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Abstract

Cross-dock Scheduling with Known Shipment Unloading Order

Thuy Vu

Cross-docking is a logistics strategy which is widely used these days in different indus-

tries. Cross-docking takes place in a distribution docking centre and consists of trucks

and dock doors on inbound and outbound sides. Products from suppliers get unloaded at

inbound doors from incoming trucks, consolidated, transferred and loaded into outgoing

trucks at outbound doors, with little or no storing them in between.

We study two scenarios of cross-docking scheduling problem: scheduling inbound

side with fixed outbound side scheduling and scheduling both inbound and outbound

sides. In the former scenario, we introduce five mixed integer programming models

with enhanced pre-processing and extensions to minimize the total number of tardy

products. In the later scenario, we proposed new linear mixed integer programming

models where transportation time between dock doors are considered. The objective

in the second case is to minimize the maximum lateness of outgoing trucks. In both

scenarios, we integrate the unloading order of shipments in incoming trucks into our

models. Computational results show that taking advantage of that information helps

improving the truck scheduling and assessing much more accurately the number of tardy

products and lateness.
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Chapter 1

Introduction

1.1 Background

Cross-docking is a logistics strategy which is used to speed up the movement of products

in supply-chain networks. The basic idea of cross-docking is unloading, consolidating

and loading goods from incoming trucks to outgoing trucks with minimal or no storage

between. A typical cross-docking facility consists of strip doors or inbound doors for

unloading goods from incoming trucks, stack doors or outbound doors for loading prod-

ucts into outgoing trucks and a sorting space between inbound and outbound sides to

gather shipments, which are normally carried out by employees and material handling

equipment. The cross-docking strategy presents some advantages in comparison with

the traditional warehouse such as: cross-docking reduces the cost of storing, inventory

handling and it also help products to reach customer faster while lower transportation

costs. This strategy was first used by the US trucking industry in 1930s and followed

by the US military in 1950s and Walmart in 1980s (Stalk et al. 1992).

Although cross-docking has a lot of benefits and is used widely by many companies,

it should be only used when some conditions are satisfied in order to have maximum of

efficiency. Apte et al. 2000 identified the best situation to apply cross-docking strategy

as when products have stable and constant demand rate and low unit stock-out cost.

The characteristics of cross-docking can be divided into three main groups, namely,

physical characteristics, operational characteristics and characteristics about the flow of

goods. The physical characteristics describe the structure of cross-docking facilities such

as the shape, number of dock doors or the means of transportation inside the facilities.
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Figure 1: A cross-dock facility

The operational characteristics are influenced by the service mode which decides on

dock doors where the inbound and outbound trucks can be assigned to and pre-emption

which decides when the unloading and loading processes can be interrupted. The flow

characteristics of products that have to be processed by cross-docking such as: arrival

times in which all incoming trucks arrive at the same time or in different times of the day,

restrictions of departure times of outgoing trucks and the interchangeability of products

and temporary storage.

There are many optimization problems which need to be dealt with in cross-docking,

they include strategic, tactical and operational decision problems. According to Van

Belle et al. 2012, the strategic problems include location and layout design of cross-

docking facilities, the tactical decision problems determine the flow of goods through

cross-docking networks and the operational decision problems deal with vehicle routing,

dock door assignment, truck scheduling and temporary storage.

1.2 Research Projects

The thesis contains two projects to study the problems of trucks scheduling in a cross-

dock. The first project is to schedule inbound trucks with fixed outbound scheduling.

The second project is to schedule both inbound and bound sides of cross-dock.

The first project deals with the inbound truck scheduling problem to minimize total

number of tardy products. In this problem, the scheduling and the departure times of
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outgoing trucks are assumed to be pre-defined. The products have to be unloaded and

then transferred from incoming trucks to their destination, the outgoing trucks, through

the cross-docking by workers. At the beginning of the working day, all incoming trucks

are available at inbound side and wait to be assigned to dock doors in a sequence. This

project extends from the work of Boysen et al. 2013 by introducing a time-indexed

model with a pre-processing to speed up the performance of the model. The project

also considers two extensions: multiple transfer trip shipment and known goods unload

order. The computational results show that our model outperforms that of Boysen et al.

2013 and the two extensions give us better scheduling to lower significantly the number

of tardy products.

In the second project, we model the inbound and outbound scheduling problem. We

first introduce a time-indexed model with linearized constraints to minimize the lateness

of outgoing trucks. After that, we study two different approaches to apply the shipment

unloading order. The experimental results show that by applying the order of shipments,

we are able to reduce the maximum lateness and have better estimation of the starting

times to process outgoing trucks.

1.3 Literature Review

In this section, we will discuss about cross-docking truck scheduling problems which

were studied in the literature. We divide this section into two sub-sections that survey

the most recent work on Inbound Scheduling problems (Section 1.3.1) and Inbound and

Outbound Scheduling problems (Section 1.3.2).

1.3.1 Inbound Scheduling

D. L. McWilliams et al. 2005 study inbound truck scheduling in cross-docking centre

for parcel deliver industry in order to minimize the completion time of the last truck.

The authors develop a simulation-based scheduling algorithm to solve this problem with

the assumption that the unloading times of inbound trucks are all the same. In D. L.

McWilliams et al. 2008, they consider the same problem but with unequal unloading

time of incoming trucks. D. L. McWilliams 2009 and D. McWilliams 2010 deal with

the problem of scheduling inbound trucks to minimize the time-span of the transfer

operation inside cross-docking facility for parcel delivery. They propose a combination
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of time-based and resource-based decomposition. In the former study, the authors use

a genetic-based algorithm while in the later they developed an iterative improvement

method which consists of Local Search and Simulated Annealing algorithm.

Rosales et al. 2009 study scheduling of inbound trailers to minimize operational cost.

The authors provide a balanced workload to all workers and applied successfully for a

large cross-docking centre in Georgetown, Kentucky. They introduce a mixed-integer

programming model for this problem and used CPLEX to solve the resulting model.

Boysen et al. 2013 consider a truck scheduling problem in cross-docking terminals

with fixed departure times of outbound trucks in order to minimize the number of tardy

products. The authors propose a mixed-integer programming model and heuristics,

namely, decomposition procedures and simulated annealing to solve the problem. A case

study is investigated, in which they apply their models and algorithms to a postal com-

pany. Liao et al. 2013 study inbound scheduling problem to minimize the total weighted

tardiness with the same assumption of fixed outbound truck departure scheduling. They

use six types of meta-heuristic algorithms to tackle the problem. Tootkaleh et al. 2016

extends Boysen et al. 2013 to multi-period, multi-product, and substitution condition,

i.e. delayed products can be loaded to other outbound trucks, problem. The authors

modeled an inbound scheduling problem under substitution condition to minimize the

total inventory holding costs.

Boysen et al. 2017 deal with the inbound trucks scheduling problem in postal ser-

vice industry. In this problem, the cross-docking centre contains a number of inbound

segments and the incoming trucks have deadlines to finish their unloading process. The

objective is to minimize a total penalty value, i.e. the cost to process incoming truck at

a dock door. The authors formed a linear mixed-integer program model and heuristics

to solve large instances.

1.3.2 Inbound and Outbound Scheduling

Lim et al. 2006 study a truck scheduling problem which has constraints that force each

truck to be unloaded and loaded in fixed time windows and take into account the capacity

of the cross-dock centre. The objective is to minimize the shipping distance between

dock doors. Miao et al. 2009a extends the work of Lim et al. 2006 by considering the

transportation time between inbound and outbound sides. The objective is to minimize

the sum of the operational and penalty costs. They introduce two methods namely,
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Tabu search and Genetic to solve large instances.

Boysen 2010 consider the problem of scheduling truck in the food industry. For

this special type of problems, the intermediate storage and product substitution are not

allowed. In order to solve real world size instances, the author uses a dynamic program-

ming approach and Simulated Annealing heuristics to minimize different operational

objectives. Boysen et al. 2010a take into account different types of products in their

scheduling problem to minimize the process makespan, i.e the completion time of last

truck at cross-docking facility. They assume that each outbound truck can be assigned

when all of its products were unloaded successfully.

F. Chen et al. 2009a consider the inbound and outbound scheduling problem as a two-

stage hybrid flow shop scheduling problem. They propose a mixed integer programming

model to minimize the makespan and heuristics based on Johnson’s rule. Cota et al. 2016

extend this work by introducing a time-based model which has better performance than

the network-based model of F. Chen et al. 2009a. Bellanger et al. 2013 study three-stage

hybrid flow shop model for cross-docking to minimize the makespan. These three stage

models include receiving at inbound side, sorting inside cross-dock and shipping in the

outbound side. The authors develop two heuristics, namely list heuristic and dynamic

heuristics and a brand-and-bound algorithm to solve the problem.

Many other works such as: Arabani et al. 2011; Ghobadian et al. 2012; Ruiz et al.

2007; Vahdani et al. 2010; Bodnar et al. 2017; Ye et al. 2016; etc. use meta-heuristic

approaches to tackle the inbound and outbound scheduling problem.

1.4 Thesis Contributions

The contributions of this thesis are contained in two papers. The first paper has been

submitted to Omega journal and when through a first revision in July, 2018. The second

paper will be shortly submitted. Below is the brief description of each:

Chapter 2: The contribution is a time-indexed model for the network-based model

in Boysen et al. 2013 and introduce an enhanced pre-processing which allows the model

to solve larger instances than in the current literature. The objective is to minimize

the total number of tardy products. Next, we study two extensions of multiple transfer

strips and unloading order of products. The computational results show that the im-

pact of these two modifications are significant and make the models much more realistic.
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Chapter 3: This paper models a more complex problem of truck scheduling at cross-

dock centre. Instead of assuming that the scheduling of outbound side is fixed and

pre-scheduled, we schedule both inbound and outbound of a cross-dock to minimize the

maximum lateness of outgoing trucks. We propose three mathematical mixed integer

programming models. We introduce new linearized constraints to overcome the current

non-linear models of the literature when the transshipment times between dock doors

are considered. Next, we study the impact of known shipment unloading order on the

qualities of solutions. The experimental results show that the maximum lateness of

outgoing trucks decrease significantly when the unloading order of shipments are taken

into account.
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Chapter 2

Cross-dock Scheduling with Fixed

Outbound Departures, Multiple

Transfer Trips and Shipment

Unloading Order

*Submitted for publication to Omega journal in March, 2018, revised in July, 2018.

2.1 Introduction

2.1.1 Background and Motivation

Cross-docking is a logistic strategy that speeds up the movement of products across a

supply chain network, with little or no storage in between. When demand is constant

and stable with low unit stock-out costs, cross-docking is preferred over warehousing

and traditional distributions, resulting in a significant reduction in storage and order

picking Agustina et al. 2010. Such a strategy has been successfully implemented in the

postal, manufacturing and retailing industries. The interested reader may refer to Forger

1995; Kinnear 1997; Witt 1998; Napolitano 2011 for successful examples of cross-dock

implementations.

There are strategic, tactical and operational decisions that arise in the context of

cross-docking. The location and layout design of cross-docks are strategic decisions
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e.g., Bartholdi et al. 2004; Ross et al. 2008, while routing flows between multiple cross-

docks is considered tactical e.g., Miao et al. 2012. Operational decisions involve routing,

assigning, and scheduling trucks over cross-dock facilities, see, e.g., Boysen et al. 2010a;

Guignard et al. 2012; Nassief et al. 2016; Nassief et al. 2018a. As cross-docking has

become more popular, companies and researchers have been working recently on the

integration of several operational decisions, see, e.g., Rosales et al. 2009, Enderer et al.

2017 and Nassief et al. 2018b.

This paper focuses on one important and complex operational problem: cross-dock

scheduling. On a daily basis, incoming and outgoing trucks arrive at a cross-dock fa-

cility. The incoming trucks get scheduled (i.e., assigned and sequenced concurrently)

over inbound doors known as strip doors. Then, their shipments get unloaded and con-

solidated according to their destinations. Similarly, the outgoing trucks get scheduled

over outbound doors known as stack doors, and the consolidated shipments get loaded

accordingly. The scheduling decisions of either or both incoming and outgoing trucks

over doors are essential for cross-dock managers to speed up the consolidation process

inside the facility and meet deadlines. Figure 2 shows an illustration of how scheduling

incoming truck i over a strip door can impact the overall unloading and transshipment

time of its shipments. In Figure 2(a), the total time of unloading and transferring all

shipments inside incoming truck i is 91 minutes whereas 113 minutes in Figure 2(b).

The difference is mainly explained by observing that if incoming truck i in Figure 2(b)

is scheduled first, it takes 83 minutes to unload and transfer all its shipments, resulting

in less time than in Figure 2(a). However, since it is scheduled second, it needs to wait

as it takes 30 minutes for the first truck to be fully unloaded.

Moreover, some cross-dock companies pre-assign destinations to outbound doors over

a midterm planning horizon, and thus, provide a predetermined fixed schedule of the

outgoing trucks whereas they schedule incoming trucks over inbound doors on a daily

basis. This practice has been seen in the postal industry where outgoing trucks have

fixed departure times, see, e.g., Boysen et al. 2013; Liao et al. 2013; Boysen et al. 2010b.
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(a) Scheduling #1

(b) Scheduling #2

Figure 2: Impact of scheduling on the unloading and transshipment time of shipments

for a given incoming truck i

2.1.2 Goal and Scope

In this paper, we assume that the outbound operations are indeed predetermined, and

hence, all outbound doors are preassigned to their destinations and each outgoing truck is

prescheduled over an outbound door. Each outgoing truck is also given a fixed departure
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time. Therefore, the problem reduces to scheduling incoming trucks over inbound doors

with the goal of minimizing the total number of tardy products as seen in Boysen et al.

2013. From now on, this problem is referred to as Truck Scheduling with Fixed outbound

Departures (TSFD). Since there are always more incoming trucks than inbound doors,

there is a combinatorial aspect in the selection of the strip door and the sequence in

which an incoming truck is placed, which in turn, has an impact on the total time a

shipment, or its products, takes to reach its designated outgoing truck. The TSFD is

strongly NP-hard as shown in Boysen et al. 2013.

