Login | Register

Cerebello-Cortical Coherence of Local Field Potentials following Patterned Stimulation of the Cerebellar Vermis

Title:

Cerebello-Cortical Coherence of Local Field Potentials following Patterned Stimulation of the Cerebellar Vermis

Tremblay, Stéfanie (2018) Cerebello-Cortical Coherence of Local Field Potentials following Patterned Stimulation of the Cerebellar Vermis. Masters thesis, Concordia University.

[thumbnail of Tremblay_MSc_S2019.pdf]
Preview
Text (application/pdf)
Tremblay_MSc_S2019.pdf - Accepted Version
Available under License Spectrum Terms of Access.
3MB

Abstract

The cerebellum is involved in sensorimotor, cognitive, and emotional functions through cerebello- cerebral connectivity. Non-invasive cerebellar neurostimulation has been used to treat neurological disorders and has positive effects on cognition and mood, which have been related to modulation in frontal oscillations. To explore the mechanisms, we studied the effects of cerebellar stimulation at various frequencies on oscillations and coherence across a cerebello-cortical network, in the anesthetized rat. Local field potentials were recorded continuously with monopolar and bipolar electrodes in the lateral cerebellum (crus I/II), and in the prefrontal cortex (FrA), in six adult male Sprague-Dawley rats anesthetized with urethane. Stimulation patterns were delivered to the cerebellar vermis (lobule VII) in a randomized order: single pulses (0.2 Hz for 60 s), and repeated pulses at 1 Hz (30 s), 5 Hz (10 s), 25 Hz (2 s), and 50 Hz (1 s). Low frequency stimulation (1 Hz and 5 Hz) enhanced coherence in the cerebello-cortical network in theta and alpha, while high frequency stimulation (50 Hz) had an enhancing effect on beta and low gamma coherence. Stimulation effects were influenced by the initial oscillatory state, perhaps due to cyclic stages under urethane anesthesia. Low frequency stimulation was more efficient when delivered in a state dominated by slow waves, while high frequency stimulation showed the opposite relationship. We have found here that cerebellar stimulation can drive synchronization of cerebello-cortical and cortico-cortical networks. The present results could provide basic mechanisms underlying the therapeutic effects of cerebellar stimulation by promoting large-scale synchronization of neural networks.

Divisions:Concordia University > Faculty of Arts and Science > Health, Kinesiology and Applied Physiology
Item Type:Thesis (Masters)
Authors:Tremblay, Stéfanie
Institution:Concordia University
Degree Name:M. Sc.
Program:Exercise Science
Date:10 December 2018
Thesis Supervisor(s):Courtemanche, Richard
Keywords:oscillations, synchrony, cerebellum, vermis, prefrontal cortex
ID Code:984871
Deposited By: STEFANIE TREMBLAY
Deposited On:03 Feb 2021 19:55
Last Modified:03 Feb 2021 19:55

References:

Akgören, N., Dalgaard, P., and Lauritzen, M. (1996). Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis. Brain research 710(1-2), 204-214.
Alagapan, S., Schmidt, S.L., Lefebvre, J., Hadar, E., Shin, H.W., and Frӧhlich, F. (2016). Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent. PLOS Biology 14(3), e1002424. doi: 10.1371/journal.pbio.1002424.
Allen, G., Buxton, R.B., Wong, E.C., and Courchesne, E. (1997). Attentional activation of the cerebellum independent of motor involvement. Science 275(5308), 1940-1943.
Andreasen, N.C., O'Leary, D.S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L., et al. (1996). Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal- thalamic-cerebellar circuitry. Proceedings of the National Academy of Sciences 93(18), 9985- 9990.
Andreasen, N.C., and Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological psychiatry 64(2), 81-88.
Armitage, R., Hoffmann, R.F., and Rush, A.J. (1999). Biological rhythm disturbance in depression: temporal coherence of ultradian sleep EEG rhythms. Psychological medicine 29(06), 1435.
Baxter, L.R., Schwartz, J.M., Phelps, M.E., Mazziotta, J.C., Guze, B.H., Selin, C.E., et al. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry 46(3), 243.
