

Softwarization of Large-Scale IoT-based Disasters

Management Systems

Carla Mouradian

A Thesis

In

The Concordia Institute

For

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

October 2018

© Carla Mouradian, 2018

iii

ABSTRACT

Softwarization of Large-scale IoT-based Disasters Management Systems

Carla Mouradian, Ph.D.

Concordia University, 2018

The Internet of Things (IoT) enables objects to interact and cooperate with each other for

reaching common objectives. It is very useful in large-scale disaster management systems where

humans are likely to fail when they attempt to perform search and rescue operations in high-risk

sites. IoT can indeed play a critical role in all phases of large-scale disasters (i.e. preparedness,

relief, and recovery). Network softwarization aims at designing, architecting, deploying, and

managing network components primarily based on software programmability properties. It relies

on key technologies, such as cloud computing, Network Functions Virtualization (NFV), and

Software Defined Networking (SDN). The key benefits are agility and cost efficiency. This thesis

proposes softwarization approaches to tackle the key challenges related to large-scale IoT based

disaster management systems.

A first challenge faced by large-scale IoT disaster management systems is the dynamic

formation of an optimal coalition of IoT devices for the tasks at hand. Meeting this challenge is

critical for cost efficiency. A second challenge is an interoperability. IoT environments remain

highly heterogeneous. However, the IoT devices need to interact. Yet another challenge is Quality

of Service (QoS). Disaster management applications are known to be very QoS sensitive,

especially when it comes to delay.

To tackle the first challenge, we propose a cloud-based architecture that enables the formation

of efficient coalitions of IoT devices for search and rescue tasks. The proposed architecture enables

the publication and discovery of IoT devices belonging to different cloud providers. It also comes

with a coalition formation algorithm. For the second challenge, we propose an NFV and SDN

based - architecture for on-the-fly IoT gateway provisioning. The gateway functions are

provisioned as Virtual Network Functions (VNFs) that are chained on-the-fly in the IoT domain

iv

using SDN. When it comes to the third challenge, we rely on fog computing to meet the QoS and

propose algorithms that provision IoT applications components in hybrid NFV based - cloud/fogs.

Both stationary and mobile fog nodes are considered. In the case of mobile fog nodes, a Tabu

Search-based heuristic is proposed. It finds a near-optimal solution and we numerically show that

it is faster than the Integer Linear Programming (ILP) solution by several orders of magnitude.

v

Acknowledgements

A dissertation is not the outcome of the efforts of entirely one individual. Many people have

contributed to its development. At this time, I take the opportunity to acknowledge those who have

made some impact on my doctoral journey and accomplishment.

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Roch Glitho for the

continuous support of my Ph.D. study and related research, for his patience, motivation, and

immense knowledge. His constructive feedback and guidance helped me in all the time of research

and writing of this thesis. Beside my supervisor, I would like to thank the rest of my thesis

committee: Prof. Chadi Assi, Prof. Rachida Dessouli, Prof. Yann-Gaël Guéhéneuc, and Prof.

Alberto Leon-Garcia, for their insightful comments and encouragements, but also for the questions

which incented me to widen my research from various perspectives.

I thank my colleagues for their help, cooperation, and encouragement. Special thanks to

Mohammad Abu Lebdeh and Abbas Soltanian for the stimulating discussions, for the days we

were working together before deadlines, and for all the fun we have had in the last few years.

My very special thanks to Elaheh Narjes Tahghigh, my best friend. You were always there

with me through the toughest moments. Your friendly advice, your soothing words, and your big

heart helped me face all the obstacles and continue with my work. I am truly lucky to count you

amongst my friends.

I owe a special thanks to my brother and sister, my father Hrayr, and my mother Ani who

helped me throughout my life during this study and have provided me through moral and emotional

support. Words cannot express how grateful I am to my mother for all of the sacrifices that she has

made on my behalf.

vi

At last, I do not know how to begin with saying thank you to my dearest husband and my best

friend, George Zabounian. I love you for being so understanding and for putting up with me

through the toughest moments of my life. Thanks for being extremely supportive throughout this

entire process and for the countless sacrifices you have made to help me get to this point. I dedicate

this Ph.D. thesis to my two lovely children, Lila and Sevag who are the pride and joy of my life. I

love you more than anything and I appreciate all your patience and support during mommy’s Ph.D.

studies. Thanks for always cheering me up.

vii

Contents

List of Figures .. xi

List of Tables ... xiii

List of Acronyms ... xiv

1. Chapter 1: Introduction .. 1

1.1. Overview .. 1

1.2. Challenges and Thesis Contributions ... 2

1.2.1. Cloud-based System for Disaster Management Applications 4

1.2.2. An Architecture for IoT Gateway based on NFV and SDN 4

1.2.3. Application Component Placement Algorithm over Hybrid Cloud/Fog NFVI 5

1.3. Background Information .. 5

1.3.1. Internet of Things .. 6

1.3.2. Disaster Management System ... 7

1.3.3. Network Softwarization .. 8

1.3.4. Fog Computing ... 11

1.4. Thesis Outline .. 12

2. Chapter 2: Related Work ... 13

2.1. Motivating Scenario ... 13

2.2. Requirements .. 16

2.2.1. Architectural Requirements .. 16

2.2.2. Algorithmic Requirements .. 18

2.3. Related Work.. 20

2.3.1. Architectural Related Works ... 20

viii

2.3.2. Algorithmic Related Works .. 24

2.4. Conclusion .. 27

3. Chapter 3: Cloud-based Architecture for IoT Applications Provisioning 29

3.1. Introduction .. 29

3.2. Overall Architecture for IaaS for Robots ... 30

3.2.1. Business Model ... 31

3.2.2. Architectural Principles .. 31

3.2.3. Proposed Architecture for IaaS for Robots ... 32

3.2.4. Standard Description of Robots .. 35

3.2.5. Publication/Discovery Engine .. 36

3.3. Performance Evaluation ... 37

3.3.1. Implementation Alternatives ... 38

3.3.2. Proof of Concept Prototype .. 39

3.3.3. Experimentation Setup .. 40

3.3.4. Measurements and Results .. 41

3.4. Conclusion .. 42

4. Chapter 4: NFV-based Centralized Architecture for IoT Gateway 43

4.1. Introduction .. 43

4.2. Overall Architecture for Virtualized WSAN Gateway .. 44

4.2.1. Architectural Principles .. 45

4.2.2. Proposed Architecture for NFV-based Virtualized WSAN Gateway 45

4.2.3. VNF Migration and Scalability Issues .. 47

4.2.4. Control Plane .. 48

4.2.5. Illustrative Scenario .. 49

4.3. Performance Evaluation ... 51

ix

4.3.1. Proof of Concept Prototype .. 51

4.3.2. Experimentation Setup .. 52

4.3.3. Measurements and Results .. 53

4.4. Conclusions .. 57

5. Chapter 5: NFV and SDN - based Distributed Architecture for IoT Gateway 58

5.1. Introduction .. 58

5.2. Overall Architecture for a Distributed IoT Gateway ... 59

5.2.1. Business Model ... 59

5.2.2. Architectural Principles .. 60

5.2.3. High-level Description of the Architecture ... 61

5.2.4. Detailed Description of the Control Plane .. 62

5.2.5. Detailed Description of the Forwarding Plane .. 67

5.2.6. Illustrative Sequence Diagrams .. 68

5.3. Performance Evaluation ... 71

5.3.1. Proof of Concept Prototype .. 73

5.3.2. Experimentation Setup .. 74

5.3.3. Measurements and Results .. 74

5.4. Conclusions .. 79

6. Chapter 6: A Coalition Formation Algorithm for Multi-Robot Task Allocation 80

6.1. Introduction .. 80

6.2. Problem Formulation.. 81

6.3. Coalition Formation Algorithm for Multi-Robot System .. 83

6.4. Algorithm Evaluation ... 86

6.4.1. Performance Metrics ... 87

6.4.2. Results and Discussion ... 87

x

6.5. Conclusion .. 92

7. Chapter 7: Application Component Placement in NFV-based Hybrid Cloud/Fog Systems

with Mobile Fog Nodes .. 93

7.1. Introduction .. 93

7.2. System Model ... 95

7.3. Cloud/Fog Node Location Analysis and Optimization Formulation 98

7.3.1. Cloud/Fog Node Location Analysis.. 98

7.3.2. Optimization Formulation ... 100

7.4. Tabu Search-based Component Placement .. 106

7.5. Performance evaluation .. 108

7.5.1. Experimental Setup ... 109

7.5.2. Evaluation Results .. 111

7.6. Conclusion .. 116

8. Chapter 8: Conclusion and Future Work ... 118

8.1. Future Work ... 119

8.1.1. Node-level Virtualization.. 120

8.1.2. Resource Allocation Algorithms... 120

8.1.3. Application Component Placement .. 120

8.1.4. Architecture for Hybrid Cloud/Fog System .. 121

Bibliography .. 122

xi

List of Figures

Figure 1.1 A high-level architecture of NFV .. 8

Figure 1.2 A high-level architecture of SDN .. 9

Figure 1.3 The fog system .. 11

Figure 3.1 The proposed business model .. 31

Figure 3.2 The proposed IaaS for Robots architecture ... 32

Figure 3.3 Extended SenML for unified robots description model 34

Figure 3.4 Presence technology-based architecture for Publication/Discovery 36

Figure 3.5 Illustrative sequence diagram for end to end scenario 38

Figure 3.6 Prototype architecture .. 39

Figure 3.7 Idle Robot Discovery Delay (IRDD) ... 41

Figure 3.8 Task Assignment Delay (TAD) ... 41

Figure 4.1 The proposed NFV-based IoT Gateway .. 46

Figure 4.2 Sequence diagram for an end to end scenario ... 50

Figure 4.3 Prototype architecture .. 51

Figure 4.4 Results of service provisioning ... 54

Figure 4.5 End to end delay (virtualized gateway vs. non-virtualized gateway) 55

Figure 4.6 Response time for scalability... 56

Figure 5.1 The proposed business model .. 60

Figure 5.2 The proposed NFV and SDN-based distributed IoT Gateway architecture 61

Figure 5.3 Sequence diagram for the Gateway Deployment and Chaining 69

Figure 5.4 Prototype architecture .. 72

Figure 5.5 IoT Gateway orchestration plan .. 73

Figure 5.6 Gateway provisioning latency ... 75

Figure 5.7 Orchestration latency of the proposed gateway ... 76

Figure 5.8 E2E latency of the proposed gateway ... 77

Figure 6.1 Non-dominated fronts obtained at different iteration for problem size 5000 and

population size 200 ... 90

Figure 6.2 Processing time with different problem sizes (Population size=100) 91

file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935801
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935802
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935803
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935804
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935805
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935806
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935807
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935808
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935809
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935810
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935811
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935812
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935813
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935814
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935815
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935816
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935817
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935818
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935819
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935820
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935821
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935822
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935823
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935824
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935825
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935826
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935826
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935827

xii

Figure 6.3 The effect of feasibility check on average repository updating time 91

Figure 6.4 The time needed for the filtering function ... 92

Figure 7.1 Earthquake early warning and recovery application components 94

Figure 7.2 Resources usage percentage when varying 𝛼 considering 50 VNF-FG requests111

Figure 7.3 Resources usage percentage when varying the number of VNFs communicating with

IoT/end-users .. 111

Figure 7.4 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan

(c) for Optimal, TSCP, Greedy, and TSCP (Random Explore), together with the gap from

optimality for TSCP, TSCP (Random Explore), and Greedy for 10 nodes and up to 15 VNF-FG

requests with α = 0.5.. 112

Figure 7.5 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan

(c) for Optimal, TSCP, Greedy, and TSCP (Random Explore) for 20 nodes and 50 VNF-FG

requests with α = 0.5.. 113

Figure 7.6 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan

(c) for optimal, TSCP, Greedy, and TSCP (Random Explore) for 10 nodes and 15 VNF-FG

requests with α = 0.5, considering three scenarios: only cloud, only fog, cloud/fog system

... 114

file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935828
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935829
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935830
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935831
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935832
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935832
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935833
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935833
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935833
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935833
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935834
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935834
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935834
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935835
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935835
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935835
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc531935835

xiii

List of Tables

Table 2.1 Architectural related work evaluation... 23

Table 2.2 Algorithmic related work evaluation .. 28

Table 3.1 Static characteristics representation using extended SenML .. 34

Table 3.2 Examples of the API operations on the publication interface 36

Table 4.1 Resources on the VWSAN Provider Domain and VWSAN Gateway Provider Domain

... 47

Table 5.1 Example of the API operations exposed by the Gateway Orchestrator to the VNF

Agent (i.e., Int E.) ... 65

Table 5.2 Application-level flow tables .. 70

Table 5.3 Prospective chains based on application-level requirements .. 71

Table 6.1 Algorithm evaluation parameters.. 87

Table 6.2 Error Ratio, Set Coverage and Spacing (10 Robots, Population size=200) 88

Table 6.3 Error Rate & Set Coverage (Population Size=100) .. 88

Table 6.4 Spacing (Population Size=100) .. 89

Table 7.1 Summary of key notations and decision variables .. 96

Table 7.2 The cost and the makespan estimation for 𝑆𝑖 ∈ {𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝} 102

Table 7.3 Summary of simulation parameters .. 109

Table 7.4 Average execution time .. 116

file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453277
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453278
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453279
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453279
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453280
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453280
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453281
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453282
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453283
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453284
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453285
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453286
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453287
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453288
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453289
file:///C:/Users/umroot/OneDrive/PhD/Defenses/Thesis/Carla_Thesis_Final_CM4.docx%23_Toc532453290

xiv

List of Acronyms

API Application Programming Interface

BS Base Station

CPU Central Processing Unit

CRASAR Center for Robot Assisted Search and Rescue

CSP Constraints Satisfaction Problem

EMS Element Management System

ETSI European Telecommunications Standards Institute

FIFO First in First out

GA Genetic Algorithm

GAE Google App Engine

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Markup Language

IaaS Infrastructure as a Service

ILP Integer Programming Language

IoT Internet of Things

LAN Local Area Network

MANET Mobile Ad-hoc Network

MANO Management and Orchestration

MEC Mobile Edge Computing

MR-MT Multi-Robot Multi-Task

NAT Network Address Translation

NFV Network Functions Virtualization

NFVI Network Functions Virtualization Infrastructure

NFVO Network Functions Virtualization Orchestrator

NIST National Institute of Standards and Technology

NP Nondeterministic Polynomial time

NSGA Non-Dominated Sorting Genetic Algorithm

xv

O&M Orchestration and Management

OCFA Optimal Coalition Formation Algorithm

OSS/BSS Operational Support System/Business Support System

PaaS Platform as a Service

PDF Probability Distribution Function

PSO Particle Swarm Optimization

PTCFA Polynomial Time Coalition Formation Algorithm

QMOPSO Quantum Multi-Objective Particle Swarm Optimization

QoS Quality of Service

REST REpresentational State Transfer

RFID Radio-Frequency IDentification

RWP Random Waypoint

SaaS Software as a Service

SBC Session Border Controller

SDN Software Defined Networking

SenML Sensor Markup Language

SLA Service Level Agreement

SOA Service Oriented Architecture

SPEA Strength Pareto Evolutionary Algorithm

UAV Unmanned Aerial Vehicles

URI Uniform Resource Identifier

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtualized Network Function

VNF-FG VNF Forwarding Graph

VNFM Virtualized Network Function Manager

WAN Wide Area Network

WSAN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

1

Chapter 1

1. Introduction

1.1. Overview

Internet of Things (IoT) is considered as part of the Internet of the future. IoT enables physical

objects to interact with each other to share information and to coordinate decisions. Radio-

Frequency IDentification (RFID) tags, sensors, and robots are examples of IoT devices. IoT can

play a remarkable role and improve the quality of our lives in various domains. Examples of IoT

applications include transportation, healthcare, and large-scale natural disasters where human

decision making is difficult [1].

Many large-scale disaster management applications rely on IoT, for example in fire detection

and fighting, and earthquake early warning and recovery. IoT cannot stop disasters from happening

but it can be very useful for disaster preparedness (e.g., prediction) and disaster recovery (e.g.,

search and rescue tasks). For instance, sensors can withstand a harsh environment and contribute

in disaster predictions. They may be distributed throughout a forest to monitor the environmental

conditions or measure earth movements before and during earthquakes. On the other hand, robots

can operate in dangerous environments and handle search and rescue tasks. In such tasks, the

primary goal is to find victims as quickly as possible and to rescue them with utmost care.

2

Conventional methods employ human rescuers and dogs. However, the rescue teams often cannot

reach the disaster sites in time due to collapsed building and destroyed roads. Robots can move

quickly and find victims more accurately than their human counterparts. They can, for instance,

penetrate rubbles to find people beneath them. The use of robots for search and rescue mission was

first noticed during the rescue operations at World Trade Center in New York City on September

2001, where CRASAR (Center for Robot-Assisted Search And Rescue) rescue robots were used

[2]. These make IoT a potential tool for large-scale disaster management applications. Hence, a

number of different sensor and robot platforms have been designed for such applications.

Network softwarization emerged as a concept that drastically changes the way the network

services are designed and operated, enabling network operators to deliver network services and

applications with greater agility, flexibility, and cost efficiency. It relies on key technologies, such

as cloud computing, Network Functions Virtualization (NFV), and Software Defined Networking

(SDN). Cloud computing is an emerging paradigm with inherent benefits such as cost efficiency,

rapid elasticity, and resource pooling. NFV is an emerging paradigm to decouple the network

functions from the underlying hardware. SDN enables the dynamic orchestration and chaining of

VNFs to provide a flexible management of the forwarding behavior of the VNFs.

1.2. Challenges and Thesis Contributions

Network softwarization can facilitate the provisioning of large-scale IoT-based disaster

management systems by tackling several challenges. Some examples are as below:

 Dynamic formation of an optimal coalition of IoT devices: search and rescue tasks

of disaster management applications typically involve IoT devices (i.e., robots) in the

order of thousands to accomplish a task [3]. These robots have different capabilities

and characteristics, and a certain task may need a coalition of robots to perform it.

Forming dynamically an optimal coalition of robots with the required number and the

required set of capabilities for search and rescue tasks is very challenging. In addition,

finding the appropriate robots in a single business entity is not always possible. A single

business entity may not provide all the capabilities and the number of robots required

to perform a search and rescue task, and there may be need to use robots belonging to

several business entities. Moreover, some tasks may require that the combination of a

3

given sensor and actuator should reside on the same robots or on different robots.

Furthermore, describing these robots independently from their brands, technical

constraints, and infrastructure provider is not straightforward. Meeting these challenges

is critical for the cost efficiency of IoT-based disaster management applications.

 Heterogeneity of IoT devices: different types of IoT devices are used in such large-

scale disasters. These IoT devices are usually heterogeneous, each with its own

communication protocol and/or data formats. To enable interoperability across IoT

devices and applications, gateways are needed to bridge the traditional communication

networks and IoT devices domain. Such gateways are generally centralized and thus

not practically feasible in the Mobile Ad-hoc Networks (MANET) setting of large-

scale disasters where there is no centralized or fixed infrastructure. In addition, their

capabilities do not scale when the number of applications and the corresponding

workload of IoT devices changes dynamically. Moreover, they lack dynamicity and

flexibility. For instance, when a new brand of IoT devices is added to the infrastructure

the gateway needs to be upgraded on-the-fly such that it can serve the newly added IoT

devices. In addition, when several applications use IoT devices with the same protocols

and/or information models, the same gateway could be reused by these applications.

Upgrading and reusing existing gateways is very difficult and expensive. Therefore,

the IoT gateways architectures need to be rethought.

 QoS of disaster management applications: disaster management applications are

known to be very QoS sensitive, especially when it comes to delay. Many service

providers use cloud computing to deploy their applications. However, the fundamental

limitation is the connectivity between the cloud and the IoT devices. Such connectivity

is set over the Internet and is not suitable for latency-sensitive applications such as

disaster management applications. Furthermore, cloud-based applications are often

distributed and made up of multiple components. Consequently, it is not uncommon to

sometimes deploy application components separately over multiple clouds (e.g., [4]

and [5]). This worsens the latency due to the overhead induced by inter-cloud

communications. The location of application components has a significant impact on

the overall application execution cost and makespan. Thus, there is a need for efficient

algorithms for application component placement.

4

Unfortunately, the solutions proposed so far do not address all these challenges. This Ph.D.

thesis proposes softwarization approaches to tackle the architectural and the algorithmic challenges

related to large-scale IoT-based disaster management systems. It makes three main contributions

which are presented as follows. Each of our contributions corresponds to a challenge addressed by

this thesis.

1.2.1. Cloud-based System for Disaster Management Applications [6], [7]

In the first contribution, we tackle the architectural and the algorithmic challenges for cost-

efficient IoT-based disaster management applications provisioning. At the architectural level, we

propose a cloud-based solution that allows selecting the most efficient group of robots for the

search and rescue tasks of disaster management applications. In addition, the architecture allows

publishing and discovering robots belonging to different infrastructures. A well-defined language

to describe robot capabilities based on existing standards is also considered. This is important

when considering robots with different platforms (e.g., different capabilities, sizes, and shapes). In

addition, a proof of concept prototype to validate the feasibility of the approach is also developed.

The new architecture enables flexible, elastic, and cost-efficient use of robots, benefiting the cloud

advantages such as virtualization and scalability.

At the algorithmic level, the goal is to ensure that the optimal coalition of robots is selected

dynamically with the required capabilities for resource efficiency. In addition, location constraints

regarding the capability distribution of the robots are taken into consideration. This is necessary in

order to ensure proper execution of the sub-tasks belonging to the search and rescue task. Extensive

simulation experiments are also conducted, and the proposed algorithm is compared with other

existing algorithms. The simulation results demonstrate that the proposed algorithm cannot only

improve the solution but can also significantly reduce the processing times.

1.2.2. An Architecture for IoT Gateway based on NFV and SDN [8], [9], [10]

The second contribution is an architecture for IoT gateway based on NFV and SDN. Both

centralized and distributed approaches are considered. For the centralized approach, the elastic

scalability of the architecture is considered, which is crucial to adapt to the accelerated growth of

the number of applications using the IoT devices. The architecture relies on a simple dynamic

resource allocation algorithms to meet the growing demand of applications. Existing algorithms

such as [11] and [12] are used as a basis. For the distributed approach, the proposed architecture

5

considers co-locating the gateway functions with the IoT devices and reusing already deployed

gateways. It also considers handling the traffic and chaining between the gateway functions

dynamically. For both approaches, a high-level description of the proposed architecture that is

composed of two planes is provided, and a detailed description of each plane with their

corresponding interfaces and procedures is presented. The proposed architectures are implemented

as a proof of concepts in order to evaluate their viability and performance level. The performances

results show advantages of using on-the-fly provisioning of IoT gateways and the possibility of

reusing and updating a pre-existing gateway.

1.2.3. Application Component Placement Algorithm over Hybrid Cloud/Fog NFVI [13],

[14], [15]

The third contribution is an application component placement algorithm over hybrid NFVI-

based cloud/fogs. Our critical review of the existing cloud/fog systems [13] shows the need for a

component placement algorithm for IoT applications over hybrid cloud/fog infrastructures. Fog

computing helps in meeting the QoS. We consider both stationary and mobile fog nodes. The

applications are considered as sets of interacting components that can be executed in sequence, in

parallel, or by using more complex constructs such as selection and loops. The mobility of fog

nodes is modeled using the Random Waypoint (RWP) model [16]. Based on the stationary

distribution fog nodes’ location, the expected makespan and cost for the constructs of sequence,

parallel, selection, and loop are calculated. Next, the constructs’ calculations are aggregated to

obtain the application’s makespan and execution cost. The problem is formulated as an Integer

Linear Programming (ILP) problem and, regarding the complexity, Tabu Search-based heuristic

is proposed to find the sub-optimal solution. The performance results show that the proposed

algorithm reaches the optimality in several scenarios and reduce the execution time significantly

compared to the ILP by many orders of magnitude.

1.3. Background Information

This subsection presents the background information that is relevant to our research domain.

The background information covers four topics: Internet of Things, disaster management systems,

network softwarization, and fog computing.

6

1.3.1. Internet of Things

The Internet of Thing (IoT) is considered as part of the Internet of the future. It is a novel

paradigm that is gaining the attention of modern wireless telecommunications. It is present around

us of a variety of things or objects such as Radio-Frequency IDentification (RFID) tags, sensors,

actuators, mobile phones, etc. which are able to interact with each other and cooperate with their

neighbors to achieve common goals [17].

IoT concept can be realized by several enabling technologies. One example is identification,

sensing, and communication technologies such as RFID tags that are characterized by a unique

identifier and sensor networks composed of several nodes communicating in a wireless fashion,

etc. Another example is the middleware which is a software layer positioned between the

technological and the application levels. IoT middleware’s architectures proposed in the last years

often follow the Service Oriented Architecture (SOA) approach. It simplifies the development of

new services and the integration of legacy technologies with the new ones. It has five layers:

 Applications layer on top of the architecture, it exploits the functionalities of the other layers

and provides it to the end-user.

 Service composition layer which provides the functionalities of the composition of different

services by the objects to build specific applications.

 Service management layer provides functionalities such as object discovery, status monitoring,

and service configuration. It enables the remote deployment of new services during run-time

to meet the application requirements.

 Object abstraction which provides an abstraction of the heterogeneous objects by harmonizing

the access to the different objects. This is done by offering common languages and procedures.

 Trust, privacy, and security management layer which provides functionalities related to the

security and the privacy of the exchanged data.

IoT can be present in a variety of fields such as domotics, assisted living, e-health, enhanced

learning, automation and industrial manufacturing, logistics, business management, and large-

scale disaster management - to name few. Moreover, many standardization efforts are being

carried for the IoT paradigm. For instance, IETF introduced the IPV6 over Low-Power Wireless

7

Personal Area Networks (6LoW-PAN) which defines a set of protocols that can be used to

integrate sensors nodes into IPV6 networks.

1.3.2. Disaster Management System

Natural disasters such as earthquakes, wildfires, flooding, etc., happen daily worldwide and

represent an important factor that affects human life and development. Such disasters, manmade

and natural, are a cause of great economic and human losses each year throughout the world [18].

One example is the large-scale earthquake that hit Kobe, Japan, on January 17, 1995. Measuring

6.9 magnitudes, it was the deadliest to hit Japan in 47 years, with more than 5000 dead and more

than 13,000 injured. It smashed more than 103,521 buildings, leaving a large number of bodies

under debris. Damage from Kobe earthquake cost around $100 billion. An important issue that

needs to be solved when a disaster occurs, is to preserve human lives. In this context, the first 72

hours after the disaster hit are the most critical [19]. This means that the search and rescue

operations must be completed quickly and efficiently. The IoT can be very useful for disaster

preparedness (e.g., prediction) and disaster recovery, in particular, it can participate in the

following three phases of disaster management [19]:

 Pre-disaster preparedness: this phase is concerned with surveying-related events that precede

the disaster. For instance, processing data of environmental conditions collected from

different sensors, e.g., acceleration of physical objects, seismic waves, and threshold sensing,

and setting up early warning systems.

 Disaster assessment: this phase provides situational awareness during the disaster in real-time

and completes damage studies for logistical planning. For instance, damage-assessment maps

are produced in this phase that allow responders to serve areas that experienced more damage

first. In addition, the affected areas are monitored through drones to detect locations of

possible human being presence under the ruins

 Disaster response and recovery: in this phase, the communications backbone is formed, and

search and rescue strategies are implemented. These strategies are implemented according to

the area size and conditions. Accordingly, whether to send first responders, rescue robots, or

both to assist in recovery procedures is decided.

8

1.3.3. Network Softwarization

Traditionally, network operators deploy physical proprietary devices and equipment for each

function that is part of a given service [20] hence they lack dynamicity and flexibility. In addition,

it is difficult and expensive to upgrade or reuse existing functions or services. Network

softwarization, in contrast, enables flexibility, adaptability, and reconfiguration of a network on

the fly based on timely requirements [21]. It is the concept of designing, architecting, deploying,

and managing network components, primarily based on software programmability properties.

Network softwarization has shown huge potential in revolutionizing the way the network services

are designed and operated enabling network services and applications with greater agility and cost

efficiency. The network softwarization term was first introduced at the academic conference

NetSoft 2015, the first IEEE conference on Network Softwarization. The main goal was to include

a broader interest in NFV, SDN, and cloud computing.

NFV [20], by leveraging virtualization technology, offers a new way to design, deploy, and

manage network service. It decouples the network functions from underlying hardware to run them

as software instances (i.e., Virtual Network Functions [VNFs]) on general purpose hardware. The

decoupling reduces operational expenditures by leveraging efficiencies that derive from

virtualization in cloud computing such as elastic scalability, flexibility, and customization. The

Figure 1.1 A high-level architecture of NFV

9

European Telecommunications Standards Institute (ETSI) has defined a reference architectural

framework for NFV [22]. It is made up of a set of three main components as shown in Figure 1.1:

VNFs, NFV Infrastructure (NFVI), and an NFV Management and Orchestration (MANO)

framework. VNFs are the software implementation of given network functions. The NFVI

provides hardware and software resources, including the computation, storage, and networking

needed to deploy, manage, and execute VNFs. The NFV MANO framework enables the automated

management of the VNFs by managing the NFVI and orchestrating the allocation of resources

needed by the VNFs. It consists of three functional blocks: NFV Orchestrator (NFVO), VNF

Manager (VNFM) and Virtualized Infrastructure Manager (VIM). The NFVO is responsible for

the orchestration of the NFVI resources and the lifecycle management of the network services.

The VNFM manages the lifecycle of the VNFs. The VIM is responsible for managing and

controlling the NFVI. In NFV, an end-to-end network service is realized by an ordered set of VNFs

that are deployed in the network and chained. This chain is called VNF Forwarding Graph (VNF-

FG).

SDN [23] aims at splitting the control plane and the data plane in the network elements to

provide a flexible management of the forwarding behavior of those elements. It can enable the

easy on-the-fly chaining of these network functions. It also enables faster innovation, leading to

Figure 1.2 A high-level architecture of SDN

10

greater responsiveness and cost-effectiveness. The architecture of SDN contains three planes as

shown in Figure 1.2: a management plane, a control plane, and a forwarding plane. The SDN

application resides at the management plane. Its role is to communicate its requirements (e.g., the

desired network behavior) to the control plane. This is done by defining a set of application policies

and injecting them into the control plane. The control plane contains the SDN controller, whose

responsibility is to translate the requirements of the SDN application to the forwarding plane. To

that end, the SDN controller programs the forwarding plane by populating the SDN switches with

well-defined flow entries (forwarding rules). The forwarding plane consists of forwarding

elements such as switches and routers that allow traffic forwarding based on the flow entries that

reflect the application’s policies. SDN is highly complementary to NFV. Both are closely related

technologies and are mutually beneficial (but not dependent). By using SDN, the network routers

and switches can be dynamically programmed to steer the traffic through a set of VNFs.

Cloud computing has emerged as a viable delivery model for IT resources. It leverages

virtualization technology to enable on-demand network access to a shared pool of configurable

resources (e.g., networks, servers, storage, applications, and services). It has brought new business

models and enormous benefits to enterprises. It comes with several inherent capabilities such as

scalability, on-demand resource allocation, reduced management efforts, flexible pricing model,

and easy applications and services provisioning [24]. Virtualization is a key enabling technology

for cloud computing, allowing the abstraction of actual physical computing resources into logical

units and enabling their efficient usage by multiple independent users. Virtualization can be

performed at both node- and network- levels. Robot node-level virtualization is defined as the

mechanisms that enable multiple applications to reside in and run concurrently on a single robot

[25]. And, robot network-level virtualization is the dynamic formation of subsets of robot nodes,

with each subset dedicated to a certain application at a given time [25].

