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Variational-Based Latent Generalized Dirichlet Allocation Model in

the Collapsed Space and Applications

Koffi Eddy Ihou, Nizar Bouguila∗

Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada

Abstract

In topic modeling framework, many Dirichlet-based models performances have been hin-
dered by the limitations of the conjugate prior. It led to models with more flexible priors,
such as the generalized Dirichlet distribution, that tend to capture semantic relationships
between topics (topic correlation). Now these extensions also suffer from incomplete gen-
erative processes that complicate performances in traditional inferences such as VB (Vari-
ational Bayes) and CGS (Collaspsed Gibbs Sampling). As a result, the new approach, the
CVB-LGDA (Collapsed Variational Bayesian inference for the Latent Generalized Dirich-
let Allocation) presents a scheme that integrates a complete generative process to a robust
inference technique for topic correlation and codebook analysis. Its performance in image
classification, facial expression recognition, 3D objects categorization, and action recognition
in videos shows its merits.

Keywords: Topic model, generalized Dirichlet, topic correlation, 3D objects, images
categorization, facial expression recognition, action recognition in videos.

1. Introduction

The importance of topic modeling has drawn the attention of many researchers with
exponential emergence of data from different sources. In the past, many applications have
seen an extensive use of Gaussian distributions within a variety of statistical and learning
frameworks. However, the inability of the Gaussian to perform effectively with count data
led to the consideration of topic models such as LDA. The introduction of the LDA [1] and
especially its major success in the field of topic modeling have demonstrated the early capa-
bilities of the model. Its traditional inference schemes ranged from variational Bayes (VB)
to MCMC (Markov chain Monte Carlo) approaches such as the Gibbs sampler (GS) and the
collapsed Gibbs sampler (CGS) [1, 2, 3]. Topic modeling techniques have been used in a
variety of applications, and ultimately led to several extensions of the LDA model. Facing
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storage issues and computational speed, LDA has quickly shown its ability to summarize
database contents into their most relevant topics while still maintaining the intrinsic statisti-
cal structure in the database [4]. The scheme helped uncovering and maximizing the amount
of information hidden behind these large collections of data. Though, rapidly, the inability
of the Dirichlet distribution to capture correlation between topics has hindered the perfor-
mance of the model in several applications related to intra-class variation problems. This
situation automatically forced the introduction of better, more flexible priors and models
that can also guaranty the conjugacy assumption for easy Bayesian inference. That was the
case of models such as CTM (Correlated Topic Models), PAM (Pachinko Allocation Model)
[5, 6, 7], IFTM (Independant Factor Topic Models) [8, 9], GD-LDA (Generalized Dirichlet-
based LDA)[3], and LGDA (Latent Generalized Dirichlet Allocation) [10]. The GD-LDA
for instance is an extension of the original LDA [1] that implements a generalized Dirichlet
(GD) as a prior conjugate to the document multinomial distribution. It therefore replaces
the Dirichlet prior in the LDA’s documents modeling. Similarly, the LGDA samples the
documents parameters from GD distributions. Different from the other models, the CTM
utilizes the logistic normal distribution which in fact is not a conjugate prior to the multino-
mial distribution [5, 8]. Despite its success in topic correlation analysis, it leads to a model
that is very complex and difficult to implement [5]. Consequently, in the other schemes, the
introduction of the GD [11] has not only provided a very useful tool to capture correlation
between topics, but also emphasized on the possibility of an easy access of the optimal num-
ber of topics (model selection). The GD mainly came as a result of the limitations of the
Dirichlet distribution. Prior to the emergence of the GD, many topic modeling approaches
have often used a predefined number of topics. The ultimate goal is to prevent the model
from overfitting as the database grows in size. However, with their ability to capture topic
correlation, PAM and CTM are still prone to overfitting, therefore crippling these models
from performing efficiently in a case where both the topic and codebook (dictionary or vo-
cabulary) grow in size simultaneously. In addition, these two models are computationally
expensive compared to the GD-LDA, CVB-LDA, LGDA, and LDA models.
Dealing with large collections of data of different types requires robust machine learning tech-
niques that could take advantage of efficient computational methods to increase processing
speed and manage data storage. One way is to construct models using efficient inference
techniques as the traditional schemes are being obsolete facing the tremendous challenges
and complexities of large scale datasets processing. As a result, for inferences, variational
Bayes (VB) and MCMC methods, individually, are no longer the state-of-the-art inference
techniques as the collapsed Gibbs sampler (CGS) is not efficient (convergence problem),
and VB alone is inaccurate since it suffers from a large bias due to the strong independency
assumption between latent variables and the parameters. Moreover, the relevance feedback
mechanism [12, 13, 14, 15, 16] (introduced to provide an answer to the problem of optimal
number of topics) using MCMC methods in IR (Information Retrieval) is computationally
expensive for extremely large datasets.
The GD-LDA is designed to improve the generative process in the original (smoothed) LDA
model; however it still uses a Dirichlet prior for the vocabulary (corpus) parameter. Then,
the LGDA implements the GD on document parameters while its corpus parameter was
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not generated to reduce computational complexities in the parameters estimation. Manag-
ing the vocabulary size is extremely important in topic modeling to avoid serious sparsity
problems [1, 4]. As the vocabulary codewords influence topics estimation, a more flexible
prior such as the GD for the corpus parameter could improve and effectively capture the
vocabulary codewords structure (after the clustering algorithm) as it could help reducing
the dictionary contents into its most relevant codewords. Due to these limitations observed
in the previous models, our new approach, the CVB-LGDA improves the state-of-the-art in
topic correlation framework. The CVB-LGDA model is a direct extension to the CVB-LDA.
In our approach, the GD not only replaces the Dirichlet prior for the document parame-
ter similar to the GD-LDA, but also does it for the corpus parameter. The new model in
this paper is a pure GD-based CVB model. With the shortcomings linked to the Dirichlet
prior in topic correlation, the new scheme is more robust to large scale applications than
the other extensions presented in this section. Its GD-based CVB algorithm also combines
the advantages of its VB and CGS inferences methods for an efficient topic modeling in a
scheme that favors mean field approximations, topics and vocabulary codewords analysis.
Experimental results in image, 3D object categorization, and video action recognition show
the generalization capabilities of the model and the LDA hierarchical architecture. One
main objective of this paper is to compare our new approach to the LDA and its previ-
ous extensions such as GD-LDA, LGDA, and the CVB-LDA. This, because their priors are
also conjugate to the multinomials as we are maintaining this concept in our new topic
model as well for easy Bayesian inference purposes. In addition, we are evaluating our pro-
posed scheme and its inference technique through a comparison of its performance to other
classification approaches such as BPNN (Backpropagation Neural network), SVM (Support
Vector Machine), and KNN (K-Nearest Neighbor). In overall, the contribution in this new
generative probabilistic model can be summarized as follows:

• The new approach provides an improvement to the generative process of the LDA [1],
CVB-LDA [17], GD-LDA [3], and LGDA [10]: as large collection of data creates a large
vocabulary size which often leads to a serious sparsity problem, this paper proposes
a better prior (GD) that ultimately replaces the traditional Dirichlet distribution.
It then emphasizes on smoothing the GD on the multinomial parameters (both the
documents and corpus parameters). Previous models such as GD-LDA, LGDA only
drew the document multinomial parameters from a GD distribution while the corpus
parameters are either from Dirichlet or are not generated at all [10]. This is not efficient
when dealing with datasets with a large vocabulary size.

• It directly improves the CVB-LDA. In our model, the inference is now reformulated
with the GD prior, and it implements a new, robust, and complete generative process
in contrast to the Dirichlet-based CVB model and other extensions using the Dirichlet
prior.

• Our new model includes a class label to the CVB algorithm to extend the capabilities
of the inference in categorization framework. It therefore represents an improvement
of the CVB-LDA, LDA, LGDA, and the GD-LDA for its ability to learn its topics

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

automatically (without human intervention) while still assigning a class label to unseen
documents based on topic distribution in each class.

• The new scheme reconciles an unsupervised learning (topic modeling) to a supervised
learning (classification).

This paper is structured as follows: section 2 illustrates the background and relative
work. Section 3 presents the new approach while section 4 covers the experiments and
results in several applications. Finally, section 5 explores some future work and provides a
conclusion.

2. Related Work And Background

LDA [1] is a generative probabilistic model that has been introduced to solve problems
in the original pLSI (probablistic Latent Semantic Indexing) [18, 19, 20]: overfitting and
the difficulty in predicting documents probability outside the training set [4]. Known as
a multinomial PCA (Principal Component Analysis), the LDA has especially found today
its applications in text modeling and computer vision [17]. As a result, understanding all
the different extensions of the LDA first necessitates a summary of the generative process
in the original LDA graphical model. In this generative process of the (smoothed) LDA,
documents are represented as random mixtures over the latent variables where each topic is
a distribution over the vocabulary words or visual words (codewords). In this scheme, for
instance, for a corpus consisting of D documents of length Ni, we usually follow these three
main generative steps in the original LDA as illustrated below :
1-Choose the document parameter θi ∼ Dir(ε) where i ∈ {1, ..., D}
2-Choose the corpus parameter ϕk ∼ Dir(β) where k ∈ {1, ..., K}.
3-For each word position i, j with j ∈ {1, ..., Ni} and i ∈ {1, ..., D}

a-choose a topic zij ∼Mult(θi)
b-choose a word w ∼Mult(ϕzij)

such that Mult(θi) and Mult(ϕzij) are multinomial distributions with parameters θi and ϕzij ,
respectively, while Dir(ε) and Dir(β) are Dirichlet distributions with hyper-parameters ε
and β, respectively.
As observed in the LDA architecture, documents multinomial parameters θ are drawn from
a Dirichlet prior with hyperparameters ε; consequently, the K-dimensional random variable
θ following a Dirichlet distribution could be expressed as:

p(θ|ε) =
Γ(
∑K

k=1 εk)∏K
k=1 Γ(εk)

