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ABSTRACT 

 

Softwarization of Large-scale IoT-based Disasters Management Systems 

Carla Mouradian, Ph.D. 

Concordia University, 2018 

 
 

The Internet of Things (IoT) enables objects to interact and cooperate with each other for 

reaching common objectives. It is very useful in large-scale disaster management systems where 

humans are likely to fail when they attempt to perform search and rescue operations in high-risk 

sites. IoT can indeed play a critical role in all phases of large-scale disasters (i.e. preparedness, 

relief, and recovery). Network softwarization aims at designing, architecting, deploying, and 

managing network components primarily based on software programmability properties. It relies 

on key technologies, such as cloud computing, Network Functions Virtualization (NFV), and 

Software Defined Networking (SDN). The key benefits are agility and cost efficiency.  This thesis 

proposes softwarization approaches to tackle the key challenges related to large-scale IoT based 

disaster management systems.  

A first challenge faced by large-scale IoT disaster management systems is the dynamic 

formation of an optimal coalition of IoT devices for the tasks at hand.  Meeting this challenge is 

critical for cost efficiency.  A second challenge is an interoperability. IoT environments remain 

highly heterogeneous. However, the IoT devices need to interact. Yet another challenge is Quality 

of Service (QoS). Disaster management applications are known to be very QoS sensitive, 

especially when it comes to delay. 

To tackle the first challenge, we propose a cloud-based architecture that enables the formation 

of efficient coalitions of IoT devices for search and rescue tasks. The proposed architecture enables 

the publication and discovery of IoT devices belonging to different cloud providers. It also comes 

with a coalition formation algorithm.  For the second challenge, we propose an NFV and SDN 

based - architecture for on-the-fly IoT gateway provisioning. The gateway functions are 

provisioned as Virtual Network Functions (VNFs) that are chained on-the-fly in the IoT domain 
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using SDN. When it comes to the third challenge, we rely on fog computing to meet the QoS and 

propose algorithms that provision IoT applications components in hybrid NFV based - cloud/fogs.  

Both stationary and mobile fog nodes are considered. In the case of mobile fog nodes, a Tabu 

Search-based heuristic is proposed. It finds a near-optimal solution and we numerically show that 

it is faster than the Integer Linear Programming (ILP) solution by several orders of magnitude.   
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Chapter 1 

 

1. Introduction 

 

1.1. Overview 

Internet of Things (IoT) is considered as part of the Internet of the future. IoT enables physical 

objects to interact with each other to share information and to coordinate decisions.  Radio-

Frequency IDentification (RFID) tags, sensors, and robots are examples of IoT devices. IoT can 

play a remarkable role and improve the quality of our lives in various domains. Examples of IoT 

applications include transportation, healthcare, and large-scale natural disasters where human 

decision making is difficult [1].   

Many large-scale disaster management applications rely on IoT, for example in fire detection 

and fighting, and earthquake early warning and recovery. IoT cannot stop disasters from happening 

but it can be very useful for disaster preparedness (e.g., prediction) and disaster recovery (e.g., 

search and rescue tasks). For instance, sensors can withstand a harsh environment and contribute 

in disaster predictions. They may be distributed throughout a forest to monitor the environmental 

conditions or measure earth movements before and during earthquakes. On the other hand, robots 

can operate in dangerous environments and handle search and rescue tasks. In such tasks, the 

primary goal is to find victims as quickly as possible and to rescue them with utmost care. 
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Conventional methods employ human rescuers and dogs. However, the rescue teams often cannot 

reach the disaster sites in time due to collapsed building and destroyed roads. Robots can move 

quickly and find victims more accurately than their human counterparts. They can, for instance, 

penetrate rubbles to find people beneath them. The use of robots for search and rescue mission was 

first noticed during the rescue operations at World Trade Center in New York City on September 

2001, where CRASAR (Center for Robot-Assisted Search And Rescue) rescue robots were used 

[2]. These make IoT a potential tool for large-scale disaster management applications. Hence, a 

number of different sensor and robot platforms have been designed for such applications.  

Network softwarization emerged as a concept that drastically changes the way the network 

services are designed and operated, enabling network operators to deliver network services and 

applications with greater agility, flexibility, and cost efficiency. It relies on key technologies, such 

as cloud computing, Network Functions Virtualization (NFV), and Software Defined Networking 

(SDN). Cloud computing is an emerging paradigm with inherent benefits such as cost efficiency, 

rapid elasticity, and resource pooling. NFV is an emerging paradigm to decouple the network 

functions from the underlying hardware. SDN enables the dynamic orchestration and chaining of 

VNFs to provide a flexible management of the forwarding behavior of the VNFs.       

1.2. Challenges and Thesis Contributions 

Network softwarization can facilitate the provisioning of large-scale IoT-based disaster 

management systems by tackling several challenges. Some examples are as below: 

 Dynamic formation of an optimal coalition of IoT devices: search and rescue tasks 

of disaster management applications typically involve IoT devices (i.e., robots) in the 

order of thousands to accomplish a task [3].  These robots have different capabilities 

and characteristics, and a certain task may need a coalition of robots to perform it. 

Forming dynamically an optimal coalition of robots with the required number and the 

required set of capabilities for search and rescue tasks is very challenging. In addition, 

finding the appropriate robots in a single business entity is not always possible. A single 

business entity may not provide all the capabilities and the number of robots required 

to perform a search and rescue task, and there may be need to use robots belonging to 

several business entities. Moreover, some tasks may require that the combination of a 
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given sensor and actuator should reside on the same robots or on different robots. 

Furthermore, describing these robots independently from their brands, technical 

constraints, and infrastructure provider is not straightforward. Meeting these challenges 

is critical for the cost efficiency of IoT-based disaster management applications.   

 Heterogeneity of IoT devices: different types of IoT devices are used in such large-

scale disasters. These IoT devices are usually heterogeneous, each with its own 

communication protocol and/or data formats. To enable interoperability across IoT 

devices and applications, gateways are needed to bridge the traditional communication 

networks and IoT devices domain. Such gateways are generally centralized and thus 

not practically feasible in the Mobile Ad-hoc Networks (MANET) setting of large-

scale disasters where there is no centralized or fixed infrastructure. In addition, their 

capabilities do not scale when the number of applications and the corresponding 

workload of IoT devices changes dynamically. Moreover, they lack dynamicity and 

flexibility. For instance, when a new brand of IoT devices is added to the infrastructure 

the gateway needs to be upgraded on-the-fly such that it can serve the newly added IoT 

devices. In addition, when several applications use IoT devices with the same protocols 

and/or information models, the same gateway could be reused by these applications. 

Upgrading and reusing existing gateways is very difficult and expensive. Therefore, 

the IoT gateways architectures need to be rethought. 

 QoS of disaster management applications: disaster management applications are 

known to be very QoS sensitive, especially when it comes to delay. Many service 

providers use cloud computing to deploy their applications. However, the fundamental 

limitation is the connectivity between the cloud and the IoT devices. Such connectivity 

is set over the Internet and is not suitable for latency-sensitive applications such as 

disaster management applications. Furthermore, cloud-based applications are often 

distributed and made up of multiple components. Consequently, it is not uncommon to 

sometimes deploy application components separately over multiple clouds (e.g., [4] 

and [5]). This worsens the latency due to the overhead induced by inter-cloud 

communications.  The location of application components has a significant impact on 

the overall application execution cost and makespan. Thus, there is a need for efficient 

algorithms for application component placement.  
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Unfortunately, the solutions proposed so far do not address all these challenges. This Ph.D. 

thesis proposes softwarization approaches to tackle the architectural and the algorithmic challenges 

related to large-scale IoT-based disaster management systems. It makes three main contributions 

which are presented as follows. Each of our contributions corresponds to a challenge addressed by 

this thesis. 

1.2.1. Cloud-based System for Disaster Management Applications [6], [7] 

In the first contribution, we tackle the architectural and the algorithmic challenges for cost-

efficient IoT-based disaster management applications provisioning. At the architectural level, we 

propose a cloud-based solution that allows selecting the most efficient group of robots for the 

search and rescue tasks of disaster management applications. In addition, the architecture allows 

publishing and discovering robots belonging to different infrastructures. A well-defined language 

to describe robot capabilities based on existing standards is also considered. This is important 

when considering robots with different platforms (e.g., different capabilities, sizes, and shapes). In 

addition, a proof of concept prototype to validate the feasibility of the approach is also developed. 

The new architecture enables flexible, elastic, and cost-efficient use of robots, benefiting the cloud 

advantages such as virtualization and scalability.  

At the algorithmic level, the goal is to ensure that the optimal coalition of robots is selected 

dynamically with the required capabilities for resource efficiency. In addition, location constraints 

regarding the capability distribution of the robots are taken into consideration. This is necessary in 

order to ensure proper execution of the sub-tasks belonging to the search and rescue task. Extensive 

simulation experiments are also conducted, and the proposed algorithm is compared with other 

existing algorithms. The simulation results demonstrate that the proposed algorithm cannot only 

improve the solution but can also significantly reduce the processing times.  

1.2.2. An Architecture for IoT Gateway based on NFV and SDN [8], [9], [10] 

The second contribution is an architecture for IoT gateway based on NFV and SDN. Both 

centralized and distributed approaches are considered. For the centralized approach, the elastic 

scalability of the architecture is considered, which is crucial to adapt to the accelerated growth of 

the number of applications using the IoT devices. The architecture relies on a simple dynamic 

resource allocation algorithms to meet the growing demand of applications. Existing algorithms 

such as [11] and [12] are used as a basis. For the distributed approach, the proposed architecture 
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considers co-locating the gateway functions with the IoT devices and reusing already deployed 

gateways. It also considers handling the traffic and chaining between the gateway functions 

dynamically. For both approaches, a high-level description of the proposed architecture that is 

composed of two planes is provided, and a detailed description of each plane with their 

corresponding interfaces and procedures is presented. The proposed architectures are implemented 

as a proof of concepts in order to evaluate their viability and performance level. The performances 

results show advantages of using on-the-fly provisioning of IoT gateways and the possibility of 

reusing and updating a pre-existing gateway. 

1.2.3. Application Component Placement Algorithm over Hybrid Cloud/Fog NFVI [13], 

[14], [15] 

The third contribution is an application component placement algorithm over hybrid NFVI-

based cloud/fogs. Our critical review of the existing cloud/fog systems [13] shows the need for a 

component placement algorithm for IoT applications over hybrid cloud/fog infrastructures. Fog 

computing helps in meeting the QoS. We consider both stationary and mobile fog nodes. The 

applications are considered as sets of interacting components that can be executed in sequence, in 

parallel, or by using more complex constructs such as selection and loops. The mobility of fog 

nodes is modeled using the Random Waypoint (RWP) model [16]. Based on the stationary 

distribution fog nodes’ location, the expected makespan and cost for the constructs of sequence, 

parallel, selection, and loop are calculated. Next, the constructs’ calculations are aggregated to 

obtain the application’s makespan and execution cost. The problem is formulated as an Integer 

Linear Programming (ILP) problem and, regarding the complexity, Tabu Search-based heuristic 

is proposed to find the sub-optimal solution. The performance results show that the proposed 

algorithm reaches the optimality in several scenarios and reduce the execution time significantly 

compared to the ILP by many orders of magnitude. 

1.3. Background Information 

This subsection presents the background information that is relevant to our research domain.  

The background information covers four topics: Internet of Things, disaster management systems, 

network softwarization, and fog computing. 
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1.3.1. Internet of Things 

The Internet of Thing (IoT) is considered as part of the Internet of the future. It is a novel 

paradigm that is gaining the attention of modern wireless telecommunications. It is present around 

us of a variety of things or objects such as Radio-Frequency IDentification (RFID) tags, sensors, 

actuators, mobile phones, etc. which are able to interact with each other and cooperate with their 

neighbors to achieve common goals [17].  

IoT concept can be realized by several enabling technologies. One example is identification, 

sensing, and communication technologies such as RFID tags that are characterized by a unique 

identifier and sensor networks composed of several nodes communicating in a wireless fashion, 

etc. Another example is the middleware which is a software layer positioned between the 

technological and the application levels. IoT middleware’s architectures proposed in the last years 

often follow the Service Oriented Architecture (SOA) approach. It simplifies the development of 

new services and the integration of legacy technologies with the new ones. It has five layers: 

 Applications layer on top of the architecture, it exploits the functionalities of the other layers 

and provides it to the end-user. 

 Service composition layer which provides the functionalities of the composition of different 

services by the objects to build specific applications.  

 Service management layer provides functionalities such as object discovery, status monitoring, 

and service configuration. It enables the remote deployment of new services during run-time 

to meet the application requirements.  

 Object abstraction which provides an abstraction of the heterogeneous objects by harmonizing 

the access to the different objects. This is done by offering common languages and procedures.  

 Trust, privacy, and security management layer which provides functionalities related to the 

security and the privacy of the exchanged data.  

IoT can be present in a variety of fields such as domotics, assisted living, e-health, enhanced 

learning, automation and industrial manufacturing, logistics, business management, and large-

scale disaster management - to name few.  Moreover, many standardization efforts are being 

carried for the IoT paradigm. For instance, IETF introduced the IPV6 over Low-Power Wireless 
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Personal Area Networks (6LoW-PAN) which defines a set of protocols that can be used to 

integrate sensors nodes into IPV6 networks.  

1.3.2. Disaster Management System 

Natural disasters such as earthquakes, wildfires, flooding, etc., happen daily worldwide and 

represent an important factor that affects human life and development. Such disasters, manmade 

and natural, are a cause of great economic and human losses each year throughout the world [18]. 

One example is the large-scale earthquake that hit Kobe, Japan, on January 17, 1995. Measuring 

6.9 magnitudes, it was the deadliest to hit Japan in 47 years, with more than 5000 dead and more 

than 13,000 injured. It smashed more than 103,521 buildings, leaving a large number of bodies 

under debris. Damage from Kobe earthquake cost around $100 billion.  An important issue that 

needs to be solved when a disaster occurs, is to preserve human lives. In this context, the first 72 

hours after the disaster hit are the most critical [19]. This means that the search and rescue 

operations must be completed quickly and efficiently. The IoT can be very useful for disaster 

preparedness (e.g., prediction) and disaster recovery, in particular, it can participate in the 

following three phases of disaster management [19]: 

 Pre-disaster preparedness: this phase is concerned with surveying-related events that precede 

the disaster. For instance, processing data of environmental conditions collected from 

different sensors, e.g., acceleration of physical objects, seismic waves, and threshold sensing, 

and setting up early warning systems. 

 Disaster assessment: this phase provides situational awareness during the disaster in real-time 

and completes damage studies for logistical planning. For instance, damage-assessment maps 

are produced in this phase that allow responders to serve areas that experienced more damage 

first. In addition, the affected areas are monitored through drones to detect locations of 

possible human being presence under the ruins 

 Disaster response and recovery: in this phase, the communications backbone is formed, and 

search and rescue strategies are implemented. These strategies are implemented according to 

the area size and conditions. Accordingly, whether to send first responders, rescue robots, or 

both to assist in recovery procedures is decided. 
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1.3.3. Network Softwarization 

Traditionally, network operators deploy physical proprietary devices and equipment for each 

function that is part of a given service [20] hence they lack dynamicity and flexibility. In addition, 

it is difficult and expensive to upgrade or reuse existing functions or services. Network 

softwarization, in contrast, enables flexibility, adaptability, and reconfiguration of a network on 

the fly based on timely requirements [21]. It is the concept of designing, architecting, deploying, 

and managing network components, primarily based on software programmability properties. 

Network softwarization has shown huge potential in revolutionizing the way the network services 

are designed and operated enabling network services and applications with greater agility and cost 

efficiency. The network softwarization term was first introduced at the academic conference 

NetSoft 2015, the first IEEE conference on Network Softwarization. The main goal was to include 

a broader interest in NFV, SDN, and cloud computing.  

NFV [20], by leveraging virtualization technology, offers a new way to design, deploy, and 

manage network service. It decouples the network functions from underlying hardware to run them 

as software instances (i.e., Virtual Network Functions [VNFs]) on general purpose hardware. The 

decoupling reduces operational expenditures by leveraging efficiencies that derive from 

virtualization in cloud computing such as elastic scalability, flexibility, and customization. The 

 

Figure 1.1 A high-level architecture of NFV 
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European Telecommunications Standards Institute (ETSI) has defined a reference architectural 

framework for NFV [22]. It is made up of a set of three main components as shown in Figure 1.1: 

VNFs, NFV Infrastructure (NFVI), and an NFV Management and Orchestration (MANO) 

framework. VNFs are the software implementation of given network functions. The NFVI 

provides hardware and software resources, including the computation, storage, and networking 

needed to deploy, manage, and execute VNFs. The NFV MANO framework enables the automated 

management of the VNFs by managing the NFVI and orchestrating the allocation of resources 

needed by the VNFs. It consists of three functional blocks: NFV Orchestrator (NFVO), VNF 

Manager (VNFM) and Virtualized Infrastructure Manager (VIM). The NFVO is responsible for 

the orchestration of the NFVI resources and the lifecycle management of the network services. 

The VNFM manages the lifecycle of the VNFs. The VIM is responsible for managing and 

controlling the NFVI. In NFV, an end-to-end network service is realized by an ordered set of VNFs 

that are deployed in the network and chained. This chain is called VNF Forwarding Graph (VNF-

FG).  

SDN [23] aims at splitting the control plane and the data plane in the network elements to 

provide a flexible management of the forwarding behavior of those elements. It can enable the 

easy on-the-fly chaining of these network functions. It also enables faster innovation, leading to 

 

Figure 1.2 A high-level architecture of SDN 
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greater responsiveness and cost-effectiveness. The architecture of SDN contains three planes as 

shown in Figure 1.2: a management plane, a control plane, and a forwarding plane. The SDN 

application resides at the management plane. Its role is to communicate its requirements (e.g., the 

desired network behavior) to the control plane. This is done by defining a set of application policies 

and injecting them into the control plane. The control plane contains the SDN controller, whose 

responsibility is to translate the requirements of the SDN application to the forwarding plane. To 

that end, the SDN controller programs the forwarding plane by populating the SDN switches with 

well-defined flow entries (forwarding rules). The forwarding plane consists of forwarding 

elements such as switches and routers that allow traffic forwarding based on the flow entries that 

reflect the application’s policies. SDN is highly complementary to NFV. Both are closely related 

technologies and are mutually beneficial (but not dependent). By using SDN, the network routers 

and switches can be dynamically programmed to steer the traffic through a set of VNFs. 

Cloud computing has emerged as a viable delivery model for IT resources. It leverages 

virtualization technology to enable on-demand network access to a shared pool of configurable 

resources (e.g., networks, servers, storage, applications, and services). It has brought new business 

models and enormous benefits to enterprises. It comes with several inherent capabilities such as 

scalability, on-demand resource allocation, reduced management efforts, flexible pricing model, 

and easy applications and services provisioning [24]. Virtualization is a key enabling technology 

for cloud computing, allowing the abstraction of actual physical computing resources into logical 

units and enabling their efficient usage by multiple independent users. Virtualization can be 

performed at both node- and network- levels. Robot node-level virtualization is defined as the 

mechanisms that enable multiple applications to reside in and run concurrently on a single robot 

[25]. And, robot network-level virtualization is the dynamic formation of subsets of robot nodes, 

with each subset dedicated to a certain application at a given time [25]. 

Currently, the network operators are transforming their infrastructure to NFV and SDN enabled 

cloud infrastructures. NFV, SDN, and cloud together are driving the softwarization of networks 

toward a paradigm where software controls the treatment of flows in the network and deliver 

customized characteristics that meet the needs of each application. This allows reinventing future 

network architectures and facilitates infrastructure management. 
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1.3.4. Fog Computing 

Fog is an extension of cloud computing paradigm from the core to the edge of the network. It 

is not a completely new concept. Cyber foraging, cloudlet, and Mobile Edge Computing (MEC) 

were introduced before the fog to bring computing closer to end devices [13].   

 Fog enables computing at the edge of the network, closer to IoT devices. It also supports 

virtualization. Fog is tightly linked to the existence of a cloud, i.e., it cannot operate in a standalone 

mode. This has driven a particular attention on the interactions between the cloud and the fog [26]. 

Moreover, fog extends the three-tier hierarchy of cloudlet to an n-tier one, offering more flexibility 

to the system [27][28]. Fog also provides life-cycle management of applications distributed over 

the n-tier hierarchy, through the “Fog Service Orchestration Layer” [27].  

Figure 1.3 shows a fog system with a three-tier architecture. It has three strata: The cloud 

stratum, the fog stratum, and the IoT/end-users stratum. The fog stratum can be formed by one or 

more fog domains, controlled by the same or different providers. Each of these fog domains is 

formed by the fog nodes that can include edge routers, switches, gateways, access points, PCs, 

smartphones, set-top boxes, etc. The communication between the IoT devices and the fog nodes is 

 

Figure 1.3 The fog system 
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done through Local Area Network (LAN). Instead, the communication between the IoT devices 

and the cloud nodes requires connection over the Wide Area Network (WAN), through the fog or 

not.  

1.4. Thesis Outline  

The rest of the thesis is organized as follows. Chapter 2 discusses the motivating scenario, 

requirements, and provides a critical review of the state-of-the-art. We organize the thesis into 

architectural contributions and algorithmic contributions. Accordingly, for the architectural 

contribution, Chapter 3 presents a cloud-based architecture for cost-efficient IoT-based disaster 

management application provisioning, Chapter 4 presents the proposed NFV-based centralized 

architecture for IoT gateway, and Chapter 5 presents an NFV and SDN –based distributed 

architecture for IoT gateway. For the algorithmic contributions, in Chapter 6 we present a coalition 

formation algorithm for multi-robot task allocation and in Chapter 7 we discuss the application 

component placement problem over hybrid cloud/fog NFVIs and present the proposed ILP model 

and the heuristic for that. Finally, we conclude this manuscript in Chapter 8 and provide future 

directions for this research work. 
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Chapter 2 

 

2. Related Work  

 

In this chapter, we first present a motivating scenario. Then, we present a set of requirements 

derived from the scenario.  Finally, we survey and review the related work in light of these 

requirements. 

2.1. Motivating Scenario 

An earthquake early warning and recovery application can illustrate the motivation behind our 

work. The application is considered that consists of two phases: an early warning phase and a 

recovery phase. In the first phase, the application monitors the environmental conditions by 

collecting environmental data such as the acceleration of physical objects, wind speed, etc. In the 

second phase, the application monitors the affected areas and performs search and rescue tasks.  

In the early warning phase, the monitoring of the disaster can be facilitated by the use of IoT 

devices. Data can be acquired by real-time GPS sensors, accelerometer sensors hosted in homes, 

business or schools [29]. In addition, the monitoring can be performed by using unmanned aerial 

vehicles (UAV) such as drones. Drones have several benefits such as small size, exposure to 

dangerous environments, and low cost of operation. Drones are usually equipped with camera 
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sensors which can capture images. The collected images are processed later to produce damage-

assessment maps to allow responders to service areas that experienced more damage first. 

In the recovery phase, after the disaster occurs, emergency rescue teams are created 

immediately, and troops are sent to assist the search and rescue operations. However, these teams 

have a hard time reaching the quake site because of the lack of information about the quake sites 

and blocked roads. To successfully complete this search and rescue operation is even beyond 

human capacity when the scale of a disaster is too large. IoT devices can be an alternative. Robots, 

for instance, have a wide range of capabilities. They could make a noticeable contribution in such 

large-scale scenarios. Some can be equipped with sound sensors to detect voices or other sounds 

of possible human presence through the ruins. They use specialized arms to sift through debris. 

Others carry thermal sensors to detect body heat. Some robots with hexapod legs can walk over 

the debris – where humans cannot – and pass a camera rod into the debris to assist in the search. 

With these possibilities, they outdo their human counterparts in of crisis situations on site. 

Moreover, drones can make finding the earthquake survivors faster and easier. They can fly and 

capture images to identify possible human presence under the ruins and inform rescue agencies to 

send first responders or rescue robots, or both in some cases. 

This earthquake early warning and recovery application can be made up of several 

components, such as:  

 Early Warner and Analyzer (EW) – process data of environmental conditions such as 

acceleration of the physical objects, images, seismic waves, etc., and accordingly detect 

prospective disaster.    

 Warning Alert Issuer (WA) – warns the community with smartphones of imminent hazard 

(similar to Zizmos [30]), also it can be connected to television networks and broadcasting 

media to alert the citizens (similar to Grillo [31]). 

 Map Producer (MP) – processes the data relevant to the earthquake to determine the 

earthquake epicenter location and direction of seismic waves and provides damage-assessment 

maps allowing responders to service areas that experienced more damage first. 

 Victim Detector (VD) – monitors the affected areas and detect locations of possible human 

being presence under the ruins. 
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 Rescue Strategies (RS) – implements rescuing strategies according to the area size and 

conditions and decides whether to send first responders (First Responders (FR)), rescue robots 

(Robots Dispatcher (RD)), or both (Human-Robot Team (HR)) to assist in recovery 

procedures. 

 Historical Storage (HS) – collects historical information gathered about a particular seismic 

event. 

Some of these components can be very latency sensitive such as Early Warner & Analyzer and 

Victim Detector, while others can be computationally intensive and delay tolerant such as 

Historical Storage. The following interactions can happen between the different components: 

1- The Early Warner & Analyzer analyses and processes the data received by different sensors 

such as seismic sensors and camera sensors. For instance, it processes the images and the 

seismic waves automatically and identifies events of interest, such as potential disasters.  

2- The Early Warner & Analyzer also sends the selected data to Historical Storage for long-term 

storage and analysis. 

3- When the Early Warner & Analyzer detects a potential earthquake, it sends the information to 

the Warning Alter Issuer to alert the public.  

4- It also sends the information (images, seismic data) to the Map Producer to find the epicenter 

location and produce assessment maps.  

5- The produced maps are sent to Warning Alter Issuer so the latter can send it to different 

departments (e.g., fire department, public transportation, etc.). 

6- The produced maps are also sent to Historical Storage for further analyses.  

7- The Map Producer sends the information of the earthquake to Victim Detector to find victims. 

8- The Victim Detector monitors different areas to detect locations of possible human being 

presence using camera sensors. When it finds victims, it sends the relevant images to the 

Rescue Strategies. 

9- The Rescue Strategies take an immediate life-saving decision and start the rescue mission. It 

instructs either First Responders (FR), Robots Dispatcher (RD), or Human-Robot Team 

(HR) to start the rescue operations.  