Currently, the network operators are transforming their infrastructure to NFV and SDN enabled

cloud infrastructures. NFV, SDN, and cloud together are driving the softwarization of networks

toward a paradigm where software controls the treatment of flows in the network and deliver

customized characteristics that meet the needs of each application. This allows reinventing future

network architectures and facilitates infrastructure management.

11

1.3.4. Fog Computing

Fog is an extension of cloud computing paradigm from the core to the edge of the network. It

is not a completely new concept. Cyber foraging, cloudlet, and Mobile Edge Computing (MEC)

were introduced before the fog to bring computing closer to end devices [13].

 Fog enables computing at the edge of the network, closer to IoT devices. It also supports

virtualization. Fog is tightly linked to the existence of a cloud, i.e., it cannot operate in a standalone

mode. This has driven a particular attention on the interactions between the cloud and the fog [26].

Moreover, fog extends the three-tier hierarchy of cloudlet to an n-tier one, offering more flexibility

to the system [27][28]. Fog also provides life-cycle management of applications distributed over

the n-tier hierarchy, through the “Fog Service Orchestration Layer” [27].

Figure 1.3 shows a fog system with a three-tier architecture. It has three strata: The cloud

stratum, the fog stratum, and the IoT/end-users stratum. The fog stratum can be formed by one or

more fog domains, controlled by the same or different providers. Each of these fog domains is

formed by the fog nodes that can include edge routers, switches, gateways, access points, PCs,

smartphones, set-top boxes, etc. The communication between the IoT devices and the fog nodes is

Figure 1.3 The fog system

12

done through Local Area Network (LAN). Instead, the communication between the IoT devices

and the cloud nodes requires connection over the Wide Area Network (WAN), through the fog or

not.

1.4. Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 discusses the motivating scenario,

requirements, and provides a critical review of the state-of-the-art. We organize the thesis into

architectural contributions and algorithmic contributions. Accordingly, for the architectural

contribution, Chapter 3 presents a cloud-based architecture for cost-efficient IoT-based disaster

management application provisioning, Chapter 4 presents the proposed NFV-based centralized

architecture for IoT gateway, and Chapter 5 presents an NFV and SDN –based distributed

architecture for IoT gateway. For the algorithmic contributions, in Chapter 6 we present a coalition

formation algorithm for multi-robot task allocation and in Chapter 7 we discuss the application

component placement problem over hybrid cloud/fog NFVIs and present the proposed ILP model

and the heuristic for that. Finally, we conclude this manuscript in Chapter 8 and provide future

directions for this research work.

13

Chapter 2

2. Related Work

In this chapter, we first present a motivating scenario. Then, we present a set of requirements

derived from the scenario. Finally, we survey and review the related work in light of these

requirements.

2.1. Motivating Scenario

An earthquake early warning and recovery application can illustrate the motivation behind our

work. The application is considered that consists of two phases: an early warning phase and a

recovery phase. In the first phase, the application monitors the environmental conditions by

collecting environmental data such as the acceleration of physical objects, wind speed, etc. In the

second phase, the application monitors the affected areas and performs search and rescue tasks.

In the early warning phase, the monitoring of the disaster can be facilitated by the use of IoT

devices. Data can be acquired by real-time GPS sensors, accelerometer sensors hosted in homes,

business or schools [29]. In addition, the monitoring can be performed by using unmanned aerial

vehicles (UAV) such as drones. Drones have several benefits such as small size, exposure to

dangerous environments, and low cost of operation. Drones are usually equipped with camera

14

sensors which can capture images. The collected images are processed later to produce damage-

assessment maps to allow responders to service areas that experienced more damage first.

In the recovery phase, after the disaster occurs, emergency rescue teams are created

immediately, and troops are sent to assist the search and rescue operations. However, these teams

have a hard time reaching the quake site because of the lack of information about the quake sites

and blocked roads. To successfully complete this search and rescue operation is even beyond

human capacity when the scale of a disaster is too large. IoT devices can be an alternative. Robots,

for instance, have a wide range of capabilities. They could make a noticeable contribution in such

large-scale scenarios. Some can be equipped with sound sensors to detect voices or other sounds

of possible human presence through the ruins. They use specialized arms to sift through debris.

Others carry thermal sensors to detect body heat. Some robots with hexapod legs can walk over

the debris – where humans cannot – and pass a camera rod into the debris to assist in the search.

With these possibilities, they outdo their human counterparts in of crisis situations on site.

Moreover, drones can make finding the earthquake survivors faster and easier. They can fly and

capture images to identify possible human presence under the ruins and inform rescue agencies to

send first responders or rescue robots, or both in some cases.

This earthquake early warning and recovery application can be made up of several

components, such as:

 Early Warner and Analyzer (EW) – process data of environmental conditions such as

acceleration of the physical objects, images, seismic waves, etc., and accordingly detect

prospective disaster.

 Warning Alert Issuer (WA) – warns the community with smartphones of imminent hazard

(similar to Zizmos [30]), also it can be connected to television networks and broadcasting

media to alert the citizens (similar to Grillo [31]).

 Map Producer (MP) – processes the data relevant to the earthquake to determine the

earthquake epicenter location and direction of seismic waves and provides damage-assessment

maps allowing responders to service areas that experienced more damage first.

 Victim Detector (VD) – monitors the affected areas and detect locations of possible human

being presence under the ruins.

15

 Rescue Strategies (RS) – implements rescuing strategies according to the area size and

conditions and decides whether to send first responders (First Responders (FR)), rescue robots

(Robots Dispatcher (RD)), or both (Human-Robot Team (HR)) to assist in recovery

procedures.

 Historical Storage (HS) – collects historical information gathered about a particular seismic

event.

Some of these components can be very latency sensitive such as Early Warner & Analyzer and

Victim Detector, while others can be computationally intensive and delay tolerant such as

Historical Storage. The following interactions can happen between the different components:

1- The Early Warner & Analyzer analyses and processes the data received by different sensors

such as seismic sensors and camera sensors. For instance, it processes the images and the

seismic waves automatically and identifies events of interest, such as potential disasters.

2- The Early Warner & Analyzer also sends the selected data to Historical Storage for long-term

storage and analysis.

3- When the Early Warner & Analyzer detects a potential earthquake, it sends the information to

the Warning Alter Issuer to alert the public.

4- It also sends the information (images, seismic data) to the Map Producer to find the epicenter

location and produce assessment maps.

5- The produced maps are sent to Warning Alter Issuer so the latter can send it to different

departments (e.g., fire department, public transportation, etc.).

6- The produced maps are also sent to Historical Storage for further analyses.

7- The Map Producer sends the information of the earthquake to Victim Detector to find victims.

8- The Victim Detector monitors different areas to detect locations of possible human being

presence using camera sensors. When it finds victims, it sends the relevant images to the

Rescue Strategies.

9- The Rescue Strategies take an immediate life-saving decision and start the rescue mission. It

instructs either First Responders (FR), Robots Dispatcher (RD), or Human-Robot Team

(HR) to start the rescue operations.

Different IoT platforms have been designed for such large-scale disaster applications that

typically involve IoT devices in the order of thousands to accomplish a mission. These IoT devices

16

might belong to different business entities. They can be provisioned through several infrastructures

owned by different business entities. Each entity hosts IoT devices with different capabilities. In

addition, the earthquake early warning and recovery application may have its own constraints in

terms of communication protocols, data formats, etc. and the IoT devices may use different

communication protocols and data formats. Moreover, after an earthquake, there is an increasing

possibility of fire. For instance, the earthquakes in San Francisco in 1906, in Northridge in 1994,

in Kesennuma City in Miyagi, Japan in 2011 were followed by devastating fires that lasted for

several days. In such cases, a fire detection and fighting application might consider adding new

types of sensors with different capabilities, communication protocols, and/or data formats to the

infrastructure. These sensors allow the application to collect temperature, humidity, and CO2 data

in order to evaluate the contour and the intensity of any fire it detects and to dispatch firefighter

robots accordingly.

2.2. Requirements

According to the motivating scenario, the following requirements are derived. We categorize

the requirements into architectural requirements and algorithmic requirements.

2.2.1. Architectural Requirements

In this subsection, we divide the requirements into general architectural requirements,

requirements specific to the cloud-based architectures for IoT applications provisioning, and

requirements specific to the IoT gateway.

A) General Architectural Requirements

The following requirements are identified as general requirements on the architectures.

1) Elastic Scalability: the architecture should function well and be scalable in terms of the

number of IoT devices and number of applications. Accordingly, the system should scale down

and up in an elastic manner.

17

2) Extensible Architecture: the solution should take future growth into consideration;

extensibility can be through adding new architectural modules such as fault management which

may enhance the performance of the system, or through modification of existing modules. The

extensibility can also be through the support of future scenarios and new application domains.

3) Heterogeneity: the heterogeneity should be considered in terms of IoT devices. For instance,

because of the diversity of IoT devices’ vendors, one system may contain IoT devices

belonging to different providers with each having its own interface and programming language.

This means the overall solution should be applicable to a wide variety of heterogeneous IoT

devices.

4) Interoperability: the proposed architecture should have an appropriate signaling and control

interfaces, as well as appropriate data interfaces to enable interoperability at the level of

providers and architectural modules (e.g., between the IaaS and the PaaS, between the IoT

gateway and the application).

B) Requirements Specific to Cloud-based Architecture for IoT Applications Provisioning

The following requirements are considered to be important for cloud-based architecture for

IoT applications provisioning.

1) Network-level Virtualization: the architecture should support network-level virtualization for

the robots since we are dealing with dynamic environments. Also, some tasks that cannot be

solved individually or can be solved more efficiently as a group may need collaboration

between several robots.

2) Task Delegations: the architecture should be able to delegate tasks to robots that belong to

other infrastructures. This is very important in some cases, such as when the capabilities or the

number of the robots belonging to one infrastructure may not be sufficient for a given task

which may result in incompletion of a task or completing it in a non-efficient manner.

3) Publication/Discovery: the architecture should support the possibility to publish and discover

idle robots with their characteristics (static, dynamic, etc.). This should be speedy and ahead

of time if possible due to the dynamic nature of tasks.

18

C) Requirements Specific to IoT Gateway

The following requirements are considered to be important for designing IoT gateways.

1) Distributed: due to the ad-hoc nature of disaster scenarios where there is no centralized or

fixed infrastructure, the gateway should be deployed in a distributed manner.

2) On-the-fly Upgradability: the gateway should be upgraded on-the-fly when new IoT devices

are deployed. For instance, in case of fire, new sensors should be added to the infrastructure to

send data to the fire detection and fighting application. This leads to the need to upgrade the

gateway such that it can serve the newly added IoT devices.

3) Reusability: several applications should be able to use the same gateway. This may be required

when, for instance, the sensors used by the fire detection and fighting application use the same

protocol as the sensors used by the earthquake early warning and recovery application.

Standard Northbound and Proprietary Southbound Interface: the gateway should

support standard northbound and proprietary southbound interfaces. For the standard

northbound interface, an example could be the widely used Sensor Markup Language (SenML)

[32] carried over HTTP. It is designed to encode sensor measurements and device parameters,

and its extension could be used as a standard interface for robots. For instance, in [33], SenML

is extended as a unified robots description model while in [34] SenML capabilities is extended

to provide a uniform representation of sensors and robots and to control robots. On the other

hand, having a proprietary southbound interface is necessary since devices can be vendor lock-

in or because standard interfaces do not support the device’s functionality.

4) Provide Key Gateway Functionalities: the architecture should provide at least some key

gateway functions, such as protocol conversion, information model conversion, data

aggregation, and metadata adaptation.

5) Performance: the architecture must ensure that the execution of gateway modules achieves

performance similar to when they are executed in a traditional gateway. In particular, the

performance metrics that require significant attention are latency and overhead.

2.2.2. Algorithmic Requirements

For the algorithmic requirements, we consider that a given system will meet a given

requirement if the algorithm either has the requirement as the main objective or the requirement is

part of the set of constraints the algorithm should satisfy. Or, if the requirement is factored in the

19

models and operations of the algorithms. We further discuss these aspects as we present each

requirement.

A) General Algorithmic Requirements

The following requirements are identified as general requirements on the algorithms.

1) Heterogeneity: the heterogeneity should be taken into account in terms of IoT devices, fog

nodes, and cloud nodes. Algorithms need to take this heterogeneity into account. The

limitations of specific nodes need to be factored in the models and operations of the algorithms.

2) QoS: meeting the QoS requirements, such as delay, jitter, and throughput, is critical in disaster

management systems. This thesis focuses on the delay requirements of disaster management

applications. The algorithms should be able to minimize the time needed to perform the search

and rescue tasks of disaster management applications and the total application execution time.

3) Cost: the algorithm should be able to minimize the cost which is a budget for resources

consumption, including robot deployment cost, application component deployment cost,

cloud/fog nodes cost, and bandwidth cost.

B) Requirements Specific to Coalition Formation of Robots

We defined the following requirements for coalition formation algorithms for robots.

1) Resource Optimization: the algorithm should be able to minimize the number of robots in a

coalition performing a search and rescue task/sub-tasks in order to make robots available for

other tasks/sub-tasks of the disaster management application.

2) Capability Distribution of Robots: some tasks can be tied by locational constraints regarding

the capability distribution of the robots, while others may be executed without any locational

constraints. For instance, a combination of sensors and actuators should reside on the same

robot, or on different robots. The algorithm should ensure this in order for the proper execution

of the search and rescue tasks/sub-tasks.

C) Requirements Specific to Application Component Placement over Hybrid Cloud/Fog

The following requirements are considered to be important for designing efficient application

component placement algorithms. They should be factored in the model and operations of the

algorithm.

20

1) Non-deterministic Applications Graphs: the algorithm should consider non-deterministic

application graphs, with sub-structures as selections and loops, when making the placement

decision.

2) Mobility: fog nodes can be mobile. Accordingly, the algorithm should be able to handle this

mobility. An efficient algorithm should consider such mobility during the placement decision

to avoid high cost or a long makespan as a result of assuming stationary nodes with predefined

locations.

2.3. Related Work

In this section, first, the architectural related works are reviewed, then the algorithmic related

works are reviewed.

2.3.1. Architectural Related Works

This subsection first, presents the related work for cloud-based architectures for IoT

applications provisioning, and then, review the architectures for IoT gateways.

A) Cloud-based Architectures for IoT Applications Provisioning

We review the related work in this subsection of two areas. First, we discuss the use of robots

in large-scale disasters. Second, we review architectures for robotic applications in the clouds.

1) Robots in Large-Scale Disasters

Kitano et al. [3] present a detailed analysis of search and rescue domains in large-scale

disasters. They identify several research issues in search and rescue strategy, such as real-time

planning and multi-agent planning, which may involve over 10,000 agents including humans and

robots. As their main focus, they analyze the large-scale search and rescue domain and introduce

the RoboCup-Rescue Simulation project. Among others who approach this topic, Messina et al.

[35] propose a robot ontology for search and rescue domains. Chatterjee et al. [36] identify the

needs for and benefits of developing a standard description and ontologies for rescue robot features

and disaster scenarios. However, ontologies add overhead in developing and maintaining new

components.

21

2) Robotic Applications in Cloud

In [25], the authors propose an architecture for robotic applications as cloud computing

services. The proposed architecture provides support for heterogeneous robots and delegates tasks

to robots belonging to other IaaSs. However, it does not perform network-level virtualization;

neither does it consider large-scale disaster applications. Chen et al. in [37] propose an architecture

that decouples robots’ sensing and actuating capabilities to offer them as SOAP-based services.

However, they provide a solution for one robot they designed; yet, supporting heterogeneous

robots is not addressed. Du et al. [38] have improved the architecture presented in [37] by adding

support for network-level virtualization. However, a mechanism to delegate tasks to robots

belonging to other clouds is another important characteristic to take into account. Turnbull et al.

[39] propose a cloud infrastructure for robots. Their robotic cloud receives images from a vision

acquisition and performs some computation, and finally implements an algorithm to control the

robot behavior. However, they do not consider heterogeneous robots as their solution applies only

to one type of robot hardware (i.e., iRobot). In [40], Liu et al. present a cloud-enabled robotics

system where robots offload their computationally intensive tasks to the cloud. Robot Operating

System (ROS), a robotic middleware to develop robot software, is used as the robot platform.

However, the authors do not discuss how to discover and publish robots.

In [41], the authors propose a Robot as-a-Service platform that provides easy access to

heterogeneous robots. The proposed design consists of an OCCI extension that models cloud

robotics as-a-Service. It also includes a gateway for hosting mobile robot resources. The proposed

platform allows users to have a unified view of all robots. However, architectural modules that

perform network-level virtualization are not discussed. Mohanarajah et al. in [42], the authors

propose Rapyuta, an open source PaaS framework for robotic applications. Rapyuta computing

environment allows robots to easily access the RobotEarth knowledge repository. The latter

enables robots to benefit from the experience of other robots. Rapyuta allows robots to offload

heavy computation to the cloud. It dynamically provides secure computing environments for the

robots. These computing environments are tightly interconnected, allowing robots to share their

services and information with other robots. However, creating teams of robots or coalitions is not

discussed.

22

B) Architectures for IoT Gateway

In this subsection, we review the state-of-the-art for both traditional architectures for IoT

gateways and NFV/SDN-based architectures.

1) Traditional Architectures for IoT Gateways

Several works have proposed IoT gateway architecture. Some designed their architecture

without considering the use of NFV/SDN technology. For instance, Datta et al. [43] propose a

smart M2M gateway architecture to manage the huge volume of M2M devices and endpoints.

They extended the capabilities of CoRE Link to add additional resource types for SenML units. In

[44], an architecture for an in-home IoT gateway is proposed. It consists of three subsystems:

sensor node, gateway, and application platform. The architecture does not support standard or

proprietary interfaces. A configurable, multifunctional and cost-effective architecture for smart

IoT gateways is proposed in [45]. It is extensible since modules with different communication

protocols can be plugged into the architecture. It also provides protocol conversion by granting a

common frame structure for data communication. However, scalability in terms of the number of

applications is not discussed. In addition, these gateways cannot be upgraded on-the-fly when

introducing new types of IoT devices or new applications.

2) NFV and/or SDN-based IoT Gateway Architectures

Other works have investigated using NFV and/or SDN technology when designing IoT

gateways. For instance, Li et al. [46] propose an IoT architecture based on SDN. Their proposed

gateway allows introducing new applications through open programmable interfaces. It supports

standard data formats using JSON and provides protocol conversion functionality as one of the

gateway’s key functionalities. However, the proposed gateway cannot be deployed over a

MANET, as it does not have a distributed nature. In addition, it does not enable the same gateway

to be used by more than one application. Ojo et al. [47] propose an SDN-IoT architecture coupled

with NFV. Their goal is to address the scalability and the mobility issues in IoT networks. They

replace traditional gateways with SDN gateways and implement the functionalities of the gateways

as VNFs. The VNFs are SDN-enabled. This work supports heterogeneous IoT devices and

provides key gateway functions. Also, the programmability feature of SDN allows the gateway to

be updated dynamically. However, a drawback of is that the proposed architecture cannot be

deployed over ad-hoc networks since it does not have a distributed architecture.

23

Table 2.1 Architectural related work evaluation

Salman et al. [48] propose a global IoT architecture leveraged with SDN. The proposed

architecture inherits management and programmability capabilities from SDN and mobility

capabilities from the fog. The gateways in the proposed architecture are SDF gateways that ensure

interoperability between different communication protocols and heterogeneous networks, thereby

providing key gateway functions. Their architecture also supports a standard northbound interface

i.e., REST, and its programmability feature allows dynamically updating the gateway. However,

the SDF-gateway does not have a distributed architecture, and so it cannot be deployed over an

IoT MANET.

Requirements

Related

Works

Architectural Requirements

General Architectural

Requirements

Requirements for

Cloud-based

Architectures

Requirements for

IoT Gateway

E
la

st
ic

 S
ca

la
b

il
it

y

E
x

te
n

si
b

il
it

y

H
et

er
o

g
en

ei
ty

In
te

ro
p

er
a

b
il

it
y

N
et

w
o

rk
-l

ev
el

V
ir

tu
a

li
za

ti
o

n

T
a

sk
 D

el
eg

a
ti

o
n

P
u

b
li

ca
ti

o
n

/D
is

co
v

er
y

D
is

tr
ib

u
te

d

U
p

g
ra

d
a

b
il

it
y

R
eu

sa
b

il
it

y

S
ta

n
d

a
rd

 N
B

 a
n

d

P
ro

p
ri

et
a

ry
 S

B

In
te

rf
a

ce
s

K
ey

 G
a

te
w

a
y

F
u

n
ct

io
n

a
li

ti
es

P
er

fo
rm

a
n

ce

C
lo

u
d

-b
a

se
d

 A
rc

h
it

ec
tu

re
 f

o
r

Io
T

A
p

p
li

ca
ti

o
n

s

Mouradian et al. [25] x ✓ ✓ ✓ x ✓ x

Chen et al. [37] x ✓ x ✓ x x ✓

Du et al. [38] x ✓ ✓ ✓ ✓ x ✓

Turnbull et al. [39] x x x x x x x

Liu et al. [40] x ✓ x ✓ x x x

Merle et al. [41] x ✓ ✓ ✓ x x x

Mohanarajah et al. [42] x ✓ ✓ ✓ x x ✓

A
rc

h
it

ec
tu

re
s

fo
r

Io
T

 G
a

te
w

a
y

T
ra

d
it

io
n

a
l

Io
T

 G
a

te
w

a
y

s Datta et al. [43] x ✓ ✓ ✓

x x x ✓ ✓ N/A

Zhu et al. [44] x ✓ ✓ x x x x x ✓ N/A

Guoqiang et al. [45] x ✓ ✓ x x x x x ✓ N/A

N
F

V
 a

n
d

/o
r

S
D

N
-b

a
se

d
 I

o
T

G
a

te
w

a
y

s

Li et al. [46] x ✓ ✓ ✓ x ✓ x ✓ ✓ x

Ojo et al. [47] ✓ ✓ ✓ x x ✓ x ✓ ✓ x

Salman et al. [48] x ✓ ✓ x x ✓ x ✓ ✓ x

24

2.3.2. Algorithmic Related Works

This subsection first, presents the related work for coalition formation algorithms for robots

and then, review the algorithms proposed for application components placement over hybrid

cloud/fog NFVIs.

A) Coalition Formation Algorithms for Robots

Liu and Chen [49] propose an algorithm based on Genetic Algorithm (GA) to form the best

coalition of robots. Authors in [50] propose a modified version of Shehory and Kraus’s algorithm.

The major drawback of these works is that they optimize only one objective that is the overall

utility and the coalition value respectively. However, there are other important objectives that need

to be optimized, such as the time needed by robots to perform a given task. Agarwal et al. [51]

propose an algorithm to form coalitions of robots for a set of tasks. The proposed algorithm tries

to maximize the number of tasks completed and the system efficiency. Two multi-objective

evolutionary optimization algorithms are introduced to solve this problem: A Non-Dominated

Sorting Genetic Algorithm (NSGA-II) and a Strength Pareto Evolutionary Algorithm (SPEA-II).

Unfortunately, factors such as the minimizing the number of robots in a coalition is not considered.

Service et al. [52] propose a simultaneous descending auction-based approach to the task

allocation that allows task preemption and does not exhibit any unnecessary task reassignment.

However, their proposed algorithm does not take the capability distribution of the robots into

consideration.

In [53], authors assign Unmanned Aerial Vehicles (UAVs) to search and prosecute missions.

Their objective is to minimize the coalition size and accomplish the tasks in minimum time.

However, the cost of UAV deployment is not considered. In [54], authors propose an ant-colony

based algorithm. They consider fix number of robots for each task. However, it is not efficient to

fix the number of robots required for each task since robots have different capabilities and different

capability distribution. Authors in [55], propose an algorithm based on dynamic ANT coalition

technique. Minimizing the number of robots in a coalition is not considered. In [56], Rauniyar and

Muhuri modify the standard GA. They proposed an adaptive Random Immigrants Genetic

Algorithm (aRIGA) and adaptive Elitism-based Immigrants Genetic Algorithm (aEIGA).

However, they do not consider minimizing the time needed to perform a task.

25

B) Application Component Placement over Hybrid Cloud/Fog NFVI

In this subsection, we review the relevant literature on application component placement over

hybrid cloud/fog NFVIs. In the first subsection, we review the proposed solutions for application

component placement in hybrid cloud/fog systems where these components are not placed as

VNFs. We then review the works to date on VNF-FG embedding that do not focus on hybrid

cloud/fog systems. To the best of our knowledge, our works (i.e., [14] and [15]) are the only one

that investigates the placement of application components as VNFs in hybrid cloud/fog NFVIs.

1) Application Component Placement in Hybrid Cloud/Fog Systems

Most of the proposed solutions for application component placement over hybrid cloud/fog

systems consider stationary fog nodes, such as IP video cameras, access points, roadside units, etc.

Few works have considered the mobility of fog nodes, such as their being located in a moving

vehicle. In this subsection, we first review the proposed solutions that consider stationary fog

nodes, and then we describe the proposed mechanisms that consider the mobility of the fog nodes.

a. Application Component Placement Considering Stationary Fog Nodes

Several different objectives have been considered in the literature for application component

placement over cloud/fog infrastructures. Mahmud et al. [57] consider placing application

components over cloud and fog nodes such that the user’s Quality of Experience (QoE) is

maximized. In contrast, Deng et al. [58] doing so with the objective of minimizing the power

consumption of cloud and fog nodes while taking additional system constraints into consideration,

such as the delay at the user’s side. Many authors seek to minimize the application response time.

Yin et al. [59] schedule the tasks over the cloud and the fog infrastructures with the objective of

reducing the response time of the tasks under a specified threshold. Similarly, Pham et al. [60]

schedule the tasks over the cloud/fog system. They aim at minimizing the execution time of a

workflow consisting of several interacting tasks. In addition, they minimize the monetary cost of

the rented cloud resources. However, they do not consider non-deterministic workflows.

Other objectives have been considered besides optimizing the response time. Agarwal et al. in

[61] propose an algorithm that distributes the workload over the hybrid cloud/fog system while

considering the throughput maximization and the response time minimization. Taneja et al. in [62]

propose an algorithm for dynamically distributing application components across cloud/fog

infrastructures so that the resources are utilized in an efficient manner and the application response

26

time is minimized. In [63], Skarlat et al. model the problem as an ILP and solve it using CPLEX

solver. Their goal is to optimize the utilization of fog nodes while satisfying the application QoS

in terms of execution time. Authors in [64] and [65] tackle the problem from the perspectives of

mobile devices. Hassan et al. [64] propose the offloading of application tasks from mobile devices

to cloud and fog nodes with the goal of minimizing the application execution time. Similarly,

Bittencourt et al. in [65] schedule the workload offloaded by mobile users over cloud and fog

infrastructures. They present different scheduling strategies to cope with applications with

different objectives, such as a delay-priority strategy that prioritizes latency-sensitive applications.

Although these solutions address the problem of application component placement in hybrid

cloud/fog systems, they only consider stationary fog nodes with predefined locations. This

assumption makes their approach nonfunctional when the system includes mobile fog nodes such

as vehicles, UAVs, personal cell-phone devices, or nomadic data centers [66].

b. Application Component Placement Considering Mobile Fog Nodes

Very few works have considered the mobility of fog nodes when placing application

components over the cloud/fog system. Zhu et al. propose an algorithm to dynamically distribute

the application tasks across stationary fog nodes (e.g., roadside units), mobile fog nodes (e.g.,

busses), and the cloud [67]. They model the problem as a Mixed Integer Linear Programming

(MILP) problem with the objective of finding a balance between the application latency and

quality loss. The proposed algorithm places individual tasks on cloud/fog nodes; however, in many

real-world applications, there are interactions among an application’s tasks that require an

appropriate component placement mechanism. The authors in [68] propose a computation

offloading mechanism for mobile devices by using reinforcement learning. The tasks are offloaded

to mobile fog nodes and to cloud nodes such that the service response time and the energy

consumption of mobile devices are minimized. The proposed mechanism handles the mobility of

the fog nodes by migrating an offloaded task from one mobile fog node to another whenever

needed; however, it does not perform mobility aware offloading.

2) VNF-FGs embedding

The problem of VNF-FGs embedding in NFV and cloud networks has been studied widely

over the last few years. Various objectives have been considered, such as efficient infrastructure

utilization [69][70], operational cost minimization [71], VNF instances minimization, [72][11],

27

and provider revenue maximization [73][74]. In the following, we explain the solution approaches

these works have used.

Moens et al. in [69] model the problem of placing a batch of VNF-FGs using ILP, which

minimizes the infrastructure utilization. Fang et al. propose an ILP and a heuristic to solve the

VNF-FG placement problem. They consider a balanced utilization of the spectrum of fiber links

and infrastructure resources [70]. Embedding VNF-FGs using a minimum number of VNF

instances whilst meeting the end-to-end delay requirement was studied by Luizelli et al. [72].

Ghaznavi et al. solve the VNF placement problem with the objective of minimizing the operational

cost of VNF placement while maintaining the QoS [71].

 The authors in [73] and [74] maximize the provider’s revenue. Sun et al. in [73] solve the

problem by proposing online and offline methods. In the offline method, all requests are known in

advance. The online method uses a prediction of future VNFs and their requirements. Mechtri et

al. model the VNF-FG embedding problem as a weighted graph matching problem and propose

an eigen-decomposition-based approach to solve it [74]. These works are not directly applicable

when fog resources are also involved since they implicitly assume that all resources are provided

by the cloud. Indeed, using the fog brings two challenges to the problem. 1) The fog nodes’

existence in the problem introduces a new type of heterogeneity compared to cloud resources; they

have limited resources but provide faster response time. An appropriate allocation mechanism is

required to exploit such resources. 2) Similar to what has been discussed about component

placement approaches, the fog resources can be mobile [75]. An efficient placement should

consider such mobility to avoid high cost or a long makespan as a result of assuming stationary

nodes with predefined locations.

2.4. Conclusion

In this chapter, we first presented a motivating scenario, from which we derived a set of

architectural and algorithmic requirements. After that, we surveyed the related work. Table 2.1

and Table 2.2 provide a summary of the reviewed architectural and algorithmic papers,

respectively. For each paper, we show the requirements which are met and the ones which are not

met. As it can be seen, none of the reviewed works satisfy all our requirements.

