(4) 247,509,007,637 30,609,728 10,425,600 247,467,972,309 1.26
min 17,552,758 17,552,758 0 0 1.01

avg 19,542,093,340 26,063,887 2,788,320 19,513,241,133 1.55

max 247,509,007,637 32,289,098 10,425,600 247,467,972,309 2.96
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Figure 4.4:  Operational costs and Congestion costs under varying attack levels and 
congestion profile settings 
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4.3.4 Computational efficiency 

 

The computational efficiency of the algorithm is assessed under a larger network 

involving 50 demand nodes derived from the US Census Bureau dataset (see Appendix). Table 

4.5 summarizes the CPU times obtained under different parameter settings of attack levels (r), 

number of facilities (J), and the congestion profile parameters (w, q) under a finite budget level 

(B). These results demonstrate that under a finite budget of protection, the CPU times generally 

increase with both the increase in the number of attacks and the number of facilities. These 

results are consistent with the observations made in Chapter 3.  

 

We further observe that the computational efficiency is affected by incorporating 

congestion term in the protection design model. The linear approximations of convex non-linear 

congestion functions result in the addition of a set of constraints in the model. When the desired 

approximation error is low, interval granularity (K) is high i.e., the congestion cost function is 

approximated using an increased number of tangent hyperplanes. This has the effect of 

increasing problem size because of the new constraints that are added in the model. Table 4.6 

highlights the CPU time and the relative error of congestion approximation under different 

interval granularity (K) for different problem combinations and a finite budget of protection 

(B=2010 monetary units). It can be observed that as K increases, there is more accuracy in linear 

approximation of the congestion cost function, but it significantly deteriorates the CPU time.  
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Table 4.5 CPU time variations under different parameter combinations 

r w q   CPU time (s) 
  j=5 j=10 j=15 

1 0.1 1.1  11 59 176 
1 0.1 1.5  11 58 175 
1 0.1 2  12 60 164 
1 0.1 2.5  14 63 198 
       1 1 1.1  14 82 257 
1 1 1.5  14 57 207 
1 1 2  8 46 158 
1 1 2.5  14 63 186 
       1 10 1.1  10 59 177 
1 10 1.5  11 60 174 
1 10 2  8 46 180 
1 10 2.5  13 65 186 
       2 0.1 1.1  31 517 2544 
2 0.1 1.5  28 542 2919 
2 0.1 2  23 425 2170 
2 0.1 2.5  32 586 2770 
       2 1 1.1  29 608 3685 
2 1 1.5  27 516 2791 
2 1 2  23 395 2332 
2 1 2.5  32 637 2420 
       2 10 1.1  31 523 2550 
2 10 1.5  33 529 2604 
2 10 2  24 437 2285 
2 10 2.5  37 551 2767 
       3 0.1 1.1  20 1953 19536 
3 0.1 1.5  21 1953 24461 
3 0.1 2  13 1394 14969 
3 0.1 2.5  22 2169 18687 
       3 1 1.1  20 25 2752 
3 1 1.5  21 2186 22126 
3 1 2  13 1461 14679 
3 1 2.5  24 2138 20917 
       3 10 1.1  20 2164 19342 
3 10 1.5  21 2039 19628 
3 10 2  13 1460 15185 
3 10 2.5  22 2360 20791 
           Min   8 25 158 

  Avg  20 785 6865 
    Max   37 2360 24461 
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Table 4.6 Congestion approximation errors and CPU times 

Instances 
(I_J_r) 

CPU time (s)   Congestion approximation error (%) 
K=25 K=50 K=75 K=100   K=25 K=50 K=75 K=100 

50_5_1 3 7 11 13  0.012 0.007 0.006 0.002 
50_5_2 8 18 27 37  0.008 0.007 0.003 0.001 
50_5_3 7 14 18 22  0.020 0.007 0.006 0.001 
50_10_1 16 36 48 65  0.148 0.039 0.017 0.009 
50_10_2 140 304 435 551  0.046 0.024 0.004 0.001 
50_10_3 535 1176 1686 2360  0.048 0.021 0.003 0.001 
50_15_1 41 96 150 186  0.241 0.059 0.027 0.016 
50_15_2 559 1273 1995 2767  0.205 0.055 0.023 0.013 
50_15_3 4262 9592 14593 20791   0.039 0.030 0.011 0.002 
 