Different IoT platforms have been designed for such large-scale disaster applications that 

typically involve IoT devices in the order of thousands to accomplish a mission. These IoT devices 
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might belong to different business entities. They can be provisioned through several infrastructures 

owned by different business entities. Each entity hosts IoT devices with different capabilities. In 

addition, the earthquake early warning and recovery application may have its own constraints in 

terms of communication protocols, data formats, etc. and the IoT devices may use different 

communication protocols and data formats. Moreover, after an earthquake, there is an increasing 

possibility of fire. For instance, the earthquakes in San Francisco in 1906, in Northridge in 1994, 

in Kesennuma City in Miyagi, Japan in 2011 were followed by devastating fires that lasted for 

several days. In such cases, a fire detection and fighting application might consider adding new 

types of sensors with different capabilities, communication protocols, and/or data formats to the 

infrastructure. These sensors allow the application to collect temperature, humidity, and CO2 data 

in order to evaluate the contour and the intensity of any fire it detects and to dispatch firefighter 

robots accordingly.  

2.2. Requirements 

According to the motivating scenario, the following requirements are derived. We categorize 

the requirements into architectural requirements and algorithmic requirements.  

2.2.1. Architectural Requirements 

In this subsection, we divide the requirements into general architectural requirements, 

requirements specific to the cloud-based architectures for IoT applications provisioning, and 

requirements specific to the IoT gateway.  

A) General Architectural Requirements  

The following requirements are identified as general requirements on the architectures.  

1) Elastic Scalability: the architecture should function well and be scalable in terms of the 

number of IoT devices and number of applications. Accordingly, the system should scale down 

and up in an elastic manner.  
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2) Extensible Architecture: the solution should take future growth into consideration; 

extensibility can be through adding new architectural modules such as fault management which 

may enhance the performance of the system, or through modification of existing modules. The 

extensibility can also be through the support of future scenarios and new application domains. 

3) Heterogeneity: the heterogeneity should be considered in terms of IoT devices. For instance, 

because of the diversity of IoT devices’ vendors, one system may contain IoT devices 

belonging to different providers with each having its own interface and programming language. 

This means the overall solution should be applicable to a wide variety of heterogeneous IoT 

devices.  

4) Interoperability: the proposed architecture should have an appropriate signaling and control 

interfaces, as well as appropriate data interfaces to enable interoperability at the level of 

providers and architectural modules (e.g., between the IaaS and the PaaS, between the IoT 

gateway and the application).  

B) Requirements Specific to Cloud-based Architecture for IoT Applications Provisioning 

The following requirements are considered to be important for cloud-based architecture for 

IoT applications provisioning. 

1) Network-level Virtualization: the architecture should support network-level virtualization for 

the robots since we are dealing with dynamic environments. Also, some tasks that cannot be 

solved individually or can be solved more efficiently as a group may need collaboration 

between several robots. 

2) Task Delegations: the architecture should be able to delegate tasks to robots that belong to 

other infrastructures. This is very important in some cases, such as when the capabilities or the 

number of the robots belonging to one infrastructure may not be sufficient for a given task 

which may result in incompletion of a task or completing it in a non-efficient manner.  

3) Publication/Discovery: the architecture should support the possibility to publish and discover 

idle robots with their characteristics (static, dynamic, etc.). This should be speedy and ahead 

of time if possible due to the dynamic nature of tasks. 
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C) Requirements Specific to IoT Gateway 

The following requirements are considered to be important for designing IoT gateways.  

1) Distributed: due to the ad-hoc nature of disaster scenarios where there is no centralized or 

fixed infrastructure, the gateway should be deployed in a distributed manner. 

2) On-the-fly Upgradability: the gateway should be upgraded on-the-fly when new IoT devices 

are deployed. For instance, in case of fire, new sensors should be added to the infrastructure to 

send data to the fire detection and fighting application. This leads to the need to upgrade the 

gateway such that it can serve the newly added IoT devices. 

3) Reusability: several applications should be able to use the same gateway. This may be required 

when, for instance, the sensors used by the fire detection and fighting application use the same 

protocol as the sensors used by the earthquake early warning and recovery application. 

Standard Northbound and Proprietary Southbound Interface: the gateway should 

support standard northbound and proprietary southbound interfaces. For the standard 

northbound interface, an example could be the widely used Sensor Markup Language (SenML) 

[32] carried over HTTP. It is designed to encode sensor measurements and device parameters, 

and its extension could be used as a standard interface for robots. For instance, in [33], SenML 

is extended as a unified robots description model while in [34] SenML capabilities is extended 

to provide a uniform representation of sensors and robots and to control robots. On the other 

hand, having a proprietary southbound interface is necessary since devices can be vendor lock-

in or because standard interfaces do not support the device’s functionality. 

4) Provide Key Gateway Functionalities: the architecture should provide at least some key 

gateway functions, such as protocol conversion, information model conversion, data 

aggregation, and metadata adaptation. 

5) Performance: the architecture must ensure that the execution of gateway modules achieves 

performance similar to when they are executed in a traditional gateway. In particular, the 

performance metrics that require significant attention are latency and overhead. 

2.2.2. Algorithmic Requirements  

For the algorithmic requirements, we consider that a given system will meet a given 

requirement if the algorithm either has the requirement as the main objective or the requirement is 

part of the set of constraints the algorithm should satisfy. Or, if the requirement is factored in the 
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models and operations of the algorithms. We further discuss these aspects as we present each 

requirement. 

A) General Algorithmic Requirements 

The following requirements are identified as general requirements on the algorithms.  

1) Heterogeneity: the heterogeneity should be taken into account in terms of IoT devices, fog 

nodes, and cloud nodes. Algorithms need to take this heterogeneity into account. The 

limitations of specific nodes need to be factored in the models and operations of the algorithms.  

2) QoS:  meeting the QoS requirements, such as delay, jitter, and throughput, is critical in disaster 

management systems. This thesis focuses on the delay requirements of disaster management 

applications. The algorithms should be able to minimize the time needed to perform the search 

and rescue tasks of disaster management applications and the total application execution time.  

3) Cost: the algorithm should be able to minimize the cost which is a budget for resources 

consumption, including robot deployment cost, application component deployment cost, 

cloud/fog nodes cost, and bandwidth cost.  

B) Requirements Specific to Coalition Formation of Robots 

We defined the following requirements for coalition formation algorithms for robots.  

1) Resource Optimization: the algorithm should be able to minimize the number of robots in a 

coalition performing a search and rescue task/sub-tasks in order to make robots available for 

other tasks/sub-tasks of the disaster management application. 

2) Capability Distribution of Robots: some tasks can be tied by locational constraints regarding 

the capability distribution of the robots, while others may be executed without any locational 

constraints. For instance, a combination of sensors and actuators should reside on the same 

robot, or on different robots. The algorithm should ensure this in order for the proper execution 

of the search and rescue tasks/sub-tasks.  

C) Requirements Specific to Application Component Placement over Hybrid Cloud/Fog 

The following requirements are considered to be important for designing efficient application 

component placement algorithms. They should be factored in the model and operations of the 

algorithm.  
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1) Non-deterministic Applications Graphs: the algorithm should consider non-deterministic 

application graphs, with sub-structures as selections and loops, when making the placement 

decision.  

2) Mobility: fog nodes can be mobile. Accordingly, the algorithm should be able to handle this 

mobility. An efficient algorithm should consider such mobility during the placement decision 

to avoid high cost or a long makespan as a result of assuming stationary nodes with predefined 

locations.  

2.3. Related Work 

In this section, first, the architectural related works are reviewed, then the algorithmic related 

works are reviewed. 

2.3.1. Architectural Related Works 

This subsection first, presents the related work for cloud-based architectures for IoT 

applications provisioning, and then, review the architectures for IoT gateways.  

A) Cloud-based Architectures for IoT Applications Provisioning  

We review the related work in this subsection of two areas. First, we discuss the use of robots 

in large-scale disasters. Second, we review architectures for robotic applications in the clouds.  

1) Robots in Large-Scale Disasters 

Kitano et al. [3] present a detailed analysis of search and rescue domains in large-scale 

disasters. They identify several research issues in search and rescue strategy, such as real-time 

planning and multi-agent planning, which may involve over 10,000 agents including humans and 

robots. As their main focus, they analyze the large-scale search and rescue domain and introduce 

the RoboCup-Rescue Simulation project. Among others who approach this topic, Messina et al. 

[35]  propose a robot ontology for search and rescue domains. Chatterjee et al. [36] identify the 

needs for and benefits of developing a standard description and ontologies for rescue robot features 

and disaster scenarios. However, ontologies add overhead in developing and maintaining new 

components.    
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2) Robotic Applications in Cloud 

In [25], the authors propose an architecture for robotic applications as cloud computing 

services. The proposed architecture provides support for heterogeneous robots and delegates tasks 

to robots belonging to other IaaSs. However, it does not perform network-level virtualization; 

neither does it consider large-scale disaster applications. Chen et al. in [37] propose an architecture 

that decouples robots’ sensing and actuating capabilities to offer them as SOAP-based services. 

However, they provide a solution for one robot they designed; yet, supporting heterogeneous 

robots is not addressed. Du et al. [38] have improved the architecture presented in [37] by adding 

support for network-level virtualization. However, a mechanism to delegate tasks to robots 

belonging to other clouds is another important characteristic to take into account. Turnbull et al. 

[39] propose a cloud infrastructure for robots. Their robotic cloud receives images from a vision 

acquisition and performs some computation, and finally implements an algorithm to control the 

robot behavior. However, they do not consider heterogeneous robots as their solution applies only 

to one type of robot hardware (i.e., iRobot). In [40], Liu et al. present a cloud-enabled robotics 

system where robots offload their computationally intensive tasks to the cloud.  Robot Operating 

System (ROS), a robotic middleware to develop robot software, is used as the robot platform. 

However, the authors do not discuss how to discover and publish robots.  

In [41], the authors propose a Robot as-a-Service platform that provides easy access to 

heterogeneous robots. The proposed design consists of an OCCI extension that models cloud 

robotics as-a-Service. It also includes a gateway for hosting mobile robot resources. The proposed 

platform allows users to have a unified view of all robots. However, architectural modules that 

perform network-level virtualization are not discussed. Mohanarajah et al. in [42], the authors 

propose Rapyuta, an open source PaaS framework for robotic applications. Rapyuta computing 

environment allows robots to easily access the RobotEarth knowledge repository. The latter 

enables robots to benefit from the experience of other robots. Rapyuta allows robots to offload 

heavy computation to the cloud. It dynamically provides secure computing environments for the 

robots. These computing environments are tightly interconnected, allowing robots to share their 

services and information with other robots. However, creating teams of robots or coalitions is not 

discussed. 
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B) Architectures for IoT Gateway 

In this subsection, we review the state-of-the-art for both traditional architectures for IoT 

gateways and NFV/SDN-based architectures. 

1) Traditional Architectures for IoT Gateways 

Several works have proposed IoT gateway architecture. Some designed their architecture 

without considering the use of NFV/SDN technology. For instance, Datta et al. [43] propose a 

smart M2M gateway architecture to manage the huge volume of M2M devices and endpoints. 

They extended the capabilities of CoRE Link to add additional resource types for SenML units. In 

[44], an architecture for an in-home IoT gateway is proposed. It consists of three subsystems: 

sensor node, gateway, and application platform. The architecture does not support standard or 

proprietary interfaces. A configurable, multifunctional and cost-effective architecture for smart 

IoT gateways is proposed in [45]. It is extensible since modules with different communication 

protocols can be plugged into the architecture. It also provides protocol conversion by granting a 

common frame structure for data communication. However, scalability in terms of the number of 

applications is not discussed. In addition, these gateways cannot be upgraded on-the-fly when 

introducing new types of IoT devices or new applications. 

2) NFV and/or SDN-based IoT Gateway Architectures  

Other works have investigated using NFV and/or SDN technology when designing IoT 

gateways. For instance, Li et al. [46] propose an IoT architecture based on SDN. Their proposed 

gateway allows introducing new applications through open programmable interfaces. It supports 

standard data formats using JSON and provides protocol conversion functionality as one of the 

gateway’s key functionalities. However, the proposed gateway cannot be deployed over a 

MANET, as it does not have a distributed nature. In addition, it does not enable the same gateway 

to be used by more than one application. Ojo et al. [47] propose an SDN-IoT architecture coupled 

with NFV. Their goal is to address the scalability and the mobility issues in IoT networks. They 

replace traditional gateways with SDN gateways and implement the functionalities of the gateways 

as VNFs. The VNFs are SDN-enabled. This work supports heterogeneous IoT devices and 

provides key gateway functions. Also, the programmability feature of SDN allows the gateway to 

be updated dynamically. However, a drawback of is that the proposed architecture cannot be 

deployed over ad-hoc networks since it does not have a distributed architecture. 
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Table 2.1 Architectural related work evaluation 

Salman et al. [48] propose a global IoT architecture leveraged with SDN. The proposed 

architecture inherits management and programmability capabilities from SDN and mobility 

capabilities from the fog. The gateways in the proposed architecture are SDF gateways that ensure 

interoperability between different communication protocols and heterogeneous networks, thereby 

providing key gateway functions. Their architecture also supports a standard northbound interface 

i.e., REST, and its programmability feature allows dynamically updating the gateway. However, 

the SDF-gateway does not have a distributed architecture, and so it cannot be deployed over an 

IoT MANET.   
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2.3.2.  Algorithmic Related Works 

This subsection first, presents the related work for coalition formation algorithms for robots 

and then, review the algorithms proposed for application components placement over hybrid 

cloud/fog NFVIs.  

A) Coalition Formation Algorithms for Robots 

Liu and Chen [49] propose an algorithm based on Genetic Algorithm (GA) to form the best 

coalition of robots. Authors in [50] propose a modified version of Shehory and Kraus’s algorithm. 

The major drawback of these works is that they optimize only one objective that is the overall 

utility and the coalition value respectively. However, there are other important objectives that need 

to be optimized, such as the time needed by robots to perform a given task. Agarwal et al. [51] 

propose an algorithm to form coalitions of robots for a set of tasks. The proposed algorithm tries 

to maximize the number of tasks completed and the system efficiency. Two multi-objective 

evolutionary optimization algorithms are introduced to solve this problem: A Non-Dominated 

Sorting Genetic Algorithm (NSGA-II) and a Strength Pareto Evolutionary Algorithm (SPEA-II). 

Unfortunately, factors such as the minimizing the number of robots in a coalition is not considered. 

Service et al. [52] propose a simultaneous descending auction-based approach to the task 

allocation that allows task preemption and does not exhibit any unnecessary task reassignment. 

However, their proposed algorithm does not take the capability distribution of the robots into 

consideration.  

In [53], authors assign Unmanned Aerial Vehicles (UAVs) to search and prosecute missions. 

Their objective is to minimize the coalition size and accomplish the tasks in minimum time. 

However, the cost of UAV deployment is not considered. In [54], authors propose an ant-colony 

based algorithm. They consider fix number of robots for each task. However, it is not efficient to 

fix the number of robots required for each task since robots have different capabilities and different 

capability distribution. Authors in [55], propose an algorithm based on dynamic ANT coalition 

technique. Minimizing the number of robots in a coalition is not considered. In [56], Rauniyar and 

Muhuri modify the standard GA. They proposed an adaptive Random Immigrants Genetic 

Algorithm (aRIGA) and adaptive Elitism-based Immigrants Genetic Algorithm (aEIGA). 

However, they do not consider minimizing the time needed to perform a task. 
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B) Application Component Placement over Hybrid Cloud/Fog NFVI  

In this subsection, we review the relevant literature on application component placement over 

hybrid cloud/fog NFVIs. In the first subsection, we review the proposed solutions for application 

component placement in hybrid cloud/fog systems where these components are not placed as 

VNFs. We then review the works to date on VNF-FG embedding that do not focus on hybrid 

cloud/fog systems. To the best of our knowledge, our works (i.e., [14] and [15]) are the only one 

that investigates the placement of application components as VNFs in hybrid cloud/fog NFVIs.  

1) Application Component Placement in Hybrid Cloud/Fog Systems 

Most of the proposed solutions for application component placement over hybrid cloud/fog 

systems consider stationary fog nodes, such as IP video cameras, access points, roadside units, etc. 

Few works have considered the mobility of fog nodes, such as their being located in a moving 

vehicle. In this subsection, we first review the proposed solutions that consider stationary fog 

nodes, and then we describe the proposed mechanisms that consider the mobility of the fog nodes.  

a. Application Component Placement Considering Stationary Fog Nodes 

Several different objectives have been considered in the literature for application component 

placement over cloud/fog infrastructures. Mahmud et al. [57] consider placing application 

components over cloud and fog nodes such that the user’s Quality of Experience (QoE) is 

maximized. In contrast, Deng et al. [58] doing so with the objective of minimizing the power 

consumption of cloud and fog nodes while taking additional system constraints into consideration, 

such as the delay at the user’s side. Many authors seek to minimize the application response time. 

Yin et al. [59] schedule the tasks over the cloud and the fog infrastructures with the objective of 

reducing the response time of the tasks under a specified threshold. Similarly, Pham et al. [60] 

schedule the tasks over the cloud/fog system. They aim at minimizing the execution time of a 

workflow consisting of several interacting tasks. In addition, they minimize the monetary cost of 

the rented cloud resources. However, they do not consider non-deterministic workflows.  

Other objectives have been considered besides optimizing the response time. Agarwal et al. in 

[61] propose an algorithm that distributes the workload over the hybrid cloud/fog system while 

considering the throughput maximization and the response time minimization. Taneja et al. in [62] 

propose an algorithm for dynamically distributing application components across cloud/fog 

infrastructures so that the resources are utilized in an efficient manner and the application response 
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time is minimized. In [63], Skarlat et al. model the problem as an ILP and solve it using CPLEX 

solver. Their goal is to optimize the utilization of fog nodes while satisfying the application QoS 

in terms of execution time.  Authors in [64] and [65] tackle the problem from the perspectives of 

mobile devices. Hassan et al. [64] propose the offloading of application tasks from mobile devices 

to cloud and fog nodes with the goal of minimizing the application execution time. Similarly, 

Bittencourt et al. in [65] schedule the workload offloaded by mobile users over cloud and fog 

infrastructures. They present different scheduling strategies to cope with applications with 

different objectives, such as a delay-priority strategy that prioritizes latency-sensitive applications.  

Although these solutions address the problem of application component placement in hybrid 

cloud/fog systems, they only consider stationary fog nodes with predefined locations. This 

assumption makes their approach nonfunctional when the system includes mobile fog nodes such 

as vehicles, UAVs, personal cell-phone devices, or nomadic data centers [66]. 

b. Application Component Placement Considering Mobile Fog Nodes 

Very few works have considered the mobility of fog nodes when placing application 

components over the cloud/fog system.  Zhu et al. propose an algorithm to dynamically distribute 

the application tasks across stationary fog nodes (e.g., roadside units), mobile fog nodes (e.g., 

busses), and the cloud [67]. They model the problem as a Mixed Integer Linear Programming 

(MILP) problem with the objective of finding a balance between the application latency and 

quality loss. The proposed algorithm places individual tasks on cloud/fog nodes; however, in many 

real-world applications, there are interactions among an application’s tasks that require an 

appropriate component placement mechanism. The authors in [68] propose a computation 

offloading mechanism for mobile devices by using reinforcement learning. The tasks are offloaded 

to mobile fog nodes and to cloud nodes such that the service response time and the energy 

consumption of mobile devices are minimized. The proposed mechanism handles the mobility of 

the fog nodes by migrating an offloaded task from one mobile fog node to another whenever 

needed; however, it does not perform mobility aware offloading. 

2) VNF-FGs embedding  

The problem of VNF-FGs embedding in NFV and cloud networks has been studied widely 

over the last few years. Various objectives have been considered, such as efficient infrastructure 

utilization [69][70], operational cost minimization [71], VNF instances minimization, [72][11], 
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and provider revenue maximization [73][74]. In the following, we explain the solution approaches 

these works have used.  

Moens et al. in [69] model the problem of placing a batch of VNF-FGs using ILP, which 

minimizes the infrastructure utilization. Fang et al. propose an ILP and a heuristic to solve the 

VNF-FG placement problem. They consider a balanced utilization of the spectrum of fiber links 

and infrastructure resources [70]. Embedding VNF-FGs using a minimum number of VNF 

instances whilst meeting the end-to-end delay requirement was studied by Luizelli et al. [72]. 

Ghaznavi et al.  solve the VNF placement problem with the objective of minimizing the operational 

cost of VNF placement while maintaining the QoS [71].  

 The authors in [73] and [74] maximize the provider’s revenue. Sun et al. in [73] solve the 

problem by proposing online and offline methods. In the offline method, all requests are known in 

advance. The online method uses a prediction of future VNFs and their requirements. Mechtri et 

al.  model the VNF-FG embedding problem as a weighted graph matching problem and propose 

an eigen-decomposition-based approach to solve it [74]. These works are not directly applicable 

when fog resources are also involved since they implicitly assume that all resources are provided 

by the cloud. Indeed, using the fog brings two challenges to the problem. 1) The fog nodes’ 

existence in the problem introduces a new type of heterogeneity compared to cloud resources; they 

have limited resources but provide faster response time. An appropriate allocation mechanism is 

required to exploit such resources. 2) Similar to what has been discussed about component 

placement approaches, the fog resources can be mobile [75]. An efficient placement should 

consider such mobility to avoid high cost or a long makespan as a result of assuming stationary 

nodes with predefined locations.  

2.4. Conclusion 

In this chapter, we first presented a motivating scenario, from which we derived a set of 

architectural and algorithmic requirements. After that, we surveyed the related work. Table 2.1 

and Table 2.2 provide a summary of the reviewed architectural and algorithmic papers, 

respectively. For each paper, we show the requirements which are met and the ones which are not 

met. As it can be seen, none of the reviewed works satisfy all our requirements.  
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Table 2.2 Algorithmic related work evaluation 
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Chapter 3 

 

3. Cloud-based Architecture for IoT 

Applications Provisioning 

 

3.1. Introduction 

Recently, different robot platforms have been designed for large-scale disaster management 

applications that typically involve robots in the order of thousands to accomplish a search and rescue 

mission. However, the cost-efficient provisioning of these applications remains a big challenge, as 

robots’ resources are still seldom used in an efficient manner. Cloud computing can tackle this 

challenge. Virtualization is a key enabling technology for cloud computing, allowing the abstraction 

of actual physical computing resources into logical units and enabling their efficient usage by multiple 

independent users. Virtualization can be performed at both node and network levels. Robot node-level 

virtualization is defined as the mechanisms that enable multiple applications to reside in and run 

concurrently on a single robot [25]. And, robot network-level virtualization is the dynamic formation 

of subsets of robot nodes, with each subset dedicated to a certain application at a given time [25]. The 

virtualization in the IaaS is achieved by providing a coalition formation algorithm for Multi-Robot 

Task Allocation (MRTA) problems. The proposed algorithm is described in Chapter 4. 
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This chapter focuses on large-scale robotic applications as cloud computing services. It 

proposes an architecture that enables cost-efficient robotic applications provisioning for search and 

rescue tasks in large-scale disasters management applications with a focus on the IaaS aspects. The 

proposed architecture incorporates task delegation and network-level virtualization. Task delegation 

has a remarkable role because a single infrastructure may not provide all the capabilities, and/or the 

number of robots required to perform a task, and there may be need to use several infrastructures. The 

Publication and Discovery Engines are key modules of the architecture. They are based on presence 

technology. They allow different IaaSs to subscribe to the presence information of the robots which 

is defined as the state of the robots (idle/busy). In order to publish and discover heterogeneous robots, 

they need to be described. To that end, a well-defined robot description language based on existing 

standards is proposed. The description language extends SenML. SenML1 an IETF standard [32], 

is a Sensor Markup Language that defines media types for representing simple sensor measurements 

and device parameters. The proposed architecture is implemented as a proof of concepts in order to 

evaluate its viability and performance level. 

The rest of this chapter is organized as follows, we first introduce the overall system architecture 

including the business model, architectural principles, and architectural modules along with the 

interfaces and procedures. We then present a well-defined language for robot capabilities’ description 

based on existing standards. After that, we describe the Publication and Discovery Engines. Next, we 

present the performance evaluation and finally, in the last subsection, we conclude this chapter. 

3.2. Overall Architecture for IaaS for Robots 

In this subsection, the business model is first introduced, and then the architectural principles 

are presented. After that, a detailed description of the architectural planes, including the related 

architectural modules, interfaces, and procedures is discussed.  

                                                 
1 tools.ietf.org/html/draft-ietf-core-senml-09/ 
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3.2.1. Business Model 

The related business model uses and extends the pay-as-you-go cloud model. The robots are 

provisioned as-a-Service. The specific actors and their relations are schematized in Figure 3.1. 

Physical Robots Providers represent the concrete pool of the heterogeneous physical robots. The 

IoT Gateway Provider provides the required communication gateways to interact with the robots 

(Figure 3.1, action 1). The virtualization of the robots is performed by the IaaS for Robots 

Providers (action 2). These providers publish their supported robots services in a common Robots 

Services Marketplace (action 3). The marketplace lists and indexes all the available robots for 

prospective use.  

The Disaster Management Applications are provisioned as SaaS over the several PaaSs (action 

4). PaaSs interact with the underlying IaaSs to settle the required runtimes for hosting and 

executing these applications. They allocate the necessary robots’ services from the IaaS for Robots 

Providers and bound them to the applications (action 5). If the required robot service is not 

supported by the local IaaS for Robots Providers, the latter requests the Robots Services 

Marketplace (action 6) to get it from another IaaS for Robots Providers and deliver it to PaaS 

(action 7).   

3.2.2. Architectural Principles 

The proposed architecture does not cover PaaS although the IaaS interacts with the PaaS to 

receive a task request from it. We define two principles for our design: 

1- The proposed architecture is publication and discovery technology agnostic, in order to cater 

for possible future technologies. 

 

Figure 3.1 The proposed business model 
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2- The interaction interfaces of IaaS, between different layers of IaaS, Publication/Discovery 

Engines interfaces are REpresentational State Transfer (REST)-based. REST is selected 

because it is lightweight, standard-based, and can support multiple data representations 

(e.g., plain text, JSON, and XML). 

3.2.3. Proposed Architecture for IaaS for Robots 

A) Architectural Modules 

The proposed IaaS for Robots architecture is shown in Figure 3.2. It consists of Resources 

Plane, Control Plane, and Signaling Plane.  

1) The Resources Plane  

The Resources Plane includes two layers: The Physical Robots Layer and the Node-level 

Virtualization Layer. The Physical Resources Layer involves the supported robots. It includes the 

physical heterogeneous robots with their various capabilities and characteristics. The Node-level 

Virtualization Layer contains the pool of the virtualized robots.  