28

Table 2.2 Algorithmic related work evaluation

Requirements

Related

Works

Algorithmic Requirements

General

Algorithmic

Requirements

Requirements

for Coalition

Formation

Requirements

for Application

Components

Placement

H
et

er
o

g
en

ei
ty

Q
o

S

C
o

st

R
es

o
u

rc
e

O
p

ti
m

iz
a

ti
o

n

C
a

p
a

b
il

it
y

D
is

tr
ib

u
ti

o
n

N
o

n
-d

et
er

m
in

is
ti

c

A
p

p
li

ca
ti

o
n

s

M
o

b
il

it
y

C
o

a
li

ti
o

n
 F

o
rm

a
ti

o
n

A
lg

o
ri

th
m

s
fo

r
R

o
b

o
ts

Liu and Chen [49] ✓ x ✓ ✓ x

Vig. And Adams [50] ✓ x x ✓ ✓

Agarwal et al. [51] ✓ x ✓ x x

Service et al. [52] ✓ x x x x

Manathara et al. [53] ✓ ✓ x ✓ x

Qian and Cheng [54] x x x x x

P.M and G. R. Suresh [55] ✓ ✓ ✓ x x

Rauniyar and Muhuri [56] ✓ x x x x

A
p

p
li

ca
ti

o
n

 C
o
m

p
o

n
en

ts
 P

la
ce

m
en

t

C
o

m
p

o
n

en
ts

 P
la

ce
m

en
t

o
v

er
 H

y
b

ri
d

C
lo

u
d

/F
o

g

Mahmud et al. [57] ✓ ✓ ✓

x x

Deng et al. [58] ✓ ✓ x x x

Yin et al. [59] ✓ ✓ x x x

Pham et al. [60] ✓ ✓ ✓ x x

Agarwal et al. [61] ✓ ✓ x x x

Taneja et al. in [62] ✓ ✓ x x x

Skarlat et al. [63] ✓ ✓ x x x

Hassan et al. [64] ✓ ✓ x x x

Bittencourt et al. [65] ✓ ✓ x x x

Zhu et al. [67] ✓ ✓ x x ✓

Alam et al. [68] ✓ ✓ x x ✓

V
N

F
-F

G
 E

m
b

ed
d

in
g
 Moens et al. in [69] x x x x x

Fang et al. [70] x x x x x

Ghaznavi et al. [71] x ✓ ✓ x x

Luizelli et al. [72] x ✓ ✓ x x

Sun et al. in [73] x ✓ ✓ x x

Mechtri et al. [74] x x ✓ x x

29

Chapter 3

3. Cloud-based Architecture for IoT

Applications Provisioning

3.1. Introduction

Recently, different robot platforms have been designed for large-scale disaster management

applications that typically involve robots in the order of thousands to accomplish a search and rescue

mission. However, the cost-efficient provisioning of these applications remains a big challenge, as

robots’ resources are still seldom used in an efficient manner. Cloud computing can tackle this

challenge. Virtualization is a key enabling technology for cloud computing, allowing the abstraction

of actual physical computing resources into logical units and enabling their efficient usage by multiple

independent users. Virtualization can be performed at both node and network levels. Robot node-level

virtualization is defined as the mechanisms that enable multiple applications to reside in and run

concurrently on a single robot [25]. And, robot network-level virtualization is the dynamic formation

of subsets of robot nodes, with each subset dedicated to a certain application at a given time [25]. The

virtualization in the IaaS is achieved by providing a coalition formation algorithm for Multi-Robot

Task Allocation (MRTA) problems. The proposed algorithm is described in Chapter 4.

30

This chapter focuses on large-scale robotic applications as cloud computing services. It

proposes an architecture that enables cost-efficient robotic applications provisioning for search and

rescue tasks in large-scale disasters management applications with a focus on the IaaS aspects. The

proposed architecture incorporates task delegation and network-level virtualization. Task delegation

has a remarkable role because a single infrastructure may not provide all the capabilities, and/or the

number of robots required to perform a task, and there may be need to use several infrastructures. The

Publication and Discovery Engines are key modules of the architecture. They are based on presence

technology. They allow different IaaSs to subscribe to the presence information of the robots which

is defined as the state of the robots (idle/busy). In order to publish and discover heterogeneous robots,

they need to be described. To that end, a well-defined robot description language based on existing

standards is proposed. The description language extends SenML. SenML1 an IETF standard [32],

is a Sensor Markup Language that defines media types for representing simple sensor measurements

and device parameters. The proposed architecture is implemented as a proof of concepts in order to

evaluate its viability and performance level.

The rest of this chapter is organized as follows, we first introduce the overall system architecture

including the business model, architectural principles, and architectural modules along with the

interfaces and procedures. We then present a well-defined language for robot capabilities’ description

based on existing standards. After that, we describe the Publication and Discovery Engines. Next, we

present the performance evaluation and finally, in the last subsection, we conclude this chapter.

3.2. Overall Architecture for IaaS for Robots

In this subsection, the business model is first introduced, and then the architectural principles

are presented. After that, a detailed description of the architectural planes, including the related

architectural modules, interfaces, and procedures is discussed.

1 tools.ietf.org/html/draft-ietf-core-senml-09/

31

3.2.1. Business Model

The related business model uses and extends the pay-as-you-go cloud model. The robots are

provisioned as-a-Service. The specific actors and their relations are schematized in Figure 3.1.

Physical Robots Providers represent the concrete pool of the heterogeneous physical robots. The

IoT Gateway Provider provides the required communication gateways to interact with the robots

(Figure 3.1, action 1). The virtualization of the robots is performed by the IaaS for Robots

Providers (action 2). These providers publish their supported robots services in a common Robots

Services Marketplace (action 3). The marketplace lists and indexes all the available robots for

prospective use.

The Disaster Management Applications are provisioned as SaaS over the several PaaSs (action

4). PaaSs interact with the underlying IaaSs to settle the required runtimes for hosting and

executing these applications. They allocate the necessary robots’ services from the IaaS for Robots

Providers and bound them to the applications (action 5). If the required robot service is not

supported by the local IaaS for Robots Providers, the latter requests the Robots Services

Marketplace (action 6) to get it from another IaaS for Robots Providers and deliver it to PaaS

(action 7).

3.2.2. Architectural Principles

The proposed architecture does not cover PaaS although the IaaS interacts with the PaaS to

receive a task request from it. We define two principles for our design:

1- The proposed architecture is publication and discovery technology agnostic, in order to cater

for possible future technologies.

Figure 3.1 The proposed business model

32

2- The interaction interfaces of IaaS, between different layers of IaaS, Publication/Discovery

Engines interfaces are REpresentational State Transfer (REST)-based. REST is selected

because it is lightweight, standard-based, and can support multiple data representations

(e.g., plain text, JSON, and XML).

3.2.3. Proposed Architecture for IaaS for Robots

A) Architectural Modules

The proposed IaaS for Robots architecture is shown in Figure 3.2. It consists of Resources

Plane, Control Plane, and Signaling Plane.

1) The Resources Plane

The Resources Plane includes two layers: The Physical Robots Layer and the Node-level

Virtualization Layer. The Physical Resources Layer involves the supported robots. It includes the

physical heterogeneous robots with their various capabilities and characteristics. The Node-level

Virtualization Layer contains the pool of the virtualized robots.

2) The Signaling Plane

The Signaling Plane contains a set of communication gateways called Robot Gateways. These

gateways allow of hiding the heterogeneity and specificities of the robots in terms of user APIs,

Figure 3.2 The proposed IaaS for robots architecture

33

communication protocols, and so on. Their role is to map between the Network-level Virtualization

Layer (in the Control Plane) requests and the proprietary robots’ APIs. It receives the task

assignment request from the Network-level Virtualization Layer by standard interfaces and sends

the request to robots, based on the interface supported by the desired robot. The gateways are

(un)instantiated on-demand in accordance with the evolution of the applications’ workload and the

used robots. Their design is based on our work in Chapter 4 and 5 (i.e., [8] [9] [10]).

3) The Control Plane

The Control Plane includes the Network-level Virtualization Layer. It has the following modules:

 The IaaS O&M Manager: responsible for adding the supported robots to the IaaS or removing

them from it. For instance, when a new robot service is added, this module parses the robot

metadata (e.g., communication protocol, list of capabilities) and generates a descriptor based on a

well-defined model.

 Publication Engine: stores locally the robots service descriptor and publishes it to different IaaSs

through the remote marketplace.

 Discovery Engine: discovers robots services in local and different IaaSs. It runs on the local

repository to get the local services descriptors and on the remote marketplace to get the available

robots services descriptors from the remote marketplace.

 Request Handler: responsible for analyzing the upcoming requests from PaaS and providing a set

of inputs, such as task requirements and constraints to the Virtualization Engine.

 Virtualization Engine: performs the network-level virtualization of the robots’ capabilities. This

is done by running an appropriate algorithm for coalition formation in multi-robot systems. The

algorithm is designed and implemented as part of our work (i.e., [7], described in Chapter 6). It

runs the algorithm on both local robots and those belonging to other IaaSs.

 Task Delegator: sends task assignment requests to local robots and to robots in other IaaSs. It may

also receive task assignment requests from other IaaSs whenever needed.

 Robot Monitor: responsible for monitoring the robots in the Physical Resources layer. A robot

basically sends a notification to this module when it finishes its sub-task or fails. Accordingly,

the robots’ availability is updated in the local Robots Repository and in the external Robots

Services Marketplace.

34

B) Interfaces

All the interfaces are designed according to the REST principle [76]. They all expose CRUD

(i.e., Create, Read, Update, and Delete) operations.

 The Virtual Robots Management Interface is a management interface that allows

administrators to add/remove robots to IaaS. It also allows an IaaS to delegate tasks to robots

in other IaaSs.

 The Publication Interface allows IaaS to (un)publish its robots in the remote marketplace. Its

detailed description is provided in Section 3.2.5 (B).

 The Virtual Robots Operating Interface exposes to the PaaS control operations to request

robots’ services from IaaS.

Finally, the proposed IaaS for robots reuses and adapts the regular control and signaling IaaS

interfaces. The interface between the Network- and the Node- level Virtualization Layers is one

example. Robot Monitor and Task Delegator modules interact with the local robot through this

interface. For instance, the resources in the Node-level Virtualization layer side are used to reserve

Table 3.1 Static characteristics representation using extended SenML

S
ta

ti
c

C
h

a
ra

ct
er

is
ti

c
s SenML JSON Type

Physical Char. ph Array

Sensors sen Array

Actuators act Array

Personal Info. info Array

S
en

so
rs

 SenML JSON Type e.g.

Sensor Name sname string Camera, microphone

Sensing Value Range sval string (min, max)

Sensing Unit su string Hz for microphone

Figure 3.3 Extended SenML for unified robots description model

35

robot resources when adding new robots, when creating a group of robots, and when sending a task

to a specific robot or group of robots, or to modify the resources for an ongoing task.

C) Procedures

This section discusses four main functional procedures: Idle Robot Discovery, Selecting Robots for

a Given Task, Task Assignment for the Selected Robots, and Notification of Finished Task. Idle Robot

Discovery is used by a Publication and Discovery Engines to publish and discover robots along with

their characteristics. Selecting Robots for a Given Task is performed by the Virtualization Engine,

which runs a coalition formation algorithm for multi-robot systems. The Task Assignment for the

Selected Robots is the procedure of assigning tasks to the selected robots. Notification of Finished

Task, is sent by the robots when they finish their task.

3.2.4. Standard Description of Robots

The considered physical robots are developed with different platforms. More importantly, they

have different capabilities, sizes, and shapes. Applications should be able to deal with robots’

heterogeneity. To allow this, there is a need for a standard and well-defined description of robots to

publish and discover robots with different characteristics and capabilities. Accordingly, a common

model that unifies the robotic characteristics description is designed. The relevant literature

considers developing ontologies for the standard description of heterogeneous resources (e.g., [35]

for the specific case of robots). Although the semantics enable powerful and faithful modeling, its

overhead in terms of processing and developing and maintaining new components is important. In our

approach, we extend SenML to describe these robots. It is lightweight and can be parsed efficiently,

which makes it more suitable for the robots’ description.

The unified description model is implemented in the IaaS O&M Manager. It is this module

that generates the robots’ descriptor to be stored in the local Robots Repository and in the remote

Robots Service Marketplace. We try to cover most of the characteristics of robots. We categorize

robots’ characteristics into static, behavioral, dynamic, and interaction characteristics. Each

characteristic includes a list of properties and each property may include one or several attributes.

Figure 3.3 shows the scheme of this model, with some examples of attributes for each property.

Table 3.1, for instance, details the properties of Static characteristic and its Sensor attribute.

36

3.2.5. Publication/Discovery Engine

The publication/discovery mechanisms are based on the presence technology [77]. The

presence service is chosen as it allows the discovery to be speedy and ahead of time. It allows each

IaaS to publish its local robots whenever they change their state. This guarantees that the relevant

robots are already discovered when IaaS receives a new search and rescue task. In the proposed

architecture, the presence server is provided by a third-party tier (i.e., the Robots Services

Marketplace). The Publication and Discovery Engines, as part of IaaS, are the clients that interact

with the presence server.

A) Architectural Modules

Figure 3.3 shows a presence-based architecture for publication and discovery. The Presentity

Figure 3.4 Presence technology-based architecture for Publication/Discovery

Table 3.2 Examples of the API operations on the publication interface

REST

Resource

Operation HTTP Action and

Resource URI

R
o

b
o

t
P

re
se

n
ce

 I
n

fo
rm

at
io

n

Create: PUBLISH presence information for
newly added robots to the IaaS (joining
publication)

POST: /robots

Update: re-PUBLISH presence information
of a robot, update an already created
resource. (state change publication)

PUT:/robots/{robotid}

Read: SUBSCRIBE for presence
information of a robot

POST:/robots/{robotid}?f
romuri={subscriberuri}

Read: SUBSCRIBE to a list of robots POST:/robots?fromuri={s
ubscriberuri}

Delete: un-SUBSCRIBE from presence
info of a robot

DELETE:/robots/{robotid
}/{subscribeid}

Delete: un-SUBSCRIBE from presence
info of list of robots

DELETE:/robots/{subscri
beid}

37

represents a robot. It is the source of the presence information to be stored and distributed by the

presence server. The Watcher represents the Discovery Engine. It subscribes to a Presentity (i.e.,

robot) to receive its presence information along with its characteristics from the Presence Server. The

Publisher represents the Publication Engine. It publishes the robots’ presence information along with

their characteristics on behalf of the robots in the Presence Server. It uses the SenML-based descriptors

stored in the Robots Repository. This design allows each IaaS to publish its local robots whenever they

change their state.

B) Interfaces

The Publication Interface is defined as a REST interface. We re-use the interfaces defined in

[78] and modify them according to our architecture. Table 3.2 details the list of the Publication

Interface operations. These operations allow the Publication Engine to publish and update the

presence information of its robots and allow the Discovery Engine to (un)subscribe to the presence

information of robots or list of robots belonging to other IaaSs.

C) Procedures

We define the following procedures: Subscription, Joining Publication, State Change Publication,

and Notification of State Change. In Subscription, each IaaS through its Discovery Engine (i.e., the

Watcher) subscribes to the presence information of the robots (i.e., the Presentity) belonging to other

IaaSs in order to receive notification when a robot changes its presence information. The Joining

Publication is the procedure for robots to publish their presence with all their characteristics (static,

behavioral, etc.) to the Presence Server when they are first purchased and joined an IaaS. In the State

Change Publication procedure, when robots change their states, they publish their presence to the

Presence Server along with only their dynamic characteristics. The last procedure is the Notification

of State Change, where the Presence Server notifies the current presence state of the requested

Presentity to the Watcher. Figure 3.5 represents an end to end scenario, where both overall architecture

procedures and presence service procedures are demonstrated.

3.3. Performance Evaluation

This section discusses the performance evaluation performed to validate our proposed architecture.

We first discuss the implementation alternatives. Then, we describe the prototype and the setup related

to our experimentations. After that, we describe the evaluation of the architecture along with the metrics

and the obtained measurements.

38

3.3.1. Implementation Alternatives

During or after a disaster, the telecommunication infrastructure is most likely to crash because of

physical destruction or congestion of the network components [79]. This could block out the system

and therefore, prevents the dispatching of the robots. In order to maintain the communication between

the application deployed in the PaaS and the robots, a potential solution is to diversify the routing path.

Such as establishing several network connections between PaaS and IaaS, using either different type

of technologies or following different redundant physical paths. The US Department of Information

Technology and Telecommunications has recommended developing ducts in order to expand route

diversity [80]. Another alternative is to route the communication over ad-hoc networks. These

networks can be provided by the tactical radio networks of civilian or military responders. Such as the

tactical communication system proposed by CISCO for disaster situations [81] and the emergency

communication system based on Software Defined Radio (SDR) network [82][83]. The robots can be

deployed using a helicopter such as T-Rex miniature helicopter used by CARSAR to deploy unmanned

Figure 3.5 Illustrative sequence diagram for end to end scenario

39

aerial systems to the areas affected by Hurricane Katrina [84].

We assume that the request sent by the PaaS to the IaaS can be done via the Internet if the Internet

access is still available. Otherwise, the request is sent through ad-hoc networks. For the ad-hoc network

creation, several approaches have been proposed in the relevant literature. Such as by using

communication tags proposed by Miyama et al. [85], or by establishing a Base Station (BS) within a

safety zone around the disaster area proposed by Sugiyama et al. in [86]. The presence technology

ensures that, when an IaaS receives a request, it does not need to communicate with other

infrastructures to get their robots information. It ensures that the IaaS has the latest information about

robots. However, since the communication path may be destroyed between all or some of the IaaSs,

the remote Robots Services Marketplace may not receive the Notification of State Change for all

robots, hence it may not have the latest information regarding the robots. This can be solved by

integrating data replication strategies such as those used for fault tolerance systems [87] [88].

3.3.2. Proof of Concept Prototype

The prototype implements a firefighting task of the fire detection and fighting application

explained in the motivating scenario in Chapter 2. Earthquakes are often followed by fire with

devastating consequences especially in townscape environments (e.g., Kesennuma City in Miyagi,

Japan, 2011). The prototype architecture is depicted in Figure 3.6. In the Physical Robots Domain,

the considered robots are LEGO Mindstorms NXT2. Two types of robots are used: one with arms

2 lego.com/en-us/Mindstorms/

Figure 3.6 Prototype architecture

40

and a movement motor and another with light sensors, kicking arms, and a movement motor. They

carry plastic balls as water extinguishers. In the IaaS Domain, four distinct infrastructures are

implemented. The inter-domain architectural modules of IaaS (e.g., Request Handler, Task

Delegator) are implemented as RESTful Web services using Java Restlet framework. The rest of

the modules (e.g., Virtualization Engine) are developed as regular Java tools. The local Robots

Repositories are simple OS folders that store the SenML-based descriptors of the supported robots’

services. In the Gateways Domain, an appropriate Robot Gateway is settled to map between the

IaaS HTTP Java REST and LeJOS NXJ Java API commands that implement the Lego

Communication Protocol (LCP). The Robots Services Marketplace Domain provides the presence

server. It is implemented as RESTful Web Service using Restlet framework. It also includes a

storage folder of the SenML descriptors of the published robots’ services.

In the PaaS Domain, Google App Engine3 (GAE) is used. It hosts and executes the fire

detection and fighting application. Internet connection is assumed available between GAE and

IaaS. A Network Address Translation (NAT) server is developed to redirect the requests coming

from GAE to IaaSs. In the SaaS, the fire suppression sub-task requires the light sensor capability

to detect the balls and the kicking arms and movement capabilities to handle and move them. We

implemented all the procedures described in Sections 3.2.3 (c) and 3.2.5 (c).

3.3.3. Experimentation Setup

Four machines belonging to the same LAN are used, each host one IaaS for Robots. The first

machine executes IaaS1 and NAT Server. The second executes IaaS2 and Presence Server. The

third and the fourth respectively execute IaaS3 and IaaS4. One of the machines has two interfaces:

one with a public IP to communicate with the application and the other with a private IP (the LAN

interface). The other machines have only a private IP. All machines run on Windows 7 Professional

and have an Intel® Core ™i7-2620 CPU with 2.70Hz and 8 GB of RAM. We have used three LEGO

Mindstorms NXT robots [89], one in each IaaS. The communication with the robots is done through

the Gateway via Bluetooth.

To properly evaluate it, the prototype is compared it with a peer-to-peer (P2P) overlay network.

Consequently, an overlay node corresponding to each IaaS is implemented. An overlay node is

3 appengine.google.com/

41

implemented using the JXTA protocol (JXSE 2.6). The publication and the discovery procedures

are carried out by the JXTA advertisement. The task assignment procedure is mapped to the JXTA

messages that are exchanged through JXTA bidirectional pipes.

3.3.4. Measurements and Results

A) Performance Metrics

The performance metrics according to which we evaluate the system performance are:

 Idle Robot Discovery Delay (IRDD) (msec) - the time difference between the moment an IaaS for

Robots subscribes to the presence information for the Presentities in the other IaaSs for Robots,

and when it receives notification of the current state of the requested Presentities.

 Task Assignment Delay (TAD) (msec) - the time difference between the moment an IaaS for Robots

sends a task assignment request and when other IaaSs for Robots receive this request.

B) Results and Discussion

Test case 1 - Idle Robot Discovery Delay (IRDD): Figure 3.7 shows the average time for IRDD

using a different number of IaaSs for Robots. As is noticed, for any number of IaaSs, the average

IRDD for presence-based publication/discovery is less than the delay for P2P overlay-based

publication/discovery. This is because overlay networks have additional costs caused by the

communication overhead. They add an intermediate level between the IaaSs. It is also observed

that the average IRDD using P2P overlay increases as the number of IaaSs increase since IaaS1

should discover robots in more than one IaaS. The overlay nodes add additional overhead due to

the processing of each packet. This shows the viability of using a presence technology-based

publication/discovery

Figure 3.8 Idle Robot Discovery Delay (IRDD) Figure 3.7 Task Assignment Delay (TAD)

42

Test case 2 - Task Assignment Delay (TAD): Figure 3.8 shows the average delay for TAD. In

this test case, the average delay is calculated for the Task Delegator in the three IaaSs required to

receive the task assignment request from the Task Delegator in IaaS1. It is observed that the

average delay for direct communication remains almost the same for the three IaaSs. The involved

IaaSs communicate with each other directly, i.e., point-to-point. So, all IaaSs have the same delay.

Moreover, this delay is far less compared to P2P overlay-based task assignment. To be received

by each IaaS, the task assignment request needs to go through the overlay that adds overhead and

increases latency in the system. This shows the viability of the proposed method for task

assignment.

3.4. Conclusion

In this chapter, we investigated the problem of robotic applications provisioning in a cost-

efficient manner. We proposed an IaaS for Robots architecture that enables network-level

virtualization and task delegation to robots in different IaaSs. We also proposed a presence

technology-based publication/discovery and provided an extension to SenML to describe

heterogeneous robots. The experiments’ results show the feasibility of our proposed architecture.

43

Chapter 4

4. NFV-based Centralized Architecture for IoT

Gateway

4.1. Introduction

Research on sensor network virtualization [90] has become prominent in recent years.

Virtualization technology abstracts sensor resources as logical units and allows for their efficient

and simultaneous use by multiple applications, even if they have conflicting requirements and

goals. New applications can be deployed in the same WSN with minimal efforts. More

importantly, reusing the same sensors’ capability by multiple applications transforms WSN into a

multi-purpose sensing platform in which several virtual WSNs (VWSNs) are created on-demand,

each tailored for a specific task or objective. Actuators are often incorporated in WSNs to make

more powerful applications, thus the concept of virtualized wireless sensor and actuator network

(VWSAN). Gateways are required for the interactions between applications and heterogeneous,

multivendor VWSANs. They are generally complex. Furthermore, it is difficult and expensive to

upgrade them when new-brand sensors and actuators/robots are deployed. In addition, their

capabilities do not scale when the number of applications and the corresponding workload in

44

VWSANs change dynamically. NFV can aid in overcoming the aforementioned challenges. On-

the-fly, dynamic, scalable, and elastic provisioning of network services are among its benefits.

 This chapter presents an NFV architecture for VWSAN. The firmware/hardware used to

provide VWSAN Gateway functionalities are replaced by VNFs deployed in an NFV

infrastructure. We enable a granular provisioning of NFV, such as decomposing the gateway into

fine-grained modules – e.g., protocol converter, information model converter, etc. – to be

implemented as VNFs. More importantly, granular NFV is best suited for virtualized WSANs,

wherein the dynamic growth in the number of applications and addition of new-brand sensors

require a rapid introduction of new VNFs and update of existing VNFs. VNFs are instantiated on-

the-fly and chained to realize a service in VWSAN. The architecture introduces a new business

actor - the VWSAN Gateway Provider – in addition to the traditional actors, meaning the

Application Provider and the VWSAN Provider. This new actor plays a dual role. On the one

hand, it provides the VNFs, chained to make on-the-fly gateways. On the other hand, it operates

and manages the infrastructure in which the VNFs are executed. We acknowledge that the

introduction of this new actor does bring a host of additional security and trustability challenges.

We consider these challenges outside the scope of this work. More and more standardization work

will certainly be required to enable secure and trustable interactions between different NFV actors,

as the business model opens up. The proposed architecture is implemented as a proof of concepts in

order to evaluate its viability and performance level.

The rest of this chapter is organized as follows: in the first subsection, we present our proposed

NFV-based architecture for virtualizing WSAN gateways. The architectural principles are discussed

first, followed by architectural modules and interfaces, VNF migration and scalability issues, and

control plane. Next, we present the performance results. Finally, we conclude this chapter.

4.2. Overall Architecture for Virtualized WSAN Gateway

The overall architecture for NFV-based VWSAN Gateway is shown in Figure 4.1. It comprises

several Application Domains, a VWSAN Gateway Provider Domain, and VWSAN Provider

Domains. In this section, we first describe the architectural modules and interfaces, followed by a

discussion of the VNF migration process and the scalability issues. We then present the control

plane and finally, we provide an illustrative scenario.

45

4.2.1. Architectural Principles

We defined the following set of principles:

1- Granular provisioning of network functions. We aim to use highly granular VNFs for

virtualized WSAN gateway functions. Examples include protocol conversion and information

model conversion. The protocol converter decodes a packet received in one protocol and

encodes it in another protocol. The information model conversion converts data from one

format to another. We do acknowledge the fact that converting a protocol X (or an information

model X) into a protocol Y (or an information model Y) is not always feasible. Consequently,

the Gateway Provider provisions the related VNFs only when the conversion is feasible.

2- The VWSAN Gateway Provider maintains a centralized store of VNF images. VNFs are

dispatched on-demand to the VWSAN provider’s domain. This principle is in accordance with

the ETSI, that VNFs must be deployed throughout the networks where they are most effective

and highly customized to a specific application or user [22].

3- The interaction interfaces between different domains are REST-based. Similar to the previous

chapter (i.e., Chapter 3), REST is selected because it is lightweight, standard-based, and can

support multiple data representations (e.g., plain text, JSON, and XML).

4.2.2. Proposed Architecture for NFV-based Virtualized WSAN Gateway

A) Architectural Modules

Each Application Domain contains an application that requires the services of one or more

VWSAN providers. The Application contains two modules: Infrastructure Agent and

Sensor/Actuator Agent. The Infrastructure Agent is responsible for the signaling procedure. It

communicates with the VWSAN Provider Domain to negotiate the use of VWSAN infrastructure.

The Sensor/Actuator Agent is responsible for gathering measurements from the sensor and sending

commands to robots. The VWSAN Gateway Provider Domain consists of the following entities:

 Core Layer: contains VNFs and their corresponding Element Management Systems (EMS),

where each EMS is responsible for monitoring the resource utilization of its corresponding VNF

[22].

 NFV Infrastructure (NFVI): provides hardware and software resources, including computation,

storage, and networking needed to deploy, manage, and execute VNFs.

46

 NFV Management and Orchestration (MANO): responsible for orchestration and lifecycle

management of physical/software resources, and the lifecycle management of VNFs.

(instantiation, update, migration, and termination).

 Central Controller: performs functions as part of the signaling procedure that occurs during

service negotiation (this is described later).

 VNF Store: a repository that contains VNFs of various gateway modules. It provides VNFs that

match the requirements of an end-to-end service.

Each VWSAN Provider Domain comprises the following modules:

 Southbound (SB) Handler Layer: contains VNFs that have been migrated from the VWSAN

Gateway Provider Domain and their corresponding EMSs.

 NFVI: (explained in the previous section).

 NFV MANO: performs the typical orchestration and management functions for the execution of

migrated VNFs.

 Operational Support System/Business Support System (OSS/BSS): provides the description

of VWSAN (e.g., sensor/robot brands).

Figure 4.1 The proposed NFV-based IoT Gateway

47

 Local Controller: interacts with the Infrastructure Agent and the Central Controller.

B) Interfaces

The NFV modules interact with each other through the interfaces defined by ETSI [22]. They

include: (1) Vn-Nf which represents the execution environment provided by NFVI to Core Layer

and to SB Handler Layer. (2) Nf-Vi which is used for assigning virtualized resources in response

to resource allocation requests (e.g., allocating VMs on hypervisors), it is also used by NFVI to

communicate status information about virtualized and hardware resources to the MANO. Nf-Vi is

also used to configure hardware resources. And (3) Ve-Vnfm which carries out all operations

during a VNF life cycle. It is also used for exchanging VNF configuration information.

4.2.3. VNF Migration and Scalability Issues

A) VNF Migration

In the architecture, VNFs are migrated on-demand from VWSAN Gateway Provider Domain

to VWSAN Provider Domain. The architecture supports two approaches for migration. In the first

approach, VNFs are instantiated and chained in VWSAN Gateway Provider Domain. Then, using

live migration, running VMs are sent from the VWSAN Gateway Provider Domain to VWSAN

Table 4.1 Resources on the VWSAN Provider Domain and VWSAN Gateway Provider Domain

Domain

Name

REST Resource Operation Http Action & Resource URI

Resources
on VWSN
Provider
Domain

List of
applications
service requests

Create: add application information
(protocol used, data format, latency, etc.)

POST:
/ApplicationsServiceRequests

Specific
application’s
service request

Update: Change information of specific
application

PUT: /ApplicationsServiceRequests
/(RequestId}

Delete: Delete specific application
information

DELETE:
/ApplicationsServiceRequests
/(RequestId}

Notification of
service
availability

Create: Send notification to VWSN
domain by the gateway domain about the
availability of requested VNFs.

POST:
/ServiceAvailabilityNotification

Resource
on VWSN
Gateway
Provider
Domain

Request for
VNFs

Create: send request from VWSN domain
to gateway domain for VNFs with specific
information (protocol, data model, etc.)

POST: /VNFsRequest

Specific request
for VNFs

Update: Change information of specific
request for VNFs.

PUT:
/VNFsRequest/{VNFsRequestId}

Delete: delete information of specific
request for VNFs.

DELETE:
/VNFsRequest/{VNFsRequestId}

48

Provider Domain. In the second approach, VNFs are migrated from the VWSAN Gateway

Provider Domain to VWSAN Provider Domain, where they are instantiated and chained.

B) Scalability

The architecture relies on dynamic resource allocation algorithms to meet the growing demand

of applications. These algorithms enable vertical scaling and/or horizontal scaling. Existing

algorithms such as [11] and [12] could be used as a basis. We consider the design of these

algorithms as items for future work.

4.2.4. Control Plane

The control plane consists of signaling procedure and control interfaces; R1 and R2. In a typical

end-to-end service, the application sends a query to sensors to receive measurements and deploy

robots. Before the service begins, a signaling procedure is conducted, in which different business

players (i.e., Application Domain, VWSAN Provider, and VWSAN Gateway Provider) engage in

service negotiation and exchange the necessary parameters to obtain the appropriate VNFs.

A) Signaling procedure

Signaling is initiated when an application requires services from VWSAN Provider Domain.

The Sensor/Actuator Agent instructs the Infrastructure Agent to start the service negotiation. The

Infrastructure Agent creates a service request that includes a description of the northbound

interface used by the application (i.e., communication protocol, information model, etc.) and QoS

parameters associated with the service delivery (i.e., latency, throughput, etc.) and sends it to the

Local Controller. Upon receipt of the service request, the Local Controller communicates with the

OSS/BSS to obtain information on parameters specific to the VWSAN (e.g., type of

sensors/robots). It then creates a VNF request containing parameters of the service request as well

as parameters specific to the VWSAN and sends it to the Central Controller. Based on these

parameters, the Central Controller searches for appropriate VNFs in VNF Store.