As can be observed in the above results, the average computational time of the test 

instances on a 50 node network across all combinations was 6865 seconds. A maximum time of 

24461 seconds resulted under 3 facility attacks and 15 facilities. Although the CPU times are 

high, considering that the protection design problem presented here is a strategic decision 

problem the computational efforts of the proposed solution algorithm is acceptable. We remark 

that the need to incorporate more elements of resilient design in an already difficult nested 

optimization modeling framework, poses additional computational burden. In this analysis we 

limited the attacks to a few facilities considering that simultaneous attacks on many facilities is 

rare. Also we have limited the budget of protection which limits the depth of our search tree. 

Nevertheless, the proposed methodology has extended the scope of implicit enumeration 

algorithm and the bi-level fortification interdiction problems. 
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4.4 Chapter Summary 

 

In this Chapter, we extended the responsive contingency planning model to incorporate 

congestion effects. The incorporation of congestion makes the model more robust to operate 

under realistic situations. A non-linear congestion cost function was developed to model 

congestion related costs due to increased flow volume on facilities. This convex non-linear 

function was then linearized applying piecewise linearization technique in which a set of tangent 

hyperplanes determined the linear congestion costs under varying flow levels at facilities. The 

incorporation of linear congestion cost function in the responsive contingency model enabled its 

formulation as a MILP. The tri-level responsive contingent planning model under congestion 

was then solved applying implicit enumeration technique. Computational efficiency of the 

algorithm was demonstrated using a 50 node (demand) network under varying number of 

facilities and attack levels. The impact of interval granularity (K) for linear approximation of the 

congestion cost function was analyzed as this significantly affected the computation time. It is 

demonstrated that as K increases, the relative errors of linear approximations are low but CPU 

time grows significantly.  

 

This chapter has demonstrated that congestion affects design decisions of protection. We 

have demonstrated that the supply flow allocation which is more balanced is optimal under 

congestion effects as it lower over utilization of a single facility (and hence congestion).  This 

allocation requirement implies that traditional model solutions cannot be relied when congestion 

effects are significant. We demonstrate the value of congestion through empirical study 

comparing network total costs of a congestion incorporated model to a conventional (congestion 
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impacts ignored) model. It was observed that when supply network’s congestion associated costs 

are high, it is better to rely on protection designs and models that take this factor into account, 

even though one may substitute traditional solutions when congestion effects are low or 

negligible.  

 

The trade-off of congestion costs with the operational cost of transportation and lost sales 

were investigated and the optimal protection strategies under varying congestion severity were 

analyzed. The results demonstrate that decentralized protection is generally a preferred strategy 

under congestion conditions. However, when congestion severity is very high, the marginal 

increase of congestion cost for unit flow recovery through production backup is much higher 

than the decrease in the cost of lost sales. Under this condition it may be appropriate to centralize 

protection in order to keep the total network costs low. 
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Chapter Five: Conclusion and Future works 
 

5.1 Summary 

 

This dissertation proposes new mathematical models and appropriate mechanisms to 

address supply chain disruption risk mitigation and management problem. It focuses on 

enhancing supply chain responsiveness under disruption through contingency planning involving 

backup sourcing. In the first part of this dissertation, a game theoretic mathematical model is 

developed for generating contingency strategy involving appropriate volume and response 

speeds of a backup resource and protection of critical supply facilities. The major contribution of 

this model is in having a proper representation of the available backup resource capacity during 

disruption periods which enable more effective risk mitigation solutions. An illustrative example 

involving single facility attack is used to demonstrate that instantaneous production capacity 

assumptions lead to capacity overestimations and inappropriate mitigation solutions and 

inadequate recourse actions during major disruptions. Furthermore, through this example the 

demand routing characteristic optimal under a capacitated system is demonstrated. In particular, 

the importance of flow re-allocations rather than contingent re-routing in a capacitated network 

is established.  

