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ABSTRACT

Physicians Scheduling in Polyclinics

Mohammad Tohidi, Ph.D.

Concordia University, 2018

Physician scheduling is an important part of hospital operation management. Fatigue, nervous-

ness, high levels of stress and depression are common negative effects of inappropriate work sched-

ules on physicians. A robust and automated personnel scheduling system, which satisfies physi-

cians’ preferences, not only improves the quality of life for physicians but also helps to provide a

better care for patients and potentially makes significant savings in time and cost for hospitals. Poly-

clinics reduce the burden on hospitals and help bridge the gap between primary and secondary care.

They provide various hospital services such as X-rays, minor surgeries and out-patient treatment

and gather several practices under one roof to cooperate, interact and share available resources.

In addition, this structure provides an opportunity for physicians of different disciplines to work

together and enables patients with chronic and complex conditions to visit multiple clinics at the

same place during the same visit. Our problem of interest is mainly motivated by an extension of

physician scheduling problems arising in ambulatory polyclinics, where the interaction of clinics

and its consequences in terms of sharing their scarce resources introduce new constraints and add

complexity to the problem.

In the first part of this thesis, we present an integrated physician and clinic scheduling problem

arising in ambulatory cancer treatment polyclinics, where patients may be assessed by multiple

physicians from different clinics in a single visit. The problem focuses on assigning clinic sessions

and their associated physicians to shifts in a finite planning horizon. The complexity of this problem

stems from the fact that several interdisciplinary clinics need to be clustered together, sharing limited

resources. The problem is formulated as a multi-objective optimization problem. Given the inherent

complexity for optimally solving this problem with a standard optimization software, we develop
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a hybrid algorithm based on iterated local search and variable neighborhood descent methods to

obtain high quality solutions.

In the second part we propose a comprehensive bi-level physicians planning framework for

polyclinics under uncertainty. The first level focuses on clinic scheduling and capacity planning

decisions, whereas the second level deals with physicians scheduling and operational adjustments

decisions. In order to protect the generated schedules against demand uncertainty, the first level is

modeled as an adjustable robust scheduling problem which is solved using an ad-hoc cutting plane

algorithm. To cope with variability in patients’ treatment times, we formulate the second level as a

two-stage stochastic problem and use a sample average approximation scheme to obtain solutions

with small optimality gaps. Moreover, we use a Monte-Carlo simulation algorithm to demonstrate

the potential benefits of using our planning framework.

In the last part of this thesis we investigate on the impact of physicians work schedules on patient

wait-time under uncertain arrival pattern and treatment time of patients. We provide a methodology

that combines discrete-event simulation with an optimization search routine to minimize patient

wait-time and physician overtime subject to several scheduling/resource restrictions. We indicate

the significant impact of adopting the proposed simulation optimization framework for physician

scheduling on reducing the aforementioned key performance measures.
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Chapter 1

Introduction

1.1 Overview

Hospitals have been under increasing pressure to reduce their operating costs and to change

their reimbursement policies. According to Erhard et al. [1], in the United States, on av-

erage more than 50% of hospital costs are workforce related. In order to minimize the

operational expenses and to maintain quality of care, researchers and practitioners have

used advanced operations research (OR) techniques to plan more efficient work schedules

for nurses and physicians. In general, Pinedo [2] defines workforce allocation and person-

nel scheduling as creating work schedules and allocating staff to shifts in order to cover

the demand. Gendreau et al. [3] define physician scheduling problems (PSPs) as creat-

ing work schedules for physicians in a pre-determined planning horizon such that in every

given shift there are enough physicians to satisfy demand, while abiding to several rules and

regulations. Such rules and regulations have made PSPs complex optimization problems.

The complex nature of physician scheduling hinders in the creation of a generic model

as in the case with nurse scheduling. Regional labor contracts, governing authorities, se-

niority levels, experience levels, and training prevent generalization [4]. Typically nurses’

1



work contracts are ruled by collective agreements, whereas physicians’ contracts are usu-

ally set up individually. In physician scheduling, one of the main goals of the schedule is

the satisfaction of physicians; studies on career satisfaction among physicians have had an

increasing trend recently, since it has been shown that career dissatisfaction is increasing

among physicians [5]. Numerous evidences confirm that there is a relation between physi-

cian satisfaction and care quality. When physicians are satisfied with their career, quality

of care improves [6]. Therefore, physician scheduling has a great importance in the sense

that a proper schedule not only improves the career satisfaction among physicians, but also

helps patients to enjoy a higher quality care service. Moreover, physicians represent one of

the most valuable and expensive resources in hospitals, and any improvement in physicians

costs usually results in significant cost-savings for the management of hospitals [7].

In recent years, outpatient services have become an important component in health care

systems due to the focus on preventive care and patients’ shorter lengths of stay [8]. Outpa-

tient polyclinics are an attempt for moving some care out of hospitals into the community,

where it is more convenient for patients. They reduce the workload of hospitals and fill the

void between primary and secondary care. Polyclinics provide some hospital services such

as X-rays, minor surgery and outpatient treatment. The simplest model involves several

practices under one roof, sharing many available resources. Polyclinics provide a better

structure and work environment for physicians of different disciplines to work together and

enable patients with chronic and complex conditions to be assessed by physicians from

different disciplines during a single visit.

Motivated by the additional requirements and constraints in physicians scheduling prob-

lems of polyclinics, the focus of this thesis is on designing physicians work schedules ap-

plicable in the context of outpatients polyclinics. Planning physicians work schedules in

polyclinics is a complex problem particularly attributed to the various types of constraints

introduced by clinics and shared resources. On the other hand, PSPs deal with a high
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degree of variability and uncertainty in terms of the number of arriving patients, patients

arrival pattern, and patients processing time, which further complicate the planning of a

robust schedule. Even though in recent years a rigorous stream of academic research has

been dedicated to the study of PSPs in deterministic settings, to the best of our knowledge,

including uncertainty in processing times or patients’ arrivals has never been investigated.

This is the critical point which distinguishes this manuscript from previous studies. More

precisely, this thesis contributes to the existing literature through addressing the problem

of scheduling physicians in polyclinics by integrating the clinic scheduling and physicians

scheduling as a single optimization problem in a deterministic setting. In addition, we in-

troduce new models in which the number of arriving patients to the center and patients

processing times are stochastic. Finally, we investigate the impact of physicians work

schedules on patients wait-time.

In what follows, we first provide some background and brief description of the studied

problems. We then present our research scope and objectives. Finally, we describe the

outline of this thesis.

1.2 Problem description

The polyclinic of interest is an ambulatory cancer treatment of the McGill University Health

Centre (MUHC) in Montreal, Canada. It consolidates 13 cancer clinics (i.e., breast, urol-

ogy, hematology, gynecology, hepatobiliary, lung, musculoskeletal, melanoma, upper gas-

trointestinal, pain, cancer rehab, colorectal and brain metastases). These clinics are di-

vided into three categories, according to their operations and scheduling requirements: high

throughput, interdisciplinary and multidisciplinary clinics. High throughput clinics func-

tion with a high tempo akin to a manufacturing plant. An arriving patient enters the clinic

in the same manner as every other patient, and they usually receive standardized services.
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The musculoskeletal clinic is an example of a high throughput clinic. Interdisciplinary clin-

ics integrate separate discipline assessments into a single consultation session by having a

group of physicians from different disciplines examine a patient. Lung and cancer rehab

clinics are examples of interdisciplinary clinics. Integration of multiple assessments into a

single session creates cluster of clinics which need to be scheduled in the same shift for a

minimum number of times during the planning horizon. Multidisciplinary clinics are com-

prised of cross-functional physicians, who work in the same environment. For instance, the

urology clinic is a multidisciplinary clinic whose doctors work independently with little

coordination and individual appointments. Given that the available resources (e.g. exam-

ination rooms, waiting rooms, etc.) at the polyclinic shared among all clinics are rather

limited, it is not possible to host all clinics in any given shift of the planning horizon. This

makes the design of physicians’ schedules even more involved, as it needs to be integrated

with the assignment of clinic sessions to shifts in the polyclinic. The main problem that

the hospital manager must deal with is thus to schedule clinics’ sessions and to assign

physicians to shifts, complying with various rules and constraints. Decomposing those

problems and solving them independently may result in sub-optimal solutions. The physi-

cian and clinic scheduling problem (PCSP) considers the design of a master schedule for

a polyclinic by assigning clinics to shifts and specifying the on-duty physicians for every

allocated shift. The scheduling decisions of clinics and associated physicians incorporate

the capacity limitations of treatment and waiting rooms, various clinics’ requirements, and

physicians’ preferences into a single optimization problem.

In many cases, uncertain events disturb planned operations in health services. Varia-

tions in the number of arriving patients to the polyclinic and patients’ processing times are

two major sources of uncertainty in the context of outpatients clinics. In the presence of un-

certainty, the PSCP becomes a three-level planning problem. The first level corresponds to
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the clinic scheduling and capacity planning problem (CSCPP), a long-term (strategic) prob-

lem to determine the number of patients to admit, the total working hours of physicians, and

the number of required examination rooms. In this level, clinic schedules are determined

according to a weekly demand forecast. Nevertheless, over a long term planning horizon

(e.g., one year) the weekly forecast can fluctuate within a given uncertain interval. Hence,

hospital managers seek a robust strategic planning tool to maximize the number of patients

who can be served on a weekly basis, even in the presence of worst-case (extremely high)

demand scenarios, while determining the optimal personnel and resource requirements at

each shift of the planning horizon. The second level of the planning process, i.e., PSP,

involves a tactical assignment of physicians to the established shifts while taking into ac-

count the requirements of the shifts and physicians preferences. In this level, schedules are

affected by the uncertainty in patients’ treatment times. On the one hand, if the actual treat-

ment times are longer than the estimated ones, the number of scheduled physicians might

not be enough to serve all patients during the regular shifts. In this case, either patients

would need to be rescheduled on another session or extra resources, such as on-call doctors

or overtime shifts, would need to be deployed. On the other hand, if treatment times are

shorter that the estimated ones, physicians would be idle which is undesirable for the ad-

ministration. These scenarios lead to the third level of the physicians planning procedure,

which is to perform last-minute operational adjustments to the planned schedules (i.e., prior

to each shift). In this operational planning level, proper corrective (recourse) actions must

be foreseen in order to minimize the average expected cost of schedules in the presence of

uncertainty in treatment times.

Although in recent years hospitals have been forced to reduce the expenses while im-

proving service quality, the inclusion of patients satisfaction in PSPs have been neglected.
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The stochastic scheduling of physicians, described earlier, is extended, where the decision-

makers aim for the simultaneous minimization of resource costs and patient wait-time, un-

der uncertain arrival pattern and treatment times in the polyclinic. In this settings, studying

the problem provides the opportunity to understand the impact of physicians work sched-

ules on patients’ satisfaction.

1.3 Scope and objectives

To fill the void in the existing literature, the main contribution of this thesis is to design

a comprehensive physician scheduling framework that will aid in developing of efficient

work schedules in the context of polyclinics. Given the problem description, the specific

objectives are summarized as follows.

1. To extend physician scheduling in the context of polyclinics and include clinic re-

quirements in the problem.

2. To formulate the deterministic PCSP as a mathematical programming model to deter-

mine clinics and physicians work schedules while satisfying physicians’ preferences.

3. To develop a math-heuristic algorithm to solve the PCSP.

4. To explicitly incorporate the uncertainty on the number of arriving patients in the

clinic scheduling problem and to formulate the problem as a robust optimization

problem.

5. To develop an efficient algorithm for solving the robust counterpart of the CSCPP.

6. To explicitly incorporate the uncertainty of patients processing time in the PSP and

to formulate it as a two-stage stochastic model.
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7. To develop a sample average approximation scheme to obtain high quality solutions

for the stochastic PSP.

8. To investigate the impact of physicians work schedules on patients wait-time, and to

include patient-wait time and physicians’ overtime in the PSP.

9. To apply a simulation-optimization scheme for optimizing the non-analytic perfor-

mance measures in the previous objective.

10. To investigate the tractability of the proposed models and the performances of the

solution methods based on a real-life case study.

1.4 Organization of the thesis

This manuscript has five chapters organized as follows. Chapter 2 addresses the fundamen-

tal problem of this study that is integrating physicians scheduling with clinic scheduling

in the context of polyclinics. The decisions to be made are the assignment of clinics and

physicians to the shifts such that clinic and physicians’ requirements are satisfied, and

physicians’ preferences are optimized. To this end, the problem is formulated as a MIP

model in which the objective is to maximize the preferences of physicians. In order to

solve the proposed mixed integer program (MIP) in a reasonable amount of time, an it-

erated variable neighborhood descent math-heuristic is developed. Furthermore, we shed

light on the impact of the integrating clinics’ requirements on physicians’ work sched-

ules. In Chapter 3, through modeling uncertainty in the number of arriving patients to the

polyclinic and randomness in the patients’ processing times, the deterministic problem is

extended into the strategic CSCPP and the tactical/operational stochastic PSP. The former

is formulated as robust optimization problem, and the latter is formulated as a two-stage

mixed-integer stochastic program to minimize the expected cost. Given the large number of

scenarios, an implementor/adversary (I/A) algorithm is adapted to solve the robust model,

7



and a sample average approximation (SAA) scheme is applied to the stochastic program.

Moreover, some insight on the level of conservativeness in the robust model is provided.

Chapter 4 presents a simulation-optimization model to address physicians’ overtime and

patients wait-time in PSPs. The objective is to minimize the two key performance indica-

tors (KPIs) while satisfying clinics’ and physicians’ requirements. The stochastic factors

are the patients’ arrival pattern and the patients’ processing time. The large-scale optimiza-

tion problem is then solved by an enhanced simulated annealing (SA) algorithm in which

the initial solution is provided by solving a reformulated approximation model of the prob-

lem. Finally, Section 5 summarizes concluding remarks in addition to providing several

avenues for future research.
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Chapter 2

Integrated physician and clinic

scheduling in ambulatory polyclinics
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Abstract

This paper presents an integrated physician and clinic scheduling problem arising in ambu-

latory cancer treatment polyclinics, where patients may be assessed by multiple physicians

from different clinics in a single visit. The problem focuses on assigning clinic sessions

and their associated physicians to shifts in a finite planning horizon. The complexity of

this problem stems from the fact that several interdisciplinary clinics need to be clustered

together, sharing limited resources. The problem is formulated as a multi-objective opti-

mization problem. Given the inherent complexity for optimally solving this problem with

a standard optimization software, we develop a hybrid algorithm based on iterated local

search and variable neighborhood descent methods to obtain high quality solutions. Com-

putational results using a set of instances inspired from a case study in a hospital in Canada

along with some managerial insights are reported and analyzed.

2.1 Introduction

Physician scheduling is an important class of planning problems in hospital operations

management. Numerous studies concerning the effects of work schedules on physical

and mental wellbeing show that fatigue, nervousness, high level of stress, and depression

are common problems among physicians [9]. The use of a robust and automated person-

nel scheduling system, capable of generating schedules satisfying physicians’ preferences,

helps to improve their quality of life which in turn, aids providing a better care for patients.

It also has a significant impact on time and cost savings.

PSPs consist of creating work schedules for physicians in a pre-determined planning

horizon such that in every given shift there are enough physicians to satisfy the demand [3].

Creating physicians’ work schedules must be done while abiding to several rules and regu-

lations. Gendreau et al. [3] provide four categories of rules commonly considered in PSPs:
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supply and demand (e.g. assigning physicians within their availability or preference), work-

load (e.g. setting the number of working shifts according to physicians’ contracts), fairness

(e.g. distributing weekend or night shifts evenly), and ergonomic (e.g. restricting consec-

utive working hours) constraints. These rules are frequently in conflict with one another,

causing difficulties to create a schedule that jointly satisfies all rules. Depending on the

problem, rules are classified as either soft or hard. Soft rules can be violated, whereas hard

ones must be satisfied. PSPs are difficult combinatorial optimization problems and finding

a feasible solution that satisfies all the physicians’ requests is a challenging task [10]. The

objective in PSPs is often to create physicians’ work schedules according to their prefer-

ences. This is an important difference with respect to other personnel scheduling problems

arising in health care, such as nurse scheduling, in which the labor cost reduction is as sig-

nificant as nurses’ preferences [11, 12]. Given that physicians’ work contracts are usually

set up individually, they introduce more conflicting constraints to the problem, whereas in

nurse scheduling work contracts follow the alignments of a single collective agreement and

they are more general [4].

In this paper, we study an extension of PSPs arising in ambulatory polyclinics. This

problem is inspired by a real case study in an ambulatory cancer treatment polyclinic of the

McGill University Health Centre (MUHC) in Montreal, Canada. Polyclinics are facilities

which consolidate multiple multidisciplinary, interdisciplinary and high throughput clinics

that differ in terms of patient flow and treatment time. As a result, polyclinics allow patients

to visit more than one clinic during the same session when needed. Clinics in polyclinics

usually co-operate and interact in the assessment and treatment of patients and thus, pre-

defined clusters of clinics need to be assigned to the same sessions a minimum number of

times. An important consequence of the consolidation of clinics in a single facility is that

the resources, such as the waiting and treatment rooms must be shared among all clinics.

Given that such resources are rather limited, it is not possible to host all clinics in any
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given shift of the planning horizon. This makes the design of physicians’ schedules even

more involved, as it needs to be integrated with the assignment of clinic sessions to shifts

in the polyclinic. The main problem that the hospital manager must deal with is thus to

schedule clinics’ sessions and to assign physicians to shifts, complying with various rules

and constraints. Decomposing those problems and solving them independently may result

in sub-optimal solutions. Most of the literature in physician scheduling revolves around

physicians of a single department without considering resource capacity constraints.

We present the integrated PCSP in the context of polyclinics, in which clinics’ require-

ments along with physicians’ preferences are explicitly considered. The PCSP consists of

designing work schedules of clinics with respect to clinics’ requirements (hard constraints),

and of the assignment of physicians to corresponding clinics’ work sessions taking into ac-

count physicians’ preferences (soft constraints) over a finite planning horizon. The objec-

tive is to minimize the violation of physicians’ preferences while ensuring that clinics are

clustered into common shifts whenever required and that capacity constraints associated

with the polyclinic resources are satisfied.

The main contributions of this work are the following. We introduce a new PSP which

integrates the scheduling of clinics and physicians in ambulatory polyclinics. We show how

this problem can be stated as a multi-objective optimization model, where the violation of a

set of conflicting soft constraints is minimized. Using the weighted sum method, a single-

objective MIP formulation is presented to solve the PCSP. Given that standard optimization

softwares fail to optimally solve the problem in reasonable CPU times, we develop a hy-

brid solution algorithm based on iterated local search and variable neighborhood descent

methods to quickly obtain feasible solutions of high quality.

The remainder of this paper is structured as follows. Section ”Literature review” re-

views the relevant literature on the PCSP. A detailed definition of the problem and a

multi-objective mathematical programming formulation is given in Section ”The physician
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scheduling problem”. An IVND algorithm is presented in Section ”A heuristic algorithm

for the PCSP”. The results of computational experiments performed on a set of instances

as well as some managerial insights are given in Section ”Computational results”. Conclu-

sions follow in Section ”Concluding remarks”.

2.2 Literature review

Workforce allocation and personnel scheduling problems commonly arise in the service in-

dustry (e.g., telephone operators, flight crews, bus drivers, doctors and nurses, etc.). Com-

prehensive surveys in the area of personnel scheduling are found in Ernst et al. [13] and

Van den Bergh et al. [14]. A wide variety of analytical methods such as mathematical

programming, constraint programming, heuristic methods, and discrete-event simulation

have been widely utilized to tackle these problems. In health care systems and hospital

operations management, nurse scheduling problems have been extensively studied [15].

However, PSPs have received less attention in the literature. Extensive literature reviews

on physicians and nurse scheduling problems can be found in Erhard et al. [1] and Burke

et al. [16], respectively.

As Erhard et al. [1] indicated, no prior work in the literature investigates PSP in the

context of polyclinics. In other words, the majority of existing studies in this area focused

on physicians of a single department of hospitals, without taking into account any kind of

resource capacity limitations that must be shared among different departments. Beaulieu

et al. [17] propose the first MIP formulation to solve a PSP arising in the emergency room

(ER) in a major hospital in Montreal. They divide hospital rules into two main categories:

compulsory and flexible rules. They use a partial branch and bound algorithm to solve

the model. Topaloglu [18] addresses a resident scheduling problem in a pulmonary unit of

a hospital and formulates the problem as a multi-objective MIP for a six-month planning

horizon. The authors consider residents with four levels of seniority that need to cover
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the demand over weekday and weekend shifts. The sequential method and the weighted

sum method are applied to the multi-objective model with a single set of weights for the

objectives. Topaloglu [19] studies a resident scheduling problem in the ER of a hospital

in Turkey. The problem deals with the assignment of residents grouped into three senior-

ity levels to three different shift types. The problem is formulated as a goal-programming

model in which the objective function is a weighted function of the deviation variables.

The weights are generated through pairwise comparison. Song et al. [20] also use goal-

programming in combination with discrete-event simulation to determine physicians in-

quiry start time in physical examination services in Taiwan. The authors consider multiple

objectives such as maximizing physician utilization and minimizing patient waiting time

in their study. Raouf and Ben-Daya [21] determine staffing level of physicians in a single

department outpatient clinic in Saudi Arabia by the aid of discrete-event simulation.

Brunner et al. [4] study the scheduling of physicians in an anesthesia department of

a German hospital for a two-week planning horizon. The authors apply a flexible shift

scheduling approach, in which the shifts have variable starting times and durations. They

consider the objective function as to minimize the cost of personnel which is a function of

paid time, overtime and outside physician hours. The MIP model is first decomposed into

one-week problems and then sub-problems are solved by a commercial solver. Stolletz and

Brunner [22] reformulate the problem investigated in [4] as a set covering problem. The

authors include some additional ergonomic and distribution constraints in their reformula-

tion. Brunner [15] propose a MIP for scheduling physicians with multiple experience levels

for the same case study in [4] for a one-year planning horizon. The authors decompose the

problem into weekly sub-problems and implement a column generation-based heuristic for

solving each sub-problem. Brunner et al. [23] tackle the same problem as [4] by applying

a branch and price algorithm. The authors are able to get an exact solution for planning

horizons up to six weeks while incorporating seniority rules as well as fair distribution of
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holiday shifts in their model.

Rousseau et al. [10] argue that a combination of constraint programming with local

search can be a promising generic method to a wide variety of PSPs. They apply their

method to two case studies which consider physicians in a single department. Topaloglu

and Ozkarahan [24] focus on a resident scheduling problem in a university hospital in

Turkey. All constraints are considered as hard constraints except for the demand cover-

age constraints. The model is solved by a constraint programming-based column genera-

tion technique. Carter and Lapierre [11] study physicians of ERs at six major hospitals in

Canada and proposed a tabu search algorithm for generating work schedules in two case

studies for ER departments in Montreal. Puente et al. [25] apply a genetic algorithm in

order to solve a PSP in the ER of a hospital for temporary and fulltime physicians. The

considered planning horizon is one month, with three regular shifts and one observation

shift each day. Priority of soft constraints is determined by assigning a score, which is

calculated by using the Delphi method. Bruni and Detti [12] investigate the scheduling of

physicians of two departments in a hospital in Rome. The work schedule is created for 32

physicians of four different groups. The authors do not consider any sort of resource ca-

pacity constraint and the two investigated departments are completely disjoint. The model

is solved for a one-year planning horizon using a commercial solver.