In order to study the TSFD, a distinction between shipments and products is first

clarified. A shipment is a group of products shipped together as part of the same lot, and

associated with one incoming and one outgoing truck. There could be several shipments

per incoming truck, and also, several (consolidated) shipments per outgoing truck. For

example, a crossdock at a WalMart might receive 20 products of Tide detergent and 15

products of Purex detergent without labels for individual stores from a given incoming

truck. Workers at the crossdock allocate 3 Tide and 2 Purex products to Store 23,

i.e., outbound door 7 (one shipment), 5 Tide and 1 Purex products to Store 14, i.e.,

outbound door 2 (another shipment), and so on. We next clarify the following important

assumptions made in the basic TSFD described in Boysen et al. 2013:

• a shipment is considered tardy if one or more of its products arrive after its outgoing

truck has departed. In other words, the whole shipment is considered tardy if part

of it is tardy. The model is indeed written as if there is an underlying simplifying

assumption of a single pallet jack or forklift transfer trip per shipment regardless

of how many products it contains.

• a shipment is considered unloaded from its incoming truck once all shipments inside

the same incoming truck have been unloaded too. That is the unloading time of

a shipment is assumed equal to the unloading (or processing) time of its incoming

truck. Indeed, if the unloading order of shipments inside their incoming trucks is

unknown, the worst case is considered for the unloading times of all shipments in

a given incoming truck, resulting in an over estimation of the tardy costs.

We first study the basic TSFD with the same assumptions as Boysen et al. 2013, and

then propose the following two extensions:

• multiple transfer trips: each shipment requires one or several forklift trips,
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depending on the volume of its products, in order to be transferred across the

cross-dock, as well as the capacity of the material handling equipment (e.g., carts

for small items, forklifts for pallet loads or large and heavy cartons). We propose to

minimize the number of tardy products rather than the number of tardy shipments

in order to estimate the item tardiness more accurately.

• known unloading order: the order of shipments inside each incoming truck

is known. Therefore, we assume that a shipment is considered unloaded from its

incoming truck once all its precedent/previous shipments inside the same incoming

truck have been unloaded without the need to wait for all its successive/next

shipments to be unloaded too. This is not to confuse with the order or sequence

of the trucks themselves, which is part of the scheduling decisions. Here, we

explicitly refer to the order of unloading shipments/products inside the truck as

being known/unknown.

First, multiple transfer trips are inevitable inside any cross-dock facility as there

is a limited capacity on the material handling equipment used (e.g., forklifts, carts).

Therefore, embedding this practical assumption in our models provide a more accurate

information in calculating the tardiness and scheduling decisions as will be demonstrated

later. Second, our interaction with a local cross-dock company confirms that knowing

the loading order of shipments inside their incoming trucks can be assumed to be known

before truck scheduling takes place. Indeed, we can use the reverse loading order, which is

usually recorded through product scanning. We will demonstrate in the numerical results

in Section 2.7 the economical benefits of taking advantage of the unloading shipment

order.

2.1.3 Contributions & Organization

We first introduce a time-indexed formulation and enhanced preprocessing for the Basic

TSFD and compares it computationally with the model and solution of Boysen et al.

2013. We then modify our formulation to take into account multiple transfer trips and

unloading order of shipments. The impact of these extensions are demonstrated in the

computational experiments on two data sets based on the postal and retail industries,

respectively.

The remainder of this paper is organized as follows. Section 2.2 provides a literature
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review for the TSFD problem. In Section 2.3, the Basic TSFD, as defined by Boysen

et al. 2013, is recalled. Existing and newly introduced mathematical programming for-

mulations are detailed in Section 2.4 for the Basic TSFD. Extensions are introduced

and formulated in Sections 2.5 and 2.6. Section 2.7 provides detailed computational

experiments to test our formulations against the existing one as well as providing eco-

nomical analysis on our extensions. Finally, conclusions with future research directions

are provided in Section 2.8.

2.2 Literature Review

The literature of scheduling is abundant, and so, we choose to review and highlight the

most relevant work to the TSFD problem in the context of cross-docking, cross-dock

scheduling, and its relationship, if any, with parallel machine scheduling.

2.2.1 Cross-docking

Several cross-docking review papers have appeared in the last few years with different

classification schemes and scopes. To the best of our knowledge, the most comprehensive

review is the one provided by Van Belle et al. 2012 where they cover strategic, tactical

and operational decisions arising in cross-docking. Based on this survey, the TSFD

problem belongs to the class of scheduling inbound trucks. Boysen et al. 2010a provide

a classification and review for cross-dock scheduling problems and introduce the TSFD

as a new research area that is worth studying. According to their classification scheme,

the TSFD problem is denoted by [E|δio, fix|
∑

wpUp]. It assumes an exclusive cross-dock

mood where E represents a cross-dock scheduling problem with one side for inbound

doors while another side for outbound doors. The travel or transfer time, δio, is assumed

between doors, and fix means fixed outbound departures. Finally, the goal is to minimize

the total number of tardy products stated as
∑
p∈P

wpUp, where wp represents the number

of products and Up is a binary variable indicating if they are tardy or not. Ladier et

al. 2016 provide a review of assignment and scheduling problems in cross-docking and

highlight the major differences between the literature and cross-dock practices in France.

For other review papers, the interested reader is referred to Agustina et al. 2010, Stephan

et al. 2011 and Buijs et al. 2014.
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2.2.2 Cross-dock Scheduling

Rosales et al. 2009 schedule incoming trucks over inbound doors while balancing the

workload between employees at a cross-dock company in Georgetown. The authors

introduce a mixed-integer programming (MIP) formulation and solve all real life in-

stances (near-)optimally within 1.5 hours of time limit. D. McWilliams 2010 study an

inbound scheduling problem to minimize the time-span inside the cross-dock. The au-

thors introduce local search and simulated annealing algorithms, and show that their

meta-heuristics outperform an existing genetic algorithm for the same problem. Boysen

et al. 2013 present an MIP formulation for the TSFD problem with the goal of minimiz-

ing the total number of tardy products. The authors introduce two heuristics to solve

the problem with 100 incoming trucks and 30 inbound doors in fractions of seconds.

Liao et al. 2013 also study the TSFD problem, but with the goal of minimizing the

total weighted tardiness. The authors introduce a new MIP formulation and six differ-

ent meta-heuristics. However, they only attempt to solve a small size instances with 12

incoming trucks and 5 inbound doors. In the TSFD problem, it is generally assumed

that tardy products remain in the cross-dock until the next shift or the next working

day, and that the penalty is imposed accordingly. However, Tootkaleh et al. 2016 study

a TSFD where urgent late products can be substituted by other products. That is the

cross-dock manager can decide to substitute late products with newly arrived ones in or-

der to reduce the delay cost and increase customer’s satisfaction. The authors introduce

an MIP formulation and a heuristic to solve the problem. Nassief et al. 2018b study

a practical inbound scheduling problem where incoming containers must be scheduled

over inbound doors, unloaded and emptied, and then returned to the port before their

due dates. They introduce two integer programming (IP) formulations for static and

dynamic environments and integrate door selection with scheduling decisions to mini-

mize the total tardiness and hiring costs. Finally, Molavi et al. 2018 study a cross-dock

scheduling problem with the assumption that the order or position of shipments inside

their incoming trucks is known. They introduce a mathematical formulation along with

a hybrid meta-heuristic to solve the problem. However, unlike here they consider both

inbound and outbound scheduling with arrival times and backup trucks to handle tardy

shipments. The largest size of instances they solve approximately (or heuristically) are

30 incoming and 30 outgoing trucks with 12 inbound and 12 outbound doors. For other

scheduling problems where inbound operations are rather predetermined, we refer to
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Diglio et al. 2017 and Schwerdfeger et al. 2017, and also, to F. Chen et al. 2009a; Cota

et al. 2016; Bellanger et al. 2013 where the integration of both inbound and outbound

scheduling is studied.

2.2.3 Parallel Machine Scheduling

Finally, it is natural to see the resemblance between the TSFD and parallel machine

scheduling. Incoming trucks can be interpreted as jobs while inbound doors can be

seen as parallel machines/processors. However, as mentioned in Boysen et al. 2013,

the TSFD is a generalization of parallel machine scheduling since each incoming truck

may contain several shipments with different destination points, and hence, different due

times. In the TSFD any job (or incoming truck) may have multiple due times because of

its shipments. Therefore, existing algorithms for parallel machine scheduling provided

by Z. Chen et al. 1999; Van Den Akker et al. 1999, 2012; M’Hallah et al. 2005, 2015

cannot be applied.

2.3 TSFD Problem Statement

Given a cross-dock facility, we denote by Gin and Gout the set of inbound and outbound

dock doors, respectively. Let trin and trout be the set of incoming and outgoing trucks,

respectively. Each shipment is indexed by an incoming truck i ∈ trin and an outgoing

truck o ∈ trout indicating its pair (i − o) of origin and destination points. We thus

denote by wio the number of products of a given shipment coming from incoming truck

i and destined to outgoing truck o. Each shipment i− o has an unloading time denoted

by uio. We first consider as in all previous papers, that the total processing time to

unload an incoming truck depends on the total unloading time of all of its shipments,

and so, for each incoming truck i ∈ trin, the total processing time can be stated as

pi =
∑

o∈trout

uio.

On the outbound side of the cross-dock, each outgoing truck o ∈ trout has a fixed

departure time denoted by do. We also assume that each outgoing truck has a predefined

schedule, before the inbound schedule is set. There is a transshipment time inside the

cross-dock facility between each inbound and outbound door. We denote by δgo the

transshipment time from inbound door g ∈ Gin to the outbound door where outgoing

truck o is preassigned. Normally, the parameter δ is associated with both inbound and
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outbound doors. However, in the TSFD, the outbound door’s index can be substituted

by its outgoing trucks since they are preassigned to doors. We also assume that the

transshipment time is per single trip from an inbound to an outbound door.

In the TSFD, each incoming truck must be scheduled over an inbound door such that

each of its products is unloaded and transferred to its designated outbound door ideally

before the departure time of its outgoing truck. If a product arrives at the outbound door

after the departure time of its outgoing truck, it is then considered late. The objective

of the TSFD is to minimize the total number of tardy products. Table 1 summarizes

the mathematical notations for the TSFD.

Table 1: Mathematical notations for the TSFD

Notation Definition

Gin set of inbound (or strip) doors.

Gout set of outbound (or stack) doors.

trin set of incoming trucks.

trout set of outgoing trucks.

wio number of products for a given shipment i− o going from incoming truck i to outgoing truck o.

uio unloading time of a shipment i− o coming from incoming truck i and destined to outgoing truck o.

ūio cumulative unloading time of a shipment i− o and all its precedent shipments in the same incoming truck.

pi processing time for incoming truck i (i.e., the total unloading times of all its shipments).

do departure time of outgoing truck o.

δgo transshipment time from inbound door g to outgoing truck o.

Several assumptions are made for the Basic TSFD. We next list all these assumptions

based on the work of Boysen et al. 2013:

• All incoming and outgoing trucks are available at the beginning of the scheduling

period.

• Departure times for outgoing trucks are set and given.

• All shipments are known in terms of their types, quantities, weights, volumes of

their products, as well as the origin and destination points (or their incoming and

outgoing trucks).

• The unloading order of shipments inside their incoming trucks is unknown.

• Outgoing trucks have a predetermined schedule over the outbound doors.

• Incoming trucks are unloaded without interruption (i.e., non-preemption).
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• Outgoing trucks will not wait for any late product. Each late product is subcon-

tracted accordingly.

• Without loss of generality, all parameters are assumed to be integers in Boysen

et al. 2013. However, with our time-indexed modeling, we can only use integer

parameters due to the discretization of the time horizon.

• Each unloaded shipment is available for immediate inner-facility transportation.

• Loading time is constant and hence is omitted. This time can be considered part

of the transfer time between doors or by decreasing the departure time of the

outgoing truck.

• Congestion inside the cross-dock facility is not taken into account. If it is in-

evitable, then it can be approximated by increasing the transshipment time ac-

cordingly inside the facility.

• The number of tardy products is assumed the same as the number of tardy ship-

ments. Indeed, Boysen et al. 2013 do not distinguish between the two and assume

that if a product is tardy, then its shipment, with all its products, is also tardy.

2.4 Basic TSFD

2.4.1 Existing Formulation: Boysen et al. (2013)

We next present the MIP formulation of Boysen et al. 2013 for the TSFD problem as

stated in Section 2.3. In their formulation the authors introduce the following decision

variables:
xg
0,i = 1 if incoming truck i is processed first at inbound door g, 0 otherwise.

xg
i,last = 1 if incoming truck i is processed last at inbound g, 0 otherwise.

xg
ii′ = 1 if incoming truck i′ is processed directly after truck i at door g. 0, otherwise.

Ci completion time of incoming truck i to unload all its shipments.

Uio = 1 if shipment i− o from truck i is tardy to reach truck o, 0 otherwise.
Moreover, M is defined as a big integer number, and according to Boysen et al. 2013 can

be calculated as: M =
∑

i∈trin

pi +max {δgo : g ∈ Gin, o ∈ trout}. Their MIP formulation
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can be stated as:

[TSFD] min
∑
i∈trin

∑
o∈trout

wioUio (1)

subject to:∑
g∈Gin

∑
i′∈trin∪{0}i ̸=i′

xg
i′i = 1 i ∈ trin (2)

∑
i∈trin

xg
0,i ≤ 1 g ∈ Gin (3)∑

i′∈trin∪{0}
i ̸=i′

xg
i′i =

∑
i′∈trin∪{last}i ̸=i′

xg
ii′ i ∈ trin, g ∈ Gin (4)

Ci ≥ Ci′ + pi −M · (1− xg
i′i) i ∈ trin, i′ ∈ trin ∪ {0}; g ∈ Gin (5)

Uio.M ≥ Ci +
∑
g∈Gin

∑
i′∈trin∪{0}

i ̸=i′

δgo.x
g
i′i − do i ∈ trin, o ∈ trout (6)

C0 = 0 (7)

xg
ii′ ∈ {0, 1} i, j ∈ I ∪ {0, last}, g ∈ Gin (8)

Ci ≥ 0 i ∈ trin (9)

Uio ∈ {0, 1} i ∈ trin, o ∈ trout. (10)

The objective function (1) minimizes the total number of tardy products, or equiva-

lently the number of tardy shipments according to the assumptions of Boysen et al.