Benchenane, K., Tiesinga, P.H., and Battaglia, F.P. (2011). Oscillations in the prefrontal cortex: a gateway to memory and attention. Current opinion in neurobiology 21(3), 475-485.
Boehme, R., Uebele, V.N., Renger, J.J., and Pedroarena, C. (2011). Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block. Journal of Neurophysiology 106(5), 2653-2661. doi: 10.1152/jn.00612.2011.
Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., and Yeo, B.T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. American Journal of Physiology-Heart and Circulatory Physiology.
Buzsaki, G. (2006). The brain’s default state: self-organized oscillations in rest and sleep. Rhythms of the Brain, 175-205.
Buzsáki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and currents— EEG, ECoG, LFP and spikes. Nature reviews neuroscience 13(6), 407.
Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.) 304(5679), 1926. doi: 10.1126/science.1099745 [doi].
Buzsáki, G., Logothetis, N., and Singer, W. (2013). Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80(3), 751-764.
Cerminara, N.L., Lang, E.J., Sillitoe, R.V., and Apps, R. (2015). Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nature Reviews Neuroscience 16(2), 79.
Chen, H., Wang, Y.-j., Yang, L., Sui, J.-f., Hu, Z.-a., and Hu, B. (2016). Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior. Scientific reports 6, 20960.
Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E., Hallett, M., et al. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48(5), 1398-1403.
Clement, E.A., Richard, A., Thwaites, M., Ailon, J., Peters, S., and Dickson, C.T. (2008). Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PloS one 3(4), e2004.
Connolly, M.J., Gross, R.E., and Mahmoudi, B. (2016). The influence of the pre-stimulation neural state on the post-stimulation neural dynamics via distributed microstimulation of the hippocampus. Conf Proc IEEE Eng Med Biol Soc 2016, 1810-1813. doi: 10.1109/embc.2016.7591070.
Costa, M., Goldberger, A.L., and Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical review E 71(2), 021906.
Courtemanche, R., Robinson, J.C., and Aponte, D.I. (2013). Linking oscillations in cerebellar circuits. Frontiers in neural circuits 7, 125.
Das, S., Spoor, M., Sibindi, T.M., Holland, P., Schonewille, M., De Zeeuw, C.I., et al. (2017). Impairment of Long-Term Plasticity of Cerebellar Purkinje Cells Eliminates the Effect of Anodal Direct Current Stimulation on Vestibulo-Ocular Reflex Habituation. Frontiers in Neuroscience 11(444). doi: 10.3389/fnins.2017.00444.
De Montigny, C., and Lamarre, Y. (1973). Rhythmic activity induced by harmaline in the olivo-cerebello- bulbar system of the cat. Brain research 53(1), 81.
Demanuele, C., James, C.J., and Sonuga-Barke, E.J. (2007). Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals. Behavioral and Brain Functions 3(1), 62.
Demirtas-Tatlidede, A., Freitas, C., Cromer, J.R., Safar, L., Ongur, D., Stone, W.S., et al. (2010). Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophrenia research 124(1-3), 91-100.
Dempesy, C.W., and Richardson, D.E. (1987). Paleocerebellar stimulation induces in vivo release of endogenously synthesized 3 H dopamine and 3 H norepinephrine from rat caudal dorsomedial nucleus accumbens. Neuroscience 21(2), 565.
Denham, M.J., and Borisyuk, R.M. (2000). A model of theta rhythm production in the septal- hippocampal system and its modulation by ascending brain stem pathways. Hippocampus 10(6), 698.
Destexhe, A., and Sejnowski, T.J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews 83(4), 1401. doi: 10.1152/physrev.00012.2003 [doi].
Drevets, W.C., Price, J.L., Simpson Jr, J.R., Todd, R.D., Reich, T., Vannier, M., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627), 824.
Dubin, M. (2017). Imaging TMS: antidepressant mechanisms and treatment optimization. International Review of Psychiatry, 1.
Dum, R.P., Li, C., and Strick, P.L. (2002). Motor and nonmotor domains in the monkey dentate. Annals of the New York Academy of Sciences 978(1), 289-301.
Engel, A.K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top– down processing. Nature Reviews Neuroscience 2(10), 704.
