
On Test Selection, Prioritization, Bisection, and Guiding Bisection with

Risk Models

Armin Najafi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of (Master of Applied Science (Software Engineering)) at

Concordia University

Montréal, Québec, Canada

Dec 2018

c© Armin Najafi, 2019

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Armin Najafi

Entitled: On Test Selection, Prioritization, Bisection, and Guiding Bisection

with Risk Models

and submitted in partial fulfillment of the requirements for the degree of

(Master of Applied Science (Software Engineering))

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Lata Narayanan

Examiner
Dr. Emad Shihab

Examiner
Dr. Jinqiu Yang

Supervisor
Dr. Peter C. Rigby

Co-supervisor
Dr. Weiyi Shang

Approved by
Dr Volker Haarslev, Graduate Program Director

January 2019
Dr Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

On Test Selection, Prioritization, Bisection, and Guiding Bisection with Risk Models

Armin Najafi

The cost of software testing has become a burden for software companies in the era of rapid

release and continuous integration. In the first part of our work, we evaluate the results of adopting

multiple test selection and prioritization approaches for improving test effectiveness in of the test

stages of our industrial partner Ericsson Inc.

In order to assist Ericsson with improving the test effectiveness of one of its large subsystems,

we adopt test selection and prioritization approaches based on test execution history from prior

research. By adopting and simulating those approaches on six months of testing data from our

subject system, we confirm the existence of valuable information in the test execution history. In

particular, the association between test failures provide the most value to the test selection and

prioritization processes. More importantly, during this exercise, we encountered various challenges

that are unseen or undiscussed in prior research. We document the challenges, our solutions and

the lessons learned as an experience report. Our experiences can be valuable for other software

testing practitioners and researchers who would like to adopt existing test effectiveness improvement

approaches into their work environment.

In the second part of our work, we explore batch testing in test execution environments and how

it can help to reduce the test execution costs. Software testing is one the costliest stages of software

development life cycle. One approach to reducing the test execution costs is to group changes into

batches and test them at once. In this work, we study the impact of batch testing in reducing the

number of test executions to deliver changes and find culprit commits. Based on the failure rate

we run simulations to determine the optimal batch size for three projects at Ericsson. Flaky test

failures are tests that pass and fail on the same change. We factor test flakiness into our simulations

as they increase the number of executions to test changes. The larger the flake rate the smaller

the batch size. Although batch testing can help to reduce the test executions, unlike testing each

change independently, when there is a failure a bisection must be done to find the likely true failing

culprit commit. We introduce a novel technique where we guide bisection based on two risk models:

a bug model and a test execution history model. We isolate the risky commits by testing them

individually, while the less risky commits are tested in a single large batch. Our results show that

batch testing in ideal environments with low test failure rates can reduce the test executions up

iii

to 72%. We also show that test flakiness will limit the savings to 42% as larger batches increase

the probability of flakiness and hence extra executions. Moreover, we show that risk calculation

approaches can be used to effectively predict the culprit commits in a failing batch. Furthermore,

we show that culprit predictions can be used with our TestTopN approach to help to reduce the test

executions up to 9% compared to our FifoBisection baseline. The results we present in this thesis

have convinced Ericsson developers to implement our culprit risk predictions in the CulPred tool

that will make their continuous integration pipeline more efficient.

This thesis is organized as a “manuscript” thesis with a background literature chapter followed

by subsequent chapters that are accepted or submitted papers.

iv

Acknowledgments

I would like to take this opportunity to show my gratitude towards the people who have played an

indispensable role in this memorable journey. Foremost, I would like to express my sincere gratitude

and respect towards my thesis supervisors, Dr. Peter Rigby, and Dr. Weiyi Shang. This work would

not have been possible without their guidance, support and encouragement.

In addition, I would also like to thank Ericsson Inc. for providing us with their full support,

knowledge, and necessary hardware. My special thanks go to Chris Griffith, Gary McKenna, Wasiq

Waqar, Vishal Pravin, Ladan Maxamud, Fred May, Danny Lee, and Jerome Lambourne for their

valuable feedback and support.

Additionally, I would like to thank Concordia University for providing me with this opportunity

to be part of this exciting journey. Last but not least, I would like to thank my parents and family

for their love and constant support. I could not have accomplished this without their support and

motivation.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Background and Literature 6

