
Predicting Computational Reproducibility of Data
Analysis Pipelines in Large Population Studies Using

Collaborative Filtering

Soudabeh Barghi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University
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Abstract

Predicting Computational Reproducibility of Data Analysis Pipelines in Large Population
Studies Using Collaborative Filtering

Soudabeh Barghi

Evaluating the computational reproducibility of data analysis pipelines has become a critical

issue. It is, however, a cumbersome process for analyses that involve data from large populations of

subjects, due to their computational and storage requirements. We present a method to predict the

computational reproducibility of data analysis pipelines in large population studies. We formulate

the problem as a collaborative filtering process, with constraints on the construction of the training

set. We propose 6 different strategies to build the training set, which we evaluate on 2 datasets,

a synthetic one modeling a population with a growing number of subject types, and a real one

obtained with neuroinformatics pipelines. Results show that one sampling method, “Random File

Numbers (Uniform)” is able to predict computational reproducibility with a good accuracy. We

also analyse the relevance of including file and subject biases in the collaborative filtering model.

We conclude that the proposed method is able to speed-up reproducibility evaluations substantially,

with a reduced accuracy loss.
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Chapter 1

Introduction

One of the main concerns about reliability of the findings of a study is the ability to reproduce

the same results by doing the same analysis on the same data. This is defined as reproducibility.

This ability could be an evidence for the correctness of the experiments. This enables the other

researchers to make use of the methods and results. In other words, reproducibility is one of the

ways to measure the precision of a study by measuring the ability of replicating the findings. This

concept is defined and categorized in several ways [1, 19, 42]. In general, it refers to those studies

that the same findings, or results within the range of experimental deviation [42], can be achieved by

a different team and experimental setup. This measurement is different from repeatability in which

the experiment is being taken under the same condition by a single person, instrument or team. This

concept can be considered from different perspectives such as empirical [36], computational [54]

and statistical [39].

This chapter explains the concept of reproducibility in relation to computational aspects of re-

search (computational reproducibility).
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1.1 Computational Reproducibility

Computational reproducibility is the ability to recompute analyses over time and space [41].

This aspect of reproducibility has become a critical component of scientific methodology as many

researchers acknowledge the existence of a reproducibility crisis [7]. There are so many factors that

can threaten the computational reproducibility, specially infrastructural characteristics. For instance

in neuroinformatics, our primary field of interest, studies have shown the effect of the operating

system on computational results [25, 26].

Neuroimaging pipelines are prone to generate non-identical results depending on the computa-

tional platform that they are computed in. According to [25] these different results achievements,

arise from variations in hardware architecture and software versions. As it mentioned in [25] re-

stricting researches to a single computing platform is not a very practical solution since: i) the com-

puting platform is getting outdated over time and results may not reproducible; ii) there are various

available platforms adaptable to various tasks. However, High-Performance Computing (HPC) is

limited to alike sets of platforms; furthermore, iii) homogenizing computing platforms sometimes is

not feasible like when different institutions are processing shared databases. This high possibility of

not achieving same scientific results when conducting the same study with same dataset stems from

the hardware and software computing platform. Several studies show that the choice of operating

systems [25] and software package [10] can impact the analysis results.

In this regard, [25] presents some of the differences that are generated along the analysis of

pipelines on different computing platforms. A pipeline is considered as a set of data processing

elements that are connected in series. Some of the computational reproducibility issues could be

caused by differences in i) hardware architecture, ii) version of code, iii) type of the library used by

the code, or iv) compilation options.

A notable fact about processing of datasets in neuroimaging is the use of complicated pipelines

that makes this process both time-consuming and computationally intensive. The size and type of

dataset might cause the analysis process to long for several days and meanwhile the image size can

exponentially grow. Therefore, conducting such reproducibility studies at scale is cumbersome due
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to the computational and storage requirements of analysis pipelines.

1.2 Reproducibility of Neuroimaging Pipelines

Neuroinformatics pipelines are generally iterated on data coming from 10 to 1,000 subjects,

possibly with subtle input parameter variations to adjust specific data acquisition conditions. Subject

data often capture anatomical and functional characteristics of their brain, for instance through

Magnetic Resonance Imaging (MRI) or Electroencephalography (EEG). The number of input files

associated with a subject may vary, and these files may also be of different sizes. Typical processing

times range from 15 minutes to 15 hours per subject, with input ranging from 100 MB to 15 GB per

subject, and outputs ranging from 1 GB to 500 GB.

The reproducibility of a given pipeline may vary across subjects, for instance due to differ-

ent pipeline branches being executed depending on the input data content. As an example, in the

public database released by the Human Connectome Project [57], subjects may have one or two

anatomical images of each modality; when two images are present, they are aligned together and

averaged. Acquisition artifacts, for instance due to motion, may also trigger corrections not oth-

erwise required, and some branches of the pipeline may be executed only for specific acquisition

parameters. These remarks are consistent with recent findings showing that variations in the results

of a functional MRI analysis are dependent on the dataset being analyzed [10]. To capture such

variations, reproducibility evaluations need to be conducted on many subjects, which is unwieldy.

1.3 Contribution and Outline

In this study our goal is to predict the outcome of reproducibility evaluations in a large popu-

lation of subjects, from a reduced set of pipeline executions. More precisely, we aim at predicting

whether a particular file produced by an analysis pipeline will be identical across execution condi-

tions, or if it will contain reproducibility errors. We approach the problem from the point of view of

collaborative filtering. This study makes the following contributions:
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(1) We model reproducibility evaluations in data processing pipelines as a collaborative filtering

problem.

(2) We propose strategies to sample the training set under time constraints.

(3) We evaluate and compare our sampling strategies on synthetic and real datasets.

Chapter 2 discusses some well-know prediction techniques. The problem formulation, collaborative

filtering technique, and proposed sampling strategies for the training set are presented in Chapter 3.

The datasets are described in Chapter 4, and experimental results are in Chapter 5. Finally in

Chapter 6, we conclude on the best sampling method to use, and on the impact, limitations and

generalizability of the results. The work of Chapters 3, 4 and 5 has been accepted for publication

at IEEE BigData 2018 conference (also available as an arXiv pre-print [8]).
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Chapter 2

Machine Learning for Reproducibility

Predictions

Equipping computers to acquire new declarative knowledge by discovering facts and theories

is a challenging goal in artificial intelligence (AI). This learning process tries to map between in-

puts and outputs of a problem through observation and experimentation. The study and computer

modelling of learning processes establish the subject matter of Machine Learning [37].