 

The developed model is tested on two hypothetical networks with different initial capacity 

distributions to demonstrate that network topologies affect its vulnerability to disruptions and 

contingency strategies of protection can be different under varying network configurations. It is 

demonstrated that identical capacity distributions result in risk diversification effect, and are 

effective for controlling losses under a major disruptions. However, the relative efficiency 

improvements through protection are lower for such networks than networks with non-identical 

capacity distributions in its facilities. Through this analysis, it is observed that planning against a 

more capable adversary (higher number of attacks), necessitate the need to disperse or 

decentralize protection in order to spread out risk.  
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A solution methodology based on implicit enumeration algorithm utilizing the structure 

of the problem is developed in this part of the dissertation for solving the proposed model. The 

methodology extends the scope of implicit enumeration algorithm in handling multi-level of 

protections. The computational performance of the developed algorithm is assessed with respect 

to the variations in the budget of protection, number of attacks, number of facilities and number 

of demands. It is observed that computational time increase with the increase of budget level, 

attack levels, number of facilities or the number of demands. Raising the protection budget or the 

attack level lead to increase in the size of the search tree which affect the computational time. As 

well, increasing number of facilities and the number of demands both raise computation time but 

the effect of raising the number of facilities is higher than the effect of raising the number of 

demands. 

 

In the second part of the dissertation, we analyze the impact of congestion on responsive 

contingency planning against major disruptions. In many supply systems, congestion related 

costs are severe and disruptions tend to raise such costs. Congestion effects need to be 

considered during the planning stages. We therefore extend the responsive contingency planning 

model developed in the first part of the dissertation to incorporate congestion effects.   

Incorporation of congestion effects makes the proposed model even more robust to handling 

major disruptions. Through empirical study we demonstrate that congestion affects design 

decisions of protection. A significant savings in network costs can result by relying on models 

that explicitly incorporate congestion effects than the models that ignore congestion. A 

centralized protection which adds high volume back up capacity faster at higher response speeds 

is generally not desirable under congestion of the network, even though such protection plans 

can be utilized when there is no congestion.  
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5.2 Limitations and Future directions 

 

This dissertation leads to interesting future avenues which include the extension of the 

proposed model, improvements on solution methods and study of related problems. An obvious 

extension to the proposed model would be to relax some of the assumptions. For example, the 

considered problem assumes that facilities protected, i.e., where backup production is planned, 

never loses its base capacity. In practice, achieving facilities completely immune to disruptions is 

difficult. Relaxing this assumption will make our model more realistic. Further, focusing more 

on the recovery aspect or the contingent mechanism of protection, the model lumps the cost of 

protection into the cost of backup selection. Although this assumption is not restrictive, it may be 

possible to segregate budget into hardening or security of facilities and backup up production and 

let the model decide where to invest on security and where to invest on backup production. Few 

other model extensions can be:  a) integrating location decisions with protection decisions for 

design of new networks b) partial interdictions (i.e. attack not 100% successful) than complete 

interdiction c) probabilistic disruption considerations rather than deterministic 

 

In the solution methodology, the proposed approach has extended the scope of implicit 

enumeration approach in handling multiple levels of protection as earlier works considered 

protection at single level only. Although computation times grow, this approach can be utilized 

in solving larger problem instances since the responsive capacity planning problem dealt in this 

dissertation is of strategic nature. When decision makers are more risk averse, they tend to 

implement solutions that are robust under more severe attacks and larger network topologies 

involving larger protection budgets. Since the search tree grows with these considerations, it may 

be worthwhile to develop reduction rules to reduce the size of the search tree. The use of 

heuristic rules within the implicit enumeration scheme would reduce the computation time and 

therefore enhance the applicability of this methodology.  