If the VNFs are found, the Central Controller instructs NFV MANO of VWSAN Gateway

Provider Domain to instantiate and migrate the VNFs to VWSAN Provider Domain. The Central

Controller also receives a notification from NFV MANO of VWSAN Gateway Provider Domain

when the VNFs are ready for use in VWSAN Provider Domain. The Central Controller then

forwards the notification to the Local Controller, which sends a notification about service

49

availability to the Infrastructure Agent. The latter notifies the Sensor/Actuator Agent to start the

service. It is important to note that, when the required VNFs are not found in the VNF Store, a

service unavailability notification is sent to the Infrastructure Agent, to either cancel the

negotiation or resume signaling after a certain time period.

B) Control Interfaces

R1 is used for the interactions between Infrastructure Agent and Local Controller. R2 is used

for the interactions between Local Controller and Central Controller. R1 and R2 are based on

REST paradigm. The required information is modeled as resources and each resource is uniquely

identified by the Uniform Resource Identifier (URI). Table 4.1 summarizes the proposed REST

interface for the interactions between different domains. It defines resources on VWSAN Provider

Domain, used to reserve resources when it receives a service request from Application Domain

with a description of parameters. They also allow the Application Domain to modify parameters

and delete resources of specific applications. Furthermore, they allow VWSAN Gateway Provider

Domain to send notifications to VWSAN Provider Domain about the availability of the requested

VNFs. The resources defined on VWSAN Gateway Provider Domain allow it to receive VNF

requests from VWSAN Provider Domain. They also allow the VWSAN Provider Domain to

update or delete information (e.g., sensor/robot brand) about specific VNF requests.

4.2.5. Illustrative Scenario

In Figure 4.2, we illustrate an end-to-end scenario, wherein an application (e.g., earthquake

early warning and recovery) queries the sensors owned by VWSAN Provider 1 and collect their

measurements, and another application (e.g., fire detection and fighting) needs to be notified when

a fire occurs and deploy robots. Before using VWSAN Provider Domain’s service, the signaling

procedure starts. The northbound interface description sent to the Local Controller for both sensors

and robots is SenML over HTTP. Since the current SenML implementation only supports sensor

measurements, we have used the extended capabilities of SenML proposed by Datta et al. in [91]

and [92] to send robot commands from the application.

 Upon receiving the description from Infrastructure Agent, the Local Controller obtains a

description of the sensors (i.e., SunSpot) and the robots (i.e., Lego Mindstorms) from OSS/BSS.

The signaling procedure continues as described in Section 4.2.4 (B) for both applications. For VNF

migration, the second approach (see section 4.2.3 (A)) is used; the VNFs are instantiated, chained,

50

and then migrated to VWSAN Provider Domain. After service negotiation, the Sensor/Actuator

Agent sends a query to the sensors through the VNFs. Upon receiving the query, SunSpot sensors

send their raw measurements over CoAP protocol. These measurements are processed by protocol

conversion (encoded in HTTP protocol) followed by information model conversion (mapped to

SenML format), in order to enable the applications to interpret the measurements. If the fire

detection and fighting application receives notification of fire, it sends actuating commands to the

robots in the SenML format through HTTP, where the commands are mapped to LeJOS Java API

and to Lego Communication Protocol (LCP). The end-to-end service is completed when the robots

are deployed.

Figure 4.2 Sequence diagram for an end to end scenario

51

4.3. Performance Evaluation

In this section, we first present the prototype that we built followed by the experimentation

setup. After that, we discuss the measurements and the results.

4.3.1. Proof of Concept Prototype

For the prototype, we implemented the scenario described in Section 4.2.5, in which the

earthquake early warning and recovery application is interested in collecting environmental data

to monitor different earthquake-prone areas and a fire detection and fighting application that needs

to be notified when a fire occurs and deploy robots in order to suppress it. We assume both

applications are interested in collecting the temperature data.

The applications were created using java dynamic web application and hosted on Tomcat8

server. We used OpenStack 4 Icehouse to build our private cloud. OpenStack is a free, open-source

software for creating private and public clouds. Figure 4.3 depicts our prototype architecture. We

used a multi-node OpenStack with two compute nodes. We considered each compute node as a

domain: One as VWSAN Provider Domain and the other as VWSAN Gateway Provider Domain.

4 https://www.openstack.org/

Figure 4.3 Prototype architecture

52

In our prototype, we assume the two domains are in the same data center. In order to provide live

migration, both compute nodes share the same storage. This allows the migration of only the

memory footprint of the VM. If each domain were in a separate data center, we would assume a

provision for live migration among them. The VNFs are instantiated in VWSAN Gateway Provider

Domain and migrated to VWSAN Provider Domain after being chained. For simplicity’s sake, we

assume that the VNFs are chained in a static way in VWSAN Gateway Provider Domain.

In the node representing VWSAN Gateway Provider Domain, all necessary components of

OpenStack were installed. NFS (Network File System) server was also configured in this node,

allowing servers to share directories and files with each other over a network. The two nodes

representing VWSAN Provider Domain contains only Nova. The fourth node is configured as

Neutron and LBaaS (Load Balancing as a Service) was installed on it, which is a service of

Neutron, allowing to load balance traffic for services running on VMs in OpenStack. We used

OpenStack4j API, as an open-source OpenStack client, allowing the provision and control of an

OpenStack system as a controller. Because all domains are in the same data centers, the controller

can control all domains. Each VNF runs a Linux Ubuntu V14.04 on 1 VM and is equipped with 1

VCPU and 2GB RAM. The VNFs communicate with each other through a REST interface (R2),

using the RESTlet framework [13]. Communication between VWSAN Provider Domain and

Application Domains is also achieved via REST interface (R1).

4.3.2. Experimentation Setup

The applications and the domains controller run on a PC with Intel® Xeon® CPU clocked at

2.67 GHz and a 6GB RAM with 64-bit Windows 7 Enterprise. This PC uses JVM version 1.8.0_51.

We used four PowerEdge™ T410s, which are Intel® processor-based servers – two as nova

compute nodes, one as the Nova controller, and one as the network node. Two Java Sun SPOT

sensors, two Advanticsys sensors, and one LEGO Mindstorms NXT robot were used. Each sensor

executes the environment monitoring task. We implemented a simple gateway that runs on a laptop

with Intel® Core ™i7-2620 CPU with 2.70Hz and 8 GB of RAM. This gateway exposes the

robots’ and the sensors’ capabilities as APIs. For example, in order to send a command to the

robot, the protocol converter and information model conversion convert the REST request received

at its northbound interface to LeJOS Java API commands that implement the LCP. The gateway

then wraps the request to either Bluetooth or USB communication channel and sends it to the robot.

53

4.3.3. Measurements and Results

A) Performance Metrics

The performance metrics according to which we evaluate system performance are:

 Service Provisioning Time – the time between the moment the VM instantiation starts in VWSAN

Gateway Provider Domain and when the VMs are migrated to VWSAN Provider Domain,

including the chaining time of VMs, while also calculating the downtime duration of the VMs.

 End-to-End (E2E) Delay - time between the moment sensors send a measurement and when robots

are deployed. We calculated E2E delay for non-virtualized and virtualized environments.

 Scalability – the ability of the system to handle the growing amount of loads without suffering

significant degradation in the performance. We considered the response time of the system as a

metric to evaluate the scalability of our architecture. Response time is the time period from when

measurements are sent by the sensors to when these measurements are received by the VNFs.

B) Results and Discussion

Test Case 1: Service Provisioning Time

Figure 4.4 (a) depicts the live migration delay of chained VMs, based on shared storage in a

virtualized environment. We studied 20 tests and found a maximum delay of 38.4 sec and a

minimum delay of 34.3 sec. We observed that the delay fluctuates between samples. This is

because the time needed to instantiate VMs and migrate them in OpenStack is inconsistent. One

of the limitations of OpenStack is the time needed to start a new VM, which could cause a

prolonged delay in service provisioning time. As reported in [93], VM instantiation delay can

sometimes reach up to 60 sec.

Although the live migration of VMs allows transferring VMs to other physical servers without

shutdown and ensures high availability with non-stop services, VMs still face some period of

downtown, depending on the memory state of the VM. In this experiment, we tested ping on the

VMs during live migration. We started pinging before the live migration starts and it lasted until

the migration ends. We noticed that during the migration, some ping requests were lost. Figure 4.4

(b) shows the process of pinging the VMs and Figure 4.4 (c) shows the downtime of the VMs

considering 5 samples.

54

(a)

(b)

Sample Protocol Conversion
Downtime (sec)

Info Model Processor
Downtime (sec)

1 30 39

2 24 39

3 31 38

4 33 38

5 24 38

 (c)

Figure 4.4 Results of service provisioning

(a) Live migration delay of VM
(b) Pinging the VM during live migration
(c) VM downtime during live migration

55

Test Case 2: E2E Delay

Figure 4.5 illustrates a comparison of E2E delay for virtualized and non-virtualized

environments, wherein each sample represents the average E2E delay for the first 10

measurements. In order to ensure an accurate comparison, we repeated the experiment 10 times.

The average E2E delay for a virtualized environment is always higher than the delay for the non-

virtualized environment. This is because the delay includes the time needed to instantiate and

migrate the VMs. The maximum E2E delay for the virtualized gateway is around 39736 msec

(sample 9), whereas it is 1784 msec (sample 10) for the non-virtualized gateway. Frameworks such

as [94] can be integrated with OpenStack to overcome the performance gap between virtualized

and non-virtualized environments.

 We observe that the minimum E2E delay of the virtualized gateway, excluding VM

instantiation and migration delay, (1603 msec) is close to the minimum E2E delay of the non-

virtualized gateway (1601 msec). Thus, we can conclude that the time needed to instantiate and

migrate the chained VMs has a significant impact on the E2E delay of the virtualized gateway,

which demonstrates the overhead of virtualization. However, E2E delay in a virtualized

environment increases only when a new brand of sensor joins and sends requests to dispatch VMs

to VWSAN Provider Domain.

Figure 4.5 End to end delay (virtualized gateway vs. non-virtualized gateway)

56

Test Case 3: Scalability

We used a simplified resource allocation mechanism to test the scalability. It is based on the

resource utilization of the VMs (i.e., CPU) and on horizontal scaling. Each T period of time, VM’s

resources are monitored. If the utilization of the resource exceeds the threshold (i.e., 70%), we

perform horizontal scaling. To conduct our case study, we set the number of requests as a variable

within a unit time (T) and gradually increase it from 500 to 4000 requests. We considered 10 sec

as the unit time. We used Apache JMeter to generate the requests using a uniform distribution of

threads.

Figure 4.6 shows the results of our experiments, where we compared it with the same scenario

without having a scaling mechanism. In the case of having a scaling mechanism, we notice that as

the load (i.e., number of requests) increases, the system experiences a very slight increase in

response time. This is because scaling is triggered before the system enters the overload state. For

the initial increase in load (i.e., from 500 to 1000), the effect on response time is slightly more than

the one afterward. This is because initially as load increases, more resources cannot be allocated

until the T period is elapsed. From load 1000 till the maximum load, the response time increases

by only 5 msec for every 2-fold increase in load. In contrast, if no scaling is performed, the system

suffers from a significant increase in response time, as indicated in the figure. We observe that

Figure 4.6 Response time for scalability

57

from load 1000 till the maximum load, the response time increases by 600 msec for every 2-fold

increase in load. Overall, with a scaling mechanism, the load has a very negligible impact on the

response time. This demonstrates the scalability of our architecture.

4.4. Conclusions

In this chapter, we introduced an NFV architecture that deploys virtualized instances of a

VWSAN gateway in an NFV infrastructure. The virtualized instances are dynamically migrated

from a Gateway Provider Domain to several VWSAN Domains. With NFV, it is possible to

achieve scalable deployment of gateways in heterogeneous VWSAN environments. In addition,

several business actors involved in the proposed NFV architecture creates potentials for unique

business models. We also discussed a proof-of-concept of the NFV-based virtualized gateway. We

evaluated the prototype by conducting a set of experiments. The performance comparison of

virtualized and non-virtualized approaches is analyzed, and the scalability of the architecture is

proved.

58

Chapter 5

5. NFV and SDN - based Distributed

Architecture for IoT Gateway

5.1. Introduction

Different types of IoT devices are used in large-scale disaster management applications. For

instance, sensors, such as temperature, humidity, microwave, or infrared, may be distributed

throughout a forest to monitor the environmental conditions or measure earth movements before

and during earthquakes, and robots wide range of capabilities can be used in search and rescue

missions. For example, some can penetrate rubble piles and find people beneath them, while others

may be equipped with infrared cameras that transmit images back to the application. These IoT

devices are usually heterogeneous, each with its own communication protocol and/or data formats.

 As mentioned in the previous chapter (i.e., Chapter 4), to address the heterogeneity of IoT

devices and their applications, gateways are needed to bridge the traditional communication

networks and the IoT devices domain. Provisioning IoT gateways in large-scale disaster scenarios

poses many challenges. For instance, traditional gateways lack dynamicity and flexibility. In

addition, they are generally centralized and thus not practically feasible in the MANET settings of

59

large-scale disasters. Moreover, it is difficult and expensive to upgrade or reuse them. NFV [95]

and SDN [23] can assist in overcoming these challenges.

The major contribution of this chapter is as follows: a distributed architecture for an IoT

gateway based on NFV and SDN is proposed. The proposed architecture considers co-locating the

gateway functions with the IoT devices and reusing already deployed gateways. It also considers

handling the traffic and chaining between the gateway functions dynamically. A high-level

description of the proposed architecture that is composed of two planes is provided, and a detailed

description of each plane with its corresponding interfaces and procedures is presented. The

proposed architecture is implemented as a proof of concepts in order to evaluate its viability and

performance level.

The rest of this chapter is organized as follows, we first describe the proposed architecture,

including its modules, interfaces, and procedures. After that, we present the implementation and

investigates the performance evaluation. Finally, we conclude in the last subsection.

5.2. Overall Architecture for a Distributed IoT Gateway

In this section, we first present the proposed business model. The architectural principles are

then introduced, followed by a high-level description of the proposed distributed IoT gateway

architecture. A detailed description of the control and forwarding planes, including the related

architectural modules, interfaces, and procedures is discussed next. This section ends with the

presentation of illustrative sequence diagrams.

5.2.1. Business Model

In this chapter, we reuse the business model discussed in the previous chapter (i.e., Chapter 4).

The specific actors and their relations are schematized in Figure 5.1. The End-User Applications

are the applications that require the services of an IoT Provider (Figure 5.1, action 1). The IoT

60

Gateway Provider provides on-the-fly VNFs, representing the gateway functions, to handle the

heterogeneity of the applications and the IoT devices (action 2). The IoT Provider provides the

IoT devices (i.e., sensors and the robots) required by the application to realize its service. A

business agreement between the IoT Gateway Provider and the IoT Provider is assumed that allows

the IoT Gateway Provider to manage the infrastructure on which the VNFs are deployed and

executed.

It should be noted that in this work it is assumed that there is a communication infrastructure

that enables communication between the disaster site and disaster-safe areas, composed of IoT

MANETs on the disaster site, and satellite mobile networks and cellular mobile networks to

communicate with disaster-safe areas, as in reference [96]. Accordingly, the IoT provider can have

a fixed node that can be carried on the relief vehicles during a MANET setup. The fixed node

discovers and connects with the working cellular Base Station (BS). In fact, in practical situations,

the cellular BS may be down at the central area on the disaster site. With luck, some BSs at a few

distances away may be still working, allowing remote communication and information transfer

between the IoT Provider in the disaster site area and the IoT Gateway Provider in the disaster-

safe areas.

5.2.2. Architectural Principles

1- The first architectural principle is that the application and the gateway are built as a P2P

overlay, due to the MANET setting of the disaster scenario.

Figure 5.1 The proposed business model

61

2- The second principle is that two types of IoT devices are considered in the infrastructure,

constrained (type A) and capable (type B). Constrained devices delegate some operations

to the capable devices and capable devices can act on behalf of the constrained devices, as

assumed in other works [97].

3- The third principle is that the IoT gateway functions are implemented as VNFs, and SDN

is used to dynamically provision the paths between them once they are deployed.

5.2.3. High-level Description of the Architecture

The overall view of the proposed architecture is depicted in Figure 5.2. It includes three

domains: the Application Domain, the IoT Provider Domain, and the IoT Gateway Provider

Domain. Each functionality of the IoT gateway is implemented as a VNF. It is important to note

that the architecture, specifically the portion in the IoT Gateway Provider Domain, is aligned with

the ETSI NFV MANO framework [98]. In fact, it extends the MANO framework by adding new

architectural modules.

The proposed architecture is layered over two planes: control and forwarding. The control

plane handles the signaling procedure between the different domains, including the chaining of the

gateway’s VNFs. When an application requires an IoT service from the IoT Provider Domain (i.e.,

Figure 5.2 The proposed NFV and SDN-based distributed IoT Gateway architecture

62

to receive sensor measurements and then deploy robots accordingly), a signaling procedure is

conducted first to negotiate the service and exchange the necessary information. Different domains

(i.e., the Application Domain, the IoT Provider Domain, and the IoT Gateway Provider Domain)

are engaged in this service negotiation to obtain and deploy the appropriate gateway. The control

plane also interacts with the forwarding plane by programming the application-level SDN switches

to deliver the requested gateway to the application. Unlike traditional SDN switches, which are

IP-level, the SDN Switches in the proposed architecture are application-level. This means the

classification of a received packet should be done based on the header values of the application

layer, similar to how it is done in [99].

The forwarding plane allows the flow of data through the path according to the control plane

logic. It should be noted that all the interfaces of the proposed architecture are designed according

to the Representation State Transfer (REST) principle.

5.2.4. Detailed Description of the Control Plane

Here the architectural modules involved in the signaling procedure along with their interfaces

are presented, and some of the main procedures are described. It should be noted that some of the

modules are reused from the ETSI NFV MANO framework, including the NFVO (i.e., Gateway

Orchestrator), VNFM (i.e., Gateway VNFs Manager), VIM (i.e., IoT Infrastructure Manager), and

the VNF Catalogue. Those modules are depicted with dashed lines in Figure 5.2. The remaining

modules are newly-introduced ones.

A) Architectural Modules

1) Modules in the Application Domain

The Application Agent is in charge of the signaling procedure. It negotiates the use of IoT

infrastructure. The Application Overlay Manager is responsible for the Application Overlay

configuration, activation, and execution.

2) Modules in the IoT Provider Domain

The IoT Provider Agent is responsible for requesting the desired gateway from the IoT

Gateway Provider Domain.

63

3) Modules in the IoT Gateway Provider Domain

The VNF Agent is responsible for analyzing the requested gateway’s features, decomposing

the request into a set of gateway VNFs that represent the gateway’s functionalities, and requesting

the execution of required orchestration plans. The SDN application resides in this module. It

defines a set of chains which specify how the gateway VNFs are composed to fulfill the

application’s need(s).

As stated above, the proposed architecture reuses the MANO framework, including NFVO,

VNFM, and VIM. The NFVO functionality is provided by the Gateway Orchestrator, which is in

charge of orchestrating the NFVI resources and managing the lifecycle of the network services

(i.e., the composition of VNFs). The VNFM functionality is provided by the Gateway VNFs

Manager. This manager is responsible for the gateway’s VNFs lifecycle management, including

instantiation, maintenance, and termination. The VIM functionality is provided by the IoT

Infrastructure Manager, which is responsible for resource allocations for the deployment and

execution of the VNFs. The SDN Controller is co-located within the VIM. This is in accordance

with ETSI SDN Usage in an NFV Architectural Framework [100]. According to this reference,

one architectural option for the possible location of SDN Controller is to co-locate it with the VIM.

This option is adopted in the proposed architecture. The SDN Controller establishes the path

between the VNFs through which the sensor data and the commands to the robots traverse.

The SDN Controller is logically centralized. However, we envision it as being physically

distributed to back-up controllers as suggested by references [101] [102] in order to incorporate

fault tolerance mechanisms such as the ones described in these references. When it comes to

scalability, we envision it as running in a virtualized environment in order to enable vertical and

horizontal scalability. The reader should note that several existing SDN controllers (e.g.,

Floodlight [103]) do run in virtualized environments. The SDN Controller is connected to all the

Application-level SDN Switches in the Forwarding Plane and programs them using an extended

OpenFlow interface. The details of this interface are presented in the next subsection.

The Gateway Functions Store includes the list of VNFs (i.e., gateway functions) that the IoT

Gateway Provider Domain can provide. It is similar to the Network Function Store proposed by

T-NOVA [104] which contains the VNFs provided by several third-party developers, published as

64

independent entities and accompanied by their metadata. The VNF Catalogue represents a

repository of all the on-boarded gateway VNF packages which are updated during their lifecycle

management operation. The Gateway Overlay Manager is responsible for the IoT Gateway

Overlay configuration, activation, and execution.

B) Interfaces

The general principles used to design the interfaces are presented first. This is followed by the

description of the individual interfaces.

1) General Design Principles for the Interfaces

As the SDN switches presented in this chapter are application-level switches we first present

the extensions made to the SDN interfaces. The general principles for the design of the other

interfaces are presented after that.

SDN interfaces

In our proposed architecture, Int. N is the southbound interface and Int. K the northbound

interface. OpenFlow and ForCES are the two standards currently used at the southbound interface

[105]. However, they cannot convey application-level information. In this work, we have extended

the most widely used standard (i.e., OpenFlow) as previously suggested in the literature [99][106].

An example of an extension is the addition of application-level fields to the match fields of the

flow entries. The match field “OFB_IPV4_SRC” for instance is extended to support “source”

“OFB_Application_Level_Address_SRC” (in addition to “OFB_IPV4_SRC”). Yet another

example, is the extension of the action “output” to output a message to an application-level address.

 Contrary to the southbound API, there is currently no standard for the northbound interface

[105]. Most SDN controllers (e.g., OpenDaylight, Floodlight, etc.) do offer their own REST-based

northbound APIs. However, like the southbound interface, the existing northbound interfaces do

not cater to application-level features. If we take Floodlight, for instance, the resource “static flow

pusher” REST API cannot be used as it stands to install flow table entries via REST API. We have

therefore made extensions. An example is the extension of the matching field “ipv4_src” to include

“application_level_address_src”. Yet another example is the extension of “ipv4_dst” to include

“application _level_address_dst”.

65

Other Interfaces

The other interfaces have been designed from scratch using the well-known RESTful Web

services principles [107]. They all expose CRUD (i.e., Create, Read, Update, and Delete)

operations. Table 5.1 summarizes the proposed REST interface (i.e., Int. E) for the interactions

between the Gateway Orchestrator module and the VNF Agent module. It defines resources on the

Gateway Orchestrator “Orchestration Plan”. This “Orchestration Plan” resource exposes a subset

of the uniform interface to the VNF Agent. When the latter sends a POST request to the Gateway

Orchestrator to request the execution of a new orchestration plan, the Gateway Orchestrator

creates a new “Orchestration Plan” resource and sends the resource URI to the VNF Agent. This

URI is used to modify or get the status of an existing orchestration plan and to remove the resources

of a specific orchestration plan.

2) Individual Interfaces Description

Int. A is used by the Application Domain to request IoT service from the IoT Provider Domain.

Int. B allows the IoT Provider Domain to request the desired gateway from the IoT Gateway

Provider Domain. Int. C and Int. D are used for Application Overlay creation and IoT Gateway

Overlay creation, respectively. Int. E is used by the VNF Agent to request the NFVO to execute the

orchestration plan (deploy required VNFs, chain them, and create the gateway overlay).

Int. F, Int. G, and Int. H are reused from the ETSI NFV MANO framework; they represent Or-

Vnfm, Vi-Vnfm, and Or-Vi, respectively. Int. F enables the instantiation, maintenance, and

termination of the gateway’s VNFs. Int. G enables the NFVI resource allocation for the gateway

VNFs. Int. H enables the NFVO to monitor the NFVI resources. Int. I is a reference point in an

ETSI NFV framework. It allows the VNFM to verify if the requested VNF is already deployed.

Int. J is used to fetch the required VNFs from the Gateway Function Store. Int. K is the northbound

Table 5.1 Example of the API operations exposed by the Gateway Orchestrator to the VNF Agent (i.e., Int E.)

REST Resource Operation HTTP Action and Resource URI

O
rc

h
es

tr
at

io
n

P
la

n

Execute an orchestration plan POST: /OrchestrationPlan

Retrieve a specific orchestration plan GET: /OrchestrationPlan/{Id}

Retrieve all orchestration plan GET:/OrchestrationPlan/all

Remove an orchestration plan DELTE: / OrchestrationPlan/{Id}

Update an orchestration plan PUT: / OrchestrationPlan/{Id}

66

interface of the SDN Controller, named Application Control Interface in ETSI SDN Usage in NFV

[100]. Int. L is used by the Gateway Orchestrator to instruct the Gateway Overlay Manager to

create the IoT Gateway Overlay.

Int. M and Int. N are reused from the ETSI NFV MANO framework; in MANO terminology

these are Ve-Vnfm-vnf and Nf-Vi, respectively [22]. Int. M is for the lifecycle management of the

VNFs, and Int. N represents the southbound API of the SDN Controller, named the SDN Resource

Control Interface in ETSI SDN Usage in NFV [100]. Int. O, located between the Application Agent

and the flow classifier, is used to redirect the application request to the flow classifier.

C) Procedures

The proposed architecture, as part of the signaling procedure, includes the following two

procedures: IoT gateway provisioning and application provisioning. IoT gateway provisioning

includes the IoT gateway request and the IoT gateway orchestration. IoT gateway orchestration

refers to the IoT gateway deployment, IoT gateway chaining, and IoT gateway overlay creation.

For the application provisioning procedure, this chapter focuses on the application overlay creation

phase.

 Next, the gateway orchestration procedure (Figure 5.3 (a)) with its three phases: deployment,

chaining, and overlay creation, is described.

1) IoT Gateway Deployment

The process starts when the IoT Gateway Provider Domain receives a gateway request from

the IoT Provider domain (through Int. B). The VNF Agent instructs the Gateway Orchestrator to

execute the orchestration plan through Int. E. The Gateway VNFs Manager first checks if the VNFs

needed for the requested gateway are already present in the IoT Provider Domain. If not, the

Gateway Orchestrator discovers the capable IoT devices in the IoT Provider Domain (i.e., type

B) along with their capabilities and features, such as energy level, response time, location, etc.,

and maintains a clear view of the network topology. The Gateway VNFs Manager then finds the

requested VNFs in the Gateway Functions Store (through Int. J) and instantiates and dispatches

them (through Int. M).

67

2) IoT Gateway Chaining

Once the VNFs are deployed, the SDN Controller (co-located with the IoT Infrastructure

Manager) programs the Application-level SDN Switches (via Int. N). The SDN Controller

populates a set of application-level flow entries in the Application-level Switches based on the

chains defined by the SDN Application in the VNF Agent. The SDN application injects these

entries in the SDN Controller via Int. K. According to these entries, a path is established between

the application and the IoT devices through which the data from IoT devices traverse to the

application.

3) IoT Gateway Overlay Creation

This process is initiated when the Gateway Overlay Manager receives a request from the

Gateway Orchestrator to create the IoT Gateway Overlay (through Int. L). The Gateway Overlay

Manager first configures the IoT Gateway Overlay between the selected type B devices. It then

activates the overlay, where the selected IoT devices receive an overlay join request (Int. D).

The proposed architecture in Figure 5.2 includes two overlays built on top of the IoT MANET:

the IoT Gateway Overlay and the Application Overlay. They co-exist simultaneously; each may

have its own overlay protocol for message exchange. They share nodes and underlying network

links. In order to allow these overlays to interact and cooperate with each other, the proposed

approach uses co-located nodes, (nodes that belong to the two overlays) to enable inter-overlay

routing and reduce traffic [108]. Every message received by a co-located node can be forwarded

to the other overlay the node belongs to. Using super-peers is another approach; however, it leads

to costly merging mechanisms [109] and [110].

5.2.5. Detailed Description of the Forwarding Plane

The architectural modules and the interface of this plane are described below. The NFVI is

reused from the ETSI NFV architectural framework [22] and is shown with dashed lines in Figure

5.2.

A) Architectural Modules

All the modules described in this section are in the IoT Provider Domain. The NFVI is able to

host the VNFs deployed over IoT devices. The VNFs are the software instances of the gateway

functions.

68

Type A IoT devices rely on type B devices to join the overlay. They send data to the IoT

Gateway Overlay through type B devices. Type B devices can execute one or more function of the

gateway, and they can represent themselves and/or a type A device in the IoT Gateway Overlay.

Similarly, type B devices can join the Application Overlay on behalf of type A devices. In addition,

the same type B device may belong to both overlays.

The Application-level SDN Switches are programmable by the SDN Controller. The

Application-level SDN Switches in the proposed architecture are placed on a computing hardware

in the NFVI (as one of the options presented in [100]) in which some type B devices act as SDN

switches. It is worth noting that some industrial projects are working on using application-layer

intelligence in an SDN environment (i.e., a white paper [111]).

B) Interfaces

Int. p is used to exchange control data between type A and type B IoT devices. Int. q is used to

send the sensor data to the IoT Gateway Overlay. Int. r is used to send the data received from the

IoT devices executing an application’s task to the Application Overlay. Int. s allows

communication between the Application-level SDN Switches in order to establish the path between

them. It also allows pushing/retrieving of the sensor data between the Application-level SDN

Switches and the VNFs.

5.2.6. Illustrative Sequence Diagrams

Figure 5.3 illustrates a sequence diagram of the interactions of different architectural modules

during the signaling procedure for gateway provisioning (gateway request and gateway

orchestration). It also illustrates an end-to-end scenario of the actual flow of data when sending

data from the sensors to the application. A fire detection and fighting application is considered,

which wants to collect data from temperature sensors to detect prospective fires after an earthquake

and can then deploy firefighting robots in case of a disaster.

The gateway provisioning procedure is shown in Figure 5.3 (a). MANO in the figure represents

the Gateway Orchestrator (i.e., NFVO), the Gateway VNFs Manager (i.e., VNFM), and the IoT

Infrastructure Manager (i.e., VIM). During the deployment phase, the VNFs are selected in the

IoT Gateway Provider Domain. This selection is done based on the application’s interface

description and requirements (Figure 5.3 (a) action 1), e.g., SenML over HTTP, average data and

69

(a)

(b)

Figure 5.3 Sequence diagram for the Gateway Deployment and Chaining

(a) IoT Gateway provisioning procedure
(b) End-to-End scenario of the actual flow of data

70

IoT device specifications (action 2-3), e.g., Virtenio Sensors with CoAP protocol that send raw

data. The IoT devices’ specifications are found in a repository held by the IoT Provider Domain.

It is assumed that the requested Gateway’s VNFs implement the following functions: (1) Data

Aggregator (DA) to send data over a specific threshold; (2) Protocol Converter (PC) to convert the

data received from IoT devices to the appropriate model supported by the application and vice

versa; and (3) Information Model Converter (IMC) to convert a model from one to another. Similar

to the previous chapter (i.e., Chapter 4), we do acknowledge the fact that converting a protocol X

(or an information model X) into a protocol Y (or an information model Y) is not always feasible.

Consequently, the IoT Gateway Provider provisions the related VNFs only when the conversion

is feasible. It is also important to note that when the required VNFs are not found in the Gateway

Functions Store, a service unavailability notification is sent to the Application Agent, to either

cancel the negotiation or resume signaling after a certain time.