K∏

k=1

θεk−1k (1)

such that
∑K

k=1 θk = 1
In the following subsections, we will discuss the major differences in the previous exten-

sions which aim to implicitly exhibit the main contributions in our new model. Meanwhile,
for the remaining of this paper and for modeling purpose, the variables w and x could be
used interchangeably to denote a codeword in an image, 3D object, and video while the
variable X defines a collection of x codewords within the BoW framework.
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2.1. Differences in the generative process

Despite our approach being compared to the CVB-LDA [17], GD-LDA [3], and the LGDA
[10], all these topic models follow the same generative and Bayesian hierarchical architecture
of the original LDA [1, 17]. Nevertheless, each has a different generative process. Following
the generative step defined above for the LDA, we can observe that in GD-LDA model [3],
the document parameter is drawn from a GD distribution while the corpus parameter is
still sampled from an asymmetric Dirichlet distribution. Such approach is only suitable for
text modeling where the dictionary is easy to implement with the Dirichlet. Though, the
performance of the model is limited when using datasets such as images and videos that
require extensive topic correlation and codewords analysis. In LGDA [10], the documents
parameters were also drawn from a GD distribution. However, the corpus parameter was
not generated; in other words, the step 2 in the generative process has been avoided or
neglected in the LGDA. This technique, computationally, reduces the model in the param-
eters estimation especially with EM (expectation-maximization) within the VB framework.
However, it makes the generative process incomplete or inefficient (with the Gibbs sampler
which often requires both the corpus and the document parameters to be generated) when
dealing with a large vocabulary size. We might for instance want to reduce the codewords
size into most relevant features or generating relevant codewords that define the documents.
The CVB-LDA has the same generative model of the original and smoothed LDA with the
use of the Dirichlet prior on both the document and corpus parameters. Unfortunately,
this generative process is not efficient due to the limitation of the Dirichlet prior in topic
correlation, and other large scale applications. In other words, the critics to the Dirichlet dis-
tribution revolve around its very restricted covariance structure that ultimately hinders its
performance in topic correlation analysis since it could not be used for positively correlated
data. The situation forced many of these models to operate with text datasets only as shown
in [1, 3]. Moreover, all these difficulties and challenges have promoted the introduction of
our new technique, the CVB-LGDA as it reformulates the generative process of the LDA
where now both the corpus and documents parameters are sampled from the GD priors in
the collapsed space of latent variables. The goal is to allow an effective topic and codebook
analysis, and doing so makes the generative process complete, robust, efficient, and flexible
for correlated topic modeling framework where both the topic and the vocabulary size could
be reduced through pruning methods. This automatically improves processing (computa-
tional speed and storage) in a case of large data collections. The new extension in this paper
and its generative model are described in Algorithm 1 while the full comparison between the
previous techniques and our model is provided by Table.1. Finally, the difference between
these extensions can also be explained through their inference methods as shown in the next
subsection.
Concerning the GD distribution, in a (K + 1)-dimensional space, this prior with K dimen-
sional hyperparameters ε = (α1, β1, ..., αK , βK) is defined as:

p(θ/ε) =
K∏

d=1

Γ (αd + βd) θ
αd−1
d

Γ (αd) Γ (βd)
(1−

d∑

l=1

θl)
γd (2)
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where the vector θ = (θ1, ..., θK) is the K-dimensional multinomial parameter drawn from
the GD distribution.

Algorithm 1 GD-based Generative Model

procedure
for topic k← 1 to K do

draw ϕk ∼ GD(ζ)
end for
for document j← 1 to D do

draw θj ∼ GD(ε)
for word w← 1 to Nj do

draw zwj ∼Mult(θj)
draw w|zwj ∼Mult(ϕk)

end for
end for

end procedure

2.2. Differences in inference techniques

Before going into details in section 3 that is mainly dedicated to models inferences, we
can briefly mention here another aspect that makes each extension different: the inferences.
The lack of efficiency coupled with some other major limitations in these methods ultimately
led to the implementation of our new approach. For inferences, the original LDA often uses
the VB or the Gibbs sampling (MCMC) methods for the latent and parameters estimation.
The Dirichlet-based CVB-LDA combines both VB and the collapsed Gibbs sampler in the
collapsed space [17]. The LGDA is based on the variational Bayes inference. Though, the
GD-LDA favors the collapsed Gibbs sampler. The problem with the VB is that the tech-
nique suffers from a large bias as it always assumes that parameters and latent variables
are independent leading to the factorization of the joint posterior distribution. This strong
assumption could have a negative effect on the lower bound, the likelihood distribution, and
the overall performance of the model when there is for instance any dependence between the
parameters and latent variables. As the VB alone could be inaccurate, the Gibbs sampler
(MCMC) often suffers from convergence problems [17]. Finally, the use of the Dirichlet
prior in CVB-LDA approach limited its performance and hindered its ability to capture
correlation between topics. First presented as a solution to VB and CGS individual draw-
backs, the CVB-LDA is now inefficient and also needs a replacement due to the Dirichlet.
We could observe from these inference approaches that each of the previous extensions has
some limitations; therefore, there is a need for an improvement in these models. Our new
method, combining both the advantages of VB and CGS with the GD as a prior solves
the problem related to the Dirichlet distribution in the CVB-LDA, the original LDA, and
other extensions. Furthermore, as the new approach is used in a classification problem, a
category level (label) is automatically added to the hierarchical structure, as illustrated in
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Description Topic correlation capability
LGDA It uses a GD prior in a VB

inference, but VB alone is
not always accurate. In ad-
dition, the corpus param-
eter is still not generated
in order to simplify compu-
tations in MLE (maximum
likelihood estimation).

Possible topic correlation
analysis (reducing number
of topics), but cannot man-
age the vocabulary size as
the corpus (vocabulary pa-
rameter) is not generated.

GD-LDA It implements a GD-based
CGS. Though, CGS alone is
also not efficient (slow and
no easy access to conver-
gence).

Possible topic correlation
analysis as the documents
parameters are drawn from
the GD while the corpus
parameter is still from a
Dirichlet distribution. The
model is very limited to text
modeling only

LDA It utilizes a VB or a CGS in-
ferences. Nevertheless, it is
based on the Dirichlet prior
which is found to be very
limited.

No topic correlation capa-
bility for positively corre-
lated datasets due to the
limitations of the Dirichlet
prior.

CVB-LDA Its CVB scheme is the cur-
rent state-of-the-art, and a
robust inference that com-
bines the advantages of VB
and CGS. However, it is a
Dirichlet-based model (as a
result, it is very limited).

Good inference technique,
but no topic correlation
ability for positively corre-
lated datasets because of
the Dirichlet prior.

CVB-LGDA It is our proposed model to
fix the CVB-LDA. It auto-
matically combines the ad-
vantages of both GD based-
CGS and GD based-VB in-
ferences.

Very flexible model for cor-
relation between topics with
the GD prior. Both the
topics and vocabulary code-
words could be analyzed.
The model is also flexible to
data of different types.

Table 1: Comparison between the new CVB-LGDA model and the other schemes within the BoW framework
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Fig.1 similar to [2]. Consequently, it improves the current CVB algorithm for classification.
Overall, the new technique with its flexible priors and a robust inference technique is an
extension to the LDA [17].

2.3. Previous work on image classification using topic model

The LDA (latent Dirichlet allocation) model has witnessed so many extensions ultimately
due to some major limitations in the model’s prior (Dirichlet distribution). One of these
weaknesses is the inability of the Dirichlet prior to perform in a topic correlation analy-
sis because it has a very limited covariance structure. Despite the fact that the model in
[2] provides a better way to label topics (intermediate representations) using unsupervised
learning with the LDA , the authors quickly suggested that the classification model they
implemented was far from complete. In other words, the model even though suitable for
classification was very limited: it was only successful for inter class variation problem. The
scheme was not able to perform well in intra class variation problem as it could not make
any difference between classes that carry almost similar features (topics) while for categories
that have very distinct features there was no problem. Consequently, facing this handicap,
as future work, they suggested to focus on generating richer features in order to be suc-
cessful in the categorization scheme using topics. Some works have been devoted to find
new priors for the LDA model [21, 22]. This has led to so many extensions in the quest of
providing the model with the best prior. Another aspect to consider in the LDA model for
classification proposed in [2] was the inference as the variational Bayes EM (Expectation
Maximization) was seen to be their favorite. Indeed the variational Bayesian inference is
one of the widely used techniques in parameters estimations. It is a deterministic approach
that guaranties convergence. So, the method is efficient, but it not very accurate due to
the strong independency assumption (between latent variables and parameters) often ob-
served in the variational Bayes methods. It usually leads to the traditional factorization or
the the decoupling of the joint variational distribution into a product of individual varia-
tional distributions. So, when there is dependency between latent variables and parameters,
the variational Bayes becomes inaccurate as it could severely affect the lower bound and
jeopardize estimation when this lower bound become instable, affecting the log likelihood
computation. A solution proposed in [23, 3] was to marginalize out the parameters leaving
only the latent variables that could be now assumed independent given these parameters.
Thus, these works provided a weak assumption which is more robust for exact inference. It
leads to the collapsed variational inference where the parameters are marginalized out. The
only drawback with the inference was still the Dirichlet distribution.

The CVB-LGDA we finally implemented in this paper has a graphical architecture that
seems to be similar to the bayesian hierarchical model proposed in [2]. However, there is
a major difference between these two models. In fact, the model proposed in [2] draws its
document parameters from the Dirichlet distribution while our new model samples its corpus
and documents parameters from the GD.