2013. Constraints (2) ensure that each incoming truck is scheduled for unloading while

constraints (3) make sure that for inbound door, there is at most one sequence of in-

coming trucks. Constraints (4) ensure that the sequence of incoming trucks at a given

inbound door is feasible similar to classical flow conservation constraints. Constraints

(5) define completion time Ci for each incoming truck i. Constraints (6) ensure that

Uio equals one if the shipment delivered by incoming truck i cannot reach its designated

outgoing truck o before its departure time, i.e., the sum of Ci and of the transshipment

time δgo exceeds the departure time do. Constraints (7)-(10) define the nonengativity

and binary conditions on the decision variables.

2.4.2 A Time-indexed Formulation

We now introduce a time-indexed formulation for the basic TSFD. This formulation

relies on the discretization of the time horizon into blocks of time. We hence define
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t ∈ T the discretized time periods over which the incoming trucks are scheduled. We

also introduce new decision variables that are time indexed: xt
ig = 1 if incoming truck

i starts processing at inbound door g at time t, 0 otherwise. Then, the time-indexed

formulation for the TSFD can be stated as:

[TSFD+] min
∑
i∈trin

∑
o∈trout

wioUio (1)

subject to:∑
t∈T

∑
g∈Gin

xt
ig = 1 i ∈ trin (11)

∑
i∈trin

t−1∑
t′=max{0,t−pi}

xt′

ig ≤ 1 g ∈ Gin, t ∈ T (12)

Ci ≥
∑
t∈T

∑
g∈Gin

(t+ pi)x
t
ig i ∈ trin (13)

Uio.M ≥ Ci +
∑
t∈T

∑
g∈Gin

δgox
t
ig − do i ∈ trin, o ∈ trout : wio > 0 (14)

xt
ig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (15)

Ci ≥ 0 i ∈ trin (9)

Uio ∈ {0, 1} i ∈ trin, o ∈ trout. (10)

The objective function (1) is the same as in TSFD, where we minimize the total number

of tardy products. Constraints (11) make sure that each incoming truck is assigned

exactly to one inbound door at a unique time. Inequalities (12) make sure that each

inbound door at a given time can handle at most one incoming truck. Constraints (13)

define the total completion time cio for each shipment. Inequalities (14) ensure that

Uio equals one if the shipment delivered by incoming truck i cannot reach its outgoing

truck o before its departure time, i.e., if the sum of Ci and of the transshipment time δgo

exceeds the departure time do. Finally, constraints (9), (10) and (15) define the binary

and non-negative restrictions on the decision variables.

2.4.3 An Enhanced Time-indexed Formulation

We next propose a preprocessing of input-parameters in TSFD+ that allows us to reduce

the number of constraints and variables. As a result, the convergence speed of reaching

the optimal solution is improved.
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First, observe that because of constraints (11), constraints (13) can be rewritten as

equality constraints, i.e.,

Ci =
∑
t∈T

∑
g∈Gin

(t+ pi)x
t
ig i ∈ trin. (13′)

We next substitute them into constraints (14) to obtain:

Uio.M ≥
∑
t∈T

∑
g∈Gin

(t+ pi)x
t
ig +

∑
t∈T

∑
g∈Gin

δgox
t
ig − do i ∈ trin, o ∈ trout : wio > 0, (14)

which in turn can be written as:

Uio.M ≥
∑
t∈T

∑
g∈Gin

(t+ pi + δgo)x
t
ig−do i ∈ trin, o ∈ trout : wio > 0. (14-TSFD++)

As a result, we reduce the number of constraints in TSFD+ by |trin| and eliminate

variables Ci.

Next, observe that the above modified constraints (14-TSFD++) explicitly state that

if an incoming truck i is scheduled to start at time t and at inbound door g, i.e., x̄t
ig = 1,

then a shipment wio inside the incoming truck will be tardy if t+pi+δgo > do. Knowing

this, it is possible to preprocess constraints (14-TSFD++) and embed them into the

objective function. We define the following parameters. For every t ∈ T , i ∈ trin,

o ∈ trout, and g ∈ Gin:

αt
iog = t+ pi + δgo − do.

If αt
iog > 0, it implies the products wio of shipment (i−o) assigned at door g at time t will

be tardy; otherwise the products are on time. The enhanced time-indexed formulation

is denoted by [TSFD++], and can then be stated as:

[TSFD++] minimize
∑
t∈T

∑
g∈Gin

∑
i∈trin

⎛⎜⎝ ∑
o∈trout:αt

iog>0

wio

⎞⎟⎠xtig (16)

subject to
∑
t∈T

∑
g∈Gin

xtig = 1 i ∈ trin (11)

∑
i∈trin

t−1∑
t′=max{0,t−pi}

xt
′
ig ≤ 1 g ∈ Gin, t ∈ T (12)

xtig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (15)
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In Section 2.7, we computationally compare these three formulations and show the

superiority of the TSFD++ formulation over the TSFD+ and TSFD formulations for

the basic TSFD as stated in Section 2.3. In the following two sections, we introduce

two important practical extensions and model each using the enhanced time-indexed

TSFD++ formulation.

2.5 Multiple Transfer Trips

As seen earlier, and following the assumptions of Boysen et al. 2013, the basic TSFD

problem along with the three formulations presented in Section 2.4 assume that all

products for a given shipment going from an incoming to an outgoing truck will be

transferred in a single trip regardless of their volume or quantities. However, in practice,

transferring products between inbound and outbound doors within a cross-dock facility

may take more than a trip depending on the capacity of the material handling equipment

used as well as the number of products needed to be transferred. We assume that each

transshipment has a complete capacity, except for the last one to a given outbound door.

For that reason, it is convenient to assume that the complete unloading of a truck is

carried out before transshipment starts. Indeed, when no information is available on

the content or the unloading order of the products of the truck, we cannot know when

a transshipment is complete before the truck has been fully unloaded. However, when

unloading order is known, transshipment can be carried out concurrently, as it means

having the complete information on the products in the truck, and therefore when a

transshipment is complete.

We assume that only one worker is assigned to each door to take care of the moves

from one inbound door to an outbound door, as adding more workers is not a common

practice for cost reasons and for congestion issues in the cross-dock facility due to many

workers moving products around.

In this section, we extend the basic TSFD to consider multiple trips instead of one,

allowing us to track how many products are actually tardy within a given shipment. Let

Jio be the number of trips needed to transfer all products of a given shipment wio and

cap be the number of products that can be transferred in each trip:

Jio =
⌈ wio

cap

⌉
.
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Without losing generality, we assume here that the capacity, cap, of the material han-

dling equipment is independent of the shipment being transferred. However, this can be

easily changed to capio to allow the capacity to differ based on the type of shipments

being transferred without affecting the subsequent models we propose.

In the case when we have more than two types of product in a given shipment wio,

the number of trips needed to transfer all these products will be:

Jio =

⎡⎢⎢⎢
∑
k∈K

wk
ioV

k

cap

⎤⎥⎥⎥
where K is the index set of different types of products, wk

io is the number of products of

type k, which need to transfer from inbound truck i to outbound truck o and V k is the

weight/volume (depends on which the unit of cap is) of product type k. In this paper,

we only use the quantities of products to calculate the number of trips and the cap is

the maximum number of products that can be transferred in each trip.

2.5.1 Over Estimation of Tardy Products

We first extend the multiple transfer trips by considering multiple trips per shipment

where a shipment is considered tardy if one or more of its trips are tardy, a worst case

scenario or an over estimation based on the basic TSFD. In order to do so, we modify

constraints (14-TSFD++) to include the number of trips required per shipment i− o as

follows:

Uio.M ≥
∑
t∈T

∑
g∈Gin

(t+ pi + Jioδgo)x
t
ig − do i ∈ trin, o ∈ trout : wio > 0.

(14-TSFD++
m )

These last constraints state that a shipment i − o is considered tardy only if t + pi +

Jioδgo−do > 0. Hence, following the same preprocessing of the TSFD++ in Section 2.4.3,

we define αt
iog = t+ pi + Jioδgo − do for every t ∈ T , i ∈ trin, o ∈ trout, and g ∈ Gin. If

αt
iog > 0, then a shipment is tardy; otherwise the shipment is on time. As a result, we

obtain the following modified TSFD++ formulation:
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[TSFD++
m ] minimize

∑
t∈T

∑
g∈Gin

∑
i∈trin

⎛⎜⎝ ∑
o∈trout:αt

iog>0

wio

⎞⎟⎠xtig (16)

subject to
∑
t∈T

∑
g∈Gin

xtig = 1 i ∈ trin (11)

∑
i∈trin

t−1∑
t′=max{0,t−pi}

xt
′
ig ≤ 1 g ∈ Gin, t ∈ T (12)

xtig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (15)

The only difference between the TSFD++ and TSFD++
m formulations is that the latter

incorporates the number of trips required per shipment, Jio, when a shipment is tardy

or not, i.e., some or all of its products are tardy.

2.5.2 Accurate Estimation of Tardy Products

We next extend the basic TSFD to identify the exact number of tardy products within

a given shipment, which provides a more accurate tardiness calculation in the newly

proposed TSFD formulations. We consequently modify the definition of the variables

Uio to become U j
io indicating that a trip j of a given shipment i − o is tardy or not.

The resulting model will be denoted by TSFD++
mt . A tardy trip implies accordingly that

all the products transferred in that trip are tardy too, but not necessarily the whole

shipment distributed over multiple trips. We introduce the following constraints:

Uj
io.M ≥

∑
t∈T

∑
g∈Gin

(t+ pi + jδgo)x
t
ig − do i ∈ trin, o ∈ trout : wio > 0, j ∈ Jio. (14-TSFD++

mt )

These last constraints state that for a given shipment (i − o) and all its trips, a trip is

considered tardy only if t + pi + jδgo − do > 0. When a trip is tardy, we only consider

the products in this trip to be tardy. This way a portion of the shipment is considered

tardy instead of the whole shipment.

Using the same prepossessing logic of the enhanced time-indexed formulation, we

introduce the following parameter. For every t ∈ T , i ∈ trin, o ∈ trout, g ∈ Gin and

j ∈ Jio:

αtj
iog = t+ pi + jδgo − do.
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For a given scheduled truck i at inbound door g starting at time t, i.e., xt
gi = 1, αtj

iog

calculates the total time it takes part of the shipment i − o for a given trip j to be

unloaded and transferred minus the departure time of its outgoing truck. A trip is

considered tardy if αtj
iog > 0; otherwise the trip is on time. Let W j

io be the number of

products in a given trip j for shipment (i− o):

W j
io =

⎧⎨⎩cap if j < Jio

wio − (j − 1).cap if j = Jio,

where cap is the transport capacity of a trip. W j
io is the number of products per trip:

it is the same in each trip except for the last trip j < Jio. In the last trip where j = Jio,

the number of products does not necessarily fill the whole material handling equipment’s

capacity. The multiple trip TSFD++
mt can then be formulated as:

[TSFD++
mt ] minimize

∑
t∈T

∑
g∈Gin

∑
i∈trin

⎛⎜⎝ ∑
o∈trout

∑
j∈Jio:αtj

iog>0

W j
io

⎞⎟⎠xt
ig (17)

subject to
∑
t∈T

∑
g∈Gin

xt
ig = 1 i ∈ trin (11)

∑
i∈trin

t−1∑
t′=max{0,t−pi}

xt′

ig ≤ 1 g ∈ Gin, t ∈ T (12)

xt
ig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (15)

Figure 3 shows an example of how estimating the total number of tardy shipments

can differ between over and accurate estimations in 3(a) and 3(b), respectively. We

show in Section 2.7 the percentage of improvement between both scenarios for two sets

of instances.
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(a) Over estimation using TSFD++
m

(b) Accurate estimation using TSFD++
mt

Figure 3: Difference between over and accurate estimations in the number of tardy

products
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2.6 Known Unloading Order of Shipments

We next introduce another extension, denoted by TSFD++
mto, to TSFD++

mt where the or-

der of shipments inside the incoming trucks is known. For example, an incoming truck

contains three shipments A, B and C, and these shipments are ordered as first C to

be unloaded, then B, and followed by A where each takes 30 minutes to be unloaded

resulting in a total of 90 minutes to empty the truck. In this case, knowing the order

will provide the cross-dock managers with more visibility and control over the time a

shipment will actually take to be unloaded and transferred to its designated outgoing

truck. In other words, the completion time of a shipment (unloading then transferring)

now depends on the preceding shipments in the same truck rather than the whole pro-

cessing time of the truck itself. In order to consider this extension, we next replace pi

with ūio to calculate accurately the total unloading time of each shipment. To embed

this, the following constraints are introduced:

U j
io.M ≥

∑
t∈T

∑
g∈Gin

(t+ ūio + jδgo)x
t
ig − do i ∈ trin, o ∈ trout : wio > 0, j ∈ Jio. (14-TSFD++

mto)

Notice that the above constraints also extend and generalize (14-TSFD++) to multiple

trips and known unloading order of shipments. Using the same prepossessing logic of

the enhanced time-indexed formulation TSFD+, we introduce the following parameter

α. For every t ∈ T , i ∈ trin, o ∈ trout, g ∈ Gin and j ∈ Jio:

αtj
iog = t+ ūio + jδgo − do.

Similar to the preprocessing in the TSFD++
mt formulation in Section 2.5, a trip is consid-

ered tardy if αtj
iog > 0; otherwise the trip is on time. The only difference between the

TSFD++
mt and TSFD++

mto formulation is that in the latter we consider the unloading time

of a shipment to be ūio instead of what is commonly overestimated by pi. We show in

our computational experiments the economical benefits of doing so. The multiple trip

with known order of shipments TSFD++
mto can then be formulated as:

[TSFD++
mto] minimize

∑
t∈T

∑
g∈Gin

∑
i∈trin

⎛⎜⎝ ∑
o∈trout

∑
j∈Jio:αtj

iog>0

W j
io

⎞⎟⎠xt
ig (18)
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subject to
∑
t∈T

∑
g∈Gin

xt
ig = 1 i ∈ trin (11)

∑
i∈trin

t−1∑
t′=max{0,t−pi}

xt′

ig ≤ 1 g ∈ Gin, t ∈ T (12)

xt
ig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (15)

One key aspect of the enhanced time-indexed formulation is that all internal informa-

tion (e.g., transfer time, completion time) become available once the scheduling decision

x is made. Therefore, our proposed prepossessing or enhancement procedures allow us

to calculate such information for each given decision variable. As will be seen next, this

significantly speeds up the convergence of obtaining the optimal solutions for the TSFD

problem, and any of its extensions.