Machine Learning algorithms aim at finding a good function F : X → Y to do the best mapping

between X , the set of possible inputs, and Y , the set of outputs [33]. Depending on what kind

of data is provided to the learning system in order to learn the map function, Machine Learning

algorithms can be classified into three categories: supervised, unsupervised and semi-supervised. In

supervised methods, the learning system is provided by both inputs x and outputs y (data example

of (x, y) pairs). These labelled instances can be used to learn the best map of inputs to outputs.

Instead, if learning system has to discover patterns in inputs while no desired output is given, it is

called unsupervised learning system. In unsupervised learning, sometimes there is a way to get the

understanding about the quality of an output y by following the input x but the difference is that

this time x comes from the feedback of previous experiences in the learning system. This type of

unsupervised methods which works on rewards or punishments associated with actions are known
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as reinforcement learning [33, 63].

The third category of Machine Learning algorithms are semi-supervised learning where the

system is provided by small labelled instances of inputs-outputs pairs, like the ones in supervised

learning, as well as a large number of unlabelled data similar to unsupervised learning [63].

Machine Learning algorithms are being used in recommender systems to recommend items to

users. Recommender systems extract historical user ratings on items and/or implicit information in

order to recommend items to users [58]. Collaborative filtering is a recommender system technique

that relies on the relationship between items and users instead of analysing the content of the items

or users. These relationships are encoded in a rating feedback matrix, called utility matrix, where

each element represents a specific user rating on a specific item [58].

In this study we consider collaborative filtering technique as a solution for classification and

regression problems. This choice is motivated by the following points:

• The problem in our study can be presented as a utility matrix of subjects and files that repre-

sents the items and users respectively.

• We were wondering if collaborative filtering approach could solve classification problems in

neuroinformatic applications. In other words, we were curious to see if collaborative filtering

can be used in other domains than its prior usage field, e-commerce and social networking

applications.

2.1 Supervised Prediction and Classification Techniques

In this section we provide an overview on some of the well-known supervised techniques that

can be used for classification problems such as k-Nearest Neighbours, Support Vector Machines,

Decision Trees, and Random Forests. However, exploring these techniques in details is beyond the

scope of this work.
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Minkowsky: D(x, y) = (
∑m

i=1 |xi − yi|r)
1
r

Manhattan: D(x, y) =
∑m

i=1 |xi − yi|
Chebychev: D(x, y) = maxmi=1|xi − yi|

Euclidean: D(x, y) =
(∑m

i=1 |xi − yi|2
) 1

2

Camberra: D(x, y) =
∑m

i=1
|xi−yi|
|xi+yi|

Kerdall’s Rank Correlation: D(x, y) = 1− 2
m(m−1)

∑m
i=j

∑i−1
j=1 sign(xi − xj)sign(yi − yj)

Table 2.1: Approaches to define the distance between instances (x and y).

2.1.1 k-Nearest Neighbours

Nearest Neighbours algorithm is one of the straightforward instance-based learning algorithms

that generates classification predictions by using only specific instances [6, 29]. These type of

algorithms do not create an explicit model for classification, instead they classify a new instance by

comparing it with other instances in the training set.

k-Nearest-Neighbours algorithm (k-NN) is one of the Nearest Neighbours methods which is

based on the idea that instances in the dataset are approximately close to the other instances having

similar properties [29]. To classify new instances, first it needs to identify k nearest, “similar”,

instances from the dataset. The class determination is achieved by identifying the most dominant

class label among the k neighbours [29, 50]. There are some distance metrics that are used to

determine the distance between instances; the most significant ones are presented in table 2.1 [29].

Defining k is important as the wrong choice might diminish the classification accuracy. The

optimal choice of k depends on the nature of the data. The more complex and irregular structure of

the data results in the lower value of k [50] being needed. Higher value of k can make the decision

boundary smoother, which reduces the risk of over fitting. On the other hand, if k is chosen to be

high then the ability to capture the local structure in the data would be disturbed.

According to [29], incorrect classification could occur especially when the noisy instances win

the majority vote due to their locality being near to the query instance, which in this case a larger k

would solve the problem. Or in another case, when the data points of different classes are very close

to each other, there is a high probability to find neighbours from other classes for a query point. In
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this case, having a small k may increase the chance of finding the neighbours from the same class.

To classify instance i, k-NN needs to compute the distance between i and all the instances in

the training set. This high computational distance calculations, not only make k-NN sensitive to

its computed distance approach, but also makes it undesirable for real-time prediction of big data

problems [17, 50].

To handle its real-time issue, [17] proposed a new k-NN method that uses k-means [50] algo-

rithms to cluster the dataset into several parts. Then k-NN classification can be conducted on the

nearest cluster that now is selected as the training samples.

k-NN method requires less computation time during training phase in comparison to its classifi-

cation phase process [29]. When the training set is large enough k-NN could perform very well and

even much better if each class is characterized by multiple combination of predictor values [50].

There is no surprise that this method requires large storage volume since for predicting every

record, its distance from the entire set of training should be calculated [50]. This method is not

robust in terms of missing values as it requires complete records for doing its work [29]. Also,

irrelevant features can corrupt the similarity measures used in this method.

2.1.2 Support Vector Machine

Support Vector Machine (SVM) is a classification algorithm that finds the hyperplane (decision

boundary) with the maximal margin to the data classes. Margin is defined as the distance of the

closest instance of the class from the hyperplane. In SVM the goal is to maximize the margin,

which means the instances in either side of the hyperplane are in their furthest possible distance

from it [16, 29]. This hyperplane with maximal margin is called optimal hyperplane. In the case of

linearly separable data, those data points located on the margins are known as support vector points

and the solution is the linear combination of only these points [29]. Those other data points that are

not located on the margins are dismissed. Figure 2.1, extracted from [29], presents an example of a

linear SVM model for classification problem in a two dimensional space.
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Figure 2.1: An example of a linear SVM model. The support vectors in red colour define the
maximum margin between the two separable classes.

According to [56], when the data domain can be divided linearly, the SVM steps are first,

mapping the data domain into a response set and then, dividing the data domain. But sometimes

this linear division is not possible. In such case, the data domain is transformed into a feature

space where the data domain can be linearly divided into separate classes. Therefore SVM steps are

considered as mapping data domain into the feature space, using kernel function [49]. This function

is used for mapping feature space domain into the response set [56], and then similar to what linear

SVM, it divides the data domain as well. It is notable that this kernelized space hyperplane is based

on the features that ensure the high generalization ability of the network [16].