As a result, with the GD we automatically improve the previous state-of-the-art inference
which was a Dirichlet-based inference. The new collapsed variational Bayesian inference in
this paper is now a generalized Dirichlet-based one. It is more robust and versatile for a
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better topic correlation and codeword’s analysis as this will help in the intra class variation
problem. Briefly classic learning approach and algorithm could be summarized through
these following concepts. Given observed variables y and unobserved or latent variables x
and the model parameters θ we are maximizing the loglikelihood with respect to θ such that:

£(θ) = log p(y|θ) = log

∫
p(x, y|θ)dx (3)

Often, the difference between the loglikelihood and the bound is expressed as:

£(θ)−F(q, θ) = log p(y|θ)−
∫
q(x) log

p(x, y|θ)
q(x)

dx (4)

= log p(y|θ)−
∫
q(x) log

p(x|y, θ)p(y|θ)
q(x)

dx (5)

= −
∫

log
p(x|y, θ)
q(x)

dx (6)

= KL(q(x), p(x|y, θ) (7)

This difference is actually the Kullback-Leibler divergence. It is non negative and zero if
and only if q(x) = p(x|y, θ) (this is the E-step). Based on the bound on the likelihood, this
likelihood is non decreasing in every iteration such that:

£(θk−1) =︸︷︷︸
E−step

F(q(k), θ(k−1)) ≤︸︷︷︸
M−step

F(q(k), θ(k)) ≤︸︷︷︸
Jensen inequality

£(θ(k)) (8)

where EM converges to a local optimum of £. The variational Bayes EM is shown in
Algorithm 2 while ours (MCMC) is illustrated by Algorithm 3 which mainly show the
differences in the two models.

Algorithm 2 Variational Bayes Expectation-Maximization (EM)

Goal: lower bound p(y|m)
V B − E step: compute the variational parameters such that
q
(t+1)
x (x) = p(x|y, θ(t))
V B − M step: compute the parameters using the variational estimates from E-step as:
q
(t+1)
(θ) (θ) ∝ exp(

∫
q
(t+1)
(x) (x) log p(x, y, θ)dx

Therefore, although using similar graphical topic model for classification where the vo-
cabulary is shared among all classes, the priors and the inferences are different using the
approach in [2] and our method.

3. The New Approach

3.1. Overview

In this paper, due to the limitations of the Dirichlet prior, we propose the generalized
Dirichlet (GD) distribution on both the document and corpus parameters for its flexibility
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Algorithm 3 summary of the CVB-LGDA Inference

1: procedure
2: Input: X , ε = (αc, βc), iterMax, ζ = (λ, η), K, V , N
3: Initialize Z, Njk., N.kvij

4: for iter = 1 to iterMax do
5: for i = 1 to N in document j in class c do
6: zij ∼ Q̂(zij = k|z−ij,X , c, ε, ζ) using Eq.51
7: Update N t

kv, N t
k, N t

dk

8: end for
9: end for

10: Output: Parameters θ̃jks and ϕ̃kws using Eq.52 and 53
11: end procedure

[10, 24] in a collapsed space: the GD has a more general and versatile covariance structure
than the Dirichlet prior. In addition, the Dirichlet is a special case of the GD. A variational
inference scheme with this conjugate prior in the collapsed space represents an improvement
to the state-of-the-art in images, 3D objects, and videos analysis to deal with challenges
related to extensive vocabulary size, and increasing number of topics. The new approach
integrates two models: a topic model (unsupervised learning) and a classification model
(supervised learning). The topic graphical model (Fig.1) in this classification problem is
described by a list of variables as shown below. It shows the conditional dependence struc-
ture between these variables. Moreover, as we are planning to implement inferences in these
two following spaces, details about the collapsed and the joint spaces will be provided in
this section. Meanwhile, back to our graphical model that is a directed acyclic graph, the
variables are indeed described as follows:
D-Number of documents
N -Number of words in each document
K-Number of topics
x = {xij}-Observed words (where a word is positioned as ith in the jth document)
z = {zij}-latent variables (topic indices) associated to the observed words {xij}
θj = {θjk}-Mixing proportions (each parameter θj is a mixture of K topics)
ϕk = {ϕkw}- Corpus parameters
θjk/ε ∼ GenDir(ε)-Generalized Dirichlet distribution with hyperparameter ε for the docu-
ment parameter θjk
ϕkw/ζ ∼ GenDir(ζ)-Generalized Dirichlet distribution with hyperparameter ζ for the cor-
pus parameter ϕkw
zjk/θjk ∼Mult(θjk)-Multinomial distribution with parameter (θjk)
xjk/zjk, ϕjk ∼Mult(ϕkw)-Multinomial distribution with parameter ϕkw
c = {1, 2, ..., C} is the set of all classes summarizing the database, similar to [2].
(ε, c) = (αc1, βc1, ..., αcK , βcK) = (αc, βc)
ζ = (λ1, η1, ..., λV , ηV ) = (λ, η)
In this paper, the documents are drawn from a class set c. The variables ε and ζ are the
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Figure 1: Topic Graphical Model for Classification. The shaded circle denotes observed variables x and the
class c.

documents and corpus hyperparameters of the graphical model, respectively, using the gen-
eralized Dirichlet as priors. In implementation, the variable ε holds two C ×K matrices α
and β such that εc is K-dimensional GD hyperparameter (αc, βc) for the document. Sim-
ilarly, for every topic k, the variable ζ contains two vectors of size V × 1, (λ and η) such
that ζ is a V -dimensional GD hyperparameter (λ, η) for the corpus using the vocabulary
of size V . In addition, the CVB-LGDA algorithm uses notions of variational distributions
and variational lower bound. In our new scheme and similar to [17], the variable Q̃ is
the variational distribution in the standard space (the joint space of parameters and latent
variables). However, the distribution Q̂ is the variational in the collapsed space of latent
variables where the parameters are marginalized out. In the exponential family distribu-
tion, typical to many LDA related graphical model distributions, the likelihood function
(the normalization factor in the posterior distribution) is often approximated by a lower
bound defined as exp(F(Q(x))), where F(Q(x)) is the variational lower bound in the log
space [25]. This element of the integration functional is also called the variational free en-
ergy [17, 23]. Our model is an improved variational Bayes approach in the collapsed space
of latent variables. The traditional VB inference is performed in the joint space of latent
variables and model parameters. Though, it is slow compared to the VB in the collapsed
space. We therefore define these bounds to clarify all the steps taken for the implementation
of the new approach in the collapsed space (in comparison to the joint space). As a result,
similar to Q̃ and Q̂, the variable F̃ is the variational bound in the joint space while F̂ is
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the variational bound in the collapsed space using our CVB-LGDA graphical model (Fig.1).
This concept is similar to [17].

3.1.1. Notations and definitions

In this classification problem, it is important to define some basic concepts related to
the BoW framework as we deal with different data types such as images, 3D objects, and
videos. A video sequence can be seen as a collection of frames (images). Since an image and
a 3D object are each assimilated to a document, a patch x is defined as the basic unit for a
document; and it is an element of the vocabulary codewords. The document is reduced to a
sequence of vocabulary codewords (after quantization scheme from the clustering algorithm).
Therefore, an image, 3D object or a video frame X are each a collection of N patches defined
as X = (x1, x2, ..., xN). The variable xn is the nth patch in the image. A category or a class
is a collection of D images such that I = {X1,X2, ...,XD}. In our image, 3D object, and
video analysis within the BoW, the document is a collection of patches. Though, in 3D
object analysis, the document is also defined as a sequence of images or 2D views which in
turn are a collection of patches. Therefore, our model from image analysis could be easily
generalized to a 3D object and a video as we treat each 3D or video documents as a sequence
of 2D views within the BoW structure.

3.2. Proposed topic model

In this paper, our GD-based collapsed variational Bayesian approach utilizes a topic
modeling scheme for a classification problem using images, 3D objects and videos. Most
importantly, this classification approach emphasizes on the generative probabilistic model
as it has ability to learn both the class-conditional probability p(X|c, ε, ζ) and the prior
probability p(c|µ) (Eq.55) before estimating the posterior distribution p(c|X , ε, ζ, µ) using
the Bayes’ rule. It is for instance in contrast to the discriminative model that usually learns
directly the posterior distribution p(c|X , ε, ζ, µ) [26]. As a result, in our new framework,
each class-conditional probability is a topic model that learns its codewords distribution.
With the GD conjugate prior to the multinomial, the new method aims to capture semantic
relationships between vocabulary words and between topics. So, through this effective rep-
resentation, the model could easily be generalized to several other applications. Again, as
a contribution, this paper extends the capabilities of the previous CVB technique by intro-
ducing a better prior that facilitates applications using images, 3D objects, and videos. The
topic modeling scheme (GD-based CVB) in this categorization problem ultimately provides
the best model describing codewords distribution of the observed data in each class. In this
section, we will also present the GD distribution and its advantages over the Dirichlet prior.