 

A related future work to this dissertation can involve areas such as emergency relief, and 

crime protection, infectious disease spread-out protection, etc. In these areas, response and 
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recovery aspects are critical. The decisions may involve how to preposition shelters, inventories, 

etc or how to deploy security forces so that disruption responses are efficient.  The backup 

production volume and the response speed factors under these circumstances can be viewed as 

sets of activities each involving a response time, and therefore decisions would involve selection 

of appropriate activities and their proper speeds of response. The model developed in this 

dissertation can therefore be successfully adapted in such application areas.   
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APPENDIX A: DISTANCE, DEMANDS AND FACILITY BASE CAPACITY DATA 

INPUTS  

A.1. Distance and demand quantities data inputs (Chapter 3 and Chapter 4 ) 

City Demand
 New York 

NY 
 Los Angeles

 CA 
 Chicago

 IL 
 Houston

 TX 
 Philadelphia

 PA 
 Phoenix

 AZ 
 San Diego

 CA 
 Dallas

 TX 
 San Antonio

 TX 
 Detroit

 MI 
 San Jose

 CA 
 Indianapolis

 IN 

 San 
Francisco

 CA 
 Jacksonville

 FL 
 Columbus

 OH 
 Austin

 TX 
 Memphis

 TN 
 Baltimore

 MD 
 Milwaukee

 WI 
 Boston

 MA 
 New York NY 8104 1 2458 718 1421 78 2142 2429 1372 1584 489 2554 647 2573 836 480 1513 956 171 740 191

 Los Angeles CA 3805 2458 1 1747 1381 2399 367 116 1250 1211 1985 294 1815 340 2154 1983 1235 1612 2324 1746 2601
 Chicago IL 2935 718 1747 1 939 667 1446 1726 800 1049 238 1836 164 1855 864 277 975 482 607 86 854
 Houston TX 2029 1421 1381 939 1 1345 1015 1300 225 189 1108 1605 868 1644 822 995 147 485 1253 1007 1607

 Philadelphia PA 1523 78 2399 667 1345 1 2079 2367 1300 1509 446 2501 585 2521 764 417 1438 882 93 697 268
 Phoenix AZ 1396 2142 367 1446 1015 2079 1 298 887 847 1683 609 1495 652 1792 1663 869 1262 1999 1457 2296

 San Diego CA 1260 2429 116 1726 1300 2367 298 1 1182 1125 1963 409 1783 456 2087 1951 1154 1559 2290 1730 2578
 Dallas TX 1234 1372 1250 800 225 1300 887 1182 1 253 998 1449 764 1485 906 913 181 420 1211 856 1550

 San Antonio TX 1189 1584 1211 1049 189 1509 847 1125 253 1 1238 1448 1000 1488 1011 1141 75 632 1418 1107 1767
 Detroit MI 960 489 1985 238 1108 446 1683 1963 998 1238 1 2069 240 2087 837 166 1164 626 401 252 617

 San Jose CA 922 2554 294 1836 1605 2501 609 409 1449 1448 2069 1 1926 47 2340 2090 1462 1775 2433 1821 2681
 Indianapolis IN 804 647 1815 164 868 585 1495 1783 764 1000 240 1926 1 1948 701 169 926 387 510 246 808

 San Francisco CA 800 2573 340 1855 1644 2521 652 456 1485 1488 2087 47 1948 1 2373 2112 1501 1805 2455 1838 2699
 Jacksonville FL 762 836 2154 864 822 764 1792 2087 906 1011 837 2340 701 2373 1 672 960 588 683 947 1019
 Columbus OH 715 480 1983 277 995 417 1663 1951 913 1141 166 2090 169 2112 672 1 1067 512 343 334 644

 Austin TX 682 1513 1235 975 147 1438 869 1154 181 75 1164 1462 926 1501 960 1067 1 559 1347 1034 1695
 Memphis TN 666 956 1612 482 485 882 1262 1559 420 632 626 1775 387 1805 588 512 559 1 792 561 1137
 Baltimore MD 664 171 2324 607 1253 93 1999 2290 1211 1418 401 2433 510 2455 683 343 1347 792 1 645 360
 Milwaukee WI 605 740 1746 86 1007 697 1457 1730 856 1107 252 1821 246 1838 947 334 1034 561 645 1 862