Farzan, F., Pascual-Leone, A., Schmahmann, J.D., and Halko, M. (2016). Enhancing the temporal complexity of distributed brain networks with patterned cerebellar stimulation. Scientific reports 6, 23599.
Fatemi, S.H., Aldinger, K.A., Ashwood, P., Bauman, M.L., Blaha, C.D., Blatt, G.J., et al. (2012). Consensus paper: pathological role of the cerebellum in autism. The Cerebellum 11(3), 777-807.
Ferreri, F., Vecchio, F., Ponzo, D., Pasqualetti, P., and Rossini, P.M. (2014). Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: An EEG-TMS study. Human Brain Mapping 35(5), 1969- 1980. doi: doi:10.1002/hbm.22306.
Ferrucci, R., Giannicola, G., Rosa, M., Fumagalli, M., Boggio, P.S., Hallett, M., et al. (2012). Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognition & emotion 26(5), 786.
Frederick, A., Bourget-Murray, J., Chapman, C.A., Amir, S., and Courtemanche, R. (2015). Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat. Distributed Networks-New Outlooks on Cerebellar Function, 52.
Fries, P. (2015). Rhythms for cognition: communication through coherence. Neuron 88(1), 220-235.
Gray, C.M., Konig, P., Engel, A.K., and Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334. doi: 10.1038/338334a0 [doi].
Greenberg, A., Whitten, T.A., and Dickson, C.T. (2016). Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states. NeuroImage 133, 189.
Greer, T.L., Trivedi, M.H., and Thompson, L.T. (2005). Impaired delay and trace eyeblink conditioning performance in major depressive disorder. Journal of affective disorders 86(2), 235.
Gregoriou, G.G., Gotts, S.J., Zhou, H., and Desimone, R. (2009). High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention. Science 324(5931), 1207-1210. doi: 10.1126/science.1171402.
Grenier, F., Timofeev, I., and Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences 95(23), 13929-13934. doi: 10.1073/pnas.95.23.13929.
Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., et al. (2004). Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proceedings of the national Academy of Sciences 101(35), 13050-13055.
Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., et al. (2002). The neural basis of intermittent motor control in humans. Proceedings of the National Academy of Sciences of the United States of America 99(4), 2299. doi: 10.1073/pnas.032682099 [doi].
Hallett, M. (2007). Transcranial magnetic stimulation: a primer. Neuron 55(2), 187-199.
Harper, J.W., and Heath, R.G. (1973). Anatomic connections of the fastigial nucleus to the rostral
forebrain in the cat. Experimental neurology 39(2), 285.
Hartmann, M.J., and Bower, J.M. (1998). Oscillatory activity in the cerebellar hemispheres of
unrestrained rats. Journal of neurophysiology 80(3), 1598.
Heath, R.G. (1972). Electroencephalographic studies in isolation-raised monkeys with behavioral
impairment. Diseases of the nervous system.
Heath, R.G. (1977). Modulation of emotion with a brain pacemaker. J Nerv Ment Dis 165, 300. Heath, R.G., Dempesy, C.W., Fontana, C.J., and Fitzjarrell, A.T. (1980). Feedback loop between
cerebellum and septal-hippocampal sites: its role in emotion and epilepsy. Biological psychiatry. Hoebeek, F.E., Witter, L., Ruigrok, T.J.H., and De Zeeuw, C.I. (2010). Differential olivo-cerebellar
cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy
of Sciences. doi: 10.1073/pnas.0907118107.
Hoppenbrouwers, S.S., Schutter, D.J.L.G., Fitzgerald, P.B., Chen, R., and Daskalakis, Z.J. (2008). The
role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a
review. Brain Research Reviews 59(1), 185.
Huang, Y.-Z., Edwards, M.J., Rounis, E., Bhatia, K.P., and Rothwell, J.C. (2005). Theta burst stimulation
of the human motor cortex. Neuron 45(2), 201-206.
Inanaga, K. (1998). Frontal midline theta rhythm and mental activity. Psychiatry and clinical
neurosciences 52(6), 555.
Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annual
review of neuroscience 5(1), 275-297.
Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in neurobiology 78(3), 272. Jackson, J., Dickson, C.T., and Bland, B.H. (2008). Median raphe stimulation disrupts hippocampal theta
via rapid inhibition and state-dependent phase reset of theta-related neural circuitry. J
Neurophysiol 99(6), 3009-3026. doi: 10.1152/jn.00065.2008.