In a topic model with K as total number of Topics, and N the number of unique words
in the dataset, and V as vocabulary size, we can observe that the LDA and the CVB-
LDA have similar time complexity, O(NK). The GD-LDA also has the same complexity.
While the CVB-LDA and the LDA could only generate topics, the GD-LDA could with the
same complexity, perform two tasks: semantic relationship between codewords, and topic
correlation analysis. Same time complexity is observed by the LGDA model. In our model,
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Figure 2: Topic model for classification problem

the CVB-LGDA emphasizes on topic correlation, semantic relationship between words, and
codebook analysis bringing his overall time complexity to O(NKV ):

for n = 1 : N

for k = 1 : K

for v = 1 : V




→Complexity = O(NKV )

Though the flexibility of the CVB-LGDA allows it to prune out irrelevant topics and irrel-
evant vocabulary codewords reducing then the vocabulary size. Therefore, as K and V can
be extremely small due to pruning, the O(NKV ) could be reduced to O(N):

K � N

V � N

}
→Complexity = O(N) (9)

In addition, the variational Bayes-based method and despite its efficiency, could be very
slow as the inference operates in the joint space of the latent variables and the parameters
whereas the new approach operating in the collapsed space gets its parameters marginalized
out leaving only the latent variables. We finally conclude that the new approach has potential
to be faster than its competitors as it still takes advantage of the Taylor approximation to
speed up computation. The models along with their time complexities are summarized in
Table 2.
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LDA O(NK) no topic correlation
CVB-LDA O(NK) no topic correlation
GD-LDA O(NK) topic correlation leading to

O(N)
LGDA O(NK) topic correlation leading to

O(N)
CTM and PAM O(K2N) topic correlation but very

expensive O(N)
CVB-LGDA O(NKV ) topic correlation and vo-

cabulary analysis leading to
O(N) as time complexity
when the number of topics
and vocabulary size are re-
duced

KNN O(KND) No topic correlation as
K refers to the K-nearest
neighbors (not topics), and
D is the data dimensional-
ity

SVM O(N3) topic correlation but very
expensive O(N3)

BPNN O(N5) topic correlation but very
expensive O(N5)

Table 2: Complexity of the new CVB-LGDA model and other schemes within the BoW framework.
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3.3. Inference schemes

This section is dedicated to the inference techniques in the new method. In addition, it
includes the different inference schemes used in the previous extensions.

3.3.1. General Bayesian inference procedures with VB and CGS

The goal in any Bayesian framework is the computation of the posterior distribution in
inferences. However, and very often, it involves integrals estimations such as the likelihood
function and the model posterior distribution that are not quite tractable. Therefore, several
schemes such as VB with EM algorithm and MCMC are widely used to uncover the topics
and estimate the model parameters. Each of these methods has its advantages, but also
its drawbacks. The state-of-the-art seems to reconcile the advantages of both VB and the
Gibbs sampler in the collapsed space, leading to an hybrid model which represents the best of
both worlds: the collapsed Variational Bayes (CVB) inference. It is intuitively a variational
Bayes approach in the collapsed space of latent variables using the Gibbs sampler. The
CVB inference ultimately solves the problem of convergence in the MCMC approach. In
addition, it removes the bias in the VB method with an inference scheme in exact fashion
where the latent variables are conditionally independent given the parameters [17]. From
the graphical model in Fig.1, given its hyperparameters ε, ζ, and the class parameter µ, we
can express the full generative equation of the model. It is the joint probability distribution
noted p(X , z, θ, ϕ, c|ε, ζ, µ) and illustrated below as:

p(X , z, θ, ϕ, c|ε, ζ, µ) = p(c|µ)
K∏

i=1

p(ϕi|ζ)
D∏

j=1

p(θj|ε, c)×
N∏

n=1

p(zj,n|θj)p(xj,n|ϕzj,n) (10)

This joint distribution’s equation can be simplified to :

p(X , z, θ, ϕ, c|ε, ζ, µ) = p(c|µ)p(θ|c, ε)p(ϕ|ζ)×
N∏

n=1

p(zn|θ)p(xn|zn, ϕ) (11)

where p(ϕ|ζ) and p(θ|c, ε) are the corpus prior distribution (GD) with hyperparameters ζ
and a class document prior distribution (GD) with hyperparameter ε, respectively. The
distributions p(zn|θ) and p(xn|ϕzn) are multinomial while the distribution p(c|µ) is the class
prior. The Bayesian inference approximates the posterior distribution of the latent variables
z and the model parameters θ and ϕ given the observations and the class. This is the joint
posterior distribution p(z, θ, ϕ|X , c, ε, ζ, µ) as shown in the equation below.

p(z, θ, ϕ|X , c, ε, ζ, µ) =
p(X , z, θ, ϕ, c|ε, ζ, µ)

p(X , c|ε, ζ, µ)
(12)

where the denominator is expressed as :

p(X , c|ε, ζ) =

∫

θ

∫

ϕ

∑

z

p(X , z, θ, ϕ, c|ε, ζ)dϕdθ (13)
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with
p(X , c|ε, ζ, µ) = p(X|ε, ζ, c)p(c|µ) (14)

For a uniform class prior, we obtain p(c|µ) = p(c) = 1
C

with µ negligible. As a result, the
Eq.13 and Eq.14 could be simplified as :

p(X , c|ε, ζ, µ) =
p(X|ε, ζ, c)

C
(15)

C is the total number of classes while c is the set of classes in this graphical model. The
posterior distribution is then reduced to :

p(z, θ, ϕ|X , c, ε, ζ, µ) =
p(X , z, θ, ϕ, c|ε, ζ, µ)

p(X|ε, ζ, c)/C (16)

As the likelihood function here, the class conditional p(X|c, ε, ζ) is not tractable, the poste-
rior p(z, θ, ϕ|X , c, ε, ζ, µ) is not tractable as well. Then, the variational Bayes (VB) estimates
the true posterior distribution using variational distributions [17] (factorized distributions)
Q̃(z, θ, ϕ) such that:

Q̃(z, θ, ϕ) =
∏

ij

Q̃(zij|ψ̃ij)
∏

j

Q̃(θj|ε̃j)
∏

k

Q̃(ϕk|ζ̃k) (17)

where Q̃(zij|ψ̃ij) is the variational multinomial distribution with parameters ψ̃ij. However,
Q̃(θj|ε̃j) and Q̃(ϕk|ζ̃k) are the GD variational distributions with parameters ε̃j and ζ̃k, re-
spectively, in the joint space of latent variables and model parameters. This VB was often
implemented in LDA and LGDA.
As the standard VB operates in the joint space of latent variables and parameters, in-
ference in that space requires a family of distributions, a set of variational distributions,
defined as Q̃(z, θ, ϕ) that are as close as possible or tight to the true posterior distribution
p(z, θ, ϕ|c, ε, ζ) with the KL (KullBack Leibler) divergence. Importantly, VB introduces a
lower bound to the marginal log likelihood, a concept that is also equivalent to the VB
upper bounding the negative log marginal likelihood − log p(X|c, ε, ζ) in a framework [17]
that utilizes variational free energy as shown in Eq.18 and Eq.19. The inference leads to
variational parameters updates and the model parameters estimation. VB is efficient as
it is easy to implement and provides an easy access to convergence. It is a deterministic
approach. From Eq.18 to Eq.20, the bound on the loglikelihood is expressed as :

log p(X|c, ε, ζ) ≥
∫

θ

∫

ϕ

∑

z

Q(z, θ, ϕ)× log p(X , z, θ, ϕ, c|ε, ζ)dϕdθ

−
∫

θ

∫

ϕ

∑

z

Q(z, θ, ϕ) logQ(z, θ, ϕ)dϕdθ

= EQ[log p(X , z, θ, ϕ, c|ε, ζ)]− EQ[logQ(z, θ, ϕ)]

(18)
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− log p(X|c, ε, ζ) ≤ −
∫

θ

∫

ϕ

∑

z

Q(z, θ, ϕ)× log p(X , z, θ, ϕ, c|ε, ζ)dϕdθ

+

∫

θ

∫

ϕ

∑

z

Q(z, θ, ϕ) logQ(z, θ, ϕ)dϕdθ

= EQ[− log p(X , z, θ, ϕ, c|ε, ζ)]− EQ[− logQ(z, θ, ϕ)]

(19)

− log p(X|c, ε, ζ) ≤ F̃(Q̃(z, θ, ϕ)) = EQ̃[− log p(X , z, θ, ϕ, c|ε, ζ)]−H(Q̃(z, θ, ϕ)) (20)

As the variational entropy is expressed as H(Q̃(z, θ, ϕ)) = EQ̃[− log Q̃(z, θ, ϕ)], the varia-

tional posterior distribution in the joint space Q̃(z, θ, ϕ) is factorized using the independency
assumption as shown in Eq.17. Consequently, in the joint space of VB using a GD prior,
estimating the model parameters θ, ϕ (in M step) from a variational EM algorithm requires
approximation and update of the GD variational distributions hyperparameters when using
the variational multinomial parameter ψ̃ijkc in the E-step. In terms of inferences, many
researchers have implemented the Dirichlet-based VB [1, 2, 17, 27, 10], but its limitations
(strong independency assumption) ultimately led to the Dirichlet-based CVB which is a
combination of VB and MCMC approaches.
In general, the CVB [17, 28, 29] is an improved version of the VB in the collapsed space of
latent variables; and it is the state-of-the-art inference we are also upgrading because of the
limitation of its Dirichlet prior. The CVB and the CGS both operate in the collapsed space.
Therefore, from the joint distribution p(X , z, θ, ϕ, c|ε, ζ, µ), the model parameters θ, ϕ are
integrated out to obtain the marginal distribution p(X , z, c|ε, ζ) defined as :

p(X , z, c|ε, ζ) =

∫

θ

∫

ϕ

p(X , z, θ, ϕ, c|ε, ζ)dϕdθ (21)

But p(X , z, c|ε, ζ) = p(X , z|c, ε, ζ)p(c) so p(X , z|c, ε, ζ) becomes

p(X , z|c, ε, ζ) = C

∫

θ

∫

ϕ

p(X , z, θ, ϕ, c|ε, ζ)dϕdθ (22)

Due to the prior conjugacy between the GD and the multinomial distributions, this integral
is easy to compute, and is often expressed as a product of gamma functions. The goal is to
approximate the conditional distribution of the latent variable p(z|X , c, ε, ζ).