Figure 4 shows an example of how the knowledge of the order of shipments allows

us to calculate the transshipment time more accurately, resulting in a better estimate of

tardy products per shipment as seen in the known order case in Figure 4(b) versus the

unknown order case in Figure 4(a).
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(a) Unknown Order using TSFD++

(b) Known Order using TSFD++
mto

Figure 4: Known versus unknown order of shipments inside incoming truck i
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2.7 Computational Experiments

We next test the performances of all the TSFD formulations and extensions presented

or introduced in this paper. All formulations are implemented in Java using the concert

technology library of CPLEX 12.6. CPLEX parameters are set default. We generate

two sets of benchmark instances based on cross-dock practices in the postal and retail

industries. We first present the data generation mechanism of each set of instances, and

then the classical performance measures in the area of operations research in order to

compare the performances of these formulations. After this, we report the comparative

results along with their analysis on the added precision in the tardiness evaluation.

Finally, some graphs are presented to demonstrate the economical impact of considering

our proposed extensions.

2.7.1 Data Generation

Two sets of instances are generated. The first set is reported in Boysen et al. 2013. We

refer to this first set as P13 where P is used to refer to data based on the postal industry.

The second set of instances is based on Nassief et al. 2018b where the authors generate

data based on their observations in a cross-dock company in the retailing industry. We

refer to this second set as R17 where R is used to refer to data based on the retailing

industry. Set P13 consists of three groups of instances: small, medium and large size

instances while R17 focuses only on a large set of instances. In what follows, we explain

in detail the generation mechanism for each input parameter in both sets P13 and R17.

We introduce two more parameters:

Bio: set of all outgoing trucks (o
′) which have shipments preceding the current one (i−o)

in incoming truck i

W (i): total number of shipments in incoming truck i.
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Table 2: Summary of data generation mechanisms for input parameters

Terminology Generation Mechanism

& notation P13 R17

Inbound doors Gin Gin = {2, 3, 4, 6, 7, 8, 10, 15, 20} Gin = {2, 3, 4, 6, 7, 8, 10, 15, 20}
Outbound doors Gout Gout = {2, 3, 4, 6, 7, 8, 10, 15, 20} Gout = {2, 3, 4, 6, 7, 8, 10, 15, 20}
Incoming trucks trin trin = {8, 20, 80} trin = {8, 20, 80}
Outgoing trucks trout trout = {8, 20, 80} trout = {8, 20, 80}
Processing time pi pi ∼ N (µ, σ2) : pi ∼ logN (µ, σ2) :

µ = 30, σ ∈ {2, 4, 6, 8} µ = 1.25, σ = 0.76

Number wio wio ∼ U(1, 10) wio ∼
exp(β, γ)

|Gout|
:

of products if U(0, 1) < 0.5; 0, otherwise β = 73.53, γ = 1.22

Unloading uio

( ∑
o′∈Bio

wio′ + wio

)
pi

W (i)

( ∑
o′∈Bio

wio′ + wio

)
pi

W (i)

time

Departure do do ∼

∑
i∈trin

pi

|Gin|
U(0.5, 0.9) do ∼ q

∑
i∈trin

pi

|Gin|
U(0.5, 0.9) :

time q ∈ {1.2, 1.3, 1.4, 1.5}
Transshipment time δgo δgo ∼ U(1, 10) δgo ∼ U(10, 15)

• Sets: we allocate discrete numbers for the four global sets (Gin, Gout,trin,trout)

that are used throughout all the instances.

– Inbound and outbound doors: for the small size instances, we consider 2, 3

and 4 inbound doors. For the medium size instances, we consider 6, 7 and 8

inbound doors. For the large size instances, we consider 10, 15 and 20 inbound

doors. We keep the same cardinality for both inbound and outbound doors

per instance.

– Incoming and outgoing trucks: for the small size instances, we consider 8

incoming trucks. For the medium size instances, we consider 20 incoming

trucks, and for the large size instances, we consider 80 incoming trucks. We

keep the same cardinality for both incoming and outgoing trucks per instance.

• Parameters: for each parameter, we provide the distribution function used in each

data set.

– Processing times: in P13, the processing time for each incoming truck is
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generated using a normal distribution function with an average processing

time of µ = 30 minutes per truck. Boysen et al. 2013 claim that it is the

minimum average processing time according to cross-dock managers in the

postal industry. In R17, the processing time follows a log normal distribution

with an average of µ = 1.25 hours and deviation of σ = 0.76. These are

generated based on real cross-dock data in the retailing industry in the USA

see Nassief et al. 2018b.

– Number of products per shipment: in P13, the number of products per ship-

ment is generated with a uniform distribution between one and ten only if

a random generator provides 0.5 or more. Otherwise, no shipment is con-

sidered between both incoming and outgoing trucks. In R17, we follow the

distribution of shipments coming from the retailing industry and observe that

it follows a 2-parameter exponential distribution with a scale of γ = 73.53,

and threshold of θ = 1.22.

– Unloading time per shipment: we first generate the order of shipments by

shuffling them randomly inside their incoming trucks. Then, the unloading

time of each shipment is calculated as

uio =

( ∑
o′∈Bio

wio′ + wio

)
pi

W (i)
,

taking into account the unloading time of the shipment and its precedent

ones in the same incoming truck. Notice that the last shipment in the same

incoming truck will result in an unloading time that is equivalent to the

processing time of the whole truck, i.e.,

uio(LAST)
=

( ∑
o∈trout

wio

)
pi

W (i)
= W (i)

pi
W (i)

= pi.

– Departure time per outgoing truck: the departure time of each outgoing truck

in set P13 is determined by: do ∼
∑

i∈trin
pi

|Gin| .U(0.5, 0.9). However, in set R17 it

is determined by:

do = max

{
pmin + wminδmin,∼ U(1, 6|tr

in|
|Gin|q

)

}
: q ∈ {1.2, 1.3, 1.4, 1.5} ,

where q ranges from tight to loose departure times.
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– Transshipment time between inbound and outbound doors: in both data sets

P13 and R17, the transshipment time is generated using a uniform distribu-

tion between 1 and 10 as in Boysen et al. 2013.

Using the aforementioned data generation mechanisms, we create two sets of data in-

stances, both of which are identified by the number of incoming and outgoing trucks,

inbound and outbound doors. For the set P13, for a given number of trucks, the different

instances are characterized with different processing times whereas for the R17 set, they

are characterized by different due dates. Table 2 provides a summary of the generation

mechanisms for both data sets on all the sets and parameters presented and used in this

paper.

2.7.2 Performance Measurements

We use the following measurements in the subsequent tables to compare and to measure

the performances of all presented and introduced formulations in this paper. Note

that some formulations are ILP models, while other are MILP (Mixed Integer Linear

Program) ones.

• %LP: LP deviation. It is calculated as %LP = |opt−lp|
opt

100, where OPT is the

optimal ILP or MILP value and LP is the optimal value for the LP relaxation of

each model. If an optimal ILP or MILP solution is not obtained within the time

limit, we use the incumbent value (best known solution) for the tested instance.

The LP, here, represents the optimal linear programming relaxation obtained at

the root node before branching in CPLEX.

• %gap: optimality gap upon termination, i.e., %gap= 100 |opt−lb|
opt

, where LB is

the best lower bound obtained. The LB, here, represents the best lower bound

found after the stopping criterion is reached when branching in CPLEX, and not

the first LP value at the root of the B&B as in the %LP.

• %UB: percentage deviation of the upper bounds found with respect to the opti-

mal/incumbent value. That is %UB = 100 |opt−ub|
opt

.

• B&B: number of nodes explored in the branch-and-bound tree.

• cpu: computational time in seconds.
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• %tardy: percentage of tardy products, which is calculated based on the number

of tardy products obtained from the optimal (or best) scheduling solution over the

total number of products for a given instance.

%tardy =
opt∑

i∈trin

∑
o∈trout

wio

100.

• %improv: percentage of improvement in the schedules obtained by a given for-

mulation vs. the base one, resulting in (possibly) less number of tardy products.

%improv =
|optbase − opt|

optbase

.

• %diff: differences in scheduling decisions between one formulation and another.

They are calculated by the number of incoming trucks which have different sched-

ules divided by the number of total incoming trucks. For instance, if the %diff is

100% it indicates that the schedule has completely changed in one formulation as

opposed to another.

2.7.3 Comparison of Basic TSFD with TSFD+ and TSFD++

We now test the basic TSFD by comparing the performances of the three presented and

introduced formulations: TSFD, TSFD+ and TSFD++. We use a length of one unit for

the time periods, after rescaling the P13 data sets, i.e., dividing the processing times by

5.

Tables 3 and 4 compare between the three formulations using Sets P13 and R17, re-

spectively. In both tables, TSFD++ significantly outperforms the other two formulations

in terms of the quality of the solutions and the computational time it takes to prove

optimality. We also observe that the %LP is almost zero in all these instances when it

comes to the enhanced time-indexed formulation, TSFD++. This indicates that with the

preprocessing introduced in Section 2.4.3, we are able to obtain the optimal solution at

the root node before branching in most of the tested instances. We also highlight that

even though our initially proposed time-indexed formulation TSFD+ under performs

the enhanced one, it can still provide better %gap when terminating within the time

limit, as opposed to the TSFD, introduced by Boysen et al. 2013. Indeed, the TSFD,

as proposed by Boysen et al. 2013, can only reach the optimal solution for small size

instances as opposed to our formulations.
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Table 3: Comparing TSFD++, TSFD+ and TSFD for data set P13

Set P13 TSFD++ TSFD+ TSFD

Trucks Gin Gout σ %LP %gap %UB B&B cpu %LP %gap %UB B&B cpu %LP %gap %UB B&B cpu

(seconds) (seconds) (seconds)

8x8

2 2 2 10.29 . . . 0.02 99.29 . . 17 0.45 100 . . 3.44E+05 5.43

2 2 4 6.67 . . . 0.02 99.83 . . 0 0.45 100 . . 1.86E+05 3.14

2 2 6 0.0 . . . 0.01 97.33 . . 0 0.43 100 . . 2.71E+05 4.75

2 2 8 0.0 . . . 0.01 95.13 . . 0 0.23 100 . . 1.30E+05 2.62

3 3 2 0.0 . . . 0.01 91.91 . . 0 0.28 100 . . 93,337 1.99

3 3 4 0.0 . . . 0.01 95.89 . . 11 0.58 100 . . 58,878 1.16

3 3 6 0.0 0.0 0.0 0 0.01 92.95 0.0 0.0 7 0.50 100 0.0 0.0 1.39E+05 3.15

3 3 8 1.79 . . . 0.01 95.66 . . 2 0.67 100 . . 57,541 1.23

4 4 2 0.0 . . . 0.01 94.70 . . 0 0.51 100 . . 87,856 1.77

4 4 4 0.0 . . . 0.01 94.80 . . 17 0.63 100 . . 24,338 0.68

4 4 6 0.0 . . . 0.01 96.74 . . 0 0.46 100 . . 82,990 1.62

4 4 8 0.0 . . . 0.01 94.28 . . 0 0.64 100 . . 22,622 0.62

Average 1.56 0.0 0.0 0.0 0.01 95.71 0.0 0.0 4.50 0.49 100.00 0.0 0.0 124,796 2.35

20x20

6 6 2 0.13 . . . 0.18 97.02 5.33 0.0 4.93E+05 . 100 98.13 1.99 1.77E+07 .

6 6 4 0.0 . . . 0.04 97.33 12.80 0.89 4.60E+05 . 100 97.80 1.34 1.57E+07 .

6 6 6 0.0 . . . 0.14 97.82 4.46 0.0 3.13E+05 . 100 99.77 2.36 1.58E+07 .

6 6 8 0.0 . . . 0.05 97.16 0.36 0.0 4.36E+05 . 100 98.81 0.24 1.49E+07 .

7 7 2 0.0 . . . 0.06 97.67 21.50 0.0 5.65E+05 . 100 98.76 0.75 1.48E+07 .

7 7 4 0.0 . . . 0.05 97.48 9.70 0.0 2.69E+05 . 100 98.01 1.41 1.30E+07 .

7 7 6 0.31 0.0 0.0 0 0.23 97.88 6.51 0.0 3.23E+05 3600 100 99.48 0.0 1.39E+07 3600

7 7 8 1.24 . . . 0.58 98.54 4.93 0.0 2.88E+05 . 100 100 0.0 1.82E+07 .

8 8 2 0.0 . . . 0.07 97.45 28.33 0.0 4.63E+05 . 100 93.88 0.0 1.25E+07 .

8 8 4 0.0 . . . 0.07 97.98 6.54 0.0 2.93E+05 . 100 96.18 3.67 1.34E+07 .

8 8 6 0.0 . . . 0.17 97.05 9.76 0.0 2.07E+05 . 100 86.98 0.92 1.03E+07 .

8 8 8 0.0 . . . 0.06 97.35 11.64 0.0 2.22E+05 . 100 75.32 0.72 1.08E+07 .

Average 0.14 0.0 0.0 0.0 0.14 97.56 10.16 0.07 3.61E+05 3600 100.00 95.26 1.12 1.42E+07 3600

80x80

10 10 2 0.0 . . 0 14.92 99.75 99.46 16.43 . . 100 100 39.07 1.57E+05 .

10 10 4 0.0 . . 0 2.74 99.81 99.71 35.58 . . 100 100 60.67 1.70E+05 .

10 10 6 0.09 . . 1,235 95.35 99.70 99.63 36.65 . . 100 100 52.14 2.34E+05 .

10 10 8 0.0 . . 0 31.03 99.85 99.80 34.49 . . 100 100 53.73 2.81E+05 .

15 15 2 0.04 . . 709 61.24 99.60 99.58 17.41 . . 100 100 37.51 12,906 .

15 15 4 0.03 0.0 0.0 178 83.14 99.76 99.75 28.26 0 3600 100 100 30.61 3,560 3600

15 15 6 0.02 . . 7,930 207.73 99.79 99.78 42.29 . . 100 100 50.82 13,423 .

15 15 8 0.06 . . 208 53.05 99.64 99.63 27.64 . . 100 100 56.11 42,324 .

20 20 2 0.0 . . 0 6.10 99.50 99.46 10.70 . . 100 100 37.70 13 .

20 20 4 0.02 . . 41 69.17 99.65 99.64 21.85 . . 100 100 44.73 223 .

20 20 6 0.04 . . 385 80.48 99.48 99.46 24.56 . . 100 100 54.84 8 .

20 20 8 0.01 . . 0 30.56 99.57 99.55 23.65 . . 100 100 64.43 3,772 .