Sometimes it is possible that SVM cannot find a hyperplane since the data set contains misclas-

sified instances. This problem can be resolved by using soft margin solution which is well described

in [29].

This algorithm is versatile in a way that not only common kernel functions are provided for

the decision function, but also custom kernels are possible to be specified. Moreover, it is memory

efficient [5] since it just uses the linear combination of support vector points and ignores the other

data points. On the other hand choosing the right kernel functions and regularization term would be
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critical when the number of features are much greater than the number of instances.

[5, 29] are some of the valuable sources of information about SVMs especially in terms of

its performance. However, the general and critical comparison of supervised Machine Learning

methods presented in [29] is a worth reading study in which the advantages and disadvantages of

this technique are well-explained.

2.1.3 Decision Trees

Decision Tree [13] is a non-parametric algorithm which uses a tree-logic to make predictions.

It uses divide-and-conquer approach, a recursive partitioning of the data set, to define the classifi-

cation rules. This approach can use various metrics [59] to grow the trees such as Gini index and

Information Gain. These methods evaluate variables in order to find the best attribute to split on at

each steps.

Gini Index

Decision Trees could be generated by Gini index which measures the probability of incorrectly

labelled random selected element from data set if this element was randomly labelled according to

the distribution of labels in the subset. If pi consider as the fraction of elements with label i in a set

of items with J classes, i ∈ {1, 2, ..., J}, then Gini index is computed as below.

IG(p) =
J∑

i=1

pi(1− pi) = 1−
J∑

i=1

pi
2

Classification and Regression Trees (CART) [35, 53] is one of the well-known algorithms that

uses Gini index technique to choose the best attribute in each splitting stage.

10



Information Gain

This technique is based on the entropy concept and the fact that how much information is gained

by a random attribute when it is chosen. We can compute entropy as bellow, when there is a set of

j classes where the selected element labeled in class i with the probability of pi.

H(T ) = −
J∑

i=1

pi log2 pi

In process of building a tree, the calculation of Information gain for each possible first split (parent

node) is needed. This Information for a selected element a of class T is gained as the subtraction of

the parent’s entropy H(T ) and the sum of children’s entropyH(T |a):

IG(T, a) = H(T )−H(T |a)

or

IG(T, a) = −
J∑

i=1

pi log2 pi −
∑
a

p(a)
J∑

i=1

−Pr(i|a) log2 Pr(i|a)

Some algorithms such as ID3 [43], C4.5 [44, 46] and C5.0 [40] use Information Gain to measure

the quality of the split in order to keep the tree simple.

Regardless of which technique is used to choose the best attribute in each split stage, generally

decision tree approach is to select an attribute and starts splitting the dataset into two nonoverlap-

ping, smaller datasets based on the outcome of a test on the value of the selected attribute. The

reason for this splitting is for increasing the chance of homogeneity of the resulting smaller datasets

with respect to the target variable. This process recursively applies to the partitions, for instance

until pure subsets are reached (all members are classified to only one class). To generate the classi-

fication rules it just needs to go through the paths of the tree from the root to each leaf [30, 55]. In

other words a decision tree is a tree structure flowchart where the topmost node is the root node and

each leaf one (terminal node) has a class label. The internal nodes indicate a test on an attribute,

and finally branches show the outcome of the test [15].
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Decision tree classifier works well on noisy data and does not require any prior knowledge of

the data distribution [38]. They are easy to build, use, and interpret. The prediction values can be

generated easily by backtracking from the leaves to its root. This algorithm is commonly used for

pattern classification.

This tree-logic approach is based on a single basic idea or principle, which considers the utility

of individual attributes one at a time and this could disregard the case when multiple attributes begin

to be strongly predictive whereas their weak predictive utility in separate cases [38]. In addition,

they tend to cause overfitting problem as they work well with the data they created by, but they are

not flexible when it comes to classifying new samples.

2.1.4 Random Forest

Random forest [4, 12] is another successful Machine Learning model for classification and

regression. It is based on aggregation of many decision trees that aims to control the overfitting

issue.

A random forest consists of a number of, k, tree-structured classifiers {h(x,Θk), k = 1, ...}

where a random vector Θk is generated independently but with the same distribution from the past

random vectors, Θ1, ...,Θk−1, and each tree casts a unit vote for the most popular class at input

vector x [12]. Contrary to the classification problems where a committee of trees’ votes predicts

the class, in regression problem, averaging the trees’ results is the result of prediction [23, 50].

As detailed in [23], forests can be generated through different techniques such as: bagging, ran-

dom split selection, and boosting [12]. According to [12], depending on the type of injected ran-

domness, some random forests have lower generalization error than others. Based on the other stud-

ies ( [14, 18, 22]) mentioned in [12], those algorithms that make the forests by adaptive reweighting

of training set (such as Adaboost), outperform the ones that use other techniques (like bagging).

The reason behind this better performance could be the fact that they grow trees in an adaptive way

in order to remove bias [23].
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Compared to simple tree, random forests are not interpretable since their results cannot be dis-

played in a tree-like diagram [50]. An appealing feature of random forests is its ability to produce

variable importance score, that measures the relative contribution of the different variables. The im-

portance score for a particular variable is computed by summing up the decrease in the Gini index

for that variable over all the trees in the forests [50].

When the fraction of the number of variables over the number of relevant variables is high,

random forest might perform poorly if the number of selected variables be small; there would be a

low chance of having relevant variables at each split [23].

2.2 Collaborative Filtering

Collaborative filtering is a technique for predicting unknown values of a matrix called “utility

matrix”, from the known ones. Traditionally, the matrix represents the ratings of items (considered

as columns) by users (considered as rows). Ratings might be explicit, when users provide ratings

through a dedicated system, or implicit, when users’ behaviours are analysed to estimate their pref-

erences. An overview of collaborative filtering is provided in [31]. Several methods have been

proposed to implement collaborative filtering such as Item-Based and User-Based collaborative fil-

tering. Both methods have been used extensively for e-commerce applications.

2.2.1 User-Based Collaborative Filtering

User-Based collaborative filtering [11] predicts the rating of item i by user u from the ratings of

item i by users similar to u. There are several techniques to compute the similarity of the co-rated

users like cosine-based, correlation-based and adjusted cosine similarities [60].