To the best of our knowledge, only few papers have studied integrated PSPs with other

types of decision problems. In the case of surgery scheduling, Gunawan and Lau [26] and

Van Huele and Vanhoucke [27] design work schedules of physicians associated with mul-

tiple departments. The authors consider resource capacity constraints (e.g. available op-

eration rooms, available recovery beds). Gunawan and Lau [26] propose a multi-objective

optimization model in order to plan the full day to day range of physicians’ duties for a one-

week planning horizon in a surgery department. They consider the number of unassigned

duties and the number of non-preferred assigned duties as the objectives of the model. The
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authors include resource capacity constraints alongside physician scheduling constraints.

However, they simplify the problem by assuming that the resources are not shared among

the duty types. The model is solved with a commercial solver for small size instances, and

a local search is proposed for solving larger size instances. Van Huele and Vanhoucke [27]

integrate the PSP and the surgery scheduling problem. The authors propose a mathematical

programming formulation which includes most commonly used constraints of the surgery

scheduling problem along with the PSP. They consider the minimization of overtime in op-

eration rooms. Experimental analyses demonstrate that resource capacity constraints (e.g.

number of available beds) have a significant impact in terms of solution quality and com-

putational time. Furthermore, the results show that certain specific physicians’ preferences

have the most impact on the operational surgery schedule. Roland and Riane [28] also

integrate the PSP into the surgery scheduling problem. Instead of using the conventional

objective function in surgery scheduling problems (i.e. minimizing the cost of operation

rooms), the authors formulate the problem as a multi-objective model that minimizes the

cost and maximizes surgeons preferences simultaneously. Roland et al. [29] tackle the

problem of surgery scheduling combined with medical staff availability constraints over a

one-week planning horizon. The focus of their study is on the surgery scheduling problem

since the objective function of the problem is to minimize the cost of operation rooms.

Moreover, the authors propose a genetic algorithm for solving large scale instances.

We would like to highlight that none of these PSP incorporating resource capacity con-

straints consider similar clustering constraints of subsets of clinics to the ones present in

the PCSP. This is actually one of the distinguishing features of our problem, and as it will

be shown in Section ”Computational results”, this makes the problem actually very chal-

lenging to solve.

In this section, we describe polyclinics and their distinguishing features and define our

scheduling problem in details. After that, we formulate the problem as a multi-objective
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optimization problem and explain components of the model. Finally, we determine the

importance of each objective through a priori articulation approach.

2.3 Problem definition

Polyclinics are an attempt for moving some care out of hospitals into the community, where

it is more convenient for patients. They reduce the burden in hospitals and helps bridge the

gap between primary and secondary care. Polyclinics provide some hospital services such

as X-rays, minor surgery and outpatient treatment. The simplest model involves several

practices under one roof, sharing many services. Polyclinics provide a better structure for

physicians of different disciplines to work together and enable patients with chronic and

complex conditions to visit multiple clinics at the same place during the same visit.

A concrete application for the PCSP arises in an ambulatory cancer treatment poly-

clinic of the MUHC in Montreal. The polyclinic consolidates 13 cancer clinics (i.e., breast,

urology, hematology, gynecology, hepatobiliary, lung, musculoskeletal, melanoma, upper

gastrointestinal, pain, cancer rehab, colorectal and brain metastases). These clinics are di-

vided into three categories, according to their operations and scheduling requirements: high

throughput, interdisciplinary and multidisciplinary clinics. High throughput clinics func-

tion with a high tempo akin to a manufacturing plant. An arriving patient enters the clinic

in the same manner as every other patient and they usually receive standardized services.

The musculoskeletal clinic is an example of a high throughput clinic. Interdisciplinary clin-

ics integrate separate discipline assessments into a single consultation session by having a

group of physicians from different disciplines examine a patient. Lung and cancer rehab

clinics are examples of interdisciplinary clinics. Integration of multiple assessments into

a single session creates cluster of clinics which need to be scheduled in the same shift a

minimum number of times during the planning horizon. Multidisciplinary clinics are com-

prised of cross-functional physicians, who work in the same environment. For instance, the
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urology clinic is a multidisciplinary clinic whose doctors work independently with little

coordination and individual appointments. Given that the available resources (e.g. ex-

amination rooms, waiting rooms, etc.) at the polyclinic are shared among all clinics, the

allocation decisions of clinics to shifts cannot be made independently.

The PCSP considers the design of a master schedule for a polyclinic by assigning clin-

ics to shifts and specifying the on-duty physicians for every allocated shift. We assume

disjoint shifts which is a realistic assumption in the polyclinic under investigation and is

also common in the literature of healthcare personnel scheduling [e.g., 17, 26, 28, 30, 31].

Further, in the same context, it is very common for physicians to be affiliated to more than

one hospital. They frequently have more than one contractual agreement with hospitals,

especially for physicians working in ambulatory polyclinics. As a result, these physicians

dedicate a portion of their time to diagnose and treat patients of these clinics. On the con-

trary, they have other duties at larger hospitals and even teaching responsibilities at univer-

sities. As a result, it is rather common for physicians to work in a given week more or less

shifts than the ones stipulated in their contracts when demand fluctuates from one week to

another. The scheduling decisions of clinics and associated physicians incorporate: (i) the

capacity limitations of treatment and waiting rooms, (ii) various clinics’ requirements, and

(iii) physicians’ preferences. The first two points correspond to hard constraints whereas

the third point are the soft constraints. We assume that the planning horizon is one week

(Monday-Friday), and every day consists of two four-hour shifts (morning and afternoon).

The objective of the PCSP is to minimize the violation of the soft constraints. We list the

assumptions considered in the PCSP below.

Clinics requirements

• Interdisciplinary clinics that interact must be scheduled together a minimum number

of shifts over the planning horizon.
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• In order to level the utilization of the waiting room over the planning horizon, the

fluctuation in the utilization of the waiting room from one shift to another must be

limited to a certain magnitude. For simplicity, we consider that the number of visiting

patients in every shift represents the utilization of the waiting room.

• The total number of patients in a shift cannot exceed the capacity of the waiting

room. We assume that there must be a reserved spot at the waiting room queue for

every patient scheduled to be visited during a shift. This is similar to ’environmental

factors’ that are considered in appointment scheduling problems and determines the

’clinic size’ [32].

• The total number of on-duty physicians in a shift cannot exceed the number of avail-

able examination rooms. Also, it is assumed that each physician is only affiliated

with one clinic of the polyclinic under investigation. In addition, we assume that

every physician needs one examination room to be able to assess the patients. As

we pointed out earlier, the treatment rooms are shared among physicians of different

clinics.

• For each clinic, the total number of on-duty physicians in all shifts during the week

must be enough to serve the weekly demand of patients.

Physicians requirements

• Physicians should be assigned to at most one shift per day.

• Each clinics’ workload should be distributed fairly among their physicians.

• A physician must not be assigned to those shifts requested as shifts-off.

• Physicians prefer to work in shifts which are scheduled on consecutive days. In other

words, they do not want any off-duty days between two on-duty days.
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• Each physician has a set of preferred shifts in a week.

• Each physician has a number of tokens that can be spent to be assigned to their

preferred shifts.

2.3.1 A mathematical programming formulation

We next state the PCSP as a multi-objective optimization problem, where each objective

corresponds to the computation of the violation of each soft constraint. We use the follow-

ing mathematical notation to represent the problem.

Sets

J set of days

K set of shifts per day

C set of clinics

I set of physicians

Ic set of physicians of clinic c

NJi set of days on which physician i is not available to work

T set of sub-sets of clinics (clusters) that must be scheduled together

Parameters

B number of available rooms

NWVc number of weekly patients of clinic c

V PSi number of patients that physician i can assess during a shift
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D capacity of the waiting room

F t minimum number of times that cluster t must be scheduled together.

Hi number of shifts that physician i should work per week according to his/her contract

TKi number of tokens that physician i can spend to be assigned to preferred shifts

Pijk 1 if physician i prefers to work on day j, shift k, 0 if they are indifferent

WU target level of fluctuation in waiting room’s utilization between any pair of shifts

To model the problem we use the following set of decision variables. For each i ∈ I,

j ∈ J, and k ∈ K, we define the binary decision variable xijk equal to 1 if and only if

physician i is assigned to shift k on day j. For each c ∈ C, j ∈ J, and k ∈ K, we define

the binary decision variable ycjk equal to 1 if and only if clinic c is assigned to shift k on

day j. For each i ∈ I, we define the binary decision variable mi equal to 1 if and only if

physician i is assigned to no more than one shift during the planning horizon. Finally, for

each j ∈ J, k ∈ K, and t ∈ T, we define the binary decision variable ftjk equal to 1 if

and only if cluster t is assigned to shift k on day j. Let (x)+ = max {0, x}. The PCSP

considers the following six objectives:

Objective 1: minimize the maximum number of unspent tokens among all physicians

g1(x) = max
i∈I

(
TKi −

∑
j∈J

∑
k∈K

Pijkxijk

)+

.

By considering the number of available tokens, this objective maximizes the number of

shifts assigned to physicians according to their preferences.

Objective 2: minimize the total maximum difference between physicians of the same clinic

21



in terms of number of working shifts

g2(x) =
∑
c∈C

max
(i,i′)∈Ic×Ic

(∑
j∈J

∑
k∈K

xijk −
∑
j∈J

∑
k∈K

xi′jk

)+

.

This objective aims at satisfying a fair distribution of shifts among physicians.

Objective 3: maximize physicians’ preference

g3(x) = −
∑
i∈I

∑
j∈J

∑
k∈K

Pijkxijk.

Objective 4: minimize the total number of assigned shifts in non-consecutive days patterns

g4(x) =
∑
c∈C

∑
i∈Ic

∑
k′∈K

(
−
∑
k∈K

xi(|J |−1)k + xi|J |k′ −mi

)+

+
∑
c∈C

∑
i∈Ic

∑
k′∈K

(
−
∑
k∈K

xi2k + xi1k′ −mi

)+

+
∑
c∈C

∑
i∈Ic

∑
j∈2...|J|−1

∑
k′∈K

(
−
∑
k∈K

xi(j+1)k−
∑
k∈K

xi(j−1)k + xijk′ −mi

)+

.

This objective is used to assign the physicians as much as possible to shifts on consecutive

days. In practice, if some physicians are better assigned as compared to others in two differ-

ent planning horizons, this objective could be less penalized for them during the upcoming

planning horizon.

Objective 5: minimize the total number of times a physician works two shifts on the same

day

g5(x) =
∑
i∈I

∑
j∈J

(∑
k∈K

xijk − 1

)+

.

This objective aims at satisfying the condition that a physician is assigned to only one shift

per day. As mentioned, in the context under investigation, physicians work on a part-time
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basis in ambulatory polyclinics and usually have a contract with another hospital and/or

university.

Objective 6: minimize the total number of shifts that physicians work above their target

weekly load

g6(x) =
∑
i∈I

∑
j∈J

∑
k∈K

(xijk −Hi)
+ .

Objective 7: minimize the total number of shifts that physicians work under their target

weekly load

g7(x) =
∑
i∈I

∑
j∈J

∑
k∈K

(Hi − xijk)+ .

It should be noted that despite setting the number of working hours a priori in physicians’

contracts, over-time and under-time might may also occur as a result of pursuing the goal

of a fair distribution of shifts among physicians and the limited number of shared resources

in polyclinics . Nevertheless, objectives 6 and 7 aim at minimizing over-time and under-

time, respectively. That is, the model is more likely to select a schedule that such costly

and inconvenient circumstances (i.e. over-time and under-time) do not occur.

Using the above objectives, the PCSP can be stated as the following multi-objective
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optimization problem:

minimize G(x) = [g1(x), . . . , g7(x)] (1)

subject to
∑
i∈Ic

∑
j∈J

∑
k∈K

V PSixijk ≥ NWVc ∀c ∈ C (2)

∑
i∈I

xijk ≤ B ∀j ∈ J, ∀k ∈ K (3)

∑
i∈I

V PSixijk ≤ D ∀j ∈ J, ∀k ∈ K (4)

∑
c∈C|c∈t

ycjk ≥ |t|ftjk ∀t ∈ T, ∀j ∈ J, ∀k ∈ K (5)

∑
j∈J

∑
k∈K

ftjk ≥ F t ∀t ∈ T (6)

∑
i∈I

(
V PSixijk

D
− V PSixij′k′

D
) ≤ WU∀j, j′ ∈ J,∀k, k′ ∈ K (7)

∑
i∈Ic

xijk ≥ ycjk ∀c ∈ C,∀j ∈ J, ∀k ∈ K (8)

∑
j∈J

∑
k∈K

xijk − 1 ≤ |J ||K|(1−mi) ∀i ∈ I (9)

xijk = 0 ∀i ∈ I, ∀j ∈ NJi, ∀k ∈ K (10)

xijk, ycjk ∈ {0, 1} ∀c ∈ C, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (11)

ftjk ∈ {0, 1} ∀t ∈ T, ∀j ∈ J, ∀k ∈ K (12)

mi ∈ {0, 1} ∀i ∈ I. (13)

Constraints (2) ensure that the overall number of assigned physicians to different shifts

is enough to assess all patients visiting each clinic during the week. Constraints (3) limit

the number of assigned physicians at any given shift to the number of available examination

rooms in the polyclinic, whereas constraints (4) represent the capacity limitations on the
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number of available spots in the waiting room. Constraints (5) and (6) work in a joint

fashion to guarantee that the interdisciplinary clinics are scheduled simultaneously. In

particular, constraints (5) force ftjk to take value 1 if and only if all clinics in cluster t

are assigned to shift k on day j, and constraints (6) ensure that all clinics in cluster t are

scheduled simultaneously at least F t shifts in a week. Constraints (7) control the fluctuation

of waiting room’s utilization in different shifts by ensuring that the maximum difference in

waiting room’s utilization between every pair of shifts over the planning horizon is below

the threshold WU . Constraints (8) state that an assignment of a clinic to a shift exists

only when at least one physician of that clinic is assigned to such a shift. It is noteworthy

that constraints (2) and (8) force each clinic to occur a specific number of times in order to

satisfy the demand. Constraints (9) make the block assignment constraints redundant, if the

physician works less than two shifts during the planning horizon. Constraints (10) forbid

the assignment of physicians to the shifts that they are not available to work at. Finally,

constraints (11)-(13) are the standard integrality conditions on the decision variables.

2.3.2 A weighted sum approach

The weighted sum method is a classical approach when dealing with multiple objectives

[33, 34]. It can be used for obtaining multiple solution points by varying the weights as

there are usually infinite number of Pareto optimal solutions for a multi-objective problem.

When all objective functions and constraints are convex, it has been shown that every opti-

mal solution of a set of positive weights is a Pareto optimal point [34, 35]. Studies with a

posteriori articulation of preferences focus on providing the Pareto optimal set [33].

The weighted sum method can also be used to provide a single solution when a single

set of weights reflects preferences. In this work, we incorporate a priori articulation of

preferences, in which preferences for each objective are computed before optimizing the

problem. We thus define a new objective function as a linear combination of the original
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objectives as follows:

F (x) =
7∑
i=1

wigi(x),

where wi represents the weight given to objective i. Given that G(x) and F (x) are com-

posed of several non-linear objective functions, we first need to linearize them. To do so,

we use additional sets of decision variables and constraints as follows.

Objective 1: Let tu be a continuous decision variable denoting the maximum number of

unspent tokens among all physicians. This constraint aims for a fair distribution of shifts

among different physicians according to their preferences. We then have that g1(x) = tu,

and

tu ≥
∑
j∈J

∑
k∈K

TKi − Pijkxijk ∀i ∈ I (14)

tu ≥ 0. (15)

Objective 2: For each c ∈ C, we define the continuous decision variable puc equal to

the maximum difference of assigned shifts among physicians of clinic c. We have that

g2(x) =
∑

c∈C puc, and

puc ≥
∑
j∈J

∑
k∈K

xi′jk −
∑
j∈J

∑
k∈K

xijk ∀c ∈ C, ∀i, i′ ∈ Ic (16)

puc ≥ 0 ∀c ∈ C. (17)

Objective 4: For each i ∈ I and j ∈ J, we define the continuous decision variable nij equal

to the number of work days that have not been assigned according to a consecutive days
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pattern. We have that g4(x) =
∑

i∈I
∑

j∈J nij , and

∑
k∈K

xi(j+1)k +
∑
k∈K

xi(j−1)k − xijk′ + nij +mi ≥ 0 (18)

∀c ∈ C, ∀i ∈ Ic, ∀j = 2 . . . |J| − 1, ∀k′ ∈ K∑
k∈K

xi2k − xi1k′ + ni1 +mi ≥ 0

∀c ∈ C, ∀i ∈ Ic, ∀k′ ∈ K (19)∑
k∈K

xi(|J|−1)k − xi|J|k′ + ni|J| +mi ≥ 0

∀c ∈ C, ∀i ∈ Ic, ∀k′ ∈ K (20)

nij ≥ 0 ∀i ∈ I, ∀j ∈ J. (21)

Objective 5: For each i ∈ I and j ∈ J, we define the binary variables lij equal to 1 if

and only if physician i is assigned to more than 1 shift on day j. We have that g5(x) =∑
i∈I
∑

j∈J lij , and

∑
k∈K

xijk − lij ≤ 1 ∀i ∈ I, ∀j ∈ J (22)

lij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (23)

Objectives 6 and 7: For each i ∈ I, we define the continuous decision variables h1
i and h2

i

equal to the number of shifts that physician i works above or below, respectively, his/her

target weekly load. Then, we have g6(x) =
∑

i∈I h
1
i , g7(x) =

∑
i∈I h

2
i , and

∑
j∈J

∑
k∈K

xijk − h1
i + h2

i = Hi ∀i ∈ I (24)

h1
i , h

2
i ≥ 0 ∀i ∈ I. (25)
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We can now formulate the PCSP as the following MIP:

minimize w1tu+
∑
c∈C

w2puc −
∑
i∈I

∑
j∈J

∑
k∈K

w3Pijkxijk +
∑
i∈I

∑
j∈J

w4nij

+
∑
i∈I

∑
j∈J

w5lij +
∑
i∈I

w6h
1
i +

∑
i∈I

w7h
2
i

subject to (2)− (25) .

We use the analytical hierarchy process (AHP) to determine the weights according to

the objectives’ priorities. AHP has been successfully applied to other personnel scheduling

problems arising in health care [18, 19]. The first step in the AHP is to structure the

problem as a hierarchy and to arrange the factors in layers descending from an overall goal.

In our study, the overall goal is to plan the best schedule for clinics and physicians, and

the medical staff and administrator are influencing factors in the lower layer of the overall

goal. The objectives are placed in the successive layer as the bottom layer’s alternatives.

The second step is the elicitation of pairwise comparison judgments in each layer of the

structure. Saaty [36] suggests that pairwise comparisons should be done by rating in the

range [1/9, 9]. A rating of 9 indicates that one objective is extremely more important than

the other one. The rate of 7 is given, when an objective is strongly more important than

the other one, and 5 shows that an objective is more important than the other one. A rate

of 1 represents equal importance between two objectives. Rates of 2, 4, 6 and 8 indicate

intermediate values in order to reflect fuzzy inputs. Reciprocal values are used for reflecting

dominance of second alternative compared with the first one. The final step in the AHP is

to establish the composite global priorities of each objective. In our study, we assume

that the relative preference for each objective among medical staff and administrator is the

same; therefore, the weight of each objective is determined by the head physician using

the pairwise comparison matrix in Table 2.1. In order to calculate the relative importance

weights, we first need to sum the values in each column of the pairwise comparison matrix
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and then divide each value in the matrix by its column total. After that, the average of each

row gives us the relative importance of the corresponding objective. It is noteworthy that

the objectives are normalized prior to assignment of the AHP weights. We normalize each

objective by applying the method suggested by Grodzevich and Romanko [37], in which

each objective is divided by the difference of the Nadir and Utopia points.

Table 2.1: Pairwise comparison of objectives

Objective (1) (2) (3) (4) (5) (6) (7)
(1)Fair distribution of shifts (

∑
c∈C puc) 1 1/9 1 1/9 1/8 1/3 1

(2)Maximum unused tokens (tu) 9 1 9 1 2 8 9
(3)Preferred assignment (

∑
i∈I

∑
j∈J

∑
k∈K Pijkxijk) 1 1/9 1 1/9 1/8 1/3 1

(4)Block assignment (
∑
i∈I

∑
j∈J nij ) 9 1 9 1 2 8 9

(5)Two shifts in one day (
∑
i∈I

∑
j∈J lij ) 8 1/2 8 1/2 1 8 9

(6)Overtime (
∑
i∈I h

1
i ) 3 1/8 3 1/8 1/8 1 9

(7)Under time (
∑
i∈I h

2
i ) 1 1/9 1 1/9 1/9 1/9 1

2.4 A heuristic algorithm for the PCSP

In this section we present an approximate solution algorithm for the PCSP. Given the fact

that the aforementioned model cannot be solved to optimality by a commercial solver in

reasonable time, our main motivation behind devising a heuristic algorithm relies on devel-

oping a simple procedure that is capable of finding high quality solutions in reasonable CPU

times. The proposed heuristic is a hybrid algorithm which combines two well-known meta-

heuristics: iterated local search (ILS) and variable neighborhood descent (VND). From now

on, we refer to this hybrid algorithm as an iterated variable neighborhood descent (IVND)

procedure. On the one hand, ILS is a procedure that builds a sequence of solutions gener-

ated by a heuristic, usually a simple local search, which can lead to better solutions than

repeated random trials of that heuristic [38]. On the other hand, VND is a procedure that

is based on a systematic exploration of a set of neighborhoods that modifies the structure

of the solution space [39]. There are four components that need to be considered when

designing an ILS algorithm: an initial solution, an embedded local search, a perturbation
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strategy, and an acceptance criterion. Algorithm 1 shows a generic ILS procedure. In what

follows, we explain the components of our IVND procedure for the PCSP in details.

Algorithm 1 Iterated local search
A0 = GenerateInitialSolution
A∗ = LocalSearch(A0)
while termination condition has not been met do

A0 = Perturbation(A∗, memory)
A′ = LocalSearch(A0)
A∗ = AcceptanceCriterion(A∗,A

′
,memory)

We first construct an initial feasible solution by solving a strong relaxation of the PCSP,

denoted as PCSP-R, in which only the second objective is disregarded, and solve it using a

standard optimization software. The idea behind this comes from the fact that preliminary

experiments showed that the second objective, associated with the balancing of workload

between physicians of the same clinic, is one of the most difficult objectives to optimize.