Average 0.03 0.0 0.0 890 61.29 99.67 99.62 26.63 0.0 3600 100 100 48.53 76,519 36000

Table 4: Comparing TSFD++, TSFD+ and TSFD for data set R17

Set R17 TSFD++ TSFD+ TSFD

Trucks Gin Gout q %LP %gap %UB B&B cpu %LP %gap %UB B&B cpu %LP %gap %UB B&B cpu

(seconds) (seconds) (seconds)

80x80

10 10 1.2 1.08 . . 42 23.10 98.81 74.68 51.92 835 . 100 100 48.36 29,346 .

10 10 1.3 0.93 . . 3 14.12 97.94 45.21 1.39 24,787 . 100 100 31.67 86,656 .

10 10 1.4 1.60 . . 19 20.46 97.62 29.82 7.55 19,422 . 100 100 56.60 61,796 .

10 10 1.5 0.0 . . 0 6.72 96.73 0.0 0.0 0 428 100 100 81.50 31,813 .

15 15 1.2 0.30 . . 0 14.88 97.92 73.33 33.93 186 . 100 100 58.93 9,744 .

15 15 1.3 0.49 . . 0 20.58 96.73 55.56 3.45 4,939 . 100 100 47.58 10,580 .

15 15 1.4 0.0 0.0 0.0 0 18.03 96.60 48.72 8.33 3,968 3600 100 100 89.72 7,805 3600

15 15 1.5 0.0 . . 0 10.06 94.95 14.89 6.82 5,378 . 100 100 1509.09 24,124 .

20 20 1.2 0.20 . . 0 21.05 98.51 78.46 30.16 4 . 100 100 364.02 3,287 .

20 20 1.3 0.72 . . 0 22.14 97.88 73.91 31.97 5 . 100 100 356.56 25 .

20 20 1.4 0.0 . . 0 16.95 96.55 56.99 43.08 1,451 . 100 100 1432.31 5,552 .

20 20 1.5 2.34 . . 69 54.34 95.75 44.74 18.75 2,018 . 100 100 729.69 3,779 .

Average 0.64 0.0 0.0 11.08 20.20 97.17 49.69 19.78 5,249 3335 100 100 711.28 22,875 3600
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2.7.4 Multiple Transfer Trips: TSFD++
M

and TSFD++
MT

We next test our first extension of considering multiple transfer trips instead of one

when calculating the number of tardy products per shipment. This is to demonstrate

the impact of accurately estimating the tardy cost using TSFD++
mt versus over estimating

using TSFD++
m . Tables 5 and 6 demonstrate the improvements when considering multiple

trips with accurate estimation by TSFD++
mt as opposed to a multiple trips with over

estimation by TSFD++, using Sets P13 and R17, respectively. We first observe that the

%tardy products in the TSFD++
mt is less than the ones in TSFD++ in almost every single

tested instance. This behaviour is expected since we are capturing more accurately the

time at which a product reaches its destined outgoing truck, allowing us to determine

more accurately if it is late or not. This also results in an improvement, %improv, of

18% for P13 and 57% for R17 on average. It should be noted that the changes obtained

do not come only from the greater precision with which the cost is calculated, but also

result in some major changes in the scheduling decisions. For instance, most of the

scheduling decisions (i.e., where trucks are assigned and sequenced) have also changed

significantly as shown in %diff, ranging from 37% to 96% changes in the schedules

between both formulations. Therefore, considering multiple trips, where only products

in late trips are considered tardy rather than the whole shipment, is a more practical and

encouraging assumption that should be part of modeling cross-dock scheduling problems

let alone its beneficial impact on the decisions and tardy costs. Finally, the resulting

increment in the CPU time using the TSFD++
mt instead of the TSFD++

m is insignificant

and negligible, making it still a desirable approach.
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Table 5: Comparing TSFD++
mt to TSFD++

m for data set P13

Set P13 TSFD++
mt TSFD++

m

Truck Gin Gout σ %tardy %improv %diff cpu %tardy %improv %diff cpu

(seconds) (seconds)

8x8

2 2 2.0 22.97 0.00 50 0.01 22.97 . . 0.05

2 2 4.0 14.86 12.00 25 0.01 16.89 . . 0.01

2 2 6.0 25.00 0.00 25 0.01 25.00 . . 0.01

2 2 8.0 27.03 0.00 50 0.01 27.03 . . 0.01

3 3 2.0 34.46 5.56 37 0.01 36.49 . . 0.01

3 3 4.0 33.11 12.50 75 0.01 37.84 0.0 0.0 0.01

3 3 6.0 49.32 16.09 50 0.01 58.78 . . 0.01

3 3 8.0 22.97 27.66 75 0.01 31.76 . . 0.02

4 4 2.0 44.59 21.43 37 0.01 56.76 . . 0.01

4 4 4.0 54.73 7.95 100 0.01 59.46 . . 0.01

4 4 6.0 32.43 31.43 87 0.01 47.30 . . 0.01

4 4 8.0 56.08 11.70 25 0.01 63.51 . . 0.01

Average 34.80 12.19 53 0.01 40.32 0.0 0.0 0.01

20x20

6 6 2.0 46.44 5.41 60 0.07 49.10 . . 0.07

6 6 4.0 43.53 7.80 75 0.06 47.22 . . 0.08

6 6 6.0 40.96 6.27 90 0.25 43.70 . . 0.19

6 6 8.0 40.79 4.23 80 0.13 42.59 . . 0.05

7 7 2.0 40.10 9.13 65 0.07 44.13 . . 0.14

7 7 4.0 48.24 9.92 95 0.08 53.56 0.0 0.0 0.06

7 7 6.0 37.19 7.46 75 0.06 40.19 . . 0.13

7 7 8.0 33.25 12.61 90 0.16 38.05 . . 0.16

8 8 2.0 52.87 9.13 90 0.09 58.18 . . 0.09

8 8 4.0 43.19 11.11 60 0.08 48.59 . . 0.16

8 8 6.0 45.33 10.94 90 0.29 50.90 . . 0.19

8 8 8.0 41.82 11.27 75 0.33 47.13 . . 0.14

Average 42.81 8.77 78 0.14 46.95 0.0 0.0 0.12

80x80

10 10 2.0 32.44 3.28 80 48.47 33.54 . . 30.17

10 10 4.0 30.41 3.54 88 56.35 31.52 . . 43.86

10 10 6.0 29.42 3.57 87 48.35 30.51 . . 653.23

10 10 8.0 26.89 3.25 90 519.85 27.80 . . 71.09

15 15 2.0 38.98 4.44 78 51.82 40.79 . . 28.82

15 15 4.0 33.28 5.02 85 89.54 35.04 0.0 0.0 55.66

15 15 6.0 31.12 4.70 91 3600 32.66 . . 93.19

15 15 8.0 30.96 5.08 88 69.19 32.62 . . 231.58

20 20 2.0 41.72 6.99 70 7.50 44.85 . . 18.01

20 20 4.0 38.00 5.89 82 44.30 40.38 . . 32.39

20 20 6.0 39.34 6.52 83 48.38 42.09 . . 7.53

20 20 8.0 31.89 6.03 83 48.35 33.94 . . 41.12

Average 33.70 4.86 83 386.01 35.48 0.0 0.0 108.89
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Table 6: Comparison of Models TSFD++
mt to TSFD++

m

Data set R17

TSFD++
mt TSFD++

m

Truck Gin Gout q
%tardy %improv %diff

cpu
%tardy %improv %diff

cpu

(seconds) (seconds)

80x80

10 10 1.2 10.71 5.44 55 7.45 11.33 . . 8.15

10 10 1.3 8.69 4.43 91 68.32 9.09 . . 16.44

10 10 1.4 8.34 4.04 67 6.74 8.69 . . 19.34

10 10 1.5 5.40 5.01 91 15.91 5.69 . . 13.13

15 15 1.2 13.90 6.57 65 8.06 14.88 . . 9.50

15 15 1.3 13.09 5.35 92 633.94 13.83 0.0 0.0 46.45

15 15 1.4 9.69 7.40 87 68.19 10.47 . . 9.59

15 15 1.5 7.94 5.49 93 67.35 8.41 . . 8.50

20 20 1.2 16.83 8.58 67 10.35 18.41 . . 3.08

20 20 1.3 15.61 7.92 88 275.54 16.95 . . 19.86

20 20 1.4 11.19 6.35 87 10.30 11.95 . . 21.01

20 20 1.5 8.17 10.88 88 139.88 9.17 . . 22.53

Average 10.80 6.45 80 109.34 11.57 0.0 0.0 16.46

2.7.5 Multiple Trips and Known Order of Shipments TSFD++
MTO

We next test our second TSFD extension, with the explicit modeling of multiple trips

together with the information of the order of shipments inside their incoming trucks. We

perform the comparisons in two steps. First, Tables 7 and 8 demonstrate the improve-

ments when considering multiple trips with accurate estimation and known unloading

order of TSFD++
mto as opposed to multiple trips with over estimation of tardy cost in

TSFD++
m , using Sets P13 and R17, respectively. Second, Tables 9 and 10 compare

TSFD++
mto with TSFD++

mt to demonstrate the impact of knowing (not knowing) the order

of unloading shipments when multiple trips are considered with accurate estimation of

tardy products.

We first observe that in Tables 7 and 8, the percentage of tardy products in the

TSFD++
mto is less than almost half the percentages in TSFD++

m among all tested instances.

This behaviour is expected for two reasons. The first reason is related to considering

multiple trips and calculating the actual time at which a product reaches its destined

outgoing truck, allowing us to determine accurately if it is tardy or not. The second

reason is due to the information on the unloading order of shipments inside the incoming

truck: this allows us to know that the latest loaded products by the supplier (the closest

to the truck door) will be unloaded earlier than those loaded at the beginning. As
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a result, the unloading time per product or a shipment with several products can be

calculated more accurately and independently of all its successive products. This also

results in an improvement, %improv, of 50% for P13 and 80% for R17 on average.

Changes in the scheduling decisions are noticeable as well as shown in the column %diff,

ranging from 50% to even 100% in some instances. Therefore, considering multiple trips

and obtaining information on the unloading order of shipments inside the incoming

trucks can indeed result in significant savings for cross-dock companies.

We next notice a similar and consistent behaviour in the results shown in Tables

9 and 10 to the aforementioned ones. The only difference is that here the marginal

improvements in %tardy and %improv are less than the ones we see in Tables 7 and

8, respectively. This is due to the fact that in Tables 9 and 10, the comparisons are done

on the additional improvement resulted from the second extension: knowing the order

of unloading shipments.
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Table 7: Comparing TSFD++
mto to TSFD++

m for data set P13

Set P13 TSFD++
mto TSFD++

m

Truck Gin Gout σ %tardy %improv %diff cpu %tardy %improv %diff cpu

(seconds) (seconds)

8x8

2 2 2.0 15.54 32.35 62 0.01 22.97 . . 0.05

2 2 4.0 11.49 32.00 12 0.01 16.89 . . 0.01

2 2 6.0 17.57 29.73 87 0.01 25.00 . . 0.01

2 2 8.0 18.24 32.50 87 0.01 27.03 . . 0.01

3 3 2.0 26.35 27.78 87 0.01 36.49 . . 0.01

3 3 4.0 23.65 37.50 87 0.02 37.84 0.0 0.0 0.01

3 3 6.0 33.78 42.53 75 0.01 58.78 . . 0.01

3 3 8.0 14.19 55.32 75 0.01 31.76 . . 0.02

4 4 2.0 27.03 52.38 100 0.01 56.76 . . 0.01

4 4 4.0 39.86 32.95 87 0.02 59.46 . . 0.01

4 4 6.0 23.65 50.00 75 0.01 47.30 . . 0.01

4 4 8.0 35.81 43.62 87 0.01 63.51 . . 0.01

Average 23.93 39.06 76 0.01 40.32 0.0 0.0 0.01

20x20

6 6 2.0 32.56 33.68 70 0.06 49.10 . . 0.07

6 6 4.0 29.05 38.48 100 0.07 47.22 . . 0.08

6 6 6.0 27.16 37.84 85 0.09 43.70 . . 0.19

6 6 8.0 27.85 34.61 80 0.22 42.59 . . 0.05

7 7 2.0 25.62 41.94 90 0.08 44.13 . . 0.14

7 7 4.0 32.13 40.00 95 0.24 53.56 0.0 0.0 0.06

7 7 6.0 24.94 37.95 95 0.25 40.19 . . 0.13

7 7 8.0 20.57 45.95 100 0.33 38.05 . . 0.16

8 8 2.0 32.73 43.74 95 0.09 58.18 . . 0.09

8 8 4.0 25.79 46.91 100 0.21 48.59 . . 0.16

8 8 6.0 27.08 46.80 95 0.32 50.90 . . 0.19

8 8 8.0 24.42 48.18 90 0.13 47.13 . . 0.14

Average 27.49 41.34 91 0.17 46.95 0.0 0.0 0.12

80x80

10 10 2.0 26.65 20.54 97 50.02 33.54 . . 30.17

10 10 4.0 24.94 20.89 92 205.31 31.52 . . 43.86

10 10 6.0 23.99 21.38 96 144.05 30.51 . . 653.23

10 10 8.0 21.24 23.57 98 582.11 27.80 . . 71.09

15 15 2.0 30.31 25.68 97 31.89 40.79 . . 28.82

15 15 4.0 24.75 29.38 95 93.03 35.04 0.0 0.0 55.66

15 15 6.0 22.82 30.11 97 95.48 32.66 . . 93.19

15 15 8.0 22.84 29.97 96 31.15 32.62 . . 231.58

20 20 2.0 30.76 31.43 97 38.23 44.85 . . 18.01

20 20 4.0 26.76 33.72 93 62.97 40.38 . . 32.39

20 20 6.0 28.56 32.14 95 82.24 42.09 . . 7.53

20 20 8.0 22.19 34.61 95 85.16 33.94 . . 41.12

Average 25.48 27.78 95 125.14 35.48 0.0 0.0 108.89
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Table 8: Comparing TSFD++
mto to TSFD++

m for data set R17

Set R13 TSFD++
mto TSFD++

m

Truck Gin Gout q %tardy %improv %diff cpu %tardy %improv %diff cpu

(seconds) (seconds)