2) The Signaling Plane 

The Signaling Plane contains a set of communication gateways called Robot Gateways. These 

gateways allow of hiding the heterogeneity and specificities of the robots in terms of user APIs, 

 

Figure 3.2 The proposed IaaS for robots architecture 
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communication protocols, and so on. Their role is to map between the Network-level Virtualization 

Layer (in the Control Plane) requests and the proprietary robots’ APIs. It receives the task 

assignment request from the Network-level Virtualization Layer by standard interfaces and sends 

the request to robots, based on the interface supported by the desired robot. The gateways are 

(un)instantiated on-demand in accordance with the evolution of the applications’ workload and the 

used robots. Their design is based on our work in Chapter 4 and 5 (i.e., [8] [9] [10]).  

3) The Control Plane 

The Control Plane includes the Network-level Virtualization Layer. It has the following modules: 

 The IaaS O&M Manager: responsible for adding the supported robots to the IaaS or removing 

them from it. For instance, when a new robot service is added, this module parses the robot 

metadata (e.g., communication protocol, list of capabilities) and generates a descriptor based on a 

well-defined model.  

 Publication Engine: stores locally the robots service descriptor and publishes it to different IaaSs 

through the remote marketplace.  

 Discovery Engine: discovers robots services in local and different IaaSs. It runs on the local 

repository to get the local services descriptors and on the remote marketplace to get the available 

robots services descriptors from the remote marketplace.  

 Request Handler: responsible for analyzing the upcoming requests from PaaS and providing a set 

of inputs, such as task requirements and constraints to the Virtualization Engine.  

 Virtualization Engine: performs the network-level virtualization of the robots’ capabilities. This 

is done by running an appropriate algorithm for coalition formation in multi-robot systems. The 

algorithm is designed and implemented as part of our work (i.e., [7], described in Chapter 6). It 

runs the algorithm on both local robots and those belonging to other IaaSs.  

 Task Delegator: sends task assignment requests to local robots and to robots in other IaaSs. It may 

also receive task assignment requests from other IaaSs whenever needed.  

 Robot Monitor: responsible for monitoring the robots in the Physical Resources layer. A robot 

basically sends a notification to this module when it finishes its sub-task or fails. Accordingly, 

the robots’ availability is updated in the local Robots Repository and in the external Robots 

Services Marketplace.  
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B) Interfaces 

All the interfaces are designed according to the REST principle [76]. They all expose CRUD 

(i.e., Create, Read, Update, and Delete) operations.  

 The Virtual Robots Management Interface is a management interface that allows 

administrators to add/remove robots to IaaS. It also allows an IaaS to delegate tasks to robots 

in other IaaSs.  

 The Publication Interface allows IaaS to (un)publish its robots in the remote marketplace. Its 

detailed description is provided in Section 3.2.5 (B). 

 The Virtual Robots Operating Interface exposes to the PaaS control operations to request 

robots’ services from IaaS.  

Finally, the proposed IaaS for robots reuses and adapts the regular control and signaling IaaS 

interfaces. The interface between the Network- and the Node- level Virtualization Layers is one 

example. Robot Monitor and Task Delegator modules interact with the local robot through this 

interface. For instance, the resources in the Node-level Virtualization layer side are used to reserve 

Table 3.1 Static characteristics representation using extended SenML 
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Figure 3.3 Extended SenML for unified robots description model 
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robot resources when adding new robots, when creating a group of robots, and when sending a task 

to a specific robot or group of robots, or to modify the resources for an ongoing task. 

C) Procedures  

This section discusses four main functional procedures: Idle Robot Discovery, Selecting Robots for 

a Given Task, Task Assignment for the Selected Robots, and Notification of Finished Task. Idle Robot 

Discovery is used by a Publication and Discovery Engines to publish and discover robots along with 

their characteristics. Selecting Robots for a Given Task is performed by the Virtualization Engine, 

which runs a coalition formation algorithm for multi-robot systems. The Task Assignment for the 

Selected Robots is the procedure of assigning tasks to the selected robots. Notification of Finished 

Task, is sent by the robots when they finish their task. 

3.2.4. Standard Description of Robots 

The considered physical robots are developed with different platforms. More importantly, they 

have different capabilities, sizes, and shapes. Applications should be able to deal with robots’ 

heterogeneity. To allow this, there is a need for a standard and well-defined description of robots to 

publish and discover robots with different characteristics and capabilities.  Accordingly, a common 

model that unifies the robotic characteristics description is designed. The relevant literature 

considers developing ontologies for the standard description of heterogeneous resources (e.g., [35] 

for the specific case of robots). Although the semantics enable powerful and faithful modeling, its 

overhead in terms of processing and developing and maintaining new components is important. In our 

approach, we extend SenML to describe these robots. It is lightweight and can be parsed efficiently, 

which makes it more suitable for the robots’ description.  

The unified description model is implemented in the IaaS O&M Manager. It is this module 

that generates the robots’ descriptor to be stored in the local Robots Repository and in the remote 

Robots Service Marketplace. We try to cover most of the characteristics of robots. We categorize 

robots’ characteristics into static, behavioral, dynamic, and interaction characteristics. Each 

characteristic includes a list of properties and each property may include one or several attributes. 

Figure 3.3 shows the scheme of this model, with some examples of attributes for each property. 

Table 3.1, for instance, details the properties of Static characteristic and its Sensor attribute. 
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3.2.5. Publication/Discovery Engine 

The publication/discovery mechanisms are based on the presence technology [77]. The 

presence service is chosen as it allows the discovery to be speedy and ahead of time. It allows each 

IaaS to publish its local robots whenever they change their state. This guarantees that the relevant 

robots are already discovered when IaaS receives a new search and rescue task. In the proposed 

architecture, the presence server is provided by a third-party tier (i.e., the Robots Services 

Marketplace). The Publication and Discovery Engines, as part of IaaS, are the clients that interact 

with the presence server.  

A) Architectural Modules 

Figure 3.3 shows a presence-based architecture for publication and discovery. The Presentity 

 

Figure 3.4 Presence technology-based architecture for Publication/Discovery   

Table 3.2 Examples of the API operations on the publication interface 
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represents a robot. It is the source of the presence information to be stored and distributed by the 

presence server. The Watcher represents the Discovery Engine. It subscribes to a Presentity (i.e., 

robot) to receive its presence information along with its characteristics from the Presence Server. The 

Publisher represents the Publication Engine. It publishes the robots’ presence information along with 

their characteristics on behalf of the robots in the Presence Server. It uses the SenML-based descriptors 

stored in the Robots Repository. This design allows each IaaS to publish its local robots whenever they 

change their state. 

B) Interfaces 

The Publication Interface is defined as a REST interface. We re-use the interfaces defined in 

[78] and modify them according to our architecture. Table 3.2 details the list of the Publication 

Interface operations. These operations allow the Publication Engine to publish and update the 

presence information of its robots and allow the Discovery Engine to (un)subscribe to the presence 

information of robots or list of robots belonging to other IaaSs. 

C) Procedures 

We define the following procedures: Subscription, Joining Publication, State Change Publication, 

and Notification of State Change. In Subscription, each IaaS through its Discovery Engine (i.e., the 

Watcher) subscribes to the presence information of the robots (i.e., the Presentity) belonging to other 

IaaSs in order to receive notification when a robot changes its presence information. The Joining 

Publication is the procedure for robots to publish their presence with all their characteristics (static, 

behavioral, etc.) to the Presence Server when they are first purchased and joined an IaaS. In the State 

Change Publication procedure, when robots change their states, they publish their presence to the 

Presence Server along with only their dynamic characteristics. The last procedure is the Notification 

of State Change, where the Presence Server notifies the current presence state of the requested 

Presentity to the Watcher. Figure 3.5 represents an end to end scenario, where both overall architecture 

procedures and presence service procedures are demonstrated.  
 

3.3. Performance Evaluation 

This section discusses the performance evaluation performed to validate our proposed architecture. 

We first discuss the implementation alternatives. Then, we describe the prototype and the setup related 

to our experimentations. After that, we describe the evaluation of the architecture along with the metrics 

and the obtained measurements.  
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3.3.1. Implementation Alternatives 

During or after a disaster, the telecommunication infrastructure is most likely to crash because of 

physical destruction or congestion of the network components [79]. This could block out the system 

and therefore, prevents the dispatching of the robots. In order to maintain the communication between 

the application deployed in the PaaS and the robots, a potential solution is to diversify the routing path. 

Such as establishing several network connections between PaaS and IaaS, using either different type 

of technologies or following different redundant physical paths. The US Department of Information 

Technology and Telecommunications has recommended developing ducts in order to expand route 

diversity [80]. Another alternative is to route the communication over ad-hoc networks. These 

networks can be provided by the tactical radio networks of civilian or military responders. Such as the 

tactical communication system proposed by CISCO for disaster situations [81] and the emergency 

communication system based on Software Defined Radio (SDR) network [82][83]. The robots can be 

deployed using a helicopter such as T-Rex miniature helicopter used by CARSAR to deploy unmanned 

 

Figure 3.5 Illustrative sequence diagram for end to end scenario 
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aerial systems to the areas affected by Hurricane Katrina [84]. 

We assume that the request sent by the PaaS to the IaaS can be done via the Internet if the Internet 

access is still available. Otherwise, the request is sent through ad-hoc networks. For the ad-hoc network 

creation, several approaches have been proposed in the relevant literature. Such as by using 

communication tags proposed by Miyama et al.  [85], or by establishing a Base Station (BS) within a 

safety zone around the disaster area proposed by Sugiyama et al. in [86]. The presence technology 

ensures that, when an IaaS receives a request, it does not need to communicate with other 

infrastructures to get their robots information. It ensures that the IaaS has the latest information about 

robots. However, since the communication path may be destroyed between all or some of the IaaSs, 

the remote Robots Services Marketplace may not receive the Notification of State Change for all 

robots, hence it may not have the latest information regarding the robots. This can be solved by 

integrating data replication strategies such as those used for fault tolerance systems [87] [88].  

3.3.2. Proof of Concept Prototype  

The prototype implements a firefighting task of the fire detection and fighting application 

explained in the motivating scenario in Chapter 2. Earthquakes are often followed by fire with 

devastating consequences especially in townscape environments (e.g., Kesennuma City in Miyagi, 

Japan, 2011). The prototype architecture is depicted in Figure 3.6. In the Physical Robots Domain, 

the considered robots are LEGO Mindstorms NXT2. Two types of robots are used: one with arms 

                                                 
2 lego.com/en-us/Mindstorms/ 

 

Figure 3.6 Prototype architecture 
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and a movement motor and another with light sensors, kicking arms, and a movement motor. They 

carry plastic balls as water extinguishers. In the IaaS Domain, four distinct infrastructures are 

implemented. The inter-domain architectural modules of IaaS (e.g., Request Handler, Task 

Delegator) are implemented as RESTful Web services using Java Restlet framework. The rest of 

the modules (e.g., Virtualization Engine) are developed as regular Java tools. The local Robots 

Repositories are simple OS folders that store the SenML-based descriptors of the supported robots’ 

services. In the Gateways Domain, an appropriate Robot Gateway is settled to map between the 

IaaS HTTP Java REST and LeJOS NXJ Java API commands that implement the Lego 

Communication Protocol (LCP). The Robots Services Marketplace Domain provides the presence 

server. It is implemented as RESTful Web Service using Restlet framework. It also includes a 

storage folder of the SenML descriptors of the published robots’ services.  

In the PaaS Domain, Google App Engine3 (GAE) is used. It hosts and executes the fire 

detection and fighting application. Internet connection is assumed available between GAE and 

IaaS. A Network Address Translation (NAT) server is developed to redirect the requests coming 

from GAE to IaaSs. In the SaaS, the fire suppression sub-task requires the light sensor capability 

to detect the balls and the kicking arms and movement capabilities to handle and move them. We 

implemented all the procedures described in Sections 3.2.3 (c) and 3.2.5 (c).  

3.3.3. Experimentation Setup  

Four machines belonging to the same LAN are used, each host one IaaS for Robots. The first 

machine executes IaaS1 and NAT Server. The second executes IaaS2 and Presence Server. The 

third and the fourth respectively execute IaaS3 and IaaS4. One of the machines has two interfaces: 

one with a public IP to communicate with the application and the other with a private IP (the LAN 

interface). The other machines have only a private IP. All machines run on Windows 7 Professional 

and have an Intel® Core ™i7-2620 CPU with 2.70Hz and 8 GB of RAM. We have used three LEGO 

Mindstorms NXT robots [89], one in each IaaS. The communication with the robots is done through 

the Gateway via Bluetooth.  

To properly evaluate it, the prototype is compared it with a peer-to-peer (P2P) overlay network. 

Consequently, an overlay node corresponding to each IaaS is implemented. An overlay node is 

                                                 
 
3 appengine.google.com/   
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implemented using the JXTA protocol (JXSE 2.6). The publication and the discovery procedures 

are carried out by the JXTA advertisement. The task assignment procedure is mapped to the JXTA 

messages that are exchanged through JXTA bidirectional pipes.  

3.3.4. Measurements and Results 

A) Performance Metrics 

The performance metrics according to which we evaluate the system performance are: 

 Idle Robot Discovery Delay (IRDD) (msec) - the time difference between the moment an IaaS for 

Robots subscribes to the presence information for the Presentities in the other IaaSs for Robots, 

and when it receives notification of the current state of the requested Presentities. 

 Task Assignment Delay (TAD) (msec) - the time difference between the moment an IaaS for Robots 

sends a task assignment request and when other IaaSs for Robots receive this request.  

B) Results and Discussion  

Test case 1 - Idle Robot Discovery Delay (IRDD): Figure 3.7 shows the average time for IRDD 

using a different number of IaaSs for Robots. As is noticed, for any number of IaaSs, the average 

IRDD for presence-based publication/discovery is less than the delay for P2P overlay-based 

publication/discovery. This is because overlay networks have additional costs caused by the 

communication overhead. They add an intermediate level between the IaaSs. It is also observed 

that the average IRDD using P2P overlay increases as the number of IaaSs increase since IaaS1 

should discover robots in more than one IaaS. The overlay nodes add additional overhead due to 

the processing of each packet. This shows the viability of using a presence technology-based 

publication/discovery 

 

Figure 3.8 Idle Robot Discovery Delay (IRDD) Figure 3.7 Task Assignment Delay (TAD) 
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Test case 2 - Task Assignment Delay (TAD): Figure 3.8 shows the average delay for TAD.  In 

this test case, the average delay is calculated for the Task Delegator in the three IaaSs required to 

receive the task assignment request from the Task Delegator in IaaS1. It is observed that the 

average delay for direct communication remains almost the same for the three IaaSs. The involved 

IaaSs communicate with each other directly, i.e., point-to-point. So, all IaaSs have the same delay. 

Moreover, this delay is far less compared to P2P overlay-based task assignment. To be received 

by each IaaS, the task assignment request needs to go through the overlay that adds overhead and 

increases latency in the system. This shows the viability of the proposed method for task 

assignment. 

 

3.4. Conclusion 

In this chapter, we investigated the problem of robotic applications provisioning in a cost-

efficient manner. We proposed an IaaS for Robots architecture that enables network-level 

virtualization and task delegation to robots in different IaaSs. We also proposed a presence 

technology-based publication/discovery and provided an extension to SenML to describe 

heterogeneous robots. The experiments’ results show the feasibility of our proposed architecture.  
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Chapter 4 

 

4. NFV-based Centralized Architecture for IoT 

Gateway  

 

4.1. Introduction 

Research on sensor network virtualization [90] has become prominent in recent years. 

Virtualization technology abstracts sensor resources as logical units and allows for their efficient 

and simultaneous use by multiple applications, even if they have conflicting requirements and 

goals. New applications can be deployed in the same WSN with minimal efforts. More 

importantly, reusing the same sensors’ capability by multiple applications transforms WSN into a 

multi-purpose sensing platform in which several virtual WSNs (VWSNs) are created on-demand, 

each tailored for a specific task or objective. Actuators are often incorporated in WSNs to make 

more powerful applications, thus the concept of virtualized wireless sensor and actuator network 

(VWSAN). Gateways are required for the interactions between applications and heterogeneous, 

multivendor VWSANs. They are generally complex. Furthermore, it is difficult and expensive to 

upgrade them when new-brand sensors and actuators/robots are deployed. In addition, their 

capabilities do not scale when the number of applications and the corresponding workload in 
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VWSANs change dynamically. NFV can aid in overcoming the aforementioned challenges. On-

the-fly, dynamic, scalable, and elastic provisioning of network services are among its benefits.  

 This chapter presents an NFV architecture for VWSAN. The firmware/hardware used to 

provide VWSAN Gateway functionalities are replaced by VNFs deployed in an NFV 

infrastructure. We enable a granular provisioning of NFV, such as decomposing the gateway into 

fine-grained modules – e.g., protocol converter, information model converter, etc. – to be 

implemented as VNFs. More importantly, granular NFV is best suited for virtualized WSANs, 

wherein the dynamic growth in the number of applications and addition of new-brand sensors 

require a rapid introduction of new VNFs and update of existing VNFs. VNFs are instantiated on-

the-fly and chained to realize a service in VWSAN. The architecture introduces a new business 

actor - the VWSAN Gateway Provider – in addition to the traditional actors, meaning the 

Application Provider and the VWSAN Provider.  This new actor plays a dual role. On the one 

hand, it provides the VNFs, chained to make on-the-fly gateways. On the other hand, it operates 

and manages the infrastructure in which the VNFs are executed. We acknowledge that the 

introduction of this new actor does bring a host of additional security and trustability challenges. 

We consider these challenges outside the scope of this work. More and more standardization work 

will certainly be required to enable secure and trustable interactions between different NFV actors, 

as the business model opens up. The proposed architecture is implemented as a proof of concepts in 

order to evaluate its viability and performance level. 

The rest of this chapter is organized as follows: in the first subsection, we present our proposed 

NFV-based architecture for virtualizing WSAN gateways. The architectural principles are discussed 

first, followed by architectural modules and interfaces, VNF migration and scalability issues, and 

control plane. Next, we present the performance results. Finally, we conclude this chapter. 

4.2. Overall Architecture for Virtualized WSAN Gateway 

The overall architecture for NFV-based VWSAN Gateway is shown in Figure 4.1. It comprises 

several Application Domains, a VWSAN Gateway Provider Domain, and VWSAN Provider 

Domains. In this section, we first describe the architectural modules and interfaces, followed by a 

discussion of the VNF migration process and the scalability issues. We then present the control 

plane and finally, we provide an illustrative scenario. 
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4.2.1. Architectural Principles 

We defined the following set of principles: 

1- Granular provisioning of network functions. We aim to use highly granular VNFs for 

virtualized WSAN gateway functions. Examples include protocol conversion and information 

model conversion. The protocol converter decodes a packet received in one protocol and 

encodes it in another protocol. The information model conversion converts data from one 

format to another. We do acknowledge the fact that converting a protocol X (or an information 

model X) into a protocol Y (or an information model Y) is not always feasible. Consequently, 

the Gateway Provider provisions the related VNFs only when the conversion is feasible. 

2- The VWSAN Gateway Provider maintains a centralized store of VNF images. VNFs are 

dispatched on-demand to the VWSAN provider’s domain. This principle is in accordance with 

the ETSI, that VNFs must be deployed throughout the networks where they are most effective 

and highly customized to a specific application or user [22]. 

3- The interaction interfaces between different domains are REST-based. Similar to the previous 

chapter (i.e., Chapter 3), REST is selected because it is lightweight, standard-based, and can 

support multiple data representations (e.g., plain text, JSON, and XML). 

4.2.2. Proposed Architecture for NFV-based Virtualized WSAN Gateway 

A) Architectural Modules 

Each Application Domain contains an application that requires the services of one or more 

VWSAN providers. The Application contains two modules: Infrastructure Agent and 

Sensor/Actuator Agent. The Infrastructure Agent is responsible for the signaling procedure. It 

communicates with the VWSAN Provider Domain to negotiate the use of VWSAN infrastructure. 

The Sensor/Actuator Agent is responsible for gathering measurements from the sensor and sending 

commands to robots. The VWSAN Gateway Provider Domain consists of the following entities:  

 Core Layer: contains VNFs and their corresponding Element Management Systems (EMS), 

where each EMS is responsible for monitoring the resource utilization of its corresponding VNF 

[22].  

 NFV Infrastructure (NFVI): provides hardware and software resources, including computation, 

storage, and networking needed to deploy, manage, and execute VNFs.  
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 NFV Management and Orchestration (MANO): responsible for orchestration and lifecycle 

management of physical/software resources, and the lifecycle management of VNFs. 

(instantiation, update, migration, and termination).  

 Central Controller: performs functions as part of the signaling procedure that occurs during 

service negotiation (this is described later).  

 VNF Store: a repository that contains VNFs of various gateway modules. It provides VNFs that 

match the requirements of an end-to-end service.    

Each VWSAN Provider Domain comprises the following modules:  

 Southbound (SB) Handler Layer: contains VNFs that have been migrated from the VWSAN 

Gateway Provider Domain and their corresponding EMSs.  

 NFVI: (explained in the previous section). 

 NFV MANO: performs the typical orchestration and management functions for the execution of 

migrated VNFs.  

 Operational Support System/Business Support System (OSS/BSS): provides the description 

of VWSAN (e.g., sensor/robot brands).  

 

Figure 4.1 The proposed NFV-based IoT Gateway 
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 Local Controller: interacts with the Infrastructure Agent and the Central Controller.   

B) Interfaces 

The NFV modules interact with each other through the interfaces defined by ETSI [22]. They 

include: (1) Vn-Nf which represents the execution environment provided by NFVI to Core Layer 

and to SB Handler Layer. (2) Nf-Vi which is used for assigning virtualized resources in response 

to resource allocation requests (e.g., allocating VMs on hypervisors), it is also used by NFVI to 

communicate status information about virtualized and hardware resources to the MANO. Nf-Vi is 

also used to configure hardware resources. And (3) Ve-Vnfm which carries out all operations 

during a VNF life cycle. It is also used for exchanging VNF configuration information. 

4.2.3. VNF Migration and Scalability Issues 

A) VNF Migration 

In the architecture, VNFs are migrated on-demand from VWSAN Gateway Provider Domain 

to VWSAN Provider Domain. The architecture supports two approaches for migration. In the first 

approach, VNFs are instantiated and chained in VWSAN Gateway Provider Domain. Then, using 

live migration, running VMs are sent from the VWSAN Gateway Provider Domain to VWSAN 

Table 4.1 Resources on the VWSAN Provider Domain and VWSAN Gateway Provider Domain 

Domain 

Name 

REST Resource Operation Http Action & Resource URI 

Resources 
on VWSN 
Provider 
Domain 

List of 
applications 
service requests 

Create: add application information 
(protocol used, data format, latency, etc.) 

POST:  
/ApplicationsServiceRequests 

Specific 
application’s 
service request 

Update: Change information of specific 
application 

PUT: /ApplicationsServiceRequests 
/(RequestId} 

Delete: Delete specific application 
information 

DELETE:   
/ApplicationsServiceRequests 
/(RequestId} 

Notification of 
service 
availability 

Create: Send notification to VWSN 
domain by the gateway domain about the 
availability of requested VNFs. 

POST: 
/ServiceAvailabilityNotification 

Resource 
on VWSN 
Gateway 
Provider 
Domain 

Request for 
VNFs 

Create: send request from VWSN domain 
to gateway domain for VNFs with specific 
information (protocol, data model, etc.)  

POST: /VNFsRequest 

Specific request 
for VNFs 

Update: Change information of specific 
request for VNFs. 

PUT: 
/VNFsRequest/{VNFsRequestId} 

Delete: delete information of specific 
request for VNFs.  

DELETE:  
/VNFsRequest/{VNFsRequestId} 
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Provider Domain. In the second approach, VNFs are migrated from the VWSAN Gateway 

Provider Domain to VWSAN Provider Domain, where they are instantiated and chained. 

B) Scalability 

The architecture relies on dynamic resource allocation algorithms to meet the growing demand 

of applications. These algorithms enable vertical scaling and/or horizontal scaling.  Existing 

algorithms such as [11] and [12] could be used as a basis.  We consider the design of these 

algorithms as items for future work. 

4.2.4. Control Plane 

The control plane consists of signaling procedure and control interfaces; R1 and R2. In a typical 

end-to-end service, the application sends a query to sensors to receive measurements and deploy 

robots. Before the service begins, a signaling procedure is conducted, in which different business 

players (i.e., Application Domain, VWSAN Provider, and VWSAN Gateway Provider) engage in 

service negotiation and exchange the necessary parameters to obtain the appropriate VNFs. 

A) Signaling procedure  

Signaling is initiated when an application requires services from VWSAN Provider Domain. 

The Sensor/Actuator Agent instructs the Infrastructure Agent to start the service negotiation. The 

Infrastructure Agent creates a service request that includes a description of the northbound 

interface used by the application (i.e., communication protocol, information model, etc.) and QoS 

parameters associated with the service delivery (i.e., latency, throughput, etc.) and sends it to the 

Local Controller. Upon receipt of the service request, the Local Controller communicates with the 

OSS/BSS to obtain information on parameters specific to the VWSAN (e.g., type of 

sensors/robots). It then creates a VNF request containing parameters of the service request as well 

as parameters specific to the VWSAN and sends it to the Central Controller. Based on these 

parameters, the Central Controller searches for appropriate VNFs in VNF Store.  

If the VNFs are found, the Central Controller instructs NFV MANO of VWSAN Gateway 

Provider Domain to instantiate and migrate the VNFs to VWSAN Provider Domain. The Central 

Controller also receives a notification from NFV MANO of VWSAN Gateway Provider Domain 

when the VNFs are ready for use in VWSAN Provider Domain. The Central Controller then 

forwards the notification to the Local Controller, which sends a notification about service 
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availability to the Infrastructure Agent. The latter notifies the Sensor/Actuator Agent to start the 

service. It is important to note that, when the required VNFs are not found in the VNF Store, a 

service unavailability notification is sent to the Infrastructure Agent, to either cancel the 

negotiation or resume signaling after a certain time period.  

B) Control Interfaces 

R1 is used for the interactions between Infrastructure Agent and Local Controller. R2 is used 

for the interactions between Local Controller and Central Controller. R1 and R2 are based on 

REST paradigm. The required information is modeled as resources and each resource is uniquely 

identified by the Uniform Resource Identifier (URI). Table 4.1 summarizes the proposed REST 

interface for the interactions between different domains. It defines resources on VWSAN Provider 

Domain, used to reserve resources when it receives a service request from Application Domain 

with a description of parameters. They also allow the Application Domain to modify parameters 

and delete resources of specific applications. Furthermore, they allow VWSAN Gateway Provider 

Domain to send notifications to VWSAN Provider Domain about the availability of the requested 

VNFs. The resources defined on VWSAN Gateway Provider Domain allow it to receive VNF 

requests from VWSAN Provider Domain. They also allow the VWSAN Provider Domain to 

update or delete information (e.g., sensor/robot brand) about specific VNF requests. 