This is partially attributed to the fact that a large number of dense constraints (16)–(17) are

needed to linearize the minmax objective g2(x). When these constraints (and their associ-

ated objective) are removed from the MIP formulation, a standard optimization software is

capable of solving the resulting relaxation much faster as compared to the original prob-

lem. Moreover, we note that relaxing these constraints do not actually lead to an infeasible

solution associated with the hard constraints, but only to unbalanced workloads between

physicians. Now, given that an optimal solution to this relaxation may not necessarily be a

good solution to the original problem, we use a time limit, denoted as TL, for solving this

relaxation with the commercial solver; our main goal is to have an initial feasible solution

for the PCSP, but not necessarily an optimal solution to the relaxation.

The embedded VND is used to improve the solution obtained by solving the relaxed

problem. The VND is applied by systematically searching in a set of 10 neighborhoods

N1, N2, . . . , N10 of the current feasible schedule. Given that the order of exploring the

neighborhoods can have a substantial impact on the final results, we use the approach sug-

gested in Burke et al. [30] and Burke et al. [31] for the case of nurse rostering problems,
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which consider the exploration of neighborhoods in a sequential order starting from N1.

The VND algorithm is applied using a first improvement strategy; it explores neighbor-

hoods N1, . . . , N10 sequentially, until an improved solution is found. Each time the search

finds a better solution than the current solution, it updates the current solution and restarts

from neighborhood N1.

The neighborhoods in our VND algorithm consist of swapping consecutive shifts among

physicians. Let S = {1, . . . , |J||K|} be the set of shifts in the entire planning horizon (one

week). In what follows, schedules are represented with an |I|× |S|matrix A, where ais = 1

if physician i ∈ I works on shift s ∈ S, and ais = 0 otherwise. In our implementation

of the VND algorithm, we explore |J||K| types of neighborhood structures. In particular,

for each k = 1, . . . , |J||K|, Nk consists of solutions which can be reached by swapping k

consecutive shifts having the same starting shift sr between any two physicians. That is,

Nk(A) = { A
′
: ∃i1, i2 ∈ I, i1 6= i2, and sr ∈ {1, . . . , |J||K| − (k − 1)} ,

a
′

i1
= (. . . , ai1sr−1, ai2sr , ai2sr+1, . . . , ai2sr+k, ai1sr+k+1, . . . ) ,

a
′

i2
= (. . . , ai2sr−1, ai1sr , ai1sr+1, . . . , ai1sr+k, ai2sr+k+1, . . . )} .

We note that a relevant feature of these neighborhoods is that all hard constraints are always

satisfied if the swaps are performed among physicians of the same clinic. For any swaps

among the physicians of two different clinics, we do not consider those that violate the

feasibility of hard constraints. Figure 2.1 illustrates a schedule for 3 physicians and possible

swaps in N3 and N10. A new schedule in N3(A) is obtained by the swap movements

depicted with solid lines between physicians 1 and 3 with sr = 1 and k = 3. That is, in

the initial solution A, physician 1 works the first shift but not the second and third ones,

whereas physician 3 does not work on the first shift but does work on the second and third

shifts. In the new schedule A
′
, after the swap is performed, physician 1 works in the second
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and third shift and physician 3 works only on the first shift, and the rest of the solution

remains the same. Also, it should be noted that the movements change physicians’ total

number of working shifts. Dashed lines depict the only possible swap between physician 1

and 3 in N10(A), as in this neighborhood the entire weekly work schedules are exchanged

between any two physicians.

Figure 2.1: VND neighborhood structures

The perturbation procedure is a diversification mechanism to move away from a lo-

cal optimal solution. Our procedure works by partially destroying the current solution by

removing some of its elements, and obtaining a new solution by repairing the perturbed

solution using an MIP. Let Pt denotes the perturbation set that corresponds to the set of el-

ements (i, s) ∈ I × S of A, which values will be removed from the current solution. In our

perturbation strategy, we do not perturb the improved part of the solution by the VND in

the current iteration, hence we define Fe as the set of elements whose values have changed

during the VND procedure in the current iteration. During the perturbation phase, a per-

centage of elements (prec%) of the current solution A are selected randomly and if they do

not belong to set Fe, they will be added to set Pt. We now define set

R = {(i, s) ∈ I × S : (i, s) /∈ Pr} ,

as the set of elements whose values will be fixed to their current values in the repairing

phase.

For instance, if in the current solution ais = 1 and (i, s) /∈ Pr, then we set xij(s)k(s) = 1
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in the repairing procedure, where j(s) and k(s) denote the day and shift of such day asso-

ciated with shift s, respectively. For repairing the perturbed solution, we solve a reduced

version of PCSP-R in which the following constraints are added in order to fix the elements

of R to their current values:

xij(s)k(s) = ais ∀(i, s) ∈ R. (26)

Note that partially fixing a subset of variables not only preserves a favorable part of the

current solution obtained by the VND, but also considerably reduces the solution space

without changing the structure of the model. The repairing process is done within a certain

time limit repair time limit, since the main goal is to obtain a new trial feasible solution.

The acceptance criterion determines not only if a solution A
′

is accepted or not as the

new current solution but also plays the role of controlling the balance between diversifi-

cation and intensification of the search. We conduct a random walk with a very limited

usage of memory as our acceptance criterion. That is, we apply the perturbation procedure

to the most recently visited local optimal solution. However, we conduct a backtracking

procedure and restart the search from the incumbent solution if no improved solution has

been found in a given number of iterations, denoted as NIL. Let nitlast be the last iteration

where a better solution was found, nit be the iteration counter, F (A) be the objective value

of solution A, and A∗ be the incumbent solution. The acceptance criterion is defined as

Accept(A∗,A,memory) =


A∗, if F (A) ≥ F (A∗) and

nitlast − nit > NIL,

A, otherwise.

Finally, we use a time limit maxtime as the termination criterion for our IVND procedure.

The overall IVND procedure is outlined in Algorithm 2.
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Algorithm 2 IVND procedure for the PCSP
Solve PCSP-R to obtain initial solution Ā
A∗ ← Ā
nit← 0
while currenttime < maxtime do

r ← 1
while r ≤ |S| do

Explore Nr(Ā) to obtain a local solution A
′

if F (A
′
) < F (Ā) then

Ā← A
′

r ← 1
Update Fe with changes in A

′

else
r ← r + 1

if F (Ā) < F (A∗) then
A∗ ← Ā

else
nit+ +

if nit > NIL then
Ā← A∗
nit← 0

Update Pt and R
Solve PCSP-R with (26) to obtain a new trial solution Ā

return A∗

2.5 Computational results

In this section, we present the results of computational experiments we have run in or-

der to compare and analyze the performance of the formulation and the proposed solution

algorithm. We first describe the benchmark instances we have used. We then evaluate

the impact of clinic scheduling constraints on physicians work schedules to provide some

managerial insights into the added value of integrating physician and clinic scheduling de-

cisions. Finally, we give numerical results to analyze the computational performance and

limitations of the proposed formulation when solved with a standard optimization software

and of our proposed IVND algorithm.

All experiments were run on a Dell station with an Intel(R) Core(TM) CPU i7-4790

processor at 3.60 GHz and 16 GB of RAM under Windows 7 environment. The formula-

tions and algorithms were coded in C++, and the associated MIPs were solved using the

Concert Technology of CPLEX 12.6.3. Table 2.2 shows CPLEX parameters used with

non-default values in the computational study.
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Table 2.2: CPLEX non-default settings

Parameter Name Value
CPX PARAM THREADS 8
CPX PARAM MIPEMPHASIS 4
CPX PARAM TILIM 7200
CPX PARAM EPGAP 0.01

Table 2.3: Characteristics of benchmark instances

Class #Days #Shifts # Clinics # Physicians # Clusters
A 5 2 5 15-30 3
B 5 2 10 60-100 5
C 5 2 13 133 5

2.5.1 Instance generation

A set of benchmark instances was generated using data obtained from a case study at

MUCH. This set is divided into three classes of instances of increasing size with respect to

the number of clinics and physicians. Table 2.3 gives details on some of the inputs of the

problem. The largest class C corresponds to the real case study at MUCH and the other

two were obtained by considering a subset of clinics and physicians of C.

Each class contains 10 instances that vary with respect to the number of arriving pa-

tients, number of available rooms, capacity of the waiting room, and physicians’ preferred

shifts. This information was generated as follows.

The weekly number of patients was randomly generated through the following uniform

distribution:

NWVc ∼ U
[

¯NWVc(1− β), ¯NWVc(1 + β)
]
,

where ¯NWVc =
∑

i∈Ic HiV PSi, and V PSi is the average of the number of patients that

physician i assessed during one shift calculated from historical data. 0 < β < 1, is a

parameter that controls the percentage of number of patients over or under the expected
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number. The rest of the parameters are generated proportionate to the number of weekly

arriving patients and the number of available physicians in order to make resource capacity

constraints tight enough. The number of examination rooms as

B ∼

⌈∑
c∈C

NWVc
V PSc

|J||K|

⌉

and the waiting room capacity is defined as

D ∼
⌈∑

c∈C NWVc

|J||K|

⌉
.

The number of times that a cluster t ∈ T has to be scheduled together is randomly generated

as

Ft ∼ U

[
0,min

{
|J||K|, min

c∈C|c∈t

{⌈
NWVc∑
i∈Ic V PSi

⌉}}]
.

Finally, the target level of fluctuation in the waiting room’s utilization was set toWU = 0.2,

since the management of the hospital would not prefer high level of fluctuations in the

waiting room utilization over the week.

2.5.2 The analysis of integrating clinic scheduling with physician schedul-

ing problems

We next investigate the impact of combining clinic scheduling with physician scheduling

(denoted as integrated approach) compared to schedules obtained from solving the afore-

mentioned problems separately (denoted as sequential approach). Afterwards, we analyze

the impact of clinics’ and administration’s constraints on physicians’ work schedules.

In the sequential approach, the clinic scheduling problem is solved with respect to the

demand, resource, administration’s and clustering constraints (i.e. (2)-(8)). Any feasible
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solution of the clinic scheduling problem is also feasible to the PSP; therefore, the solu-

tion of the clinic scheduling problem is directly plugged into the PSP. After that, the PSP

is solved to optimality. Figure 2.2 depicts the average percent improvement in the seven

objectives obtained from solving 10 small instances (in which the optimal solution can be

obtained) as an integrated problem versus solving them based on the sequential approach.

As the figure shows, the highest improvements are in the objectives related to physicians’

preferences and ergonomic aspects (i.e. objectives 1, and 3-5); the demand related ob-

jectives (i.e. objectives 2, 6, and 7), on the contrary, get least improved. The reason is the

demand constraints are included in the clinic scheduling problem. In brief, the above exper-

iments clearly indicated the positive impact of incorporating physician scheduling problem

into the clinic scheduling one particularly in terms of physicians’ work schedule.

Figure 2.2: Comparison of the integrated versus sequential scheduling approaches

In order to analyze the impact of clinics’ and administration’ s constraints on physi-

cians’ work schedule, we first solve the PCSP formulation without considering clinics’ and

administration’s constraints. We denote this formulation as PSP. Afterwards, we add each

set of the aforementioned constraints, one at a time, and resolve the resulting problems.

Table 2.4 shows the clinic’s constraints considered in this experiment.

The analysis was conducted on those instances, where the solver can obtain the optimal

solution. The results of this analysis are given in Figure 2.3. We use two different sets of
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Table 2.4: Clinic’s scheduling constraints

Constraint Name Description
(5), (6), (8) ctT simultaneous scheduling interdisciplinary clinics

(7) ctWU fluctuation level in waiting room utilization
(3) ctB examination rooms availability
(4) ctD waiting room availability

right-hand-side (RHS) values for exam rooms and waiting room capacity constraints: the

nominal case and one in which the RHS or the available resource is increased by 20%.

The horizontal axis represents each set of the constraints, while the vertical axis shows the

percent increase in the objective function value of the PSP when each set of constraints is

added.

Figure 2.3: Analysis of adding clinic scheduling constraints to the PSP

The results given in Figure 2.3 demonstrate that incorporating the clinics’ requirements

in the PSP has a major impact on the objective function value. That is, physician pref-

erences tend to be more violated when adding clinic constraints to the PSP model. On

average, the waiting room capacity has the most impact in the deterioration of the objective

function, followed by the number of available examination rooms. When each of those

resources is increased by 20%, the objective function value improves significantly. The

simultaneous scheduling requirements of interdisciplinary clinics and the fluctuation level

in waiting room utilization seem to have a lower impact on the objective of the PSP.
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The observed impact of clinic constraints on the PSP provides insights to the hospital

administrator about the significance of each resource in improving physicians work sched-

ules. In this study, counter intuitively, the waiting room is the crucial resource. In other

words, increasing the capacity of the waiting room or limiting the number of admitted

patients to a certain level are the choices with the highest potential improvement. Another

observation is the amount of improvement gained by increasing one unit of each resource or

relaxing a clinic scheduling constraint. For instance, we observe almost 7% improvement

in physicians work schedules by 20% growth in the number of exam rooms. Furthermore,

these experiments confirm that increasing the available resources for a fixed weekly de-

mand provides more flexibility in the assignment of physicians that leads to higher quality

schedules.

2.5.3 Analyzing the computational performance of the PCSP formu-

lation and IVND algorithm

We next present the results of solving the considered instances with CPLEX and the pro-

posed IVND algorithm. The goal is to analyze the limitations of the proposed PCSP for-

mulation and to evaluate the performance and quality of the solution obtained with the

IVND algorithm. Table 2.5 summarizes the values of the parameters of the IVND used

in these experiments. It should be noted that the values were obtained through extensive

preliminary experiments in order to fine-tune our solution methodology.

Table 2.5: The values of parameters of the IVND

perc% TL (sec.) repair time limit (sec.) NIL
0.70 100 100 10

Table 2.6 represents the results for the set of class A instances. The first column of this

table corresponds to the identification of each instance, where the first number presents the

instance number within its class, and the second number after the dot implies the set of
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weights that have been assigned to each objective in the objective function. The first set of

weights have the distribution of [1, 100, 1, 100, 90, 10, 1] for w1 − w7, and the objectives

are not normalized prior to assignment of the weights. The second set of weights are the

AHP-based weights, and the objectives are normalized. The second and third columns

present the CPU time in seconds required to obtain the optimal solution by CPLEX and

the IVND algorithm, respectively. The last column shows the percent deviation of the

incumbent solution obtained in the first iteration of the IVND from the optimal solution,

and it is calculated according to 100 ∗ |Incumbent−Optimum|/|Optimum|.

Table 2.6: Comparison of the IVND and solver on class A instances

Instance CPLEX IVND VND
Time (sec.) Time (sec.) %Dev.

1.1 2 12 0
2.1 <1 <1 0
3.1 <1 <1 0
4.1 <1 <1 0
5.1 <1 <1 0
6.1 6 106 6.4
7.1 <1 <1 0
8.1 9 213 11.9
9.1 6 100 10.2
10.1 7 156 7.3
1.2 3 17 0
2.2 <1 <1 0
3.2 <1 <1 0
4.2 7 <1 0
5.2 <1 <1 0
6.2 9 19 0
7.2 <1 <1 0
8.2 5 <1 0
9.2 4 15 0.8
10.2 <1 <1 0

The results of Table 2.6 demonstrate that the proposed formulation and the IVND are

capable of finding the optimal solution for small instances of class A. As the VND results
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show, it is remarkable that the single iteration VND is not able to find the incumbent solu-

tion in all the test instances, and the iterated procedure significantly improves the VND. It

is worth to note that class A instances are generated in order to demonstrate the advantage

of implementing the iterative procedure, and also to test if the IVND heuristic is capable of

obtaining the optimal solution.

Table 2.7 and 2.8 show the results for classes B and C instances. In both tables, the

results are grouped in three categories: CPLEX, IVND, and the incumbent solution. More

specifically, for CPLEX results, %D1H provides the percent deviation of the best solution

(an upper bound (UB) on the optimal objective value) by the solver in 1 hour of CPU time,

from the best solution (incumbent) known for the corresponding problem instance, which

is obtained either by the solver or by the IVND in 2 hours of CPU time. This deviation

is calculated according to |UB − Incumbent|/|Incumbent| ∗ 100. %D2H is calculated

the same as %D1H for an upper bound obtained after 2 hours of CPU time. It should

be noted that %D1H and %D2H show the quality of solutions provided by CPLEX in 1

and 2 hours time limit compared to incumbent solutions. Note that an N.A. entry indicates

that CPLEX was not able to find a feasible solution within the time limit. %D1H′∗ and

%D2H′∗ are the percent deviation of the best solution from the incumbent solution, found

by the IVND in 1 and 2 hours over 5 runs, respectively. They are calculated similarly to

%D1H and %D2H according to the bounds obtained by the IVND algorithm. ¯%D1H′ and

¯%D2H′ are the percent deviation of the average solutions from the incumbent solution,

obtained over 5 runs, in 1 and 2 hours. STD. is the standard deviation of the percent

deviation from the incumbent solution for the solutions, obtained in 2 hours over 5 runs.

Time demonstrates the total time (in seconds) that has been spent for solving the MIP model

during the iterative process. Value shows the objective function value of the incumbent

solution. Fair is the measure of fairness in the incumbent solution which is calculated by⌈∑
c∈C ¯puc
|C|

⌉
where ¯puc are the solution values of puc in the incumbent solution. Ergo is the
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measure of ergonomy, calculated as
∑

i∈I
∑

j∈J l̄ij where l̄ij are the solution values of lij in

the incumbent solution. Finally, the last row presents the average values of corresponding

columns.

Table 2.7: Comparison of the IVND and CPLEX on class B instances

Inst. CPLEX IVND Incumbent
%DH1 %DH2 %D1H′∗ %D2H′∗ ¯%D1H′ ¯%D2H′ STD. Time Value Fair Ergo

1.1 5.55 0.07 0.14 0.00 0.19 0.07 0.05 6611 1405.00 2 1
2.1 31.58 10.50 0.10 0.00 0.24 0.10 0.12 6320 1010.00 1 2
3.1 0.10 0.00 0.10 0.10 0.17 0.12 0.05 6838 965.00 1 0
4.1 N.A. N.A. 0.00 0.00 0.11 0.02 0.04 6543 1062.00 1 2
5.1 7.09 7.09 0.09 0.00 0.14 0.03 0.08 6747 1157.00 1 2
6.1 10.73 10.63 0.00 0.00 0.04 0.04 0.06 6673 960.00 1 0
7.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6915 955.00 1 0
8.1 0.11 0.11 0.11 0.00 0.13 0.11 0.07 6721 949.00 1 0
9.1 0.13 0.13 0.00 0.00 0.00 0.00 0.00 6730 747.00 1 0

10.1 9.63 1.78 0.00 0.00 0.20 0.02 0.04 6817 1121.00 1 2
1.2 1.56 1.56 1.56 0.00 1.56 1.25 0.70 6604 0.02 1 5
2.2 0.86 0.86 0.07 0.00 0.32 0.07 0.05 6747 0.27 1 7
3.2 0.91 0.84 0.00 0.00 0.45 0.07 0.09 6713 0.29 1 0
4.2 1.27 1.09 0.00 0.00 0.04 0.04 0.09 6305 0.17 1 2
5.2 0.12 0.12 0.10 0.00 0.10 0.08 0.04 6800 0.26 1 0
6.2 2.27 2.08 0.10 0.00 0.12 0.08 0.05 6640 0.20 1 0
7.2 3.37 0.00 0.27 0.04 0.50 0.18 0.13 6638 0.09 1 1
8.2 10.20 10.20 0.00 0.00 0.06 0.06 0.08 6254 0.16 1 0
9.2 3.39 3.39 0.00 0.00 0.44 0.25 0.14 6648 0.06 1 0

10.2 2.18 0.03 0.23 0.00 0.27 0.14 0.12 6741 0.09 1 1
Ave. 4.79 2.66 0.14 0.01 0.25 0.14 0.10 6650.24 1.05 1.25

From the results provided in %D1H′ and %D1H columns of Tables 2.7 and 2.8, we

can observe that in 1 hour CPU time, the proposed IVND algorithm is able to outperform

CPLEX by finding high quality solutions with the average percent deviation of 0.14 and

0.82 compared to 4.79 and 20.71, respectively, for class B and C instances. When the time

limit is increased to 2 hours, by comparing the average of column %D2H′ with %D2H,

it is apparent that the IVND algorithm finds notably better solutions than CPLEX, with

the average percent deviation of 0.01 for class B instances and 0.00 for class C instances

compared to 2.66 and 19.58, respectively. It is noteworthy that in 38 instances out of all

40 instances, the incumbent solution is found by the IVND. The average values of ¯%D1H′

and ¯%D2H′ indicate the consistency of the solution methodology in providing high quality

solutions in different runs. On average over all the instances, 1 hour average solution is

only 0.25 and 2.55 percent away from the incumbent solution for class B and class C,
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Table 2.8: Comparison of the IVND and CPLEX on class C instances

Inst. CPLEX IVND Incumbent
%DH1 %DH2 %D1H′∗ %D2H′∗ ¯%D1H′ ¯%D2H′ STD. Time Value Fair Ergo

1.1 54.58 54.58 0.89 0.00 8.97 5.51 5.58 5206 1354.00 2 2
2.1 21.46 21.46 0.07 0.00 6.16 1.41 2.69 5203 1421.00 2 2
3.1 30.78 30.78 0.08 0.00 0.25 0.17 0.13 5907 1293.00 2 2
4.1 40.10 39.94 0.00 0.00 5.84 5.67 3.18 5607 1232.00 2 0
5.1 44.28 44.17 0.00 0.00 0.49 0.42 0.24 5707 901.00 1 2
6.1 24.38 24.38 6.84 0.00 8.57 3.89 3.49 5607 1214.00 2 2
7.1 24.05 24.05 6.90 0.00 7.16 5.64 3.15 5681 1231.00 2 1
8.1 15.70 15.70 0.00 0.00 0.34 0.27 0.17 5808 1312.00 2 2
9.1 44.28 28.00 0.00 0.00 0.15 0.11 0.25 6008 1093.00 2 1

10.1 30.51 30.51 0.00 0.00 1.91 0.36 0.22 5931 1003.00 1 1
1.2 28.74 27.94 0.00 0.00 6.52 4.87 4.48 5210 0.04 2 2
2.2 6.68 6.57 0.85 0.00 0.91 0.66 0.38 5324 0.18 2 2
3.2 4.15 4.09 0.12 0.00 0.26 0.18 0.14 5823 0.16 2 5
4.2 9.00 8.72 0.00 0.00 0.14 0.08 0.06 5616 0.18 1 6
5.2 6.04 5.98 0.13 0.00 0.51 0.24 0.31 5933 0.15 1 4
6.2 7.18 6.97 0.25 0.00 1.50 0.39 0.39 5422 0.24 1 6
7.2 8.44 3.97 0.00 0.00 0.27 0.11 0.08 5722 0.16 1 5
8.2 2.44 2.44 0.34 0.00 0.68 0.38 0.39 6022 0.17 2 2
9.2 6.11 5.98 0.00 0.00 0.17 0.09 0.15 5933 0.16 1 6

10.2 5.27 5.27 0.00 0.00 0.12 0.10 0.08 6012 0.16 1 3
Ave. 20.71 19.58 0.82 0.00 2.55 1.53 1.28 5684.09 1.60 2.80

respectively. In 2 hours time limit, the average of ¯%D2H′ shows the average solution

deviated 0.14 and 1.53 from the incumbent solution for class B and C, respectively. The

average of STD. demonstrates that percent deviation of solutions obtained in 2 hours time

limit are close to the average solution percent deviation, as for class B and class C they

are merely 0.10 and 1.28, respectively. We observe almost 1000 seconds increase in the

average time spent on the local search phase during the iterative process from class B to

class C instances. The average values of Fair and Ergo columns are proper evidence of the

quality of the incumbent schedules. The average values of Fair columns show that there

is at most 1.05 and 1.60 shifts difference in terms of number of assigned shifts among

physicians of each clinic in class B and class C, respectively. The average of Ergo column

implies that the average number of times that a physicians work two shifts per day is only

1.25 for class B and 2.80 for class C, respectively.
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2.6 Concluding remarks

Inspired by the challenge of incorporating physicians’ preferences and availabilities into

the scheduling of clinic sessions in a real ambulatory care polyclinic, we proposed a novel

multi-objective mixed-integer programming model for an integrated physician and clinic

scheduling problem (PCSP). More specifically, the model aims at assigning physicians

associated with different multidisciplinary, interdisciplinary, and high-throughput clinics

to treatment sessions such that all previously booked patients are assessed. Along with

the demand satisfaction constraints, the limited capacity of resources, such as waiting and

treatment rooms that must be shared among the aforementioned clinics, were also taken

into account as hard constraints. On the contrary, other conflicting conditions such as

particular preferences of physicians in addition to the ergonomic and fairness of assigned

shifts among them were considered as soft constraints and their violations were minimized

in the model. In order to better justify the significance of integrating physician scheduling

problem (PSP) with clinic session scheduling in such health delivery centers, we measured

the impact of adding hard constraints associated with clinic resources and administrative

rules into the PSP model on a set of randomly generated benchmark instances.