80x80

10 10 1.2 6.06 46.47 100 9.90 11.33 . . 8.15

10 10 1.3 4.52 50.34 97 10.94 9.09 . . 16.44

10 10 1.4 4.39 49.48 98 11.54 8.69 . . 19.34

10 10 1.5 2.22 61.02 98 8.53 5.69 . . 13.13

15 15 1.2 7.16 51.86 97 13.69 14.88 . . 9.50

15 15 1.3 6.17 55.37 98 8.95 13.83 0.0 0.0 46.45

15 15 1.4 3.77 63.96 98 24.42 10.47 . . 9.59

15 15 1.5 2.34 72.16 93 22.69 8.41 . . 8.50

20 20 1.2 7.95 56.81 96 14.66 18.41 . . 3.08

20 20 1.3 7.03 58.55 97 14.33 16.95 . . 19.86

20 20 1.4 3.75 68.61 100 2.66 11.95 . . 21.01

20 20 1.5 2.39 73.94 97 14.37 9.17 . . 22.53

Average 4.81 59.05 97 13.06 11.57 0.0 0.0 16.46
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Table 9: Comparison of Models TSFD++
mto to TSFD++

mt - Data set P13

TSFD++
mto TSFD++

mt

Truck Gin Gout q
%tardy %improv %diff

cpu
%tardy %improv %diff

cpu

(seconds) (seconds)

8x8

2 2 2.0 15.54 32.35 87 0.01 22.97 . . 0.01

2 2 4.0 11.49 22.73 37 0.01 14.86 . . 0.01

2 2 6.0 17.57 29.73 87 0.01 25.00 . . 0.01

2 2 8.0 18.24 32.50 75 0.01 27.03 . . 0.01

3 3 2.0 26.35 23.53 75 0.01 34.46 . . 0.01

3 3 4.0 23.65 28.57 87 0.02 33.11 0.0 0.0 0.01

3 3 6.0 33.78 31.51 75 0.01 49.32 . . 0.01

3 3 8.0 14.19 38.24 25 0.01 22.97 . . 0.01

4 4 2.0 27.03 39.39 100 0.01 44.59 . . 0.01

4 4 4.0 39.86 27.16 100 0.02 54.73 . . 0.01

4 4 6.0 23.65 27.08 25 0.01 32.43 . . 0.01

4 4 8.0 35.81 36.14 87 0.01 56.08 . . 0.01

Average 23.93 30.74 71 0.01 34.80 0.0 0.0 0.01

20x20

6 6 2.0 32.56 29.89 75 0.06 46.44 . . 0.07

6 6 4.0 29.05 33.27 90 0.07 43.53 . . 0.06

6 6 6.0 27.16 33.68 95 0.09 40.96 . . 0.25

6 6 8.0 27.85 31.72 90 0.22 40.79 . . 0.13

7 7 2.0 25.62 36.11 95 0.08 40.10 . . 0.07

7 7 4.0 32.13 33.39 80 0.24 48.24 0.0 0.0 0.08

7 7 6.0 24.94 32.95 95 0.25 37.19 . . 0.06

7 7 8.0 20.57 38.14 70 0.33 33.25 . . 0.16

8 8 2.0 32.73 38.09 80 0.09 52.87 . . 0.09

8 8 4.0 25.79 40.28 100 0.21 43.19 . . 0.08

8 8 6.0 27.08 40.26 85 0.32 45.33 . . 0.29

8 8 8.0 24.42 41.60 80 0.13 41.82 . . 0.33

Average 27.49 35.78 86 0.17 42.81 0.0 0.0 0.14

80x80

10 10 2.0 26.65 17.85 92 50.02 32.44 . . 48.47

10 10 4.0 24.94 17.99 92 205.31 30.41 . . 56.35

10 10 6.0 23.99 18.47 96 144.05 29.42 . . 48.35

10 10 8.0 21.24 21.01 100 582.11 26.89 . . 519.85

15 15 2.0 30.31 22.23 95 31.89 38.98 . . 51.82

15 15 4.0 24.75 25.65 95 93.03 33.28 0.0 0.0 89.54

15 15 6.0 22.82 26.67 96 95.48 31.12 . . 3600

15 15 8.0 22.84 26.22 95 31.15 30.96 . . 69.19

20 20 2.0 30.76 26.27 92 38.23 41.72 . . 7.50

20 20 4.0 26.76 29.57 95 62.97 38.00 . . 44.30

20 20 6.0 28.56 27.40 96 82.24 39.34 . . 48.38

20 20 8.0 22.19 30.41 95 85.16 31.89 . . 48.35

Average 25.48 24.15 94 125.14 33.70 0.0 0.0 386.01
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Table 10: Performance comparison of models TSFD++
mto to TSFD++

mt - Data set R17

TSFD++
mto TSFD++

mt

Truck Gin Gout q
%tardy %improv %diff

cpu
%tardy %improv %diff

cpu

(seconds) (seconds)

80x80

10 10 1.2 6.06 43.39 98 9.90 10.71 . . 7.45

10 10 1.3 4.52 48.04 100 10.94 8.69 . . 68.32

10 10 1.4 4.39 47.36 98 11.54 8.34 . . 6.74

10 10 1.5 2.22 58.97 98 8.53 5.40 . . 15.91

15 15 1.2 7.16 48.47 98 13.69 13.90 . . 8.06

15 15 1.3 6.17 52.85 98 8.95 13.09 0.0 0.0 633.94

15 15 1.4 3.77 61.09 98 24.42 9.69 . . 68.19

15 15 1.5 2.34 70.54 98 22.69 7.94 . . 67.35

20 20 1.2 7.95 52.75 97 14.66 16.83 . . 10.35

20 20 1.3 7.03 54.98 97 14.33 15.61 . . 275.54

20 20 1.4 3.75 66.49 100 2.66 11.19 . . 10.30

20 20 1.5 2.39 70.75 97 14.37 8.17 . . 139.88

Average 4.81 56.31 98 13.06 10.80 0.0 0.0 109.34

2.7.6 Economical Analysis

We next provide an economical analysis on the impacts of our proposed extensions over

the basic TSFD.

In Figure 5, we show how the percentage of tardy products changes for both unknown

and known unloading order of products inside their incoming trucks. This is demon-

strated on an instance in Set R17 with different due dates. We observe that taking

the unloading order of shipments, along with their products, into account would allow

cross-dock managers to produce daily schedules that are less expensive than the ones

without information on the unloading order. More visibility on the content of the in-

coming trucks will definitely have a direct economical impact regardless of the tightness

or looseness of the due dates.
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Figure 5: Comparing two scenarios: unknown vs. known unloading order as a function

of the percentages of tardy shipments. Data set R13, instance 20x20, gate = 8.

Figures 6 and 7 depict several economical performance measures: unknown and

known unloading order of shipments, and their products, respectively, inside the incom-

ing trucks. We show the impact of these assumptions on the outgoing trucks, their

delayed departure times if they would wait for the tardy products, the completion times

of their last loaded products if they depart as originally planned, and the percentage of

on-time loaded products.

We highlight that in Figure 7 the gap between the completion time of the last loaded

product in the outgoing trucks and the planned departure times of the outgoing trucks

is narrower than in the one in Figure 6. This is simply due to knowing the order

of unloading the products at the first place. Both figures also help identifying the

additional time needed for the products to be completely loaded in their outgoing trucks.

For instance, in Figure 7, outgoing truck 18 would require an additional two hours, i.e.,

13− 11 = 2, for all its consolidated products to arrive at the designated outbound door

and be fully loaded. Hence, a cross-dock manager could make a decision based on this

information to whether delay the departure time of this outgoing truck by two hours

or make other relevant decisions that affect the associated penalty/fees with its tardy

products.
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Figure 6: Planned due dates and the completion time of last shipments transferred to

outbound doors with percentage of on time shipments in unknown order scenario. Data

set R13, instance 20x20, gate = 8.

Figure 7: Planned due dates and the completion time of last shipments transferred to

outbound doors with percentage of on time shipments in known order scenario. Data

set R13, instance 20x20, gate = 8.
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Finally, in Figure 8 we depict the impact on the number of tardy products when con-

sidering multiple trips with accurate estimation using TSFD++
mt , and with over estimation

using TSFD++
m . It is easy to see the consistency in this figure between both scenarios.

The decrements are due to the looseness in the departure times of the outgoing trucks,

i.e., the looser the departure time is, the less tardy the products are.

Figure 8: Percentage of tardy shipments when we consider the number of trips to

transfer shipments from inbound to outbound doors. Data set R13, instance 20x20,

gate = 8.

2.8 Conclusion

In this paper, we solve efficiently a daily complex scheduling problem that arises in the

postal and retail industries. After the analysis of a first basic model proposed by Boysen

2010 and Boysen et al. 2013, we introduce two integer programming formulations and

compare their performances with the one of Boysen et al. 2013. These new formulations

allow the improvement of the modelling of the transshipment operations and their impact

on assessing more accurately the number of tardy products, rather than over-estimating

them. Furthermore, we investigate the impact of taking advantage of the information on

the unloading order of the shipments, along with their associated products, inside the

incoming trucks, and adapt our best enhanced time-indexed formulation accordingly.
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By doing so, we can then estimate accurately without any over-estimation the minimum

number of tardy products.

Extensive computational experiments are run to test all our proposed TSFD for-

mulations with the state-of-the-art as well as with our proposed extended ones. We

conclude with an economical analysis that demonstrates an average saving of 50% in

the total cost. We encourage cross-dock companies to capture accurately the number

of their tardy products by considering the practical extensions proposed here, and to

obtain from their suppliers the unloading order of shipments inside their incoming trucks

in order to accurately compute the number of tardy jobs and consequently reduce as

much as possible the number of their tardy deliveries.

We also highlight that the data instances we tested are representative of average

sized cross-docks. For larger cross-docks (the largest ones in the world have 500 cross-

dock doors), further developments are needed in order to enhance the scalability of the

proposed models with, e.g., decomposition modelling and algorithms.
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Chapter 3

A linear model for truck scheduling

in cross-dock with known unloading

order of shipments

3.1 Introduction

In order to transport commodities quickly to satisfy customer needs while reducing the

cost of inventory storage, cross docking has emerged as an efficient logistics strategy.

Products are carried in incoming trucks, which arrive at cross docking facilities and wait

to be assigned to an inbound door before being processed. After goods are unloaded, they

are sorted and transferred to outgoing trucks in the cross-dock outbound side without

or little of storage.

One critical problem which managers have to deal with in daily working is how

to schedule incoming and outgoing trucks to conduct the transfer operation at cross

docking facilities as efficiently as possible. Some studies dedicated to the inbound and

outbound scheduling problem try to simplify this problem by fixing the transportation

time between inbound doors and outbound doors to the same value and make all dock

doors be identical on each side such as: F. Chen et al. 2009a; Cota et al. 2016; Boysen

et al. 2010b. Other papers are however considering the transportation time between

dock doors such as: Miao et al. 2009a; Molavi et al. 2018; Belle et al. 2013.

In this work, we introduce three new mathematical models to schedule incoming

and outgoing trucks at a cross docking centre to minimize the maximum lateness of
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outgoing trucks. In these models, we take into account the transfer time from inbound

to outbound doors while still keeping the model linear. In addition, we integrate the

unloading order of shipments in incoming trucks and get significant improvement in the

lateness value.

The paper is organized as follows: Section 3.2, we review the related works, Section

3.3 is devoted to problem description, Sections 3.4 and 3.5 are for introducing proposed

models and Section 3.6 is for computational results.

3.2 Literature Review

In this section, we review some papers that study the problem of scheduling inbound and

outbound in a cross-docking. These studies can be classified into two main classes. The

first class of papers try to reduce the complexity of the truck scheduling by approximating

the transportation times from inbound doors to outbound doors as a given constant.

That is, the dock doors on each side become identical. The second class of studies,

on the other hand, take into account the transshipment time in side cross-dock. As

a consequence, the dock doors become non-identical and the problem become more

complex.

3.2.1 Identical Dock Doors

Some papers model the inbound and outbound scheduling as a multiple-stage hybrid

machine scheduling problem. F. Chen et al. 2009a consider the cross-docking scheduling

problem as a two-stage hybrid machine scheduling problem, which has been proposed

by F. Chen et al. 2009b. The first stage is to schedule inbound side and the second

stage is to schedule outbound side. In this paper, the authors form a network based

mixed integer programming (MIP) model for this problem and some Johnson’s rule-

based heuristics to minimize the makespan. Their MIP model can only solve small scale

problems with 7 trucks and 4 dock doors. Following this work, Cota et al. 2016 formulate

a time-indexed model for the same problem. The model is tested with small size problem

with the number of trucks and doors are up to 8 and 9, respectively. They show that

the time-indexed model outperforms the network-based model in F. Chen et al. 2009a.

Fonseca et al. 2017 study a less complex problem of trucks scheduling with only one dock

door on each inbound and outbound side to minimize the makespan. In this paper, the
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author propose a time-indexed model and develop a hybrid Lagrangean metaheuristic.

The largest size problem which they attempt to solve has 84 trucks. In Bellanger et al.

2013, the cross-docking operation is split into three stages, namely, receiving, sorting

and shipping. The objective is to minimize the completion of the last batch. In order

to tackle the problem of scheduling trucks, the authors develop a branch-and-bound

algorithm. The results show that their algorithm can generate good schedules with up

to 3,000 jobs.

All mentioned papers assume that dock doors are identical, i.e., the transportation

times between dock doors are the same and then can be removed from the models.

However, this assumption is not fit with real life practice where the travel time between

a pair of inbound and outbound doors is different from one pair to the next.

3.2.2 Non-identical Dock Doors

The second class of models in which authors consider the transshipment time can be

seen in: Miao et al. 2009a; Molavi et al. 2018; Belle et al. 2013. In Miao et al. 2009a,

the authors study problem of dock assignment to minimize the sum of total operation

and total of penalty costs. In this paper, they consider the transshipment time of

cargoes between dock doors in their constraints to assure products can be transferred to

outbound side before the departure time of outgoing trucks. The size of problem they

can solve with exact method is 12 to 18 trucks with a number of doors ranging from

4 to 6 doors. Belle et al. 2013 consider the scheduling problem for both inbound and

outbound trucks with multiple dock doors to minimize the total travel time and the

total tardiness. In this paper, authors take the arrival time of inbound and outbound

trucks and the transshipment time between dock door into account. They use a Tabu

Search approach to solve the scheduling problem. In their experimental results, they

show that their heuristics can solve problem with size up to 30 trucks and the number of

dock doors is fixed at 3. Molavi et al. 2018 also consider the arrival times of trucks and

transportation time between dock doors in their mixed integer programming model for

cross-docking scheduling problem. In addition, they integrate the information of sorting

of shipments into incoming trucks in their model. The objective function of proposed

model is to minimize the cost of delayed shipments. By using optimizer software, they

can solve small size instances with 9 trucks and 5 dock doors. The authors conclude that

the sorting of shipments in inbound trucks can improve the scheduling in cross-docking.
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When the transshipment times between dock doors are considered, the model be-

come non-linear. This problem is addressed in paper mentioned above by introducing

additional decision variables and constraints to keep track of the dock door assignment

of each pair of incoming and outgoing trucks. In this paper, we overcome the problem of

non-linear constraints without introducing new decision variables and new constraints.