3.3.2. The New Collapsed Gibbs sampler and Mean field inference

The collapsed space of latent variables is a low dimensional space. The space is suitable
for easy computation of integrals using the conjugacy property between the priors distribu-
tions and the multinomial distributions. Ultimately, the Gibbs sampler provides inference by
computing expectations through a sampling process of the latent variables to approximate
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the posterior distributions using a network of conditional probabilities (Bayesian network).
The CGS [17, 3, 30] in the collapsed space of latent variables is therefore very fast compared
to the standard Gibbs in the joint space of latent variables and model parameters. In ad-
dition, with the CGS, no more use of digamma functions, which were computationally very
expensive in VB method, is needed. The CGS algorithm estimates the parameters when
the Markov chain reaches its stationary state (stationary distribution) and provides the best
estimate of the true posterior distribution.
From the marginal joint distribution p(X , z|c, ε, ζ), the conditional probabilities of the la-
tent variable zij are computed given the current state of all variables except the particular
variable zij being sampled [17]. The scheme uses the collapsed Gibbs sampler for topic as-
signments. The conditional probability of latent variables is p(zij = k|z−ij,X , c, ε, ζ) where
−ij corresponds to counts or variables with zij excluded [17]. This conditional probability
is expressed as :

p(zij = k|z−ij,X , c, ε, ζ) =
p(zij, z

−ij,X , c, |ε, ζ)

p(z−ij,X , c, |ε, ζ)
(23)

The above equation using [17] can be simplified since:

p(zij = k|z−ij,X , c, ε, ζ) ∝ p(zij = k, z−ij,X , c|ε, ζ) (24)

The obtained Callen equations (below) as in [17] illustrate the way the collapsed Gibbs
actually performs the sampling mechanism. It is an expectation problem as shown in the
equation given as:

p(zij = k|X , c, ε, ζ) = Ep(z−ij |c,X ,ε,ζ)[p(zij = k|z−ij,X , c, ε, ζ)] (25)

3.3.3. Using GD in the collapsed Gibbs sampler

In our model, the parameters θ, ϕ are drawn from the generalized Dirichlet distribution.
These parameters are now marginalized out in the collapsed space of the latent variables
to speed up sampling process. It is faster to sample in the collapsed space than in the
joint space of latent variables and parameters [17]. The motivation here is to sample the
latent variables from the joint distribution p(X , z|c, ε, ζ) using a network of single class con-
ditional probabilities illustrated below. As previously mentioned, the conjugacy assumption
facilitates estimation of this integral obtained as a product of gamma functions (Eq.26).

p(X , z|c, ε, ζ) = C
D∏

j=1

[
K∏

i=1

Γ (αci + βci)

Γ (αci) Γ (βci)

K∏

i=1

Γ (α′ci) Γ (β′ci)

Γ (α′ci + β′ci)

]

×
D∏

j=1

[
K∏

i=1

Γ (λr + ηr)

Γ (λr) Γ (ηr)

K∏

i=1

Γ (λ′r) Γ (η′r)

Γ (λ′r + η′r)

] (26)

where the document-topic update in class c is expressed as :
{
α′ci = αci +N i

j(.)

β′ci = βci +
∑K+1

l=i+1N
l
j(.)

(27)
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The topic-word update is defined as :
{
λ′r = λr +N i

(.),r

η′r = ηr +
∑V+1

d=v+1N
i
(.)d

(28)

These update equations above are observed to be very similar to the updates expected from
the variational inference. However, the current multinomial updates are provided by the
Gibbs sampler (Eq.27, 28, and 29)





N i
j(.) = N ij

jk(.) = N ij
jk.

N l
j(.) = N ij

jl(.) = N ij
jl.

N i
(.),r = N ij

(.),kνij
= N ij

.kνij

N i
(.)d = N ij

(.),kd = N ij
.kd

(29)

where i refers to the ith topic in document j . The variable l indexes (k + 1)th topic in
document j. The variable r refers to the vth codeword in topic k while d refers to the
(v+ 1)th codeword in topic k. The count N ij

jk. is the number of word i in the document j in

topic k in class c. In addition, N−ijjk. is the total number of words in topic k in document j

in class c except the word i being sampled. The constant N ij
.kνij

is the number of times the

codeword ν appears in topic k in document j while N−ij.kνij
is the number of times the word

ν appears in document j in topic k except the one being sampled.
In Eq.30, we obtained the sampling equation of a topic zij in a particular class document
j given the observations x and the initial topic assignments associated to each word except
the one being sampled z−ij. The counts in the document-topic and topic-word structure are
ultimately emphasized by the multinomial variable ψ̂ijk in the Gibbs sampler, similar to the
case of the VB. Though, the count in Eq.30 is obtained in a collapsed space, it is different
from the one in the joint space of VB. As parameters are marginalized out in a particular
class, the update is reduced to:

ψ̂ijkc = p(zij = k|X , c, ε, ζ) (30)

using p(zij|z−ij,X , c, ε, ζ) =
p(zij ,z

−ij ,X ,c,|ε,ζ)
p(z−ij ,X ,c|ε,ζ) from Eq.23 so that:

p(zij = k|z−ij,X , c, ε, ζ) ∝
[

(N−ijjk. + αck)(βck +
∑K+1

l=k+1N
−ij
jl. )

(αck + βck +
∑K+1

l=k N−ijjl. )

]

×
[

(N−ij.kνij
+ λν)(ην +

∑V+1
d=ν+1N

−ij
.kdij

)

(λν + ην +
∑V+1

d=ν N
−ij
.kdij

)

] (31)

Normalizing the distribution above leads to a posterior probability defined as:

p(zij = k|z−ij,X , ε, ζ) =
A(k)

B(k′, K)
(32)
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such that :

A(k) =

[
(N−ijjk. + αck)(βck +

∑K+1
l=k+1N

−ij
jl. )

(αck + βck +
∑K+1

l=k N−ijjl. )
×

(N−ij.kνij
+ λν)(ην +

∑V+1
d=ν+1N

−ij
.kdij

)

(λν + ην +
∑V+1

d=ν N
−ij
.kdij

)

]
(33)

and

B(k′, K) =
K∑

k′=1

[
(N−ijjk′. + αck′)(βck′ +

∑K+1
l=k′+1N

−ij
jl. )

(αck′ + βck′ +
∑K+1

l=k′ N
−ij
jl. )

(N−ij.k′νij + λν)(ην +
∑V+1

d=ν+1N
−ij
.k′dij)

(λν + ην +
∑V+1

d=ν N
−ij
.k′dij)

]

(34)

Now, the collapsed Gibbs sampler uses the Callen equations (Eq.25) as in [17] to sam-
ple z given the observable variable X . This equation implies that the conditional p(zij =
k|X , c, ε, ζ) are approximated through sample mean of p(zij = k|z−ij,X , c, ε, ζ) by draw-
ing enough p(zij = k|z−ij,X , c, ε, ζ) such that the variables z−ij are in turn drawn from
probability distribution p(z−ij|X , c, ε, ζ). In other words, it is the expected value of p(zij =
k|z−ij,X , c, ε, ζ) where samples are drawn from p(z−ij|X , c, ε, ζ). The Gibbs sampling is
equivalent to an approximation of the true posterior distribution (in a Bayesian inference)
in the collapsed space. As a result, in the CGS, the expected multinomial parameter in
each class is estimated as a count from the true posterior distribution in Eq.30. As the
CGS samples from the true posterior distribution in the collapsed space, the VB updates its
variational parameters in the joint space of the latent variables and model parameters using
the expected multinomial parameter ψ̃ijkc. Therefore,

ψ̃ijkc 6= ψ̂ijkc (35)

3.3.4. The GD-based variational Bayes: GD-VB

As a deterministic approach and in contrast to the CGS, the VB insures convergence to
a local minimum. Optimizing the variational distribution in Eq.17 from Eq.20 with respect
to the GD variational parameters leads to the following updates in the parameters of the
corpus and documents GD variational distributions. These updates are similar to the CVB-
LDA [17].

α̃jkc = αc +
∑

i

ψ̃ijkc (36)

β̃jk′c = βc +
∑

i

ψ̃ijk′c (37)

λ̃kw = λ+
∑

ij

~1(xij = w)ψ̃ijkc (38)

η̃kw′ = η +
∑

ij

~1(xij = w′)ψ̃ijkc (39)
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where k′ = k+1 and w′ are respectively the (k + 1)th topic in the document and the (v + 1)th

codeword in the vocabulary. The multinomial update (count) ψ̃ijkc is also obtained through
optimization of the joint posterior variational distribution F̃(Q̃(z)) with respect to the multi-
nomial variational parameter [17].
In the joint space, the document GD variational parameter α̃jkc is a document-topic count;
it is the total number of words in a topic k in a document j, all in a class c. The GD
variational parameter β̃jkc is also a document-topic count. It is the total number of words

from the next (k + 1)th topic up to the total number of topics in a document j in class c.
The corpus GD variational parameter λ̃kw is a word-topic count: it is the number of times
a word w (a codeword from a vocabulary of size V ) appears in the topic k in a document
j. Similarly, η̃kw′ is another word-topic count as it is the total number of words left in the
vocabulary once the (v + 1)th word is selected such that the first v words are not counted.
These variational parameters are updated with the variational multinomial parameter ψ̃ijkc.
Despite its efficiency with a well defined convergence criterion [17, 1, 4], the VB often suf-
fers for large bias (strong independency assumption) as it decouples the joint variational
posterior into a product of individual variational posterior distributions. This is because
the model always neglects (for convenience) to consider that the latent variables and model
parameters could be dependent in the true posterior distribution. The situation could make
inferences (posterior distribution estimation) inaccurate as the lower bound in this case is
no longer robust. In addition, the VB is not always capable of implementing a proper mean
field approximation (inference), because the scheme ultimately operates in the joint space
of latent variables and parameters such that any change in the parameters could affect the
latent variables [17]. Considering efficiency and accuracy, the new technique, the GD-CVB
combines the advantages of both GD-VB and GD-CGS. The approach operates in the col-
lapsed space of the latent variables.