The selected VNFs are instantiated and deployed in the IoT Provider Domain (action 8). The

IoT Infrastructure Manager next injects the flow entries in the Application-level SDN Switches

(action 9). Some examples of such entries are listed in Table 5.2. The IoT Gateway Overlay is then

created in the IoT Provider Domain (action 10). Finally, the Application Agent receives a

notification about service availability through the VNF Agent and the IoT Provider Agent (actions

11-13) in which the Application Agent is instructed to contact the flow classifier to collect data

from the sensors. Table 5.3 demonstrates two prospective chains that could be defined for these

VNFs based on the end-user application preference and the IoT devices’ properties.

The end-to-end scenario of the forwarding plane is shown in Figure 5.3(b). The Application

Agent sends its request to the SW1 (action 1) which performs the flow classification according to

Table 5.2. It then pushes the chain-Id on the request (action 2). This chain-Id indicates that DA,

Table 5.2 Application-level flow tables

App-level Switch Match Field Action

SW1 Application: HTTP, SenML, Average data
&& IoT: Raw, CoAP

Insert Chain Id A
Forward to SW2

SW2 Chain Id = A Forward to SW3

SW3 Chain Id = A Forward to SW4

SW4 Chain Id = A Forward to “sensor a”

71

IMC, and PC are needed to deliver the required service to the application. SW1, according to the

entries in its routing table, (i.e., Table 5.2) collects measurements from sensors (e.g., sensor x, type

A) and sends the request to the second switch (SW2) (action 3-6). The SW2 sends the request to

the DA VNF to aggregate the data (actions 7-8). The same applies to SW3 and SW4 (actions 9-

16). Finally, the requested data is sent back to the Application Agent (action 17) through the

Application Overlay.

5.3. Performance Evaluation

For the prototype, the recovery phase of the earthquake early warning and recovery application

(presented in Chapter 2) is implemented. This phase is as follows; an earthquake recovery

application collects the data of sound sensors deployed in the affected areas. These sensors can

detect voices or other sounds of possible human presence through the ruins and inform the

earthquake recovery application. In order to communicate with these IoT devices, the application

needs a gateway for handling the different types of communication interfaces. Sometime later, a

fire detection and fighting application that needs to be notified when a fire occurs, adds temperature

sensors that can detect fires. It then deploys a fleet of robots that can detect extinguishers and grab

one in order to suppress the fire. Accordingly, the gateway needs to be upgraded in a dynamic

manner such that it can serve the newly added IoT devices.

Three different types of IoT devices are used. Sunfounder5 sensors are deployed over the

Raspberry Pi6 (RPi) to detect sounds, Virtenio7 sensors are deployed to detect fires, and Lego

Mindstorms8 robots with specialized arms are utilized to grab extinguishers and suppress fires. A

ball is used to simulate the extinguisher.

5sunfounder.com/modules/sensor-module.html/
6 raspberrypi.org/
7 virtenio.com/
8 lego.com/en-us/Mindstorms/

Table 5.3 Prospective chains based on application-level requirements

 End-user App. Requirements IoT Devices Properties
VNF Chains Chain ID

Protocol Info Model Data Aggregation Protocol Info Model

HTTP SenML Average Data CoAP Raw Data
DA1, IMC1,

PC1
A

HTTP SensorML Average Data HTTP Raw Data DA1, IMC2 B

72

In these experiments, we assume that the recovery phase of the earthquake early warning and

recovery application has one application component: Victim Detector. To that end, Sunfounder

sensors on RPis send their raw measurements over HTTP Protocol. This data is first processed by

a DA (to send only the sounds of any possible human beings) and then processed by the IMC

(mapped to SenML format). The fire detection and fighting application has two application

components: Fire Detector and Robot Dispatcher. Virtenio sensors send their raw measurements

over CoAP protocol. These measurements are processed by a DA (to send data over a specific

threshold) followed by an IMC (mapped to SenML format), and finally by a PC (encoded in HTTP

protocol). Accordingly, the same IMC can be reused by both applications. Finally, in order for the

application to send commands to the robots, the IMC and the PC convert the HTTP request

received into LeJOS JAVA API command that implements the LCP.

In this prototype, it is assumed that an ad-hoc network is already built and that the connection

between the involved nodes has been established. It is also assumed that a fixed node in the IoT

provider is carried on the relief vehicles during MANET setup and is part of the gateway and the

application overlay.

Figure 5.4 Prototype architecture

73

5.3.1. Proof of Concept Prototype

The validation prototype is implemented according to the architecture depicted in Figure 5.4.

The signaling procedure for gateway provisioning (gateway request and gateway orchestration)

and the end-to-end scenario of the actual flow of data as described by the illustrative sequence

diagrams (i.e., Section 5.2.6) are implemented. In this implementation, container-based gateway

orchestration is adopted. Containers are lightweight, stand-alone, and modular. In addition, they

allow rapid configuration and deployment. Existing open source MANO solutions are not used in

this prototype as they do not support container-based orchestrations.

For the Gateway Orchestrator (i.e., NFVO), Alfresco Process Services9, an enterprise Business

Process Management (BPM) solution is used. It allows the creation of process definitions and

orchestration plans using the capabilities of the Business Process Model Notation (BPMN). It also

exposes REST API to external entities to execute the orchestration plan. Figure 5.5 shows an

example of the orchestration plan used for the new deployment of the gateway. In this plan, the

required VNFs for the gateway are first deployed, then the VNFs are chained using SDN, and

finally, the IoT Gateway Overlay is created.

The application-level switches are implemented using Java libraries. These switches expose a

REST API implemented as Java Restlet framework to the SDN Controller through the fixed node

in the IoT Provider domain for handling application-level flow entries. For the SDN Controller,

since existing open source SDN controllers do not support our proposed extended features, we

implemented it as a simple REST API using the Restlet framework.

The IoT Gateway Overlay is created by the Gateway Overlay Manager. Hive2Hive10 API is

used, which provides a free, open-source, distributed, and scalable solution for distributed P2P

9 alfresco.com/
10 hive2hive.com/

Figure 5.5 IoT Gateway orchestration plan

74

networks. It also provides for headless deployment (e.g., on an RPi) and is configurable and

customizable. The overlay is created by the fixed node in the IoT Provider domain as a master

client by advertising its address and creating a user profile. The remaining nodes join the overlay

network as user clients by registering to the user profile.

The VNFs are implemented using Java libraries and packaged in Docker containers. They are

pushed to the DockerHub repository. The container images are pulled from the repository through

the fixed node in the IoT Provider domain. The Application-level SDN Switches and the VNFs

communicate with each other in the overlay using the Hive2Hive framework.

Two VNFs (i.e., DA and IMC) and three Application-level SDN Switches are randomly placed

on the two RPis. It should be noted that a VNF placement algorithm can be adapted to deploy the

VNFs in the optimal location in the network (e.g., [112]). The remaining architectural modules are

modeled as RESTful web services using a Java Restlet framework.

5.3.2. Experimentation Setup

The IoT Gateway Provider domain runs on a 64-bit laptop with Ubuntu 14.04.5 LTS. The

Application domain runs on a laptop with Intel® Xeon® CPU clocked at 2.67 GHz and a 6GB

RAM with 64-bit Windows 7 Enterprise. The fixed node of the IoT Provider domain runs on a 64-

bit laptop with Ubuntu 14.04.5 LTS. The RPis run a Raspbian OS which is based on Debian OS.

The first RPi hosts two Hive2Hive user clients (i.e., one on behalf of a Virtenio sensor and one on

behalf of the DA VNF). The second RPi hosts three Hive2Hive user clients (i.e., one on behalf of

a LEGO Mindstorms robot, one on behalf of an IMC VNF, and one representing the Victim

Detector component of the earthquake application.

5.3.3. Measurements and Results

A) Performance Metrics

The performance metrics utilized to evaluate the performance of the proposed architecture are:

 Gateway provisioning latency – measured from the time the Application Agent sends a request

to obtain sensor measurements to the time the gateway is deployed and chained in the IoT

domain. Experiments with a different number of VNFs, SDN switches, and overlay nodes are

conducted.

75

 Orchestration latency – Measured from the time the orchestration request to the Gateway

Orchestrator is initiated to the time the acknowledgment of orchestration is received. The

orchestration process, as discussed in the previous section, includes the IoT gateway

deployment, IoT gateway chaining, and IoT gateway overlay creation. In addition, the

orchestration latency is measured when a request to upgrade an already-deployed gateway is

received. To that end, a scenario where new sensors are added by the fire detection and fighting

application is assumed. According to this scenario, a gateway with three VNFs is required (i.e.,

DA, IMC, PC), with one of the VNFs (i.e., IMC) already deployed in the IoT Provider Domain.

 End to End (E2E) delay - Measured from the time the IoT devices send their data to the time

the requested data is obtained by the application. Here, the order of the VNFs is varied to show

the effect of changing the order of the VNFs on the E2E delay. The E2E delays for both

fixed/centralized gateways and the proposed distributed gateway are also calculated.

B) Results and Discussions

This section discusses the performance results obtained, beginning with the provisioning

latency.

Test Case 1: Provisioning latency

Figure 5.6 (a) depicts the IoT gateway provisioning latency and the orchestration latency,

which is a sub-phase of the provisioning procedure. Both average latency and the standard

deviation are provided for 10 consecutive experiments. The average provisioning latency is 15.71

(a) (b)

Figure 5.6 Gateway provisioning latency

(a) Provisioning latency vs. orchestration latency
(b) Provisioning latency with different number of VNFs and Application-level SDN Switches

76

sec. This shows the efficiency of using NFV and SDN-based gateways compared to traditional

gateways. The latter imposes lengthy deployment time, requires additional configurations for

physical interfaces to implement chains, etc. [113]. Also, it can be observed from the graph that

the average orchestration latency (14.17 sec) takes up most of the time of the provisioning

procedure.

In order to conduct an accurate insight into how the system behaves depending on the number

of VNFs, SDN switches, and overlay nodes, several cases are carried out. A linear topology is used

for the Application-level SDN Switches. We gradually increase the number of instances of each

VNF while considering a load balancer VNF for each group of VNFs of the same type to equally

distribute the load among them. Therefore, the case with 6 VNFs for instance, include 3 instances

of each VNF (i.e., Data Aggregator and Information Model Converter), 2 load balancers, and 7

application-level SDN switches. This leads to a gateway overlay with 15 nodes. A Similar number

of overlay nodes for disaster management scenarios are considered in the literature, e.g., [114]. It

can be observed in Figure 5.6 (b) that by increasing the number of VNFs and the SDN switches

the provisioning latency behaves almost at a slight constant rate, linearly. This is because when

the number of nodes in the overlay is increased, the system experiences a very slight increase in

(a) (b)

Figure 5.7 Orchestration latency of the proposed gateway

(a) Orchestration latency of each phase of the orchestration plan

(b) Orchestration latency of upgrading the proposed gateway vs. orchestrating a new gateway

77

the overlay creation latency. This is since all the nodes (i.e., user clients in Hive2Hive terminology)

need to register to the user profile created and advertised by the fixed node (i.e., master client) and

join the overlay.

Next, the various phases of the orchestration are measured to get a more detailed insight into

the orchestration latency.

Test Case 2: Orchestration latency

Figure 5.7 (a) shows the latency of the orchestration, including IoT gateway deployment, IoT

gateway chaining, and IoT gateway overlay creation over 10 consecutive measurements. Both

average latency and the standard deviation are provided. It can be noted that the overlay creation

takes up most of the orchestration time, which indicates that overlay creation imposes an overhead

on the overall management and orchestration procedures in terms of latency.

One reason for the time required for overlay creation is that with overlay networks, an

additional intermediate level is added between the nodes in the physical network infrastructure.

However, despite the overhead, the experimental results show that the overhead associated with

the overlay network is not a significant factor compared with the considerable gain of the approach.

Overlays play an important role in MANETs where nodes join and leave the group dynamically.

The additional layer prevents interference with the existing protocols in the underlying

heterogeneous environment of MANET.

(a) (b)

Figure 5.8 E2E latency of the proposed gateway

(a) E2E delay for centralized gateway vs proposed distributed gateway
(b) E2E delay of the proposed gateway for different orders of VNFs

78

Figure 5.7 (b) shows the orchestration latency associated with the procedure of upgrading the

gateway vs deploying a new gateway. The proposed architecture allows the upgrading of a pre-

deployed gateway for which the orchestration latency is 15.06 sec. In contrast, the orchestration

latency associated with the procedure of deploying a completely a new gateway (when upgrading

the gateway is not supported) is 24.51 sec. It can be observed that the proposed architecture’s

feature of allowing the gateway’s upgrading decreases the orchestration latency by 38.56%.

Test Case 3: End to End delay

In Figure 5.8 (a), the E2E delay of the proposed distributed gateway with two VNFs (DA-

IMC) is compared to a fixed centralized gateway. The fixed gateway aggregates the received data

and converts the information model into two tightly coupled functionalities. The average latency

for the proposed distributed gateway (i.e., 8.8 sec) is higher than the average latency for a

centralized fixed gateway (i.e., 1.3 sec). This is basically because in a centralized gateway the

communication latency between different functionalities is eliminated.

However, in the implementation, a linear topology is adopted for the SDN switches; other

topologies could be investigated to see if they can reduce this latency. Eliminating the SDN

switches and making the VNFs SDN enabled could also reduce this latency, but this might make

the VNFs more demanding in terms of processing and storage and may not fit resource-constrained

environments. Using other P2P frameworks could also be investigated to see if they can reduce

this latency.

In Figure 5.8 (b), the E2E delay of the proposed distributed gateway with two VNFs (DA-

IMC) is measured for two valid chaining options of the VNFs. Five consecutive measurements are

assumed to be sent from the sound sensor, where the last measurement indicates a possible human

being sound. In the first chain (i.e., DA-IMC), the DA receives all the measurements and sends

only possible human being sound which is converted to the appropriate model at the IMC. In the

second case (i.e., IMC-DA), all the received measurements from the sensors are converted to the

model supported by the application (i.e., SenML) and then filtered at the DA to send only the

possible human being sound. It should be noted that both cases lead to the same relevant result at

the application. The average latency in the first chain (i.e., DA-IMC) is 10.45 sec, while in the

second chain (i.e., IMC-DA) it is 18.52 sec.

79

It is clear that the performance of the gateway in terms of latency is directly affected by the

order in which the VNFs are composed and processed. This order has a significant impact on the

amount of processing capacity required for each VNF. And, the amount of the required capacity

depends on the amount of data handled by that VNF instance. Different chain composition

algorithms can be integrated to improve the performance of the gateway e.g., [112].

5.4. Conclusions

This chapter proposed an architecture for on-the-fly distributed gateway provisioning in

disaster management using NFV and SDN technologies. These technologies make it possible to

address the challenges of traditional gateways, such as dynamicity and flexibility. NFV allows

upgrading the pre-existing gateway and deploying the gateway functions anywhere anytime, and

SDN enables reusing the same gateway functions in different flows for different applications. The

gateway functionalities were provisioned as VNFs and are chained dynamically using the

application-level SDN switches. The IoT gateway was built as a P2P overlay taking into

consideration the MANET settings of the disaster management scenarios.

A prototype of the proposed architecture was provided, and a set of experiments are conducted

to evaluate the architecture. The results showed that building the IoT gateway as a P2P overlay

imposes an overhead on the overall management and orchestration procedures, but it produces a

considerable gain. The performances of distributed and centralized approaches are also analyzed

and the effect of the order of the VNFs on the overall E2E delay is investigated. The results showed

the advantages of using on-the-fly provisioning of IoT gateway and the possibility of reusing and

updating a pre-existing gateway.

80

Chapter 6

6. A Coalition Formation Algorithm for Multi-

Robot Task Allocation

6.1. Introduction

Disaster management application domains for events such as earthquakes need a very large number

of robots (in the order of hundreds or even thousand [3]) in a single coalition in order to cover the

whole disaster area and satisfy the requirements of the search and rescue tasks of the application.

Hence, the selection of the best coalition in such real-world large-scale scenarios requires solving an

optimization problem with the goal of optimizing several conflicting objectives simultaneously.

In this chapter, we propose an algorithm for coalition formation problem. We address the ST-MR-

IA (Single-Task Multi-Robots Instantaneous-Assignment) class of Multi-Robot Task Allocation

(MRTA) problems following the taxonomy presented in [115]. In the problem at hand, each robot

is capable of executing one task at a time and each task needs to be assigned to a robot coalition.

Also, the available information about the robots, the tasks, and the environment permits only

instantaneous allocation of tasks to robots, without planning for future allocations [115]. Our

proposed algorithm is based on Quantum Multi-Objective Particle Swarm Optimization

(QMOPSO). QPSO is a discrete version of PSO to solve optimization problems with binary-valued

81

solution elements [116]. PSO is one of the many options for coalition formation. Simulated

Annealing (SA), Genetic Algorithm (GA), and Column-Generation (CG) are other examples. PSO

is chosen because of its effectiveness in solving a wide range of applications [117]. It has the ability

to find optimal or near-optimal solutions for large-space problems in a short time compared to

other heuristics [118].

The goal of the proposed algorithm is to ensure that the optimal coalition of robots is selected

with the required capabilities for each task. The proposed algorithm consists of a filtering method,

the QMOPSO approach, and a ranking method. Filtering is used to choose the best robots for the

execution of the QMOPSO algorithm and to make the robots that have not been selected available

for other requests. In addition, location constraints regarding the capability distribution of the

robots are taken into consideration. For instance, some tasks require that the combination of a

given sensor and actuator should reside on the same robot or on different robots. This is necessary

to ensure proper execution of search and rescue task. The proposed algorithm is implemented in

order to analyze its performance.

The rest of this chapter is organized as follows. First, it presents the problem formulation,

followed by the description of the proposed algorithm. After that, it presents the simulation

parameters and settings followed by the validation results. We will conclude this chapter at the

end.

6.2. Problem Formulation

To consider this problem, let us define an infrastructure composed of n robots:

 𝑅 = {𝑅1, . . . , 𝑅𝑖 , . . , 𝑅𝑛} (1)

where n is significantly large and hence the infrastructure can support search and rescue task in

large-scale disasters.

Each of these robots has two vectors of capabilities: sensing capabilities (e.g., cameras, sonars) and

actuating capabilities (e.g., arms, wheels). It is assumed that each capability is a real non-negative value

and indicates the number of sensors/actuators owned by the robots.

For robot 𝑅𝑖, the sensing and actuating capability vectors are: 𝑆𝑅𝑖 = {𝑠1𝑖 , … , 𝑠𝑟𝑖 } (2) 𝐴𝑅𝑖 = {𝑎1𝑖 , … , 𝑎𝑟𝑖 } (3)

where r is the number of possible sensing and actuating capabilities.

82

A robot can be in three states: Idle, Allocated, and Busy. The idle state is when the robot does not

perform any tasks, the allocated is when the robot is locked with the algorithm running on it, and the

busy state is when the robot is performing a task.

The infrastructure can perform m tasks assigned to it: 𝑇 = {𝑇1, . . . , 𝑇𝑗 , . . , 𝑇𝑚} (4)

Each task 𝑇𝑗 is composed of p sub-tasks:

 𝑍𝑇𝑗 = {𝑧1𝑗 , . . . , 𝑧𝑘𝑗 , . . , 𝑧𝑝𝑗} (5)

It is assumed that the sub-tasks are executed independently and that each robot is a member of only

one sub-task. Each sub-task requires a specific set of sensing and/or a set of actuating capabilities to

start.

We represent the capability requirements of each sub-task 𝑧𝑘𝑗 by two vectors, sensing requirements

and actuating requirements, as:

For sub-task 𝑧𝑘𝑗, the capability requirement vectors are:

 𝑆𝑧𝑘𝑗 = {𝑠1𝑗𝑘 , … , 𝑠𝑟𝑗𝑘} (6)

 𝐴𝑧𝑘𝑗 = {𝑎1𝑗𝑘 , … , 𝑎𝑟𝑗𝑘} (7)

Then, the capability requirement vectors for the task 𝑇𝑗 is the sum of the capability requirement

vectors of the sub-tasks constituting the task 𝑇𝑗:

 𝑆𝑇𝑗 = ∑ 𝑆𝑧𝑘𝑗𝑝𝑘=1 (8)

 𝐴𝑇𝑗 = ∑ 𝐴𝑧𝑘𝑗𝑝𝑘=1 (9)

Some of the sub-tasks of task 𝑇𝑗 are tied by locational constraints regarding the capability

distribution of the robots while others may be executed without any locational constraints. According

to [50], there are two types of locational constraints; a combination of sensors and actuators should

reside on the same robots or on different robots. The locational constraints can be represented as

Constraints Satisfaction Problem (CSP) [50].

CSP consists of three components:

1. The set of variables, that is the required sensor and actuators for the task

 𝑋 = {𝑥1, … , 𝑥𝑗 , . . , 𝑥𝑘} (10)

where 𝑋 = {𝑠1, 𝑠2, … , 𝑠𝑛, 𝑎1, 𝑎2, … , 𝑎𝑛}

2. The set of values for each variable, that is the available robots possessing the required capabilities

for each variable

83

For variable 𝑥𝑖 , the set of values is:

 𝑉𝑥𝑖 = {𝑅𝑗 , . . . , 𝑅𝑛} (11)

3. The set of constraints between different collections of variables

 𝐶 = {𝐶1, 𝐶2, . . , 𝐶𝑛} (12)

where each 𝐶𝑖 is one of the following types: 𝑥𝑖 ≠ 𝑥𝑗 , 𝑥𝑖 = 𝑥𝑗 . The goal in CSP is to assign a value

for each variable such that the constraints are satisfied.

A coalition 𝐶𝐿𝑇 for any task has two vectors of capabilities: sensing 𝑆𝑐 and actuating 𝐴𝑐 while

each is the sum of the capabilities owned by the robots in that coalition:

 𝑆𝑐 = ∑𝑅𝑖Є𝐶 𝑆𝑅𝑖 (13)

 𝐴𝑐 = ∑𝑅𝑖Є𝐶 𝐴𝑅𝑖 (14)

Coalition 𝐶𝐿𝑇𝑚 can perform task 𝑇𝑗 only if:

1. The vector of its capabilities satisfies the following:

 𝑆𝑐 ≥ 𝑆𝑇𝑗 And/or 𝐴𝑐 ≥ 𝐴𝑇𝑗 (15)

2. And its members meet the locational constraints.

It is assumed that a coalition can work on a single task at a time and that each robot is a member of

one coalition at a time.

 𝐶1𝑖⋂ 𝐶2𝑖 = ∅ (16)

The objective is to find a coalition that minimizes the deployment cost of the robots, minimizes the

time needed to perform a task by the robots, and to minimize the number of robots in a coalition.

6.3. Coalition Formation Algorithm for Multi-Robot System

We propose an algorithm for coalition formation for Multi-Robot system. The Pseudocode for this

algorithm is given in Algorithm 6.1. The set of inputs for the algorithm are n (the maximum number

of robots allowed in a group), Time (the maximum time period to complete a given task), Cost (the

cost the customer agrees on), Filtering_Rule, Task_Requirements (the required sensors and actuators

for a given task), Locational Constraints (the capability distributions for sub-tasks constituting a given

task), and Criteria_Importance (defining the weights to rank the Pareto-optimal solutions based on

more than one criterion - i.e., objectives in our case).

The algorithm starts with filtering the robots based on the Filtering_Rule. In this function, if the

battery level of the robots is lower than the Filtering_Rule, they are excluded from the next steps. It

then applies the QMOPSO-based algorithm. Multi-objective problems generate a set of non-dominated

84

or Pareto-optimal solutions. The solutions are ranked after excluding the solutions that exceed the time,

the cost, the number threshold, and the infeasible solutions. Promethee II ranking [119] is applied,

which is a multi-criteria ranking method with lots of success due to its mathematical properties and its

user-friendliness. In this method, the Pareto-optimal solutions are compared pairwise. The difference

between the evaluations of two Pareto-optimal solutions over each criterion is considered. The criteria

in our case are the objectives (i.e., time, cost, and number of robots). The Pareto-optimal solutions are

ranked using the Criteria-Importance/weight of the objectives. The highest rank solution denotes the

best robot coalition.

The QMOPSO algorithm first initializes the particles. The Pseudocode is given in Algorithm 6.2. A

particle is defined based on the quantum bit. Two vectors are initialized:

 Quantum particle vector 𝑉(𝑡)𝑖, which is the velocity for particle i and is initialized to random values

between [0,1]:

 𝑉(𝑡)𝑖 = [𝑣(𝑡)1𝑖 , 𝑣(𝑡)2𝑖 , …, 𝑣(𝑡)𝑛𝑖] (17)

 Discrete particle vector 𝑝(𝑡)𝑖, which is initialized by initializing a random number for each 𝑣(𝑡)𝑗𝑖

and then, according to the condition in (19) and (20), the discrete particle vector is initialized:

 𝑝(𝑡)𝑖 = [𝑝(𝑡)1𝑖 , 𝑝(𝑡)2𝑖 , …, 𝑝(𝑡)𝑛𝑖] (18)

where n is the size of the problem, i.e., the total number of robots.

 If 𝑟𝑎𝑛𝑑𝑗𝑖 > 𝑣(𝑡)𝑗𝑖𝑝(𝑡)𝑗𝑖 = 1 (19)

 Otherwise 𝑝(𝑡)𝑗𝑖 = 0 (20)

First, the initial population is evaluated by calculating the values of the three objective functions for

each particle. The particles that represent non-dominated solutions are stored in a repository (REP).

Each particle keeps track of its best local position, which is the best solution obtained by this particle

so far (𝑃𝑖𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡). At each iteration, the algorithm selects 𝑃𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡 that denotes the best position

achieved so far by any particle in the population. It is selected by ranking the solutions in REP and

choosing the one with the highest rank. Also, the velocity equation is updated according to equation

(21) and the particle vector is updated in the same way in equations 17 to 20.
 𝑉(𝑡 + 1) = 𝑤 × 𝑉(𝑡) + 𝑐1 × 𝑉𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) + 𝑐2 × 𝑉𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) (21)

 𝑉𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) = 𝛼 × 𝑝𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) + 𝛽 × (1 − 𝑝𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡)) (22)

𝑉𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) = 𝛼 × 𝑝𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) + 𝛽 × (1 − 𝑝𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡)) (23)

 where +𝛽 = 1 , 𝛽 < 1, 0 < 𝛼. 𝛼 and 𝛽 is control parameters, 𝑤 represents the degree of belief

85

on oneself, 𝑐1 is the local maximum, and 𝑐2 is the global maximum. 𝑃𝑖𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 is updated by applying Pareto dominance. If the current position is dominated by the one

in the memory, the one in the memory is kept; otherwise, the one in the memory is replaced by the

current position. To update the REP, if the REP is empty, the current non-dominated particle is added

to the REP; otherwise, the two particles are compared as follows: If both particles are feasible, Pareto-

dominancy is applied; if one is feasible and the other infeasible, the feasible dominates; if both are

infeasible, the one with the highest degree of constraint satisfactions is selected. We define a particle’s

feasibility degree as the degree of constraint satisfactions.

A task 𝑇𝑟𝑒𝑞 is considered to have U capability requirements and M locational constraints. The

capability requirements and locational constraints are considered as 𝑇𝑟𝑒𝑞 and C respectively. Then a

particle is feasible if it satisfies 𝑇𝑟𝑒𝑞 and C, and it is infeasible otherwise. We determine a particle’s

feasibility degree as the weighted sum of feasibility degree with respect to 𝑇𝑟𝑒𝑞 and C. If a particle

satisfies u capability requirements and satisfies m locational constraints, then the particle’s feasibility

degree with respect to 𝑇𝑟𝑒𝑞 and C are expressed as:

 𝑠𝑎𝑡 𝑇𝑟𝑒𝑞 = 𝑢/𝑈 (24)

 𝑠𝑎𝑡 𝐶 = 𝑚/𝑀 (25)

A particle’s feasibility degree can now be calculated as:

Algorithm 6.1: Coalition Formation Algorithm for Multi-Robot Systems

1 Inputs: n, time, cost, Filtering_Rule, Task_Requirements, Criteria_Importance, allRobots

2 Set Selected_Robots ← [], Selected_Clts ← [], Robots ← []

3 Function: Filtered_Robots = Filter_Robots (allRobots, Filtering_Rule)

4 Selected_Robots =Filtered_Robots

5 Function: apply QMOPSO to find the best coalition

6 for each (Robot in best coalition)

7 set Robot.State = busy

8 deploy Robot

9 end

10 if more than one Pareto-Optimal solution then

11 if time, cost, number of robots for each particle exceed thresholds (𝑡, 𝑐, 𝑛)
12 remove particle

13 else if particle is infeasible
14 remove particle

15 else

16 Rank the Pareto-Optimal solutions

17 Select particle with highest ranking

18 selected_coalition = Particle with highest ranking

19 end
20 else if one Pareto-Optimal solution

21 selected_coalition = the Pareto-Optimal solution

22 end

86

 𝑃𝑓𝑒𝑎𝑠 = 𝑠𝑎𝑡 𝑇𝑟𝑒𝑞 ∗ 𝑊𝑇 + 𝑠𝑎𝑡 𝐶 ∗ 𝑊𝐶 (26)

where 𝑊𝑇 and 𝑊𝐶 are the weights chosen such that:
 𝑊𝑇 + 𝑊𝐶 = 1, 0 ≤ 𝑊𝑇 , 𝑊𝐶 ≤ 1 (27)

Note that if a particle is feasible, then the feasibility degree is 1.

6.4. Algorithm Evaluation

In order to evaluate the algorithm, we have performed our experiments with a different problem

and population sizes. In each experiment, speed, cost, position, battery level of each robot, and position

of the target - which is the fire location – are randomly generated. All the robots are in the idle state at

the beginning of each experiment. We have compared our algorithm with two well-known heuristic-

based algorithms: NSGA-II and SPEA-II [51]. All algorithms have been implemented in Matlab.

Algorithm 6.2: QMOPSO-based Heuristic Algorithm

1 Initialization: number of iteration, 𝑗 ← 0, 𝑉(𝑡), 𝑃(𝑡)

2 t=0

3 value = Evaluate Population (𝑃(𝑡))
4 store the position of particles that represents non-dominated vector in repository REP

5 initialize memory for each particle
6 𝑝𝑖 𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡[𝑖] = 𝑃𝑖(𝑡)
7 𝑗 = 𝑗 + 1
8 while 𝑗 < number of iteration
9 set 𝑃𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡 by selecting from the REP

10 for each particle 𝑃(𝑡)

11 update velocity and position of particles

12 value = Evaluate Population

13 update the𝑃𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡

14 if the current 𝑃(𝑡)is non-dominated by 𝑝𝑖𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡[𝑖]
15 𝑝𝑖 𝑙𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡[𝑖] = 𝑃𝑖(𝑡)

16 end

17 end
18 select the non-dominated particles

19 update the REP by comparing current non-dominated particles with the ones in REP

20 end

87

Table 6.1 shows the evaluation parameters along with their values.

6.4.1. Performance Metrics

 Error Ratio: The percentage of non-dominated solutions that are not part of a reference Pareto-set:

When the true Pareto set is known, it is used as the reference Pareto-set. When the true Pareto-set

is not known, the reference Pareto-set is obtained by combining Pareto-sets of all algorithms and

applying non-dominancy.

 Set Coverage (SC (A, B)): Given two sets, is the percentage of non-dominated solutions in set B

covered (i.e., dominated) by those in set A: If SC (A, B) > SC (B, A), then A is relatively better

than B. A is absolutely better than B when SC (A, B) = 1 and SC (B, A) = 0.