The complexity for optimally solving the proposed PCSP model with a standard op-

timization software motivated us to develop an iterated variable neighborhood descent

(IVND) algorithm to obtain high quality solutions in a reasonable time limit. The algo-

rithm combines iterated local search (ILS) and variable neighborhood descent (VND) pro-

cedures, where the ILS generates a sequence of schedules generated by VND algorithm

by using a perturbation strategy. Our computational results on the aforementioned test in-

stances revealed the high quality of schedules provided by this algorithm in comparison

with a standard optimization software.

The PCSP formulation and solution algorithm proposed in this article can be embedded
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into a decision support system to assist the polyclinic’s management in a more efficient

scheduling of different clinics with their designated physicians and in adjusting the sched-

ule based on the updated data regarding the number of booked patients, number of clustered

sessions, physicians days-off, etc. Another interesting extension of the current study would

be to integrate the uncertainty inherent in the number of weekly arriving patients, emer-

gency referrals, and the availability of physicians in different shifts in the PCSP model.
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Chapter 3

A physicians planning framework for

polyclinics under uncertainty
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Abstract

In this paper, we present a comprehensive bi-level physicians planning framework for poly-

clinics under uncertainty. The first level focuses on clinic scheduling and capacity planning

decisions, whereas the second level deals with physicians scheduling and operational ad-

justments decisions. In order to protect the generated schedules against demand uncer-

tainty, the first level is modeled as an adjustable robust scheduling problem which is solved

using an ad-hoc cutting plane algorithm. To cope with variability in patients’ treatment

times, we formulate the second level as a two-stage stochastic problem and use a sam-

ple average approximation scheme to obtain solutions with small optimality gaps. We use

a Monte-Carlo simulation algorithm and data obtained from a university health center in

Montreal, Canada, to demonstrate the benefits of our planning framework. In particular,

we show that the schedule generated by our approach is superior in terms of total cost as

compared with the one obtained from a single-level deterministic model.

3.1 Introduction

Manpower planning in service industries frequently follows a three-level procedure: plan-

ning, scheduling and allocation [40–42]. The first level deals with the operating policies

of service centers. The second level specifies the personnel working shifts over the plan-

ning horizon. The last level focuses on workforce allocation, by taking into account the

decisions made in previous levels, and making the required last-minute operational adjust-

ments.

This paper introduces a planning framework for physicians in ambulatory polyclinics.

Polyclinics are health care facilities consisting of multiple multidisciplinary, interdisci-

plinary and high throughput clinics that differ in terms of patient flow and treatment time

and share limited resources. From a planning perspective, interdisciplinary clinics are the
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most critical ones given that they collaborate in the assessment and treatment of patients,

which requires them to be scheduled simultaneously for a predetermined minimum number

of shifts.

In polyclinic physicians planning, the first level corresponds to the clinic scheduling

and capacity planning problem (CSCPP). The CSCPP encompasses long-term (strategic)

decisions to determine the number of patients to admit, the total working hours of physi-

cians, and the number of required examination rooms. In this level, clinic schedules are

determined according to a weekly demand forecast. Nevertheless, over a long term plan-

ning horizon (e.g., one year) the weekly forecast can fluctuate within a given uncertain

interval. Hence, hospital managers seek a robust strategic planning tool to maximize the

number of patients who can be served on a weekly basis, even in the presence of worst-case

(extremely high) demand scenarios, while determining the optimal personnel and resource

requirements at each shift of the planning horizon. The aforementioned clinics’ schedule

along with the capacity plan are expected to be effective over a period of six months to a

year.

The second level of the planning process involves the tactical assignment of physicians

to the established shifts while taking into account the requirements of the shifts and physi-

cians preferences. We refer to this problem as the physician scheduling problem (PSP).

Generally speaking, PSPs consist of constructing work schedules for physicians in a plan-

ning horizon such that at each shift there are enough physicians to satisfy demand [3].

Similarly, in polyclinics physicians are usually scheduled on a weekly-basis once the num-

ber of patients scheduled for every shift, physicians availability, and preferences are known.

It is worth noting that the outputs of the first level CSCPP act as an input to the second level

PSP. Hospital administration can employ the PSP as a tactical planning tool to obtain physi-

cians’ work schedules at the beginning of each week such that all scheduled patients can

be assessed, while taking into account capacity constraints and physicians’ preferences.
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Uncertain events disturb planned operations in health services. For instance, physi-

cians’ schedules are affected by the uncertainty in patients’ treatment times. On the one

hand, if the actual treatment times are longer than the estimated ones, the number of sched-

uled physicians might not be enough to serve all patients during the regular shifts. In this

case, either patients would need to be rescheduled on another session or extra resources,

such as on-call doctors or overtime shifts, would need to be deployed. On the other hand,

if treatment times are shorter that the estimated ones, physicians would be idle which is

undesirable for the administration. These scenarios lead to the third level of the physi-

cians planning procedure, which is to perform last-minute operational adjustments to the

planned schedules (i.e., prior to each shift). In this operational planning level, proper cor-

rective (recourse) actions must be foreseen in order to minimize the average expected cost

of schedules in the presence of uncertainty in treatment times.

Inspired by a real case study in an ambulatory cancer treatment polyclinic of the McGill

University Health Centre (MUHC) in Montreal, Canada, we present a comprehensive bi-

level physician planning framework. A distinguishing feature of this framework is that it

takes into account the uncertainty in the number of arriving patients in the first level and the

uncertainty in patients’ treatment times in the second level. The decision levels in our ap-

proach are similar to the ones introduced by Zaerpour et al. [43] and follow the three-stage

manpower planning process commonly used in service centers. Figure 3.1 summarizes the

physicians planning procedure in polyclinics, and displays our planning framework.

At the first level, clinics’ weekly sessions and their associated capacities are determined

on a long-term cyclic weekly basis. Given the strategic nature of this decision level, the

goal of polyclinic managers is to maximize the number of patients that can be served per

week for each clinic under uncertain demand. That is, the managers seek a robust capac-

ity plan such that the number of rejected patients under high-volume demand scenarios is
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Physicians planning procedure in polyclinics

Determining the number of shifts physicians work and clinics’ 
capacity

Assigning physicians to established clinics’ shifts

Assigning on-call physicians or extending the shifts to deal with 
unplanned changes

Level 1
R-CSCPP

Level 2
SPSP

Tactical level

Strategic level

Operational level

Figure 3.1: Physicians planning procedure in polyclinics

minimized. For this reason, we formulate this problem as an adjustable robust optimiza-

tion problem and denote it as the robust clinic scheduling and capacity planning problem

(R-CSCPP). The R-CSCPP provides decision-makers the possibility to control the level of

conservatism of the plan by considering a budget of uncertainty. At the second level, we

integrate the tactical decisions (i.e., weekly physician scheduling) with operational adjust-

ments under uncertain treatment time within a single decision problem and refer to it as the

stochastic physician scheduling problem (SPSP). A two-stage stochastic program is used to

model in an integrated way these tactical and operational decisions. In particular, the physi-

cians schedule corresponds to the first-stage decisions whereas the operational adjustments

(i.e., calling on-call physicians and/or extending the shift duration) are the second-stage

decisions (recourse actions) as a response to random treatment time scenarios.

The main contributions of our paper are as follows:
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• To propose a comprehensive bi-level physician planning framework for polyclin-

ics including strategic, tactical, and operational decisions while incorporating uncer-

tainty in the amount of demand and treatment times.

• To present a mixed integer programming formulation (MIP) for the first level R-

CSCPP in which a budget of uncertainty is used to control the level of conservatism.

Given that this MIP requires an exponential number of constraints to model the de-

mand uncertainty set, we develop an ad-hoc cutting plane algorithm for efficiently

solving it.

• To present a two-stage integer stochastic programming formulation for the SPSP. The

first-stage decisions focus on the assignment of physicians to regular or on-call du-

ties in different shifts and the second-stage (recourse) actions consider calling on-call

doctors and assessing patients during extended shift if treatment times are stretched-

out. We use a sample average approximation (SAA) scheme to obtain feasible solu-

tions for this problem with small statistical optimality gaps.

• To develop a Monte-Carlo simulation algorithm to demonstrate the importance and

potential benefits of our planning framework using real data from a polyclinic in

Montreal, Canada.

The remainder of this paper is structured as follows. Section 3.2 gives a concise review

of the related literature on personnel scheduling problems, with an emphasis on applica-

tions in health care. In Section 3.3, we first present the CSCPP and its robust counterpart

and describe an MIP and the cutting plane algorithm used for solving it. In Section 3.4, we

introduce the deterministic PSP and stochastic SPSP and describe the SAA scheme used

for solving the latter. Using the data provided by the university health center, in Section

3.5 we present the results of computational experiments to evaluate the performance of the

proposed solution algorithms. We also compare the generated schedules with the results of
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a deterministic model that integrates clinics and physicians scheduling into a single level

procedure. Finally, concluding remarks are given in Section 3.6.

3.2 Literature Review

Workforce allocation and personnel scheduling problems have been widely studied in the

literature. Numerous applications arising in different service industries have been consid-

ered such as telephone operators, flight crews, bus drivers, physicians and nurses. We refer

to Ernst et al. [13], Burke et al. [16], Van den Bergh et al. [14], and Erhard et al. [1], for

review papers on these classes of decision problems.

Beaulieu et al. [17] propose the first MIP to model a PSP arising in the emergency

room (ER) of a major hospital in Montreal. They divide scheduling constraints into two

main categories: compulsory and flexible. Rousseau et al. [10] argue that a combination of

constraint programming techniques with local search heuristics can be a promising generic

methodology for solving a wide variety of PSPs. Carter and Lapierre [11] study physicians

of ERs at six major hospitals in Canada and propose a tabu search algorithm for assigning

physicians to work shifts. In Bard et al. [44], a three-phase methodology is proposed to

generate monthly clinic assignments for internal medicine housestaff. Brunner [15], Brun-

ner et al. [4], Brunner et al. [23], and Stolletz and Brunner [22] study flexible physicians

scheduling problems in which the shifts have variable starting time and duration. Gunawan

and Lau [26] and Van Huele and Vanhoucke [27] integrate scheduling physicians with other

types of decision problems (i.e., duty and surgery scheduling) and consider resource capac-

ity constraints (e.g., available operation rooms, available recovery beds). Tohidi et al. [45]

propose an integrated clinic and physician scheduling problem in polyclinics in a determin-

istic context.

Some studies focus on a single level manpower planning (e.g., staffing or tactical

planning), and consider the variability in daily demand or personnel’s capacity. Bard
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and Purnomo [42, 46, 47] present a reactive and real-time scheduling approach to adjust

midterm schedules on a daily-basis in response to fluctuations in demand. They apply their

method as a recourse decision-making tool for the assignment of nurses to work shifts in

a hospital in the U.S. Hur et al. [48] also investigate real-time work schedule adjustment

decisions, and provide heuristics to solve the considered problem. Easton and Goodale

[49] analyze different strategies (e.g., cross-trained workers, overtime, call-in employee,

and temporary workers) for scheduling personnel with unplanned absenteeism in a real-

time decision-making framework. Gross et al. [50] propose an MIP model for reschedul-

ing physicians in a hospital as a response to unplanned absences of scheduled personnel.

The goal is to minimize the changes in the initial roster while satisfying work regulations,

qualification requirements, and physician preferences. Campbell [51] shows cross-trained

workers are beneficial to service centers with multiple departments where the demand is

subject to uncertainty. Wright and Mahar [52] investigate on centrally scheduling cross-

trained nurses across multiple departments in two hospitals in the U.S. They determine the

likelihood of violating the minimum nurse-to-patient ratios through queueing methods.

Other studies aim at integrating different levels of manpower planning, and analyzing

the decisions to be taken at each level. Abernathy et al. [40] introduce a comprehensive

three-level manpower planning procedure, which includes policy, staffing, and scheduling

decisions, for service industries with demand fluctuations. They present an iterative so-

lution methodology as well as a chance constraint-based method to solve this problem.

Venkataraman and Brusco [53] propose an integrated staffing and scheduling action plan

that allows recursion between the staffing and scheduling models and thus enables manage-

ment to rapidly evaluate the impact of both staffing and scheduling policies. Wright et al.

[54] merge nurse staffing and scheduling by developing a model that incorporates nurse-to-

patient ratios and controls the amount of work given to each nurse. Wright and Bretthauer
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[55] study two-phase scheduling and rescheduling models for cross-trained nurses in a hos-

pital in the U.S. The authors propose a procedure that assigns the nurses to shifts over a

mid-term planning horizon in the first phase. In the second phase, the schedules gener-

ated during the first phase are adjusted according to the demand at the beginning of each

shift. Maenhout and Vanhoucke [56] integrate staffing and scheduling decisions in a nurse

scheduling problem and demonstrate that the schedules generated by the integrated ap-

proach are preferable in terms of cost and personnel satisfaction. Ingels and Maenhout [57]

propose a two-phase framework for tackling personnel scheduling problems under demand

and employees’ availability uncertainty. In the first phase, they assign employees to shifts

as regular and reserved workforce. In the second phase, they simulate the random pro-

cesses, and if needed, optimize the utilization of reserved workforce via an optimization

model. They suggest a sequential solution method where the output of the first phase is

inserted into the operational phase. In Zhong et al. [58], nurse staffing and scheduling are

done in a two-stage heuristic algorithm that considers fairness objective on weekends and

balanced workloads under different shift designs. Additionally, Chiaramonte and Caswell

[59] propose an agent-based nurse rostering system that integrates nurse scheduling and

rescheduling into a single framework. In their method, the agent system minimizes the dif-

ference between the initial roster and the rescheduled one using a local search algorithm.

A handful of studies integrate some stages of manpower planning into a two-stage

stochastic programming model. Campbell [41] analyzes a staffing and scheduling problem

for cross-trained workers in a service industry with multiple departments and formulates it

as a two-stage stochastic program. The first-stage decisions are to assign workers to work

tours, and the recourse actions are to assign cross-trained workers. Bard et al. [60] tackle

the workforce planning at one of the U.S. post service distribution centers by using stochas-

tic programming. The staffing decisions regarding full time and part time workers are made

in the first stage, and the final allocations of workers to the shifts and decisions regarding
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the assignment of additional resources are made during the second-stage. Punnakitikashem

et al. [61] formulate the workload assignment of nurses at a hospital in the U.S. as a two-

stage stochastic program. The authors consider the first-stage decisions to be the assign-

ment of patients to nurses. The recourse actions are considered as the amount of direct

or indirect care performed by each nurse. Punnakitikashem et al. [62] extend this work

to consider the nurse staffing problem along with the workload assignment problem. The

authors introduce a two-stage stochastic program in which the staffing decisions are made

in the first stage, and in the second-stage the duty assignments are executed with respect to

outcomes of uncertain parameters. Zhu and Sherali [63] formulate a multi-category work-

force planning problem with recruitment capacity constraints under demand uncertainty

as a two-stage stochastic program. The staffing and allocation decisions are considered

as first-stage decisions, and the workload assignment decisions are considered as recourse

actions. Kim and Mehrotra [64] formulate the scheduling and rescheduling of nurses in

polyclinics as a two-stage stochastic program, and propose a formulation which defines the

convex hull of the second-stage MIP. El-Rifai et al. [65] propose a two-stage stochastic

program for modeling a personnel scheduling problem in an emergency department with

the goal of minimizing the expected patients wait time.

The above literature review indicates the paucity of research on incorporating uncer-

tainty into physician scheduling problems. While the uncertainty has been only considered

in some stages of workforce planning (e.g., strategic or tactical level) in service indus-

tries, to the best of our knowledge, no prior contribution exists that investigates the three

stages of manpower planning considering uncertainty under a unifying decision framework.

Therefore, this article aims to fill this void in the literature given the fact that adopting a

deterministic approach could significantly affect the economic viability of the schedule.
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3.3 The Clinic Scheduling and Capacity Planning Prob-

lem

As shown in Figure 1, the CSCPP deals with the strategic decisions in terms of clinics’

weekly sessions in addition to their associated capacities, i.e., the number of patients to ad-

mit, treatment rooms and physicians’ working hours. The goal is to maximize the service

level (i.e., the number of patients that can be visited) under uncertain weekly demand for

each clinic. We first formally define the deterministic CSCPP and provide an MIP formu-

lation for it. We then present the robust R-CSCPP together with an MIP formulation and

an exact solution algorithm for solving it.

3.3.1 Problem Definition and Formulation

Let C, I, J, and K denote the sets of clinics, physicians, days and shifts per day, respec-

tively. A shift in our study corresponds to a 4-hour period. We also assume (equal length)

morning and afternoon shifts for each day of the week. The set of subsets of interdisci-

plinary clinics is denoted by T . Each clinic in subset t ∈ T must be scheduled simulta-

neously with other clinics in the same subset for at least Ft shifts. The number of patients

that can be assessed by a physician in clinic c ∈ C in one shift is denoted as V PSc. Let Ĥi

and Ŷc denote the minimum number of shifts that must be assigned to physician i ∈ I and

clinic c ∈ C, respectively. For every c ∈ C, PUc is a measure of fairness that limits the

total difference among the physicians in clinic c in terms of number of assigned shifts. For

each i ∈ I , f1i represents the cost of assigning physician i to a shift. Let f3 be the cost of

clinics’ staff (non-physicians) per shift. Let Rc be the number of rooms required for non-

physician staff in clinic c ∈ C in a shift. We also assume that every physician needs one

examination room when s/he works. Let f2 denote the cost of using a room and NWVc the

number of patients per week visiting clinic c ∈ C. When demand is more than the planned
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capacity, we assume that patients will not be admitted and will thus have to be transferred

to other hospitals, incurring a cost of f4. The CSCPP consists of determining: (i) the set of

shifts that each clinic is open during the week, (ii) a tentative work schedule for physicians

affiliated with each clinic, (iii) the capacity of each clinic and the number of patients that

can be assessed in each shift, and (iv) the number of rooms allocated to each shift, such

that the demand, restrictions on interdisciplinary clinics, and physicians requirements are

satisfied. The goal is to minimize the total cost of resources (physicians, rooms and clinics’

staff) and the cost of rejected patients.

For each j ∈ J and k ∈ K, we define clinic assignment variables ycjk equal to 1 if

and only if clinic c ∈ C is assigned to shift k on day j. Similarly, for every j ∈ J and

k ∈ K, we define physician assignment variables xijk equal to 1 if and only if physician

i ∈ I is assigned to day j and shift k. For each t ∈ T , j ∈ J , k ∈ K, we define binary

decision variables gtjk equal to 1 if and only if all clinics in subset t are assigned to shift

k on day j. For each clinic c ∈ C, let ndc be an integer variable equal to the number of

rejected patients. For every physician i ∈ I , hi is an integer variable representing the total

number of shifts assigned to physician i. Finally, r is an integer variable denoting number

of required rooms per shift. Using these sets of variables, the CSCPP can be formulated as

follows:

57



minimize
∑
i∈I

f1ihi + f2r +
∑
c∈C

∑
j∈J

∑
k∈K

f3ycjk+
∑
c∈C

f4ndc (27)

subject to
∑
i∈Ic

∑
j∈J

∑
k∈K

V PScxijk + ndc ≥ NWVc c ∈ C (28)

∑
i∈I

xijk +
∑
c∈C

Rcycjk ≤ r j ∈ J, k ∈ K (29)

∑
i∈Ic

xijk ≥ ycjk c ∈ C, j ∈ J, k ∈ K (30)

∑
c∈C|c∈t

ycjk ≥ |t|gtjk t ∈ T, j ∈ J, k ∈ K (31)

∑
j∈J

∑
k∈K

gtjk ≥ Ft t ∈ T (32)

∑
j∈J

∑
k∈K

xijk ≤ hi i ∈ I (33)

∑
j∈J

∑
k∈K

xijk ≥ Ĥi i ∈ I (34)

∑
j∈J

∑
k∈K

ycjk ≥ Ŷc c ∈ C (35)

hi − hi′ ≤ PUc c ∈ C, i, i′ ∈ Ic (36)∑
k∈K

xijk ≤ 1 i ∈ I, j ∈ J (37)

xijk, ycjk, gtjk ∈ {0, 1} i ∈ I, j ∈ J, k ∈ K, c ∈ C, t ∈ T

(38)

hi, r, ndc ∈ Z+ i ∈ I, c ∈ C. (39)

The first three terms of the objective function are the total resource cost (i.e., cost

of physicians, rooms, and clinics) and the last term is the total cost of rejected patients.

Constraints (28) ensure that each clinic demand (i.e., visiting patients) is either served by

physicians or rejected. Constraints (29) specify the number of required rooms in each shift.
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Constraints (30) link the assignment of physicians with corresponding clinics. Constraints

(31) and (32) guarantee that every clinic in each subset of interdisciplinary clinics is as-

signed with other clinics in the subset for the predefined number of shifts. In particular,

constraints (31) force gtjk to take value 1 if and only if all clinics in cluster t are assigned

to shift k on day j, and constraints (32) ensures that all clinics in cluster t are scheduled si-

multaneously at least Ft shifts in a week. Constraints (33) record the total number of shifts

that each physician works. Constraints (34) ensure that physicians are assigned to their

minimum required shifts. Similarly, constraints (35) assure the minimum number of shifts

that each clinic must be open. Constraints (36) guarantee a fair distribution of shifts among

the physicians affiliated with the same clinic. More specifically, this condition restricts the

difference in the number of assigned shifts between any two physicians of a clinic into a

threshold value PUc. Constraints (37) prevent physicians from working more than one shift

per day. Finally, constraints (38) and (39) are the standard integrality and non-negativity

constraints. We note that the physicians’ schedule that is provided by the CSCPP can be

considered as a rough estimate of the actual shift assignment that will be provided by the

second-level SPSP.