3.3.5. The new GD-based Collapsed variational Bayes (CVB) architecture: Mean field vari-
ational inference

It is a GD-based VB in the collapsed space (GD-CVB inference). This new collapsed vari-
ational Bayes inference (of the CVB-LGDA model) is a combination of the GD-based VB and
GD-based CGS. Similar to [17], the GD-CVB inference procedure models the dependence of
parameters related to the latent variables in an exact fashion where parameters are either
marginalized out in the graphical representation or modeled as the joint p(θ, ϕ|z,X , c, ε, ζ).
It leaves the latent variables weakly dependent, therefore assumed independent. As a re-
sult, through this weak assumption, the GD-CVB provides an efficient framework for mean
field approximation as latent variables are conditionally independent given the parameters.
Then, based on the conditionally independence assumption of the latent variables, a better
set of variational distributions could be obtained as this weaker assumption allows to finally
decouple effectively the joint Q̂(z, θ, φ). It is given as:

Q̂(z, θ, ϕ) = Q̂(θ, ϕ|z)
∏

ij

Q̂(zij|ψ̂ij) (40)
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where Q̂(zij|ψ̂ij) is the variational multinomial distribution with parameters ψ̂ij in the col-

lapsed space, and the variational free energy F̂(Q̂(z)Q̂(θ, ϕ|z)) conditional to z becomes:

F̂(Q̂(z)Q̂(θ, ϕ|z)) = EQ̂(z)Q̂(θ,ϕ|z)[− log p(X , z, θ, ϕ, c|ε, ζ)]−H(Q̂(z)Q̂(θ, ϕ|z)) (41)

F̂(Q̂(z)Q̂(θ, ϕ|z)) = EQ̂(z)[EQ̂(θ,ϕ|z)[− log p(X , z, θ, ϕ, c|ε, ζ)]−H(Q̂(θ, ϕ|z))]−H(Q̂(z)) (42)

With only two variational posterior distributions (Q̂(θ, ϕ|z), and Q̂(z)), the variational free
energy is minimized with respect to Q̂(θ, ϕ|z) and then with respect to the collapsed vari-
ational Q̂(z) as shown in [17]. A minimum variational free energy is reached at the true
posterior Q̂(θ, ϕ|z) = p(θ, ϕ|z,X , c, ε, ζ) which becomes :

F̂(Q̂(z)) , min
Q̂(θ,ϕ|z)

F̂(Q̂(z)Q̂(θ, ϕ|z)) = EQ̂(z)[− log p(X , z, c|ε, ζ)]−H(Q̂(z)) (43)

As a result, the bound in GD-based CVB of the CVB-LGDA can be expressed as:

− log p(X|c, ε, ζ) ≤ F̂(Q̂(z)) = EQ̂(z)[− log p(X , z, c|ε, ζ)]−H(Q̂(z)) (44)

F̂(Q̂(z)) ≤ F̃(Q̃(z)) , min
Q̃(θ)Q̃(ϕ)

F̃(Q̃(z)Q̃(θ)Q̃(ϕ)) (45)

Eq.45 shows the GD-based CVB being a better and improved approximation than the stan-
dard VB after the parameters are marginalized out in the collapsed space of the latent
variables. In addition, minimizing the variational free energy F̂(Q̂(z)) in Eq.44 with respect
to ψijk leads to the multinomial update in each class as shown in Eq.46.

ψ̂ijkc = Q̂(zij = k|c) =
exp(EQ̂(z−ij)[p(X , z−ij, zij = k, c|ε, ζ])

∑K
k′=1 exp(EQ̂(z−ij)[p(X , z−ij, zij = k′, c|ε, ζ])

(46)

In the GD-based CVB, the latent variables are sampled from the variational posterior distri-
bution Q̂(z) and uses the GD based-CGS. The expected topic assignments lead to parameters
estimations when the Markov chain is stationary. These conclusions are also reached in [17]

3.3.6. Gaussian Approximation in GD-CVB: Second order Taylor approximation

For large datasets, the implementation of the GD-based CVB in the CVB-LGDA, even
though accurate is very expensive as it computes several expectations similar to Dirichlet-
based CVB in [17]. Dealing with this problem requires the use of Gaussian approximations
to estimate the multinomial parameter ψ̂i′jkc and speed up the process. In this scheme of
improving the speed, the counts in the Gibbs sampler act as fields and can be defined as
a large sum of independent Bernoulli variables ~1(zi′j = k), each with parameter ψ̂i′jkc as
shown in [17]. So, the mean of the sum of the Bernoulli variables means and variance of the
sum of the Bernoulli variable variances [17] are respectively computed as :

EQ̂[N−ijjkc.] =
∑

i′ 6=i
ψ̂i′jkc (47)
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V arq̂[N
−ij
jkc.] =

∑

i′ 6=i
ψ̂i′jkc(~1− ψ̂i′jkc) (48)

The variance and the mean are then used in the Gaussian approximation to estimate the
expected values of logarithmic expressions such as EQ̂[log(α+Njk.)]. Using [17], we obtained:

EQ̂[log(α +Njkc.)] ≈ log(α + EQ̂[Njkc.])−
V arQ̂[Njkc.]

2(α + EQ̂[Njkc.])2
(49)

Therefore, the expression above becomes:

exp(EQ̂[log(α +Njkc.)]) ≈ (α + EQ̂[Njkc.])− exp

(
V arQ̂[Njkc.]

2(α + EQ̂[Njkc.])2

)
(50)

This is the second-order Taylor expansion used as an approximation [31]. The model com-
putes an extremely large amount of expectations; so the scheme is found to be very useful in
speeding up the GD-CVB algorithm. The GD-based CVB in CVB-LGDA update is finally
expressed as :

Q̂(zij = k|c) = ψ̂ijkc ∝{[
(αck + EQ̂[N−ijjk. ])(βck +

∑K+1
l=k+1EQ̂[N−ijjl. ])

(αck + βck +
∑K+1

l=k EQ̂[N−ijjl. ])

]

×
[

(λν + EQ̂[N−ij.kνij
])(ην +

∑V+1
d=ν+1EQ̂[N−ij.kdij

])

(λν + ην +
∑V+1

d=ν EQ̂[N−ij.kdij
])

]

× exp

(
−

V arQ̂(N−ijjk. )

2(αck + EQ̂[N−ijjk. ])2

)

× exp

(
−

V arQ̂(
∑K+1

l=k+1N
−ij
jl. )

2(βck + (
∑K+1

l=k+1EQ̂[N−ijjl. ])2

)

× exp

(
−

V arQ̂((N−ij.kνij
)

2(λν + EQ̂[N−ij.kνij
])2

)

× exp

(
V arQ̂(

∑K+1
l=k+1N

−ij
jl. )

2(αck + βck + EQ̂[
∑K+1

l=k+1N
−ij
jl. ])2

)

× exp

(
−

V arQ̂(
∑V+1

d=ν+1N
−ij
.kdij

)

2(ην + (
∑V+1

d=ν+1EQ̂[N−ij.kdij
])2

)

× exp

(
V arQ̂(

∑V+1
d=ν N

−ij
.kdij

)

2(λν + ην + (
∑V+1

d=ν EQ̂[n−ij.kdij
])2

)}

(51)

This equation shows that CVB-LGDA samples its latent variables from a variational poste-
rior distribution Q in the collapsed space of latent variables.
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3.3.7. Parameters estimates: Predictive distributions

The CVB-LGDA’s generative process for an unseen document (image, 3D object, or
a video frame) requires its predictive distribution expressed in terms of its parameter θj
conditional on the model hyperparameters (ε, c) = (αc, βc). Using [17], document parameter
distribution is given as:

θ̂jk =
(αkc + EQ[Njk.])(βkc +

∑K+1
l=k EQ[Njk.])

(αkc + βkc +
∑K+1

l=k EQ[Njk.])
(52)

Conditional on the topic k, the predictive distribution of the words is expressed as ϕkw such
that:

ϕ̂kw =
(λv + EQ[N.kvij ])(ηv +

∑V+1
d=v+1EQ[N.kdij ])

(λv + ηv +
∑V+1

d=v EQ[N.kdij ])
(53)

3.4. Empirical likelihood: Evaluation method for the topic model

Very often, the lack of reliable topic labels for the dictionary codewords leads to the need
for an evaluation method to assess or validate the robustness of the estimated topic model
[3]. The goal is to compute efficiently the probability of the held-out dataset [32, 3]. After
estimation of the predictive distributions, we used the empirical likelihood estimate scheme
presented in [3] as a validation method. In the CVB-LGDA model, the likelihood [17, 3]
could be reduced to:

p(XunseenDoc) = p(XunseenDoc|c, ε, ζ) =
∏

ij

∑

k

θ̂jkϕ̂kw (54)

such that the counts EQ[Njk.], EQ[N.kvij ], and EQ[N.kdij ] of the unseen document are ob-
tained from the GD-based CVB sampling process in the collapsed space. The parameters
of the unseen document (or its codewords and topic distributions) are then used to predict
its likelihood.
The classification problem is also reduced to a likelihood estimation approach which ap-
proximates the distribution of codewords in each class. It evaluates the topic model in each
class [3]. It is designed to predict the likelihood of the unknown document. Therefore,
the predictive likelihood p(X|c, ε, ζ) is estimated as follows: for an unseen document to be
classified, some pseudo documents are generated with parameters θ using the GD priors
from the training set. Once we obtain the best candidates of documents in each class, we
estimate their wordd probability distributions given the corpus parameter ϕ which leads to
the class conditional probability p(X|c, ε, ζ). With the class conditional probability, we can
assess the probability of seeing the test set (unknown document) in the class. The class
label is then given to the unseen document if it has the highest likelihood. The scheme is
similar to [3, 2]. The empirical likelihood estimate is assumed to be robust compared to a
topic model’s perplexity scheme as an evaluation method (validation) of the performance of
the model.
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3.5. Bayesian decision boundary for classification