Pearson correlation is one of the popular similarity measures between two users’ ratings. For

a set of items P , if the rating of items I1, ..., Ip by user U1 presented as r1,1, r1,2, ..., r1,p and their

average denoted by r̄1 and similarly rates of r2,1, r2,2, ..., r2,p by user U2 with average of r̄2, the

correlation can be calculated by:
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Corr(U1, U2) =

∑
i∈p(r1,i − r̄1)(r2,i − r̄2)√∑

i∈p(r1,i − r̄1)2
√∑

i∈p(r2,i − r̄2)2

The summation is calculated for the items that are rated by both users. Cosine similarity is

another popular measure that is not subtracting the means:

CosSim(U1, U2) =

∑
i∈p(r1,i)(r2,i)√∑

i∈p(r1,i)
2
√∑

i∈p(r2,i)
2

It is notable that when the data is binary, all the items regardless of being co-rated by both users or

not, should be considered in the calculation of Cosine Similarity [31].

User-Based collaborative filtering has difficulty in measuring the similarities between users and

the other when the number of users grows. This issue can exponentially increase the computation

time of the algorithm [60]. Since the nearest-neighbours approach can be computationally expen-

sive, clustering methods can be another solution. In this method, users can get into alike clusters in

terms of preferences and the distance measure could be done between user and each cluster. This

clustering approach could be less accurate in comparison with the nearest-neighbours approach

[50].

2.2.2 Item-Based Collaborative Filtering

Item-based collaborative filtering [11, 32] predicts the rating of item i by user u from the ratings

of items similar to i by user u. Whenever a user expresses interests in an item, the algorithm finds

the items that are co-rated by any user and computes the similarity between items.

The similarity of the co-rated items can be computed with the same aforementioned techniques

in User-Based collaborative filtering, except that r̄1 defines as the average of rates for our specific

item. According to a report by developers of Amazon item-to-item recommendation system [32],
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Item-based algorithm produces recommendations in real time and generates high quality recom-

mendations. But despite of the high diversity of users’ taste in User-Based recommendation, the

number of items in Item-based recommendations is not very varied and therefore recommendations

are almost obvious [30]. This method could also calculate item similarities in an offline basis, and

this makes it to be able to handle the massive computation caused by rapid increase in the number

of users and items [60].

2.2.3 Matrix Factorization

A third class of collaborative filtering methods, the one that we used, is based on the factoriza-

tion of the utility matrix to estimate latent factors along which users and items are represented. This

method is described in [28] and became famous as it contributed to winning the Netflix prize in

2009. This method tries to predict the rates by characterizing both users and items according to in-

ferred factors from rating patterns. Such factors might measure obvious dimensions or well-defined

ones but in some cases it could be completely uninterpreted dimensions. This model basically maps

the users and items in a joint latent factor space. In matrix factorization, first a relative number of

latent factors f is getting fixed. Then each user u is summarized with a f dimensional vector pu,

and each item i is summarized with a f dimensional vector qi [2]. In this case, the rating of item i

by user u can be predicted by rui ≈ qTi pu. This rating predictions can be presented in matrix form.

The f × n user matrix P , and the f ×m item matrix Q are defined by:

P =


l l

p1 ... pn

l l

 , Q =


l l

q1 ... qm

l l



Where p1, ..., pn ∈ Rf and q1, ..., qm ∈ Rf are the factor of users and items, respectively. The

aim of this method is to complete the rating matrix, and the predicted rating values,R ≈ P TQ. This

problem can be formulated as an optimization problem in which the aim is to minimize an objective

function while P and Q are optimal. In other words, the goal is to minimize the least square error of
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the observed ratings.

In practice, the optimization involves a regularization term to avoid overfitting particular users

or items. The method finds qi and pu that minimize the following objective, where λ is the regular-

ization parameter and T is the training set:

∑
(i,u)∈T

(
rui − qTi pu

)2
+ λ

(
‖qi‖2 + ‖pu‖2

)
(1)

Two good techniques to perform the optimization are Gradient Descent and Alternating Least

Squares (ALS). Gradient Descent [9, 45] turns to be slow and cost lots of iterations [2]. In ALS

approach, the one that we used in our study, the set of variables P are fixed and considered as con-

stants; then the objective is a convex function of Q and vice versa. In other words, ALS factories

utility matrix R into a product of matrices P and Q of dimensions p × f and f × q respectively.

Therefore each u and i of matrix R has a f-dimensional feature vector that describes its characteris-

tics. The rui is the inner product of feature vector of u and feature vector of i. ALS uses following

iterative process in order to computes P ×Q for predicting the unknown values of matrix R [62].

(1) Initialize P to a random value;

(2) Optimize Q given P to minimize error on R

(3) Optimize P given U to minimize error on R

(4) Repeat steps 2 and 3 until convergence

It is also common to include user biases bu and item biases bi in the optimization, defined as the

average deviation of user u and item i to the global average µ. The problem is then to find qi and pu

that minimize the following objective:

∑
(i,u)∈T

(
rui − µ− bu − bi − qTi pu

)2
+ λ

(
‖qi‖2 + ‖pu‖2 + b2u + b2i

)

In our study we aim to predict if a particular file produced by an analysis pipeline is identical
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across execution conditions, or if it contains reproducibility errors. We approach this problem from

the point of view of collaborative filtering, inspired by works that applied this method outside of its

initial application domain.

Unfortunately, there is not enough previous research work that has been done about the potential

application of collaborative filtering in other domains than its prior domains (e-commerce, social

networks, or other personalized recommendation purposes). To our best of search, there is just one

study [21] that used collaborative filtering to minimize the number of probes in the monitoring tech-

niques. This minimization conducted by the combination of Maximum Margin Matrix Factorization

(MMMF) and their proposed selection methods.

2.3 Sampling Concerns

Data sampling for training set is a critical matter that can affect the accuracy of the predicted

values. Sometimes the nature of the problem makes it impossible to sample the training set ran-

domly. For instance, the statistical nature of the problem in [51], is the reason behind not splitting

data randomly for model validation and selection. As mentioned in their study, random sampling of

training and test sets could also accentuate the variance of predicted results in small data sampling.

They present an algorithm that uses Euclidean distance for finding furthest samples in the dataset

according to the already sampled data in the training or the test sets. This sampling method is being

taken in turn for sampling the two training and test sets. Therefore, the ratio of these two sets are

mostly the same (50% of dataset is sampled in each sets). Their results show that the sampling tech-

nique can control (decrease) the variability of prediction accuracies across different classification

models.