 Spacing: standard deviation of distances of non-dominated solutions from their closest neighbors.

 Processing Time (PT) (Sec): the time needed for the algorithm to select the most efficient coalition.

 Filtering Time (sec): The time needed for filtering the robots in QMOPSO.

 Repository Update Time (sec): The time needed by QMOPSO to update the repository at each

iteration. It includes the delay incurred by the constraint handling method.

6.4.2. Results and Discussion

Test case 1 - convergence and diversity: Table 6.2 shows the error ratio, the set coverage, and

the spacing metrics of QMOPSO, NSGA-II, and SPEA-II for a small-scale problem (i.e.., 10 robots).

Table 6.1 Algorithm evaluation parameters

Parameter Value

General

Population size 100, 200

Problem size (number of robots) 10-10000

Maximum number of iterations 100 𝛼, 𝛽 0.3, 0.7 𝑤, 𝑐1, 𝑐2 0.25, 0.25, 0.5

Threshold for filtering 40%

Number of objectives 3

Number of sub-tasks 3

Criteria_Importance time

NSGA-II and SPEA-II

Tournament size 2

Pool size for tournament selection Population number / 2

Mutation probability 10%

Crossover probability 90%

Distribution index for crossover 20

Distribution index for mutation 20

88

We have also generated the true Pareto-optimal solutions by the enumerated search method. For the

three algorithms, we have used a population size of 200. The error ratio of QMOPSO is higher than

that of SPEA-II but lower than that of NSGA-II. The set coverage metric shows that 30% of solutions

in NSGA-II are covered by QMOPSO and 66% of QMOPSO are covered by NSGA-II. Hence, NSGA-

II is relatively better than QMOPSO. Since NSGA-II and SPEA-II do not cover each other, their

relative dominance cannot be concluded. Overall, we observe that NSGA-II performs better than

QMOPSO in terms of convergence. However, when it comes to diversity, QMOPSO outperforms

NSGA-II and SPEA-II. This is concluded from the lowest spacing value in case of QMOPSO, which

indicates a good distribution of solutions. Table 6.3 shows the error ratio for large-size problems (e.g.,

1000, 5000, and 10000 robots). We observe that for any problem size, QMOPSO outperforms NSGA-

II and SPEA-II. In fact, it achieves the lowest error ratio for the largest problem size (10000 robots). It

shows a better convergence of QMOPSO for large-scale problems. SPEA-II has the highest error ratio

for 5000 robots. Table 6.3 also shows the set coverage metric. As observed, when the problem size is

1000, QMOPSO is relatively better than both NSGA-II and SPEA-II. For a problem size of 5000,

QMOPSO is absolutely better than SPEA-II as all solutions of SPEA-II are dominated by those of

QMOPSO and none of QMOPSO solutions is dominated by those in SPEA-II. QMOPSO for a

problem size of 5000 is relatively better than NSGA-II. However, for a problem size of 10000,

QMOPSO is relatively better and absolutely better than SPEA-II and NSGA-II respectively. Overall,

Table 6.3 Error Rate & Set Coverage (Population Size=100)

No. of

Robots

Error Ratio Set Coverage

QMOPSO NSGA-II SPEA-II
(QMOPSO,

NSGA-II)

(NSGA-II,

QMOPSO)

(QMOPSO,

SPEA-II)

(SPEA-II,

QMOPSO)

1000 0.23 0.32 0.30 0.72 0 0.8 0.1

5000 0.20 0.31 0.41 0.9 0.1 1 0

10000 0.11 0.26 0.2 1 0 0.93 0

Table 6.2 Error Ratio, Set Coverage and Spacing (10 Robots, Population size=200)

Algorithm Error Rate
Set Coverage

Spacing
QMOPSO NSGA-II SPEA-II

QMOPSO 0.6 - 0.3 0 31.63

NSGA-II 0.8 0.66 - - 51.45

SPEA-II 0.33 1 - - 67.14

89

SC results show that QMOPSO produces a better solution than NSGA-II and SPEA-II. Table 6.4 shows

the spacing metric for three algorithms. We observe that QMOPSO attains the lowest value of spacing

for any problem size, thereby achieving the highest diversity and even distribution of solutions. The

diversity of NSGA-II lies between QMOPSO and SPEA-II. Figure 6.1 (a)-(c) shows the non-

dominated-fronts obtained at some iterations for a problem size of 5000. We have found that with an

iteration increase, the solutions in QMOPSO evolve more quickly than those in NSGA-II and SPEA-

II. It shows the ability of QMOPSO to explore the search space more efficiently than others.

Test case 2 - processing time of the algorithms with a various number of robots: We compare

the PT of our algorithm with NSGA-II and SPEA-II. The three algorithms are implemented and applied

in the same environment, with the same number of robots, task requirements, and robot capabilities.

The size of the population is 100. Figure 6.2 shows the processing time of the three algorithms with a

various number of robots. For the QMOPSO algorithm, we consider the PT with and without the

filtering method. We notice that the PT decreases when the filtering method is used. This is because

the filtering method reduces the number of robots on which the algorithm runs. On the other hand,

without filtering, the PT of the algorithm increases with an increase in the number of robots. The

rationale behind this is the fact that the higher number of robots results in a higher dimension of the

particle. As an important observation, the PT without these methods is still smaller than that of NSGA-

II and SPEA-II; this is due to the simple mathematical operations of QMOPSO compared to other

algorithms. In QMOPSO, the velocity equation is the sole equation updated at each iteration.

Test case 3 - repository update time: We have considered two types of constraints: Task

requirements and location constraints. For the task requirements, we have considered 6 requirements

(𝑠1, 𝑠2, 𝑠3, 𝑎1, 𝑎2, 𝑎3) with a random number of units for each. For the locational constraints, we

have represented the problem using CSP as described in Section 4.2 and we have considered three

locational constraints (𝑠1 = 𝑎1, 𝑠2 = 𝑎2, 𝑠3 = 𝑎3). A simplified method is used to calculate the

satisfaction degree of a particle/coalition for the task requirements and locational constraints. We

Table 6.4 Spacing (Population Size=100)

No. of

Robots

Spacing

QMOPSO NSGA-II SPEA-II

1000 18.23 23.11 40.36

5000 16.11 35.61 37.22

10000 8.24 19.23 28.19

90

(a) (b)

 (c)

Figure 6.1 Non-dominated fronts obtained at different iteration for problem size 5000 and population size 200

(a) After 10 iterations
(b) After 50 iterations
(c) After 75 iterations

91

calculate the effect of our proposed method to solve the two constraints (task requirements and

locational constraints) on the average repository updating time. The results in Figure 6.3 demonstrate

the time needed to perform the feasibility check versus the overall repository update time, considering

different numbers in a population. As we notice, the time needed for our proposed feasibility checking

method is negligible compared to the total time for updating the repository.

Test case 4 - filtering time: We have also calculated the time needed to perform the filtering

function compared to the overall processing time of QMOPSO. Figure 6.4 shows that the filtering

time is negligible compared to the overall processing time of the algorithm. The time needed for

filtering does not introduce additional overhead on the algorithm processing time. Since this method

Figure 6.3 The effect of feasibility check on average repository updating time

Figure 6.2 Processing time with different problem sizes (Population size=100)

92

excludes some robots using battery levels, it ensures that the remaining robots have sufficient battery

to accomplish the task. Since it does not affect the processing time of the algorithm, the overall

efficiency is achieved.

6.5. Conclusion

In this chapter, we have proposed a coalition formation algorithm for multi-robot systems. To

show the effectiveness of our algorithm, we have conducted extensive simulation experiments and

compared our algorithm with other existing algorithms. The results demonstrate that the proposed

algorithm cannot only improve the solution but can also significantly reduce the processing time.

They also show that the filtering and the repository updating mechanisms do not add overhead on

the processing time. It is also observed that QMOPSO achieves higher diversity, the lowest error

rate, and produces a better solution compared to NSGA-II and SPEA-II for large problem sizes.

Figure 6.4 The time needed for the filtering function

93

Chapter 7

7. Application Component Placement in NFV-

based Hybrid Cloud/Fog Systems with

Mobile Fog Nodes

7.1. Introduction

Many service providers use cloud computing to deploy their applications as a way to reduce

cost whilst exploiting the elasticity feature provided by the cloud. However, the wide area network

used to connect the cloud to the end-users might cause high latency, which may not be tolerable

for some applications. On the other hand, fog computing, a concept introduced by CISCO in 2012,

provides an intermediate layer between end-users and the cloud which allows the deployment of

some of the application components in the fog at the edge while keeping some others in the cloud,

thereby reducing latency [13].

Applications can be implemented in cloud/fog systems as a set of interacting components that

can be executed in sequence, in parallel, or by using more complex constructs such as selections

and loops. They can, therefore, be modeled as structured graphs with sub-structures consisting of

these constructs. The selection sub-structure introduces non-determinism in the execution.

94

Meaning, there are uncertainties associated with the components’ executions. These uncertainties

imply that, for such non-deterministic input, from an initial state, there may be none, exactly one,

or many possible transitions. This chapter assumes that applications’ components are implemented

as VNFs. The structured graphs representing the applications are therefore VNF Forwarding

Graphs (VNF-FG) (i.e., sets of VNFs chained in specific orders).

The focus of this chapter is on application component placement in NFV-based hybrid

cloud/fog systems with mobile fog nodes. It tackles the challenges of heterogeneity of cloud and

fog, fog nodes mobility, and non-deterministic VNF-FG graphs. The heterogeneity is addressed

by considering makespan (an important Quality of Service (QoS) criterion) in addition to cost (a

budget that the application provider should pay for consuming resources) when it comes to

optimization. Indeed, cost minimization encourages cloud usage while makespan minimization

encourages fog usage. A compromise is required for the appropriate placement decision. The

mobility of fog nodes is modeled using the Random Waypoint (RWP) model [16]. Based on the

stationary distribution of fog nodes’ location, we calculate the expected makespan and cost for the

sub-structures: sequence, parallel, selection, and loop. Next, we aggregate the sub-structures’

calculations to obtain the application’s makespan and execution cost. The non-determinism nature

of the VNF-FGs is tackled by assigning probabilities to selection sub-structures and mean numbers

of iterations to loop sub-structures. These probabilities can be obtained through prediction models.

The problem is formulated as an Integer Linear Programming (ILP) problem, and regarding the

complexity, a Tabu Search-based Component Placement (TSCP) algorithm is proposed to find a

(a) (b)
Figure 7.1 Earthquake early warning and recovery application components

(a) Component-based application

(b) Structured VNF-FG representation

95

sub-optimal solution in feasible time. The proposed model and algorithm are implemented in order

to analyze their performance.

The rest of this chapter is organized as follows. First, it presents the system model, followed

by the description of the mobility model and the optimization problem. Then, it discusses the

designed Tabu Search-based component placement heuristic. After that, it presents the simulation

parameters and settings followed by the validation results. We will conclude this chapter at the

end.

7.2. System Model

 In this section, we explain the modeling of the components implemented as VNFs, the

structured VNF-FGs, the cloud and the fog systems, and the IoT/end-users that may interact with

components.

VNFs – Each component of the application is implemented as a VNF. Let 𝑇 be the set of VNF

types in the system. We denote the type 𝑡 of a VNF with 𝑓𝑡, which can be shared by more than

one application. The resource requirements for processing a VNF 𝑓𝑡 per unit of resource (CPU,

memory, storage) is represented by 𝜗𝑓𝑡 and the processing capacity of 𝑓𝑡 is represented by 𝑐𝑓𝑡.
The set of available instances for 𝑓𝑡 is represented by 𝐼𝑓𝑡. Each VNF type 𝑡 ∈ 𝑇 has a predefined

license cost 𝜕𝑓𝑡. We denote the maximum allowed VNF processing utilization with 𝜇𝑓𝑡.
Structured VNF-FGs - Let 𝑅𝑒𝑞 be the set of structured VNF-FG requests received by the

system. We represent a single request with 𝑅 ∈ 𝑅𝑒𝑞. The set of required VNF types for request R

is indicated by 𝑣𝑛𝑓𝑅 (𝑣𝑛𝑓𝑅 ⊂ 𝑇). The structured VNF-FG for request 𝑅 is represented as a tree

[14] in which leaf nodes represent VNFs belonging to 𝑣𝑛𝑓𝑅, while a middle node with index 𝑖,
namely 𝑆𝑖, represents one of the sub-structures (i.e., sequence, parallel, selection, loop) i.e., 𝑆𝑖 ∈{𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝}. Each middle node 𝑆𝑖 has at least two children where a child can be either a

VNF or a sub-structure. Figure 7.1 (a) shows the earthquake early warning and recovery

application’s components presented in Chapter 2. According to the constructed tree (i.e., Figure

7.1 (b)), we can define the relation between VNFs in the chain; the immediate predecessor of a

VNF 𝑓𝑡 can be determined by parsing the tree [14]. Let 𝐼𝑃(𝑓𝑡) denote the immediate predecessor

of 𝑓𝑡 and (𝐼𝑃(𝑓𝑡), 𝑓𝑡) a VNF edge if and only if the packets from VNF 𝐼𝑃(𝑓𝑡) must be forwarded

96

to the VNF 𝑓𝑡. We assume that the amount of traffic sent from 𝐼𝑃(𝑓𝑡) to 𝑓𝑡 for request 𝑅 is 𝐴𝑓𝑡𝑅 .

More details of the structured VNF-FG can be found in [14].

Cloud/Fog - We consider that the cloud and the fog domains are modeled as graphs: 𝐺𝑍 =(𝑁𝑍, 𝐸𝑍), where 𝑍 = 𝐶|𝐹 is used to indicate cloud or fog. Here, 𝑁𝑍 is a set of physical cloud/fog

nodes while 𝐸𝑍 is a set of cloud/fog edges representing the communication links among nodes.

We use 𝑐𝑛𝑍 and 𝛾𝑛𝑍 to represent the capacity and the cost, respectively, per unit of resource (e.g.,

CPU, memory, storage) usage of node 𝑛𝑍. We represent the threshold for resource usage of a

cloud/fog node with 𝜇𝑛𝑍 . The delay per traffic unit processing of VNF type 𝑡 hosted on a cloud/fog

node 𝑛𝑍 ∈ 𝑁𝑍 is represented by 𝐷𝑛𝑍𝑓𝑡
.

Table 7.1 Summary of key notations and decision variables

Input Parameters

VNFs 𝑇 Set of VNF types 𝑓𝑡 VNF of type 𝑡 ∈ 𝑇 𝜗𝑓𝑡 Resource requirements for processing 𝑓𝑡 (in processing units) 𝑐𝑓𝑡 Processing capacity of 𝑓𝑡 (in traffic units) 𝐼𝑓𝑡 Set of VNF instances associated to 𝑓𝑡 𝜕𝑓𝑡 License cost for 𝑓𝑡

Structured VNF-FGs 𝑅𝑒𝑞 Set of structured VNF-FG requests assigned to the system

R Single request for VNF-FG, 𝑅 ∈ 𝑅𝑒𝑞 𝑣𝑛𝑓𝑅 Set of required VNF types for request R, 𝑣𝑛𝑓𝑅 ⊂ 𝑇 𝑆𝑖 One of the sub-structures, 𝑆𝑖 ∈ {𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝} 𝑖𝑡 Expected number of iterations of a 𝑙𝑜𝑜𝑝 sub-structure ℎ𝑓𝑡 Probability of selecting child 𝑓𝑡 of a 𝑠𝑒𝑙 sub-structure 𝐼𝑃(𝑓𝑡) Immediate predecessor of 𝑓𝑡 (𝐼𝑃(𝑓𝑡), 𝑓𝑡) VNF edge between 𝑓𝑡 and 𝐼𝑃(𝑓𝑡) 𝐴𝑓𝑡𝑅 Amount of traffic from 𝐼𝑃(𝑓𝑡) to 𝑓𝑡 for request 𝑅

Cloud/Fog Network 𝑁𝑍 Set of cloud/fog nodes 𝐸𝐽 Set of all possible communication in the network, 𝐸𝐽 = 𝐸𝑍 ∪ 𝐸𝐶𝐹 𝐸𝑍 Set of cloud/fog edges, 𝐸𝑍 ∈ 𝐸𝐽 𝐸𝐶𝐹 Set of edges between cloud and fog nodes 𝐸𝐶𝐹 ∈ 𝐸𝐽 𝑐𝑛𝑍 Cloud/fog node capacity (in processing resource units) 𝛾𝑛𝑍 Cloud/fog node cost per processing unit usage 𝐷𝑛𝑍𝑓𝑡
 The processing delay of 𝑓𝑡 on node 𝑛𝑍 𝐷𝑒𝐽(𝐴, 𝑿, 𝒀) The transmission delay of sending traffic 𝐴 through 𝑒𝐽 𝜌𝑒𝐽(𝐴, 𝑿, 𝒀) The transmission cost of sending traffic 𝐴 through 𝑒𝐽 𝐵𝑊𝑒𝐽(𝑿, 𝒀) The bandwidth capacity of 𝑒𝐽 𝐿𝑎𝑡𝑒𝐽(𝑿, 𝒀) The network latency of 𝑒𝐽

97

 Cloud nodes are not mobile, while fog nodes can be either mobile or stationary. To model

such behavior, we define 𝑝𝑠𝑡𝑛𝑍
 as the probability that node 𝑛𝑍 is not mobile. Obviously, when 𝑍 =𝐶 then 𝑝𝑠𝑡𝑛𝑍 = 1. We also assume that cloud and fog nodes are located in a two-dimensional

rectangular region 𝑄 ∈ [0,1]2. Note that two-dimensional localization has also been used in ad-

hoc networks [120]. Thus, 𝑿 = (𝑥, 𝑦) ∈ [0,1]2 denotes the location of a cloud/fog node.

Next, we model the communication between cloud and fog nodes. We assume that 𝐸𝐶𝐹 is the

set of edges that indicate the communication between cloud and fog nodes. Let 𝐸𝐽 = 𝐸𝑍 ∪ 𝐸𝐶𝐹

be the set of all possible communications in the network, then an edge is represented by 𝑒𝐽 =(𝑛𝑍𝑙 , 𝑛𝑍𝑚) ∈ 𝐸𝐽, which represents communication between any two cloud/fog nodes, or one cloud

node and a fog node. When the location of 𝑛𝑍𝑙 is 𝑿 and the location of 𝑛𝑍𝑚 is 𝒀, then, for 𝑒𝐽, we

define 𝐷𝑒𝐽(𝐴, 𝑿, 𝒀) and 𝜌𝑒𝐽(𝐴, 𝑿, 𝒀), which represent the delay and the cost, respectively, of

transmitting traffic amount of 𝐴 through 𝑒𝐽 ∈ 𝐸𝐽. We also define 𝐵𝑊𝑒𝐽(𝑿, 𝒀) which represents

the bandwidth capacity of 𝑒𝐽 , and 𝐿𝑎𝑡𝑒𝐽(𝑿, 𝒀), which represents the network latency. In this

Input Parameters (Cont.)

IoT Devices/End-Users 𝑈𝑅 Set of IoT/end-users for request 𝑅 𝐸𝑢,𝑛𝑍
 Set of links between IoT/end-users and 𝑛𝑍 ∈ 𝑁𝑍 𝜔𝑢×𝑓𝑡𝑅 1, if there is communication between 𝑢 and 𝑓𝑡 for request 𝑅 𝐴𝑢×𝑓𝑡𝑅 Amount of traffic between 𝑢 and 𝑓𝑡 for request 𝑅 𝐷𝑒𝑢,𝑛𝑍 (𝐴, 𝑿, 𝒀) The transmission delay of sending traffic 𝐴 between 𝑢 and 𝑛𝑍 𝜌𝑒𝑢,,𝑛𝑍 (𝐴, 𝑿, 𝒀) The transmission cost of sending traffic 𝐴 between 𝑢 and 𝑛𝑍 𝐵𝑊𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) The bandwidth capacity between 𝑢 and 𝑛𝑍 𝐿𝑎𝑡𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) The network latency 𝑢 and 𝑛𝑍

Location Analysis 𝑣𝑛𝑍
 Movement velocity of node 𝑛𝑍 𝑝𝑠𝑡𝑛𝑧 probability that node 𝑛𝑍 is stationary 𝑝𝑝𝑛𝑧 Probability that a node 𝑛𝑍 is in pause 𝐸[𝐿] Expected distance between two waypoints 𝐸(𝑃𝑆) Expected value of pause time 𝑓𝑥𝑛𝑍(𝑿) Stationary PDF of location 𝑿 = (𝑋, 𝑌) of node 𝑛𝑍 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿) Initial spatial distribution of location 𝑿 = (𝑋, 𝑌) of node 𝑛𝑍 𝑓𝑚𝑛𝑍(𝑿)

Stationary PDF of location 𝑿 = (𝑋, 𝑌) of mobile nodes moving in [0,1]2 according to RWP model with 𝑝𝑠𝑡𝑛𝑧 = 𝑝𝑝𝑛𝑧 = 0

Decision Variables 𝑥𝑖,𝑓𝑡,𝑛𝐶
Binary variable, indicating if instance i of VNF type 𝑡 is instantiated
on cloud/fog node 𝑥𝑖,𝑓𝑡,𝑛𝐶𝑅
Binary variable, indicating if instance i of VNF type 𝑡 instantiated
on cloud/fog node is assigned to request R

98

regard, the same nodes will communicate with different delays, costs, and bandwidths when they

are located in various points in the rectangular region 𝑄. We represent the threshold for usage of

the bandwidth capacity by 𝜇𝑒𝐽.

IoT devices/End-users – The application components may communicate with IoT/end-users.

We denote the set of IoT/end-users for request 𝑅 ∈ 𝑅𝑒𝑞 by 𝑈𝑅. We assume 𝐸𝑢,𝑛𝑍
 are the links that

indicate the communication between IoT/end-users and cloud/fog nodes. We define two

matrices, 𝜔𝑛×𝑚𝑅 and 𝐴𝑛×𝑚𝑅 , which represent respectively the communication and the amount of

traffic exchanged between IoT/end-users and the VNFs of request 𝑅. 𝑛 represents the number of

IoT/end-users communicating with VNFs in request 𝑅 while 𝑚 represents the number of VNFs in 𝑅. 𝜔𝑢×𝑓𝑡𝑅 ∈ {0,1} is 1 if there is communication between IoT/end-user 𝑢 and the VNF 𝑓𝑡 of request 𝑅, while 𝐴𝑢×𝑓𝑡𝑅 provides the amount of traffic exchanged between IoT/end-user 𝑢 and the VNF 𝑓𝑡 of request 𝑅.

The locations of IoT/end-users are assumed to be fixed and defined in the region 𝑄. 𝐷𝑒𝑢,𝑛𝑍 (𝐴, 𝑿, 𝒀) and 𝜌𝑒𝑢,,𝑛𝑍 (𝐴, 𝑿, 𝒀) are respectively the delay and the cost of sending traffic of

amount 𝐴 between an IoT/end-user and a cloud/fog node when they are located in locations 𝑿 and 𝒀, respectively, in region 𝑄. 𝐵𝑊𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) and 𝐿𝑎𝑡𝑒𝑢,𝑛𝑍 (𝑿, 𝒀) are respectively the bandwidth

capacity and the network latency between an IoT/end-user and a cloud/fog node. The symbol 𝜇𝑒𝑢,𝑛𝑍 indicates the maximum allowed link utilization for the communication between an IoT/end-

user and a cloud/fog node.

7.3. Cloud/Fog Node Location Analysis and Optimization Formulation

Here we first calculate the stationary Probability Density Function (PDF) of cloud/fog nodes

locations, and then we explain the objective function and the constraints of our optimization model.

7.3.1. Cloud/Fog Node Location Analysis

To calculate the stationary probability distribution of the cloud/fog node location we focus on

a mobile fog node. We calculate the PDF of its location and explain how the PDF can also be used

for a stationary fog node or for a cloud node.

99

 We model the mobility of a mobile fog node 𝑛𝑍 with a RWP Model that has been used in the

ad-hoc networking research community [16]. We assume node 𝑛𝑍 moves independently of other

nodes in a region 𝑄 ∈ [0,1]2. The node is placed in an arbitrary location namely, “waypoint” 𝑙0 in

the region 𝑿 ∈ 𝑄 according to an initial spatial distribution represented by 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿). The fog node

selects its first random destination point; “waypoint” 𝑙1 to move to. It goes there and pauses for a

random duration. It then picks another waypoint 𝑙2 to visit, moves towards it, and pauses at it for

another random duration. The process continues in similar steps. We assume the movement

velocity is 𝑣𝑛𝑍 > 0. We assume that the pause duration after each movement period is chosen

from an arbitrary PDF, namely, 𝑓𝑃𝑆𝑛𝑍(𝑝𝑠) in the interval [𝑝𝑠𝑚𝑖𝑛, 𝑝𝑠𝑚𝑎𝑥], with 𝑝𝑠𝑚𝑖𝑛 ≥ 0 and well-

defined expected value 𝐸[𝑃𝑆].
Let 𝑿 be the random variable representing the waypoint of a fog node. The stationary

probability distribution of the fog node location is then calculated as (1) [16]:

𝑓𝑥𝑛𝑍(𝑿) = 𝑝𝑠𝑡𝑛𝑧 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿) + (1 − 𝑝𝑠𝑡𝑛𝑍) 𝑝𝑝𝑛𝑍 + (1 − 𝑝𝑠𝑡𝑛𝑍) (1 − 𝑝𝑝𝑛𝑍)𝑓𝑚𝑛𝑍(𝑿) (1)

where 𝑿 ∈ 𝑄 is the value of the random variable 𝑥 and denotes a waypoint in region 𝑄. 𝑝𝑝𝑛𝑍

is the probability that a node is in pause, calculated as (2):

𝑝𝑝𝑛𝑍 = 𝐸(𝑃𝑆)𝐸(𝑃𝑆) + 1𝑣𝑛𝑍 𝐸(𝐿)
(2)

where 𝐸[𝐿] is the expected distance between two waypoints placed uniformly at random in 𝑄,
which is calculated as: 𝐸[𝐿] = 0.521405 (3)

For 𝑿 = (𝑥, 𝑦), the term 𝑓𝑚𝑛𝑍
(x,y) as used in (1) is the mobility component, is defined as :

𝑓𝑚𝑛𝑍(𝑥, 𝑦) =

𝑓𝑚∗ (𝑥, 𝑦) 0 < 𝑥 ≤ 0.5, 0 < 𝑦 ≤ 𝑥

(4)

𝑓𝑚∗ (𝑦, 𝑥) 0 < 𝑥 ≤ 0.5, 𝑥 ≤ 𝑦 ≤ 0.5 𝑓𝑚∗ (1 − 𝑦, 𝑥) 0 < 𝑥 ≤ 0.5, 0.5 ≤ 𝑦 ≤ 1 − 𝑥 𝑓𝑚∗ (𝑥, 1 − 𝑦) 0 < 𝑥 ≤ 0.5, 1 − 𝑥 < 𝑦 < 1 𝑓𝑚∗ (1 − 𝑥, 𝑦) 0.5 ≤ 𝑥 < 1, 0 < 𝑦 ≤ 1 − 𝑥 𝑓𝑚∗ (𝑦, 1 − 𝑥) 0.5 ≤ 𝑥 < 1, 1 − 𝑥 ≤ 𝑦 ≤ 0.5 𝑓𝑚∗ (1 − 𝑦, 1 − 𝑥) 0.5 ≤ 𝑥 < 1, 0.5 ≤ 𝑦 ≤ 𝑥 𝑓𝑚∗ (1 − 𝑥, 1 − 𝑦) 0.5 ≤ 𝑥 < 1, 𝑥 ≤ 𝑦 < 1 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑓𝑚∗ is defined on 𝑄∗ = {(𝑥, 𝑦) ∈ [0,1]2| (0 < 𝑥 ≤ 0.5) ∧ (0 < 𝑦 ≤ 𝑥)}, with

100

𝑓𝑚∗ (𝑥, 𝑦) = 6𝑦 + 34 (1 − 2𝑥 + 2𝑥2) (𝑦𝑦 − 1 + 𝑦2(𝑥 − 1)𝑥) + 3𝑦2 [(2𝑥 − 1)(𝑦 + 1) ln (1 − 𝑥𝑥) + (1 − 2𝑥 + 2𝑥2 + 𝑦) ln (1 − 𝑦𝑦)]

(5)

The PDF calculated in Eq. (1) can be used for stationary fog nodes and for cloud nodes as well.

Indeed, for these nodes we have 𝑝𝑠𝑡𝑛𝑍 = 1 , which, by using (1), gives the PDF of the node location

as 𝑓𝑥𝑛𝑍(𝑿) = 𝑓𝑖𝑛𝑖𝑡𝑛𝑍 (𝑿), as expected.

7.3.2. Optimization Formulation

We formulate our problem as an optimization problem with the objective of minimizing the

weighted aggregated function of makespan and cost. We define the following decision variables:

𝑥𝑖,𝑓𝑡,𝑛𝑍 = {1, 𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑜𝑓 𝑓𝑡 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑛𝑍 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6)

 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 = {1, 𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑜𝑓 𝑓𝑡 𝑜𝑛 𝑛𝑍 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑅 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7)

In the rest of this section, we explain the expected makespan and cost calculations, followed by

the objective function and the constraints. Table 7.1 lists the key notations and decision variables.

A) Makespan and Communication Cost Computation

The makespan is an application’s execution time, defined as the time it takes for the first

component to start execution until the execution of the last component is completed [121][14].

Note that the communication times with the IoT/end-users are also included in makespan

calculations. In turn, the application execution cost is defined as the monetary cost for

communication between application components and also between IoT/end-users and components.

The calculation of the expected application makespan and communication cost is performed

based on parsing the associated tree structure of the VNF-FG, as explained in Section 7.2. The

time and cost of the leaf nodes representing the VNFs are calculated first. These values are then

aggregated to calculate the time and the cost for the middle nodes. The middle nodes represent

sub-structures. The total makespan and the cost of the root of the tree are then calculated by

aggregating the calculated time/cost values of the nodes from the bottom to the top according to

the tree structure.

101

1) VNFs-Level Calculation

We first explain the VNF time calculations and then the VNF cost calculations. The processing

time of the traffic received by each VNF from its immediate predecessors and IoT/end-users

belonging to request 𝑅 is calculated as below:

𝑀𝑝𝑟𝑜𝑐(𝑅, 𝑓𝑡) = ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝐴𝑓𝑡𝑅 . 𝐷𝑛𝑍𝑓𝑡
𝑖∈𝐼𝑓𝑡 𝑛𝑍∈𝑁𝑍 (8)

The communication time required to transmit traffic 𝐴𝑓𝑡𝑅 to a VNF 𝑓𝑡 belonging to a VNF-FG

request 𝑅 from 𝐼𝑃(𝑓𝑡) over edge 𝑒𝑙𝑚𝐽 = (𝑛𝑍𝑙 , 𝑛𝑍𝑚) and to transmit traffic 𝐴𝑢×𝑓𝑡𝑅 between 𝑓𝑡 and

IoT/end-users over edge 𝑒𝑢,𝑛𝑍
 is calculated as:

𝑀𝑐𝑜𝑚(𝑅, 𝑓𝑡) = 𝑚𝑎𝑥 (∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 . 𝐸(𝐷𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅))𝑖,𝑗∈𝐼𝑓𝑡𝑛𝑍∈𝑁𝑍 ,
∑ ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅 . 𝐸(𝐷𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅))𝑢∈𝑈𝑅𝑖∈𝐼𝑓𝑡) 𝑛𝑍∈𝑁𝑍 (9)

In Eq. (9), 𝐸(𝐷𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅))is the expected delay of transmitting traffic 𝐴𝑓𝑡𝑅 on edge 𝑒𝑙𝑚𝐽 , which is

calculated as Eq. (10).