3.3.2 A Robust Formulation for the CSCPP

In practice, the weekly demand NWVc used in the CSCPP is usually not known in ad-

vance. At the strategic decision-making level, where it is not possible to have access to

accurate information on the number of arriving patients to clinics on a weekly basis, es-

timating probability distributions associated with clinics’ demand is not straightforward.

Moreover, polyclinic managers are interested in finding robust cyclic schedules that could

work well even in worst-case scenarios of increased demand. Therefore, we adopt a robust

optimization approach in which weekly demands NWVc are modeled with an interval of

uncertainty. By estimating the upper and lower bound of the demand for each clinic, the

59



uncertain demand set of clinic c ∈ C is defined as:

Ωc =
{
NWVc ∈ Z+ : NWVc ≤ NWVc ≤ NWVc

}
,

where Z+ is the set of positive integers and NWVc, NWVc ∈ Z+. Given that it is very

unlikely that all uncertain demand simultaneously achieve their upper bounds, we formulate

the R-CSCPP such that the plan’s cost is as small as possible when the demand takes its

worst case scenario within a certain level of conservatism. In particular, we use a budget of

uncertainty (Γ) similar to the one initially proposed by Bertsimas and Sim [66] to control

the degree of conservatism desired during the decision-making process. Even though each

clinic’s demand may vary within the corresponding interval, we restrict the overall demand

of all clinics to Γ by considering
∑

c∈C NWVc ≤ Γ. Let NWV = (NWV1, . . . , NWV|C|)

denote the vector of demands for each of the |C| clinics. The demand uncertainty set Ω is

defined as:

Ω =

{
NWV : NWVc ∈ Ωc,∀c ∈ C,

∑
c∈C

NWVc ≤ Γ

}
,
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where ω ∈ Ω is a possible outcome of the uncertainty set. The R-CSCPP is formulated as

follows:

minimize η

subject to (29)–(39)

η ≥
∑
i∈I

f1ihi + f2r +
∑
c∈C

∑
j∈J

∑
k∈K

f3ycjk

+
∑
c∈C

f4nd
ω
c ω ∈ Ω (40)

∑
i∈Ic

∑
j∈J

∑
k∈K

V PScxijk + ndωc ≥ NWV ω
c c ∈ C, ω ∈ Ω (41)

η, ndωc ∈ R+. c ∈ C, ω ∈ Ω (42)

The R-CSCPP seeks a clinic schedule and capacity plan such that the cost is minimized

under worst-case demand scenarios within the uncertainty set Ω. Constraints (40) formulate

the total cost of each scenario, in which η is a decision variable that captures the maximum

cost caused by the worst case scenario, and ndωc is an integer variable equal to the number

of rejected patients of clinic c ∈ C in scenario ω ∈ Ω. Constraints (41) are the demand

coverage constraint for each scenario ω ∈ Ω. Observe that although Ω is a finite set, its size

grows exponentially in C. The R-CSCPP thus involves a huge number of variables ndωc ,

and constraints (40) and (41) cannot be solved explicitly using a general purpose solver. In

the next section, we describe an exact column-and-row generation algorithm that is used to

efficiently solve this problem.

3.3.3 An Implementor/Adversary Algorithm for the R-CSCPP

In order to solve the proposed MIP formulation for the R-CSCPP, we use an iterative

column-and-row generation procedure commonly referred to as the implementor/adversary
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algorithm [67]. This algorithm has been successfully applied to solve various robust op-

timization problems [see for instance, 68, 69]. It decomposes the original problem into

two simpler ones: the implementor and the adversary subproblem. The main idea of the

algorithm is to initially consider only a small subset of scenarios Ω̃ ⊂ Ω to define a re-

stricted implementor problem (I-CSCPP), and to iteratively generate new scenarios via the

adversary problem until an optimal solution to the original R-CSCPP is obtained. We note

that I-CSCPP is a relaxation of the R-CSCPP given that it only considers the subset of

constraints (40) and (41) associated with Ω̃.

Let x̃ = (h̃i, r̃, ˜xijk, ˜ycjk) be the optimal solution to the restricted implementor problem,

and ηx̃ be the corresponding objective function value, which provides a valid lower bound

(L) on the optimal solution value of R-CSCPP. For any ω ∈ Ω, let f(x̃, ω) be the associated

cost of x̃, and ˜ndωc be the number of rejected patients in scenario ω. If f(x̃, ω) ≤ ηx̃, and

˜ndωc ensures the feasibility of constraints (41) for all ω ∈ Ω, then x̃ is the optimal solution

to the original R-CSCPP with optimal solution value ηx̃. Otherwise, there exists at least

one scenario ω ∈ Ω \ Ω̃ that leads to a violated inequality of the type (40) and/or (41).

In order to prove optimality, or to determine which scenario leads to a violated inequal-

ity, we solve the adversary problem (i.e., separation problem) to find a scenario ω∗ that

maximizes the cost f(x̃, ω). In particular, for a given solution x̃ of the restricted implemen-

tor problem, the adversary problem can be stated as the following MIP:
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maximize
∑
c∈C

f4ndc +
∑
i∈I

f1ih̃i + f2r̃ +
∑
c∈C

∑
j∈J

∑
k∈K

f3 ˜ycjk (43)

subject to NWVc ≤ nwvc ≤ NWVc c ∈ C (44)∑
c∈C

nwvc ≤ Γ (45)

ndc ≤Mzc + nwvc −
∑
i∈Ic

∑
j∈J

∑
k∈K

V PSc ˜xijk c ∈ C (46)

ndc ≤M (1− zc) c ∈ C (47)

zc ∈ {0, 1} c ∈ C (48)

ndc ∈ R+ c ∈ C (49)

nwvc ∈ Z+, c ∈ C (50)

where nwvc are integer variables representing the demand for clinic c ∈ C, andM is a large

constant. Constraints (44) and (45) ensure that for each c ∈ C, the clinic demand value

nwvc is within the uncertainty set Ω. For each c ∈ C, zc are binary decision variables equal

to 1 if the demand of clinic c is more than the capacity allocated according to schedule x̃

(i.e., nwvc −
∑

i∈Ic
∑

j∈J
∑

k∈K V PSc ˜xijk < 0), and 0 otherwise. Constraints (46) and

(47) ensure that for each c ∈ C, ndc represents the number of rejected patients associated

with current assignments of physicians ˜xijk.

The optimal solution value of the adversary problem, denoted by f(x̃, ω∗), provides

a valid upper bound (U) on the optimal solution value of R-CSCPP. If there is a new

scenario ω∗ that leads to a violated inequality, it is added to Ω̃, and the updated restricted

implementor problem is solved again. This iterative procedure is performed until the gap

between the best upper and lower bounds reaches a predefined threshold value ε. The

implementor/adversary algorithm is summarized in Algorithm 1.
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Algorithm 3 Implementor/adversary algorithm for R-CSCPP
Initialization: Ω̃ = ∅, L = −∞, U = +∞
while U − L > ε do

Solve the restricted implementor problem with Ω̃ to obtain x̃ and L.
L← ηx̃
Solve the adversary problem (43) - (50) to obtain ω∗

if U > f(x̃, ω∗) then
U ← f(x̃, ω∗)

Ω̃← Ω̃ ∪ ω∗

3.4 The Physician Scheduling Problem

In this section, we address the tactical and operational levels of our physician planning

framework summarized in Figure 3.1. At these levels, the physicians are assigned to dif-

ferent shifts over a one-week planning horizon to satisfy clinics’ demand while taking into

account the uncertainty in patient treatment times, physician preferences, as well as fair-

ness and ergonomic criteria. We note that the polyclinic capacity plan derived from the first

level of the planning framework acts as the input to the second-level physician scheduling

problem. In what follows, we first provide a formal definition and an MIP formulation

for the deterministic variant of the PSP. We then show how we incorporate the uncertainty

in patient treatment times into the PSP and formulate it as a two-stage integer stochastic

program. Finally, we present an SAA scheme to generate feasible solutions and obtain a

statistical estimation of their optimality gap.

3.4.1 Problem Definition and Formulation

Consider the sets and parameters previously defined for the CSCPP. In addition, for each

j ∈ J and k ∈ K, let Dcjk denote the number of patients visiting clinic c ∈ C, and Rjk

the number of available examination rooms. For every physician i ∈ I , Hi denotes the

maximum number of on-duty shifts. Using the optimal solution (h̃i, r̃, ˜xijk, ˜ycjk) of the
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R-CSCPP, the above parameters can be defined as follows:

Dcjk =
∑
i∈Ic

V PScjk ˜xijk c ∈ C, j ∈ J, k ∈ K (51)

Rjk = r̃ −
∑
c∈C

Rc ˜ycjk j ∈ J, k ∈ K (52)

Hi = h̃i i ∈ I. (53)

Let NJi be the set of days that physician i ∈ I is not available to work. For each

i ∈ I , let TKi denote the percentage of total working shifts that physician i must be

assigned to the shifts that s/he prefers to work in. To reflect physicians preferences for

working in a specific shift, for each i ∈ I , j ∈ J and k ∈ K, we define PRijk equal to

1 if physician i prefers to work on day j, shift k, and 0 otherwise. The PSP consists of

assigning physicians to a set of shifts on a weekly basis, such that the demand per shift,

examination room capacity, and physicians preferences are satisfied while minimizing the

total physicians’ cost. Physician assignment variables xijk are defined as in the CSCPP.

The PSP can be formulated as the following MIP:
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minimize
∑
i∈I

∑
j∈J

∑
k∈K

f1ixijk (54)

subject to
∑
i∈Ic

V PScjkxijk = Dcjk c ∈ C, j ∈ J, k ∈ K (55)

∑
i∈I

xijk ≤ Rjk j ∈ J, k ∈ K (56)

∑
j∈J

∑
k∈K

(xijk − xi′jk) ≤ PUc c ∈ C, i, i′ ∈ Ic (57)

∑
k∈K

xijk = 0 i ∈ I, j ∈ NJi (58)

∑
j∈J

∑
k∈K

xijk ≤ Hi i ∈ I (59)

∑
j∈J

∑
k∈K

(TKixijk − PRijkxijk) ≤ 0 i ∈ I (60)

∑
k∈K

xijk ≤ 1 i ∈ I, j ∈ J (61)

xijk ∈ {0, 1} i ∈ I, j ∈ J, k ∈ K. (62)

The objective function represents the total cost of physicians. Constraints (55) ensure

that an adequate number of physicians is assigned to each shift to provide service to the

scheduled patients. Constraints (56) restrict the number of physicians in each shift to the

number of available examination rooms. Constraints (57) restrict the difference in the num-

ber of assigned shifts between any two physicians of each clinic. Constraints (58) prevent

assigning physicians to the shifts that they are not available to work. Constraints (59)

limit the number of shifts that a physician can be on-duty by considering her/his maximum

workload. Constraints (60) ensure that a certain percentage of physicians’ workload are as-

signed according to their preferences. Similarly, constraints (61) prohibit physicians from

working more than one shift per day. Lastly, constraints (62) are the standard integrality
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constraints.

3.4.2 Dealing with Patient Treatment Time Uncertainty

The PSP described in the previous section assumes that the number of patients that a physi-

cian can assess per shift (V PScjk) is known and deterministic. However, in practice the

treatment time of each patient changes depending on their condition and acuity, thus the

values V PScjk are uncertain. In this section, we assume that treatment times are stochastic

and can be represented as a finite set of scenarios with known probability. This is a realistic

assumption due to the fact that the patients that visit the polyclinics under discussion can

actually be classified into a rather small number of classes of patients, each associated with

a different condition. As a consequence, the probability distribution of treatment times and

the percentage of patients of each class can be realistically estimated. In this context, we

assume that the physicians schedule must be determined at the beginning of the planning

horizon (week) without full knowledge of the list of patients that must be served during

each shift. In other words, the treatment times are not revealed to the decision maker at

this stage. The patients’ treatment times, on the contrary, will be revealed only few hours

before the beginning of a shift. At this point, the decision maker would have a much more

accurate estimate on the treatment times by referring to the initial clinical assessment of

each patient, which is done prior to the patients’ appointments with the doctors. Given that

physicians have already been assigned to shifts, depending on the patient mix assigned to

a particular shift, it may be possible that not all scheduled patients can be assessed during

the regular duration of the shift. In order to ensure service is provided to all schedule pa-

tients, three types of corrective (recourse) actions with associated costs are considered: i)

assign an extra number of physicians from on-call physicians, ii) extend shift duration (i.e.

over-time), and iii) request additional examination rooms. It should be noted that the third
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recourse action is a consequence of the first one in the sense that additional physicians re-

quire more resources. On the other hand, the initial schedule might lead to an idle time for

physicians due to low treatment times required for patients scheduled during a shift. The

under-utilization of physicians would then incur in non-essential service costs for hospital’s

management.

Given the above assumptions, the stochastic PSP can be formulated as a multi-stage

stochastic program with recourse where each stage is associated with a shift of the plan-

ning horizon. The first-stage decisions (those made at the beginning of the week) revolve

around assigning physicians to either regular or on-call duties over all shifts during the

planning horizon. On the contrary, calling on-call physicians to work during a shift, as-

signing physicians to extended (over-time) shifts, and requesting extra examination rooms

are the decisions that are made as corrective actions at the beginning of each shift (stage)

for different scenarios that depend on patients’ treatment times. Similar to the majority of

personnel scheduling problems (see e.g., [60]), we note that the recourse decisions made

at the beginning of each stage (shift) do not affect the decisions in subsequent stages. That

is, the non-anticipativity condition (NAC) should only be satisfied for the first-stage deci-

sions. Therefore, the multi-stage stochastic program can be transformed into a two-stage

stochastic program with recourse, denoted by SPSP.

Consider the sets and parameters defined for the deterministic PSP. We denote Ξ as

the set of random scenarios, where Ξ = {ξ1, . . . , ξ|Ξ|}, and P ξ denotes the probability of

scenario ξ ∈ Ξ. Let V PSξcjk represent the number of patients that can be visited in clinic

c ∈ C during shift j ∈ J by physician k ∈ K under scenario ξ ∈ Ξ. Similar to assigning

on-duty physicians, for each i ∈ I , j ∈ J , k ∈ K, we define x′ijk equal to 1, if and only

if physician i is assigned on day j, shift k, as on-call. Let f5 be the cost of assigning a

physician as on-call per shift. As mentioned, if the number of on-duty physicians is not

enough for a certain scenario during a shift, on-call physicians are called to work, and
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additional examination rooms are prepared to accommodate them. For each i ∈ I , j ∈ J ,

k ∈ K, ξ ∈ Ξ, we define sξijk equal to 1, if and only if on-call physician i is called to work

on day j, shift k, under scenario ξ. Also, for each j ∈ J , k ∈ K, ξ ∈ Ξ, the decision

variable erξjk represents the number of additional examination rooms prepared for shift k

on day j, under scenario ξ. f6 and f7 denote the costs for calling an on-call physician to

work and preparing an additional examination room, respectively.

For each c ∈ C, j ∈ J , k ∈ K, ξ ∈ Ξ, the recourse decision otξcjk represents the

number of patients visiting clinic c in shift k on day j who are processed during overtime

shift, under scenario ξ, and f8 is the corresponding cost. To measure the under-utilization

of on-duty physicians under some scenarios, we define the recourse decision oaξcjk for each

c ∈ C, j ∈ J , k ∈ K, ξ ∈ Ξ to represent the proportion of the total available physicians’

time that is idle in clinic c, shift k, day j, and scenario ξ. f9 is the cost of idle physicians.

The objective of the SPSP is to minimize the cost of on-duty and on-call physicians, plus

the expected cost of recourse decisions over all treatment time scenarios. The SPSP can be

formulated as follows:

minimize
∑
i∈I

∑
j∈J

∑
k∈K

(f1ixijk + f5x
′

ijk) +
∑
ξ∈Ξ

P ξ

[∑
i∈I

∑
j∈J

∑
k∈K

f6s
ξ
ijk

+
∑
j∈J

∑
k∈K

f7er
ξ
jk +

∑
c∈C

∑
j∈J

∑
k∈K

(f8ot
ξ
cjk + f9oa

ξ
cjk)

]
(63)
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subject to (59) – (62)∑
i∈Ic

V PSξcjk(xijk + sξijk) + otξcjk − V PS
ξ
cjkoa

ξ
cjk = Dcjk

c ∈ C, j ∈ J, k ∈ K, ξ ∈ Ξ

(64)∑
i∈I

(xijk + sξijk)− er
ξ
jk ≤ Rjk j ∈ J, k ∈ K, ξ ∈ Ξ (65)

∑
j∈J

∑
k∈K

(xijk + x′ijk − xi′jk − x′i′jk) ≤ PUc c ∈ C, i, i′ ∈ Ic (66)

∑
k∈K

(xijk + x
′

ijk) ≤ 0 i ∈ I, j ∈ NJi (67)

xijk + x
′

ijk ≤ 1 i ∈ I, j ∈ J, k ∈ K (68)∑
k∈K

(xijk + sξijk) ≤ 1 i ∈ I, j ∈ J, ξ ∈ Ξ (69)

sξijk ≤ x
′

ijk i ∈ I, j ∈ J, k ∈ K, ξ ∈ Ξ

(70)

x
′

ijk, s
ξ
ijk ∈ {0, 1} i ∈ I, j ∈ J, k ∈ K, ξ ∈ Ξ

(71)

otξcjk, er
ξ
jk ∈ Z+ c ∈ C, j ∈ J, k ∈ K, ξ ∈ Ξ

(72)

oaξcjk ∈ R+. c ∈ C, j ∈ J, k ∈ K, ξ ∈ Ξ

(73)

The first two terms of the objective are the total cost of assigning physicians as on-duty

and on-call, respectively. The last four terms are the expected cost of calling on-call physi-

cians to work, preparing additional examination rooms, serving patients in overtime shifts,

and physicians’ idle time over all scenarios. Constraints (64) specify the number of patients

served by on-duty or on-call physicians, the number of patients assessed during overtime,
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and the amount of physicians’ idle time during each shift for all scenarios. Constraints (65)

are the examination rooms capacity constraints. Constraints (66) ensure fair assignments

of on-duty and on-call shifts among the physicians of each clinic. Constraints (67) forbid

the on-call or on-duty assignments to the shifts that physicians are not available to work

in. Constraints (68) prevent simultaneous assignments of physicians as on-call and on-duty

at any given shift. Constraints (69) guarantee that each physician works no more than one

shift per day. Constraints (70) assure that physicians can be called to work in a shift only if

they have been already assigned as on-call to that shift. Finally, constraints (71) − (73) are

the standard integrality and non-negativity constraints.

3.4.3 Sample Average Approximation

We now present an algorithm for solving the SPSP that incorporates a Monte-Carlo sam-

pling technique, known as the SAA scheme [70–73], with a general purpose MIP solver.

Broadly speaking, the SAA scheme generates a random sample and approximates the ex-

pected value function by the corresponding sample average function. The associated de-

terministic sample average optimization problem is then solved to obtain a solution of the

SPSP, and the procedure is repeated. The SAA scheme not only generates high quality so-

lutions when solving the sample average problems, but is also able to produce a statistical

estimation of their optimality gap.

The main difficulty in solving the SPSP is the number of variables and constraints

needed to explicitly consider its very large scenario set Ξ. In the SAA scheme, a random

sampleN = {ξ1, . . . , ξ|N |} of scenarios from the original set Ξ is generated, and the second

stage expectation

∑
ξ∈Ξ

P ξ

[∑
i∈I

∑
j∈J

∑
k∈K

f6s
ξ
ijk +

∑
j∈J

∑
k∈K

f7er
ξ
jk +

∑
c∈C

∑
j∈J

∑
k∈K

(f8ot
ξ
cjk + f9oa

ξ
cjk)

]
,
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is approximated by the sample average function

1

|N |
∑
n∈N

[∑
i∈I

∑
j∈J

∑
k∈K

f6s
n
ijk +

∑
j∈J

∑
k∈K

f7er
n
jk +

∑
c∈C

∑
j∈J

∑
k∈K

(f8ot
n
cjk + f9oa

n
cjk)

]
,

where the index associated with the specific scenario ξ ∈ Ξ is replaced by the index as-

sociated with the sample scenario n ∈ N . Therefore, after replacing ξ by n in constraints

(64)-(73), the original two-stage stochastic program SPSP is approximated by the SAA

problem

minimize
∑
i∈I

∑
j∈J

∑
k∈K

(
f1ixijk + f5x

′

ijk

)
+

1

|N |
∑
n∈N

[∑
i∈I

∑
j∈J

∑
k∈K

f6s
n
ijk +

∑
j∈J

∑
k∈K

f7er
n
jk +

∑
c∈C

∑
j∈J

∑
k∈K

(f8ot
n
cjk + f9oa

n
cjk)

]

subject to(59)− (62), (64)− (73).

Let x̃N denote the corresponding optimal solution of the above SAA problem and zN its

objective value. It can be shown that under mild regularity conditions, x̃N and zN converge

with probability one to their true counterparts, as the sample size |N | increases. Moreover,

x̃N converges to an optimal solution of the original problem with probability approaching

one exponentially fast [72]. It is also possible to estimate the sample size |N | needed

to generate and ε− optimal solution to the original problem with a probability at least

equal to 1 − α. However, it is known that the sample size estimate is too conservative for

practical applications. Therefore, instead of solving one large-scale SAA problem, the SAA

algorithm involves in the generation of a set of M independent samples of solutions for the

corresponding smaller SAA problems. Using the optimal solution values z1
N , . . . , z

|M |
N from

these |M | SAA problems, we compute statistical lower and upper bounds for the optimal

solution value of the original problem. We now describe our implementation of the overall
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SAA procedure. Later, in Section 3.5.2 we will show how to select a sample size capable

of producing tight and accurate statistical bounds.

1. Generate a set M =
{
N1, . . . , N|M |

}
of independent samples, each of size |N |, i.e.,

ξij, . . . , ξ
|N |
j for j ∈ M . For each sample Nj solve the corresponding SAA problem

using a general purpose MIP solver. Let zNj and x̃Nj , j ∈ M , be the corresponding

optimal objective value and an optimal solution, respectively.

2. Compute the average of all optimal solution values from the SAA problems and their

variance:

µNM =
1

|M |
∑
j∈M

zNj ,

σ2
µNM

=
1

(|M | − 1)|M |
∑
j∈M

(
zNj − µNM

)2
.

It is known that the average µNM provides a statistical lower bound for the optimal

value of the original problem SPSP [71], i.e. E
[
µNM
]
≤ z∗, and σ2

µNM
is an estimate

of the variance of this estimator.