Typically, in recommender system a small fraction of available items are rated by users, and

most of data is missing. Missing data can happen in different mechanisms: missing completely

at random (MCAR) [34], missing at random (MAR), missing not at random (MNAR). Missing at

random in recommender systems context, refers to the probability of a rating being missed that does

not depend on its value [52]. In general, when using only observed ratings, matrix factorization of
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collaborative filtering assumes that randomness of the system is a MAR mechanism [27]. Some-

times data is not missed at random. For example when i) the users only buy the items that they like

and just rate the items that they bought; ii) user is an extremist in giving rate, who just gives the

feedback of good or bad for items; or iii) some items are assumed to function properly all the time

and they mostly are rated when they are flawed.

Figure 2.2 illustrates the two kinds of missing data pattern. Depending on the patterns of miss-

ingness, there are some approaches that can deal with missing data problem. The required approach

could be a simple method such as Pairwise Inclusion [20, 48] or an advanced one like Imputation

[48].

(a) Arbitrary (b) Monotone

Figure 2.2: Missing value patterns. White indicates the missing value in the data.

Several studies like [27, 52] try to optimize the accuracy of the prediction results in missing

not at random mechanism with different approaches. [52] presents appropriate surrogate objective

functions for efficient training on MNAR data and [27] propose a probabilistic matrix factorization

model for collaborative filtering that learns from data that is MNAR.

Identifying the nature of the problem before applying any learning models is important. Ac-

cording to our research on data sampling and its effect on accuracy of the results, selection and

evaluation sets of learning model should be sampled according to the structure of the problem.
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Also, ignorance of missing data not at random (MNAR) can lead to a significant reduction in the

resulting recommendation accuracy. Missing data issue can be handled by different methods [3],

depending on the type of entered variable (continuous, ordinal, nominal), number of missing data,

and missingness pattern.

2.4 Summary

There are numerous learning models in Machine Learning that try to predict values in real clas-

sification and regression problems. We tried to cover some of the well-known supervised algorithms

that are being used in these kind of problems, however a very good comparison between most of

these algorithms is done by [29]. In our context, we consider our problem, detection of repro-

ducibility errors, as a kind of classification problem and [21] inspired us to apply collaborative

filtering as a potential solution for tackling this problem. The main issue, and originality, of our

problem lies in the fact that the training set cannot be arbitrarily sampled from the utility matrix

defining the collaborative filtering problem. Instead, the training set has to respect time constraints

imposed by the file creation order during pipeline executions. In this regard, we propose some sam-

pling methods for building the training set with respect to the structure of our problem. In the next

Chapter we present these methods in detail.
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Chapter 3

Collaborative Filtering and Training Set

Sampling Methods

This chapter describes our proposed framework to evaluate a pipeline. First, we formalize the

problem considered in our study. In order to make our training set we proposed several sampling

techniques which are explained in the last section.

3.1 Problem Formulation

The pipeline to be evaluated is represented by a matrixU of sizeNf×Ns, where theNs columns

represent data coming from different subjects, and the Nf rows represent the files produced by the

pipeline. While subjects are not ordered, files are, for instance from their last modification time in a

sequential execution, and we assume that this order is consistent across subjects. Ui,j measures the

reproducibility of file i produced during the processing of subject j in two conditions, for instance

two different operating systems. In our experiments, we restrict Ui,j to be boolean, but our methods

can be applied for real values as well.

Our goal is to predict the test set T′ of missing values of U from a training set T of known

ones, where T ∩ T′ = ∅ and T ∪ T′ = {Ui,j}. In contrast with the traditional collaborative filtering
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method, we have control over the construction of the training set. For instance, we can choose to

include only files produced by specific subjects, or the first files produced by the processing of every

subject. Moreover, the construction of the training set is constrained by the order of the matrix rows,

which is formalized as follows:

∀(i, j, k) ∈ J1, Nf K× J1, Nf K× J1, NsK,

(Ui,k ∈ T and Uj,k ∈ T′)⇒ i < j.
(2)

Our problem is as follows:

Given a training ratio α, find a subset T of {Ui,j} of size αNfNs such that (1) T and

T′ respect Equation 2, and (2) T′ can be predicted from T with high accuracy.

In this study, we use ALS [28] as implemented in Apache Spark’s MLLib version 2.3.0. We

also round predictions to the nearest integer to obtain binary values.

3.2 Training Set Sampling Methods

As explained before, the training set in our problem cannot be constructed by unconstrained

random sampling of the matrix. Instead, the training and test sets have to comply with Equation 2.

To address this issue, we investigated the following sampling techniques, illustrated in Figure 3.1.

3.2.1 Complete Columns

The training set is sampled by randomly selecting complete columns in the utility matrix, that is,

complete subject executions (Figure 3.1a). The last selected column might be incomplete to meet

the exact training ratio. This method respects the time constraints. It corresponds to a situation

where the collaborative filtering method will predict the reproducibility of the subjects in the test

set from the subjects in the training set.
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3.2.2 Complete Rows

The training set is sampled by selecting complete rows in the utility matrix, that is, the first files

produced by every execution (Figure 3.1b). The last selected row might be incomplete to meet the

exact training ratio. This method respects the time constraints. It corresponds to a situation where

the processing of all the subjects is launched and interrupted before the execution is complete. The

collaborative filtering method will then predict the reproducibility of the remaining files.

3.2.3 Random Subjects – RS

RS method builds the training set by selecting the files from random subjects until the training

ratio is reached (Figure 3.1c). The file selected in a subject is the file with the lowest index in this

subject that has not been already selected in the training set, which respects the time constraints.

3.2.4 Random File Numbers (Uniform) – RFNU

In RFNU method as Figure 3.1d shows, the number of files selected for every subject is ran-

domly selected in a uniform distribution U(a, b), where b is set to the total number of files Nf and

a is set according to the training ratio α as follows:


a = 0 if α ≤ 0.5

a = (2α− 1)Nf if α > 0.5

For α ≤ 0.5, we ensure that the average number of selected files by subject is αNf by sampling the

number of files in every subject from U(0, Nf ) with probability 2α, and setting it to 0 otherwise.

For α > 0.5, this is ensured by the value of a, which leads the average of U(a, b) to be αNf .
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(a) Complete Columns (b) Complete Rows

(c) Random Subjects (RS) (d) RFNU

(e) RFNTL (f) RFNTS

(g) Random Unreal

Figure 3.1: Training sets for different sampling methods, α = 0.4 (dark elements are in the training
set).
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3.2.5 Random File Numbers (Triangular) – RFNT

In RFNT the number of files selected for every subject is randomly selected in a triangular

distribution T (a, b, c) as in Figure 3.2. The mean of the distribution is a+b+c
3 . We set c to Nf and

we set a and b with the following two approaches.

a b c

2/(c-a)

Figure 3.2: Triangular distribution T (a, b, c)

Largest a

In this approach known as RFNTL , an example shown in Figure 3.1e , a is set to the largest

possible value, i.e., b, and b is set accordingly to ensure that the average of the distribution is αNf .