3.3 Problem Statement

3.3.1 Problem Description

In a cross-dock facility, a set of incoming trucks on the inbound side carry products

from suppliers which are then unloaded and transferred to the outbound side. On

the outbound side, a set of empty outgoing trucks are waiting to be loaded. On each

side, there are several dock doors reserved to unload products from incoming trucks

and to load products into outgoing trucks. An incoming truck may contain products

for several outgoing trucks and an outgoing truck may have its products coming from

several incoming trucks. Each outgoing truck has its own planned departure time, i.e.,

it should leave the cross-dock centre before the given a deadline. However, in some

situations, there is no subcontract for late products, therefore, an outgoing truck has to

wait until all of its products are loaded successfully. An outgoing truck which cannot

leave the cross-dock before its deadline is considered late. In this paper, we schedule

incoming and outgoing trucks in order to minimize the maximum lateness of outgoing

trucks. At each dock door, we have to decide which truck to assign and the time to

start processing that truck. Several assumptions are made for the problem of scheduling

inbound and outbound based on Cota et al. 2016 and Molavi et al. 2018:

• All incoming and outgoing trucks are available at the time of scheduling.

• Incoming and outgoing trucks are unloaded and loaded without interruption.

• Outgoing trucks have to wait until all of its products are loaded successfully before

it leaves the cross-docking centre.

• Outgoing trucks cannot start loading until all their products unloaded from in-

coming trucks and transferred to the outbound side.
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3.3.2 Notations

Given a cross-dock centre, we denote by trin and trout the set of incoming and outgoing

trucks, respectively. For each outgoing truck o ∈ trout, a departure time do is the

deadline which outgoing truck o should leave before that. The number of products from

incoming truck i ∈ trin and outgoing truck o ∈ trout is denoted by wio. Let trin
o be

the set of incoming trucks which carry products for outgoing truck o ∈ trout. On the

inbound side of cross docking facility, we have a set of inbound doors Gin and on the

outbound side we have a set of outbound doors Gout. Let pi be the processing time, i.e.,

time to being unloaded, of incoming truck i ∈ trin and po be the processing time, i.e.,

time to being loaded, outgoing truck o ∈ trout. The transportation time between two

dock doors, inbound door g ∈ Gin and outbound door g′ ∈ Gout is δgg′ .

Notations Descriptions

trin set of incoming trucks

trout set of outgoing trucks

trin
o set of incoming trucks which contain products for outgoing truck o

Gin set of dock doors on inbound side

Gout set of dock doors on outbound side

pi, po processing time of incoming truck i ∈ trin and outgoing truck otrout

wio products from incoming truck i to outgoing truck o

δgg′ time to transfer a product from inbound door g ∈ Gin to outbound door g′ ∈ Gout

Table 11: Mathematical notations

3.4 Time-indexed Mathematical Model

According to the results in Chapter 2 and in Cota et al. 2016, we can see that the

time-indexed models have better bound and performance than network based models.

Therefore, we formulate a time indexed model for the problem of scheduling inbound

and outbound trucks in cross-docking facilities. This model is based on a time horizon

which is divided into equal time blocks. We use one unit of time as the length of each

time block. Let t ∈ T be the discretized time intervals over which incoming and outgoing

trucks are scheduled. We define two sets of decision variables to determine the schedule
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of each incoming truck and outgoing truck:

xt
ig =

⎧⎪⎪⎨⎪⎪⎩
1 if incoming truck i starts processing, i.e., being unloaded at

inbound door g at time t

0 otherwise

yt
′

og′ =

⎧⎪⎪⎨⎪⎪⎩
1 if outgoing truck o starts processing, i.e., being loaded at

outbound door g′ at time t′

0 otherwise

In real life practice, the transshipment time between each pair of dock doors is

different from others. It may take less time to transfer products from an inbound door

to other close outbound doors and more time to other far outbound doors.

Figure 9: The transshipment times, δ11 and δ12, are different between dock doors.

Because of these differences in transportation times, inbound doors are different

from each other and the same with outbound doors. This makes the scheduling process

become more complex since different dock door assignments for each truck may lead to

different values of the objective function. In order to state the relationships between

outgoing trucks and incoming trucks, we have to know the assignment of each truck to

dock doors. In the literature, researchers try to tackle this problem by defining a new

set of decision variables:

ztt
′

iogg′ =

⎧⎪⎪⎨⎪⎪⎩
1 if incoming truck i is assigned to inbound door g at time t

and outgoing truck o is assigned to outbound door g′ at time t′

0 otherwise
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This practice can be seen in Molavi et al. 2018; Belle et al. 2013; Miao et al. 2009b.

This is actually a way to linearize the non-linearized term: ztiogg′ = xt
ig × yt

′

og′ . For the

scheduling problem in this paper, each outgoing truck has to wait until all of its products

are unloaded from incoming trucks before it can start loading. This condition can be

stated as follows:∑
t′∈T

∑
g′∈Gout

t′yt
′

og′ ≥
∑
t∈T

∑
g∈Gin

(t+ pi)x
t
ig +

∑
t∈T

∑
g∈Gin

∑
t′∈T

∑
g′∈Gout

wioδgg′xt
igy

t′

og′ o ∈ trout, i ∈ trin
o .

The reason for these non-linearized constraints is because of the unknown dock door

assignment of each truck at the scheduling time. In order to overcome this unknown

information, we look in a different way.

We assume that outgoing truck o ∈ trout is assigned to outbound door g′ ∈ Gout at

time t′ ∈ T and a precedent incoming truck i ∈ trin
o is assigned to inbound gate g ∈ Gin

at time t ∈ T . The precedence condition between outgoing truck o and its precedent

incoming truck i can be stated as follows:

t′ ≥ t+ pi + wioδgg′ ⇔ t′ − wioδgg′ ≥ t+ pi. (19)

We then generalize inequality (19) but fix the dock door assignment, i.e., inbound gate

g of incoming truck i. inequality (19) can be stated in general as follow:∑
t′∈T

∑
g′∈Gout

(t′ − wioδgg′)y
t′

og′ ≥
∑
t∈T

(t+ pi)x
t
ig o ∈ trout, i ∈ trin

o , g ∈ Gin. (20)

However, if our assumption about the scheduling of incoming truck i does not happen,

i.e.,
∑
t∈T

xt
ig = 0 at inbound gate g. The inequality (20) will become:

t′ − wioδgg′ ≥ 0. (21)

The inequality (21) is not correct because it creates a false lower bound for the starting

time of outgoing truck o. To address this problem, we add a new parameter called δ̄,

which is the upper bound of all transportation time wioδgg′ to transfer a shipment from

an incoming truck to another outgoing truck. inequality (20) can be reformulated as

follows:∑
t′∈T

∑
g′∈Gout

(t′ − wioδgg′)yt
′

og′ ≥
∑
t∈T

(t+ pi)x
t
ig − δ̄(1−

∑
t∈T

xt
ig) o ∈ trout, i ∈ trin

o , g ∈ Gin. (28)

With constraints (28), inequality (21) become t′−wioδgg′ ≥ −δ̄ or t′ ≥ wioδgg′ − δ̄(< 0).

By adding parameter δ̄, we are able to recover the lower bound of starting time for
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outgoing truck o. We then can model the problem of scheduling truck in cross-docking

centre with the new linearized precedence constraints as follows:

[LINEAR] min Lmax (22)

subject to:

Lmax ≥
∑
t′∈T

∑
g′∈Gout

(t′ + po)y
t′

og′ − do o ∈ trout (23)

∑
t∈T

∑
g∈Gin

xt
ig = 1 i ∈ trin (24)

∑
i∈trin

t∑
h=max{0,t−pi+1}

xh
ig ≤ 1 t ∈ T, g ∈ Gin (25)

∑
t′∈T

∑
g′∈Gout

yt
′

og′ = 1 o ∈ trout (26)

∑
o∈trout

t′∑
h=max{0,t′−po+1}

yhog′ ≤ 1 t′ ∈ T, g′ ∈ Gout (27)

∑
t′∈T

∑
g′∈Gout

(t′ − wioδgg′)yt
′

og′ ≥
∑
t∈T

(t+ pi)x
t
ig − δ̄(1−

∑
t∈T

xt
ig) o ∈ trout, i ∈ trin

o , g ∈ Gin (28)

xt
ig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (29)

yt
′

og′ ∈ {0, 1} o ∈ trout, g′ ∈ Gout, t′ ∈ T (30)

Lmax ≥ 0. (31)

The objective function (22) is to minimize the maximum lateness of outgoing trucks.

Constraints (23) define Lmax is upper bound value of lateness between completion time

of each outgoing truck and its fixed departure time. Constraints (24)-(27) guarantee all

incoming trucks and outgoing trucks are well scheduled. Inequalities (24) and (26) force

the condition that each incoming and outgoing truck is assigned to one dock door at an

unique time. Inequalities (25) and (27) make sure each dock door handles one truck at

a given time. Constraints (28) declare that all an outgoing truck can only start being

processed when all of its products are unloaded and transferred to the dock where that

truck is assigned. The last three constraints (29)-(30) is to define the domain of decision

variables. Constraints (31) is to force Lmax to have non-negative value.
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3.5 Known Unloading Order of Shipments

In this section, we introduce two models with different ways to exploit the knowing

order of shipments in incoming trucks. We assume that a shipment is ready to transfer

to outbound side as soon as it is unloaded successfully from an incoming truck.

3.5.1 Virtual Incoming Trucks

Inside each incoming truck i ∈ trin, all the products which have to be transferred

to other outgoing trucks are packed as a shipment. These shipment are put side by

side inside each incoming truck. We assume that the unloading order of shipments in

each incoming truck is Last In - First Out (LIFO). In order to take into account the

information about the order of shipments inside each incoming truck, we introduce a

new set vtrin which is the set of virtual incoming trucks. Each of these virtual incoming

truck j ∈ vtrin created from an incoming truck i ∈ trin will contain shipment that has

to be transferred from incoming truck i to another outgoing truck o ∈ trout. Let αjj′

= 1 if the virtual incoming truck j ∈ vtrin and the virtual incoming truck j′ ∈ vtrin

are created from the same incoming truck i ∈ trin and the shipment in j is unloaded

before the shipment in j′ in i; 0 otherwise.

Figure 10: Virtual trucks generation.

In Figure 10, shipment C will be unloaded before shipment B and A and therefore

αjj′ of the virtual truck j and j′ will equal 1. Below is the model which applies virtual

trucks extension:
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[LINEAR-ORDER] min Lmax (32)

subject to:

Lmax ≥
∑
t′∈T

∑
g′∈Gout

(t′ + po)y
t′

og′ − do o ∈ trout (33)

∑
t∈T

∑
g∈Gin

xt
jg = 1 j ∈ vtrin (34)

∑
j∈vtrin

t∑
h=max{0,t−pj+1}

xh
jg ≤ 1 t ∈ T, g ∈ Gin (35)

∑
t′∈T

∑
g′∈Gout

yt
′

og′ = 1 o ∈ trout (36)

∑
o∈trout

t′∑
h=max{0,t′−po+1}

yhog′ ≤ 1 t′ ∈ T, g′ ∈ Gout (37)

∑
t′∈T

∑
g′∈Gout

(t′ − wjδgg′)yt
′

og′ ≥
∑
t∈T

(t+ pj)x
t
jg − δ̄(1−

∑
t∈T

xt
jg) o ∈ trout, j ∈ trin

o , g ∈ Gin (38)

∑
t∈T

xt
jg =

∑
t∈T

xt
j′g j, j′ ∈ vtrin : αjj′ = 1, g ∈ Gin (39)

∑
t∈T

∑
g∈Gin

(t+ pj)x
t
jg =

∑
t∈T

∑
g∈Gin

txt
j′g j, j′ ∈ vtrin : αjj′ = 1 (40)

xt
jg ∈ {0, 1} j ∈ vtrin, g ∈ Gin, t ∈ T (41)

yt
′

og′ ∈ {0, 1} o ∈ trout, g′ ∈ Gout, t′ ∈ T (42)

Lmax ≥ 0. (43)

Constraints (33)-(43) are the same as in LINEAR, except two new constraints (39)

and (40). Constraints (39) force all the virtual incoming trucks from the same incoming

truck to be assigned to the same door. Constraints (40) guarantee that all the virtual

incoming trucks created from one incoming truck have to be processed in the same

unloading order of shipments contained in this incoming truck. In the constraints (38),

since each virtual incoming truck now only contains product for one outgoing truck, we

replace wio by wj which is the number of products in virtual incoming truck j ∈ vtrin.

The precedent incoming trucks set trin
o of outgoing truck o now will contains all the

virtual incoming trucks j ∈ vtrin that carry shipment for o.
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3.5.2 Overestimation of the Starting Time of Outgoing Trucks

From the two previous models LINEAR and LINEAR-ORDER, we can observe that the

constraints (28) over estimate the starting times to be processed of outgoing trucks in

comparison to constraints (38) in the case where shipment is transferred to outbound

side right after it is unloaded from incoming trucks. When we do not know the unloading

order of shipments in incoming trucks, the safe way to guarantee that each outgoing truck

o ∈ trout has to wait until all of its shipments are unloaded is to delay o until all of its

precedent incoming trucks unloaded successfully. However, there exists a case in which

the shipment for o in its precedent incoming truck i is unloaded before the completion

time time of i. In this way, we are over estimating the waiting time of each outgoing

truck. If we can calculate the finish time of all shipments destined to o correctly, we can

start loading o earlier. In order to accomplish this, we will have to exploit the unloading

order of shipments in each incoming truck. Let ūio be the cumulative unloading time of

the shipment from incoming truck i to outgoing truck o. ūio has to be the summation

of the time to unload shipment (i − o) and the waiting time to unload all the previous

shipments in i.