3. Choose a feasible solution x̃ of the original problem, for instance, one of the pre-

viously obtained solutions x̃Nj . Using this solution, it is possible to estimate the

optimal solution value z∗ of the original problem SPSP as follows:

zN ′ (x̃) = min
∑
i∈I

∑
j∈J

∑
k∈K

(f1i ˜xijk + f5 ˜xijk
′
)

+
1

|N ′|
∑
n∈N ′

[∑
j∈J

∑
k∈K

(
∑
i∈I

f6s
n
ijk + f7er

n
jk)

+
∑
c∈C

∑
j∈J

∑
k∈K

(f8ot
n
cjk + f9oa

n
cjk)

]

subject to(59)− (62), (64)− (73),
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where ξi, . . . , ξN ′ is a sample of size N ′ generated independently of the samples

employed in the SAA problems, and ξ is replaced by n in constraints (59)-(62), (64)-

(73). Given that the first-stage variables are fixed, one can take |N ′| much larger

than the sample size |N | used in the SAA problems. Note that zN ′ (x̃) is an estimate

on the upper bound on the optimal solution value z∗ of the original problem, i.e.

E[zN ′ (x̃)] ≥ z∗. The variance of this estimate can be computed as

σ2
N ′(x̃) =

1

(|N ′| − 1)|N ′|
∑
n∈N ′

[∑
i∈I

∑
j∈J

∑
k∈K

(f1 ˜xijk + f5 ˜xijk
′
)+
∑
j∈J

∑
k∈K

(
∑
i∈I

f6s
n
ijk

+ f7er
n
jk) +

∑
c∈C

∑
j∈J

∑
k∈K

(f8ot
n
cjk + f9oa

n
cjk)− Z̃N ′ (x̃)

]2

.

According to Verweij et al. [73], one should take x̃∗ as the best solution among

x̃1
N , . . . , x̃

M
N candidate solutions, that is:

x̃∗ ∈ arg min
{
zN ′ (x̃) : x̃ ∈ {x̃1

N , . . . , x̃
M
N }
}
.

4. Compute an estimate of the % optimality gap of solution ẑ by using the lower and

upper bound estimates on the optimal solution value of the original problem SPSP

obtained in Steps 2 and 3:

GAP(x̃∗) =

(
zN ′ (x̃

∗)− µNM
)

zN ′ (x̃
∗)

× 100.
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3.5 Computational Results

This section presents the results of computational experiments obtained using data from a

real case study in a polyclinic in Montreal, Canada. The computational experiments con-

sist of three parts. We first evaluate the convergence and solution time of the Implemen-

tor/Adversary (I/A) algorithm developed to solve the R-CSCPP for the real-case problem.

We then analyze the performance of the proposed SAA algorithm for solving the SPSP.

Finally, using a Monte Carlo simulation, we compare the cost of schedules obtained from

our framework with the cost of the expected value problem (EVP) in which uncertain pa-

rameters are replaced with their expected values. All experiments were run on an HP server

with an Intel(R) Xeon(R) CPU E5-2687W v3 processor running at 3.10 GHz and 512 GB

of RAM under a Linux environment. All algorithms were coded in C++, and the SAA

problems were solved using Concert Technology of CPLEX 12.7.0.

The studied polyclinic operates five days a week and two shifts each day. Table 3.1

shows the information of the polyclinic, in which the first two columns are the clinics’

identification number and their discipline. The third column contains the number of physi-

cians in each clinic. The fourth and fifth columns provide lower and upper bounds on the

number of visiting patients to each clinic, respectively. Finally, the last three columns con-

tain the minimum, average, and maximum number of patients that can be assessed by one

physician in one shift, respectively. This information was obtained from historical data.
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Table 3.1: Polyclinic information

ID Clinic # Physicians Demand # Patients/Physician/Shift
NWVc NWVc V PSc V PSc V PSc

1 Breast 19 90 270 2 4 13
2 Urology 15 115 345 3 7 21
3 Hematology 21 95 285 2 4 12
4 Gynecology 7 66 197 7 10 20
5 Hepatology 10 110 330 5 7 12
6 Lung 19 85 255 2 4 10
7 Musculoskeletal 6 35 105 2 5 18
8 Melanoma 9 200 600 12 18 24
9 Upper GI 10 10 30 1 2 4
10 Pain 7 8 23 1 2 3
11 Cancer Rehab. 6 13 38 1 2 3
12 Colorectal 12 75 225 2 4 8
13 Brain 6 15 45 1 2 12

Table 3.2 contains the information regarding interdisciplinary clinics. There are five

clusters of interdisciplinary clinics that must be simultaneously scheduled for a given num-

ber of shifts. The first two columns show the clusters’ identification number and the in-

terdisciplinary clinics in each cluster. The third column contains the number of shifts that

each cluster must be scheduled simultaneously during a week.

Table 3.2: Interdisciplinary clinics

Clusters Interdisciplinary groups Frequency
1 (6) & (10) 4
2 (6) & (11) 4
3 (12) & (5) 4
4 (2) & (10) 3
5 (6) & (8) 1

Without loss of generality, we assume all costs to be rational numbers and to be set

according to their relative priority levels. Based on the results of a survey conducted at

the polyclinic, service-level-related costs have the highest priority for the administration,

followed by the cost of physicians that are higher than the cost of the other resources. Tables

3.3 and 3.4 provide the considered cost values in our experiments for the R-CSCPP and the

SPSP, respectively. As can be seen, we assume the costs of rejecting and rescheduling a

patient (f4 and f8) to be significantly higher than the costs of resources and physicians,

as the polyclinic administration would like to process as many patients as possible during

regular shifts. Moreover, we assume equal costs for all physicians.
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Table 3.3: Cost values of R-CSCPP

Parameter Value
f1 5
f2 1
f3 1
f4 50

Table 3.4: Cost values of SPSP

Parameter Value
f1 5
f5 2.5
f6 10
f7 7.5
f8 50
f9 15

3.5.1 Performance of the I/A on the R-CSCPP

We now present the results of the experiments for assessing the performance of the I/A

algorithm. In particular, R-CSCPP is solved using different values of Γ. We note that Γ can

take values in the interval
[∑

c∈C NWVc,
∑

c∈C NWVc
]

= [917, 2748]. However, since

a physician serves multiple patients in each shift (i.e., V PSc), and the demand constraint

is not an equality constraint, the total number of served patients is not necessarily equal

to Γ. In our experiments, Γ = 1667 represents the case in which all clinics’ demand are

simultaneously at their upper bounds.

The results for Γ = 1067 are given in Figure 3.2. In this case, our I/A algorithm

converges after 173 seconds and 20 iterations. For each iteration, the lower bound returned

by the implementor (lower dotted line) and the upper bound returned by the adversary

(upper solid line) are plotted and their associated values given in the left y−axis. The dash

line with circle marks shows the optimality gap (i.e., percent deviation of implementor from

the best known solution of the adversary problem) on the right y−axis. As can be seen,

the algorithm requires few iterations to converge (we observed a similar behavior under

different Γ values).
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Figure 3.2: Convergence profile of I/A algorithm for Γ = 1067

Table 3.5 shows the percentage of maximum demand (worst-case scenario) for the clin-

ics that can be satisfied under the optimal solution obtained by the R-CSCPP when con-

sidering different values of budget of uncertainty (Γ). The first column gives the value

of Γ associated with each instance. The second column provides the running time of the

algorithm (in seconds) to terminate. The rest of the columns give the percentage of the

worst-case demand served in each clinic, starting from the breast clinic (c1) to the brain

clinic (c13). As can be seen in Table 3.5, the algorithm terminates with an optimal solution

in less than 200 seconds in all considered instances. In these experiments, in each instance

we included the variables and constraints generated during the solution of the instances

with smaller Γ values in the implementor problem. As the row Γ = 1667 shows, 100

percent of the worst case demand in all clinics is already served. Therefore, any Γ value

1667 ≤ Γ ≤ 2780 will provide the same solution as Γ = 1667.
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Table 3.5: % of worst-case demand level served at the optimal solution of the R-CSCPP
for different Γ values

Γ Time c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

917 3 34 34 33 35 34 34 33 35 33 33 35 33 35
967 21 34 34 33 35 34 34 38 35 33 33 35 33 35
1017 107 38 38 38 40 38 39 48 35 40 33 35 39 35
1067 173 66 58 64 75 62 69 90 47 60 50 55 72 48
1117 57 99 90 99 100 94 98 100 65 100 92 95 98 96
1167 31 99 98 99 100 100 100 100 74 100 100 95 98 96
1217 20 99 98 99 100 100 100 100 82 100 100 95 98 96
1267 32 99 98 99 100 100 100 100 91 100 100 95 98 100
1317 35 99 98 99 100 100 100 100 100 100 100 95 98 100
1367 25 100 100 99 100 100 100 100 100 100 100 95 98 100
1417 7 100 100 99 100 100 100 100 100 100 100 95 98 100
1467 6 100 100 99 100 100 100 100 100 100 100 95 98 100
1517 25 100 100 99 100 100 100 100 100 100 100 95 100 100
1567 22 100 100 100 100 100 100 100 100 100 100 95 100 100
1667 5 100 100 100 100 100 100 100 100 100 100 100 100 100

3.5.2 Performance of the SAA Scheme for the SPSP

Table 3.6 summarizes the computational results of the SAA algorithm for the SPSP. The

realization of the uncertain parameters corresponding to the number of patients assessed by

a physician during a shift for each scenario ξ are generated according to a truncated Poisson

distribution with a mean value equal to V PSc, for each c ∈ C. We recall that our bi-level

framework starts by solving the R-CSCPP with a given budget of uncertainty Γ. Then, it

proceeds to solving the SPSP. For each combination of Γ and a number of sample scenarios

N , the rows of Table 3.6 provide the following information: Z̄N , σZ̄N , Z̃N ′ (x̃), σZ̃
N
′ (x̃), %

GAP, and CPU time. For these experiments, we consider M = 40 and N ′ = 2, 000.

As can be seen from Table 3.6, high quality solutions can be obtained in all considered

instances by using a relatively small sample size. In particular over all the instances, a

sample size of N = 30 can provide solutions within 2% optimality gap. It is also notewor-

thy that standard deviations of statistical lower and upper bounds are small enough, which

suggests that the values of M and N ′ are sufficiently large. As expected, the CPU time

increases as the sample size increases, taking almost 24 hours for a sample size of N = 60.

Observe that the total CPU time for solving all the instances with a sample size of N = 30

is no more than three and half hours.
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Table 3.6: Results of the SAA algorithm with M = 40 and N ′ = 2, 000

Γ Ind. N
1 5 10 20 30 40 50 60

917

Z̄N 3818.62 4447.86 4551.53 4573.13 4614.51 4635.68 4642.20 4647.52
σZ̄N

138.93 63.35 35.82 17.60 21.28 15.68 13.78 12.44
Z̃
N
′ (x̃) 11677.80 6053.71 4837.10 4681.55 4677.83 4672.75 4645.12 4642.61

σZ̃
N
′ (x̃) 50.70 32.98 14.72 13.89 14.09 13.88 13.97 13.57

GAP 67.30 26.53 5.90 2.32 1.35 0.79 0.06 -0.11
CPU 274.37 475.33 4162.30 9812.14 11055.88 25280.52 59168.13 84156.51

1067

Z̄N 7521.90 8414.72 8848.81 8793.63 8865.92 8891.89 8890.51 8900.37
σZ̄N

377.74 113.12 68.65 44.72 35.51 36.58 28.18 21.48
Z̃
N
′ (x̃) 20857.40 10355.80 9146.95 8948.85 8947.39 8934.56 8903.35 8915.84

σZ̃
N
′ (x̃) 75.31 47.73 29.85 29.14 29.27 29.05 28.98 28.50

GAP 63.94 18.74 3.26 1.73 0.91 0.48 0.14 0.17
CPU 280.00 1058.00 3122.27 4583.59 9672.30 13190.48 28403.95 63560.44

1167

Z̄N 10610.00 11014.70 11637.70 11718.30 11786.20 11801.78 11804.80 11788.80
σZ̄N

432.94 241.72 103.67 69.92 64.60 51.89 45.56 36.00
Z̃
N
′ (x̃) 22360.90 13735.20 12100.60 11913.60 11882.50 11836.80 11806.00 11793.80

σZ̃
N
′ (x̃) 90.22 70.45 44.85 42.49 43.50 43.81 43.36 45.67

GAP 52.55 19.81 3.83 1.64 0.81 0.30 0.01 0.04
CPU 269.46 593.03 4371.88 6143.82 9264.97 15477.57 21402.85 40532.60

1467

Z̄N 10472.00 11392.70 12041.50 12088.74 12068.50 12085.90 12158.70 12174.89
σZ̄N

542.15 202.76 89.53 71.13 53.61 53.88 43.53 41.07
Z̃
N
′ (x̃) 24354.10 13266.30 12348.50 12234.30 12240.30 12239.90 12197.80 12180.40

σZ̃
N
′ (x̃) 88.39 61.85 46.17 46.42 45.16 45.20 46.00 45.36

GAP 57.00 14.12 2.49 1.19 1.40 1.26 0.32 0.05
CPU 269.65 582.08 5344.20 7482.70 8612.77 11942.59 15724.38 20116.55

1667

Z̄N 10528.70 11466.40 12442.00 12567.60 12579.21 12591.60 12533.60 12610.00
σZ̄N

400.60 157.42 131.86 62.31 62.10 48.19 43.89 46.25
Z̃
N
′ (x̃) 23860.80 14012.70 12914.60 12681.90 12683.40 12676.50 12632.00 12635.50

σZ̃
N
′ (x̃) 90.27 68.92 48.62 47.88 47.50 47.69 48.36 47.51

GAP 55.87 18.17 3.66 0.90 0.82 0.67 0.78 0.20
CPU 272.27 541.83 4494.05 6239.83 10121.72 17450.84 24467.91 24806.62

Figure 3.3 visualizes the results of the table and plots the percent deviation gap between

the statistical lower bounds and upper bounds and CPU times over different sample sizes.

The left y−axis provides the optimality gap for the solid lines, and the right y−axis shows

the CPU time for the series plotted by the dash lines. As the figure shows, the solutions

obtained with N = 5 can be at most 27% away from its lower bound. As we increase the

sample size, both the lower bounds and upper bounds improve (i.e., former increase and

latter decrease). Nevertheless, the improvement in the gap for sample sizes greater than

N = 30 is only marginal. We can also observe a significant increase in the CPU time for

sample sizes greater than N = 30. For these reasons, during the rest of the computational

experiments we use a sample size of N = 30.
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Figure 3.3: Percent deviation gap and CPU time in convergence of the SAA method

3.5.3 The Value of Stochastic Schedule

We now demonstrate the superiority of the stochastic solution over the deterministic sched-

ule by comparing the results of the single level deterministic EVP with our bi-level frame-

work through a Monte Carlo simulation. In the absence of uncertainty, the CSCPP and

the PSP can be integrated into a single-level problem. However, in our approach, we first

solve the R-CSCPP with a certain budget of uncertainty Γ. After that, we plug the ob-

tained clinics and resource plans into the SPSP and develop physicians’ work schedules.

Throughout this section, we refer to the bi-level framework as sequential approach. Figure

3.4 summarizes the simulation procedure.

As can be seen, in the sequential approach, the R-CSCPP is first solved (with a specific

Γ value), then its solution (Dcjk, Rjk, Hi) is given as an input to the SPSP. The SPSP is then

solved with a sample size of N = 30, and the physicians’ work schedules ( ¯xijk, ¯xijk
′) are

generated. In order to make the decisions regarding utilizing the available on-call physi-

cians, assigning additional examination rooms in each shift, and to calculate the total cost

of processed patients during over-time shifts as well as physicians’ idle time, we formulate

a mathematical program (SIM ) that receives physicians works schedules and the number
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Figure 3.4: Simulation procedure

of available rooms in different shifts as inputs. In this problem, the number of weekly arriv-

ing patients as well as patients’ treatment times can vary simultaneously in each replication

of the simulation. Hence, the generated physicians’ work schedules are plugged into the

SIM , and then it is optimized for a set of Φ = {φ1, . . . , φ100} replications. In the deter-

ministic approach, physicians’ work schedules are developed in one step and plugged into

the SIM model.
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For a given replication φ, the SIM problem is formulated as follows:

minimize
∑
i∈I

∑
j∈J

∑
k∈K

(f1 ¯xijk + f5 ¯xijk
′
+ f6sijk)

+
∑
j∈J

∑
k∈K

{
f7erjk +

∑
c∈C

(f8otcjk + f9oacjk)

}
(74)

subject to
∑
i∈Ic

V PSφcjk( ¯xijk + sijk) +
∑
j∈J

∑
k∈K

ndcjk

−
∑
j∈J

∑
k∈K

V PSφcjkoacjk = NWV φ
c c ∈ C (75)

∑
i∈I

( ¯xijk + sijk)− erjk ≤ Rjk j ∈ J, k ∈ K (76)

∑
k∈K

( ¯xijk + sijk) ≤ 1 i ∈ I, j ∈ J (77)

sijk ≤ ¯xijk
′

i ∈ I, j ∈ J, k ∈ K (78)

sijk ∈ {0, 1} i ∈ I, j ∈ J, k ∈ K (79)

otcjk erjk ∈ Z+ c ∈ C, j ∈ J, k ∈ K (80)

oacjk ∈ R+ c ∈ C, j ∈ J, k ∈ K (81)

As can be seen in Figure 3.4, physicians’ work schedules ( ¯xijk, ¯xijk
′) as well as the number

of available examination rooms (Rjk) are the inputs of the problem. In order to incorporate

the randomness in the number of weekly arriving patients, the demand constraint (75) is

formulated as weekly demand for each clinic. Values of the random parameters (V PSφcjk,

NWV φ
c ) are generated from the distributions provided in Table 3.7.

Table 3.7: Distributions of the random parameters

Parameter Distribution Mean Min. Max.
NWV φc Uniform - NWVc NWVc
V PSφcjk Truncated Poisson V PSc V PSc V PSc

Figure 3.5 provides the simulation results. The y−axis corresponds to the operational
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cost calculated by the simulation model, and the x−axis gives the replication number. As

can be observed, in 99 out of 100 replications the cost of the deterministic approach is

higher than the cost of the sequential method with Γ ≥ 1067. Throughout the replications,

we observe an intense fluctuation in the cost of the deterministic approach with a stan-

dard deviation of 4858 versus 452 for the sequential approach with Γ = 1067. Moreover,

the worst case cost of the deterministic method can be as high as 30000 (replication 14),

whereas the worst case cost of the sequential approach is no more than 15000 (replication

59) for any budget of uncertainty. The significant superiority of the sequential method over

the deterministic approach, regardless of the considered uncertainty budget, implies the

effectiveness of the recourse actions against variability in patients’ treatment times in the

SPSP. We also note that when Γ increases from its lower bound (i.e., 917), the cost de-

creases remarkably. The decline in the cost by increasing the uncertainty budget confirms

the robustness of the R-CSCPP.
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Figure 3.5: Simulation results

Figure 3.6 gives the average operational cost of the sequential approach with differ-

ent uncertainty budgets along with the average cost of the EVP. The cost of the sequential

approach is plotted with respect to the left y−axis whereas the cost of the deterministic
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approach is given with respect to the right y−axis. The dash lines correspond to the per-

cent deviation of the sequential approach from the deterministic one. As can be observed,

the average cost of the sequential approach is significantly lower than the average cost of

the deterministic one over all simulation replications. Additionally, the decrease of the

operational cost when increasing the uncertainty budget is more evident. Moreover, an

interesting observation is the trend of the average cost throughout the uncertainty budget

values. It can be noted that the decrease in the average cost stops at a certain level of Γ

(1067), and it rises from Γ = 1067 to Γ = 1667. The turnabout in the average cost is

the result of over-protecting the schedules against demand uncertainty. Recall that the R-

CSCPP provides as an output the weekly number of patients that must be served by each

clinic, which in turn, becomes the input to the SPSP. Under a high budget of uncertainty,

more clinic sessions and working hours could be scheduled for physicians to maximize the

number of patients that could be scheduled during regular shifts. On the contrary, the ac-

tual number of patients who require appointments and hence scheduled during each week

(generated in the simulator) might be significantly smaller than the number obtained by

the R-CSCPP under a high uncertainty budget. This, in turn, would lead to an increased

number of idle hours for physicians initially scheduled by the SPSP under the aforemen-

tioned uncertainty budget. In other words, assigning extra resources to shifts in order to

hedge against the demand uncertainty may lead to an increase in physicians’ idle time. It

may also increase the number of on-duty physicians, which reduces the number of on-call

physicians and results in less flexibility toward patients’ treatment times variability.

3.6 Conclusion

This paper introduced a framework for planning physicians in polyclinics under uncer-

tainty. The procedure addresses the problem at the strategic, tactical, and operational plan-

ning levels. In the strategic level, we proposed an adjustable robust approach that plans
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Figure 3.6: Average cost for different Γ values

clinics work schedules and assigns required capacity to each shift. In particular, the model

provides the decision maker with the option of protecting the plans against the uncertainty

in the number of arriving patients to the polyclinic. The robust problem was solved with

an implementor/adversary algorithm, which can prove optimality in reasonable CPU times.

We also combined tactical physicians scheduling with operational rescheduling decisions

into a two-stage stochastic program that incorporates the uncertainty in patients’ treatment

times. In the first stage, physicians are assigned as on-call or on-duty, and in the second-

stage, the on-call physicians are called to work if needed. Since the variety of patients’

treatment times in each clinic results in a fairly large number of scenarios, we used a sam-

ple average approximation scheme to obtain high quality solutions by considering only a

sub-set of scenarios. The results from the computational experiments with the data pro-

vided by a polyclinic in a university health center in Montreal confirmed the efficiency of

the proposed framework. Furthermore, we investigated the impact of including uncertainty

in our solution framework by using a Monte Carlo simulation. We compared our frame-

work to its deterministic counterpart and demonstrated that the additional capacity included
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in the plan as a consequence of the use of a robust model, and the corrective (recourse) de-

cisions implemented by the stochastic model resulted in schedules that have significantly

lower costs than those generated by the deterministic one.
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Chapter 4

Simulation optimization for physicians

scheduling in polyclinics
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Abstract

Reducing wait-times and resource expenses are essential factors to enhance service qual-

ity and financial viability of health delivery systems. This paper presents a simulation-

optimization (SO) modeling approach for physicians scheduling in an outpatient polyclinic

under uncertain arrival pattern and treatment time of patients. We provide a methodology

that combines discrete-event simulation with an optimization search routine to minimize

patient wait-time and physician overtime subject to several scheduling/resource restric-

tions. Our main goal is to investigate the impact of physicians work schedules on pa-

tient wait-time in such systems. Our experimental results on a real case study in Canada

clearly indicate the significant impact of adopting the proposed SO framework for physi-

cian scheduling on reducing the aforementioned key performance measures. Further, the

optimization search routine developed in our SO model outperforms the existing search

routines embedded into commercial SO software packages in terms of solution quality and

CPU time.

4.1 Introduction

Outpatient polyclinics reduce the burden in hospitals and help bridge the gap between pri-

mary and secondary care. They provide a better structure for physicians of different dis-

ciplines to work together and enable patients with chronic and complex conditions to visit

multiple clinics at the same place during the same visit. Patient wait-time is one of the es-

sential elements in outpatients care service quality [74]. Studies have indicated that every

aspect of patient experience such as confidence in the care provider and perceived quality

of care are correlated negatively with longer wait-time [75]. According to Erhard et al.