Two cases occur:

• When α > 1/3:

a = b =
3α− 1

2
Nf

• When α ≤ 1/3: a = b = 0, the number of files selected in every subject is sampled from

T (0, 0, Nf ) with probability 3α and set to 0 otherwise.

Smallest a

In this approach known as RFNTS, an example shown in Figure 3.1f, a is set to the smallest

possible value, i.e., 0, and b is set accordingly to ensure that the average of the distribution is αNf .

Three cases occur:
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• When α < 1/3: a = b = 0, the number of files selected in every subject is sampled from

T (0, 0, Nf ) with probability 3α and set to 0 otherwise.

• When 1/3 ≤ α ≤ 2/3:

a = 0 ; b = Nf (3α− 1)

• When α ≥ 2/3: b = Nf , the number of files selected in every subject is sampled from

T (0, Nf , Nf ) with probability 3(1− α) and set to Nf otherwise.

As illustrated in Figures 3.1e and 3.1f, the point of the RFNTL method is to guarantee that, for

large enough values of α, all subjects will have at least a few files in the training set (no empty

column), which is not the case for RFNU or RFNTS.

3.2.6 Random Unreal

The training set is sampled in a random uniform way, regardless of the file creation times (Figure

3.1g). This method does not respect the time constraints in Equation 2, however, it will be used as

a baseline for comparison.

In each method, we also included the first row of the matrix (first file of each subject) and a

random column (all files of a random subject) to avoid cold start issues (having no initial information

for specific item or user) .

3.3 Summary

As it was mentioned in the previous Chapter, data sampling strategy of training set can affect

the accuracy and quality of the predicted value. According to our limitation, the time constraint, in

our study we proposed six sampling methods that have different strategies for sampling the training

set and all of them are respecting the training ratio. Some of these methods try to sample data

either with having all samples of few subjects or few samples of all subjects. But there are some
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methods that try to maximize the number of selected subjects while the most possible number of

samples from these subjects are selected for training set. This maximization is done by two kinds

of distributions; uniform and triangular. In the next chapter we describe our two types of datasets

that we used to apply our sampling methods on.
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Chapter 4

Data Collection

In this chapter we describe the two types of datasets used in our study. First, a synthetic dataset

simulates different possible cases that might be observed in the analysis pipelines. Second, a real

dataset was acquired using neuroinformatics analysis pipelines.

4.1 Synthetic Dataset

We generated synthetic matrices as shown in Figure 4.1. Each matrix has 100 files and 100

subjects of different types. Subjects of the same type behave identically and all types contain the

same number of subjects ± 1. Such a decomposition by subject type corresponds to a situation

where different subjects may have data of different nature, as is the case in the Human Connectome

Project data [57] where not all the subjects have the same amount of images.

For subjects of a given type, the matrix consists of log(n) blocks, where n is the number of

types. Blocks are defined with all the possible variation patterns: some types do not vary at all, while

other ones vary between every block. Such patterns are meant to mimic the logic of data processing

pipelines: each block of files represents the files produced at a given stage of the pipeline, which

may or may not contain reproducibility errors depending on the subject type.
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(a) 1 type (b) 2 types

(c) 4 types (d) 8 types

(e) 16 types (f) 32 types

(g) 64 types

Figure 4.1: Synthetic reproducibility matrices. White cells denote reproducibility errors.
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4.2 Human Connectome Project (HCP)

Human Connectome Project (HCP) pipelines aim to provide free high quality of neuroimaging

data for characterizing human brain connectivity and function [57]. Figure 4.2 shows an overview

of the HCP Minimal processing pipelines and the overall workflow for preprocessing and analysis

in the HCP. HCP contains three structural pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer)

and also has two functional pipelines (fMRIVolume and fMRISurface) as well as a Diffusion Pre-

processing pipeline [24]. According to [24] the overall goals of the HCP Minimal processing

pipelines can be listed as below:

(1) Remove spatial artifacts and distortions

(2) Generating cortical surfaces, segmentations, and myelin maps;

(3) Making the data easily viewable in the Connectome Workbench visualization software

(4) generating precise within-subject cross-modal registrations;

(5) Handling surface and volume cross-subject registrations to standard volume and surface spaces;

(6) Making the data available in the CIFTI format in a standard “grayordinate” space

Figure 4.2: HCP minimal preprocessing pipelines.
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4.3 Real Dataset

We processed a set S of 94 subjects randomly selected in the S500 HCP release1of the Human

Connectome Project [24], in three execution conditions with different versions of the CentOS oper-

ating system (5.11, 6.8 and 7.2 – referred as C5, C6 and C7), using the PreFreesurfer and Freesurfer

pipelines described in [24] and available on GitHub2. For each pipeline, we identified the set F

of files produced for all subjects in all conditions. For each condition pair and each pipeline, we

computed a binary reproducibility matrix U of size |F | × |S|, where Ui,j is true if and only if file i

of subject j was different in each condition. Rows of U were ordered by ascending file modification

time in a random subject in S.

Figure 4.3 shows the matrices for PreFreesurfer and Freesufer. The reproducibility of these

pipelines varies across subjects, but most files behave consistently across all subjects, leading to

complete black or white lines.

4.4 Summary

We conduct our study on two different types of datasets. Synthetic datasets are built to have a

better understanding of each proposed sampling methods since since their utility matrices contain

clear patterns. Real datasets are built for having a real case for use our sampling methods. we

used HCP pipelines since they have high impact in the neuroimaging domain. For making our real

datasets we used the comparison results [47] getting by a framework 3 for processing the data along

the two HCP structural processing pipelines (PreFreeSurfer and FreeSurfer).

1https://db.humanconnectome.org
2https://github.com/Washington-University/Pipelines/releases/tag/v3.19.0
3https://github.com/big-data-lab-team/repro-tools
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(a) PFS, C5 vs C6 (b) PFS, C5 vs C7

(c) PFS, C6 vs C7 (d) FS (100 files), C6 vs C7

Figure 4.3: Utility matrices for PreFreesurfer (PFS) and Freesurfer (FS). White cells denote repro-
ducibility errors.
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Chapter 5

Results

We conducted two experiments for each reproducibility matrix, to evaluate the performance of

our predictions using (1) ALS without biases, and (2) ALS with subject and file biases. We compare

the performance of our sampling methods to (1) a dummy classifier that always predicts the value

in the majority class and (2) the Random Unreal method, used as the baseline sampling technique.