4.2.5. Illustrative Scenario  

In Figure 4.2, we illustrate an end-to-end scenario, wherein an application (e.g., earthquake 

early warning and recovery) queries the sensors owned by VWSAN Provider 1 and collect their 

measurements, and another application (e.g., fire detection and fighting) needs to be notified when 

a fire occurs and deploy robots. Before using VWSAN Provider Domain’s service, the signaling 

procedure starts. The northbound interface description sent to the Local Controller for both sensors 

and robots is SenML over HTTP. Since the current SenML implementation only supports sensor 

measurements, we have used the extended capabilities of SenML proposed by Datta et al. in [91] 

and [92] to send robot commands from the application.  

 Upon receiving the description from Infrastructure Agent, the Local Controller obtains a 

description of the sensors (i.e., SunSpot) and the robots (i.e., Lego Mindstorms) from OSS/BSS. 

The signaling procedure continues as described in Section 4.2.4 (B) for both applications. For VNF 

migration, the second approach (see section 4.2.3 (A)) is used; the VNFs are instantiated, chained, 
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and then migrated to VWSAN Provider Domain. After service negotiation, the Sensor/Actuator 

Agent sends a query to the sensors through the VNFs. Upon receiving the query, SunSpot sensors 

send their raw measurements over CoAP protocol. These measurements are processed by protocol 

conversion (encoded in HTTP protocol) followed by information model conversion (mapped to 

SenML format), in order to enable the applications to interpret the measurements.  If the fire 

detection and fighting application receives notification of fire, it sends actuating commands to the 

robots in the SenML format through HTTP, where the commands are mapped to LeJOS Java API 

and to Lego Communication Protocol (LCP). The end-to-end service is completed when the robots 

are deployed.   

 

Figure 4.2 Sequence diagram for an end to end scenario 
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4.3. Performance Evaluation  

In this section, we first present the prototype that we built followed by the experimentation 

setup. After that, we discuss the measurements and the results. 

4.3.1. Proof of Concept Prototype  

For the prototype, we implemented the scenario described in Section 4.2.5, in which the 

earthquake early warning and recovery application is interested in collecting environmental data 

to monitor different earthquake-prone areas and a fire detection and fighting application that needs 

to be notified when a fire occurs and deploy robots in order to suppress it. We assume both 

applications are interested in collecting the temperature data. 

The applications were created using java dynamic web application and hosted on Tomcat8 

server. We used OpenStack 4 Icehouse to build our private cloud. OpenStack is a free, open-source 

software for creating private and public clouds. Figure 4.3 depicts our prototype architecture. We 

used a multi-node OpenStack with two compute nodes. We considered each compute node as a 

domain: One as VWSAN Provider Domain and the other as VWSAN Gateway Provider Domain. 

                                                 
4 https://www.openstack.org/ 

 

Figure 4.3 Prototype architecture 
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In our prototype, we assume the two domains are in the same data center. In order to provide live 

migration, both compute nodes share the same storage. This allows the migration of only the 

memory footprint of the VM. If each domain were in a separate data center, we would assume a 

provision for live migration among them. The VNFs are instantiated in VWSAN Gateway Provider 

Domain and migrated to VWSAN Provider Domain after being chained. For simplicity’s sake, we 

assume that the VNFs are chained in a static way in VWSAN Gateway Provider Domain.  

In the node representing VWSAN Gateway Provider Domain, all necessary components of 

OpenStack were installed. NFS (Network File System) server was also configured in this node, 

allowing servers to share directories and files with each other over a network. The two nodes 

representing VWSAN Provider Domain contains only Nova. The fourth node is configured as 

Neutron and LBaaS (Load Balancing as a Service) was installed on it, which is a service of 

Neutron, allowing to load balance traffic for services running on VMs in OpenStack. We used 

OpenStack4j API, as an open-source OpenStack client, allowing the provision and control of an 

OpenStack system as a controller. Because all domains are in the same data centers, the controller 

can control all domains. Each VNF runs a Linux Ubuntu V14.04 on 1 VM and is equipped with 1 

VCPU and 2GB RAM. The VNFs communicate with each other through a REST interface (R2), 

using the RESTlet framework [13]. Communication between VWSAN Provider Domain and 

Application Domains is also achieved via REST interface (R1).  

4.3.2. Experimentation Setup 

The applications and the domains controller run on a PC with Intel® Xeon® CPU clocked at 

2.67 GHz and a 6GB RAM with 64-bit Windows 7 Enterprise. This PC uses JVM version 1.8.0_51. 

We used four PowerEdge™ T410s, which are Intel® processor-based servers – two as nova 

compute nodes, one as the Nova controller, and one as the network node. Two Java Sun SPOT 

sensors, two Advanticsys sensors, and one LEGO Mindstorms NXT robot were used. Each sensor 

executes the environment monitoring task. We implemented a simple gateway that runs on a laptop 

with Intel® Core ™i7-2620 CPU with 2.70Hz and 8 GB of RAM. This gateway exposes the 

robots’ and the sensors’ capabilities as APIs. For example, in order to send a command to the 

robot, the protocol converter and information model conversion convert the REST request received 

at its northbound interface to LeJOS Java API commands that implement the LCP. The gateway 

then wraps the request to either Bluetooth or USB communication channel and sends it to the robot.  
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4.3.3. Measurements and Results 

A) Performance Metrics 

The performance metrics according to which we evaluate system performance are: 

 Service Provisioning Time – the time between the moment the VM instantiation starts in VWSAN 

Gateway Provider Domain and when the VMs are migrated to VWSAN Provider Domain, 

including the chaining time of VMs, while also calculating the downtime duration of the VMs. 

 End-to-End (E2E) Delay - time between the moment sensors send a measurement and when robots 

are deployed. We calculated E2E delay for non-virtualized and virtualized environments. 

 Scalability – the ability of the system to handle the growing amount of loads without suffering 

significant degradation in the performance. We considered the response time of the system as a 

metric to evaluate the scalability of our architecture. Response time is the time period from when 

measurements are sent by the sensors to when these measurements are received by the VNFs.   

B) Results and Discussion  

Test Case 1: Service Provisioning Time 

Figure 4.4 (a) depicts the live migration delay of chained VMs, based on shared storage in a 

virtualized environment. We studied 20 tests and found a maximum delay of 38.4 sec and a 

minimum delay of 34.3 sec. We observed that the delay fluctuates between samples. This is 

because the time needed to instantiate VMs and migrate them in OpenStack is inconsistent. One 

of the limitations of OpenStack is the time needed to start a new VM, which could cause a 

prolonged delay in service provisioning time. As reported in [93], VM instantiation delay can 

sometimes reach up to 60 sec. 

Although the live migration of VMs allows transferring VMs to other physical servers without 

shutdown and ensures high availability with non-stop services, VMs still face some period of 

downtown, depending on the memory state of the VM. In this experiment, we tested ping on the 

VMs during live migration. We started pinging before the live migration starts and it lasted until 

the migration ends. We noticed that during the migration, some ping requests were lost. Figure 4.4 

(b) shows the process of pinging the VMs and Figure 4.4 (c) shows the downtime of the VMs 

considering 5 samples. 
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(a) 

 

(b) 

Sample Protocol Conversion 
Downtime (sec) 

Info Model Processor 
Downtime (sec) 

1 30 39 

2 24 39 

3 31 38 

4 33 38 

5 24 38 

         (c) 

Figure 4.4 Results of service provisioning 

(a) Live migration delay of VM 
(b) Pinging the VM during live migration 
(c) VM downtime during live migration 
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Test Case 2: E2E Delay  

Figure 4.5 illustrates a comparison of E2E delay for virtualized and non-virtualized 

environments, wherein each sample represents the average E2E delay for the first 10 

measurements. In order to ensure an accurate comparison, we repeated the experiment 10 times. 

The average E2E delay for a virtualized environment is always higher than the delay for the non-

virtualized environment. This is because the delay includes the time needed to instantiate and 

migrate the VMs. The maximum E2E delay for the virtualized gateway is around 39736 msec 

(sample 9), whereas it is 1784 msec (sample 10) for the non-virtualized gateway. Frameworks such 

as [94] can be integrated with OpenStack to overcome the performance gap between virtualized 

and non-virtualized environments.  

 We observe that the minimum E2E delay of the virtualized gateway, excluding VM 

instantiation and migration delay, (1603 msec) is close to the minimum E2E delay of the non-

virtualized gateway (1601 msec). Thus, we can conclude that the time needed to instantiate and 

migrate the chained VMs has a significant impact on the E2E delay of the virtualized gateway, 

which demonstrates the overhead of virtualization. However, E2E delay in a virtualized 

environment increases only when a new brand of sensor joins and sends requests to dispatch VMs 

to VWSAN Provider Domain. 

 

Figure 4.5 End to end delay (virtualized gateway vs. non-virtualized gateway) 
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Test Case 3: Scalability 

We used a simplified resource allocation mechanism to test the scalability. It is based on the 

resource utilization of the VMs (i.e., CPU) and on horizontal scaling. Each T period of time, VM’s 

resources are monitored. If the utilization of the resource exceeds the threshold (i.e., 70%), we 

perform horizontal scaling.  To conduct our case study, we set the number of requests as a variable 

within a unit time (T) and gradually increase it from 500 to 4000 requests.  We considered 10 sec 

as the unit time. We used Apache JMeter to generate the requests using a uniform distribution of 

threads.  

Figure 4.6 shows the results of our experiments, where we compared it with the same scenario 

without having a scaling mechanism. In the case of having a scaling mechanism, we notice that as 

the load (i.e., number of requests) increases, the system experiences a very slight increase in 

response time. This is because scaling is triggered before the system enters the overload state. For 

the initial increase in load (i.e., from 500 to 1000), the effect on response time is slightly more than 

the one afterward. This is because initially as load increases, more resources cannot be allocated 

until the T period is elapsed. From load 1000 till the maximum load, the response time increases 

by only 5 msec for every 2-fold increase in load. In contrast, if no scaling is performed, the system 

suffers from a significant increase in response time, as indicated in the figure. We observe that 

 

Figure 4.6 Response time for scalability 
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from load 1000 till the maximum load, the response time increases by 600 msec for every 2-fold 

increase in load. Overall, with a scaling mechanism, the load has a very negligible impact on the 

response time. This demonstrates the scalability of our architecture.  

4.4. Conclusions 

In this chapter, we introduced an NFV architecture that deploys virtualized instances of a 

VWSAN gateway in an NFV infrastructure. The virtualized instances are dynamically migrated 

from a Gateway Provider Domain to several VWSAN Domains. With NFV, it is possible to 

achieve scalable deployment of gateways in heterogeneous VWSAN environments. In addition, 

several business actors involved in the proposed NFV architecture creates potentials for unique 

business models. We also discussed a proof-of-concept of the NFV-based virtualized gateway. We 

evaluated the prototype by conducting a set of experiments. The performance comparison of 

virtualized and non-virtualized approaches is analyzed, and the scalability of the architecture is 

proved. 
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Chapter 5 

 

5. NFV and SDN - based Distributed 

Architecture for IoT Gateway  

 

5.1. Introduction 

Different types of IoT devices are used in large-scale disaster management applications. For 

instance, sensors, such as temperature, humidity, microwave, or infrared, may be distributed 

throughout a forest to monitor the environmental conditions or measure earth movements before 

and during earthquakes, and robots wide range of capabilities can be used in search and rescue 

missions. For example, some can penetrate rubble piles and find people beneath them, while others 

may be equipped with infrared cameras that transmit images back to the application. These IoT 

devices are usually heterogeneous, each with its own communication protocol and/or data formats.  

 As mentioned in the previous chapter (i.e., Chapter 4), to address the heterogeneity of IoT 

devices and their applications, gateways are needed to bridge the traditional communication 

networks and the IoT devices domain. Provisioning IoT gateways in large-scale disaster scenarios 

poses many challenges. For instance, traditional gateways lack dynamicity and flexibility. In 

addition, they are generally centralized and thus not practically feasible in the MANET settings of 
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large-scale disasters. Moreover, it is difficult and expensive to upgrade or reuse them. NFV [95] 

and SDN [23] can assist in overcoming these challenges.  

The major contribution of this chapter is as follows: a distributed architecture for an IoT 

gateway based on NFV and SDN is proposed. The proposed architecture considers co-locating the 

gateway functions with the IoT devices and reusing already deployed gateways. It also considers 

handling the traffic and chaining between the gateway functions dynamically. A high-level 

description of the proposed architecture that is composed of two planes is provided, and a detailed 

description of each plane with its corresponding interfaces and procedures is presented. The 

proposed architecture is implemented as a proof of concepts in order to evaluate its viability and 

performance level.   

The rest of this chapter is organized as follows, we first describe the proposed architecture, 

including its modules, interfaces, and procedures. After that, we present the implementation and 

investigates the performance evaluation. Finally, we conclude in the last subsection. 

5.2. Overall Architecture for a Distributed IoT Gateway 

In this section, we first present the proposed business model. The architectural principles are 

then introduced, followed by a high-level description of the proposed distributed IoT gateway 

architecture. A detailed description of the control and forwarding planes, including the related 

architectural modules, interfaces, and procedures is discussed next. This section ends with the 

presentation of illustrative sequence diagrams. 

5.2.1. Business Model 

In this chapter, we reuse the business model discussed in the previous chapter (i.e., Chapter 4). 

The specific actors and their relations are schematized in Figure 5.1. The End-User Applications 

are the applications that require the services of an IoT Provider (Figure 5.1, action 1). The IoT 
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Gateway Provider provides on-the-fly VNFs, representing the gateway functions, to handle the 

heterogeneity of the applications and the IoT devices (action 2). The IoT Provider provides the 

IoT devices (i.e., sensors and the robots) required by the application to realize its service. A 

business agreement between the IoT Gateway Provider and the IoT Provider is assumed that allows 

the IoT Gateway Provider to manage the infrastructure on which the VNFs are deployed and 

executed. 

It should be noted that in this work it is assumed that there is a communication infrastructure 

that enables communication between the disaster site and disaster-safe areas, composed of IoT 

MANETs on the disaster site, and satellite mobile networks and cellular mobile networks to 

communicate with disaster-safe areas, as in reference [96]. Accordingly, the IoT provider can have 

a fixed node that can be carried on the relief vehicles during a MANET setup. The fixed node 

discovers and connects with the working cellular Base Station (BS). In fact, in practical situations, 

the cellular BS may be down at the central area on the disaster site. With luck, some BSs at a few 

distances away may be still working, allowing remote communication and information transfer 

between the IoT Provider in the disaster site area and the IoT Gateway Provider in the disaster-

safe areas. 

5.2.2. Architectural Principles 

1- The first architectural principle is that the application and the gateway are built as a P2P 

overlay, due to the MANET setting of the disaster scenario.  

 

Figure 5.1 The proposed business model 
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2- The second principle is that two types of IoT devices are considered in the infrastructure, 

constrained (type A) and capable (type B). Constrained devices delegate some operations 

to the capable devices and capable devices can act on behalf of the constrained devices, as 

assumed in other works  [97].  

3- The third principle is that the IoT gateway functions are implemented as VNFs, and SDN 

is used to dynamically provision the paths between them once they are deployed.  

5.2.3. High-level Description of the Architecture  

The overall view of the proposed architecture is depicted in Figure 5.2. It includes three 

domains: the Application Domain, the IoT Provider Domain, and the IoT Gateway Provider 

Domain. Each functionality of the IoT gateway is implemented as a VNF. It is important to note 

that the architecture, specifically the portion in the  IoT Gateway Provider Domain, is aligned with 

the ETSI NFV MANO framework [98]. In fact, it extends the MANO framework by adding new 

architectural modules. 

The proposed architecture is layered over two planes: control and forwarding. The control 

plane handles the signaling procedure between the different domains, including the chaining of the 

gateway’s VNFs. When an application requires an IoT service from the IoT Provider Domain (i.e., 

 

Figure 5.2 The proposed NFV and SDN-based distributed IoT Gateway architecture 
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to receive sensor measurements and then deploy robots accordingly), a signaling procedure is 

conducted first to negotiate the service and exchange the necessary information. Different domains 

(i.e., the Application Domain, the IoT Provider Domain, and the IoT Gateway Provider Domain) 

are engaged in this service negotiation to obtain and deploy the appropriate gateway. The control 

plane also interacts with the forwarding plane by programming the application-level SDN switches 

to deliver the requested gateway to the application. Unlike traditional SDN switches, which are 

IP-level, the SDN Switches in the proposed architecture are application-level. This means the 

classification of a received packet should be done based on the header values of the application 

layer, similar to how it is done in [99].  

The forwarding plane allows the flow of data through the path according to the control plane 

logic. It should be noted that all the interfaces of the proposed architecture are designed according 

to the Representation State Transfer (REST) principle. 

5.2.4. Detailed Description of the Control Plane 

Here the architectural modules involved in the signaling procedure along with their interfaces 

are presented, and some of the main procedures are described. It should be noted that some of the 

modules are reused from the ETSI NFV MANO framework, including the NFVO (i.e., Gateway 

Orchestrator), VNFM (i.e., Gateway VNFs Manager), VIM (i.e., IoT Infrastructure Manager), and 

the VNF Catalogue.  Those modules are depicted with dashed lines in Figure 5.2. The remaining 

modules are newly-introduced ones. 

A) Architectural Modules  

1) Modules in the Application Domain 

The Application Agent is in charge of the signaling procedure. It negotiates the use of IoT 

infrastructure. The Application Overlay Manager is responsible for the Application Overlay 

configuration, activation, and execution. 

2) Modules in the IoT Provider Domain 

The IoT Provider Agent is responsible for requesting the desired gateway from the IoT 

Gateway Provider Domain.  
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3) Modules in the IoT Gateway Provider Domain 

The VNF Agent is responsible for analyzing the requested gateway’s features, decomposing 

the request into a set of gateway VNFs that represent the gateway’s functionalities, and requesting 

the execution of required orchestration plans. The SDN application resides in this module. It 

defines a set of chains which specify how the gateway VNFs are composed to fulfill the 

application’s need(s).  

As stated above, the proposed architecture reuses the MANO framework, including NFVO, 

VNFM, and VIM. The NFVO functionality is provided by the Gateway Orchestrator, which is in 

charge of orchestrating the NFVI resources and managing the lifecycle of the network services 

(i.e., the composition of VNFs). The VNFM functionality is provided by the Gateway VNFs 

Manager. This manager is responsible for the gateway’s VNFs lifecycle management, including 

instantiation, maintenance, and termination. The VIM functionality is provided by the IoT 

Infrastructure Manager, which is responsible for resource allocations for the deployment and 

execution of the VNFs. The SDN Controller is co-located within the VIM. This is in accordance 

with ETSI SDN Usage in an NFV Architectural Framework [100]. According to this reference, 

one architectural option for the possible location of SDN Controller is to co-locate it with the VIM. 

This option is adopted in the proposed architecture. The SDN Controller establishes the path 

between the VNFs through which the sensor data and the commands to the robots traverse. 

The SDN Controller is logically centralized. However, we envision it as being physically 

distributed to back-up controllers as suggested by references [101] [102] in order to incorporate 

fault tolerance mechanisms such as the ones described in these references. When it comes to 

scalability, we envision it as running in a virtualized environment in order to enable vertical and 

horizontal scalability. The reader should note that several existing SDN controllers (e.g., 

Floodlight [103]) do run in virtualized environments. The SDN Controller is connected to all the 

Application-level SDN Switches in the Forwarding Plane and programs them using an extended 

OpenFlow interface. The details of this interface are presented in the next subsection. 

The Gateway Functions Store includes the list of VNFs (i.e., gateway functions) that the IoT 

Gateway Provider Domain can provide. It is similar to the Network Function Store proposed by 

T-NOVA [104] which contains the VNFs provided by several third-party developers, published as 
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independent entities and accompanied by their metadata. The VNF Catalogue represents a 

repository of all the on-boarded gateway VNF packages which are updated during their lifecycle 

management operation.  The Gateway Overlay Manager is responsible for the IoT Gateway 

Overlay configuration, activation, and execution.   

B) Interfaces  

The general principles used to design the interfaces are presented first. This is followed by the 

description of the individual interfaces.  

1) General Design Principles for the Interfaces 

As the SDN switches presented in this chapter are application-level switches we first present 

the extensions made to the SDN interfaces. The general principles for the design of the other 

interfaces are presented after that.  

SDN interfaces  

In our proposed architecture, Int. N is the southbound interface and Int. K the northbound 

interface. OpenFlow and ForCES are the two standards currently used at the southbound interface 

[105]. However, they cannot convey application-level information.  In this work, we have extended 

the most widely used standard (i.e., OpenFlow) as previously suggested in the literature [99][106]. 

An example of an extension is the addition of application-level fields to the match fields of the 

flow entries. The match field “OFB_IPV4_SRC” for instance is extended to support “source” 

“OFB_Application_Level_Address_SRC” (in addition to “OFB_IPV4_SRC”). Yet another 

example, is the extension of the action “output” to output a message to an application-level address.  

 Contrary to the southbound API, there is currently no standard for the northbound interface 

[105]. Most SDN controllers (e.g., OpenDaylight, Floodlight, etc.) do offer their own REST-based 

northbound APIs. However, like the southbound interface, the existing northbound interfaces do 

not cater to application-level features. If we take Floodlight, for instance, the resource “static flow 

pusher” REST API cannot be used as it stands to install flow table entries via REST API. We have 

therefore made extensions. An example is the extension of the matching field “ipv4_src” to include 

“application_level_address_src”. Yet another example is the extension of “ipv4_dst” to include 

“application _level_address_dst”.   
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Other Interfaces  

The other interfaces have been designed from scratch using the well-known RESTful Web 

services principles [107]. They all expose CRUD (i.e., Create, Read, Update, and Delete) 

operations. Table 5.1 summarizes the proposed REST interface (i.e., Int. E) for the interactions 

between the Gateway Orchestrator module and the VNF Agent module. It defines resources on the 

Gateway Orchestrator “Orchestration Plan”. This “Orchestration Plan” resource exposes a subset 

of the uniform interface to the VNF Agent. When the latter sends a POST request to the Gateway 

Orchestrator to request the execution of a new orchestration plan, the Gateway Orchestrator 

creates a new “Orchestration Plan” resource and sends the resource URI to the VNF Agent. This 

URI is used to modify or get the status of an existing orchestration plan and to remove the resources 

of a specific orchestration plan. 

2) Individual Interfaces Description 

Int. A is used by the Application Domain to request IoT service from the IoT Provider Domain. 

Int. B allows the IoT Provider Domain to request the desired gateway from the IoT Gateway 

Provider Domain. Int. C and Int. D are used for Application Overlay creation and IoT Gateway 

Overlay creation, respectively. Int. E is used by the VNF Agent to request the NFVO to execute the 

orchestration plan (deploy required VNFs, chain them, and create the gateway overlay). 

Int. F, Int. G, and Int. H are reused from the ETSI NFV MANO framework; they represent Or-

Vnfm, Vi-Vnfm, and Or-Vi, respectively. Int. F enables the instantiation, maintenance, and 

termination of the gateway’s VNFs. Int. G enables the NFVI resource allocation for the gateway 

VNFs. Int. H enables the NFVO to monitor the NFVI resources. Int. I is a reference point in an 

ETSI NFV framework. It allows the VNFM to verify if the requested VNF is already deployed. 

Int. J is used to fetch the required VNFs from the Gateway Function Store. Int. K is the northbound 

Table 5.1 Example of the API operations exposed by the Gateway Orchestrator to the VNF Agent (i.e., Int E.) 

REST Resource Operation HTTP Action and Resource URI 

O
rc

h
es

tr
at

io
n

 

P
la

n
 

Execute an orchestration plan POST: /OrchestrationPlan 

Retrieve a specific orchestration plan GET: /OrchestrationPlan/{Id} 

Retrieve all orchestration plan GET:/OrchestrationPlan/all 

Remove an orchestration plan DELTE: / OrchestrationPlan/{Id} 

Update an orchestration plan PUT: / OrchestrationPlan/{Id} 
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interface of the SDN Controller, named Application Control Interface in ETSI SDN Usage in NFV 

[100]. Int. L is used by the Gateway Orchestrator to instruct the Gateway Overlay Manager to 

create the IoT Gateway Overlay. 

Int. M and Int. N are reused from the ETSI NFV MANO framework; in MANO terminology 

these are Ve-Vnfm-vnf and Nf-Vi, respectively [22]. Int. M is for the lifecycle management of the 

VNFs, and Int. N represents the southbound API of the SDN Controller, named the SDN Resource 

Control Interface in ETSI SDN Usage in NFV [100]. Int. O, located between the Application Agent 

and the flow classifier, is used to redirect the application request to the flow classifier. 

C) Procedures  

The proposed architecture, as part of the signaling procedure, includes the following two 

procedures: IoT gateway provisioning and application provisioning. IoT gateway provisioning 

includes the IoT gateway request and the IoT gateway orchestration. IoT gateway orchestration 

refers to the IoT gateway deployment, IoT gateway chaining, and IoT gateway overlay creation. 

For the application provisioning procedure, this chapter focuses on the application overlay creation 

phase.  

 Next, the gateway orchestration procedure (Figure 5.3 (a)) with its three phases: deployment, 

chaining, and overlay creation, is described. 

1) IoT Gateway Deployment  

The process starts when the IoT Gateway Provider Domain receives a gateway request from 

the IoT Provider domain (through Int. B). The VNF Agent instructs the Gateway Orchestrator to 

execute the orchestration plan through Int. E. The Gateway VNFs Manager first checks if the VNFs 

needed for the requested gateway are already present in the IoT Provider Domain. If not, the 

Gateway Orchestrator discovers the capable IoT devices in the IoT Provider Domain  (i.e., type 

B) along with their capabilities and features, such as energy level, response time, location, etc., 

and maintains a clear view of the network topology. The Gateway VNFs Manager then finds the 

requested VNFs in the Gateway Functions Store (through Int. J) and instantiates and dispatches 

them (through Int. M). 
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2) IoT Gateway Chaining 

Once the VNFs are deployed, the SDN Controller (co-located with the IoT Infrastructure 

Manager) programs the Application-level SDN Switches (via Int. N). The SDN Controller 

populates a set of application-level flow entries in the Application-level Switches based on the 

chains defined by the SDN Application in the VNF Agent. The SDN application injects these 

entries in the SDN Controller via Int. K. According to these entries, a path is established between 

the application and the IoT devices through which the data from IoT devices traverse to the 

application. 

3) IoT Gateway Overlay Creation 

This process is initiated when the Gateway Overlay Manager receives a request from the 

Gateway Orchestrator to create the IoT Gateway Overlay (through Int. L). The Gateway Overlay 

Manager first configures the IoT Gateway Overlay between the selected type B devices. It then 

activates the overlay, where the selected IoT devices receive an overlay join request (Int. D). 