𝐸 (𝐷𝑒𝑙𝑚𝐽 (𝐴)) = ∫ ∫ 𝑓𝑥𝑛𝑍𝑙(𝑿). 𝑓𝑦𝑛𝑍𝑚 (𝒀). 𝐷𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀). 𝑑𝑋 𝑑𝑌 [0,1]2[0,1]2 (10)

In Eq. (10), 𝑿 and 𝒀 ∈ [0,1]2 are 𝑛𝑍𝑙 and 𝑛𝑍𝑚 random location variables as defined in Section

7.3.1. 𝐷𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅 , 𝑿, 𝒀) is the data transfer time for sending traffic 𝐴𝑓𝑡𝑅 on edge 𝑒𝑙𝑚𝐽 . It is calculated

as the relation of the size of the transmitted traffic between two nodes to the edge bandwidth. The

network latency is considered as well, which is a function of the distance between 𝑿 and 𝒀. This

calculation is given below:

𝐷𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀) = 𝐴𝐵𝑊𝑒𝑙𝑚𝐽 (𝑿, 𝒀) + 𝐿𝑎𝑡𝑒𝑙𝑚𝐽 (𝑿, 𝒀) (11)

102

 In Eq. (9), 𝐸(𝐷𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅)) is the expected delay for the transmission of 𝐴𝑢×𝑓𝑡𝑅 amount of

traffic between an IoT/end-user and a cloud/fog node. Eq. (12) gives this calculation. Here, 𝒁 ∈[0,1]2 is the IoT/end-user location and 𝐷𝑒𝑢,𝑛𝑍 (𝐴, 𝒁, 𝑿) is the data transfer time for sending traffic

of amount 𝐴 between IoT/end-users and cloud/fog nodes. In Eq. (12), 𝐷𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿) is calculated

in the same way as Eq. (11).

𝐸 (𝐷𝑒𝑈,𝑛𝑍 (𝐴)) = ∫ 𝑓𝑥𝑛𝑖𝑍(𝑿). 𝐷𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿) 𝑑𝑋[0,1]2
(12)

The approach described above for time can also be used to calculate the communication costs.

The communication cost incurred by utilizing the links to send traffic to a VNF 𝑓𝑡 from its

immediate predecessor and also utilizing the links to send traffic between IoT/end-users and 𝑓𝑡

are calculated as:

𝐶𝑐𝑜𝑚(𝑅, 𝑓𝑡) = ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 . 𝐸(𝜌𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅))𝑖,𝑗∈𝐼𝑓𝑡 𝑛𝑍∈𝑁𝑍 +
 ∑ ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅 . 𝐸(𝜌𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅))𝑢∈𝑈𝑅𝑖∈𝐼𝑓𝑡 𝑛𝑍∈𝑁𝑍

(13)

Table 7.2 The cost and the makespan estimation for 𝑆𝑖 ∈ {𝑠𝑒𝑞, 𝑝𝑎𝑟, 𝑠𝑒𝑙, 𝑙𝑜𝑜𝑝}

Sub-structures
Communication Cost 𝐶𝑐𝑜𝑚(𝑆𝑖)

Processing Time 𝑀𝑝𝑟𝑜𝑐(𝑆𝑖)

Communication Time 𝑀𝑐𝑜𝑚(𝑆𝑖)

𝑆𝑖 𝑖𝑠 𝑠𝑒𝑞
∑ 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 ∑ 𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)𝑓𝑡∈𝑆𝑖
 ∑ 𝑀𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

𝑆𝑖 𝑖𝑠 𝑝𝑎𝑟
∑ 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 max𝑓𝑡∈𝑆𝑖𝑀𝑝𝑟𝑜𝑐(𝑓𝑡) max𝑓𝑡∈𝑆𝑖𝑀𝑐𝑜𝑚(𝑓𝑡)

𝑆𝑖 𝑖𝑠 𝑠𝑒𝑙 ∑ ℎ𝑓𝑡 . 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖
 ∑ ℎ𝑓𝑡 . 𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)𝑓𝑡∈𝑆𝑖

 ∑ ℎ𝑓𝑡 . 𝑀𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

𝑆𝑖 𝑖𝑠 𝑙𝑜𝑜𝑝 𝑖𝑡. ∑ 𝐶𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖 𝑖𝑡. ∑ 𝑀𝑝𝑟𝑜𝑐(𝑓𝑡)𝑓𝑡∈𝑆𝑖 𝑖𝑡. ∑ 𝑀𝑐𝑜𝑚(𝑓𝑡)𝑓𝑡∈𝑆𝑖

103

To calculate 𝐸(𝜌𝑒𝑙𝑚𝐽 (𝐴𝑓𝑡𝑅)), the 𝐷𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀) in Eq. (10) should be replaced by 𝜌𝑒𝑙𝑚𝐽 (𝐴, 𝑿, 𝒀).

Similarly, to calculate 𝐸(𝜌𝑒𝑢,𝑛𝑍 (𝐴𝑢×𝑓𝑡𝑅)), the 𝐷𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿) in Eq. (12) must be replaced by 𝜌𝑒𝑢𝑗,𝑛𝑖𝑍 (𝐴, 𝒁, 𝑿).

2) VNF-FG Level Calculation

The calculations of the processing/communication time and the communication cost for the sub-

structures sequence, parallel, selection, and loop are shown in Table 7.2. In a sequence sub-

structure, the time and the cost of all of its children are accumulated. A 𝑙𝑜𝑜𝑝 can be considered as

a sequence structure that is repeated for a certain number of iterations. We define 𝑖𝑡 as the expected

number of iterations of a loop structure, it is calculated as: 𝑖𝑡 = 𝑞1−𝑞 where 𝑞 is the probability of

the loop’s occurrence. For a parallel sub-structure, all of its children are executed in parallel, hence

the time is determined based on the maximum time value of its children. However, the cost is the

sum of the costs for all children. The calculation for a selection sub-structure, the probabilities of

the selection’s children are involved in the calculation. Let ℎ𝑓𝑡 represent the probability of

selecting a child 𝑓𝑡
 of a selection sub-structure. ℎ𝑓𝑡 = 1 for the children of sequence, parallel, and

loop sub-structures.

Finally, to calculate the total makespan and the cost of a VNF-FG, the makespan and the cost

of the root of the tree are computed by aggregating the time and the cost of the VNFs and of the

basic sub-structures in a bottom-to-top manner according to the tree structure. The total makespan

and the total cost of a VNF-FG request 𝑅 are calculated as given in Eq. (14) and Eq. (15),

respectively:

𝑀(𝑅) = 𝑀𝑝𝑟𝑜𝑐(𝑅, 𝑟𝑜𝑜𝑡) + 𝑀𝑐𝑜𝑚(𝑅, 𝑟𝑜𝑜𝑡) (14) 𝐶(𝑅) = 𝐶𝑐𝑜𝑚(𝑅, 𝑟𝑜𝑜𝑡) (15)

B) Optimization Formulation

In this section, we explain the objective function and the constraints of the optimization problem.

Our objective is to enable the embedding of VNF-FGs in cloud and fog NFVIs such that the

makespan and the cost are minimized, as shown in Eq. (16).

104

𝑜𝑏𝑗 = 𝑀𝑖𝑛 (𝛼 ∑ 𝑀(𝑅)∀𝑅∈𝑅𝑒𝑞 + (1 − 𝛼) [∑ 𝐶(𝑅)∀𝑅∈𝑅𝑒𝑞 + 𝐶𝑑𝑒𝑝]) (16)

 𝐶𝑑𝑒𝑝 represents both license cost of VNFs and the hosting cost,

 𝐶𝑑𝑒𝑝 = 𝐶𝐿𝑖𝑐 + 𝐶ℎ𝑠𝑡 (17)

The license cost is the cost of the total software license costs for the VNFs instantiation,

 𝐶𝐿𝑖𝑐 = ∑ ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍 . 𝜕𝑓𝑡𝑖∈𝐼𝑓𝑡𝑡∈𝑇𝑛𝑍∈𝑁𝑍 (18)

and the hosting cost is the cost of the assigned resources to VNFs belonging to VNF-FG requests.

It is calculated as:

𝐶ℎ𝑠𝑡 = ∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍 . 𝛾𝑛𝑍 . 𝜗𝑓𝑡𝑖∈𝐼𝑓𝑡 𝑛𝑍∈𝑁𝑍 (19)

In Eq. (16), 𝛼 is the weight parameter that defines priorities between makespan and cost, 1 ≥𝛼 ≥ 0. E.g., 𝛼 = 1 motivates placement in the fog, while 𝛼 = 0 motivates placement in the cloud.

Generally, the fog provides lower latency due to its proximity to IoT/end-users, however, the

resources in the fog are more expensive.

Now, we explain the constraints involved in the problem. Eq. (20) ensures that the total

resources required by instances of all VNF types do not exceed the capacity of a cloud/fog node:

∑ ∑ 𝜗𝑓𝑡 . 𝑥𝑖,𝑓𝑡,𝑛𝑍 ≤ 𝜇𝑛𝑍 . 𝑐𝑛𝑍𝑖∈𝐼𝑓𝑡 ∀𝑛𝑍 ∈ 𝑁𝑍𝑡∈𝑇 (20)

Eq. (21) ensures that the communication links where the source and the destination are both in

the cloud or both in the fog, or where the source is in one and the destination is in the other are not

overloaded from the aspect of link utilization. A similar discussion exists for the communication

links between the IoT/end-users and cloud/fog nodes according to the constraint in Eq. (22).

∑ 𝐴𝑓𝑡𝑅 . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 ≤ 𝜇𝑒𝐽 . 𝐵𝑊𝑒𝐽 ∀𝑅∈𝑅𝑒𝑞 (21) ∀𝑒𝐽 ∈ 𝐸𝐽

105

∑ 𝐴𝑢×𝑓𝑡𝑅 . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅 ≤ 𝜇𝑒𝑢,𝑛𝑍 . 𝐵𝑊𝑒𝑢,𝑛𝑍 ∀𝑅∈𝑅𝑒𝑞 (22) ∀𝑢 ∈ 𝑈𝑅 , 𝑛𝑍 ∈ 𝑁𝑍

Eq. (23) ensures that the capacity of an instance of a VNF 𝑓𝑡 is not exceeded by the total traffic

requested by its immediate predecessor(s) and the IoT/end-users communicating with it. ∑ (𝐴𝑓𝑡𝑅 . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 + 𝐴𝑢×𝑓𝑡𝑅 . 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 . 𝜔𝑢×𝑓𝑡𝑅) ≤ 𝜇𝑓𝑡. 𝑐𝑓𝑡 ∀𝑅∈𝑅𝑒𝑞 (23) ∀𝑡 ∈ 𝑇 , ∀𝑖 ∈ 𝐼𝑓𝑡 , ∀𝑢 ∈ 𝑈𝑅 , ∀𝑛𝑍 ∈ 𝑁𝑍

Eq. (24) ensures that the assigned VNF instances are already deployed in the network and Eq.

(25) ensures that at least one instance of each required VNF type is deployed.

𝑥𝑖,𝑓𝑡,𝑛𝑍𝑅 ≤ 𝑥𝑖,𝑓𝑡,𝑛𝑍 (24) ∀𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅 , 𝑖 ∈ 𝐼𝑓𝑡 , 𝑛𝑍 ∈ 𝑁𝑍

∑ ∑ 𝑥𝑖,𝑓𝑡,𝑛𝑍∀𝑖∈𝐼𝑓𝑡∀𝑛𝑍∈𝑁𝑍 ≥ 1 ∀𝑡 ∈ 𝑇 (25)

It should be noted that Eq. (9) and (21) and the processing and communication time equations

in Table 7.2 for parallel sub-structure are non-linear. However, they can be linearized by replacing

Algorithm 7.1: Tabu Search Algorithm

1 initialization: Create initial placement randomly 𝑆0,
2 𝑆𝑐𝑢𝑟𝑟 ← 𝑆0, 𝑆𝑏𝑒𝑠𝑡 ← 𝑆0, 𝑗 ← 0, 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ← ∅

3 while 𝑗 ≤ 𝑖𝑠𝑡𝑜𝑝

4 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑_𝑙𝑖𝑠𝑡 ← create candidate neighborhood list
5 for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑_𝑙𝑖𝑠𝑡]
6 evaluate the neighbor 𝐸(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

7 end

8
 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← argmin𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝐸(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

9 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 ← select the move that led to 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

10 𝑗 ← 𝑗 + 1

11 if 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 is not in 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡

12 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ← 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 for 𝑖𝑡𝑎𝑏𝑢 iterations

13 else if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝐸(𝑆𝑏𝑒𝑠𝑡)

14 remove 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 from 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡

15 end

16 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝐸(𝑆𝑏𝑒𝑠𝑡)

17 𝑆𝑏𝑒𝑠𝑡 ← 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

18 𝑗 ← 0

19 end

20 end

21 return 𝑆𝑏𝑒𝑠𝑡

106

them with linear equations. For instance, 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 in Eq. (21) can be replaced by 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 , as shown below:

𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 = 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 . 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 (26) 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 ≤ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 (27) ∀𝑛𝑍 ∈ 𝑁𝑍, 𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅 , 𝑖 ∈ 𝐼𝑓𝑡 , 𝑗 ∈ 𝐼𝐼𝑃(𝑓𝑡) 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 ≤ 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 (28) ∀𝑛𝑍 ∈ 𝑁𝑍, 𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅, 𝑖 ∈ 𝐼𝑓𝑡 , 𝑗 ∈ 𝐼𝐼𝑃(𝑓𝑡) 𝑄𝑛𝑍𝑙 ,𝑛𝑍𝑚 ,𝑓𝑡,𝐼𝐼𝑃(𝑓𝑡),𝑖,𝑗𝑅 ≥ 𝑥𝑖,𝑓𝑡,𝑛𝑍𝑙𝑅 + 𝑥𝑗,𝐼𝑃(𝑓𝑡),𝑛𝑍𝑚𝑅 − 1 (29) ∀𝑛𝑍 ∈ 𝑁𝑍, 𝑅 ∈ 𝑅𝑒𝑞, 𝑓𝑡 ∈ 𝑣𝑛𝑓𝑅, 𝑖 ∈ 𝐼𝑓𝑡 , 𝑗 ∈ 𝐼𝐼𝑃(𝑓𝑡)
In addition, in order to linearize the max function in processing/communication time equations

in Table 7.2 for parallel sub-structure, and in Eq. (9), we replace max(𝑥1, 𝑥2) with 𝑧 such that:

𝑧 = max(𝑥1, 𝑥2) (30) z ≥ 𝑥1 z ≥ 𝑥2

7.4. Tabu Search-based Component Placement

 In this section, we propose a Tabu Search-based Component Placement (TSCP) algorithm for

the optimization problem explained in Section 7.3. The search space size is exponential in terms

of the number of VNF types, VNFs instances, number of cloud/fog nodes, and number of requests.

Thus, as will be seen in Section 7.5, the runtime for finding the optimal solution with CPLEX is

quite long, even for small-scale scenarios. Therefore, a heuristic approach is required to perform

the placements in real system scales with acceptable run times. Tabu Search meta-heuristic has

been shown to be promising in terms of finding a near-optimal solution in combinatorial

optimization problems (e.g., [33][34]) and VNF placement problems [124][125], and so we exploit

it in our component placement algorithm.

Tabu is an iterative search process that starts exploring the search space from an initial solution

and iteratively performs moves to transit from the current solution to a better one in its

neighborhood until the stopping criterion is satisfied. Tabu Search uses a memory structure called

Tabu-list to avoid looping during the search process, thereby preventing cycling to previously

107

visited solutions [126]. In the rest of this section, we explain the major elements of the Tabu Search

algorithm as outlined in Algorithm 7.1.

1- Tabu starts searching with an initial placement. VNF types that communicate with IoT

devices are randomly assigned to a fog node with enough capacity to process the VNF. The

rest of the VNFs are assigned randomly to a cloud node with sufficient capacity Eq. (20).

Note that the constraints satisfaction in the search process will be considered in the

evaluation phase as will be discussed later in this section.

2- Tabu explores the neighborhood of the current placement to improve the quality of the just-

identified best placement. A neighborhood is generated by applying a single move from

the current placement. We define four moves as below:

 VNF Reassignment – A VNF is selected randomly and moved to a node with enough

capacity and minimum amount of aggregated processing time, hosting cost, and

communication time/cost with its immediate predecessors and IoT/end-users (for all

the requests using this VNF). Note that the aggregation is performed as in the weighting

used in Eq. (16).

 Bulk VNF reassignment - A node is selected randomly, and the VNFs on that node

are assigned to another node with enough capacity to host the VNFs and minimum

amount of aggregated processing time, hosting cost, and communication time/cost with

its immediate predecessors and IoT/end-users for all VNFs.

 Request reassignment- A request is selected randomly and one of its required VNFs

is assigned to another instance with enough capacity to tolerate the traffic and minimum

amount of aggregated processing time, hosting cost, and communication time/cost with

its immediate predecessors and IoT/end-users.

 Bulk request reassignment - A VNF is selected, and all its requests are assigned to

another VNF instance with enough capacity and minimum amount of aggregated

processing time, hosting cost, and communication time/cost with its immediate

predecessors and IoT/end-users.

3- To avoid visiting the same solution several times, Tabu uses a list called Tabu list to store

moves marked as Tabu. The move that generates the best neighborhood i.e., 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 is

saved in 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 for a specific length of time, or number of iterations i.e., 𝑖𝑡𝑎𝑏𝑢. Further,

108

a Tabu move can be released from 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 if it meets the aspiration criterion, defined as

the case when a better solution than the current best solution has been found.

4- In each iteration of the Tabu search process, the neighbors are evaluated in order to

recognize the best solution and move towards that. We use the aggregation of the objective

function as defined by Eq. (16) and the penalty function imposed due to constraints’

violation to evaluate each placement. Eq. (31) indicates the evaluation function:

𝐸(𝑆𝑐𝑢𝑟𝑟) = { 𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟), If 𝑆𝑐𝑢𝑟𝑟 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟) + 𝑝(𝑆𝑐𝑢𝑟𝑟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (31)

where 𝑝(𝑆𝑐𝑢𝑟𝑟) is the penalty function for the current placement. We have used the

suggested penalty calculation in [127]. The left and right sides of the constraints (20), (21),

(22), and (23) are represented with 𝑔𝑚 for 𝑚 = 1 … 4, and 𝑏𝑚 respectively. In this regard,

a constraint can be represented by 𝑔𝑚(𝑆𝑐𝑢𝑟𝑟) < 𝑏𝑚. The penalty is calculated as below:

𝑝(𝑆𝑐𝑢𝑟𝑟) = ∑ 𝜍𝑚 max(0, 𝑔𝑚(𝑆𝑐𝑢𝑟𝑟) − 𝑏𝑚)𝑀
𝑚=1

(32)

𝜍𝑚 is the normalization coefficient to make 𝑝(𝑆𝑐𝑢𝑟𝑟) and 𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟) in the same scale.

5- The algorithm will stop when the best solution (i.e., 𝑆𝑏𝑒𝑠𝑡) does not improve for a certain

number of consecutive iterations (𝑖𝑠𝑡𝑜𝑝).

7.5. Performance evaluation

Here we evaluate the performance of our proposed placement algorithm, the TSCP, comparing

it with the optimal solution gained by CPLEX (Optimal), to the TSCP (Random Explore) where

the optimization variables are changed by random moves instead of makespan/cost driven moves

as discussed in Section 7.4, and finally, to a first-fit greedy placement (Greedy). Greedy iterates

over the set of VNF-FGs associated with applications. For each VNF in a VNF-FG, Greedy first

checks if that VNF type is already deployed in the network and if it has adequate capacity. If such

a deployed VNF is found, Greedy assigns it to the request. Otherwise, Greedy instantiates a new

VNF of that type on the first fitted node (from the aspect of VNF processing and communication

with the immediate predecessors). In the rest of this section, we explain the experimental setup

and then we present the evaluation results.

109

7.5.1. Experimental Setup

We synthesized 50 structured VNF-FGs according to the method proposed in [128]. This

method generates structured VNF-FGs (see Figure 7.1 (b)) that respect the parameters, including

the number of VNFs, graph height, the maximum number of children, and the selection to parallel

ratio. The number of VNFs in a structured VNF-FG is chosen randomly between 3 and 10. The

height of a structured VNF-FG is chosen randomly from {2, 4, 6, 8}. The selection to parallel ratio

in the case of having a split in the graph is randomly chosen from {0, 0.2, 0.4, 0.6, 0.8, 1}. The

maximum number of children is 5. Note that equal probabilities are assigned to the children of the

selection sub-structures. For the sake of simplicity, we have assumed that there is no loop in the

structured VNF-FG.

 We have assumed a license cost of $100 for the VNF instantiation. Each VNF uses an

OpenStack VM from tiny to large size, with 1 to 4 vCPUs. The size of the data transmitted in the

chains is selected randomly in the range of 100 bytes to 80 KB [129].

Table 7.3 Summary of simulation parameters

Parameter Value

VNFs

Number of VNF types [3-27]

VNF resource requirements (vCPU) [1- 4]

VNF processing capacity per GB [1- 2]

VNF license cost ($) 100

Structured VNF-FGs

Number of VNF-FG requests [1-50]

Number of VNFs in a VNF-FG request [3-10]

Traffic Amount (KB) [0.1-180]

Cloud/Fog Network

Number of nodes: cloud, fog [4, 8], [6, 12]

Nodes capacity (vCPU): cloud, fog 8, [2-4]

Nodes cost ($/vCPU): Cloud, fog [2.33- 4.65], [4.65- 5.82]

Nodes delay (msec/MB): cloud, fog 0.25, 25

Bandwidth cost ($/GB): cloud, fog, cloud-fog edges 0.155, [0.25-2], [10-20]

Bandwidth (Gbps): cloud, fog, cloud-fog edges 10, [0.1-1], [1, 10]

Latency (msec): cloud, fog, cloud-fog edges [50-100], [10-50], [100-255]

IoT Devices/End-Users

Number of IoT/end-users [5-30]

Bandwidth cost ($/GB): IoT-cloud, IoT-fog 20, [0.05-0.25]

Bandwidth: IoT-cloud and IoT-fog 10Gbps, [250Kbps-54Mbps]

Latency (msec): IoT-cloud and IoT-fog 250, [7-20]

Location Analysis

Fog nodes velocity 0.015

Probability that fog node is stationary 0.2

Pause Time (msec) [10-300]

110

Two cloud/fog infrastructures of 10 and 20 nodes are considered. The first infrastructure

consists of 4 cloud nodes and 6 fog nodes, whilst the second infrastructure consists of 8 cloud

nodes and 12 fog nodes. Note that similar scales have been used in [68] and [62] for cloud/fog

infrastructures. A fog node is mobile with a probability of 0.8. In the case of mobility, the velocity

is 0.015 and the pause time is chosen uniformly in the range of 10 to 300 msec. We assume the

cloud nodes have 8 vCPUs and the fog nodes have a random number between 2 and 4 vCPUs. The

cloud nodes communicate with each other with bandwidth 10Gbps, the fog nodes communicate

with each other with a random bandwidth in the range of 100Mbps to 1Gbps, and the cloud and

fog nodes communicate with each other with a random bandwidth in the range of 1Gbps to 10Gbps

[129].

The cost of cloud/fog node usage is selected randomly in the range of $(2.33 to 4.65)/vCPU and

$(4.65 to 5.82)/vCPU respectively [130]. The cloud communication bandwidth cost is $0.155 per

GB transmission and the communications costs in the fog vary between $0.25 and $2 per GB

transmission. Finally, for the cloud and fog communications, the cost is random in the range of

$10 to $20 per GB transmission [125].

The processing delay on cloud and fog nodes is set to 0.25 msec and 25 msec, respectively, per

Megabyte traffic processing [129]. The communication latency in the cloud, in the fog, and

between the cloud and the fog are ranges within (50 to 100) msec, (10 to 50) msec, and (100 to

255) msec, respectively.

Note that the bandwidth, the cost, and the latency in communications vary randomly in the

mentioned ranges depending on the fog node location involved in the communication.

 The number of IoT/end-users ranges from 5 to 30 per application. The communication

bandwidth between IoT devices and the cloud is 10Gbps, whilst it is in the range of 250Kbps to

54Mbps for communication with fog nodes [129]. Accordingly, the communication cost for the

communication cost for the cloud and the fog are set to $20/GB and uniform in the range of $(0.05

to 0.25)/GB, respectively [131]. The communication latencies with the cloud and the fog are set

to 250msec and (7 to 20) msec, respectively. Finally, we found the values of 60 and 20 appropriate

for the experiments for 𝑖𝑡𝑎𝑏𝑢 and 𝑖𝑠𝑡𝑜𝑝, respectively. For all the experiments, we assume that the

111

whole capacity of the VNFs and communication links can be used. Table 7.3 lists the parameters

in the simulation.

7.5.2. Evaluation Results

 In the rest of this section, the average of the normalized cost, makespan, and aggregated of

them for all the requests are given for 10 runs. Figure 7.2 shows the percentages of the cloud/fog

resources usage in TSCP for various values of α. As it can be observed, when α increases, more

components are placed in the fog to reduce the requests’ makespan. In particular, in the

infrastructure with 10 nodes, i.e., Figure 7.2 (a), when α = 1, some resources are still used in the

cloud due to the limited number of fog nodes or due to the fog nodes’ capacity limitations (from

the aspect of VNF processing and communication). On the other hand, with an infrastructure with

20 nodes and thus more available fog nodes (i.e., Figure 7.2 (b)), all the components are deployed

in the fog. As α decreases, cloud resources are used more. In the extreme case, when α = 0, all

components are deployed in the cloud to minimize the cost.

Figure 7.3 shows the resources usage percentages in TSCP for various amounts of

communication with IoT/end-users. We have changed the number of the VNFs that communicate

with IoT/end-users in each VNF-FG request for the case of an infrastructure with 20 nodes and α = 0.5. As visible in Figure 7.3, when the communications with IoT/end-users increase, more

fog resources are used to reduce the communication time with IoT/end-users, and accordingly, to

reduce the aggregated makespan and cost.

(a) (b)

Figure 7.2 Resources usage percentage when varying 𝛼 considering 50 VNF-FG requests
(a) For 10 nodes
(b) For 20 nodes

Figure 7.3 Resources usage percentage when varying the number of VNFs communicating with IoT/end-users

112

(a)

(b)

(c)

Figure 7.4 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan (c) for Optimal,
TSCP, Greedy, and TSCP (Random Explore), together with the gap from optimality for TSCP, TSCP (Random

Explore), and Greedy for 10 nodes and up to 15 VNF-FG requests with α = 0.5

113

(a)

 (b)

(c)

Figure 7.5 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan (c) for Optimal,

TSCP, Greedy, and TSCP (Random Explore) for 20 nodes and 50 VNF-FG requests with α = 0.5

114

Figure 7.4 and Figure 7.5 show the cost, makespan, and their aggregated weighted function with

 (a)

 (b)

 (c)

Figure 7.6 Total cost (a), makespan, (b) and aggregated weighted function of cost and makespan (c) for optimal,

TSCP, Greedy, and TSCP (Random Explore) for 10 nodes and 15 VNF-FG requests with α = 0.5, considering three
scenarios: only cloud, only fog, cloud/fog system

115

α = 0.5 for two different scales. Figure 7.4 indicates the results for an infrastructure with 10 nodes

and up to 15 requests. In this figure (i.e., Figure 7.4) the average gap between the TSCP, Greedy,

and the TSCP (Random Explore) algorithms with respect to the Optimal results is also

demonstrated. As can be seen, the TSCP has cost, makespan, and objective functions that are very

close to those of the Optimal result. Greedy shows the worst performance, as it selects the first

available cloud/fog node without taking into account the time/cost of VNF execution. The TSCP

outperforms TSCP (Random Explore), which demonstrates the effectiveness of the VNF execution

time, hosting cost, and communication time/cost consideration in the TSCP exploration phase, as

performed by the moves introduced in Section 7.4. Please note that the actual values for the

makespan in Figure 7.5 (b) for points 1 and 3 are 48msec and 123msec, respectively. However,

because of the normalization, in this figure, the values are close to zero.

 Figure 7.5 illustrates similar results for the larger scale, i.e., infrastructure with 20 nodes and

up to 50 VNF-FG requests. Note that we could not get the optimal results at this scale due to its

very long run time. The better performance of TCSP compared to that of the TSCP (Random

Explore) and Greedy is much more remarkable here than in the smaller-scale experiment with a

smaller solution space size. While the TSCP outperforms the other methods in aggregated

makespan and cost by up to 47.23% (see Figure 7.4), this value is up to 85% for larger-scale

experiments. As can be observed, Greedy has the worst performance, since it does not consider

the time/cost of VNF execution and communication when selecting the cloud/fog nodes. Similar

to Figure 7.4, the actual makespan values for the points 25 and 30 in Figure 7.5 (b) are 1985.2msec

and 2143.5msec, respectively. These values in Figure 7.5 (b) are close to zero because of the

normalization. It should be noted that the actual values for the cost and makespan considering 1 to

50 requests are in the range of 300 to 2400 units of currency considering $ as a unit, and from

48msec to 3230msec, respectively.

Figure 7.6 illustrates the results for the infrastructure with 10 nodes and 15 VNF-FG requests.

Different types of infrastructures are considered: when the infrastructure is provided as a cloud,

when it is provided as a fog, and the hybrid case consisting of both cloud and fog. As can be

observed in Figure 7.6 (a), in every method, the cost is minimized by using only the cloud, as the

resources in the cloud are cheaper than those in the fog. On the other hand, as can be seen in Figure

116

7.6 (b), makespan is minimized by using only the fog. This is because the fog provides lower

communication time than the cloud due to its proximity to IoT/end-users; a situation which leads

to makespan reduction. We can also see that the best results for the aggregated weighted function

of makespan and cost (i.e., Figure 7.6 (c)) are obtained when the components are placed on a

hybrid cloud/fog system for all of the algorithms.

Table 7.4 shows the computational complexity of the TSCP in comparison with the Optimal

solution. The TSCP clearly has a much shorter execution time than the Optimal solution. For the

infrastructure with 20 nodes and 5 requests, the execution time of the Optimal solution exceeds 1

hour. The execution time increases as the scale of the infrastructure or the number of requests

increases. For example, when the number of requests increases to 15, it took one full day to find

the optimal placement, while the TSCP could find a near-optimal placement in less than 6 seconds.

7.6. Conclusion

This chapter studies the application component placement problem in NFV-based hybrid

cloud/fog systems with mobile fog nodes. The applications’ components are implemented as

VNFs. A structured VNF-FGs containing sub-structures such as sequence, parallel, selection, and

loop is established to model the execution sequence of the components. The mobility of fog nodes

is modeled via the random waypoint mobility model. Based on the stationary analysis of the

random waypoint model, the expected execution time and cost of the components and sub-

structures are calculated. The calculations of the sub-structures are aggregated to calculate the

expected application makespan and cost. The placement problem is modeled as an ILP

optimization that minimizes the aggregated makespan and cost for all requests. A Tabu-based

Table 7.4 Average execution time

Experiment Parameter Execution Time (sec)

Number of Nodes Number of VNF-FGs Optimal Tabu Search Algorithm

10 5 4800 0.21

20 5 5400 0.58

10 10 21600 1.32

20 10 25560 2.45

10 15 54000 5.12

20 15 > 86400 5.6

20 50 ∞ 57

117

algorithm is proposed to solve the problem in large scales of cloud/fog infrastructure and for a

high number of requests. The simulation results show that the proposed algorithm operates at near-

optimal for small scales and improves the makespan, the cost, and the aggregated of them for larger

scales. Our studies also show that the greater the communication between the application

components and the IoT/end-users, the more fog resources are used to reduce the makespan.