[1], planning efficient schedules for physicians in outpatient clinics is essential in reducing

expenses and patients wait-time.
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Physician scheduling problems (PSPs) consist of creating work schedules for physi-

cians in a predetermined planning horizon such that in every given work shift enough

physicians are available to process all scheduled patients [3]. Physicians’ work schedule

must abide to several regulations and constraints (e.g., physicians preferences and contract

terms). Such constraints are more binding in the context of polyclinics where the resources

such as treatment rooms and medical staff are shared among different clinics that differ in

terms of patient flow and throughput. These problems are usually formulated as mixed-

integer programs incorporating several families of conflicting constraints (see e.g., Tohidi

et al. [45]). Further, the physicians’ schedule is prone to uncertain events such as patients’

unpunctuality/no-shows and variable treatment times. Such disruptions might lead to in-

creased patient wait-time and/or extended shifts (overtime) for physicians.

A comprehensive literature review on PSPs is provided in Erhard et al. [1]. According

to this article and references therein, the majority of existing approaches investigate this

problem in a deterministic context[see for instance, 12, 25, 45]. On the contrary, PSPs

under uncertain patient demand and treatment time have only been investigated in few ar-

ticles. Robust optimization and stochastic programming are the main approaches exploited

to incorporate uncertainty into decision models proposed for scheduling physicians [see,

64, 76]. Nevertheless, the objective function of the aforementioned models is to minimize

the expected cost that the hospital/polyclinic incurs as a consequence of using extended

shifts (over-time) and extra number of (on-call) physicians or nurses in order to visit all

scheduled patients. To the best of our knowledge, none of the existing models explicitly

considers patient wait-time as part of the objective function. This might be due to the fact

that the analytic estimation of this performance measure is nontrivial in complex queuing

networks such as the case in outpatient polyclinics.

Given that in recent years hospitals have been forced to reduce the expenses while

improving service quality, the PSP should be addressed as a multi-objective optimization
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problem, where the decision-makers should aim for the simultaneous minimization of re-

source costs and patient wait-time. To fill this important void in the literature, we propose

a simulation-optimization (SO) modeling approach for physician scheduling that aims to

minimize the aforementioned objectives under uncertain arrival pattern and treatment times

in an outpatient polyclinic. To the best of our knowledge, this is the first time that the im-

pact of physician schedules on patient wait-time is explicitly incorporated into a physician

scheduling framework.

SO is the amalgamation of a simulation model with an optimization algorithm to ob-

tain the optimal configuration to a system where an analytic form of the objective function

and/or constraints is not known and can only be evaluated through simulation [77]. The

idea is to avoid simulating exhaustively all possible system configurations in order to find

the optimal one. While SO approaches have been extensively exploited for resource plan-

ning (e.g., staffing) in health care delivery systems [see e.g., 78–81], their implementation

in a highly-constrained optimization problem similar to the PSP under investigation is less

trivial. In the context of resource planning problems, the decision maker is looking for

the optimal number of nurses, physicians, and treatment rooms under a budget limitation.

Hence, generating a high quality initial solution in the SO framework is quite straight-

forward due to the relatively small number of decision variables and constraints. On the

contrary, the PSP incorporates a large number of binary decision variables (assignment of

physicians to work shifts) and several classes of conflicting constraints (e.g., preferences,

fairness and ergonomic constraints, work contracts, and resources limitations and interac-

tions). Hence, generating an initial feasible solution in the absence of an analytic objective

function requires solving a feasibility problem for which it is not possible to verify the qual-

ity of the obtained solution apriori. The latter could significantly impact the performance

of the optimization search routine (e.g., a heuristic or a meta-heuristic) embedded within

the SO framework. As a consequence, the existing SO softwares that combine simulated
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annealing (SA) or other meta-heuristics within a discrete-event simulation (DES) commer-

cial software (e.g., OptQuest in Arena) are less efficient in the context of this study. By the

same token, meta model-based SO approaches [see, for instance, 82] are also less efficient

in the presence of a large number of decision variables. In particular, constructing the ap-

proximation of the simulation model involves investigating the relationship between a very

large sample of inputs (i.e., feasible schedules) and their simulation output.

To alleviate the shortcomings of the existing SO software packages, our second con-

tribution relies on the integration of a mathematical optimizer, based on an enhanced SA

algorithm, with a simulation kernel into a common programming language (i.e., C++). In

particular, our SO framework aims to improve the quality of the incumbent solution in

the SA algorithm via implementing two enhancement strategies. The first strategy is to

employ a non-linear mixed-integer-program to approximate the PSP in order to generate

a high quality initial feasible solution. This is achieved via modeling the polyclinic under

investigation as a D/M/1 queue and approximating the expected patient wait-time with an

analytical (nonlinear) function. The second strategy relies on introducing a diversification

mechanism within the SA algorithm in order to avoid getting trapped in local optimal so-

lutions. We also conduct a set of numerical experiments in the context of an outpatient

polyclinic in a university hospital in Montreal (Canada) with the goal of investigating the

impact of the proposed schedule on improving the two key performance measures as well

as the aforementioned enhanced optimization search routine on the quality of converged

solution.

The remainder of the paper is organized as follows. Section 4.2 is a review of relevant

literature to the PSP and SO. Section 4.3 presents the formal description of the polyclinic

under investigation. Section 4.4 describes the proposed SO framework. Section 4.5 con-

tains the results of our computational experiments, and it is followed by our conclusions in

Section 4.6.
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4.2 Literature Review

DES techniques have been extensively applied to a broad range of health care applica-

tions including patients appointment scheduling and admissions policies as well as resource

planning (e.g., personnel staffing) in outpatient facilities. Numerous studies use DES to as-

sess the impact of staff schedules on different key performance measures in health delivery

systems. Dittus et al. [83] focus on residents work schedules and predict the effects of

alternative work schedules on the sleep and activity profile of the residents using a DES

model. Additionally, Evans et al. [84] examine the significance of nurses and physicians

work schedules on patients’ length-of-stay (LOS) in an ER. Similarly, Rossetti et al. [85]

evaluate the impact of ER physicians’ schedule on patient throughput and resource utiliza-

tion. Swisher et al. [86] investigate the impact of various compositions of medical staff,

registration windows, and clinic’s available space on the profit of the clinic as well as pa-

tients and staff satisfaction. Spry and Lawley [87] analyze the impact of staffing levels and

alternative work schedules on the average time of medication delivery to the patients in

a hospital pharmacy. Al-Najjar and Ali [88] estimate the required number of nurses and

doctors in two ERs by the aid of a DES model. In Abo-Hamad and Arisha [89], seven sce-

narios based on adding resources and a patients admission policy are investigated through

a DES model with the objective to minimize patients’ LOS and maximize resources and

layout efficiency in an ER. Using a DES model, Oh et al. [90] prove that an LOS of under 3

hours can be achieved via reconfiguration of staff levels and resource allocations in an ER.

Several papers attempt to optimize the performance measures of health care systems by

combining simulation with optimization models. Centeno et al. [78] determine the num-

ber of required staff under demand and service time uncertainty using a simulation model.

They exploit the simulation results as the input to a mathematical model that creates staff’s
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shift-based schedules. De Angelis et al. [79] use simulation to estimate the stochastic ob-

jective function of a mathematical programming model that determines the configuration of

required servers in a medical center. In Oddoye et al. [81], multiple patient-related perfor-

mance measures (e.g., LOS and patient wait-time) are improved through the optimization

of resource levels by the aid of DES in a medical center. Zeinali et al. [82] propose a

simulation-based meta model to optimize the number of required resources (e.g., doctors,

nurses, beds) for improving patient wait-time in an ER.

SO frameworks that incorporate heuristic search algorithms into the simulation models

have been used for optimizing resource configurations in health care systems. Swisher and

Jacobson [91] use an object-oriented simulation model for determining optimal staffing

and resource configuration in a family practice clinic. They combine several objectives

related to clinic’s profitability and patient satisfaction into a single objective and choose

the best configuration by using a rank and selection (R&S) method. Additionally, Yeh

and Lin [92] address nurse staffing in an ER and use a genetic algorithm embedded in a

commercial solver to obtain a near-optimal solution. In Ahmed and Alkhamis [80], SO

is used to determine the appropriate number of staff in an ER with the goal of improving

patients throughput. Cabrera et al. [93] and Cabrera et al. [94] use Agent-Based Simulation

and exhaustive search to determine ER staff configuration in a university hospital. More

recently, Ozcan et al. [95] propose a SO modeling approach to obtain the optimal number

of required beds in addition to operation room block times and duration in a hospital.

To the best of our knowledge, none of the existing SO models proposed in health care

applications address a PSP involving a large number of possible schedules that should

comply with several families of constraints. On the contrary, they are mainly focused on

staffing and resource configuration decisions. Furthermore, the majority of these models

are implemented by using commercial simulation packages. Nonetheless, the limitations of

the aforementioned packages in efficiently solving highly-constrained optimization models
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similar to the ones associated with PSPs, motivated us to code our DES model and the

heuristic search procedure in a common programming language.

4.3 System Description

The Polyclinic under investigation is an ambulatory outpatient cancer center that provides

several hospital services such as X-rays, biopsy, minor surgeries and other outpatient treat-

ments. The center operates over 2 four-hour shifts (morning and afternoon) every day from

Monday to Friday. It consists of 145 physicians and 13 cancer clinics, namely breast,

urology, hematology, gynecology, hepatobiliary, lung, musculoskeletal, melanoma, upper

gastrointestinal, pain, cancer rehabilitation, colorectal and brain metastases. One waiting

room and a limited number of examination rooms are shared among all clinics. More-

over, some clinics such as lung and cancer rehabilitation are interdisciplinary and must be

scheduled simultaneously for a certain number of shifts.

All patients coming to the center are referred by general practitioners or specialists

and have an appointment. They follow a process as depicted in Figure 4.1. Although the

process flow is not identical in all clinics, the figure presents the general flow which is

similar among all. The process begins with arrival of the patient to the polyclinic and ends

when the patient is released. The arriving patient goes to the receptionist who registers

patient’s information and collects his/her referral note. Afterwards, the patient waits in

the waiting room to visit the doctor at his/her scheduled appointment time. The patient is

assessed by the doctor in an examination room, where s/he will decide if the patient needs

further tests such as X-ray, biopsy, or consultation with other physicians and a second

assessment. Consequently, according to the required process, patients can be divided into

two categories. Category 1 patients are those who need further processing after physicians

assessment. These patients go to the waiting room and wait for the next process they

require. We categorize the next processes for Category 1 patients as: Test 1, Test 2, and
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second assessment. Test 1 are those diagnostic tests that require long processing times such

as blood tests, biopsy, and etc. Test 2 are imaging tests such as X-ray which usually require

less processing times than Test 1. Second assessments are for patients with interdisciplinary

diagnosis; after the first assessment, the physician usually consults with other physicians in

the same interdisciplinary team regarding patient’s condition, and the patient is informed

with an accurate diagnosis in the second assessment session. Category 2 refers to the

patients who do not need further diagnostics, or directly are referred for a treatment in

future sessions.

Currently, the extended duration of diagnostics and interdisciplinary consultations along

with the unbalanced number of patients scheduled on different sessions cause long patient

wait-times and inevitable overtime for physicians. Hence, the polyclinic is looking for the

optimal scheduling of physicians in addition to the number of scheduled patients in each

session such that a significant improvement in terms of both key performance measures is

achieved.
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Figure 4.1: Polyclinic process flow chart
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4.4 Simulation Optimization Modeling Approach

As it was mentioned earlier, by the aid of SO, the decision maker combines simulation with

an optimization search procedure to find the optimal system settings of a stochastic system.

Figure 4.2 depicts our proposed SO framework that entails two main components, i.e., the

DES model (SIM ) and the optimization search routine (SAC). The latter is composed of

a SA meta-heuristic algorithm, a restricted physicians scheduling mathematical program

(P ′′), and a physician scheduling approximation model (P ′). This procedure starts by gen-

erating an initial feasible solution (schedule) by the aid of P ′ . Starting from this initial

solution, the SA algorithm discovers its neighborhood and generates a new candidate solu-

tion. A diversification strategy is also incorporated within the SA algorithm by the aid of

restricted model P ′′ . It is worth mentioning that the objective function of each candidate

solution generated in the SAC search routine is estimated by the aid of the DES simulation

model.

In what follows, each component of the SO framework is explained in details. We

first start by describing the DES model corresponding to the polyclinic under investigation

along with the experiments conducted to validate this model. Afterwards, we describe the

optimization search routine of the framework, where we start by providing the mathemat-

ical formulation of our PSP. This is followed by the description of the approximation of

the PSP model that is able to generate a high quality initial solution. Finally, the neighbor-

hood structure of the search in addition to the diversification strategy adopted within the

SA algorithm are presented.
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Figure 4.2: Simulation optimization framework

4.4.1 Discrete Event Simulation Model

A survey was conducted in the polyclinic to study the patients arrival pattern, physicians’

assessment times, and duration of diagnostic tests. Afterwards, collected data were fitted

into different probability distributions in order to find the best fit. Consequently, patients’

arrival times (in minutes) follow a Uniform distribution U(t− 10, t+ 10), where t denotes

the initial patient’s appointment time. This distribution models patients’ unpunctuality.

Further, we observed that appointments are scheduled according to the rule in Bailey [96],

where two appointments are booked at the beginning of the shift, and successive appoint-

ments are then booked at the intervals equal to the mean assessment time. Table 4.1 sum-

marizes the probability distributions of the service times corresponding to different stages
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of the process flow depicted in Figure 4.1. These distributions were also validated by the

physicians, nurses and administration. In this table, the first column represents different

clinics starting from the breast clinic (c1) to the brain clinic (c13). Whereas, the other

columns contain the parameters of probability distributions associated with different stages

of the process flow in the polyclinic.

Table 4.1: Service time distribution at each stage of the process

Stage Reception Doctor Test 1 Test 2 Second Assessment
Distribution Uniform Exponential Uniform Uniform Uniform

Clinic 1 [5 10] 50 [30 50] [5 10] [5 10]
Clinic 2 [5 10] 34 [5 10] - [5 10]
Clinic 3 [5 10] 51 [5 10] [5 10] [5 10]
Clinic 4 [5 10] 22 [20 30] [5 10] [5 10]
Clinic 5 [5 10] 32 [20 30] - [5 10]
Clinic 6 [5 10] 52 [30 50] - [5 10]
Clinic 7 [5 10] 44 [30 50] [5 10] [5 10]
Clinic 8 [5 10] 13 [10 30] - [5 10]
Clinic 9 [5 10] 100 [30 50] [5 10] [5 10]

Clinic 10 [5 10] 120 - - -
Clinic 11 [5 10] 109 - - [5 10]
Clinic 12 [5 10] 51 [30 50] [5 10] [5 10]
Clinic 13 [5 10] 96 [60 90] [10 15] [5 10]

Our simulation model is structured based on a resource view approach, where the sys-

tem is simulated as a queuing network constituting of a set of communicating resources.

We instantiate the resource classes as the process stages (i.e., reception, doctor, imaging,

biopsy, treatment) and specify their associated events as waiting to process a patient, pro-

cessing a patient, and referring the patient to the next server. Moreover, clients are the

patients who travel through the resource network and hold various attributes such as pro-

cess route and priority rank.

4.4.1.1 Validating The Discrete Event Simulation Model

In our study, we conducted multiple audits, reviews, and object-flow testing by tracing

patients of different clinics through reception, doctors, different clinical tests, and observed

their throughput. We also performed a turning test by presenting several outputs (e.g.,

maximum number of patients in the waiting room (MW)) from the simulation model and
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historical data to the hospital’s administration. The administration were not able to tell

the difference between the results, hence this test provided a measure of validity for the

simulation model. To further confirm the turning test, we conducted a t-test on the same

Key Performance Measure (KPI), (MW), based on the results of the system simulation over

14 days. The results are provided in Table 4.2, where X̄, µ, s, df, t, α andC.V. represent the

mean value of MW, population mean (obtained from the historical data), sample standard

deviation, degree of freedom, t-statistic, level of significance, and critical value. Similar to

the previous test, the results confirm that the simulated mean value of MW is sufficiently

close to its historical mean.

Table 4.2: One-sample t-test for maximum number of patients waiting in the waiting room

KPI X̄ µ s df t α C.V.
MW 90.744 90 2.468948 19 1.3135 0.05 2.093

Finally, we carried out a sensitivity analysis by running the simulation model with var-

ious input parameters. Table 4.3 contains the results of the sensitivity analysis on the to-

tal number of patients assigned to each physician. In particular, for a given solution, the

first column presents a certain percentage of assigned patients plugged into the simulation

model. The rest of the columns present the value of different KPIs. The results show a

positive correlation between the number of scheduled patients and overall polyclinic uti-

lization. When there are few appointments, physicians’ overtime and patient wait-time are

minimal.

Table 4.3: Sensitivity analysis on inputs of the simulation model

Percentage of assigned patients MW Total patient waiting time (min) Total physicians overtime (min)
20 34 1968.94 0.160642
50 47.5 28759 233.96
70 68.45 54962.3 1133.9
100 96.23 110229 7470.46

As for the number of replications, the average patient wait-time was analyzed. Figure

4.3 plots the average total patient wait-time over the number of replications, ranging be-

tween 1 and 150. The trend on the graph shows that 100 replications are adequate to reach
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stability and steady state condition. The results of the above validation tests confirm that

the model provides an accurate estimation of patient wait-time and physicians overtime.
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Figure 4.3: Average patient wait-time for alternative numbers of replications

4.4.2 The Physician Scheduling Problem

In our PSP, we are looking for the assignment of physicians affiliated with different clinics

to the shifts as well as the number of patients to assign to physicians in each shift such

that all the scheduled patients are visited. Let C, I, J, and K denote the sets of clinics,

physicians, days and shifts per day, respectively. The set of subsets of interdisciplinary

clinics is denoted by T . Each clinic in subset t ∈ T must be scheduled simultaneously with

other clinics in the subset for at least Ft shifts. R represents the total number of available

examination rooms in the polyclinic, and we also assume that every physician needs one

room when he/she is on-duty. Let NWVc be the number of patients scheduled in clinic c

over the planning horizon, and we assume that all patients must be assessed. As mentioned
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earlier, several classes of constraints must be taken into account when scheduling physi-

cians in polyclinics. The following parameters are defined to formulate such limitations.

Let Hi denote the number of shifts that physician i must work according to his/her con-

tract. NJi is the set of days that physician i is not available. Pi represent the minimum

number of patients that must be assigned to physician i in the planning period which is

defined according to doctors’ workload and target revenue. Additionally, we define Mi as

the maximum number of patients that can be assigned to physician i in any given shift.

The value of Mi is determined either according to physician’s preference or based on mean

assessment times and shift duration. In order to reflect physicians’ preferences for working

during a specific shift, we define PRijk equal to 1, if physician i prefers to work on day j,

shift k, 0 otherwise. Moreover, TKi is the percentage of total working shifts that physician

i must be assigned to the shifts that he/she prefers to work in.

For each c ∈ C, j ∈ J , k ∈ K, we define clinic assignment variables ycjk equal to 1 if

and only if clinic c is assigned to shift k on day j. Similarly, for every i ∈ I, j ∈ J, k ∈

K, we define physician assignment variables xijk equal to 1 if and only if physician i is

assigned to day j, shift k. Furthermore, for every i ∈ I, j ∈ J, k ∈ K, variables xpijk

are the number of patients assigned to physician i on day j, shift k. Finally, for all t ∈ T ,

j ∈ J , k ∈ K, gtjk is an auxiliary binary decision variable that equals to 1 if and only if all

clinics in subset t are assigned to shift k on day j.

The optimization model considered in this study aims to minimize: (i) total patient wait-

time, and (ii) total physicians’ overtime, subject to clinics’ and physicians’ requirements

and resource capacity. As it was mentioned earlier, the problem includes uncertainty in

patient arrivals and treatment times. Therefore the aforementioned objectives are stochastic

functions for which an analytic approximation is not straightforward. Hence, we denote

patient wait-time, and physicians’ overtime, by f1(xp) and f2(xp), respectively. The PSP

can be formulated as follows:
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(P) Minimize f1(xp), f2(xp)

subject to:
∑
i∈Ic

∑
j∈J

∑
k∈k

xpijk = NWVc c ∈ C (82)

∑
i∈I

xijk ≤ R j ∈ J, k ∈ K (83)

∑
i∈Ic

xijk ≥ ycjk c ∈ C, j ∈ J, k ∈ K (84)

∑
c∈C|c∈t

ycjk ≥ |t|gtjk t ∈ T, j ∈ J, k ∈ K (85)

∑
j∈J

∑
k∈K

gtjk ≥ F t t ∈ T (86)

∑
j∈J

∑
k∈K

xijk = Hi i ∈ I (87)

∑
j∈J

∑
k∈K

xpijk ≥ Pi i ∈ I (88)

xpijk ≤Mixijk i ∈ I, j ∈ J, k ∈ K (89)

xpijk ≥ xijk i ∈ I, j ∈ J, k ∈ K (90)∑
k∈K

xijk ≤ 1 i ∈ I, j ∈ J (91)

∑
j∈J

∑
k∈K

(PRijkxijk − TKixijk) ≥ 0 i ∈ I (92)

∑
k∈K

xijk = 0 i ∈ I, j ∈ NJi (93)

xijk, ycjk, gtjk ∈ {0, 1} c ∈ C, i ∈ I, j ∈ J, k ∈ K, t ∈ T

xpijk ∈ Z+ i ∈ I, j ∈ J, k ∈ K (94)

Constraints (82) ensure that all patients visiting different clinics are assessed. Con-

straints (83) limit the number of on-duty physicians in each shift to the number of available
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rooms. Constraints (84) link the assignment of physicians with corresponding clinics. Con-

straints (85) - (86) guarantee that every clinic in each subset of interdisciplinary clinics is

assigned with other clinics in the subset for at least the predefined number of shifts. In

particular, constraints (85) force gtjk to one when all clinics in cluster t are scheduled

simultaneously on day j, shift k, and constraints (86) ensure that the simultaneous assign-

ments happen at least Ft times during the planning horizon. Constraints (87) ensure that

physicians are assigned to their pre-specified number of shifts. Constraints (88) make sure

that every physician receives at least the minimum number of patients that they require.

Constraints (89) restrict the number of assigned patients to a physician in any given shift to

the maximum allowable number. Constraints (90) stipulate the assignment of physicians to

the number of patients that they assess. Constraints (91) prevent physicians from working

more than one shift per day. Constraints (92) guarantee that a certain percentage of physi-

cians’ working shifts are assigned according to their preferences. Constraints (93) prevent

the assignment of physicians to the shifts that they are not available. Lastly, constraints

(94) are the standard integrality and non-negativity constraints.