The empirical likelihood estimate provides the probability of seeing the test set. In
our classification problem (Fig.2), it is used to assess the class of the test set where the
probability of seeing its class is proportional to the class likelihood for a uniform class
prior. Consequently, once the model parameters and latent variables are estimated for the
generative process in each class, then given an unseen document (image, 3D object, face
expression, video frame) with its BoW representation X , the probability of each class label
(predictive model) is expressed as:

p(c|X , µ, ε, ζ) ∝ p(X|c, ε, ζ)p(c|µ) ∝ p(X|c, ε, ζ) (55)

As a result, to assign a category to an unseen document, the decision is ultimately made by
the category label with the highest likelihood probability [2] such that:

C∗ = argmax
c

p(X|c, ε, ζ) (56)

3.6. Model Selection

It is really challenging in topic modeling framework to choose and fix the number of
topics. As already explained in [4], two reasons tend to justify this tremendous handicap:
the difficulty in selecting an appropriate criterion is one reason as it has been said that an
optimization scheme with respect to the criterion could be very expensive in topic modeling.
The second reason is that data or document collections do grow over time, and the database
tends to contain entities (topics, codewords) and structures that are new or different from
the original training set elements. As a result, this is a serious drawback in the process of
providing a better generalization of the model to future or unseen data. As we are working in
the finite dimensional space using finite mixtures where we deal with finite number of topics,
and fixed size in the vocabulary, our option for a model selection has been to implement an
exhaustive search which ultimately takes into account a series of number of topics along with
vocabulary sizes in search for the optimal values (number of topics, and vocabulary size)
that provide the highest classification accuracy rate. In other words, this scheme despite
being expensive is an attempt to provide the optimal number of topics and vocabulary size
for a better description of our topic model.

4. Experimental results

In the topic modeling literature, several applications have often focused on text modeling.
In our experiments in this paper, we are implementing some challenging applications to show
the merits of the new approach. These applications ultimately include: image and 3D object
classification, facial expressions recognition and their categorization, and action recognition
in videos. Following the bag of visual words framework, these applications in this paper
mainly emphasize on representations using local features.
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Images Face expressions 3D Action Recognition in
videos

LGDA 55.28% 70.4% 61% 68%
GD-LDA 65.1% 69% 56.23% 51%
LDA 57% 50.3% 54% 50.25%
CVB-LDA 59.6% 61.40% 60.57% 60.46%
CVB-
LGDA

70.27% 89.8% 63.46% 70.12%

Table 3: Comparison between the new CVB-LGDA model and the other schemes within the BoW framework

4.1. Image Categorization

4.1.1. Methodology

In our experiments, we constructed our model using the well-known grayscale 15 cate-
gories natural scenes dataset [33] . As illustrated in Fig.3 and Table 4, this widely known
and challenging data set includes the following categories suburb, living room, coast, forest,
highway, mountain, street, office, store, bedroom, inside city, tall building, open country,
kitchen, and industrial. In each category, the data is subdivided into two parts: the testing
set contains 100 samples while the remaining constitutes the training set.
In the BoW framework, the local feature representation of the corpus leads to vectors of
counts in each document (image) in the preprocessing stage. The following steps are essen-
tial in the BoW representation: first, using the entire collection of the corpus, local features
(from local patches) are extracted from them using the SIFT (Scale Invariant Transform)
algorithm (Fig.17). The collection of the training set image descriptors is clustered using
K-means algorithm to find a unique representation in the dataset (where similar patches are
grouped together to form a cluster). After quantization, each cluster center is a codeword
and the total number of codewords is the codebook (dictionary or vocabulary). With the
codebook, each image (document) is then represented as a vector of counts: this is the bag
of visual word representation of the corpus.
The training set count data are then used to implement the CVB-LGDA model with asym-
metric GD priors. The topic parameters estimation leads to the predictive model. Using
the topic predictive distributions, we used the empirical likelihood framework as evaluation
method for the robustness of the topic distribution. It then leads to the estimation of the
class likelihood (class conditional probability). The class conditionals help predicting the
class label of unseen images or documents. As a result, the category of unseen image is
chosen by the class with the highest class posterior distribution which is equivalent to the
class conditional probability for a uniform prior.

4.1.2. Results

The CVB-LGDA was able to provide a better result in terms of accuracy as shown in the
confusion matrix (Fig.4). In model selection (Fig.6), the optimal number of topics obtained
is K = 145 while the optimal vocabulary size is V = 1450. The overall accuracy rate is
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(a) suburb
(b) living
room (c) coast (d) Forest (e) Highway

(f) Mountain (g) Street
(h) Office (i) Store

(j) Inside city

(k) Tall build-
ing

(l) Open coun-
try

(m) Kitchen (n) Industrial (o) Bedroom

Figure 3: Examples from the natural scenes images dataset (15 categories).

Categories Size
suburb 241
living room 289
cost 360
forest 328
highway 260
mountain 374
street 292
office 215
store 315
Bedroom 216
Inside City 308
Tall buidling 356
Open country 410
Kitchen 210
Industrial 311

Table 4: size of each image category.
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Figure 4: Confusion matrix for the natural scenes classification problem.

70.27% at these optimal values. Due to an efficient feature representation, these results
ultimately show the flexibility of the new approach (robust prior) as the model has ability
to compute true posterior distributions rather than approximating them as in variational
methods with the variational posterior distributions. In addition, a correlation map (Fig.5)
shows the dependency between any two classes in our categorization problem. These results
reinforce the concept of generalization of the LDA model (to different data types) in which
richer codewords, robust generative schemes (with flexible priors), and inference techniques
could enhance performance.

4.2. Facial Expression recognition

Facial expressions and emotions recognition are getting a lot of attention today as they
are hot topics in data analytics due to the impact of social media (Twitter, Instagram,
Facebook, Flickr, and Youtube). The facial expression model is concerned with a visual
learning process that can also focus on the classification of characteristics such as facial
motions used in various applications (image understanding, virtual reality, synthetic face
animation, facial nerve grading in medicine etc [34, 35]).
In this application, we decided to use a very flexible and robust descriptor from the Fast LBP-
TOP (Local Binary Patterns histogram from Three Orthogonal Planes) scheme as suggested
in [36] for facial expression images modeling. We considered the JAFFE (Japanese Female
Facial Expression) dataset (See Fig.7 and 8). It contains 213 images obtained from 10
Japanese females showing 7 facial expressions such as surprise, anger, happiness, sadness,
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Correlation Map, Variables in Original Order
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Figure 5: Natural scene images correlation map.
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fear, disgust, and neutral. The first task is to group these females according to these seven
expressions representing our different classes. The dataset is partitioned into a training set
and a testing set. From the training set, we obtained the corpus features from the Fast
LBP-TOP descriptors. These normalized histograms are then clustered and then quantized
to get the codebook of the corpus leading to the bag of visual word representation of images
(documents) in the training set. Prior to the BoW representation of the corpus, key features
are drawn from each image regions of interest (Fig.9). Within the BoW, the documents
with vectors of counts are then used to build the CVB-LGDA model where we compute the
parameters of the topics in each class; and then use the topic distribution in each class to
predict the category of unseen documents. As a result, the class label is given to the class
with the highest posterior distribution or class conditional probability (for a uniform class
prior).
The confusion matrix (Fig.10) obtained shows high accuracy rate of 89.8% as shown in
Fig.12. which outperforms its competitors (see Table 3). In addition, the optimal number of
topics is K = 70 while the optimal vocabulary size is V = 105. We illustrated a correlation
map (Fig.11) that measures the dependency between any two categories in this classification
problem. It also demonstrates the capability of the GD in coping with both negatively and
positively correlated data.

NeutralSurprise Anger

Happiness SadnessFear

Disgust

Figure 7: Facial expressions and emotions in the JAFFE dataset

4.3. 3D object classification

The dataset (Fig.18) we consider in this application contains 10 classes of 3D objects
[37]. These classes are : stapler, car bicycle, head, computer, mouse, toaster, cellphone,
shoe, and iron. It is important to point out that these are collections of objects under
different 2D views to implicitly create a 3D concept of the objects (the bicycle for instance)
as illustrated in Fig.18. For the training set, 7 (3D) objects are randomly selected with
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Figure 8: Women showing a ”surprised” facial expression

Figure 9: Facial Expression: Key Regions of Interest and Extraction

around 250 images per 3D object. The remaining is allocated to the testing set in each
class. We obtained around 80 images per object.
From observation in the dataset, in every 3D class, the characteristics of the object are
represented using a very large collection of the object’s 2D images seen from different angles
or views. In other words, these views are used to generate the 3D characteristics of the
object in each class. As a result, constructing a 3D class is equivalent to extracting the
features characteristic from its different parts emphasized by the different 2D views. In this
application, this is also done using the 2D SIFT descriptors so that each 3D object class
contains its intrinsic bag of features (Fig.16). The entire collection of features from the 3D
object classes is first clustered using K-means and then quantized to obtain the codebook of
the corpus. The codebook provides the BoW representation (count data) of each 3D class.
The data is then used to implement the CVB-LGDA which preforms a classification’s task
based on the topic signatures from every 3D class. With the flexibility of the GD prior, the
model could easily cope with a large vocabulary size and an increasing number of topics in
the dataset.
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Figure 10: Confusion matrix from the Facial expressions classification

The optimal number of topics obtained for 3D object modeling is K = 180 for an optimal
vocabulary size of V = 1800. At these optimal values (Fig.15), the accuracy rate shown
by the confusion matrix (Fig.13) reaches a maximum of 63.46%. Due to the high level of
noise (background) in the 2D images representing the 3D objects as shown in the example in
Fig.18, we can say this is a very satisfactory result also taking into account the complexity in
the overall 3D dataset structure in comparison to the image categories data. The robustness
can be compared to the other models as illustrated in Table 3. The model was still able to
provide a better result with a very challenging dataset where correlation analysis has been
useful as shown in Fig.14.