All reported values are averages over 5 repetitions. Due to sampling issues, it is possible that the

actual training ratio obtained with some of the sampling methods does not exactly match the target

one. We checked that the difference between the target and real training ratios was lower than

0.01. We used Spark’s ALS model as available in pyspark.ml, with 50 factors, a regularization

parameter of 0.01, a maximum of 5 iterations and non negative constraints set to true. The code

and data used to obtain the results are available through GitHub at https://github.com/

big-data-lab-team/paper-reproducibility-collaborative-filtering.

5.1 Accuracy on Synthetic Dataset with ALS without Bias Technique

Figure 5.1 shows accuracy results for ALS without bias. By construction, the accuracy of the

dummy classifier is close to 0.5 for all subject types. Random Unreal performs well for all subject

types, which confirms that ALS is working correctly. All the other methods perform better than the
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dummy classifier, and their accuracy decreases as the number of subject types increases. However,

only 3 methods can provide accuracy values above 0.85 for all subject types: Random Subjects (RS),

RFNU and RFNTL. Surprisingly, RFNTS does not perform well for more than 2 subject types, even

for α = 0.9.

5.2 Accuracy on Synthetic Dataset with ALS with Bias Technique

Figure 5.2 shows accuracy results for ALS with bias. RS, RFNU and RFNTL remain the meth-

ods that best compare to Random Unreal, but their accuracy is much lower than without biases.

This is presumably due to the fact that file biases are all close to 0.5. In such a situation, biases are

detrimental and should not be included.

5.3 Accuracy on Real Dataset with ALS without Bias Technique

Figure 5.3 shows the accuracy for ALS without bias. Among the methods that performed well

in the synthetic dataset, RFNU performs the best, with an accuracy higher than 0.95 for all datasets

when the training ratio is larger than 0.5. Complete rows and complete columns do not reach the

accuracy of the dummy classifier. Random Unreal has an accuracy close to 1, which shows that

collaborative filtering works well on this dataset too.

5.4 Accuracy on Real Dataset with ALS with Bias Technique

Figure 5.4 shows the accuracy for ALS with bias. From a training ratio of 0.5, all methods

perform well for all datasets, except complete columns in Figure 5.4b. All methods except RFNU,

RFNTL and RFNTS also perform well for a training ratio lower than 0.5. Overall, the accuracy is

much higher than without bias, due to the fact that the file biases are very strong. In the remainder,

all the results are obtained using ALS without bias.
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(a) 2 subject types
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(b) 4 subject types
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(c) 8 subject types
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Figure 5.1: Accuracy results on synthetic data, ALS without bias.
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Figure 5.2: Accuracy results on synthetic data, ALS with bias.
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Figure 5.3: Accuracy results on PreFresurfer (PFS) and Freesurfer (FS) data, ALS without bias.
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Figure 5.4: Accuracy results on PreFresurfer (PFS) and Freesurfer (FS) data, ALS with bias.
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Sensitivity Specificity
Complete Columns 0.53 0.97

Complete Rows 0.43 0.89
Random Subjects 0.88 0.99

RFNU 0.92 0.99
RFNTL 0.81 0.97
RFNTS 0.65 0.93

Random Unreal 1 1

Table 5.1: Average sensitivity and specificity for the synthetic datasets and Freesurfer (α = 0.9,
ALS without bias).

5.5 Receiver Operating Curve (ROC) Analysis

ROC curve is depicting the performance by an anomaly detection technique [61] The closer

to the top-left corner(representing the false positive rate 0 and the true positive rate 1 in figure

5.5) of the chart, the better performance the anomaly technique produces. Figure 5.5 compares the

sampling methods in the ROC space, for a training ratio of 0.9, on the synthetic and Freesurfer

dataset. The PreFreesurfer dataset is not included since specificity of RFNTL, RFNU, RS and

complete rows is undefined at this training ratio (the test set only contains positive elements). The

average sensitivity and specificity values are reported in Table 5.1, which confirms that RFNU is the

best performing method on average.

5.6 Effect of the Number of Factors

Figure 5.7 shows the effect of the number of factors used in the ALS optimization for the RFNU

method and the synthetic dataset with 8 subject types (3 blocks of files). For training ratios greater

than 0.5, the accuracy with 3 factors is substantially higher than with 2 factors. Beyond 3, the

number of factors does not have any effect, which shows that the data is best explained by 3 factors.

Figure 5.9 confirms that 3 factors are enough to separate the files of this dataset in 3 blocks, and the

subjects in 8 types.
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5.7 Effect of the Maximum Number of Iterations

Figure 5.8 illustrates the effect of the number of iterations used in the ALS optimization, for

the RFNU method and the synthetic dataset with 8 types. From a training ratio of 0.7, the number

of iterations has a moderate effect on the accuracy. We used 5 iterations in our experiments, which

only slightly degrades the accuracy compared to 15 or 20.

5.8 Prediction Error Localization

Figure 5.10 compares the prediction errors made by RFNU, RFNTL and RFNTS. The training

set is represented in black (negatives) and white (positives), and the test set is in green (true posi-

tives), yellow (false negatives), gray (true negatives) and red (false positives). This representation

provides insights regarding where, and perhaps why, prediction errors occur. At this training ra-

tio, RFNU (Figure 5.10a) uniformly samples the number of files per subject between 0.8Nf and

Nf , which enables the training on the last files of the pipeline, while maintaining a low number of

columns with a low training ratio. On the contrary, RFNTL (Figure 5.10b) samples the number of

files per subject from 0.85Nf , but the probability to have a complete column is 0 (the one complete

column in Figure 5.10b is the one included to prevent cold start issues), which leads to a “stripe”

of prediction errors at the bottom of the matrix. RFNTS (Figure 5.10c) does not have this issue,

as it includes many complete columns in the training set. However, it comes at the cost of several

columns with a number of files lower than 60%: in such columns, the prediction is often entirely

wrong, which explains the reduced accuracy compared to RFNU.

Figure 5.6 shows the RFNU results on the Freesurfer dataset for a training ratio of 0.6. The

prediction error is localized (1) at the bottom of the matrix, which corresponds to the end of the

execution, and (2) in the regions where file reproducibility varies across subjects, i.e., lines are not

entirely black or entirely white. This is consistent with our expectations and confirms the validity

of our results.
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Figure 5.6: Prediction results for RFNU on the Freesurfer dataset, α = 0.6.