The proposed architecture in Figure 5.2 includes two overlays built on top of the IoT MANET: 

the IoT Gateway Overlay and the Application Overlay. They co-exist simultaneously; each may 

have its own overlay protocol for message exchange. They share nodes and underlying network 

links. In order to allow these overlays to interact and cooperate with each other, the proposed 

approach uses co-located nodes, (nodes that belong to the two overlays) to enable inter-overlay 

routing and reduce traffic [108]. Every message received by a co-located node can be forwarded 

to the other overlay the node belongs to. Using super-peers is another approach; however, it leads 

to costly merging mechanisms [109] and [110]. 

5.2.5. Detailed Description of the Forwarding Plane 

The architectural modules and the interface of this plane are described below. The NFVI is 

reused from the ETSI NFV architectural framework [22] and is shown with dashed lines in Figure 

5.2. 

A) Architectural Modules  

All the modules described in this section are in the IoT Provider Domain. The NFVI is able to 

host the VNFs deployed over IoT devices. The VNFs are the software instances of the gateway 

functions.  
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Type A IoT devices rely on type B devices to join the overlay. They send data to the IoT 

Gateway Overlay through type B devices. Type B devices can execute one or more function of the 

gateway, and they can represent themselves and/or a type A device in the IoT Gateway Overlay. 

Similarly, type B devices can join the Application Overlay on behalf of type A devices. In addition, 

the same type B device may belong to both overlays. 

The Application-level SDN Switches are programmable by the SDN Controller. The 

Application-level SDN Switches in the proposed architecture are placed on a computing hardware 

in the NFVI (as one of the options presented in [100]) in which some type B devices act as SDN 

switches. It is worth noting that some industrial projects are working on using application-layer 

intelligence in an SDN environment (i.e., a white paper [111]). 

B) Interfaces  

Int. p is used to exchange control data between type A and type B IoT devices. Int. q is used to 

send the sensor data to the IoT Gateway Overlay. Int. r is used to send the data received from the 

IoT devices executing an application’s task to the Application Overlay. Int. s allows 

communication between the Application-level SDN Switches in order to establish the path between 

them. It also allows pushing/retrieving of the sensor data between the Application-level SDN 

Switches and the VNFs. 

5.2.6. Illustrative Sequence Diagrams  

Figure 5.3 illustrates a sequence diagram of the interactions of different architectural modules 

during the signaling procedure for gateway provisioning (gateway request and gateway 

orchestration). It also illustrates an end-to-end scenario of the actual flow of data when sending 

data from the sensors to the application. A fire detection and fighting application is considered, 

which wants to collect data from temperature sensors to detect prospective fires after an earthquake 

and can then deploy firefighting robots in case of a disaster.  

The gateway provisioning procedure is shown in Figure 5.3 (a). MANO in the figure represents 

the Gateway Orchestrator (i.e., NFVO), the Gateway VNFs Manager (i.e., VNFM), and the IoT 

Infrastructure Manager (i.e., VIM). During the deployment phase, the VNFs are selected in the 

IoT Gateway Provider Domain. This selection is done based on the application’s interface 

description and requirements (Figure 5.3 (a) action 1), e.g., SenML over HTTP, average data and 
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(a) 

 

(b) 

Figure 5.3 Sequence diagram for the Gateway Deployment and Chaining 

(a) IoT Gateway provisioning procedure 
(b) End-to-End scenario of the actual flow of data 
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IoT device specifications (action 2-3), e.g., Virtenio Sensors with CoAP protocol that send raw 

data. The IoT devices’ specifications are found in a repository held by the IoT Provider Domain. 

It is assumed that the requested Gateway’s VNFs implement the following functions: (1) Data 

Aggregator (DA) to send data over a specific threshold; (2) Protocol Converter (PC) to convert the 

data received from IoT devices to the appropriate model supported by the application and vice 

versa; and (3) Information Model Converter (IMC) to convert a model from one to another. Similar 

to the previous chapter (i.e., Chapter 4), we do acknowledge the fact that converting a protocol X 

(or an information model X) into a protocol Y (or an information model Y) is not always feasible. 

Consequently, the IoT Gateway Provider provisions the related VNFs only when the conversion 

is feasible. It is also important to note that when the required VNFs are not found in the Gateway 

Functions Store, a service unavailability notification is sent to the Application Agent, to either 

cancel the negotiation or resume signaling after a certain time.  

The selected VNFs are instantiated and deployed in the IoT Provider Domain (action 8). The 

IoT Infrastructure Manager next injects the flow entries in the Application-level SDN Switches 

(action 9). Some examples of such entries are listed in Table 5.2. The IoT Gateway Overlay is then 

created in the IoT Provider Domain (action 10). Finally, the Application Agent receives a 

notification about service availability through the VNF Agent and the IoT Provider Agent (actions 

11-13) in which the Application Agent is instructed to contact the flow classifier to collect data 

from the sensors. Table 5.3 demonstrates two prospective chains that could be defined for these 

VNFs based on the end-user application preference and the IoT devices’ properties.  

The end-to-end scenario of the forwarding plane is shown in Figure 5.3(b). The Application 

Agent sends its request to the SW1 (action 1) which performs the flow classification according to 

Table 5.2. It then pushes the chain-Id on the request (action 2). This chain-Id indicates that DA, 

Table 5.2 Application-level flow tables 

App-level Switch Match Field Action 

SW1 Application: HTTP, SenML, Average data 
&& IoT: Raw, CoAP 

Insert Chain Id A 
Forward to SW2 

SW2 Chain Id = A Forward to SW3 

SW3 Chain Id = A Forward to  SW4 

SW4 Chain Id = A Forward to “sensor a” 
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IMC, and PC are needed to deliver the required service to the application. SW1, according to the 

entries in its routing table, (i.e., Table 5.2) collects measurements from sensors (e.g., sensor x, type 

A) and sends the request to the second switch (SW2) (action 3-6). The SW2 sends the request to 

the DA VNF to aggregate the data (actions 7-8). The same applies to SW3 and SW4 (actions 9-

16). Finally, the requested data is sent back to the Application Agent (action 17) through the 

Application Overlay.  

5.3. Performance Evaluation 

For the prototype, the recovery phase of the earthquake early warning and recovery application 

(presented in Chapter 2) is implemented. This phase is as follows; an earthquake recovery 

application collects the data of sound sensors deployed in the affected areas. These sensors can 

detect voices or other sounds of possible human presence through the ruins and inform the 

earthquake recovery application. In order to communicate with these IoT devices, the application 

needs a gateway for handling the different types of communication interfaces. Sometime later, a 

fire detection and fighting application that needs to be notified when a fire occurs, adds temperature 

sensors that can detect fires. It then deploys a fleet of robots that can detect extinguishers and grab 

one in order to suppress the fire. Accordingly, the gateway needs to be upgraded in a dynamic 

manner such that it can serve the newly added IoT devices.  

Three different types of IoT devices are used. Sunfounder5 sensors are deployed over the 

Raspberry Pi6 (RPi) to detect sounds, Virtenio7 sensors are deployed to detect fires, and Lego 

Mindstorms8 robots with specialized arms are utilized to grab extinguishers and suppress fires. A 

ball is used to simulate the extinguisher. 

                                                 
5sunfounder.com/modules/sensor-module.html/ 
6 raspberrypi.org/ 
7 virtenio.com/ 
8 lego.com/en-us/Mindstorms/ 

Table 5.3 Prospective chains based on application-level requirements 

 End-user App. Requirements IoT Devices Properties 
VNF Chains Chain ID 

Protocol Info Model Data Aggregation Protocol Info Model 

HTTP SenML Average Data CoAP Raw Data 
DA1, IMC1, 

PC1 
A 

HTTP SensorML Average Data HTTP  Raw Data DA1, IMC2 B 
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In these experiments, we assume that the recovery phase of the earthquake early warning and 

recovery application has one application component: Victim Detector. To that end, Sunfounder 

sensors on RPis send their raw measurements over HTTP Protocol. This data is first processed by 

a DA (to send only the sounds of any possible human beings) and then processed by the IMC 

(mapped to SenML format). The fire detection and fighting application has two application 

components: Fire Detector and Robot Dispatcher. Virtenio sensors send their raw measurements 

over CoAP protocol. These measurements are processed by a DA (to send data over a specific 

threshold) followed by an IMC (mapped to SenML format), and finally by a PC (encoded in HTTP 

protocol). Accordingly, the same IMC can be reused by both applications. Finally, in order for the 

application to send commands to the robots, the IMC and the PC convert the HTTP request 

received into LeJOS JAVA API command that implements the LCP.  

In this prototype, it is assumed that an ad-hoc network is already built and that the connection 

between the involved nodes has been established. It is also assumed that a fixed node in the IoT 

provider is carried on the relief vehicles during MANET setup and is part of the gateway and the 

application overlay. 

 

Figure 5.4 Prototype architecture 
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5.3.1. Proof of Concept Prototype 

The validation prototype is implemented according to the architecture depicted in Figure 5.4. 

The signaling procedure for gateway provisioning (gateway request and gateway orchestration) 

and the end-to-end scenario of the actual flow of data as described by the illustrative sequence 

diagrams (i.e., Section 5.2.6) are implemented.  In this implementation, container-based gateway 

orchestration is adopted. Containers are lightweight, stand-alone, and modular. In addition, they 

allow rapid configuration and deployment. Existing open source MANO solutions are not used in 

this prototype as they do not support container-based orchestrations.  

For the Gateway Orchestrator (i.e., NFVO), Alfresco Process Services9, an enterprise Business 

Process Management (BPM) solution is used. It allows the creation of process definitions and 

orchestration plans using the capabilities of the Business Process Model Notation (BPMN). It also 

exposes REST API to external entities to execute the orchestration plan. Figure 5.5 shows an 

example of the orchestration plan used for the new deployment of the gateway. In this plan, the 

required VNFs for the gateway are first deployed, then the VNFs are chained using SDN, and 

finally, the IoT Gateway Overlay is created.  

The application-level switches are implemented using Java libraries. These switches expose a 

REST API implemented as Java Restlet framework to the SDN Controller through the fixed node 

in the IoT Provider domain for handling application-level flow entries. For the SDN Controller, 

since existing open source SDN controllers do not support our proposed extended features, we 

implemented it as a simple REST API using the Restlet framework.  

The IoT Gateway Overlay is created by the Gateway Overlay Manager. Hive2Hive10 API is 

used, which provides a free, open-source, distributed, and scalable solution for distributed P2P 

                                                 
9 alfresco.com/ 
10 hive2hive.com/ 

 

Figure 5.5 IoT Gateway orchestration plan 
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networks. It also provides for headless deployment (e.g., on an RPi) and is configurable and 

customizable. The overlay is created by the fixed node in the IoT Provider domain as a master 

client by advertising its address and creating a user profile. The remaining nodes join the overlay 

network as user clients by registering to the user profile. 

The VNFs are implemented using Java libraries and packaged in Docker containers. They are 

pushed to the DockerHub repository. The container images are pulled from the repository through 

the fixed node in the IoT Provider domain. The Application-level SDN Switches and the VNFs 

communicate with each other in the overlay using the Hive2Hive framework. 

Two VNFs (i.e., DA and IMC) and three Application-level SDN Switches are randomly placed 

on the two RPis. It should be noted that a VNF placement algorithm can be adapted to deploy the 

VNFs in the optimal location in the network (e.g., [112]). The remaining architectural modules are 

modeled as RESTful web services using a Java Restlet framework.  

5.3.2. Experimentation Setup 

The IoT Gateway Provider domain runs on a 64-bit laptop with Ubuntu 14.04.5 LTS. The 

Application domain runs on a laptop with Intel® Xeon® CPU clocked at 2.67 GHz and a 6GB 

RAM with 64-bit Windows 7 Enterprise. The fixed node of the IoT Provider domain runs on a 64-

bit laptop with Ubuntu 14.04.5 LTS. The RPis run a Raspbian OS which is based on Debian OS. 

The first RPi hosts two Hive2Hive user clients (i.e., one on behalf of a Virtenio sensor and one on 

behalf of the DA VNF). The second RPi hosts three Hive2Hive user clients (i.e., one on behalf of 

a LEGO Mindstorms robot, one on behalf of an IMC VNF, and one representing the Victim 

Detector component of the earthquake application.  

5.3.3. Measurements and Results  

A) Performance Metrics 

The performance metrics utilized to evaluate the performance of the proposed architecture are: 

 Gateway provisioning latency – measured from the time the Application Agent sends a request 

to obtain sensor measurements to the time the gateway is deployed and chained in the IoT 

domain. Experiments with a different number of VNFs, SDN switches, and overlay nodes are 

conducted. 
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 Orchestration latency – Measured from the time the orchestration request to the Gateway 

Orchestrator is initiated to the time the acknowledgment of orchestration is received. The 

orchestration process, as discussed in the previous section, includes the IoT gateway 

deployment, IoT gateway chaining, and IoT gateway overlay creation. In addition, the 

orchestration latency is measured when a request to upgrade an already-deployed gateway is 

received. To that end, a scenario where new sensors are added by the fire detection and fighting 

application is assumed. According to this scenario, a gateway with three VNFs is required (i.e., 

DA, IMC, PC), with one of the VNFs (i.e., IMC) already deployed in the IoT Provider Domain. 

 End to End (E2E) delay - Measured from the time the IoT devices send their data to the time 

the requested data is obtained by the application. Here, the order of the VNFs is varied to show 

the effect of changing the order of the VNFs on the E2E delay. The E2E delays for both 

fixed/centralized gateways and the proposed distributed gateway are also calculated.  

B) Results and Discussions 

This section discusses the performance results obtained, beginning with the provisioning 

latency. 

Test Case 1: Provisioning latency 

Figure 5.6 (a) depicts the IoT gateway provisioning latency and the orchestration latency, 

which is a sub-phase of the provisioning procedure. Both average latency and the standard 

deviation are provided for 10 consecutive experiments. The average provisioning latency is 15.71 

 

(a)                                                                                                     (b) 

Figure 5.6 Gateway provisioning latency 

(a) Provisioning latency vs. orchestration latency 
(b) Provisioning latency with different number of VNFs and Application-level SDN Switches 
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sec. This shows the efficiency of using NFV and SDN-based gateways compared to traditional 

gateways. The latter imposes lengthy deployment time, requires additional configurations for 

physical interfaces to implement chains, etc. [113]. Also, it can be observed from the graph that 

the average orchestration latency (14.17 sec) takes up most of the time of the provisioning 

procedure.  

In order to conduct an accurate insight into how the system behaves depending on the number 

of VNFs, SDN switches, and overlay nodes, several cases are carried out. A linear topology is used 

for the Application-level SDN Switches. We gradually increase the number of instances of each 

VNF while considering a load balancer VNF for each group of VNFs of the same type to equally 

distribute the load among them. Therefore, the case with 6 VNFs for instance, include 3 instances 

of each VNF (i.e., Data Aggregator and Information Model Converter), 2 load balancers, and 7 

application-level SDN switches. This leads to a gateway overlay with 15 nodes. A Similar number 

of overlay nodes for disaster management scenarios are considered in the literature, e.g., [114]. It 

can be observed in Figure 5.6 (b) that by increasing the number of VNFs and the SDN switches 

the provisioning latency behaves almost at a slight constant rate, linearly. This is because when 

the number of nodes in the overlay is increased, the system experiences a very slight increase in 

   

(a)                                                                         (b) 

Figure 5.7 Orchestration latency of the proposed gateway 

(a) Orchestration latency of each phase of the orchestration plan 

(b) Orchestration latency of upgrading the proposed gateway vs. orchestrating a new gateway 
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the overlay creation latency. This is since all the nodes (i.e., user clients in Hive2Hive terminology) 

need to register to the user profile created and advertised by the fixed node (i.e., master client) and 

join the overlay. 

Next, the various phases of the orchestration are measured to get a more detailed insight into 

the orchestration latency.  

Test Case 2: Orchestration latency 

Figure 5.7 (a) shows the latency of the orchestration, including IoT gateway deployment, IoT 

gateway chaining, and IoT gateway overlay creation over 10 consecutive measurements. Both 

average latency and the standard deviation are provided. It can be noted that the overlay creation 

takes up most of the orchestration time, which indicates that overlay creation imposes an overhead 

on the overall management and orchestration procedures in terms of latency.  

One reason for the time required for overlay creation is that with overlay networks, an 

additional intermediate level is added between the nodes in the physical network infrastructure. 

However, despite the overhead, the experimental results show that the overhead associated with 

the overlay network is not a significant factor compared with the considerable gain of the approach. 

Overlays play an important role in MANETs where nodes join and leave the group dynamically. 

The additional layer prevents interference with the existing protocols in the underlying 

heterogeneous environment of MANET.  

   

(a)                                                                              (b) 

Figure 5.8 E2E latency of the proposed gateway 

(a) E2E delay for centralized gateway vs proposed distributed gateway 
(b) E2E delay of the proposed gateway for different orders of VNFs 
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Figure 5.7 (b) shows the orchestration latency associated with the procedure of upgrading the 

gateway vs deploying a new gateway. The proposed architecture allows the upgrading of a pre-

deployed gateway for which the orchestration latency is 15.06 sec. In contrast, the orchestration 

latency associated with the procedure of deploying a completely a new gateway (when upgrading 

the gateway is not supported) is 24.51 sec. It can be observed that the proposed architecture’s 

feature of allowing the gateway’s upgrading decreases the orchestration latency by 38.56%. 

Test Case 3: End to End delay 

In Figure 5.8 (a), the E2E delay of the proposed distributed gateway with two VNFs (DA-

IMC) is compared to a fixed centralized gateway. The fixed gateway aggregates the received data 

and converts the information model into two tightly coupled functionalities. The average latency 

for the proposed distributed gateway (i.e., 8.8 sec) is higher than the average latency for a 

centralized fixed gateway (i.e., 1.3 sec). This is basically because in a centralized gateway the 

communication latency between different functionalities is eliminated.   

However, in the implementation, a linear topology is adopted for the SDN switches; other 

topologies could be investigated to see if they can reduce this latency. Eliminating the SDN 

switches and making the VNFs SDN enabled could also reduce this latency, but this might make 

the VNFs more demanding in terms of processing and storage and may not fit resource-constrained 

environments. Using other P2P frameworks could also be investigated to see if they can reduce 

this latency. 

In Figure 5.8 (b), the E2E delay of the proposed distributed gateway with two VNFs (DA-

IMC) is measured for two valid chaining options of the VNFs. Five consecutive measurements are 

assumed to be sent from the sound sensor, where the last measurement indicates a possible human 

being sound. In the first chain (i.e., DA-IMC), the DA receives all the measurements and sends 

only possible human being sound which is converted to the appropriate model at the IMC. In the 

second case (i.e., IMC-DA), all the received measurements from the sensors are converted to the 

model supported by the application (i.e., SenML) and then filtered at the DA to send only the 

possible human being sound. It should be noted that both cases lead to the same relevant result at 

the application. The average latency in the first chain (i.e., DA-IMC) is 10.45 sec, while in the 

second chain (i.e., IMC-DA) it is 18.52 sec. 
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It is clear that the performance of the gateway in terms of latency is directly affected by the 

order in which the VNFs are composed and processed. This order has a significant impact on the 

amount of processing capacity required for each VNF. And, the amount of the required capacity 

depends on the amount of data handled by that VNF instance. Different chain composition 

algorithms can be integrated to improve the performance of the gateway e.g., [112].  

5.4. Conclusions 

This chapter proposed an architecture for on-the-fly distributed gateway provisioning in 

disaster management using NFV and SDN technologies. These technologies make it possible to 

address the challenges of traditional gateways, such as dynamicity and flexibility. NFV allows 

upgrading the pre-existing gateway and deploying the gateway functions anywhere anytime, and 

SDN enables reusing the same gateway functions in different flows for different applications. The 

gateway functionalities were provisioned as VNFs and are chained dynamically using the 

application-level SDN switches. The IoT gateway was built as a P2P overlay taking into 

consideration the MANET settings of the disaster management scenarios. 

A prototype of the proposed architecture was provided, and a set of experiments are conducted 

to evaluate the architecture. The results showed that building the IoT gateway as a P2P overlay 

imposes an overhead on the overall management and orchestration procedures, but it produces a 

considerable gain. The performances of distributed and centralized approaches are also analyzed 

and the effect of the order of the VNFs on the overall E2E delay is investigated. The results showed 

the advantages of using on-the-fly provisioning of IoT gateway and the possibility of reusing and 

updating a pre-existing gateway. 
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Chapter 6 

 

6. A Coalition Formation Algorithm for Multi-

Robot Task Allocation  

 

6.1. Introduction 

Disaster management application domains for events such as earthquakes need a very large number 

of robots (in the order of hundreds or even thousand [3]) in a single coalition in order to cover the 

whole disaster area and satisfy the requirements of the search and rescue tasks of the application. 

Hence, the selection of the best coalition in such real-world large-scale scenarios requires solving an 

optimization problem with the goal of optimizing several conflicting objectives simultaneously.  

In this chapter, we propose an algorithm for coalition formation problem. We address the ST-MR-

IA (Single-Task Multi-Robots Instantaneous-Assignment) class of Multi-Robot Task Allocation 

(MRTA) problems following the taxonomy presented in [115]. In the problem at hand, each robot 

is capable of executing one task at a time and each task needs to be assigned to a robot coalition. 

Also, the available information about the robots, the tasks, and the environment permits only 

instantaneous allocation of tasks to robots, without planning for future allocations [115]. Our 

proposed algorithm is based on Quantum Multi-Objective Particle Swarm Optimization 

(QMOPSO). QPSO is a discrete version of PSO to solve optimization problems with binary-valued 
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solution elements [116]. PSO is one of the many options for coalition formation. Simulated 

Annealing (SA), Genetic Algorithm (GA), and Column-Generation (CG) are other examples. PSO 

is chosen because of its effectiveness in solving a wide range of applications [117]. It has the ability 

to find optimal or near-optimal solutions for large-space problems in a short time compared to 

other heuristics [118].  

The goal of the proposed algorithm is to ensure that the optimal coalition of robots is selected 

with the required capabilities for each task. The proposed algorithm consists of a filtering method, 

the QMOPSO approach, and a ranking method. Filtering is used to choose the best robots for the 

execution of the QMOPSO algorithm and to make the robots that have not been selected available 

for other requests. In addition, location constraints regarding the capability distribution of the 

robots are taken into consideration. For instance, some tasks require that the combination of a 

given sensor and actuator should reside on the same robot or on different robots. This is necessary 

to ensure proper execution of search and rescue task. The proposed algorithm is implemented in 

order to analyze its performance. 

The rest of this chapter is organized as follows. First, it presents the problem formulation, 

followed by the description of the proposed algorithm. After that, it presents the simulation 

parameters and settings followed by the validation results. We will conclude this chapter at the 

end.  

6.2. Problem Formulation 

To consider this problem, let us define an infrastructure composed of n robots:  

                 𝑅 =  {𝑅1,  .  .  . ,  𝑅𝑖 ,  . .  , 𝑅𝑛}                              (1) 

where n is significantly large and hence the infrastructure can support search and rescue task in 

large-scale disasters. 

Each of these robots has two vectors of capabilities: sensing capabilities (e.g., cameras, sonars) and 

actuating capabilities (e.g., arms, wheels). It is assumed that each capability is a real non-negative value 

and indicates the number of sensors/actuators owned by the robots.   

For robot 𝑅𝑖, the sensing and actuating capability vectors are:  𝑆𝑅𝑖 = {𝑠1𝑖 ,  … ,  𝑠𝑟𝑖 }           (2)       𝐴𝑅𝑖 = {𝑎1𝑖 ,  … ,  𝑎𝑟𝑖 }    (3) 

where r is the number of possible sensing and actuating capabilities. 
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A robot can be in three states: Idle, Allocated, and Busy. The idle state is when the robot does not 

perform any tasks, the allocated is when the robot is locked with the algorithm running on it, and the 

busy state is when the robot is performing a task.  

The infrastructure can perform m tasks assigned to it: 𝑇 =  {𝑇1,  .  .  . ,  𝑇𝑗 ,  . .  , 𝑇𝑚}                   (4) 

Each task  𝑇𝑗 is composed of p sub-tasks: 

                      𝑍𝑇𝑗 =  {𝑧1𝑗 ,  .  .  . ,  𝑧𝑘𝑗 ,  . .  , 𝑧𝑝𝑗}                        (5) 

It is assumed that the sub-tasks are executed independently and that each robot is a member of only 

one sub-task. Each sub-task requires a specific set of sensing and/or a set of actuating capabilities to 

start. 

We represent the capability requirements of each sub-task 𝑧𝑘𝑗 by two vectors, sensing requirements 

and actuating requirements, as: 

For sub-task 𝑧𝑘𝑗, the capability requirement vectors are: 

                        𝑆𝑧𝑘𝑗 = {𝑠1𝑗𝑘 ,  … , 𝑠𝑟𝑗𝑘}                                 (6)     

                       𝐴𝑧𝑘𝑗 = {𝑎1𝑗𝑘 ,  … ,  𝑎𝑟𝑗𝑘}                                (7) 

Then, the capability requirement vectors for the task  𝑇𝑗 is the sum of the capability requirement 

vectors of the sub-tasks constituting the task 𝑇𝑗:       

                             𝑆𝑇𝑗 =  ∑ 𝑆𝑧𝑘𝑗𝑝𝑘=1                                       (8)               

                              𝐴𝑇𝑗 = ∑ 𝐴𝑧𝑘𝑗𝑝𝑘=1                                      (9) 

Some of the sub-tasks of task 𝑇𝑗  are tied by locational constraints regarding the capability 

distribution of the robots while others may be executed without any locational constraints. According 

to [50], there are two types of locational constraints; a combination of sensors and actuators should 

reside on the same robots or on different robots. The locational constraints can be represented as 

Constraints Satisfaction Problem (CSP) [50]. 

CSP consists of three components: 

1. The set of variables, that is the required sensor and actuators for the task 

                    𝑋 =  {𝑥1, … , 𝑥𝑗 ,  . .  , 𝑥𝑘}                          (10) 

where 𝑋 = {𝑠1,  𝑠2, … , 𝑠𝑛,  𝑎1,  𝑎2, … , 𝑎𝑛} 

2. The set of values for each variable, that is the available robots possessing the required capabilities 

for each variable  
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For variable 𝑥𝑖 , the set of values is: 

                                    𝑉𝑥𝑖  =  {𝑅𝑗 ,  . . .  , 𝑅𝑛}                     (11) 

3. The set of constraints between different collections of variables 

                            𝐶 =  {𝐶1,  𝐶2,  . .  , 𝐶𝑛}                   (12) 

where each 𝐶𝑖 is one of the following types: 𝑥𝑖 ≠  𝑥𝑗 , 𝑥𝑖 = 𝑥𝑗 . The goal in CSP is to assign a value 

for each variable such that the constraints are satisfied. 