Jensen, O., and Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity:
Gating by Inhibition. Frontiers in Human Neuroscience 4(186). doi: 10.3389/fnhum.2010.00186. Jörntell, H., and Ekerot, C.-F. (2002). Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive
Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons. Neuron 34(5), 797-806. doi: https://doi.org/10.1016/S0896-6273(02)00713-4.
Kadosh, R.C., Levy, N., O'Shea, J., Shea, N., and Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology 22(4), R108-R111.
Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., and Hudspeth, A. (2013). "Chapter 42 The Cerebellum," in Principles of Neural Science. Fifth ed (United States of America: McGraw-Hill Companies).
Kelly, R.M., and Strick, P.L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of neuroscience 23(23), 8432-8444.
Kim, J.J., and Thompson, R.E. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in neurosciences 20(4), 177-181.
Kim, S., Ugurbil, K., and Strick, P. (1994). Activation of a cerebellar output nucleus during cognitive processing. Science 265(5174), 949-951.
Koenigs, M., and Grafman, J. (2009). The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural brain research 201(2), 239-243. König, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R., et al. (2005). Decreased EEG
synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiology of aging
26(2), 165.
Lee, T., and Kim, J.J. (2004). Differential effects of cerebellar, amygdalar, and hippocampal lesions on
classical eyeblink conditioning in rats. Journal of Neuroscience 24(13), 3242-3250. Leiner, H.C., Leiner, A.L., and Dow, R.S. (1993). Cognitive and language functions of the human
cerebellum. Trends in neurosciences 16(11), 444-447.
Leistedt, S.J.J., Coumans, N., Dumont, M., Lanquart, J.P., Stam, C.J., and Linkowski, P. (2009). Altered
sleep brain functional connectivity in acutely depressed patients. Human brain mapping 30(7),
2207.
Leung, L.S., and Yim, C.Y.C. (1993). Rhythmic delta-frequency activities in the nucleus accumbens of
anesthetized and freely moving rats. Canadian journal of physiology and pharmacology 71(5-6),
311.
Leventhal, A.M. (2008). Sadness, depression, and avoidance behavior. Behavior modification 32(6), 759.
doi: 10.1177/0145445508317167 [doi].
Levy, R., Hutchison, W.D., Lozano, A.M., and Dostrovsky, J.O. (2000). High-frequency synchronization
of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. The Journal of neuroscience : the official journal of the Society for Neuroscience 20(20), 7766. doi: 20/20/7766 [pii].
Liang, W.-K., Lo, M.-T., Yang, A.C., Peng, C.-K., Cheng, S.-K., Tseng, P., et al. (2014). Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. Neuroimage 90, 218-234.
Lindén, H., Pettersen, K.H., and Einevoll, G.T. (2010). Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. Journal of computational neuroscience 29(3), 423-444.
Liston, C., Chen, A.C., Zebley, B.D., Drysdale, A.T., Gordon, R., Leuchter, B., et al. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological psychiatry 76(7), 517.
Llinas, R., and Volkind, R.A. (1973). The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Experimental Brain Research 18(1), 69.
Logan, C.G., and Grafton, S.T. (1995). Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proceedings of the National Academy of Sciences 92(16), 7500-7504.
Lu, H., Zuo, Y., Gu, H., Waltz, J.A., Zhan, W., Scholl, C.A., et al. (2007). Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proceedings of the National Academy of Sciences 104(46), 18265-18269.
Maeda, F., Keenan, J.P., and Pascual-Leone, A. (2000a). Interhemispheric asymmetry of motor cortical excitability in major depression as measured by transcranial magnetic stimulation. The British journal of psychiatry : the journal of mental science 177, 169.
Maeda, F., Keenan, J.P., Tormos, J.M., Topka, H., and Pascual-Leone, A. (2000b). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Experimental Brain Research 133(4), 425.
Mäkinen, V., May, P., and Tiitinen, H. (2004). Spectral characterization of ongoing and auditory event- related brain processes. Neurology & clinical neurophysiology: NCN 2004, 104-104.
Matano, S. (2001). Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists 114(2), 163-165.