4.4. Action recognition in videos

A robust motion recognition system and a deep analysis represent the two best ingredi-
ents for a complete implementation of human behaviour’s understanding using automated
surveillance systems [38]. In this paper, the action recognition of motions in video has been
implemented with the optical flow algorithm which helps collecting relevant features for the
BoW representation of the corpus data in order to build our model. In this experiment,
we have used the KTH dataset which contains 2391 video sequences at 25 frames [39, 40].
It mainly includes individuals (25 actors) in 4 scenarios performing 6 types of human ac-
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Figure 11: Correlation map for facial expression categories

tions (walking, running, jogging, boxing, hand waving, and hand clapping) as illustrated in
Table.9. In these figures, each column represents a human action in 4 different scenarios.
For processing purpose, the sequences were downsampled to a resolution of 160 by 120 pixels
with a length of 4 seconds.
In our experiment, 60% of the dataset were used for training while the remaining constitutes
the testing set. Around 100 frames were collected from each video sequence in each class.
Within the BoW, we first needed a method that could capture the motion of objects in
the video sequences for a better representation of the dataset. And this is obtained with
the optical flow scheme proposed by the Horn and Schunck algorithm [41]. It is a global
approach that has ability to yield a dense flow often needed and preferred in computer vision
applications.
After obtaining the optical flow for the frames (images), a threshold is set to only recover
the most relevant components of the optical flow matrices. These relevant components of all
categories of actions in the training set are then grouped and then clustered with a K-means
algorithm in order to express a unique representation as a codebook. From the codebook,
each component can be represented as a BoW feature similar to [22], which is used in our
CVB-LGDA model.
This model with the optical flow technique is very computationally expensive as it requires
so many features; however, it was able to provide an overall accuracy of 70.12%. The sta-
bility of the model insured the motion detection, recognition and classification in the video
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Figure 12: Model selection for facial expressions

sequences. This is also due to the efficiency in the GD prior within the collapsed variational
Bayes inference scheme.
From the results obtained in these applications (Table 3), we can say that the CVB-LGDA
model is very robust and could be definitely an alternative to finite mixture models consid-
ering its performances [42, 43].
It is important to finally observe that as the global method proposed by Horn and Schunk
has some limitations due to the very sensitiveness of the optical flow algorithm to noise,
an improvement could be a framework that combines the local methods (robust to noise)
proposed by Kanade and Lucas and the global schemes of Horn-Schunck’s approach (dense
flow fields). This hybrid scheme should ultimately provide the best optical flow features.

4.5. Classification results with other supervised models

To evaluate our proposed model and inference technique, we set up a goal to compare the
new approach with K-Nearest Neighbor (KNN), Backpropagation Neural Network (BPNN),
and SVM. In our settings, a 5-fold cross-validation scheme has been implemented in the
classification models. And to ensure stability in the results the cross-validation technique
has been performed 8 times where finally the classification accuracy was then measured
as the averaged accuracy over these 8 runs. As our entire collections have a BoW feature
representation, the distance of choice in case of the KNN was the Euclidean distance. We
used different values of K to analyze the influence it has on the performance of the classifier.
As a result, values such as K = 1, K = 7, and K = 10 have been selected. The different
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Figure 13: 3D object confusion matrix
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Figure 15: Optimal number of topics and vocabulary size for 3D modeling

Figure 16: 2D Features extraction for a 3D modeling
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Figure 17: Natural scene image Features extraction
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Figure 18: An object from a bicycle’s class at different 2D views for a 3D modeling
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Figure 19: Confusion matrix of the action classes in video

average accuracy values obtained from these datasets are summarized in Tables 5, 6, 7, and
8. From these tables we can observe (through the performance of the model using these
datasets) that the best results were obtained at lower values of K (K = 1 and K = 7). In
addition, KNN provides good performance in the case of low dimensional data than in the
case of high dimensional data (videos and 3Ds) due to the large vocabulary size.
In SVM, we considered Radial Basis Function (RBF) Kernel. The kernel parameter (A) is
taken from {0.1, 1.0, 4}. The results in terms of averaged classification accuracy obtained
in Tables 5, 6, 7, and 8 show that the performance hits a ceiling at A = 1 and from
that point, we notice a significance decrease in the performance. From these datasets, the
videos (activity recognition in videos) and the images datasets (scenes and face expressions)
provided the following best results: 68.1%, 66.4%, and 71.25%, respectively. Though, their
performances has dropped when the value of A increased. In the case of BPNN, we first
equipped the hidden layer with 4 neurons and then 6 neurons. The output layer carries
neurons equal to the total number of categories in our classification problem. We observed
that in our neural network model, the accuracy increases with the number of neurons (L) in
the output layer. Though, everything is getting slow as we increase the number of neurons.
One of the challenges when implementing a BPNN is the number of hidden layers needed
along with their size. In overall, the image (natural scene and face expressions) and video
datasets provided the best averaged accuracy rates among our 3 tested classifiers: 68.4%,
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Figure 20: Model selection for actions using videos

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 y=10 K=1 K=7 K=10
47.3% 68.4% 57.3% 66.4% 61.8% 48.4% 63.14% 61.22%

Table 5: Performance of BPNN, SVM and KNN using images (natural scene).

64.8%, and 67.82%, respectively at L=6. However, these values are still low compared to
the CVB-LGDA’s performances on these datasets.

5. Conclusion

In this paper, we proposed and implemented a new approach to improve the original
LDA hierarchical model. The objective was to provide a strong generalization of the LDA
model so that it successfully performs on a variety of datasets besides the usual text data.
For this purpose, the new method introduces a flexible GD prior for a robust, complete prob-
abilistic and generative process while maintaining an effective inference technique (CVB).
Consequently, the new scheme, the CVB-LGDA is an extension to the GD-LDA, LGDA, and
the CVB-LDA. In general, these previous extensions do suffer from two major limitations:
incomplete generative processes including the use of priors with very limited capabilities
(Dirichlet distribution with very restricted covariance structure) and inefficient inference
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BPNN SVM KNN
L=4 L=6 A=0.1 A=1 A=10 K=1 K=7 K=10
45.9% 64.8% 48.3% 71.25% 47.21% 66.1% 69.4% 58.6%

Table 6: Performance of BPNN, SVM and KNN using face expressions.

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 A=10 K=1 K=7 K=10
44.3% 58.2% 58% 60.4% 51.21% 58.1% 59.1 % 58.4%

Table 7: Performance of BPNN, SVM and KNN using 3D objects.

techniques to build an effective model that could have ability to take into account or handle
datasets of different types. Many previous models, were still using the traditional inferences
such as VB and CGS (MCMC). These inference schemes have their drawbacks: for instance,
the VB suffers from a large bias due to its strong independency assumption between latent
variables and parameters. The CGS has a convergence problem. The CVB-LGDA provides
a solution to all these different challenges and shortcomings. In the generative process, the
new model replaced the Dirichlet distribution on both the corpus and the document param-
eter with the GD prior, which is shown to be more flexible than the Dirichlet distribution.
Doing so, it improved the CVB-LDA, GD-LDA, and the LGDA models. In addition, as
consequence of the choice of the GD prior, the CVB-LGDA inference technique is robust,
and could perform well in topic correlated environments. Due to the advantages of the
GD in topic correlation, the new approach has ability to access a model selection with an
optimal number of topics including an optimal vocabulary size (by pruning both irrelevant
topics and vocabulary codewords). The amount of correlation between classes (categories)
in our experimental datasets showed the flexibilities of the GD prior. It also demonstrates
how a positively correlated dataset could hinder the performance in Dirichlet-based LDA
models while it is not an issue for the GD-based approaches with the flexibility of the prior’s
covariance structure. The performance of the new approach using images, 3D objects, facial
expressions, and actions in videos datasets shows the efficiency in the new model. Despite
its easy convergence, the CVB-LGDA could be sometimes computationally expensive as it
deals with extremely large and complex features from its various descriptors algorithms.
The feature extraction could carry a lot of noise that can jeopardize performance if care is

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 A=10 K=1 K=7 K=10
45.73% 67.82% 54.7% 68.1% 61.7% 65.3% 66.1% 54.4%

Table 8: Performance of BPNN, SVM and KNN using action recognition datasets.
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boxing hand clapping jogging hand waving Running walking

Table 9: KTH Action Recognition Dataset

not taken in the preprocessing stage. This situation occurred in our images and especially
during the 3D and video datasets modeling as some of 2D views of 3D objects were highly
corrupted with background noise. Nevertheless, the model was able to provide very satis-
factory accuracy rates despite the complexity in these large collections. In addition the new
model outperformed other classification approaches such as KNN, SVM and BPNN. For
future work, we will also continue to investigate on the best methods to efficiently perform
a preprocessing technique where corrupted background noise effects could be minimized.
Richer codewords and hierarchies are key to a better performance and result. In addition,
we can investigate on other flexible priors to improve our performance. The model could
also be improved to be executed in an online fashion to cope with situations where new
documents could recursively update the codeword distributions in the database.
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