A coalition 𝐶𝐿𝑇 for any task has two vectors of capabilities: sensing  𝑆𝑐 and actuating  𝐴𝑐 while 

each is the sum of the capabilities owned by the robots in that coalition: 

                          𝑆𝑐  = ∑𝑅𝑖Є𝐶  𝑆𝑅𝑖                                       (13)      

                          𝐴𝑐 = ∑𝑅𝑖Є𝐶   𝐴𝑅𝑖                                     (14) 

Coalition 𝐶𝐿𝑇𝑚 can perform task 𝑇𝑗 only if: 

1. The vector of its capabilities satisfies the following: 

                       𝑆𝑐 ≥ 𝑆𝑇𝑗         And/or         𝐴𝑐  ≥ 𝐴𝑇𝑗                           (15) 

2. And its members meet the locational constraints. 

It is assumed that a coalition can work on a single task at a time and that each robot is a member of 

one coalition at a time.  

                        𝐶1𝑖⋂ 𝐶2𝑖 =  ∅                                             (16) 

The objective is to find a coalition that minimizes the deployment cost of the robots, minimizes the 

time needed to perform a task by the robots, and to minimize the number of robots in a coalition. 

6.3. Coalition Formation Algorithm for Multi-Robot System 

We propose an algorithm for coalition formation for Multi-Robot system. The Pseudocode for this 

algorithm is given in Algorithm 6.1. The set of inputs for the algorithm are n (the maximum number 

of robots allowed in a group), Time (the maximum time period to complete a given task), Cost (the 

cost the customer agrees on), Filtering_Rule, Task_Requirements (the required sensors and actuators 

for a given task), Locational Constraints (the capability distributions for sub-tasks constituting a given 

task), and Criteria_Importance (defining the weights to rank the Pareto-optimal solutions based on 

more than one criterion - i.e., objectives in our case). 

The algorithm starts with filtering the robots based on the Filtering_Rule. In this function, if the 

battery level of the robots is lower than the Filtering_Rule, they are excluded from the next steps. It 

then applies the QMOPSO-based algorithm. Multi-objective problems generate a set of non-dominated 
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or Pareto-optimal solutions. The solutions are ranked after excluding the solutions that exceed the time, 

the cost, the number threshold, and the infeasible solutions. Promethee II ranking [119] is applied, 

which is a multi-criteria ranking method with lots of success due to its mathematical properties and its 

user-friendliness. In this method, the Pareto-optimal solutions are compared pairwise. The difference 

between the evaluations of two Pareto-optimal solutions over each criterion is considered. The criteria 

in our case are the objectives (i.e., time, cost, and number of robots). The Pareto-optimal solutions are 

ranked using the Criteria-Importance/weight of the objectives. The highest rank solution denotes the 

best robot coalition.  

The QMOPSO algorithm first initializes the particles. The Pseudocode is given in Algorithm 6.2. A 

particle is defined based on the quantum bit. Two vectors are initialized: 

 Quantum particle vector 𝑉(𝑡)𝑖, which is the velocity for particle i and is initialized to random values 

between [0,1]: 

    𝑉(𝑡)𝑖 = [𝑣(𝑡)1𝑖 ,  𝑣(𝑡)2𝑖 , …, 𝑣(𝑡)𝑛𝑖 ]                                    (17) 

 Discrete particle vector 𝑝(𝑡)𝑖, which is initialized by initializing a random number for each 𝑣(𝑡)𝑗𝑖  

and then, according to the condition in (19) and (20), the discrete particle vector is initialized: 

     𝑝(𝑡)𝑖 = [𝑝(𝑡)1𝑖 ,  𝑝(𝑡)2𝑖 , …, 𝑝(𝑡)𝑛𝑖 ]                                    (18) 

where n is the size of the problem, i.e., the total number of robots. 

      If         𝑟𝑎𝑛𝑑𝑗𝑖 > 𝑣(𝑡)𝑗𝑖𝑝(𝑡)𝑗𝑖 = 1                                (19) 

      Otherwise       𝑝(𝑡)𝑗𝑖 = 0                                                (20) 

First, the initial population is evaluated by calculating the values of the three objective functions for 

each particle. The particles that represent non-dominated solutions are stored in a repository (REP). 

Each particle keeps track of its best local position, which is the best solution obtained by this particle 

so far (𝑃𝑖𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡). At each iteration, the algorithm selects 𝑃𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡 that denotes the best position 

achieved so far by any particle in the population. It is selected by ranking the solutions in REP and 

choosing the one with the highest rank. Also, the  velocity equation is updated according to equation 

(21) and the particle vector is updated in the same way in equations 17 to 20. 
    𝑉(𝑡 + 1) = 𝑤 × 𝑉(𝑡) + 𝑐1 × 𝑉𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) + 𝑐2 × 𝑉𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡)         (21) 

        𝑉𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) = 𝛼 × 𝑝𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) +  𝛽 × (1 − 𝑝𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡))            (22) 

𝑉𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) = 𝛼 × 𝑝𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) +  𝛽 × (1 − 𝑝𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡))             (23) 

 where +𝛽 = 1 ,  𝛽 < 1,  0 < 𝛼. 𝛼 and  𝛽 is control parameters, 𝑤 represents the degree of belief 
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on oneself, 𝑐1 is the local maximum, and 𝑐2 is the global maximum.  𝑃𝑖𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 is updated by applying Pareto dominance. If the current position is dominated by the one 

in the memory, the one in the memory is kept; otherwise, the one in the memory is replaced by the 

current position. To update the REP, if the REP is empty, the current non-dominated particle is added 

to the REP; otherwise, the two particles are compared as follows: If both particles are feasible, Pareto-

dominancy is applied; if one is feasible and the other infeasible, the feasible dominates; if both are 

infeasible, the one with the highest degree of constraint satisfactions is selected. We define a particle’s 

feasibility degree as the degree of constraint satisfactions.  

A task 𝑇𝑟𝑒𝑞 is considered to have U capability requirements and M locational constraints. The 

capability requirements and locational constraints are considered as 𝑇𝑟𝑒𝑞 and C respectively. Then a 

particle is feasible if it satisfies 𝑇𝑟𝑒𝑞 and C, and it is infeasible otherwise. We determine a particle’s 

feasibility degree as the weighted sum of feasibility degree with respect to 𝑇𝑟𝑒𝑞 and C. If a particle 

satisfies u capability requirements and satisfies m locational constraints, then the particle’s feasibility 

degree with respect to 𝑇𝑟𝑒𝑞 and C are expressed as:  

                                            𝑠𝑎𝑡 𝑇𝑟𝑒𝑞 = 𝑢/𝑈                                                     (24)         

                                             𝑠𝑎𝑡 𝐶 = 𝑚/𝑀                                                       (25) 

A particle’s feasibility degree can now be calculated as: 

Algorithm 6.1:  Coalition Formation Algorithm for Multi-Robot Systems 

1 Inputs: n, time, cost, Filtering_Rule, Task_Requirements, Criteria_Importance, allRobots 

2 Set Selected_Robots ← [ ], Selected_Clts ← [ ], Robots ← [ ]  

3 Function: Filtered_Robots = Filter_Robots (allRobots, Filtering_Rule)  

4 Selected_Robots =Filtered_Robots 

5 Function: apply QMOPSO to find the best coalition 

6 for each (Robot in best coalition) 

7  set Robot.State = busy 

8  deploy Robot 

9 end  

10 if more than one Pareto-Optimal solution then 

11  if time, cost, number of robots for each particle exceed thresholds (𝑡, 𝑐, 𝑛)   
12   remove particle 

13  else if particle is infeasible   
14   remove particle 

15  else 

16   Rank the Pareto-Optimal solutions 

17   Select particle with highest ranking 

18   selected_coalition = Particle with highest ranking 

19  end  
20 else if one Pareto-Optimal solution 

21  selected_coalition = the Pareto-Optimal solution 

22 end  



86 
 

                         𝑃𝑓𝑒𝑎𝑠  = 𝑠𝑎𝑡 𝑇𝑟𝑒𝑞 ∗ 𝑊𝑇 + 𝑠𝑎𝑡 𝐶 ∗ 𝑊𝐶                                   (26) 

where 𝑊𝑇 and 𝑊𝐶 are the weights chosen such that: 
                                𝑊𝑇 + 𝑊𝐶 = 1,    0 ≤ 𝑊𝑇 , 𝑊𝐶 ≤ 1                                (27) 

Note that if a particle is feasible, then the feasibility degree is 1.  

6.4. Algorithm Evaluation 

In order to evaluate the algorithm, we have performed our experiments with a different problem 

and population sizes. In each experiment, speed, cost, position, battery level of each robot, and position 

of the target - which is the fire location – are randomly generated. All the robots are in the idle state at 

the beginning of each experiment. We have compared our algorithm with two well-known heuristic-

based algorithms: NSGA-II and SPEA-II [51]. All algorithms have been implemented in Matlab. 

Algorithm 6.2: QMOPSO-based Heuristic Algorithm 

1 Initialization: number of iteration, 𝑗 ← 0, 𝑉(𝑡), 𝑃(𝑡) 

2 t=0 

3 value = Evaluate Population (𝑃(𝑡)) 
4 store the position of particles that represents non-dominated vector in repository REP 

5 initialize memory for each particle  
6 𝑝𝑖 𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡[𝑖] =  𝑃𝑖(𝑡)  
7 𝑗 = 𝑗 + 1  
8 while 𝑗 < number of iteration  
9  set 𝑃𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡  by selecting from the REP 

10  for each particle 𝑃(𝑡) 

11   update velocity and position of particles 

12   value = Evaluate Population 

13   update the𝑃𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡  

14   if the current 𝑃(𝑡)is non-dominated by 𝑝𝑖𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡[𝑖] 
15    𝑝𝑖 𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡[𝑖] =  𝑃𝑖(𝑡) 

16   end 

17  end  
18  select the non-dominated particles 

19  update the REP by comparing current non-dominated particles with the ones in REP 

20 end  
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Table 6.1 shows the evaluation parameters along with their values.  

6.4.1. Performance Metrics 

 Error Ratio: The percentage of non-dominated solutions that are not part of a reference Pareto-set: 

When the true Pareto set is known, it is used as the reference Pareto-set. When the true Pareto-set 

is not known, the reference Pareto-set is obtained by combining Pareto-sets of all algorithms and 

applying non-dominancy.  

 Set Coverage (SC (A, B)): Given two sets, is the percentage of non-dominated solutions in set B 

covered (i.e., dominated) by those in set A: If SC (A, B) > SC (B, A), then A is relatively better 

than B. A is absolutely better than B when SC (A, B) = 1 and SC (B, A) = 0.  

 Spacing: standard deviation of distances of non-dominated solutions from their closest neighbors. 

 Processing Time (PT) (Sec): the time needed for the algorithm to select the most efficient coalition.   

 Filtering Time (sec): The time needed for filtering the robots in QMOPSO. 

 Repository Update Time (sec): The time needed by QMOPSO to update the repository at each 

iteration. It includes the delay incurred by the constraint handling method.   

6.4.2. Results and Discussion  

Test case 1 - convergence and diversity: Table 6.2 shows the error ratio, the set coverage, and 

the spacing metrics of QMOPSO, NSGA-II, and SPEA-II for a small-scale problem (i.e.., 10 robots). 

Table 6.1 Algorithm evaluation parameters 

Parameter Value 

General 

Population size 100, 200 

Problem size (number of robots) 10-10000 

Maximum number of iterations 100 𝛼,  𝛽 0.3, 0.7 𝑤, 𝑐1, 𝑐2 0.25, 0.25, 0.5 

Threshold for filtering 40% 

Number of objectives 3 

Number of sub-tasks 3 

Criteria_Importance  time 

NSGA-II and SPEA-II 

Tournament size 2 

Pool size for tournament selection Population number / 2 

Mutation probability 10% 

Crossover probability 90% 

Distribution index for crossover 20 

Distribution index for mutation 20 
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We have also generated the true Pareto-optimal solutions by the enumerated search method. For the 

three algorithms, we have used a population size of 200. The error ratio of QMOPSO is higher than 

that of SPEA-II but lower than that of NSGA-II. The set coverage metric shows that 30% of solutions 

in NSGA-II are covered by QMOPSO and 66% of QMOPSO are covered by NSGA-II. Hence, NSGA-

II is relatively better than QMOPSO.  Since NSGA-II and SPEA-II do not cover each other, their 

relative dominance cannot be concluded. Overall, we observe that NSGA-II performs better than 

QMOPSO in terms of convergence. However, when it comes to diversity, QMOPSO outperforms 

NSGA-II and SPEA-II. This is concluded from the lowest spacing value in case of QMOPSO, which 

indicates a good distribution of solutions. Table 6.3 shows the error ratio for large-size problems (e.g., 

1000, 5000, and 10000 robots). We observe that for any problem size, QMOPSO outperforms NSGA-

II and SPEA-II. In fact, it achieves the lowest error ratio for the largest problem size (10000 robots). It 

shows a better convergence of QMOPSO for large-scale problems. SPEA-II has the highest error ratio 

for 5000 robots. Table 6.3 also shows the set coverage metric. As observed, when the problem size is 

1000, QMOPSO is relatively better than both NSGA-II and SPEA-II. For a problem size of 5000, 

QMOPSO is absolutely better than SPEA-II as all solutions of SPEA-II are dominated by those of 

QMOPSO and none of QMOPSO solutions is dominated by those in SPEA-II. QMOPSO for a 

problem size of 5000 is relatively better than NSGA-II. However, for a problem size of 10000, 

QMOPSO is relatively better and absolutely better than SPEA-II and NSGA-II respectively. Overall, 

Table 6.3 Error Rate & Set Coverage (Population Size=100) 

No. of 

Robots 

Error Ratio Set Coverage 

QMOPSO NSGA-II SPEA-II 
(QMOPSO, 

NSGA-II) 

(NSGA-II, 

QMOPSO) 

(QMOPSO, 

SPEA-II) 

(SPEA-II, 

QMOPSO) 

1000 0.23 0.32 0.30 0.72 0 0.8 0.1 

5000 0.20 0.31 0.41 0.9 0.1 1 0 

10000 0.11 0.26 0.2 1 0 0.93 0 

 

Table 6.2 Error Ratio, Set Coverage and Spacing (10 Robots, Population size=200) 

Algorithm Error Rate 
Set Coverage 

Spacing 
QMOPSO NSGA-II SPEA-II 

QMOPSO 0.6 - 0.3 0 31.63 

NSGA-II 0.8 0.66 - - 51.45 

SPEA-II 0.33 1 - - 67.14 
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SC results show that QMOPSO produces a better solution than NSGA-II and SPEA-II. Table 6.4 shows 

the spacing metric for three algorithms. We observe that QMOPSO attains the lowest value of spacing 

for any problem size, thereby achieving the highest diversity and even distribution of solutions. The 

diversity of NSGA-II lies between QMOPSO and SPEA-II. Figure 6.1 (a)-(c) shows the non-

dominated-fronts obtained at some iterations for a problem size of 5000. We have found that with an 

iteration increase, the solutions in QMOPSO evolve more quickly than those in NSGA-II and SPEA-

II. It shows the ability of QMOPSO to explore the search space more efficiently than others.            

Test case 2 - processing time of the algorithms with a various number of robots: We compare 

the PT of our algorithm with NSGA-II and SPEA-II. The three algorithms are implemented and applied 

in the same environment, with the same number of robots, task requirements, and robot capabilities. 

The size of the population is 100. Figure 6.2 shows the processing time of the three algorithms with a 

various number of robots. For the QMOPSO algorithm, we consider the PT with and without the 

filtering method. We notice that the PT decreases when the filtering method is used. This is because 

the filtering method reduces the number of robots on which the algorithm runs. On the other hand, 

without filtering, the PT of the algorithm increases with an increase in the number of robots. The 

rationale behind this is the fact that the higher number of robots results in a higher dimension of the 

particle. As an important observation, the PT without these methods is still smaller than that of NSGA-

II and SPEA-II; this is due to the simple mathematical operations of QMOPSO compared to other 

algorithms. In QMOPSO, the velocity equation is the sole equation updated at each iteration.  

Test case 3 - repository update time: We have considered two types of constraints: Task 

requirements and location constraints. For the task requirements, we have considered 6 requirements 

(𝑠1,  𝑠2,  𝑠3,  𝑎1,  𝑎2,  𝑎3) with a random number of units for each. For the locational constraints, we 

have represented the problem using CSP as described in Section 4.2 and we have considered three 

locational constraints ( 𝑠1 = 𝑎1,  𝑠2 = 𝑎2,  𝑠3 = 𝑎3). A simplified method is used to calculate the 

satisfaction degree of a particle/coalition for the task requirements and locational constraints. We 

Table 6.4 Spacing (Population Size=100) 

No. of 

Robots 

Spacing 

QMOPSO NSGA-II SPEA-II 

1000 18.23 23.11 40.36 

5000 16.11 35.61 37.22 

10000 8.24 19.23 28.19 
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(a)                                                    (b) 

 

      
    (c) 

Figure 6.1 Non-dominated fronts obtained at different iteration for problem size 5000 and population size 200  

(a) After 10 iterations  
(b) After 50 iterations  
(c) After 75 iterations 

 



91 
 

calculate the effect of our proposed method to solve the two constraints (task requirements and 

locational constraints) on the average repository updating time. The results in Figure 6.3 demonstrate 

the time needed to perform the feasibility check versus the overall repository update time, considering 

different numbers in a population. As we notice, the time needed for our proposed feasibility checking 

method is negligible compared to the total time for updating the repository.  

Test case 4 - filtering time: We have also calculated the time needed to perform the filtering 

function compared to the overall processing time of QMOPSO.  Figure 6.4 shows that the filtering 

time is negligible compared to the overall processing time of the algorithm. The time needed for 

filtering does not introduce additional overhead on the algorithm processing time. Since this method 

 

Figure 6.3 The effect of feasibility check on average repository updating time 

 

  

Figure 6.2  Processing time with different problem sizes (Population size=100) 
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excludes some robots using battery levels, it ensures that the remaining robots have sufficient battery 

to accomplish the task. Since it does not affect the processing time of the algorithm, the overall 

efficiency is achieved.  

6.5. Conclusion 

In this chapter, we have proposed a coalition formation algorithm for multi-robot systems. To 

show the effectiveness of our algorithm, we have conducted extensive simulation experiments and 

compared our algorithm with other existing algorithms. The results demonstrate that the proposed 

algorithm cannot only improve the solution but can also significantly reduce the processing time. 

They also show that the filtering and the repository updating mechanisms do not add overhead on 

the processing time. It is also observed that QMOPSO achieves higher diversity, the lowest error 

rate, and produces a better solution compared to NSGA-II and SPEA-II for large problem sizes.  

 

 

 

 

 

Figure 6.4 The time needed for the filtering function  

 



93 
 

 

 

 

Chapter 7 

 

7. Application Component Placement in NFV-

based Hybrid Cloud/Fog Systems with 

Mobile Fog Nodes 

 

7.1. Introduction 

Many service providers use cloud computing to deploy their applications as a way to reduce 

cost whilst exploiting the elasticity feature provided by the cloud. However, the wide area network 

used to connect the cloud to the end-users might cause high latency, which may not be tolerable 

for some applications. On the other hand, fog computing, a concept introduced by CISCO in 2012, 

provides an intermediate layer between end-users and the cloud which allows the deployment of 

some of the application components in the fog at the edge while keeping some others in the cloud, 

thereby reducing latency [13].  

Applications can be implemented in cloud/fog systems as a set of interacting components that 

can be executed in sequence, in parallel, or by using more complex constructs such as selections 

and loops. They can, therefore, be modeled as structured graphs with sub-structures consisting of 

these constructs. The selection sub-structure introduces non-determinism in the execution.  
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Meaning, there are uncertainties associated with the components’ executions. These uncertainties 

imply that, for such non-deterministic input, from an initial state, there may be none, exactly one, 

or many possible transitions. This chapter assumes that applications’ components are implemented 

as VNFs. The structured graphs representing the applications are therefore VNF Forwarding 

Graphs (VNF-FG) (i.e., sets of VNFs chained in specific orders).  

The focus of this chapter is on application component placement in NFV-based hybrid 

cloud/fog systems with mobile fog nodes. It tackles the challenges of heterogeneity of cloud and 

fog, fog nodes mobility, and non-deterministic VNF-FG graphs. The heterogeneity is addressed 

by considering makespan (an important Quality of Service (QoS) criterion) in addition to cost (a 

budget that the application provider should pay for consuming resources) when it comes to 

optimization. Indeed, cost minimization encourages cloud usage while makespan minimization 

encourages fog usage. A compromise is required for the appropriate placement decision. The 

mobility of fog nodes is modeled using the Random Waypoint (RWP) model [16]. Based on the 

stationary distribution of fog nodes’ location, we calculate the expected makespan and cost for the 

sub-structures: sequence, parallel, selection, and loop. Next, we aggregate the sub-structures’ 

calculations to obtain the application’s makespan and execution cost. The non-determinism nature 

of the VNF-FGs is tackled by assigning probabilities to selection sub-structures and mean numbers 

of iterations to loop sub-structures.  These probabilities can be obtained through prediction models.  

The problem is formulated as an Integer Linear Programming (ILP) problem, and regarding the 

complexity, a Tabu Search-based Component Placement (TSCP) algorithm is proposed to find a 

              

(a)                                                                                            (b) 
Figure 7.1 Earthquake early warning and recovery application components 

(a) Component-based application 

(b) Structured VNF-FG representation 
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sub-optimal solution in feasible time. The proposed model and algorithm are implemented in order 

to analyze their performance. 

The rest of this chapter is organized as follows. First, it presents the system model, followed 

by the description of the mobility model and the optimization problem. Then, it discusses the 

designed Tabu Search-based component placement heuristic. After that, it presents the simulation 

parameters and settings followed by the validation results. We will conclude this chapter at the 

end.  

7.2. System Model  

 In this section, we explain the modeling of the components implemented as VNFs, the 

structured VNF-FGs, the cloud and the fog systems, and the IoT/end-users that may interact with 

components.    

VNFs – Each component of the application is implemented as a VNF. Let 𝑇 be the set of VNF 

types in the system. We denote the type 𝑡 of a VNF with 𝑓𝑡, which can be shared by more than 

one application. The resource requirements for processing a VNF 𝑓𝑡 per unit of resource (CPU, 

memory, storage) is represented by 𝜗𝑓𝑡 and the processing capacity of 𝑓𝑡 is represented by 𝑐𝑓𝑡. 
The set of available instances for 𝑓𝑡 is represented by 𝐼𝑓𝑡. Each VNF type 𝑡 ∈ 𝑇 has a predefined 

license cost 𝜕𝑓𝑡. We denote the maximum allowed VNF processing utilization with 𝜇𝑓𝑡.  
Structured VNF-FGs - Let 𝑅𝑒𝑞 be the set of structured VNF-FG requests received by the 

system. We represent a single request with 𝑅 ∈ 𝑅𝑒𝑞. The set of required VNF types for request R 

is indicated by 𝑣𝑛𝑓𝑅 (𝑣𝑛𝑓𝑅 ⊂ 𝑇). The structured VNF-FG for request 𝑅 is represented as a tree 

[14] in which leaf nodes represent VNFs belonging to 𝑣𝑛𝑓𝑅, while a middle node with index 𝑖, 
namely 𝑆𝑖, represents one of the sub-structures (i.e., sequence, parallel, selection, loop) i.e., 𝑆𝑖 ∈{𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝}. Each middle node 𝑆𝑖 has at least two children where a child can be either a 

VNF or a sub-structure. Figure 7.1 (a) shows the earthquake early warning and recovery 

application’s components presented in Chapter 2.  According to the constructed tree (i.e., Figure 

7.1 (b)), we can define the relation between VNFs in the chain; the immediate predecessor of a 

VNF 𝑓𝑡 can be determined by parsing the tree  [14]. Let 𝐼𝑃(𝑓𝑡) denote the immediate predecessor 

of 𝑓𝑡 and (𝐼𝑃(𝑓𝑡), 𝑓𝑡)  a VNF edge if and only if the packets from VNF 𝐼𝑃(𝑓𝑡) must be forwarded 



96 
 

to the VNF 𝑓𝑡. We assume that the amount of traffic sent from 𝐼𝑃(𝑓𝑡) to 𝑓𝑡 for request 𝑅 is 𝐴𝑓𝑡𝑅 . 

More details of the structured VNF-FG can be found in [14].  

Cloud/Fog - We consider that the cloud and the fog domains are modeled as graphs: 𝐺𝑍 =(𝑁𝑍, 𝐸𝑍), where 𝑍 = 𝐶|𝐹 is used to indicate cloud or fog. Here, 𝑁𝑍 is a set of physical cloud/fog 

nodes while 𝐸𝑍 is a set of cloud/fog edges representing the communication links among nodes. 

We use 𝑐𝑛𝑍  and 𝛾𝑛𝑍 to represent the capacity and the cost, respectively, per unit of resource (e.g., 

CPU, memory, storage) usage of node 𝑛𝑍. We represent the threshold for resource usage of a 

cloud/fog node with 𝜇𝑛𝑍 . The delay per traffic unit processing of VNF type 𝑡 hosted on a cloud/fog 

node 𝑛𝑍 ∈ 𝑁𝑍 is represented by 𝐷𝑛𝑍𝑓𝑡
. 