Matthews, S.C., Strigo, I.A., Simmons, A.N., Yang, T.T., and Paulus, M.P. (2008). Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. Journal of affective disorders 111(1), 13.
McCormick, D.A., and Pape, H.C. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of Physiology 431(1), 291- 318. doi: doi:10.1113/jphysiol.1990.sp018331.
Medina, J.F., Christopher Repa, J., Mauk, M.D., and LeDoux, J.E. (2002). Parallels between cerebellum- and amygdala-dependent conditioning. Nature Reviews Neuroscience 3, 122. doi: 10.1038/nrn728.
Middleton, F.A., and Strick, P.L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266(5184), 458-461.
Middleton, F.A., and Strick, P.L. (1997). "Cerebellar output channels," in International review of neurobiology. Elsevier), 61-82.
Middleton, F.A., and Strick, P.L. (2001). Cerebellar projections to the prefrontal cortex of the primate. The Journal of neuroscience : the official journal of the Society for Neuroscience 21(2), 700. doi: 21/2/700 [pii].
Middleton, S.J., Racca, C., Cunningham, M.O., Traub, R.D., Monyer, H., Knöpfel, T., et al. (2008). High- frequency network oscillations in cerebellar cortex. Neuron 58(5), 763.
Mišic, B., Doesburg, S.M., Fatima, Z., Vidal, J., Vakorin, V.A., Taylor, M.J., et al. (2014). Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cerebral Cortex 25(9), 2815-2827.
Mizuno, T., Takahashi, T., Cho, R.Y., Kikuchi, M., Murata, T., Takahashi, K., et al. (2010). Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clinical Neurophysiology 121(9), 1438-1446.
Müller, M.M., Keil, A., Gruber, T., and Elbert, T. (1999). Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clinical Neurophysiology 110(11), 1913-1920.
Nestler, E.J., and Carlezon Jr, W.A. (2006). The mesolimbic dopamine reward circuit in depression. Biological psychiatry 59(12), 1151-1159.
Northoff, G. (2016). How do resting state changes in depression translate into psychopathological symptoms? From ‘Spatiotemporal correspondence’to ‘Spatiotemporal Psychopathology’. Current opinion in psychiatry 29(1), 18-24.
O'connor, S.M., Berg, R.W., and Kleinfeld, D. (2002). Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. Journal of neurophysiology 87(4), 2137-2148.
O'reilly, J.X., Beckmann, C.F., Tomassini, V., Ramnani, N., and Johansen-Berg, H. (2009). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral cortex 20(4), 953-965.
Oulad Ben Taib, N., and Manto, M. (2013). Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural plasticity 2013.
Oulad Ben Taib, N., and Manto, M. (2016). The in vivo reduction of afferent facilitation induced by low frequency electrical stimulation of the motor cortex is antagonized by cathodal direct current stimulation of the cerebellum. Cerebellum & Ataxias 3(1), 15. doi: 10.1186/s40673-016-0053-3.
Pape, H.C., Narayanan, R.T., Smid, J., Stork, O., and Seidenbecher, T. (2005). Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus 15(7), 874.
Paradiso, G., Cunic, D., Saint-Cyr, J.A., Hoque, T., Lozano, A.M., Lang, A.E., et al. (2004). Involvement of human thalamus in the preparation of self-paced movement. Brain : a journal of neurology 127(Pt 12), 2717. doi: 10.1093/brain/awh288 [doi].
Park, H.-J., Furmaga, H., Cooperrider, J., Gale, J.T., Baker, K.B., and Machado, A.G. (2015). Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus. Brain stimulation 8(6), 1043-1048.
Parker, K., Kim, Y., Kelley, R., Nessler, A., Chen, K., Muller-Ewald, V., et al. (2017). Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Molecular psychiatry 22(5), 647.
Pellerin, J.P., and Lamarre, Y. (1997). Local field potential oscillations in primate cerebellar cortex during voluntary movement. Journal of neurophysiology 78(6), 3502.
Popa, D., Spolidoro, M., Proville, R.D., Guyon, N., Belliveau, L., and Léna, C. (2013). Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. Journal of Neuroscience 33(15), 6552-6556.