Figure 11: Cumulative unloading time calculation.

In Figure 11, incoming truck i starts unloading at time t0. Shipment C, B and A

belongs to outgoing truck o, o′ and o′′, respectively. pio, pio′ and pio′′ are the processing

times, i.e., the time to unload shipment C, B and A respectively. Shipment C will be

unloaded first, then B, and followed by A. Let the processing time of C be pio then it

equals ūio. Since shipment B has to wait until shipment C is unloaded successfully, the

cumulative unloading time of B will be ūio′ = ūio + pio′ . The same calculation is applied

to shipment A. Because shipment A is unloaded last, its cumulative unloading time has

to equal to the processing time of incoming truck i. The model is formulated as follows:
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[LINEAR-ORDER+] min Lmax (44)

subject to:

Lmax ≥
∑
t′∈T

∑
g′∈Gout

(t′ + po)y
t′

og′ − do o ∈ trout (45)

∑
t∈T

∑
g∈Gin

xt
ig = 1 i ∈ trin (46)

∑
i∈trin

t∑
h=max{0,t−pi+1}

xh
ig ≤ 1 t ∈ T, g ∈ Gin (47)

∑
t′∈T

∑
g′∈Gout

yt
′

og′ = 1 o ∈ trout (48)

∑
o∈trout

t′∑
h=max{0,t′−po+1}

yhog′ ≤ 1 t′ ∈ T, g′ ∈ Gout (49)

∑
t′∈T

∑
g′∈Gout

(t′ − wioδgg′)yt
′

og′ ≥
∑
t∈T

(t+ ūio)x
t
ig − δ̄(1−

∑
t∈T

xt
ig) o ∈ trout, i ∈ trin

o , g ∈ Gin (50)

xt
ig ∈ {0, 1} i ∈ trin, g ∈ Gin, t ∈ T (51)

yt
′

og′ ∈ {0, 1} o ∈ trout, g′ ∈ Gout, t′ ∈ T (52)

Lmax ≥ 0. (53)

In constraints (50), instead of putting the total processing time of incoming truck i,

we replace it by the unloading time of shipment of o in i.

3.6 Experimental Results

We next test the performance of all three newly proposed models. All the models

are implemented in Java using the concert technology library of CPLEX 12.6. We

first describe the data generation of data sets, and then some performance and quality

measurements used in the next tables. After that, we present the computational results

with their analysis on the known shipment unloading order.

The number of papers which study the problem of scheduling inbound and outbound

sides with transshipment time is very limited. Beside, we cannot able to find other

models that have the same inputs and objective function to be comparable with ours.

Therefore, in the following tables, we only report the performance of models in this

paper to evaluate the instance sizes which these models can able to solve within the

time limit.
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3.6.1 Data Generation

We use data sets which are generated the same way in Molavi et al. 2018 and Belle et al.

2013.

Problem Parameters Notations Value

Number of trucks in each side |trin|, |trout| 4 - 9

Number of dock doors in each side |Gin|, |Gout| 2 - 5

Transshipment time δgg′ U [1, 3]

Percentage of the number of outgoing trucks
Flow Mix 25% - 50%

for which each inbound truck contains

Time to unload/load one product L 2

Table 12: Factors of data generation of D1

*U [a, b] means the uniform distribution of [a, b].

However, this two papers consider the arrival time in their models and generate the

departure times base on these arrival times. Therefore we use generation method for

departure times or due dates of outgoing trucks of Boysen et al. 2013:

do = 2 ·

∑
i∈trin

pi

|Gin|
· U [0.5, 0.9].

In the above formula, we multiply the due date by 2 because we consider the trans-

portation time between dock doors (which has mean value equal the time to unload

each product in Table 12). We use a set of small-scale instances, the following table

summarizes the instances we use to do experiments.
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Test Instances |trin| |trout| |Gin| |Gout|

S01 4 4 2 2

S02 4 4 3 3

S03 4 5 3 3

S04 7 6 3 3

S05 7 8 4 4

S06 8 8 4 4

S07 8 9 4 5

S08 9 9 5 5

Table 13: Small-scale instances

3.6.2 Performance Measurements

In this section, we describe some measurements which are used in the following tables

to compare the performances and the quality of solutions of each models presented in

this article. These measurements are described as follows:

• %LP: The percentage linear relaxation gap. It is calculated as %LP = |OPT−LP |
OPT

100,

where OPT is the optimal value for the mixed integer linear programming (MILP)

and LP is the optimal value for the linear programming relaxation of each model.

If an optimal MILP solution is not obtained within the time limit, we use the best

known solution for the tested instance.

• B&B: The number of nodes explored in the branch-and-bound tree.

• CPU (seconds): The computational time in second to solve the MILP model.

• %Improvement: The percentage improvement in lateness value gained when we

consider the order of shipments.

• Lateness: The optimal value of the objective function in each model. It is the

maximum lateness of outgoing trucks. When a model cannot return an optimal

solution within the time limit, we ignore the Lateness and %Improvement values

in the subsequent tables.
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3.6.3 Computational Results

We now test the performances of three proposed models: LINEAR, LINEAR-ORDER

and LINEAR-ORDER+. In all models, we use a length of one time unit for the time

periods. Since the computational time of the exact algorithm rises exponentially, we set

the time limit of 1,800 seconds for solving time of CPLEX. If a model cannot get the

optimal solution within the time limit, we will get the best integer solution that model

can reach.

Instance

LINEAR LINEAR-ORDER LINEAR-ORDER+

%LP B&B CPU %LP B&B CPU %LP B&B CPU

(seconds) (seconds) (seconds)

S01

Best 62.96 0 0.57 62.96 0 3.32 62.96 0 0.61

Worst 100 70489 14.09 100 168580 191.29 100 25315 7.18

Average 91.51 30584 6.59 91.11 92260 46.74 91.06 5959 3.25

Std 14.21 24547 4.33 14.66 114792 59.86 14.72 8058 1.69

S02

Best 57.51 0 2.32 57.51 6507 8.94 57.51 0 2.43

Worst 100 8198 6.89 100 36866 22.08 100 163 5.04

Average 86.76 14796 6.74 86.73 10630 10.91 86.73 981 3.46

Std 16.22 38402 9.69 16.53 12903 6.04 16.53 2317 1.80

S03

Best 86.21 0 1.43 86.24 408 9.87 86.24 0 4.58

Worst 100 317555 51.44 100 656284 1800 100 57158 18.52

Average 96.20 38309 9.95 98.33 95018 207.89 98.33 16651 6.99

Std 5.95 99940 15.17 4.34 204821 560.73 4.34 29567 6.55

S04

Best 100 31705 26.76 100 236967 1800 100 13679 19.65

Worst 100 780650 1800 100 429084 1800 100 793511 1800

Average 100 287757 431.64 100 275158 1800 100 184107 431.77

Std 0 346614 723.69 0 120465 0 0 236805 724.92

S05

Best 100 12898 33.77 100 92999 1800 100 9164 29.63

Worst 100 756798 1800 100 98636 1800 100 438253 1800

Average 100 351346 759.77 100 165399 1800 100 202793 414.13

Std 0 302056 803 0 62574 0 0 180583 582.44

Table 14: Comparing performance among three models: LINEAR, LINEAR-ORDER

and LINEAR-ORDER+
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Instance

LINEAR LINEAR-ORDER LINEAR-ORDER+

%LP B&B CPU %LP B&B CPU %LP B&B CPU

(seconds) (seconds) (seconds)

S06

Best 100 109570 134.13 100 46926 1800 100 81414 147.67

Worst 100 536562 1800 100 0 1800 100 522572 1800

Average 100 446215 1185.86 100 67719 1800 100 492181 932.29

Std 0 279552 799.09 0 47090 0 0 496224 789.88

S07

Best 100 32352 103.57 100 64319 1800 100 40145 87.13

Worst 100 310415 1800 100 91892 1800 100 175894 1800

Average 100 127056 457.71 100 75866 1800 100 109072 382.04

Std 0 95670 541.69 0 44567 0 0 97138 523.85

S08

Best 100 102303 278.53 100 2839 1800 100 107286 332.48

Worst 100 133778 1800 100 0 1800 100 215693 1800

Average 100 347966 1102.72 100 10347 1800 100 299747 1103.87

Std 0 265966 749.80 0 18402 0 0 149764 735.03

Table 14: (Continued)

Table 14 compares among the three formulations using 8 sets of problem from S01 to

S08. For each set of instances, we generate 10 replications and report the Best, Worst,

Average, Standard deviation values based on the LP percentage gap, CPU times and

the number of branch-and-bound nodes. For the first three set of problem, the %LP of

three models do not have much difference. In terms of CPU time, LINEAR-ORDER

takes more time to get the optimal solution than LINEAR and LINEAR-ORDER+. The

number of branch-and-bound nodes of LINEAR-ORDER+ is less than the one for the

other two models. For the remaining data instances, all three models have relative weak

linear relaxation gaps. While LINEAR-ORDER and LINEAR-ORDER+ are able to get

the optimal solution within the time limit, the model LINEAR-ORDER exceed the time

limit for all data instances. This behavior can be predictable because of introduction of

virtual incoming trucks, which make the problem more complex.
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Problem

LINEAR LINEAR-ORDER LINEAR-ORDER+

Lateness Lateness %Improvement Lateness %Improvement

(time unit, average) (time unit, average) (average) (time unit, average) (average)

S01 47.00 38.10 22.40 38.10 22.40

S02 64.00 59.70 7.66 59.70 7.66

S03 52.90 44.20 16.69 44.20 16.69

S04 45.88 – – 33.63 25.48

S05 38.57 – – 28.14 26.73

S06 45.50 – – 31.25 32.46

S07 33.67 – – 22.00 37.87

S08 52.40 – – 39.60 24.97

Table 15: Comparing maximum lateness between unknown and known order of ship-

ments models.

Table 15 shows the average values of lateness and the improvement percentage in

lateness when we take into account the order of shipments in incoming trucks. From

Table 15 we can observe that LINEAR-ORDER and LINEAR-ORDER+ help reduce

from 20% to 35% in average the time of lateness in comparison with the case of unknown

shipment orders. This results are consisted with the analysis we model in the previous

section when we claim that the knowledge of shipment unloading order help us to be

able to start loading outgoing trucks earlier.

In Table 16, we do experiment on the relationship between the flow mix percentages,

the percentages of outgoing trucks that each incoming truck has shipment for, and the

improvement we can get when considering shipment unloading order. When the flow mix

percentages increase, the number of precedent incoming trucks of each outgoing truck

increase or it has to wait more incoming trucks to be unloaded successfully. The results

show that the more precedent incoming trucks which each outgoing truck has, the more

improvement in lateness we can get. In another words, when the number of precedent

incoming trucks of each outgoing truck increases, the over estimation of starting time of

outgoing trucks in model LINEAR is worse.
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Flow mix (%)
%Improvement

S01 S02 S03 S04 S05 S06 S07 S08

25% 0 0 11.52 0 12.74 13.68 13.21 19.26

50% 15.05 11.78 9.38 23.41 21.62 34.46 42.73 25.97

75% 25.23 17.61 20.95 28.93 32.31 28.58 41.85 27.07

100% 31.85 25.16 21.45 33.11 32.37 31.56 45.55 29.86

Table 16: Changes in average percentage improvement of lateness between LINEAR

and LINEAR-ORDER+ when the flow mix percentage increases.

3.7 Conclusion

In this paper, we introduce three mixed integer programming models (LINEAR, LINEAR-

ORDER and LINEAR-ORDER+) for cross-docking scheduling for inbound side and

outbound side problem. We start by formulating a time-indexed model with linearized

constraints to tackle the issue of non-linearized when we take into account the trans-

portation time between dock doors. After this, we propose two different ways to integrate

the shipments unloading order into our models, namely, virtual incoming trucks and the

unloading time of each shipment. The computational results show that applying the

shipment unloading order help us to reduce the maximum lateness up to around 35%.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we study two problems of scheduling trucks at cross-dock facilities. While

in Chapter 2, we schedule the inbound side with fixed outbound side scheduling and

departure time to minimize the total number of tardy products, Chapter 3 is devoted

to the problem of scheduling inbound and outbound side to minimize the maximum

lateness of outgoing trucks.

In Chapter 2, our work is initially based on the network based model for truck

scheduling with fixed outbound departure from Boysen et al. 2013. From this model, we

first introduce a time-indexed model version and then propose an enhanced preprocessing

method to make the model more efficient. After that, we investigate two extensions:

multiple transfer trips and shipment unloading order. According to an observation that

a shipment may need more than one trip to be transfer from inbound to outbound side,

we modify the exist models to consider the multiple transfer trip to transfer products

of a shipment. In the second extension, we exploit the information about the order

of shipments in each incoming trucks by introducing new parameter called cumulative

unloading time of each shipment. The cumulative unloading time help us to calculate

precisely the time that each shipment is ready to be transfer to outbound side. Through

out the experimental results, we show that the preprocessing make our models more

scalable, that is they can solve larger size problem and out-performance the model in

Boysen et al. 2013. The computational results also show that applying the multiple

transfer trip and shipment unloading order help us to calculate more precise the number
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of tardy product and then to have better truck scheduling.

Chapter 3 cover a more complex problem where we schedule both inbound and

outbound side to minimize the maximum lateness of outgoing trucks. In this work, we

consider the transportation times between dock doors. However, the differences of trans-

portation times lead to an issue of non-linear in the precedence constraints of outgoing

trucks, in which each outgoing truck has to wait until all of its products unloaded and

transferred successfully. We address this problem by proposing new linearize constraints.

In addition, we study two method to applying the shipment unloading order in the exist

model. The first approach is generating virtual trucks from each incoming trucks. The

second approach is using the same concept of cumulative unloading time in Chapter 2

to re-formulate the model. The computational results show that the second approach is

more scalable than the first approach and to using the unloading order of shipment, we

can reduce the maximum lateness of outgoing trucks significantly.

4.2 Future Work

The models in Chapter 2 and Chapter 3 are solved by an optimizer (CPLEX) and will

give us exact optimal solution. However, we are unable to solve large size problem

with hundred of trucks by this method. In order to solve this real-life problems, other

approaches such as heuristics or column generation techniques. are more favorable to

approximate or compute the optimal solution while they still satisfy the constraints of

time and size of data instances.
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