Table 7.1 Summary of key notations and decision variables 

Input Parameters 

VNFs 𝑇 Set of VNF types 𝑓𝑡 VNF of type 𝑡 ∈ 𝑇 𝜗𝑓𝑡 Resource requirements for processing 𝑓𝑡 (in processing units)  𝑐𝑓𝑡  Processing capacity of 𝑓𝑡 (in traffic units) 𝐼𝑓𝑡 Set of VNF instances associated to 𝑓𝑡 𝜕𝑓𝑡  License cost for 𝑓𝑡 

Structured VNF-FGs 𝑅𝑒𝑞 Set of structured VNF-FG requests assigned to the system 

R Single request for VNF-FG, 𝑅 ∈ 𝑅𝑒𝑞 𝑣𝑛𝑓𝑅 Set of required VNF types for request R, 𝑣𝑛𝑓𝑅 ⊂ 𝑇 𝑆𝑖 One of the sub-structures, 𝑆𝑖 ∈ {𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝} 𝑖𝑡 Expected number of iterations of a 𝑙𝑜𝑜𝑝 sub-structure ℎ𝑓𝑡 Probability of selecting child 𝑓𝑡 of a 𝑠𝑒𝑙 sub-structure 𝐼𝑃(𝑓𝑡) Immediate predecessor of 𝑓𝑡 (𝐼𝑃(𝑓𝑡), 𝑓𝑡)  VNF edge between 𝑓𝑡 and 𝐼𝑃(𝑓𝑡) 𝐴𝑓𝑡𝑅  Amount of traffic from 𝐼𝑃(𝑓𝑡) to 𝑓𝑡 for request 𝑅 

Cloud/Fog Network 𝑁𝑍 Set of cloud/fog nodes 𝐸𝐽 Set of all possible communication in the network, 𝐸𝐽 = 𝐸𝑍 ∪ 𝐸𝐶𝐹  𝐸𝑍 Set of cloud/fog edges, 𝐸𝑍 ∈ 𝐸𝐽 𝐸𝐶𝐹  Set of edges between cloud and fog nodes 𝐸𝐶𝐹 ∈ 𝐸𝐽 𝑐𝑛𝑍  Cloud/fog node capacity (in processing resource units) 𝛾𝑛𝑍 Cloud/fog node cost per processing unit usage 𝐷𝑛𝑍𝑓𝑡
 The processing delay of 𝑓𝑡 on node 𝑛𝑍 𝐷𝑒𝐽(𝐴, 𝑿, 𝒀) The transmission delay of sending traffic 𝐴 through 𝑒𝐽 𝜌𝑒𝐽(𝐴, 𝑿, 𝒀) The transmission cost of sending traffic 𝐴 through 𝑒𝐽 𝐵𝑊𝑒𝐽(𝑿, 𝒀) The bandwidth capacity of 𝑒𝐽 𝐿𝑎𝑡𝑒𝐽(𝑿, 𝒀) The network latency of 𝑒𝐽 
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 Cloud nodes are not mobile, while fog nodes can be either mobile or stationary. To model 

such behavior, we define 𝑝𝑠𝑡𝑛𝑍
 as the probability that node 𝑛𝑍 is not mobile. Obviously, when 𝑍 =𝐶 then 𝑝𝑠𝑡𝑛𝑍 = 1. We also assume that cloud and fog nodes are located in a two-dimensional 

rectangular region 𝑄 ∈ [0,1]2. Note that two-dimensional localization has also been used in ad-

hoc networks [120]. Thus, 𝑿 = (𝑥, 𝑦) ∈ [0,1]2 denotes the location of a cloud/fog node.  

Next, we model the communication between cloud and fog nodes. We assume that 𝐸𝐶𝐹 is the 

set of edges that indicate the communication between cloud and fog nodes. Let 𝐸𝐽 = 𝐸𝑍 ∪ 𝐸𝐶𝐹  

be the set of all possible communications in the network, then an edge is represented by 𝑒𝐽 =(𝑛𝑍𝑙 , 𝑛𝑍𝑚) ∈ 𝐸𝐽, which represents communication between any two cloud/fog nodes, or one cloud 

node and a fog node. When the location of 𝑛𝑍𝑙 is 𝑿 and the location of 𝑛𝑍𝑚  is 𝒀, then, for 𝑒𝐽, we 

define 𝐷𝑒𝐽(𝐴, 𝑿, 𝒀) and 𝜌𝑒𝐽(𝐴, 𝑿, 𝒀), which represent the delay and the cost, respectively, of 

transmitting traffic amount of 𝐴 through 𝑒𝐽 ∈ 𝐸𝐽. We also define  𝐵𝑊𝑒𝐽(𝑿, 𝒀) which represents 

the bandwidth capacity of 𝑒𝐽 , and 𝐿𝑎𝑡𝑒𝐽(𝑿, 𝒀),  which represents the network latency. In this 

Input Parameters (Cont.) 

IoT Devices/End-Users 𝑈𝑅 Set of IoT/end-users for request  𝑅 𝐸𝑢,𝑛𝑍
 Set of links between IoT/end-users and 𝑛𝑍 ∈ 𝑁𝑍 𝜔𝑢×𝑓𝑡𝑅  1, if there is communication between 𝑢 and 𝑓𝑡 for request 𝑅 𝐴𝑢×𝑓𝑡𝑅  Amount of traffic between 𝑢 and 𝑓𝑡 for request 𝑅 𝐷𝑒𝑢,𝑛𝑍 (𝐴, 𝑿, 𝒀) The transmission delay of sending traffic 𝐴 between 𝑢 and 𝑛𝑍 𝜌𝑒𝑢,,𝑛𝑍 (𝐴, 𝑿, 𝒀) The transmission cost of sending traffic 𝐴 between 𝑢 and 𝑛𝑍 𝐵𝑊𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) The bandwidth capacity between 𝑢 and 𝑛𝑍 𝐿𝑎𝑡𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) The network latency 𝑢 and 𝑛𝑍 

Location Analysis 𝑣𝑛𝑍
 Movement velocity of node 𝑛𝑍 𝑝𝑠𝑡𝑛𝑧 probability that node 𝑛𝑍 is stationary 𝑝𝑝𝑛𝑧 Probability that a node 𝑛𝑍 is in pause 𝐸[𝐿] Expected distance between two waypoints 𝐸(𝑃𝑆) Expected value of pause time 𝑓𝑥𝑛𝑍(𝑿) Stationary PDF of location 𝑿 = (𝑋, 𝑌) of node 𝑛𝑍 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿) Initial spatial distribution of location 𝑿 = (𝑋, 𝑌) of node 𝑛𝑍 𝑓𝑚𝑛𝑍(𝑿) 

Stationary PDF of location 𝑿 = (𝑋, 𝑌) of mobile nodes moving in [0,1]2  according to RWP model with 𝑝𝑠𝑡𝑛𝑧 = 𝑝𝑝𝑛𝑧 = 0 

Decision Variables 𝑥𝑖,𝑓𝑡,𝑛𝐶 
Binary variable, indicating if instance i of VNF type 𝑡 is instantiated 
on cloud/fog node 𝑥𝑖,𝑓𝑡,𝑛𝐶𝑅  
Binary variable, indicating if instance i of VNF type 𝑡 instantiated 
on cloud/fog node is assigned to request R 
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regard, the same nodes will communicate with different delays, costs, and bandwidths when they 

are located in various points in the rectangular region 𝑄. We represent the threshold for usage of 

the bandwidth capacity by 𝜇𝑒𝐽.  

IoT devices/End-users – The application components may communicate with IoT/end-users. 

We denote the set of IoT/end-users for request 𝑅 ∈ 𝑅𝑒𝑞 by 𝑈𝑅. We assume 𝐸𝑢,𝑛𝑍
 are the links that 

indicate the communication between IoT/end-users and cloud/fog nodes. We define two 

matrices, 𝜔𝑛×𝑚𝑅  and 𝐴𝑛×𝑚𝑅 , which represent respectively the communication and the amount of 

traffic exchanged between IoT/end-users and the VNFs of request 𝑅. 𝑛 represents the number of 

IoT/end-users communicating with VNFs in request 𝑅 while 𝑚 represents the number of VNFs in  𝑅. 𝜔𝑢×𝑓𝑡𝑅 ∈ {0,1} is 1 if there is communication between IoT/end-user 𝑢 and the VNF 𝑓𝑡 of request 𝑅,  while 𝐴𝑢×𝑓𝑡𝑅   provides the amount of traffic exchanged between IoT/end-user 𝑢 and the VNF 𝑓𝑡 of request 𝑅. 

The locations of IoT/end-users are assumed to be fixed and defined in the region 𝑄. 𝐷𝑒𝑢,𝑛𝑍 (𝐴, 𝑿, 𝒀) and 𝜌𝑒𝑢,,𝑛𝑍 (𝐴, 𝑿, 𝒀)  are respectively the delay and the cost of sending traffic of 

amount 𝐴 between an IoT/end-user and a cloud/fog node when they are located in locations 𝑿 and 𝒀, respectively, in region 𝑄. 𝐵𝑊𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) and 𝐿𝑎𝑡𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) are respectively the bandwidth 

capacity and the network latency between an IoT/end-user and a cloud/fog node. The symbol 𝜇𝑒𝑢,𝑛𝑍  indicates the maximum allowed link utilization for the communication between an IoT/end-

user and a cloud/fog node.  

7.3. Cloud/Fog Node Location Analysis and Optimization Formulation 

Here we first calculate the stationary Probability Density Function (PDF) of cloud/fog nodes 

locations, and then we explain the objective function and the constraints of our optimization model. 

7.3.1. Cloud/Fog Node Location Analysis 

To calculate the stationary probability distribution of the cloud/fog node location we focus on 

a mobile fog node. We calculate the PDF of its location and explain how the PDF can also be used 

for a stationary fog node or for a cloud node. 
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 We model the mobility of a mobile fog node 𝑛𝑍 with a RWP Model that has been used in the 

ad-hoc networking research community [16]. We assume node 𝑛𝑍 moves independently of other 

nodes in a region 𝑄 ∈ [0,1]2. The node is placed in an arbitrary location namely, “waypoint” 𝑙0 in 

the region 𝑿 ∈ 𝑄  according to an initial spatial distribution represented by 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿). The fog node 

selects its first random destination point; “waypoint” 𝑙1 to move to. It goes there and pauses for a 

random duration. It then picks another waypoint 𝑙2 to visit, moves towards it, and pauses at it for 

another random duration. The process continues in similar steps. We assume the movement 

velocity is 𝑣𝑛𝑍 > 0. We assume that the pause duration after each movement period is chosen 

from an arbitrary PDF, namely, 𝑓𝑃𝑆𝑛𝑍(𝑝𝑠) in the interval [𝑝𝑠𝑚𝑖𝑛, 𝑝𝑠𝑚𝑎𝑥], with 𝑝𝑠𝑚𝑖𝑛 ≥ 0 and well-

defined expected value 𝐸[𝑃𝑆]. 
Let 𝑿 be the random variable representing the waypoint of a fog node. The stationary 

probability distribution of the fog node location is then calculated as (1) [16]:  

𝑓𝑥𝑛𝑍(𝑿) = 𝑝𝑠𝑡𝑛𝑧  𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿) + (1 − 𝑝𝑠𝑡𝑛𝑍) 𝑝𝑝𝑛𝑍 + (1 − 𝑝𝑠𝑡𝑛𝑍) (1 − 𝑝𝑝𝑛𝑍)𝑓𝑚𝑛𝑍(𝑿) (1) 

where 𝑿 ∈ 𝑄 is the value of the random variable 𝑥 and denotes a waypoint in region 𝑄.  𝑝𝑝𝑛𝑍
 

is the probability that a node is in pause, calculated as (2):   

𝑝𝑝𝑛𝑍 = 𝐸(𝑃𝑆)𝐸(𝑃𝑆) + 1𝑣𝑛𝑍 𝐸(𝐿) 
(2) 

where 𝐸[𝐿] is the expected distance between two waypoints placed uniformly at random in 𝑄, 
which is calculated as: 𝐸[𝐿] = 0.521405          (3) 

For 𝑿 = (𝑥, 𝑦), the term 𝑓𝑚𝑛𝑍
(x,y) as used in (1) is the mobility component, is defined as : 

𝑓𝑚𝑛𝑍(𝑥, 𝑦) = 

𝑓𝑚∗ (𝑥, 𝑦) 0 < 𝑥 ≤ 0.5, 0 < 𝑦 ≤ 𝑥 

(4) 

𝑓𝑚∗ (𝑦, 𝑥) 0 < 𝑥 ≤ 0.5, 𝑥 ≤ 𝑦 ≤ 0.5 𝑓𝑚∗ (1 − 𝑦, 𝑥) 0 < 𝑥 ≤ 0.5, 0.5 ≤ 𝑦 ≤ 1 − 𝑥 𝑓𝑚∗ (𝑥, 1 − 𝑦) 0 < 𝑥 ≤ 0.5, 1 − 𝑥 < 𝑦 < 1 𝑓𝑚∗ (1 − 𝑥, 𝑦) 0.5 ≤ 𝑥 < 1, 0 < 𝑦 ≤ 1 − 𝑥  𝑓𝑚∗ (𝑦, 1 − 𝑥) 0.5 ≤ 𝑥 < 1, 1 − 𝑥 ≤ 𝑦 ≤ 0.5 𝑓𝑚∗ (1 − 𝑦, 1 − 𝑥) 0.5 ≤ 𝑥 < 1, 0.5 ≤ 𝑦 ≤ 𝑥 𝑓𝑚∗ (1 − 𝑥, 1 − 𝑦) 0.5 ≤ 𝑥 < 1, 𝑥 ≤ 𝑦 < 1 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where 𝑓𝑚∗  is defined on 𝑄∗ = {(𝑥, 𝑦) ∈  [0,1]2| (0 < 𝑥 ≤ 0.5) ∧ (0 < 𝑦 ≤ 𝑥)}, with  
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𝑓𝑚∗ (𝑥, 𝑦) = 6𝑦 + 34 (1 − 2𝑥 + 2𝑥2) ( 𝑦𝑦 − 1 + 𝑦2(𝑥 − 1)𝑥) + 3𝑦2 [(2𝑥 − 1)(𝑦 + 1) ln (1 − 𝑥𝑥 ) + (1 − 2𝑥 + 2𝑥2 + 𝑦) ln (1 − 𝑦𝑦 )] 

(5) 

The PDF calculated in Eq. (1) can be used for stationary fog nodes and for cloud nodes as well. 

Indeed, for these nodes we have 𝑝𝑠𝑡𝑛𝑍 = 1 , which, by  using (1), gives the PDF of the node location 

as 𝑓𝑥𝑛𝑍(𝑿) = 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿),  as expected. 

7.3.2. Optimization Formulation 

We formulate our problem as an optimization problem with the objective of minimizing the 

weighted aggregated function of makespan and cost. We define the following decision variables:  

𝑥𝑖,𝑓𝑡,𝑛𝑍 = {1,      𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑜𝑓 𝑓𝑡  𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑛𝑍  0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  (6) 

  

 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 = {1,   𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑜𝑓 𝑓𝑡  𝑜𝑛 𝑛𝑍 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑅  0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                 (7) 

 

In the rest of this section, we explain the expected makespan and cost calculations, followed by 

the objective function and the constraints. Table 7.1 lists the key notations and decision variables. 

A) Makespan and Communication Cost Computation 

The makespan is an application’s execution time,  defined as the time it takes for the first 

component to start execution until the execution of the last component is completed [121][14]. 

Note that the communication times with the IoT/end-users are also included in makespan 

calculations. In turn, the application execution cost is defined as the monetary cost for 

communication between application components and also between IoT/end-users and components.  

The calculation of the expected application makespan and communication cost is performed 

based on parsing the associated tree structure of the VNF-FG, as explained in Section 7.2. The 

time and cost of the leaf nodes representing the VNFs are calculated first. These values are then 

aggregated to calculate the time and the cost for the middle nodes. The middle nodes represent 

sub-structures. The total makespan and the cost of the root of the tree are then calculated by 

aggregating the calculated time/cost values of the nodes from the bottom to the top according to 

the tree structure. 
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1) VNFs-Level Calculation 

We first explain the VNF time calculations and then the VNF cost calculations. The processing 

time of the traffic received by each VNF from its immediate predecessors and IoT/end-users 

belonging to request 𝑅 is calculated as below: 

𝑀𝑝𝑟𝑜𝑐(𝑅, 𝑓𝑡) = ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝐴𝑓𝑡𝑅 . 𝐷𝑛𝑍𝑓𝑡
𝑖∈𝐼𝑓𝑡  𝑛𝑍∈𝑁𝑍   (8) 

 

The communication time required to transmit traffic 𝐴𝑓𝑡𝑅  to a VNF 𝑓𝑡 belonging to a VNF-FG 

request 𝑅 from 𝐼𝑃(𝑓𝑡) over edge 𝑒𝑙𝑚𝐽 = (𝑛𝑍𝑙 , 𝑛𝑍𝑚) and to transmit traffic 𝐴𝑢×𝑓𝑡𝑅  between 𝑓𝑡 and 

IoT/end-users over edge 𝑒𝑢,𝑛𝑍
 is calculated as:  

𝑀𝑐𝑜𝑚(𝑅, 𝑓𝑡) = 𝑚𝑎𝑥 ( ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅  . 𝐸(𝐷𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅 ))𝑖,𝑗∈𝐼𝑓𝑡𝑛𝑍∈𝑁𝑍 , 
∑ ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅  . 𝐸(𝐷𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅 ))𝑢∈𝑈𝑅𝑖∈𝐼𝑓𝑡 )  𝑛𝑍∈𝑁𝑍   (9) 

In Eq. (9), 𝐸(𝐷𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅 ))is the expected delay of transmitting traffic 𝐴𝑓𝑡𝑅  on edge 𝑒𝑙𝑚𝐽 , which is 

calculated as Eq. (10).  

𝐸 (𝐷𝑒𝑙𝑚𝐽 (𝐴)) = ∫ ∫ 𝑓𝑥𝑛𝑍𝑙(𝑿). 𝑓𝑦𝑛𝑍𝑚 (𝒀). 𝐷𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀). 𝑑𝑋 𝑑𝑌 [0,1]2[0,1]2  (10) 

In Eq. (10), 𝑿 and 𝒀 ∈ [0,1]2 are 𝑛𝑍𝑙 and 𝑛𝑍𝑚  random location variables as defined in Section 

7.3.1. 𝐷𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅 , 𝑿, 𝒀) is the data transfer time for sending traffic 𝐴𝑓𝑡𝑅  on edge 𝑒𝑙𝑚𝐽 . It is calculated 

as the relation of the size of the transmitted traffic between two nodes to the edge bandwidth. The 

network latency is considered as well, which is a function of the distance between 𝑿 and 𝒀. This 

calculation is given below:  

𝐷𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀) = 𝐴𝐵𝑊𝑒𝑙𝑚𝐽 (𝑿, 𝒀) + 𝐿𝑎𝑡𝑒𝑙𝑚𝐽 (𝑿, 𝒀)  (11) 
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 In Eq. (9), 𝐸(𝐷𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅 )) is the expected delay for the transmission of 𝐴𝑢×𝑓𝑡𝑅  amount of 

traffic between an IoT/end-user and a cloud/fog node. Eq. (12) gives this calculation. Here, 𝒁 ∈[0,1]2 is the IoT/end-user location and 𝐷𝑒𝑢,𝑛𝑍 (𝐴, 𝒁, 𝑿) is the data transfer time for sending traffic 

of amount 𝐴 between IoT/end-users and cloud/fog nodes. In Eq. (12), 𝐷𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿) is calculated 

in the same way as Eq. (11).  

𝐸 (𝐷𝑒𝑈,𝑛𝑍 (𝐴)) = ∫ 𝑓𝑥𝑛𝑖𝑍(𝑿). 𝐷𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿) 𝑑𝑋[0,1]2  
(12) 

The approach described above for time can also be used to calculate the communication costs. 

The communication cost incurred by utilizing the links to send traffic to a VNF 𝑓𝑡 from its 

immediate predecessor and also utilizing the links to send traffic between IoT/end-users and 𝑓𝑡 

are calculated as: 

𝐶𝑐𝑜𝑚(𝑅, 𝑓𝑡) = ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅  . 𝐸(𝜌𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅 ))𝑖,𝑗∈𝐼𝑓𝑡  𝑛𝑍∈𝑁𝑍 +  
     ∑ ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅 . 𝐸(𝜌𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅 ))𝑢∈𝑈𝑅𝑖∈𝐼𝑓𝑡   𝑛𝑍∈𝑁𝑍  

(13) 

Table 7.2 The cost and the makespan estimation for 𝑆𝑖 ∈ {𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝} 

Sub-structures 
Communication Cost 𝐶𝑐𝑜𝑚(𝑆𝑖 ) 

Processing Time 𝑀𝑝𝑟𝑜𝑐(𝑆𝑖 ) 

Communication Time 𝑀𝑐𝑜𝑚(𝑆𝑖 ) 

𝑆𝑖 𝑖𝑠 𝑠𝑒𝑞 
∑ 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 ∑ 𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)𝑓𝑡∈𝑆𝑖
 ∑ 𝑀𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 

𝑆𝑖 𝑖𝑠 𝑝𝑎𝑟 
∑ 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 max𝑓𝑡∈𝑆𝑖𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)   max𝑓𝑡∈𝑆𝑖𝑀𝑐𝑜𝑚(𝑓𝑡) 

𝑆𝑖 𝑖𝑠 𝑠𝑒𝑙 ∑ ℎ𝑓𝑡 . 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖
 ∑ ℎ𝑓𝑡 . 𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 ∑ ℎ𝑓𝑡 . 𝑀𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖
 

𝑆𝑖 𝑖𝑠 𝑙𝑜𝑜𝑝 𝑖𝑡.  ∑ 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖  𝑖𝑡.  ∑ 𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)𝑓𝑡∈𝑆𝑖  𝑖𝑡.  ∑ 𝑀𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖  
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To calculate 𝐸(𝜌𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅 )), the 𝐷𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀) in Eq. (10) should be replaced by 𝜌𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀). 

Similarly, to calculate 𝐸(𝜌𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅 )), the 𝐷𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿) in Eq. (12) must  be replaced by 𝜌𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿). 

2) VNF-FG Level Calculation  

The calculations of the processing/communication time and the communication cost for the sub-

structures sequence, parallel, selection, and loop are shown in Table 7.2. In a sequence sub-

structure, the time and the cost of all of its children are accumulated. A 𝑙𝑜𝑜𝑝 can be considered as 

a sequence structure that is repeated for a certain number of iterations. We define 𝑖𝑡 as the expected 

number of iterations of a loop structure, it is calculated as: 𝑖𝑡 = 𝑞1−𝑞 where 𝑞 is the probability of 

the loop’s occurrence. For a parallel sub-structure, all of its children are executed in parallel, hence 

the time is determined based on the maximum time value of its children. However, the cost is the 

sum of the costs for all children. The calculation for a selection sub-structure, the probabilities of 

the selection’s children are involved in the calculation. Let ℎ𝑓𝑡 represent the probability of 

selecting a child 𝑓𝑡
 of a selection sub-structure. ℎ𝑓𝑡 = 1 for the children of sequence, parallel, and 

loop sub-structures. 

Finally, to calculate the total makespan and the cost of a VNF-FG, the makespan and the cost 

of the root of the tree are computed by aggregating the time and the cost of the VNFs and of the 

basic sub-structures in a bottom-to-top manner according to the tree structure. The total makespan 

and the total cost of a VNF-FG request 𝑅 are calculated as given in Eq. (14) and Eq. (15), 

respectively:  

𝑀(𝑅) = 𝑀𝑝𝑟𝑜𝑐(𝑅, 𝑟𝑜𝑜𝑡) + 𝑀𝑐𝑜𝑚(𝑅, 𝑟𝑜𝑜𝑡)    (14) 𝐶(𝑅) = 𝐶𝑐𝑜𝑚(𝑅, 𝑟𝑜𝑜𝑡)  (15) 

B) Optimization Formulation  

In this section, we explain the objective function and the constraints of the optimization problem. 

Our objective is to enable the embedding of VNF-FGs in cloud and fog NFVIs such that the 

makespan and the cost are minimized, as shown in Eq. (16). 
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𝑜𝑏𝑗 = 𝑀𝑖𝑛 (𝛼 ∑ 𝑀(𝑅)∀𝑅∈𝑅𝑒𝑞 + (1 − 𝛼) [ ∑ 𝐶(𝑅)∀𝑅∈𝑅𝑒𝑞 + 𝐶𝑑𝑒𝑝]) (16) 

 𝐶𝑑𝑒𝑝 represents both license cost of VNFs and the hosting cost, 

               𝐶𝑑𝑒𝑝 = 𝐶𝐿𝑖𝑐 +  𝐶ℎ𝑠𝑡  (17) 

 

The license cost is the cost of the total software license costs for the VNFs instantiation, 

 𝐶𝐿𝑖𝑐 = ∑ ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍 . 𝜕𝑓𝑡𝑖∈𝐼𝑓𝑡𝑡∈𝑇𝑛𝑍∈𝑁𝑍   (18) 

and the hosting cost is the cost of the assigned resources to VNFs belonging to VNF-FG requests. 

It is calculated as: 

𝐶ℎ𝑠𝑡 = ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍  . 𝛾𝑛𝑍 . 𝜗𝑓𝑡𝑖∈𝐼𝑓𝑡  𝑛𝑍∈𝑁𝑍   (19) 

 

In Eq. (16), 𝛼 is the weight parameter that defines priorities between makespan and cost, 1 ≥𝛼 ≥ 0. E.g., 𝛼 = 1 motivates placement in the fog, while 𝛼 = 0 motivates placement in the cloud. 

Generally, the fog provides lower latency due to its proximity to IoT/end-users, however, the 

resources in the fog are more expensive. 

Now, we explain the constraints involved in the problem. Eq. (20) ensures that the total 

resources required by instances of all VNF types do not exceed the capacity of a cloud/fog node: 

∑ ∑ 𝜗𝑓𝑡 . 𝑥𝑖,𝑓𝑡,𝑛𝑍 ≤ 𝜇𝑛𝑍  . 𝑐𝑛𝑍𝑖∈𝐼𝑓𝑡    ∀𝑛𝑍 ∈ 𝑁𝑍𝑡∈𝑇  (20) 

Eq. (21) ensures that the communication links where the source and the destination are both in 

the cloud or both in the fog, or where the source is in one and the destination is in the other are not 

overloaded from the aspect of link utilization. A similar discussion exists for the communication 

links between the IoT/end-users and cloud/fog nodes according to the constraint in Eq. (22).  

∑ 𝐴𝑓𝑡𝑅  . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 ≤ 𝜇𝑒𝐽 . 𝐵𝑊𝑒𝐽     ∀𝑅∈𝑅𝑒𝑞  (21)   ∀𝑒𝐽 ∈ 𝐸𝐽 
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∑ 𝐴𝑢×𝑓𝑡𝑅  . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅 ≤ 𝜇𝑒𝑢,𝑛𝑍  . 𝐵𝑊𝑒𝑢,𝑛𝑍     ∀𝑅∈𝑅𝑒𝑞   (22)   ∀𝑢 ∈ 𝑈𝑅 , 𝑛𝑍 ∈ 𝑁𝑍 

Eq. (23) ensures that the capacity of an instance of a VNF 𝑓𝑡 is not exceeded by the total traffic 

requested by its immediate predecessor(s) and the IoT/end-users communicating with it.  ∑ (𝐴𝑓𝑡𝑅 . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 + 𝐴𝑢×𝑓𝑡𝑅  . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅 ) ≤ 𝜇𝑓𝑡. 𝑐𝑓𝑡     ∀𝑅∈𝑅𝑒𝑞  (23)   ∀𝑡 ∈ 𝑇 , ∀𝑖 ∈ 𝐼𝑓𝑡 , ∀𝑢 ∈ 𝑈𝑅 , ∀𝑛𝑍 ∈ 𝑁𝑍 

Eq. (24) ensures that the assigned VNF instances are already deployed in the network and Eq. 