4.4.3 Optimization Search Routine

Given that model P has a stochastic objective function, it can not be solved by common

commercial solvers such as CPLEX. Hence, we propose an enhanced SA algorithm (SAC),

to efficiently solve this problem. It is noteworthy that for some classes of optimization prob-

lems, such as PSPs, the quality of incumbent solutions of metaheuristics heavily rely on the

initial solution. In the absence of analytic objective functions, one common practice is to

solve a feasibility problem in order to obtain an initial feasible solution. Alternatively, we

also approximate the stochastic objective function by a non-linear function and formulate

an approximate model, denoted as P′, to generate a high quality initial solution. Our sec-

ond enhancement strategy revolves around incorporating a diversification procedure within
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the SA algorithm. We next provide the details of different elements of the aforementioned

optimization search routine.

4.4.3.1 Generating An Initial Feasible Solution

In order to generate a high quality initial solution to SAC algorithm, we solve model P

with an objective function that approximates the wait-time. Intuitively, we assume patient

wait-time and physicians overtime are two correctional KPIs in the system; hence we focus

on approximating wait-time, as the only objective function by the aid of queuing theory.

More precisely, when ignoring patients’ unpunctuality, patients’ visits to the system can be

modeled as a queue D/M/1 given that patients arrive at the beginning of intervals [nβ, (n+

1)β] n = 0, 1, 2, . . . , where β is the length of intervals. In D/M/1 queues, the average

wait-time of the customer who arrives in interval n, when n tends to infinity, is estimated

as follows [97]:

En = (1/µ).σ/(1− σ), (95)

where µ−1 is the average service time, and σ is obtained from equation (96).

σ = e−µβ(1−σ) (96)

Assuming that µβσ is small enough, we can approximate eµβσ using following equation

[98].

eµβσ = 1 + µβσ (97)

Finally, by substituting µ with Mi and β with 4×60
xpijk

, the approximation of average wait-

time can be formulated as follows:
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∑
i∈I

∑
j∈J

∑
k∈K

1

Mi × (e
Mi×4×60

xpijk − 4×60
xpijk
− 1)

(98)

We call problem P with the above approximated objective function as P ′ and solve it by

using the CP optimizer of CPLEX to obtain an initial feasible solution to SAC algorithm.

4.4.3.2 Enhanced Simulated Annealing Algorithm

We use SA as our local search algorithm within our SO framework. SA is an optimization

paradigm based on the structural properties of physical materials that are melted down and

then cooled in a controlled manner. The technique is designed in such as way to avoid get-

ting trapped in a local optimal solution. At each iteration, a neighbor of the current solution

is generated and either accepted as the new solution or rejected. When the temperature is

high at the beginning, the acceptance process is almost random. As time progresses and the

temperature cools down, it becomes increasingly dependent on the solution quality [99].

In our SA algorithm, we use a neighborhood that seeks to modify the number of as-

signed patients to each physician in each shift. Let S = {1, . . . , |J||K|} be the set of shifts

in the one-week planning horizon. Each candidate solution can be denoted by |I| × |S|

matrix A, where ais is the number of patients assigned to physician i ∈ I in shift s ∈ S.

The neighborhood in our SA algorithm, denoted as N(A), consists of swapping two shifts

for each physician. N(A) is formally defined as follows:

N(A) =
{

A
′
: ∃s1, s2 ∈ S, s1 6= s2, and i ∈ I, a′is1 = ais2 , a

′

is2
= ais1

}
.

The merit of the above neighborhood is that it maintains the feasibility of constraints (82)

and (87)-(90), as in our search we aim to explore only feasible solutions. The objective

value of each candidate solution is calculated by the aid of the SIM model. More precisely,
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for each candidate solution A, f(A) is calculated as the average wait-time and physicians

overtime over all replications of the simulation.

In order to diversify the search we track the number of iterations that the best solution

has not been improved. If the number of non-improved iterations exceeds a threshold value

(maxnit), we generate a solution different from the best known solution and replace it with

the current solution in the search. In other words, we use the information in the best known

solution and define the following constraints:

∑
i∈Ic

xpijk − dcjk ≤ UBcjk ∀c ∈ C, j ∈ J, k ∈ K, (99)

where dcjk measures the positive deviation, and UBcjk is calculated as follows:

∑
i∈Ic

xp∗ijk = UBcjk ∀c ∈ C, j ∈ J, k ∈ K, (100)

and xp∗ijk denotes the number of patients assigned to each physician in each shift in the

best known solution. Afterwards, we obtain a new solution that minimizes the maximum

deviation from constraint (99) by solving the following optimization model (P ′′):

(P
′′
) Minimize Z

subject to: Z ≥ dcjk ∀c ∈ C, j ∈ J, k ∈ K (101)

(82)-(94) & (99)

It is noteworthy that P ′′ is a restricted version of model P by considering a new objec-

tive function and two sets of constraints (99) and (101). We denote the optimal solution of

P
′′ as A′′ . Algorithm 1 summarizes our SO algorithm.
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Algorithm 4 Simulation optimization algorithm
Solve P ′ to obtain initial solution A
Insert A into SIM
A∗ ← A
f∗ ← f(A)
Set an initial temperature T and a reduction factor 0 < r < 1
while Not yet frozen do

count← 0
nit← 0
while count< L do

Pick a random neighbor A′ ∈ N(A)
Insert A′ into SIM
∆ = f(A′)− f(A)
if ∆ ≤ 0 then

A← A′

if f(A′) < f∗ then
A∗ ← A′

nit← 0
f∗ ← f(A′)

else
Set A← A′ with probability e

−∆
T

nit+ +

if nit > maxnit then
Solve P

′′

nit← 0
Set A← A

′′

count+ +

T ← rT
return A∗ and f∗

4.5 Numerical Results

In this section, we present the results of the computational experiments conducted in the

context of an outpatient cancer treatment polyclinic in order to analyze the performance of

the SO modeling approach proposed for our PSP. We first analyze the value of adopting

an SO approach for physicians scheduling as compared with a deterministic mathematical

programming approach. We also study the impact of adopting a multi-objective approach

on the optimal value of each performance measure. Finally, we evaluate the performance

of proposed optimization search routine (SAC) embedded into our SO framework both in

terms of solution quality and CPU time. All experiments were run on a Dell station with

an Intel(R) Core(TM) CPU i7-4790 processor at 3.60 GHz and 16 GB of RAM under

Windows 7 environment. The formulations and algorithms were coded in C++, and the
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associated MIPs were solved using the Concert Technology of CPLEX 12.7.0. The sim-

ulation model was coded in DESP-C++, a DES package based on C++ [100], an open

source object-oriented simulation kernel that provides classes for managing and ordering

simulation events.

4.5.1 The Value Of SO Modeling Approach

In this section, we show the value of adopting a SO approach for our PSP in comparison

with deterministic mathematical programming that is common in practice. To this end,

we solve a deterministic PSP similar to the one in Tohidi et al. [45], where the objec-

tive function of the problem is merely formulated based on physicians’ preferences, while

abiding by the same constraints as the one in Model P . We denote the optimal solution

of this model as det. Afterwards, this solution along with the converged solution of SO

algorithm (denoted as SO) are plugged into SIM, and the expected patient wait-time and

physician overtime are calculated for each solution in our PSP. Figure 4.4 summarizes the

comparison between these KPIs (in minutes) obtained after simulating the schedules corre-

sponding to det and SO. These results clearly confirm the importance of including average

wait-time and overtime into the objective function of the PSP given that over 19% and 47%

improvement can be achieved, respectively, in each KPI as compared with a deterministic

physician scheduling approach where the analytic form of these KPIs cannot be formulated

in the objective function.
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Figure 4.4: Average patient wait-time and physician overtime

4.5.2 Impact Of Multi-objective Approach On Each Performance Mea-

sure

In this section, we evaluate the impact of considering two objectives on the value of each via

solving the problem with one objective at a time. Table 4.4 contains the value of each ob-

jective in the best known solution when solving the problem considering only one objective

function versus considering the summation of both objectives. As can be observed in this

table, when we consider physicians overtime as the objective function, the value of both ob-

jectives in the best solution deteriorate compared to patient wait-time or summation of both

objectives as the objective function. Total patient wait-time improves significantly when it

is the only objective. However, physicians overtime is very close to its value when physi-

cian overtime is the only objective. This gives us an interesting insight that by minimizing

patient wait-time in our PSP, physician overtime will be implicitly minimized. Addition-

ally, this confirms our initial assumption on considering a positive correlation between the
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two KPIs and considering patient wait-time as the only objective function while generat-

ing the initial feasible solution (model P ′). Finally, the results suggest that considering a

multi-objective approach is appropriate for obtaining high quality solutions with respect to

both KPIs as compared with formulating the problem as a single-objective model.

Table 4.4: Value of each objective in the best solution considering different objective func-
tions

Objective function Physician overtime Patient wait-time
Physician overtime 6979 108088
Patient wait-time 6969 105363

Physician overtime + Patient wait-time 6909 105724

4.5.3 Performance Of The Optimization Search Routine

In this section, we compare the performance of the optimization search routine (SAC) with

a conventional SA algorithm (denoted by SA) and an exhaustive local search (denoted by

LS) algorithm. In both LS and SA, we provide the initial solution by solving model P

with an objective function similar to the one adopted in deterministic PSP models (see,

e.g., Tohidi et al. [45]). In SA, we do not include the diversification strategy exploited in

SAC. In LS, we use the same kind of neighborhood as in the SA, and we explore all feasible

neighborhoods, starting from the first to the last physician.

Table 4.5 presents the values of parameters adopted in SAC; these values are chosen

according to extensive computational experiments.

Table 4.5: The value of parameters in SAC

Parameter Value
T 5000
r 0.9

count 200
maxnit 100

Figure 4.5 plots the CPU time versus the best know solution value for each of the above
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mentioned search algorithms. By comparing the results of LS and SA, it can be concluded

that SA outperforms LS, as in the first 600 seconds of the search, it finds a solution that is 5%

better than the one found by LS. Further, it can be observed that our proposed approximation

model P ′ is very efficient in finding a high quality initial feasible solution and significantly

accelerating the search process. This initial solution is 8% better than the one obtained by

considering a deterministic objective function in model P and 17% better than solving the

problem without any objective. Finally, the objective function of the best solution obtained

by SAC procedure is also 8% lower than the one obtained by a standard SA algorithm with

a reduced CPU time of 500 sec.

110000

112500

115000

117500

120000

122500

125000

127500

130000

132500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

O
bj

ec
tiv

e 
fu

nc
tio

n

Time (sec.)

LS SA

SAC

Figure 4.5: Comparison of solution methodologies

112



4.6 Conclusion

This paper combines discrete even simulation with an optimization search procedure to

improve physicians work schedules and patients satisfaction in an outpatient polyclinic.

To the best of our knowledge, the procedure is the first attempt in the literature to explic-

itly incorporate the minimization of patient wait-time in a physician scheduling problem

while dealing with uncertain arrival patterns and treatment times. Given that commercial

SO software packages are not efficient in solving a complex PSP similar to the one un-

der investigation, we implemented a DES kernel integrated into an enhanced SA algorithm

to solve this problem. In particular, modeling the system as a D/M/1 queue and approxi-

mating the stochastic wait-time as an analytic (non-linear) function leads to a high quality

initial feasible solution within the search procedure. This approximation along with a di-

versification strategy embedded within SA algorithm significantly improves the quality of

converged solution and the CPU time. Furthermore, our numerical results based upon the

data provided by a polyclinic in a university health center in Montreal, Canada, confirmed

the significance of incorporating stochastic functions such as patient wait-time and physi-

cian overtime into physician scheduling problems. More specifically, the results indicate

that adopting a SO approach to address this problem can simultaneously improve patient

experience via reducing wait-time and operational costs of the clinic in terms of extended

shift duration for physicians.

Our future work will investigate other efficient ways of combining mathematical opti-

mizers and different metaheuristics with simulation software packages in solving this type

of highly-constrained real world problem. In particular, other approaches or approximation

methods can be exploited to generate a high quality initial solution. Another interesting

area of research on this topic is to strengthen the interaction between the simulation and

optimization modules. Our next effort must be dedicated to extract more information from
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the simulation model to guide the local search and optimization search routine.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

This thesis addressed physicians scheduling in the context of polyclinics, distinguished by

clinics’ requirements and resource availability. It accounted for several types of problems

plausible in practice associated with the scheduling of physicians in outpatients polyclinics.

Inspired by a real-life case example, i.e., the outpatient polyclinic of MUHC, we investi-

gated the performance of the solution approaches on instances with realistic sizes. It was

shown that the problem instances can be solved within reasonable amount of times utilizing

the proposed solution schemes.

In the second chapter, we proposed a multi-objective mixed-integer programming model

for integrating physician and clinic scheduling problems. In addition to the common physi-

cians scheduling constraints, the limited capacity of resources, such as waiting and treat-

ment rooms, and clinics requirements were also taken into account. Moreover, in order

to better justify the significance of integrating physician scheduling problem with clinic

session scheduling in polyclinics, we measured the impact of adding constraints associated

with clinic resources and administrative rules into the physician scheduling model. We also
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developed an iterated variable neighborhood descent algorithm to obtain high quality solu-

tions in a reasonable time limit. The algorithm combines iterated local search and variable

neighborhood descent procedures. Our computational results on the aforementioned test

instances revealed the high quality of schedules provided by this algorithm in comparison

with a standard optimization software.

In the third chapter, we introduced a framework for planning physicians in polyclinics

under uncertainty. The procedure addresses the problem at the strategic, tactical, and op-

erational planning levels. In the strategic level, we proposed an adjustable robust approach

that plans clinics work schedules and assigns required capacity to each shift. The robust

problem was solved with an implementor/adversary algorithm, which can prove optimality

in reasonable CPU times. We also combined tactical physicians scheduling with oper-

ational rescheduling decisions into a two-stage stochastic program that incorporates the

uncertainty in patients’ treatment times. Since the variety of patients’ treatment times in

each clinic results in a fairly large number of scenarios, we used a sample average approx-

imation scheme to obtain high quality solutions by considering only a sub-set of scenarios.

Furthermore, we investigated the impact of including uncertainty in our solution frame-

work by using Monte Carlo simulation. We compared our framework to its deterministic

counterpart and demonstrated that our framework produces significantly lower costs.

Finally, in the fourth chapter, we combined discrete-event simulation modeling with

an optimization search procedure to improve physicians work schedules and patients sat-

isfaction. We focused on scheduling physicians under uncertain patients’ arrival patterns

and treatment times. Moreover, we developed a discrete-event simulation kernel integrated

with an enhanced simulated annealing algorithm to solve this problem. In addition to that,

we used a model of D/M/1 queue type and approximated the stochastic wait-time as an an-

alytic non-linear function that gave us a high quality initial feasible solution. Furthermore,

our numerical results confirmed the significance of incorporating stochastic functions such
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as patient wait-time and physician overtime into physician scheduling problem.

5.2 Future Research Directions

Immediate extensions of this thesis can revolve around the following directions.

• Developing a decomposition-based exact algorithm for the PCSP.

• Considering a variant of the proposed models accounting for uncertainty in unavail-

ability of physicians, where the decisions made at each stage might affect the deci-

sions in subsequent stages.

• Developing a multi-stage stochastic programming model for the variant mentioned

above.

• Investigating on the impact physician scheduling on various appointment systems.

• Another interesting research direction is to develop MIP approximation models that

can estimate the patients wait-time and physicians overtime.

• Developing efficient solution algorithms for the variants mentioned above would be

another promising area of research.
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lem: Staffing ratios and nursing shortages, Decision Sciences 37 (1) (2006) 39–70.

123



[55] P. D. Wright, K. M. Bretthauer, Strategies for addressing the nursing shortage: Coor-

dinated decision making and workforce flexibility, Decision Sciences 41 (2) (2010)

373–401.

[56] B. Maenhout, M. Vanhoucke, An integrated nurse staffing and scheduling analysis

for longer-term nursing staff allocation problems, Omega 41 (2) (2013) 485–499.

[57] J. Ingels, B. Maenhout, The impact of reserve duties on the robustness of a person-

nel shift roster: An empirical investigation, Computers & Operations Research 61

(2015) 153–169.

[58] X. Zhong, J. Zhang, X. Zhang, A two-stage heuristic algorithm for the nurse schedul-

ing problem with fairness objective on weekend workload under different shift de-

signs, IISE Transactions on Healthcare Systems Engineering 7 (4) (2017) 224–235.

[59] M. Chiaramonte, D. Caswell, Rerostering of nurses with intelligent agents and iter-

ated local search, IIE Transactions on Healthcare Systems Engineering 6 (4) (2016)

213–222.

[60] J. F. Bard, D. P. Morton, Y. M. Wang, Workforce planning at USPS mail process-

ing and distribution centers using stochastic optimization, Annals of Operations Re-

search 155 (1) (2007) 51–78.

[61] P. Punnakitikashem, J. M. Rosenberger, D. B. Behan, Stochastic programming for

nurse assignment, Computational Optimization and Applications 40 (3) (2008) 321–

349.

[62] P. Punnakitikashem, J. M. Rosenberber, D. F. Buckley-Behan, A stochastic program-

ming approach for integrated nurse staffing and assignment, IIE Transactions 45 (10)

(2013) 1059–1076.

124



[63] X. Zhu, H. D. Sherali, Two-stage workforce planning under demand fluctuations and

uncertainty, Journal of the Operational Research Society 60 (1) (2009) 94–103.

[64] K. Kim, S. Mehrotra, A two-stage stochastic integer programming approach to in-

tegrated staffing and scheduling with application to nurse management, Operations

Research 63 (6) (2015) 1431–1451.

[65] O. El-Rifai, T. Garaix, V. Augusto, X. Xie, A stochastic optimization model for

shift scheduling in emergency departments, Health Care Management Science 18(3)

(2015) 289–302.

[66] D. Bertsimas, M. Sim, The price of robustness, Operations Research 52 (1) (2004)

35–53.

[67] D. Bienstock, Histogram models for robust portfolio optimization, Journal of Com-

putational Finance 11 (1) (2007) 1–64.

[68] M. Holte, C. Mannino, The implementor/adversary algorithm for the cyclic and ro-

bust scheduling problem in health-care, European Journal of Operational Research

226 (3) (2013) 551–559.

[69] J. Tang, Y. Wang, An adjustable robust optimisation method for elective and emer-

gency surgery capacity allocation with demand uncertainty, International Journal of

Production Research 53 (24) (2015) 7317–7328.

[70] A. Shapiro, T. Homem-de Mello, On the rate of convergence of optimal solutions of

Monte Carlo approximations of stochastic programs, SIAM journal on optimization

11 (1) (2000) 70–86.

[71] W.-K. Mak, D. P. Morton, R. K. Wood, Monte Carlo bounding techniques for deter-

mining solution quality in stochastic programs, Operations Research Letters 24 (1)

(1999) 47–56.

125



[72] A. J. Kleywegt, A. Shapiro, T. Homem-de Mello, The sample average approximation

method for stochastic discrete optimization, SIAM Journal on Optimization 12 (2)

(2002) 479–502.

[73] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, A. Shapiro, The sample aver-

age approximation method applied to stochastic routing problems: a computational

study, Computational Optimization and Applications 24 (2) (2003) 289–333.

[74] T. Cayirli, E. Veral, Outpatient scheduling in health care: a review of literature,

Production and Operations Management 12 (4) (2003) 519–549.

[75] C. Bleustein, D. B. Rothschild, A. Valen, E. Valatis, L. Schweitzer, R. Jones, Wait

times, patient satisfaction scores, and the perception of care, The American journal

of managed care 20 (5) (2014) 393–400.

[76] M. Tohidi, M. Kazemi, I. Contreras, A Physicians planning framework for

polyclinics under uncertainty, URL https://users.encs.concordia.ca/

˜icontrer/web/tohidi2017.pdf, 2018.

[77] M. C. Fu, Optimization for simulation: Theory vs. practice, INFORMS Journal on

Computing 14 (3) (2002) 192–215.

[78] M. Centeno, R. Giachetti, R. Linn, A. Ismail, A simulation-ilp based tool for

scheduling ER staff, in: Proceedings of the 2003 conference on Winter simulation,

Winter Simulation Conference, 1930–1938, 2003.

[79] V. De Angelis, G. Felici, P. Impelluso, Integrating simulation and optimisation in

health care centre management, European Journal of Operational Research 150 (1)

(2003) 101–114.

126



[80] M. A. Ahmed, T. M. Alkhamis, Simulation optimization for an emergency depart-

ment healthcare unit in Kuwait, European Journal of Operational Research 198 (3)

(2009) 936–942.

[81] J. P. Oddoye, D. F. Jones, M. Tamiz, P. Schmidt, Combining simulation and goal pro-

gramming for healthcare planning in a medical assessment unit, European Journal

of Operational Research 193 (1) (2009) 250–261.

[82] F. Zeinali, M. Mahootchi, M. M. Sepehri, Resource planning in the emergency

departments: A simulation-based metamodeling approach, Simulation Modelling

Practice and Theory 53 (2015) 123–138.

[83] R. S. Dittus, R. W. Klein, D. J. DeBrota, M. A. Dame, J. F. Fitzgerald, Medical resi-

dent work schedules: Design and evaluation by stimulation modeling, Management

Science 42 (6) (1996) 891–906.

[84] G. W. Evans, E. Unger, T. B. Gor, A simulation model for evaluating personnel

schedules in a hospital emergency department, in: Simulation Conference, 1996.

Proceedings. Winter, IEEE, 1205–1209, 1996.

[85] M. D. Rossetti, G. F. Trzcinski, S. A. Syverud, Emergency department simulation

and determination of optimal attending physician staffing schedules, in: Simulation

Conference Proceedings, 1999 Winter, vol. 2, IEEE, 1532–1540, 1999.

[86] J. R. Swisher, S. H. Jacobson, J. B. Jun, O. Balci, Modeling and analyzing a physi-

cian clinic environment using discrete-event (visual) simulation, Computers & Op-

erations Research 28 (2) (2001) 105–125.

[87] C. W. Spry, M. A. Lawley, Evaluating hospital pharmacy staffing and work schedul-

ing using simulation, in: Proceedings of the 37th conference on Winter simulation,

Winter Simulation Conference, 2256–2263, 2005.

127



[88] S. M. Al-Najjar, S. H. Ali, Staffing and scheduling emergency rooms in two public

hospitals: a case study, International Journal of Business Administration 2 (2) (2011)

137.

[89] W. Abo-Hamad, A. Arisha, Simulation-based framework to improve patient experi-

ence in an emergency department, European Journal of Operational Research 224 (1)

(2013) 154–166.

[90] C. Oh, A. M. Novotny, P. L. Carter, R. K. Ready, D. D. Campbell, M. C. Leckie,

Use of a simulation-based decision support tool to improve emergency department

throughput, Operations Research for Health Care 9 (2016) 29–39.

[91] J. R. Swisher, S. H. Jacobson, Evaluating the design of a family practice health-

care clinic using discrete-event simulation, Health Care Management Science 5 (2)

(2002) 75–88.

[92] J.-Y. Yeh, W.-S. Lin, Using simulation technique and genetic algorithm to improve

the quality care of a hospital emergency department, Expert Systems with Applica-

tions 32 (4) (2007) 1073–1083.

[93] E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, E. Luque, Optimization of health-

care emergency departments by agent-based simulation, Procedia Computer Science

4 (2011) 1880–1889.

[94] E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, E. Luque, Simulation optimiza-

tion for healthcare emergency departments, Procedia Computer Science 9 (2012)

1464–1473.
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