118

Chapter 8

8. Conclusion and Future Work

Provisioning large-scale IoT-based disaster management systems face several challenges such

as the dynamic formation of an optimal coalition of IoT devices, the heterogeneity of IoT devices,

and the QoS of these applications. This thesis proposed softwarization approaches to address these

challenges. We approached these challenges in two complementary ways; architectural and

algorithmic. For the architectural contributions, in chapter 3 we proposed a cloud-based

architecture that allows selecting the optimal group of robots for search and rescue tasks of disaster

management applications. It discussed the architectural modules and the interfaces that cover the

IaaS aspects. This contribution allows publishing and discovering robots belonging to different

infrastructures and proposed a well-defined language that allows describing robots’ capabilities

based on existing standards. The proposed architecture enables flexible, elastic, and cost-efficient

use of robots benefiting cloud advantages such as virtualization and scalability.

 To enable the interoperability across IoT devices and applications, we proposed IoT gateway

architecture based on NFV and SDN. Both centralized (i.e., Chapter 4) and distributed (i.e.,

Chapter 5) approaches were considered. For the centralized approach, the elastic scalability of the

architecture is considered and for the distributed approach, co-locating the gateway functionalities

with the IoT devices is considered. Reusing already deployed gateways and handling the traffic

and chaining between the gateway functions dynamically are also considered in the distributed

119

approach. For both approaches, a high-level description of the proposed architecture that is

composed of two planes is provided, and a detailed description of each plane with its corresponding

interfaces and procedures is presented. The proposed architectures enable on-the-fly provisioning

of IoT gateways. Updating existing gateways are also among the benefits of the proposed

architectures.

To ensure that the optimal coalition of robots is selected dynamically with the required

capabilities for resource efficiency, we proposed a coalition formation algorithm for multi-robot

task allocation in Chapter 6. The proposed algorithm takes into consideration the location

constraints regarding the capability distribution of the robots. It consists of a filtering method,

QMOPSO approach, and a ranking method. The proposed algorithm improves the solution and

has a significantly reduces the processing time.

To meet the QoS requirements of disaster management application, we proposed an application

component placement algorithm over hybrid cloud/fog NFVIs in Chapter 7. Both stationary and

mobile fog nodes were considered. The proposed algorithm considered minimizing the aggregated

weighted functions of applications makespan and cost. It also considered non-deterministic VNF-

FG graphs by assigning probabilities to selection sub-structures and mean numbers of iterations to

loop sub-structures. The mobility of fog nodes was modeled using the RWP model. Based on the

stationary distribution of fog nodes’ location, the expected makespan and cost for the sub-

structures: sequence, parallel, selection, and loop were calculated. The calculations were

aggregated in order to obtain the application’s makespan and execution cost. The problem was

formulated as an ILP problem and a Tabu Search-based Component Placement (TSCP) algorithm

was proposed to find a sub-optimal solution in feasible time. The simulation results showed that

the proposed algorithm operated at near-optimal for small scales and improves the makespan, the

cost, and the aggregated of them for larger scales.

8.1. Future Work

This thesis presented significant contributions towards the softwarization of large-scale IoT-

based disaster management systems. Yet, there exist several research directions for the future.

120

8.1.1. Node-level Virtualization

In the future, we would like to incorporate node-level virtualization in the proposed cloud-

based architecture for IoT application provisioning in Chapter 3. Node-level virtualization can be

achieved by sequential (one-by-one) or simultaneous execution (by context switching/multi-

threading) of application tasks on a sensor node. According to [132] node-level virtualization of

sensors can be realized by either i) a capable operating system like Contiki, ii) using a middleware

like Agilla or iii) by using a virtual machine like Squawk that directly runs over the sensors

hardware. It would be interesting to investigate the node-level virtualization approaches for robots

and incorporate them to the proposed architecture.

8.1.2. Resource Allocation Algorithms

Chapter 4 and Chapter 5 propose IoT gateway architecture. The proposed architecture relies

on a simple dynamic resource allocation algorithm to meet the growing demand of applications. It

is based on the resource utilization of the VMs (i.e., CPU) and on horizontal scaling. However,

there is a need to design appropriate resource allocation algorithms in the specific context of VNFs.

Such algorithms should enable vertical scaling – i.e., increasing the resources of a VNF instance

(e.g., CPU, memory) and/or horizontal scaling – i.e., increasing the number of VNF instances that

serve an application. A potential starting point can be considered the resource allocation algorithms

that exist today for VMs (e.g., [11] and [12]).

8.1.3. Application Component Placement

The approach proposed in Chapter 7 for application component placement focused on static

(offline) placement strategies. However, such mode of placement may not be adequate for dynamic

systems where applications arrive at the system dynamically and fog nodes move. In real-world

scenarios, there could be a variety of motivations for modifying the placement of the application

components. For instance, a fog node communicating with an IoT devices might move far from the

device. In such cases, the continuity of the offered services needs to be ensured despite this movements.

An important study can be to consider the online placement of application components that include

migration techniques such as [133] and [134] to handle the mobility of fog nodes.

121

8.1.4. Architecture for Hybrid Cloud/Fog System

As fog computing matures, there is a need for hybrid cloud/fog architectures to provision

application with components spanning cloud and fog. Existing PaaSs do not enable this [135]. In the

recent survey on fog computing [13], we defined several requirements and research directions for

cloud and fog integrations. These requirements can be used as a starting point to design such

architectures. For instance, the proposed architectures should enable the migration of application

components during runtime from one hosting node to another (e.g., e.g. from cloud to fog and vice

versa or from fog to another fog).

122

Bibliography

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on
Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surv. Tutor., vol. 17, no. 4, pp. 2347–
2376, Fourthquarter 2015.

[2] “World Trade Center 911 Disaster « Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M
University.” .

[3] H. Kitano et al., “RoboCup Rescue: search and rescue in large-scale disasters as a domain for autonomous
agents research,” in 1999 IEEE International Conference on Systems, Man, and Cybernetics, 1999. IEEE

SMC ’99 Conference Proceedings, 1999, vol. 6, pp. 739–743 vol.6.
[4] D. Pop, G. Iuhasz, C. Craciun, and S. Panica, “Support Services for Applications Execution in Multi-clouds

Environments,” in 2016 IEEE International Conference on Autonomic Computing (ICAC), 2016, pp. 343–348.
[5] B. D. Martino, “Applications Portability and Services Interoperability among Multiple Clouds,” IEEE Cloud

Comput., vol. 1, no. 1, pp. 74–77, May 2014.
[6] C. Mouradian, S. Yangui, and R. H. Glitho, “Robots as-a-service in cloud computing: Search and rescue in

large-scale disasters case study,” in 2018 15th IEEE Annual Consumer Communications Networking

Conference (CCNC), 2018, pp. 1–7.
[7] C. Mouradian, J. Sahoo, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A coalition formation algorithm for

Multi-Robot Task Allocation in large-scale natural disasters,” in 2017 13th International Wireless

Communications and Mobile Computing Conference (IWCMC), 2017, pp. 1909–1914.
[8] C. Mouradian, T. Saha, J. Sahoo, R. Glitho, M. Morrow, and P. Polakos, “NFV based gateways for virtualized

wireless sensor networks: A case study,” in 2015 IEEE International Conference on Communication Workshop

(ICCW), 2015, pp. 1883–1888.
[9] C. Mouradian et al., “Network functions virtualization architecture for gateways for virtualized wireless sensor

and actuator networks,” IEEE Netw., vol. 30, no. 3, pp. 72–80, May 2016.
[10] C. Mouradian, N. T. Jahromi, and R. H. Glitho, “NFV and SDN - based Distributed IoT Gateway for Large-

Scale Disaster Management,” IEEE Internet Things J., pp. 1–1, 2018.
[11] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight Resource Scaling for Cloud Applications,” in 2012

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2012, pp. 644–
651.

[12] “AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting,” Amazon Web Services, Inc. [Online].
Available: //aws.amazon.com/ec2/. [Accessed: 19-Aug-2015].

[13] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A Comprehensive
Survey on Fog Computing: State-of-the-art and Research Challenges,” IEEE Commun. Surv. Tutor., vol. PP,
no. 99, pp. 1–1, 2017.

[14] C. Mouradian, S. Kianpisheh, and R. H. Glitho, “Application Component Placement in NFV-based Hybrid
Cloud/Fog Systems,” ArXiv180604578 Cs, May 2018.

[15] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad, N. Tahghigh Jahromi, and R. H. Glitho,
“Application Component Placement in NFV-based Hybrid Cloud/Fog Systems with Mobile Fog Nodes,” IEEE

J. Sel. Areas Commun. - Submitt.
[16] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the random waypoint mobility model for wireless

ad hoc networks,” IEEE Trans. Mob. Comput., vol. 2, no. 3, pp. 257–269, Jul. 2003.
[17] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput. Netw., vol. 54, no. 15, pp.

2787–2805, Oct. 2010.
[18] Z. Alazawi, S. Altowaijri, R. Mehmood, and M. B. Abdljabar, “Intelligent disaster management system based

on cloud-enabled vehicular networks,” in 2011 11th International Conference on ITS Telecommunications,
2011, pp. 361–368.

[19] M. Erdelj and E. Natalizio, “UAV-assisted disaster management: Applications and open issues,” in 2016

International Conference on Computing, Networking and Communications (ICNC), 2016, pp. 1–5.
[20] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network Function

Virtualization: State-of-the-Art and Research Challenges,” IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 236–
262, Firstquarter 2016.

[21] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network Slicing amp;#x0026; Softwarization:
A Survey on Principles, Enabling Technologies amp;#x0026; Solutions,” IEEE Commun. Surv. Tutor., pp. 1–
1, 2018.

123

[22] “Network Functions Virtualisation (NFV); Architectural Framework. Availble:
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf.” .

[23] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on Software-Defined Networking,” IEEE

Commun. Surv. Tutor., vol. 17, no. 1, pp. 27–51, Firstquarter 2015.
[24] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: State-of-the-art and Research Challenges,” J. Internet

Serv. Appl., vol. 1, no. 1, pp. 7–18, May 2010.
[25] C. Mouradian, F. Z. Errounda, F. Belqasmi, and R. Glitho, “An Infrastructure for Robotic Applications as Cloud

Computing Services,” in 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, pp. 377–382.
[26] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet of Things,” in

Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, New York, NY, USA,
2012, pp. 13–16.

[27] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Platform for Internet of Things and
Analytics,” in Big Data and Internet of Things: A Roadmap for Smart Environments, N. Bessis and C. Dobre,
Eds. Springer International Publishing, 2014, pp. 169–186.

[28] M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Nemirovsky, “Key ingredients in an IoT recipe:
Fog Computing, Cloud computing, and more Fog Computing,” in 2014 IEEE 19th International Workshop on

Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2014, pp. 325–329.
[29] “Earthquake Early Warning.” [Online]. Available:

https://earthquake.usgs.gov/research/earlywarning/nextsteps.php. [Accessed: 09-Jan-2017].
[30] “Zizmos.” [Online]. Available: https://www.zizmos.com/. [Accessed: 18-Oct-2018].
[31] “Grillo.” [Online]. Available: https://grillo.io/. [Accessed: 18-Oct-2018].
[32] “draft-jennings-senml-07 - Media Types for Sensor Markup Language (SENML).” [Online]. Available:

https://tools.ietf.org/html/draft-jennings-senml-07. [Accessed: 03-May-2015].
[33] C. Mouradian, S. Yangui, and R. H. Glitho, “Robots as-a-Service in Cloud Computing: Search and Rescue in

Large-scale Disasters Case Study,” ArXiv171004919 Cs, Oct. 2017.
[34] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric architecture to provide novel M2M services,”

in 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, pp. 514–519.
[35] C. Schlenoff and E. Messina, “A Robot Ontology for Urban Search and Rescue,” in Proceedings of the 2005

ACM Workshop on Research in Knowledge Representation for Autonomous Systems, New York, NY, USA,
2005, pp. 27–34.

[36] R. Chatterjee and F. Matsuni, “Robot description ontology and disaster scene description ontology: analysis of
necessity and scope in rescue infrastructure context - Advanced Robotics - Volume 19, No 8, pp.839-859.”
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1163/1568553055011528. [Accessed: 03-May-
2015].

[37] Y. Chen, Z. Du, and M. García-Acosta, “Robot as a Service in Cloud Computing,” in 2010 Fifth IEEE

International Symposium on Service Oriented System Engineering (SOSE), 2010, pp. 151–158.
[38] Z. Du, W. Yang, Y. Chen, X. Sun, X. Wang, and C. Xu, “Design of a Robot Cloud Center,” in 2011 10th

International Symposium on Autonomous Decentralized Systems (ISADS), 2011, pp. 269–275.
[39] L. Turnbull and B. Samanta, “Cloud robotics: Formation control of a multi robot system utilizing cloud

infrastructure,” in 2013 Proceedings of IEEE Southeastcon, 2013, pp. 1–4.
[40] B. Liu, Y. Chen, E. Blasch, K. Pham, D. Shen, and G. Chen, “A Holistic Cloud-Enabled Robotics System for

Real-Time Video Tracking Application,” in Future Information Technology, J. J. (Jong H. Park, I. Stojmenovic,
M. Choi, and F. Xhafa, Eds. Springer Berlin Heidelberg, 2014, pp. 455–468.

[41] P. Merle, C. Gourdin, and N. Mitton, “Mobile Cloud Robotics as a Service with OCCIware,” in 2017 IEEE

International Congress on Internet of Things (ICIOT), 2017, pp. 50–57.
[42] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta: A Cloud Robotics Platform,” IEEE

Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, Apr. 2015.
[43] S. K. Datta and C. Bonnet, “Smart M2M Gateway Based Architecture for M2M Device and Endpoint

Management,” in 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom),
2014, pp. 61–68.

[44] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: BridgingWireless Sensor Networks into Internet
of Things,” in 2010 IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing (EUC),
2010, pp. 347–352.

124

[45] S. Guoqiang, C. Yanming, Z. Chao, and Z. Yanxu, “Design and Implementation of a Smart IoT Gateway,” in
Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),

IEEE International Conference on and IEEE Cyber, Physical and Social Computing, 2013, pp. 720–723.
[46] Y. Li, X. Su, J. Riekki, T. Kanter, and R. Rahmani, “A SDN-based architecture for horizontal Internet of Things

services,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–7.
[47] M. Ojo, D. Adami, and S. Giordano, “A SDN-IoT Architecture with NFV Implementation,” in 2016 IEEE

Globecom Workshops (GC Wkshps), 2016, pp. 1–6.
[48] O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, “Edge computing enabling the Internet of Things,” in 2015

IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015, pp. 603–608.
[49] H.-Y. Liu and J.-F. Chen, “Multi-Robot Cooperation Coalition Formation Based on Genetic Algorithm,” in

2006 International Conference on Machine Learning and Cybernetics, 2006, pp. 85–88.
[50] L. Vig and J. A. Adams, “Multi-Robot Coalition Formation,” IEEE Trans. Robot., vol. 22, no. 4, pp. 637–649,

2006.
[51] M. Agarwal, N. Kumar, and L. Vig, “Non-Additive Multi-Objective Robot Coalition Formation,” Expert Syst.

Appl., vol. 41, no. 8, pp. 3736–3747, Jun. 2014.
[52] T. C. Service, S. D. Sen, and J. A. Adams, “A simultaneous descending auction for task allocation,” in 2014

IEEE International Conference on Systems, Man and Cybernetics (SMC), 2014, pp. 379–384.
[53] J. G. Manathara, P. B. Sujit, and R. W. Beard, “Multiple UAV Coalitions for a Search and Prosecute Mission,”

J. Intell. Robot. Syst., vol. 62, no. 1, pp. 125–158, Apr. 2011.
[54] B. Qian and H. H. Cheng, “A mobile agent-based coalition formation system for multi-robot systems,” in 2016

12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA),
2016, pp. 1–6.

[55] P. M and G. R. Suresh, “Coalition formation and Task Allocation of multiple autonomous robots,” in 2015 3rd

International Conference on Signal Processing, Communication and Networking (ICSCN), 2015, pp. 1–5.
[56] A. Rauniyar and P. K. Muhuri, “Multi-robot coalition formation problem: Task allocation with adaptive

immigrants based genetic algorithms,” in 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2016, pp. 000137–000142.
[57] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of Experience (QoE)-aware placement

of applications in Fog computing environments,” J. Parallel Distrib. Comput., Mar. 2018.
[58] R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-delay tradeoff by workload allocation

in cloud-fog computing,” in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 3909–
3914.

[59] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource Allocation in Fog Computing Based on Containers
for Smart Manufacture,” IEEE Trans. Ind. Inform., pp. 1–1, 2018.

[60] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud-fog computing system,” in 2016 18th Asia-

Pacific Network Operations and Management Symposium (APNOMS), 2016, pp. 1–4.
[61] “Swati Agarwal, Shashank Yadav, Arun Kumar Yadav,"An Efficient Architecture and Algorithm for Resource

Provisioning in Fog Computing", International Journal of Information Engineering and Electronic
Business(IJIEEB), Vol.8, No.1, pp.48-61, 2016.”

[62] M. Taneja and A. Davy, “Resource aware placement of IoT application modules in Fog-Cloud Computing
Paradigm,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2017, pp.
1222–1228.

[63] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-Aware Fog Service Placement,” in 2017

IEEE 1st International Conference on Fog and Edge Computing (ICFEC), 2017, pp. 89–96.
[64] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile applications with fog computing,” in 2015

12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops

(SECON Workshops), 2015, pp. 1–6.
[65] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-Aware Application

Scheduling in Fog Computing,” IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35, Mar. 2017.
[66] F. Nawab, D. Agrawal, and A. E. Abbadi, “Nomadic Datacenters at the Network Edge: Data Management

Challenges for the Cloud with Mobile Infrastructure.” OpenProceedings.org, 2018.
[67] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog Following Me: Latency and Quality Balanced

Task Allocation in Vehicular Fog Computing,” in 2018 15th Annual IEEE International Conference on Sensing,

Communication, and Networking (SECON), 2018, pp. 1–9.
[68] M. G. R. Alam, Y. K. Tun, and C. S. Hong, “Multi-agent and reinforcement learning based code offloading in

mobile fog,” in 2016 International Conference on Information Networking (ICOIN), 2016, pp. 285–290.

125

[69] H. Moens and F. D. Turck, “VNF-P: A model for efficient placement of virtualized network functions,” in 10th

International Conference on Network and Service Management (CNSM) and Workshop, 2014, pp. 418–423.
[70] W. Fang, M. Zeng, X. Liu, W. Lu, and Z. Zhu, “Joint Spectrum and IT Resource Allocation for Efficient VNF

Service Chaining in Inter-Datacenter Elastic Optical Networks,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1539–
1542, Aug. 2016.

[71] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba, “Elastic virtual network function
placement,” in 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), 2015, pp. 255–260.

[72] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing together the NFV
provisioning puzzle: Efficient placement and chaining of virtual network functions,” in 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM), 2015, pp. 98–106.
[73] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-Assisted NFV Service Chain Deployment Based on Affiliation-

Aware vNF Placement,” in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6.
[74] M. Mechtri, C. Ghribi, and D. Zeghlache, “A Scalable Algorithm for the Placement of Service Function

Chains,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 3, pp. 533–546, Sep. 2016.
[75] “OpenFog Consortium, ‘OpenFog Reference Architecture for Fog Computing’, Tech. Rep., February 2017.” .
[76] “R. Fielding, ‘Architectural Styles and the Design of Network-based Software Architectures’, Ph.D.

dissertation, University of California, Irvine, 2000.” .
[77] M. Day, J. Rosenberg, and H. Sugano, “A Model for Presence and Instant Messaging.” RFC 2778, Feb-2778.
[78] C. Fu, F. Belqasmi, and R. Glitho, “RESTful web services for bridging presence service across technologies

and domains: an early feasibility prototype,” IEEE Commun. Mag., vol. 48, no. 12, pp. 92–100, Dec. 2010.
[79] “Telecommunications Infrastructure In Disasters: Preparing Cities for Crisis Communications, Anthony M.

Townsend, Mitchell L. Moss, April 2005.” .
[80] “City of New York, Department of Information Technology and Telecommunications. December 2002.

‘Request for Proposals for Franchises Authorizing Construction and Provision of Lateral Ducts and Related
Facilities to House Telecommunications Fiber Links Transmitting Local High-Capacity Telecommunications
Services Between Mainline Systems and Building Entrances.’
[http://www.nyc.gov/htmłdoitt/downloads/pdf/lateral_ducts_rfp_122002.pdf].” .

[81] CISCO, “Tactical Communications Using Cisco IPICS 2.0 Across High Latency Networks - Cisco,” 2016.
[Online]. Available: http://www.cisco.com/c/en/us/products/collateral/physical-security/ip-interoperability-
collaboration-system/prod_white_paper0900aecd805f7726.html. [Accessed: 23-Jun-2016].

[82] “Emergency Mobile Radio Network based on Software-Defined Radio, Takeuchi Takashi, Honda Atsushi,
Watanabe Hideki, Eto Yasutaka, Fujita Yoshitaka, Yaga Manabu.” .

[83] G. Baldini, T. Sturman, A. Dalode, A. Kropp, and C. Sacchi, “An emergency communication system based on
software-defined radio,” EURASIP J. Wirel. Commun. Netw., vol. 2014, no. 1, pp. 1–16, Oct. 2014.

[84] R. Murphy, “Drones Save Lives in Disasters, When They’re Allowed to Fly,” Sep-2015. [Online]. Available:
http://www.space.com/30555-beginning-with-katrina-drones-save-lives-in-disasters.html. [Accessed: 08-Jun-
2016].

[85] S. Miyama, M. Imai, and Y. Anzai, “Rescue robot under disaster situation: position acquisition with Omni-
directional Sensor,” in 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.

(IROS 2003). Proceedings, 2003, vol. 4, pp. 3132–3137 vol.3.
[86] H. Sugiyama, T. Tsujioka, and M. Murata, “Integrated operations of multi-robot rescue system with ad hoc

networking,” in 1st International Conference on Wireless Communication, Vehicular Technology, Information

Theory and Aerospace Electronic Systems Technology, 2009. Wireless VITAE 2009, 2009, pp. 535–539.
[87] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in distributed systems,” in Reliable Software

Technologies — Ada-Europe ’96, 1996, pp. 38–57.
[88] C. Amza, A. L. Cox, and W. Zwaenepoel, “Data replication strategies for fault tolerance and availability on

commodity clusters,” in Proceedings International Conference on Dependable Systems and Networks, 2000.

DSN 2000, 2000, pp. 459–467.
[89] “LEGO Mindstorms.” [Online]. Available: http://www.lego.com/en-

us/mindstorms/?domainredir=mindstorms.lego.com.
[90] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless sensor network virtualization:

early architecture and research perspectives,” IEEE Netw., vol. 29, no. 3, pp. 104–112, May 2015.
[91] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric architecture to provide novel M2M services,”

in 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, pp. 514–519.

126

[92] S. K. Datta, C. Bonnet, and N. Nikaein, “CCT: Connect and Control Things: A novel mobile application to
manage M2M devices and endpoints,” in 2014 IEEE Ninth International Conference on Intelligent Sensors,

Sensor Networks and Information Processing (ISSNIP), 2014, pp. 1–6.
[93] M. Scholler, M. Stiemerling, A. Ripke, and R. Bless, “Resilient deployment of virtual network functions,” in

2013 5th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT), 2013, pp. 208–214.
[94] X. Ge et al., “OpenANFV: Accelerating Network Function Virtualization with a Consolidated Framework in

Openstack,” in Proceedings of the 2014 ACM Conference on SIGCOMM, New York, NY, USA, 2014, pp. 353–
354.

[95] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network Function
Virtualization: State-of-the-Art and Research Challenges,” IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 236–
262, Firstquarter 2016.

[96] Y. Bai, W. Du, Z. Ma, C. Shen, Y. Zhou, and B. Chen, “Emergency communication system by heterogeneous
wireless networking,” in 2010 IEEE International Conference on Wireless Communications, Networking and

Information Security, 2010, pp. 488–492.
[97] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless Sensor Network

Virtualization: Early Architecture and Research Perspectives,” Appear IEEE Netw. Mag., Jan. 2015.
[98] “GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV); Management and Orchestration -

gs_NFV-MAN001v010101p.pdf.” .
[99] N. T. Jahromi et al., “NFV and SDN-based cost-efficient and agile value-added video services provisioning in

content delivery networks,” in 2017 14th IEEE Annual Consumer Communications Networking Conference

(CCNC), 2017, pp. 671–677.
[100] “ETSI GS NFV-EVE 005 V1.1.1 - gs_NFV-EVE005v010101p.pdf.” .
[101] L. Sidki, Y. Ben-Shimol, and A. Sadovski, “Fault tolerant mechanisms for SDN controllers,” in 2016 IEEE

Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 2016, pp. 173–
178.

[102] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski, “A Fault-Tolerant and Consistent SDN
Controller,” in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6.

[103] “Floodlight OpenFlow Controller -,” Project Floodlight. [Online]. Available:
http://www.projectfloodlight.org/floodlight/. [Accessed: 09-Jun-2018].

[104] G. Xilouris et al., “T-NOVA: A marketplace for virtualized network functions,” in 2014 European Conference

on Networks and Communications (EuCNC), 2014, pp. 1–5.
[105] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control: Survey, Taxonomy, and Challenges,” IEEE

Commun. Surv. Tutor., vol. 20, no. 1, pp. 333–354, Firstquarter 2018.
[106] L. Dolberg, J. François, S. R. Chowdhury, R. Ahmed, R. Boutaba, and T. Engel, “A generic framework to

support application-level flow management in software-defined networks,” in 2016 IEEE NetSoft Conference

and Workshops (NetSoft), 2016, pp. 121–125.
[107] F. Belqasmi, R. Glitho, and C. Fu, “RESTful Web Services for Service Provisioning in Next-Generation

Networks: A Survey,” IEEE Commun. Mag., vol. 49, no. 12, pp. 66–73, 2011.
[108] M. Kwon and S. Fahmy, “Synergy: an overlay internetworking architecture,” in Proceedings. 14th International

Conference on Computer Communications and Networks, 2005. ICCCN 2005., 2005, pp. 401–406.
[109] A. Datta and K. Aberer, “The Challenges of Merging Two Similar Structured Overlays: A Tale of Two

Networks,” in Self-Organizing Systems, Springer, Berlin, Heidelberg, 2006, pp. 7–22.
[110] T. M. Shafaat, A. Ghodsi, and S. Haridi, “Handling Network Partitions and Mergers in Structured Overlay

Networks,” in Seventh IEEE International Conference on Peer-to-Peer Computing (P2P 2007), 2007, pp. 132–
139.

[111] “White Paper: DPI & Traffic Analysis in a Virtualizing World - Heavy-Reading_Qosmos_DPI-SDN-
NFV_White-Paper_Jan2014.pdf.” .

[112] J. G. Herrera and J. F. Botero, “Resource Allocation in NFV: A Comprehensive Survey,” IEEE Trans. Netw.

Serv. Manag., vol. 13, no. 3, pp. 518–532, Sep. 2016.
[113] “NFV, GS. ‘001: Network Functions Virtualisation (NFV); Use Cases, V 1.2. 1.’ ETSI.” May-2017.
[114] M. Hormati, F. Khendek, R. Glitho, and F. Belqasmi, “Differentiated QoS for overlay-based disaster response

systems,” in 2014 IEEE International Conference on Communications Workshops (ICC), 2014, pp. 225–230.
[115] B. P. Gerkey and M. J. Matarić, “A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot

Systems,” Int. J. Robot. Res., vol. 23, no. 9, pp. 939–954, Sep. 2004.

127

[116] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in , 1997 IEEE

International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation,
1997, vol. 5, pp. 4104–4108 vol.5.

[117] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A Particle Swarm Optimization-Based Heuristic for Scheduling
Workflow Applications in Cloud Computing Environments,” in 2010 24th IEEE International Conference on

Advanced Information Networking and Applications, 2010, pp. 400–407.
[118] G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle swarm optimization algorithm for multi-

objective flexible job-shop scheduling problem,” Comput. Ind. Eng., vol. 56, no. 4, pp. 1309–1318, May 2009.
[119] J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision Analysis: State of the Art Surveys. Springer,

2005.
[120] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation Offloading for Service Workflow in Mobile

Cloud Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3317–3329, Dec. 2015.
[121] L. Qu, C. Assi, and K. Shaban, “Delay-Aware Scheduling and Resource Optimization With Network Function

Virtualization,” IEEE Trans. Commun., vol. 64, no. 9, pp. 3746–3758, Sep. 2016.
[122] D. Habet, “Tabu Search to Solve Real-Life Combinatorial Optimization Problems: A Case of Study,” in

Foundations of Computational Intelligence Volume 3: Global Optimization, A. Abraham, A.-E. Hassanien, P.
Siarry, and A. Engelbrecht, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 129–151.

[123] R. Battiti and G. Tecchiolli, “The continuous reactive tabu search: Blending combinatorial optimization and
stochastic search for global optimization,” Ann. Oper. Res., vol. 63, no. 2, pp. 151–188, Apr. 1996.

[124] W. Wang, P. Hong, D. Lee, J. Pei, and L. Bo, “Virtual network forwarding graph embedding based on Tabu
Search,” in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP),
2017, pp. 1–6.

[125] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “On the Placement of VNF Managers in Large-
Scale and Distributed NFV Systems,” IEEE Trans. Netw. Serv. Manag., vol. 14, no. 4, pp. 875–889, Dec. 2017.

[126] “Tabu Search—Part I | ORSA Journal on Computing.” [Online]. Available:
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190. [Accessed: 16-Aug-2018].

[127] A. F. Kuri-Morales and J. Gutiérrez-García, “Penalty Function Methods for Constrained Optimization with
Genetic Algorithms: A Statistical Analysis,” in MICAI 2002: Advances in Artificial Intelligence, 2002, pp. 108–
117.

[128] S. Kianpisheh and N. Moghadam Charkari, “A grid workflow Quality-of-Service estimation based on resource
availability prediction,” J. Supercomput., vol. 67, no. 2, pp. 496–527, Feb. 2014.

[129] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On Reducing IoT Service Delay via Fog Offloading,” IEEE

Internet Things J., vol. 5, no. 2, pp. 998–1010, Apr. 2018.
[130] A. Brogi, S. Forti, and A. Ibrahim, “Deploying Fog Applications: How Much Does It Cost, By the Way?:,” in

Proceedings of the 8th International Conference on Cloud Computing and Services Science, Funchal, Madeira,
Portugal, 2018, pp. 68–77.

[131] Haider and Faisal, “On the Planning and Design Problem of Fog Networks,” Text, Carleton University, 2018.
[132] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless sensor network virtualization:

A survey,” IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 553–576, Firstquarter 2016.
[133] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic Service Migration in Mobile

Edge-Clouds,” ArXiv150605261 Cs Math, Jun. 2015.
[134] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration Modeling and Learning Algorithms for Containers

in Fog Computing,” IEEE Trans. Serv. Comput., pp. 1–1, 2018.
[135] S. Yangui et al., “A platform as-a-service for hybrid cloud/fog environments,” in 2016 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN), 2016, pp. 1–7.