 Boston MA 598 191 2601 854 1607 268 2296 2578 1550 1767 617 2681 808 2699 1019 644 1695 1137 360 862 1
 El Paso TX 585 1899 712 1243 672 1831 348 629 569 500 1472 954 1259 995 1468 1423 526 973 1746 1271 2066
 Nashville TN 584 761 1786 395 667 687 1442 1739 615 824 473 1934 252 1962 501 335 752 196 597 481 944
 Denver CO 583 1626 843 910 876 1571 587 835 661 799 1146 933 993 956 1461 1158 768 876 1501 904 1762
 Seattle WA 578 2409 957 1734 1891 2375 1111 1060 1683 1786 1932 714 1870 681 2454 2010 1770 1869 2330 1686 2490

 Washington DC 578 204 2304 597 1221 127 1977 2269 1182 1387 399 2417 492 2439 649 328 1317 763 35 639 394
 Charlotte NC 560 533 2126 590 928 456 1779 2076 928 1105 512 2274 431 2301 341 352 1039 519 367 665 723
 Fort Worth TX 555 1403 1218 822 237 1330 854 1150 34 238 1024 1419 790 1455 938 941 171 451 1241 876 1580
 Portland OR 542 2444 822 1753 1834 2406 1002 928 1633 1717 1961 572 1882 538 2437 2029 1707 1850 2356 1712 2536

 Las Vegas NV 518 2236 232 1523 1231 2178 257 260 1076 1075 1760 375 1596 414 1972 1763 1088 1414 2105 1519 2376
 Tucson AZ 514 2120 455 1438 933 2054 116 367 824 759 1673 715 1474 759 1727 1641 787 1216 1973 1456 2280

 Oklahoma City OK 514 1328 1189 689 413 1260 840 1137 191 420 909 1357 689 1389 985 852 357 424 1176 732 1495
 New Orleans LA 489 1159 1686 824 328 1081 1320 1612 445 517 932 1893 705 1930 495 790 468 349 989 905 1349

 Cleveland OH 481 408 2054 311 1115 358 1744 2028 1024 1257 96 2146 263 2166 771 124 1183 631 307 340 552
 Long Beach CA 475 2454 27 1745 1364 2394 351 90 1236 1193 1982 320 1810 366 2141 1978 1218 1602 2319 1745 2599
 Albuquerque NM 455 1813 674 1123 752 1749 330 624 588 615 1359 862 1166 898 1485 1334 614 939 1670 1138 1969

 KS City MO 448 1096 1365 408 649 1035 1047 1333 455 705 640 1483 451 1508 950 619 636 374 960 438 1249
 Fresno CA 440 2460 201 1743 1487 2405 491 313 1333 1329 1977 120 1827 162 2227 1993 1343 1664 2336 1731 2592

 VA Beach VA 437 295 2375 715 1215 232 2037 2332 1206 1391 542 2504 588 2528 549 439 1325 790 180 768 471
 Atlanta GA 436 749 1941 587 701 671 1587 1884 717 881 601 2107 428 2137 287 438 817 333 579 671 939

 Sacramento CA 419 2505 353 1787 1604 2453 630 467 1439 1454 2018 91 1883 77 2321 2046 1463 1749 2388 1768 2628
 Mesa AZ 419 2128 387 1434 995 2064 21 316 868 827 1671 630 1481 673 1773 1649 849 1245 1985 1446 2283

 Oakland CA 411 2561 331 1844 1632 2509 641 447 1472 1476 2076 39 1936 13 2361 2100 1489 1792 2443 1827 2687
 Tulsa OK 399 1228 1277 593 441 1160 933 1229 236 485 810 1435 589 1466 916 752 416 340 1077 639 1395

 Omaha NE 394 1150 1317 433 796 1097 1029 1300 588 828 669 1405 528 1425 1101 689 764 536 1030 431 1286
 Minneapolis MN 392 1022 1527 354 1057 984 1274 1526 862 1109 539 1570 510 1584 1192 626 1042 703 938 295 1124