5.9 Summary

Besides evaluating the accuracy of each sampling method we compared these methods in the

ROC space. The average sensitivity and specificity values support the general outperforming of

RFNU. Also we had some experience about the effect of the number of latent factors and iterations

specifically for RFNU method to find the optimal number for each of them. Depicting the sub-

ject and file latent factor vectors ensure that by use of RFNU, matrix factorization can effectively

determine the different types of subjects or files of the dataset.

41



 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy

Training ratio

2 factors
3 factors

4 factors
5 factors

10 factors
25 factors

50 factors

Figure 5.7: Effect of the number of factors
used in ALS, (RFNU, synthetic dataset, 8
types, 5 iterations).

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy

Training ratio

1 iteration
2 iterations
3 iterations

4 iterations
5 iterations

10 iterations

15 iterations
20 iterations

Figure 5.8: Effect of the number of itera-
tions used in ALS, (RFNU, synthetic dataset,
8 types, 50 factors).

 0  0.2 0.4 0.6 0.8  1 1.2 1.4 1.6 1.8 0
 0.2

 0.4
 0.6

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

Subject Type 1
Subject Type 2
Subject Type 3
Subject Type 4
Subject Type 5
Subject Type 6
Subject Type 7
Subject Type 8

Factor 1

Factor 2

Fa
ct

o
r 

3

(a) Subject factors

 0
 0.2

 0.4
 0.6  0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

File block 1
File block 2
File block 3

Factor 1

Factor 2

Fa
ct

o
r 

3

(b) File factors
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Figure 5.10: Comparison between RFNU, RFNTL and RFNTS on synthetic dataset with 8 types,
α = 0.9.

42



Chapter 6

Conclusion

While collaborative filtering, perhaps unsurprisingly, correctly predicts the missing values in a

matrix modeling reproducibility evaluations, the usual random sampling method cannot be used in

time-constrained processes. Processing of each subject in neuroimaging pipelines produces several

files sequentially. This time generation characteristic of files in the pipelines is known as time-

constrained for sampling the training set in our study. Basically random training sampling is im-

practical in this type of problems since it corresponds to the situation that a file has been chosen

to be sampled in the training set while it might not have been produced in the process so far; just

because the training set size has been met. Also the dependency of some files to their previous

ones in terms of their generation in the processing of the subject makes prediction unrealistic if a

dependent file is sampled in training set which that means its reproducibility value is known while

the independent file assume is not generated yet and its value is going to be predicted.

We proposed six sampling methods to address sampling issue. Two ordinal sampling methods,

Complete Columns and Complete Rows, one Random Subject (RS) and three distributed random

sampling methods, RFNU, RFNTL, RFNTS. By comparison results of all methods in two kinds of

datasets, synthetic and real, we found that one of them, RFNU, performs better than the other ones

on average. We explain that by the fact that RFNU builds the training set using a balanced mix of

nearly complete and nearly empty columns, with a continuum of intermediate configurations. On
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the contrary, other methods, including RFNTL and RFNTS, bias the sampling toward complete or

empty columns, which is sometimes detrimental to accuracy.

Besides biases effect, dominant value of the first execution files that are sampled in the training

set plays important role for the accuracy of some methods such as complete columns, RFNU and

both RFNT approaches. As much as the ratio of reproducibility error and not evident error values

be the same the accuracy of these methods decrease whereas RS and complete rows methods which

have almost the same behavioural performance and in this case they have better accuracy for very

low training ratios. Complete columns is the most vulnerable method to this equivalent of classes

value related to the first executed files, specially when there is high file bias in the dataset. This may

relate to ALS optimization parameters(the number of iterations or latent factors)that might base

happen on the first sampled files.

For datasets that are strongly dependent on row bias, such as the PreFreesurfer and Freesurfer

ones, RFNU provides accuracy values consistently higher than 0.95 for training ratios higher than

0.5, even when biases are not included. For the synthetic dataset, RFNU still performs very well

when biases are not included, but it does very poorly when biases are included. For this reason, we

recommend to not include biases in the collaborative filtering optimization to solve this problem.

Even though biases provide a slight accuracy improvement when datasets are strongly biased (con-

stant lines in the matrix), they can also be very detrimental for more complex datasets such as the

synthetic one used here.

From a practical standpoint, our study shows that reproducibility evaluations of the PreFreesurfer

and Freesurfer pipelines can be conducted using only 50% of the files produced, with an accuracy

above 95%. Potentially, this could reduce the computing time and storage required for such stud-

ies by a factor of 2. However, such studies could not be conducted by processing only half of the

subjects entirely, which would correspond to the complete columns sampling method. Instead, the

processing of all the subjects should be initiated and terminated in a random uniform way, assuming

that files are uniformly produced throughout the execution. On more complex matrices, such as the

synthetic dataset studied here, the training ratio required to get a 95% accuracy increases to 0.85.
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This study can make a contribution to solve the reproducibility errors. Prediction of values of

reproducibility evaluation matrix can be helpful to identify the files with possibility of not being

reproducible over the problem’s conditions.

Our study could be extended to real-valued reproducibility matrices instead of just binary ones.

It is indeed common for file differences to be quantified using specific similarity measures or dis-

tances, such as the Levenshtein distance between strings, or the sum of squared distances among

voxels of an image. Our sampling methods could be directly applied to real-valued matrices, and

we expect our conclusions on the best-performing sampling method (RFNU) and the inclusion of

biases in the model to remain valid.

The method described in this thesis could possibly be used to predict the outcome of other

time-constrained processes, for instance markers of chronic disease activity.

Sampling method could be considered as a missing data problem. The value of those files with

no data in the training set could be equivalent to unobserved ratings in the data missing not at random

situation; [52] is an example of data missing not at random. In another words, the training set output

of the sampling method can be a utility matrix in the data missing problem that the prediction is not

occur only by use of observed values but also the non random missing data.
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Glossary

ALS Alternating Least Squares. 16

HCP Human Connectome Project. 29

RFNT Random File Numbers with use of Triangular distribution. 24

RFNTL Random File Numbers with use of Triangular distribution when parameter a set to the

Largest possible value. 24

RFNTS Random File Numbers with use of Triangular distribution when parameter a set to the

Smallest possible value. 24

RFNU Random File Numbers with use of Uniform distribution. 22

RS Random Subjects. 22
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