Raichle, M.E. (2015). The brain's default mode network. Annual review of neuroscience 38, 433-447. Ramnani, N. (2006). The primate cortico-cerebellar system: anatomy and function. Nature Reviews
Neuroscience 7(7), 511.
Raz, A., Vaadia, E., and Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of
pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. The Journal of neuroscience : the official journal of the Society for Neuroscience 20(22), 8559. doi: 20/22/8559 [pii].
Reynolds, C.F., and Kupfer, D.J. (1987). Sleep research in affective illness: state of the art circa 1987. Sleep: Journal of Sleep Research & Sleep Medicine.
Robinson, J.C., Chapman, C.A., and Courtemanche, R. (2017). Gap junction modulation of low- frequency oscillations in the cerebellar granule cell layer. The Cerebellum 16(4), 802-811.
Ros, H., Sachdev, R.N., Yu, Y., Sestan, N., and McCormick, D.A. (2009). Neocortical networks entrain neuronal circuits in cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 29(33), 10309. doi: 10.1523/JNEUROSCI.2327-09.2009 [doi].
Sacchetti, B., Scelfo, B., and Strata, P. (2005). The cerebellum: synaptic changes and fear conditioning. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 11(3), 217. doi: 11/3/217 [pii].
Salomons, T.V., Dunlop, K., Kennedy, S.H., Flint, A., Geraci, J., Giacobbe, P., et al. (2014). Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology 39(2), 488.
Sang, L., Qin, W., Liu, Y., Han, W., Zhang, Y., Jiang, T., et al. (2012). Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage 61(4), 1213-1225.
Sasaki, K., Oka, H., Matsuda, Y., Shimono, T., and Mizuno, N. (1975). Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Experimental Brain Research 23(1), 91-102.
Schmahmann, J.D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of neuropsychiatry and clinical neurosciences 16(3), 367.
Schmahmann, J.D., and Pandyat, D.N. (1997). "The cerebrocerebellar system," in International review of neurobiology. Elsevier), 31-60.
Schmahmann, J.D., Weilburg, J.B., and Sherman, J.C. (2007). The neuropsychiatry of the cerebellum— insights from the clinic. The Cerebellum 6(3), 254.
Schnitzler, A., and Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature reviews neuroscience 6(4), 285.
Schoenemann, P.T., Sheehan, M.J., and Glotzer, L.D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature neuroscience 8(2), 242.
Schutter, D.J.L.G., Enter, D., and Hoppenbrouwers, S.S. (2009). High frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions.
Schutter, D.J.L.G., and Van Honk, J. (2005a). The cerebellum on the rise in human emotion. The Cerebellum 4(4), 290.
Schutter, D.J.L.G., and Van Honk, J. (2005b). A framework for targeting alternative brain regions with repetitive transcranial magnetic stimulation in the treatment of depression. Journal of psychiatry & neuroscience: JPN 30(2), 91.
Schutter, D.J.L.G., and van Honk, J. (2006). An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. NeuroImage 33(4), 1227.
Schutter, D.J.L.G., and van Honk, J. (2009). The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. The Cerebellum 8(1), 28.
Schutter, D.J.L.G., van Honk, J., d'Alfonso, A.A.L., Peper, J.S., and Panksepp, J. (2003). High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neuroscience letters 336(2), 73.
Shah, S.A., Doraiswamy, P.M., Husain, M.M., Escalona, P.R., Na, C., Figiel, G.S., et al. (1992). Posterior fossa abnormalities in major depression: a controlled magnetic resonance imaging study. Acta Psychiatrica Scandinavica 85(6), 474.
Sherfey, J.S., Ardid, S., Hass, J., Hasselmo, M.E., and Kopell, N.J. (2018). Flexible resonance in prefrontal networks with strong feedback inhibition. PLoS computational biology 14(8), e1006357.
Siapas, A.G., Lubenov, E.V., and Wilson, M.A. (2005). Prefrontal phase locking to hippocampal theta oscillations. Neuron 46(1), 141.
Silvanto, J., Bona, S., and Cattaneo, Z. (2017). Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Neuroscience 363, 134-141. doi: 10.1016/j.neuroscience.2017.09.002.
Simpson, J.I., and Alley, K.E. (1974). Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. Brain research 82(2), 302-308.
Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49. Sirota, A., Csicsvari, J., Buhl, D., and Buzsaki, G. (2003). Communication between neocortex and
hippocampus during sleep in rodents. Proceedings of the National Academy of Sciences of the
United States of America 100(4), 2065. doi: 10.1073/pnas.0437938100 [doi].
Snider, R.S., and Maiti, A. (1976). Cerebellar contributions to the Papez circuit. Journal of neuroscience
research 2(2), 133.
Spencer, K.M., Nestor, P.G., Perlmutter, R., Niznikiewicz, M.A., Klump, M.C., Frumin, M., et al. (2004).
Neural synchrony indexes disordered perception and cognition in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 101(49), 17288. doi: 0406074101 [pii].
Stam, C.J., van Walsum, A.M.v.C., Pijnenburg, Y.A.L., Berendse, H.W., de Munck, J.C., Scheltens, P., et al. (2002). Generalized synchronization of MEG recordings in Alzheimer’s disease: evidence for involvement of the gamma band. Journal of Clinical Neurophysiology 19(6), 562.
Steriade, M. (1995). Two channels in the cerebellothalamocortical system. Journal of Comparative Neurology 354(1), 57-70. doi: doi:10.1002/cne.903540106.
Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of neurophysiology 86(1), 1.
Strick, P.L., Dum, R.P., and Fiez, J.A. (2009). Cerebellum and nonmotor function. Annual review of neuroscience 32, 413-434.
Strogatz, S.H., and Stewart, I. (1993). Coupled oscillators and biological synchronization. Scientific American 269(6), 102.
Suzuki, L., Coulon, P., Sabel-Goedknegt, E.H., and Ruigrok, T.J. (2012). Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. Journal of Neuroscience 32(32), 10854-10869.
Sweeney, J.A., Strojwas, M.H., Mann, J.J., and Thase, M.E. (1998). Prefrontal and cerebellar abnormalities in major depression: evidence from oculomotor studies. Biological psychiatry 43(8), 584.
Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., et al. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain : a journal of neurology 130(Pt 10), 2646. doi: awm201 [pii].
Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H.J., and Schnitzler, A. (2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain : a journal of neurology 126(Pt 1), 199.
Tononi, G., Edelman, G.M., and Sporns, O. (1998). Complexity and coherency: integrating information in the brain. Trends in cognitive sciences 2(12), 474-484.
Uylings, H.B., Groenewegen, H.J., and Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural brain research 146(1-2), 3-17.
van Dun, K., Bodranghien, F., Manto, M., and Marien, P. (2017). Targeting the cerebellum by noninvasive neurostimulation: a review. The Cerebellum 16(3), 695-741.
van Dun, K., Mitoma, H., and Manto, M. (2018). Cerebellar cortex as a therapeutic target for neurostimulation. The Cerebellum, 1-11.
Ward, L.M. (2003). Synchronous neural oscillations and cognitive processes. Trends in cognitive sciences 7(12), 553.
Watson, T.C., Becker, N., Apps, R., and Jones, M.W. (2014). Back to front: cerebellar connections and interactions with the prefrontal cortex. Frontiers in systems neuroscience 8, 4.
Watson, T.C., Jones, M.W., and Apps, R. (2009). Electrophysiological mapping of novel prefrontal- cerebellar pathways. Frontiers in integrative neuroscience 3, 18.
Wessel, M.J., and Hummel, F.C. (2017). Non-invasive cerebellar stimulation: a promising approach for stroke recovery? The Cerebellum, 1-13.
Wiesendanger, R., Wiesendanger, M., and Ru, D. (1979). An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus)—II. The projection from frontal and parietal association areas. Neuroscience 4(6), 747-765.
Wu, G.-R., and Baeken, C. (2017). Longer depressive episode duration negatively influences HF-rTMS treatment response: a cerebellar metabolic deficiency? Brain imaging and behavior 11(1), 8-16.
Zhang, L., Zhao, M., and Sui, R.-B. (2017). Cerebellar fastigial nucleus electrical stimulation alleviates depressive-like behaviors in post-stroke depression rat model and potential mechanisms. Cellular Physiology and Biochemistry 41(4), 1403-1412.
Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., et al. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biological psychiatry 71(7), 611-617.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top