(25) ensures that at least one instance of each required VNF type is deployed.  

𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 ≤ 𝑥𝑖,𝑓𝑡,𝑛𝑍 (24)   ∀𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅 , 𝑖 ∈ 𝐼𝑓𝑡 , 𝑛𝑍 ∈ 𝑁𝑍 

∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍∀𝑖∈𝐼𝑓𝑡∀𝑛𝑍∈𝑁𝑍 ≥ 1               ∀𝑡 ∈ 𝑇    (25) 

 

It should be noted that Eq. (9) and (21) and the processing and communication time equations 

in Table 7.2 for parallel sub-structure are non-linear. However, they can be linearized by replacing 

Algorithm 7.1: Tabu Search Algorithm 

1 initialization: Create initial placement randomly 𝑆0, 
2                         𝑆𝑐𝑢𝑟𝑟 ← 𝑆0, 𝑆𝑏𝑒𝑠𝑡 ← 𝑆0, 𝑗 ← 0, 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ← ∅ 

3 while 𝑗 ≤ 𝑖𝑠𝑡𝑜𝑝 

4  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑_𝑙𝑖𝑠𝑡 ← create candidate neighborhood list 
5  for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑_𝑙𝑖𝑠𝑡] 
6               evaluate the neighbor 𝐸(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ) 

7  end 

8 
 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← argmin𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝐸(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)  

9  𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 ← select the move that led to 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

10  𝑗 ← 𝑗 + 1 

11  if 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 is not in 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 

12               𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ←  𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 for 𝑖𝑡𝑎𝑏𝑢 iterations 

13  else if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝐸(𝑆𝑏𝑒𝑠𝑡) 

14               remove 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 from 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 

15  end 

16  if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝐸(𝑆𝑏𝑒𝑠𝑡) 

17   𝑆𝑏𝑒𝑠𝑡 ← 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

18   𝑗 ← 0 

19  end 

20 end 

21 return 𝑆𝑏𝑒𝑠𝑡  
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them with linear equations. For instance, 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅  in Eq. (21) can be replaced by 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 , as shown below: 

𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 = 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅    (26) 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 ≤ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅  (27) ∀𝑛𝑍 ∈ 𝑁𝑍, 𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅 , 𝑖 ∈ 𝐼𝑓𝑡 , 𝑗 ∈ 𝐼𝐼𝑃(𝑓𝑡) 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 ≤ 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅  (28) ∀𝑛𝑍 ∈ 𝑁𝑍, 𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅, 𝑖 ∈ 𝐼𝑓𝑡 , 𝑗 ∈ 𝐼𝐼𝑃(𝑓𝑡) 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 ≥ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 + 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 − 1 (29) ∀𝑛𝑍 ∈ 𝑁𝑍, 𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅, 𝑖 ∈ 𝐼𝑓𝑡 , 𝑗 ∈ 𝐼𝐼𝑃(𝑓𝑡) 
In addition, in order to linearize the max function in processing/communication time equations 

in Table 7.2 for parallel sub-structure, and in Eq. (9), we replace max(𝑥1, 𝑥2) with 𝑧 such that: 

𝑧 = max(𝑥1, 𝑥2) (30) z ≥ 𝑥1 z ≥ 𝑥2 

 

7.4. Tabu Search-based Component Placement 

 In this section, we propose a Tabu Search-based Component Placement (TSCP) algorithm for 

the optimization problem explained in Section 7.3. The search space size is exponential in terms 

of the number of VNF types, VNFs instances, number of cloud/fog nodes, and number of requests. 

Thus, as will be seen in Section 7.5, the runtime for finding the optimal solution with CPLEX is 

quite long, even for small-scale scenarios. Therefore, a heuristic approach is required to perform 

the placements in real system scales with acceptable run times. Tabu Search meta-heuristic has 

been shown to be promising in terms of finding a near-optimal solution in combinatorial 

optimization problems (e.g., [33][34]) and VNF placement problems [124][125], and so we exploit 

it in our component placement algorithm.  

Tabu is an iterative search process that starts exploring the search space from an initial solution 

and iteratively performs moves to transit from the current solution to a better one in its 

neighborhood until the stopping criterion is satisfied. Tabu Search uses a memory structure called 

Tabu-list to avoid looping during the search process, thereby preventing cycling to previously 
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visited solutions [126]. In the rest of this section, we explain the major elements of the Tabu Search 

algorithm as outlined in Algorithm 7.1. 

1- Tabu starts searching with an initial placement. VNF types that communicate with IoT 

devices are randomly assigned to a fog node with enough capacity to process the VNF. The 

rest of the VNFs are assigned randomly to a cloud node with sufficient capacity Eq. (20). 

Note that the constraints satisfaction in the search process will be considered in the 

evaluation phase as will be discussed later in this section.  

2- Tabu explores the neighborhood of the current placement to improve the quality of the just-

identified best placement. A neighborhood is generated by applying a single move from 

the current placement. We define four moves as below: 

 VNF Reassignment – A VNF is selected randomly and moved to a node with enough 

capacity and minimum amount of aggregated processing time, hosting cost, and 

communication time/cost with its immediate predecessors and IoT/end-users (for all 

the requests using this VNF). Note that the aggregation is performed as in the weighting 

used in Eq. (16).    

 Bulk VNF reassignment - A node is selected randomly, and the VNFs on that node 

are assigned to another node with enough capacity to host the VNFs and minimum 

amount of aggregated processing time, hosting cost, and communication time/cost with 

its immediate predecessors and IoT/end-users for all VNFs. 

 Request reassignment- A request is selected randomly and one of its required VNFs 

is assigned to another instance with enough capacity to tolerate the traffic and minimum 

amount of aggregated processing time, hosting cost, and communication time/cost with 

its immediate predecessors and IoT/end-users.  

 Bulk request reassignment - A VNF is selected, and all its requests are assigned to 

another VNF instance with enough capacity and minimum amount of aggregated 

processing time, hosting cost, and communication time/cost with its immediate 

predecessors and IoT/end-users.  

3- To avoid visiting the same solution several times, Tabu uses a list called Tabu list to store 

moves marked as Tabu. The move that generates the best neighborhood i.e., 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 is 

saved in  𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 for a specific length of time, or number of iterations i.e., 𝑖𝑡𝑎𝑏𝑢. Further, 
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a Tabu move can be released from 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 if it meets the aspiration criterion, defined as 

the case when a better solution than the current best solution has been found. 

4- In each iteration of the Tabu search process, the neighbors are evaluated in order to 

recognize the best solution and move towards that. We use the aggregation of the objective 

function as defined by Eq. (16) and the penalty function imposed due to constraints’ 

violation to evaluate each placement. Eq. (31) indicates the evaluation function:  

𝐸(𝑆𝑐𝑢𝑟𝑟) = { 𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟),                      If 𝑆𝑐𝑢𝑟𝑟  𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟) + 𝑝(𝑆𝑐𝑢𝑟𝑟),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  (31) 

where 𝑝(𝑆𝑐𝑢𝑟𝑟) is the penalty function for the current placement. We have used the 

suggested penalty calculation in [127].  The left and right sides of the constraints (20), (21), 

(22), and (23) are represented with 𝑔𝑚 for 𝑚 = 1 … 4, and  𝑏𝑚 respectively. In this regard, 

a constraint can be represented by 𝑔𝑚(𝑆𝑐𝑢𝑟𝑟) < 𝑏𝑚. The penalty is calculated as below: 

𝑝(𝑆𝑐𝑢𝑟𝑟) = ∑ 𝜍𝑚 max(0, 𝑔𝑚(𝑆𝑐𝑢𝑟𝑟) − 𝑏𝑚)𝑀
𝑚=1  

(32) 

𝜍𝑚 is the normalization coefficient to make 𝑝(𝑆𝑐𝑢𝑟𝑟) and 𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟) in the same scale. 

5- The algorithm will stop when the best solution (i.e., 𝑆𝑏𝑒𝑠𝑡) does not improve for a certain 

number of consecutive iterations (𝑖𝑠𝑡𝑜𝑝). 

7.5. Performance evaluation 

Here we evaluate the performance of our proposed placement algorithm, the TSCP, comparing 

it with the optimal solution gained by CPLEX (Optimal), to the TSCP (Random Explore) where 

the optimization variables are changed by random moves instead of makespan/cost driven moves 

as discussed in Section 7.4, and finally, to a first-fit greedy placement (Greedy). Greedy iterates 

over the set of VNF-FGs associated with applications. For each VNF in a VNF-FG, Greedy first 

checks if that VNF type is already deployed in the network and if it has adequate capacity. If such 

a deployed VNF is found, Greedy assigns it to the request. Otherwise, Greedy instantiates a new 

VNF of that type on the first fitted node (from the aspect of VNF processing and communication 

with the immediate predecessors). In the rest of this section, we explain the experimental setup 

and then we present the evaluation results.  
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7.5.1. Experimental Setup 

We synthesized 50 structured VNF-FGs according to the method proposed in [128]. This 

method generates structured VNF-FGs (see Figure 7.1 (b)) that respect the parameters, including 

the number of VNFs, graph height, the maximum number of children, and the selection to parallel 

ratio. The number of VNFs in a structured VNF-FG is chosen randomly between 3 and 10. The 

height of a structured VNF-FG is chosen randomly from {2, 4, 6, 8}. The selection to parallel ratio 

in the case of having a split in the graph is randomly chosen from {0, 0.2, 0.4, 0.6, 0.8, 1}. The 

maximum number of children is 5. Note that equal probabilities are assigned to the children of the 

selection sub-structures.  For the sake of simplicity, we have assumed that there is no loop in the 

structured VNF-FG.  

 We have assumed a license cost of $100 for the VNF instantiation. Each VNF uses an 

OpenStack VM from tiny to large size, with 1 to 4 vCPUs. The size of the data transmitted in the 

chains is selected randomly in the range of 100 bytes to 80 KB [129].  

Table 7.3 Summary of simulation parameters 

Parameter Value 

VNFs 

Number of VNF types [3-27] 

VNF resource requirements (vCPU) [1- 4] 

VNF processing capacity per GB [1- 2] 

VNF license cost ($) 100 

Structured VNF-FGs 

Number of VNF-FG requests [1-50] 

Number of VNFs in a VNF-FG request [3-10] 

Traffic Amount (KB) [0.1-180] 

Cloud/Fog Network 

Number of nodes: cloud, fog [4, 8], [6, 12] 

Nodes capacity (vCPU): cloud, fog 8, [2-4] 

Nodes cost ($/vCPU): Cloud, fog  [2.33- 4.65], [4.65- 5.82] 

Nodes delay (msec/MB): cloud, fog 0.25, 25 

Bandwidth cost ($/GB): cloud, fog, cloud-fog edges 0.155, [0.25-2], [10-20] 

Bandwidth (Gbps): cloud, fog, cloud-fog edges 10, [0.1-1], [1, 10] 

Latency (msec): cloud, fog, cloud-fog edges [50-100], [10-50], [100-255] 

IoT Devices/End-Users 

Number of IoT/end-users [5-30] 

Bandwidth cost ($/GB): IoT-cloud, IoT-fog 20, [0.05-0.25] 

Bandwidth: IoT-cloud and IoT-fog 10Gbps, [250Kbps-54Mbps] 

Latency (msec): IoT-cloud and IoT-fog 250, [7-20] 

Location Analysis 

Fog nodes velocity 0.015 

Probability that fog node is stationary 0.2 

Pause Time (msec) [10-300]  
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Two cloud/fog infrastructures of 10 and 20 nodes are considered. The first infrastructure 

consists of 4 cloud nodes and 6 fog nodes, whilst the second infrastructure consists of 8 cloud 

nodes and 12 fog nodes. Note that similar scales have been used in [68] and [62] for cloud/fog 

infrastructures. A fog node is mobile with a probability of 0.8. In the case of mobility, the velocity 

is 0.015 and the pause time is chosen uniformly in the range of 10 to 300 msec. We assume the 

cloud nodes have 8 vCPUs and the fog nodes have a random number between 2 and 4 vCPUs. The 

cloud nodes communicate with each other with bandwidth 10Gbps, the fog nodes communicate 

with each other with a random bandwidth in the range of 100Mbps to 1Gbps, and the cloud and 

fog nodes communicate with each other with a random bandwidth in the range of 1Gbps to 10Gbps 

[129].  

The cost of cloud/fog node usage is selected randomly in the range of $(2.33 to 4.65)/vCPU and 

$(4.65 to 5.82)/vCPU  respectively [130]. The cloud communication bandwidth cost is $0.155 per 

GB transmission and the communications costs in the fog vary between $0.25 and $2 per GB 

transmission. Finally, for the cloud and fog communications, the cost is random in the range of 

$10 to $20 per GB transmission [125].  

The processing delay on cloud and fog nodes is set to 0.25 msec and 25 msec, respectively, per 

Megabyte traffic processing [129]. The communication latency in the cloud, in the fog, and 

between the cloud and the fog are ranges within (50 to 100) msec, (10 to 50) msec, and (100 to 

255) msec, respectively.  

Note that the bandwidth, the cost, and the latency in communications vary randomly in the 

mentioned ranges depending on the fog node location involved in the communication. 

 The number of IoT/end-users ranges from 5 to 30 per application. The communication 

bandwidth between IoT devices and the cloud is 10Gbps, whilst it is in the range of 250Kbps to 

54Mbps for communication with fog nodes [129]. Accordingly, the communication cost for the 

communication cost for the cloud and the fog are set to $20/GB and uniform in the range of $(0.05 

to 0.25)/GB, respectively [131]. The communication latencies with the cloud and the fog are set 

to 250msec and (7 to 20) msec, respectively. Finally, we found the values of 60 and 20 appropriate 

for the experiments for 𝑖𝑡𝑎𝑏𝑢 and 𝑖𝑠𝑡𝑜𝑝, respectively. For all the experiments, we assume that the 
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whole capacity of the VNFs and communication links can be used. Table 7.3 lists the parameters 

in the simulation.  

7.5.2. Evaluation Results 

   In the rest of this section, the average of the normalized cost, makespan, and aggregated of 

them for all the requests are given for 10 runs. Figure 7.2 shows the percentages of the cloud/fog 

resources usage in TSCP for various values of α. As it can be observed, when α increases, more 

components are placed in the fog to reduce the requests’ makespan. In particular, in the 

infrastructure with 10 nodes, i.e., Figure 7.2 (a), when α = 1, some resources are still used in the 

cloud due to the limited number of fog nodes or due to the fog nodes’ capacity limitations (from 

the aspect of VNF processing and communication). On the other hand, with an infrastructure with 

20 nodes and thus more available fog nodes (i.e., Figure 7.2 (b)), all the components are deployed 

in the fog. As α decreases, cloud resources are used more. In the extreme case, when α = 0, all 

components are deployed in the cloud to minimize the cost.  

Figure 7.3 shows the resources usage percentages in TSCP for various amounts of 

communication with IoT/end-users. We have changed the number of the VNFs that communicate 

with IoT/end-users in each VNF-FG request for the case of an infrastructure with 20 nodes and α = 0.5. As visible in Figure 7.3, when the communications with IoT/end-users increase, more 

fog resources are used to reduce the communication time with IoT/end-users, and accordingly, to 

reduce the aggregated makespan and cost.  

                

(a)          (b) 

Figure 7.2 Resources usage percentage when varying 𝛼 considering 50 VNF-FG requests  
(a) For 10 nodes 
(b) For 20 nodes 

 

Figure 7.3 Resources usage percentage when varying the number of VNFs communicating with IoT/end-users 
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(a) 
 

 

(b) 

 

 

(c) 

Figure 7.4 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan (c) for Optimal, 
TSCP, Greedy, and TSCP (Random Explore), together with the gap from optimality for TSCP, TSCP (Random 

Explore), and Greedy for 10 nodes and up to 15 VNF-FG requests with α = 0.5 
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(a) 

 

                  (b)         

 

(c) 

Figure 7.5 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan (c) for Optimal, 

TSCP, Greedy, and TSCP (Random Explore) for 20 nodes and 50 VNF-FG requests with α = 0.5 



114 
 

Figure 7.4 and Figure 7.5 show the cost, makespan, and their aggregated weighted function with 

 

      (a) 

 

          (b)               

 

          (c) 

Figure 7.6 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan (c) for optimal, 

TSCP, Greedy, and TSCP (Random Explore) for 10 nodes and 15 VNF-FG requests with α = 0.5, considering three 
scenarios: only cloud, only fog, cloud/fog system 
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α = 0.5 for two different scales.  Figure 7.4 indicates the results for an infrastructure with 10 nodes 

and up to 15 requests. In this figure (i.e., Figure 7.4) the average gap between the TSCP, Greedy, 

and the TSCP (Random Explore) algorithms with respect to the Optimal results is also 

demonstrated. As can be seen, the TSCP has cost, makespan, and objective functions that are very 

close to those of the Optimal result. Greedy shows the worst performance, as it selects the first 

available cloud/fog node without taking into account the time/cost of VNF execution. The TSCP 

outperforms TSCP (Random Explore), which demonstrates the effectiveness of the VNF execution 

time, hosting cost, and communication time/cost consideration in the TSCP exploration phase, as 

performed by the moves introduced in Section 7.4. Please note that the actual values for the 

makespan in Figure 7.5 (b) for points 1 and 3 are 48msec and 123msec, respectively.  However, 

because of the normalization, in this figure, the values are close to zero.   

 Figure 7.5 illustrates similar results for the larger scale, i.e., infrastructure with 20 nodes and 

up to 50 VNF-FG requests. Note that we could not get the optimal results at this scale due to its 

very long run time. The better performance of TCSP compared to that of the TSCP (Random 

Explore) and Greedy is much more remarkable here than in the smaller-scale experiment with a 

smaller solution space size. While the TSCP outperforms the other methods in aggregated 

makespan and cost by up to 47.23% (see Figure 7.4), this value is up to 85% for larger-scale 

experiments. As can be observed, Greedy has the worst performance, since it does not consider 

the time/cost of VNF execution and communication when selecting the cloud/fog nodes. Similar 

to Figure 7.4, the actual makespan values for the points 25 and 30 in Figure 7.5 (b) are 1985.2msec 

and 2143.5msec, respectively. These values in Figure 7.5 (b) are close to zero because of the 

normalization. It should be noted that the actual values for the cost and makespan considering 1 to 

50 requests are in the range of 300 to 2400 units of currency considering $ as a unit, and from 

48msec to 3230msec, respectively.  

Figure 7.6 illustrates the results for the infrastructure with 10 nodes and 15 VNF-FG requests. 

Different types of infrastructures are considered: when the infrastructure is provided as a cloud, 

when it is provided as a fog, and the hybrid case consisting of both cloud and fog. As can be 

observed in Figure 7.6 (a), in every method, the cost is minimized by using only the cloud, as the 

resources in the cloud are cheaper than those in the fog. On the other hand, as can be seen in Figure  
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7.6 (b), makespan is minimized by using only the fog.  This is because the fog provides lower 

communication time than the cloud due to its proximity to IoT/end-users; a situation which leads 

to makespan reduction. We can also see that the best results for the aggregated weighted function 

of makespan and cost (i.e., Figure 7.6 (c)) are obtained when the components are placed on a 

hybrid cloud/fog system for all of the algorithms.  

Table 7.4 shows the computational complexity of the TSCP in comparison with the Optimal 

solution.  The TSCP clearly has a much shorter execution time than the Optimal solution. For the 

infrastructure with 20 nodes and 5 requests, the execution time of the Optimal solution exceeds 1 

hour. The execution time increases as the scale of the infrastructure or the number of requests 

increases. For example, when the number of requests increases to 15, it took one full day to find 

the optimal placement, while the TSCP could find a near-optimal placement in less than 6 seconds.  

7.6. Conclusion 

This chapter studies the application component placement problem in NFV-based hybrid 

cloud/fog systems with mobile fog nodes. The applications’ components are implemented as 

VNFs. A structured VNF-FGs containing sub-structures such as sequence, parallel, selection, and 

loop is established to model the execution sequence of the components. The mobility of fog nodes 

is modeled via the random waypoint mobility model. Based on the stationary analysis of the 

random waypoint model, the expected execution time and cost of the components and sub-

structures are calculated. The calculations of the sub-structures are aggregated to calculate the 

expected application makespan and cost. The placement problem is modeled as an ILP 

optimization that minimizes the aggregated makespan and cost for all requests. A Tabu-based 

Table 7.4 Average execution time 

Experiment Parameter Execution Time (sec) 

Number of Nodes Number of VNF-FGs Optimal Tabu Search Algorithm 

10 5 4800 0.21 

20 5 5400 0.58 

10 10 21600 1.32 

20 10 25560 2.45 

10 15 54000 5.12 

20 15 > 86400 5.6 

20 50 ∞ 57 
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algorithm is proposed to solve the problem in large scales of cloud/fog infrastructure and for a 

high number of requests. The simulation results show that the proposed algorithm operates at near-

optimal for small scales and improves the makespan, the cost, and the aggregated of them for larger 

scales. Our studies also show that the greater the communication between the application 

components and the IoT/end-users, the more fog resources are used to reduce the makespan.  
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Chapter 8 

 

8. Conclusion and Future Work 

 

Provisioning large-scale IoT-based disaster management systems face several challenges such 

as the dynamic formation of an optimal coalition of IoT devices, the heterogeneity of IoT devices, 

and the QoS of these applications. This thesis proposed softwarization approaches to address these 

challenges. We approached these challenges in two complementary ways; architectural and 

algorithmic. For the architectural contributions, in chapter 3 we proposed a cloud-based 

architecture that allows selecting the optimal group of robots for search and rescue tasks of disaster 

management applications. It discussed the architectural modules and the interfaces that cover the 

IaaS aspects. This contribution allows publishing and discovering robots belonging to different 

infrastructures and proposed a well-defined language that allows describing robots’ capabilities 

based on existing standards. The proposed architecture enables flexible, elastic, and cost-efficient 

use of robots benefiting cloud advantages such as virtualization and scalability.  

  To enable the interoperability across IoT devices and applications, we proposed IoT gateway 

architecture based on NFV and SDN. Both centralized (i.e., Chapter 4) and distributed (i.e., 

Chapter 5) approaches were considered. For the centralized approach, the elastic scalability of the 

architecture is considered and for the distributed approach, co-locating the gateway functionalities 

with the IoT devices is considered. Reusing already deployed gateways and handling the traffic 

and chaining between the gateway functions dynamically are also considered in the distributed 
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approach. For both approaches, a high-level description of the proposed architecture that is 

composed of two planes is provided, and a detailed description of each plane with its corresponding 

interfaces and procedures is presented. The proposed architectures enable on-the-fly provisioning 

of IoT gateways. Updating existing gateways are also among the benefits of the proposed 

architectures.  

To ensure that the optimal coalition of robots is selected dynamically with the required 

capabilities for resource efficiency, we proposed a coalition formation algorithm for multi-robot 

task allocation in Chapter 6. The proposed algorithm takes into consideration the location 

constraints regarding the capability distribution of the robots. It consists of a filtering method, 

QMOPSO approach, and a ranking method. The proposed algorithm improves the solution and 

has a significantly reduces the processing time. 

To meet the QoS requirements of disaster management application, we proposed an application 

component placement algorithm over hybrid cloud/fog NFVIs in Chapter 7. Both stationary and 

mobile fog nodes were considered. The proposed algorithm considered minimizing the aggregated 

weighted functions of applications makespan and cost. It also considered non-deterministic VNF-

FG graphs by assigning probabilities to selection sub-structures and mean numbers of iterations to 

loop sub-structures. The mobility of fog nodes was modeled using the RWP model. Based on the 

stationary distribution of fog nodes’ location, the expected makespan and cost for the sub-

structures: sequence, parallel, selection, and loop were calculated. The calculations were 

aggregated in order to obtain the application’s makespan and execution cost. The problem was 

formulated as an ILP problem and a Tabu Search-based Component Placement (TSCP) algorithm 

was proposed to find a sub-optimal solution in feasible time. The simulation results showed that 

the proposed algorithm operated at near-optimal for small scales and improves the makespan, the 

cost, and the aggregated of them for larger scales. 

8.1. Future Work 

This thesis presented significant contributions towards the softwarization of large-scale IoT-

based disaster management systems. Yet, there exist several research directions for the future. 
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8.1.1. Node-level Virtualization 

In the future, we would like to incorporate node-level virtualization in the proposed cloud-

based architecture for IoT application provisioning in Chapter 3. Node-level virtualization can be 

achieved by sequential (one-by-one) or simultaneous execution (by context switching/multi-

threading) of application tasks on a sensor node. According to  [132] node-level virtualization of 

sensors can be realized by either i) a capable operating system like Contiki, ii) using a middleware 

like Agilla or iii) by using a virtual machine like Squawk that directly runs over the sensors 

hardware. It would be interesting to investigate the node-level virtualization approaches for robots 

and incorporate them to the proposed architecture. 

8.1.2. Resource Allocation Algorithms 

Chapter 4 and Chapter 5 propose IoT gateway architecture. The proposed architecture relies 

on a simple dynamic resource allocation algorithm to meet the growing demand of applications. It 

is based on the resource utilization of the VMs (i.e., CPU) and on horizontal scaling. However, 

there is a need to design appropriate resource allocation algorithms in the specific context of VNFs. 

Such algorithms should enable vertical scaling – i.e., increasing the resources of a VNF instance 

(e.g., CPU, memory) and/or horizontal scaling – i.e., increasing the number of VNF instances that 

serve an application. A potential starting point can be considered the resource allocation algorithms 

that exist today for VMs (e.g., [11] and [12]).   

8.1.3. Application Component Placement 

The approach proposed in Chapter 7 for application component placement focused on static 

(offline) placement strategies. However, such mode of placement may not be adequate for dynamic 

systems where applications arrive at the system dynamically and fog nodes move. In real-world 

scenarios, there could be a variety of motivations for modifying the placement of the application 

components. For instance, a fog node communicating with an IoT devices might move far from the 

device. In such cases, the continuity of the offered services needs to be ensured despite this movements. 

An important study can be to consider the online placement of application components that include 

migration techniques such as [133] and  [134] to handle the mobility of fog nodes. 
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8.1.4. Architecture for Hybrid Cloud/Fog System 

As fog computing matures, there is a need for hybrid cloud/fog architectures to provision 

application with components spanning cloud and fog. Existing PaaSs do not enable this [135]. In the 

recent survey on fog computing [13], we defined several requirements and research directions for 

cloud and fog integrations. These requirements can be used as a starting point to design such 

architectures. For instance, the proposed architectures should enable the migration of application 

components during runtime from one hosting node to another (e.g., e.g. from cloud to fog and vice 

versa or from fog to another fog).  
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