 Colorado Springs CO 379 1635 826 922 825 1577 549 809 614 742 1159 935 996 961 1436 1163 713 854 1505 922 1776
 Miami FL 375 1091 2345 1189 968 1027 1979 2267 1108 1149 1160 2557 1027 2593 327 996 1114 870 958 1273 1259

 Saint Louis MO 353 878 1593 260 680 813 1266 1557 546 792 456 1717 233 1742 754 399 717 245 734 328 1040
 Wichita KS 349 1267 1203 588 559 1204 875 1165 341 573 820 1341 620 1369 1031 788 511 445 1125 617 1424

 Santa Ana CA 348 2441 40 1732 1348 2381 335 78 1220 1177 1970 333 1797 379 2125 1965 1202 1587 2305 1733 2586

 

A.2. Facility base capacity in each time periods for 7 cities and 10 demand zone problem in 

Chapter 3 

 New York 
NY 

 Los Angeles
 CA 

 Chicago
 IL 

 Houston
 TX 

 Philadelphia
 PA 

 Phoenix
 AZ 

 San Diego
 CA 

Non-identical 8800 4500 3600 2700 2200 2100 2000
Identical 3700 3700 3700 3700 3700 3700 3700
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A.3. Facility base capacity in each time periods for 10 cities and 15 demand zones problem 

in Chapter 3 

 New York 
NY 

 Los Angeles
 CA 

 Chicago
 IL 

 Houston
 TX 

 Philadelphia
 PA 

 Phoenix
 AZ 

 San Diego
 CA 

 Dallas
 TX 

 San Antonio
 TX 

 Detroit
 MI 

Non-identical 8600 4300 3500 2600 2100 1900 1800 1800 1700 1500
Identical 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980

 

A.4.. Facility base capacity for larger networks involving 50,35, and 25 demand zones in 

Chapter 3 

 New York 
NY 

 Los Angeles
 CA 

 Chicago
 IL 

 Houston
 TX 

 Philadelphia
 PA 

 Phoenix
 AZ 

 San Diego
 CA 

 Dallas
 TX 

 San Antonio
 TX 

 Detroit
 MI 

 San Jose
 CA 

 Indianapolis
 IN 

 San Francisco
 CA 

 Jacksonville
 FL 

 Columbus
 OH 

 Austin
 TX 

 Memphis
 TN 

 Baltimore
 MD 

 Milwaukee
 WI 

 Boston
 MA 

10 facility problem 10400 6100 5300 4400 3900 3700 3600 3600 3500 3300
15 facility problem 9400 5100 4200 3300 2800 2700 2600 2500 2500 2300 2200 2100 2100 2000 2000
20 facility problem 8900 4600 3800 2800 2300 2200 2100 2000 2000 1800 1700 1600 1600 1600 1500 1500 1500 1500 1400 1400

 

A.5. Facility base capacity (identical) each time period for 10 cities 15 demand zone 

problem in Chapter 4  

 New York 
NY 

 Los Angeles
 CA 

 Chicago
 IL 

 Houston
 TX 

 Philadelphia
 PA 

 Phoenix
 AZ 

 San Diego
 CA 

 Dallas
 TX 

 San Antonio
 TX 

 Detroit
 MI 

Identical 3400 3400 3400 3400 3400 3400 3400 3400 3400 3400

 

A.6. Facility base capacity for 50 demand zone problem in Chapter 4 

 

 New York 
NY 

 Los Angeles
 CA 

 Chicago
 IL 

 Houston
 TX 

 Philadelphia
 PA 

 Phoenix
 AZ 

 San Diego
 CA 

 Dallas
 TX 

 San Antonio
 TX 

 Detroit
 MI 

 San Jose
 CA 

 Indianapolis
 IN 

 San Francisco
 CA 

 Jacksonville
 FL 

 Columbus
 OH 

5 facility problem 10950 10950 10950 10950 10950
10 facility problem 5475 5475 5475 5475 5475 5475 5475 5475 5475 5475
15 facility problem 3650 3650 3650 3650 3650 3650 3650 3650 3650 3650 3650 3650 3650 3650 3650
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