2.1 Test Selection . 6

2.2 Test Selection Using Execution History . 11

2.3 Fault Localization . 12

2.4 Fault Localization in Change Level . 19

3 Improving Test Effectiveness Using Test Executions History: An Industrial Ex-

perience Report 22

3.1 Abstract . 22

3.2 Introduction . 23

3.3 Background and Subject System . 24

3.3.1 Subject system . 25

3.3.2 Testing process . 25

3.4 Adopted Approaches . 26

3.4.1 Test Selection . 26

3.4.2 Test Prioritization . 28

3.5 Results of the Adopted Approaches . 29

3.5.1 Test Selection . 29

3.5.2 Test Prioritization . 31

3.6 Challenges and Lessons Learned . 34

3.7 Threats to Validity . 38

3.8 Related Work . 39

vi

3.9 Conclusion . 41

4 Bisecting Commits and Guiding Test Bisection to find Culprits with Risk Models 42

4.1 Abstract . 42

4.2 Introduction . 43

4.3 Background on Batching and Bisection . 45

4.4 Guiding Bisection based on Risk . 46

4.5 Culprit Risk Models . 48

4.5.1 BugModel . 48

4.5.2 TestExecutionHistory . 49

4.6 Simulation Methodology and Data . 50

4.6.1 The Impact of BatchSize on FlakeRate . 51

4.6.2 Simulation Methodology . 52

4.7 Result 1: BatchSize given CulpritRate . 53

4.8 Result 2: BatchSize given FlakeRate . 54

4.9 Result 3: Risk Models to Predict Culprit Commits 56

4.10 Threats to Validity . 60

4.11 Related Work . 61

4.12 Conclusion . 63

5 Conclusions 65

Bibliography 67

vii

List of Figures

1 An overview of the testing process of ELS. 24

2 Bean plots of test execution time reduction by comparing our prioritization with the

original order . 32

3 Bean plots of test execution time reduction by comparing our prioritization with the

random order . 32

4 Distribution of the Popt values of our prioritization results. 33

5 An example of the cumulative lift chart of test failures. The dashed line is for the

optimal order and the other line is for the order given by our adopted test prioritization

approach. 34

6 FifoBisection. When a batch of commits fails, a bisection is performed to find the

culprit commit. Since an execution is required for each binary split, there are 2 ∗

log2(n) + 1 executions required to find a culprit. To bisect 4 commits, we must run

5 executions. However, if the batch passes, we would need 1 execution to test the 4

commits. 47

7 TestTopN. The riskiest N commits are tested individually, with the remaining com-

mits combined in a single batch. In this case, top1 reduces the number of required

executions to three compared to the 5 in Figure 6. 47

8 Calculating the commit culprit score based on file and test failure frequency. 50

9 Probability of a flaky failure for each BatchSize. The probability is estimated with

a logistic regression model for each project. At Ericsson request we anonymized the

y-axis . 52

10 Improvement in test executions for different BatchSizes. In an ideal environment, we

see a logarithmic increase with most of the savings in executions being realized before

batches of size four. 55

viii

11 Improvements in test executions considering the FlakeRates. The FlakeRate controls

the BatchSize and the project with the highest flake rate does not see any advantage

above BatchSize = 2. Project C still attains high execution savings, at 41% with a

BatchSize of 4. 57

ix

List of Tables

1 Overall comparison of the three adopted test selection approaches. 31

2 Results of risk-based approaches . 59

x

Chapter 1

Introduction

This thesis is organized as a “manuscript” thesis with a background literature chapter followed by

subsequent chapters that are accepted or submitted papers.

Testing is an important, yet time consuming and costly process, especially for large software

systems. Prior research estimates that testing consumes between 30% to 50% of the time in software

development life-cycle [PZTM13]. For example, an industrial case study shows that it takes over

two days to complete testing on a medium size video conferencing system [MGS13].

The cost of testing has become a burden for software companies during rapid release [Bec00],

where continuous integration techniques are widely adopted in practice to receive feedback from

testing as soon as changes are made to the source code [DMG07]. With thousands of commits

made to the source code every day, it is challenging to keep up with the speed of development.

Google’s version control repository receives over 16,000 commits every day [PL16], which results in

a median of 27 test requests per minute [ZSR18]. Our industrial collaborator Ericsson has faced the

same challenges for testing its large-scale software systems. Moreover, the changes in their testing

processes may be even greater due to the complex testing infrastructures that are purposely designed

for each software subsystem.

Test selection and test prioritization are proposed by prior research to improve the effectiveness

of test executions [ASD14, HGCM15, ERP14, KP02, ZSR18]. With test selection, tests are either

executed or skipped on the fly. With test prioritization, tests are reordered such that more test

failures can be captured earlier using limited testing resources. We leverage prior research to assist

Ericsson with improving the testing process of one its large-scale software systems. Since prior

research is typically evaluated on a particular industrial subject system (e.g., from Microsoft or

Google), it is unclear to what extent the existing approaches can improve the test effectiveness in

our subject system and whether there are challenges that are unseen by prior research.

1

In the first part of this thesis, we share our industrial experience for adopting test selection

and prioritization approaches to improve the test effectiveness of one of the large software systems

at Ericsson. In particular, the adopted approaches are based on historical test failure frequency,

test failure association, and the costs associated with the testing process. In order to evaluate the

usefulness of these adopted approaches, we simulate applying these approaches using six months of

testing data from a large-scale system at Ericsson. Our results show the importance of test execution

history in enabling the test selection and prioritization approaches to help with software testing

in practice. We encountered many engineering and design challenges for adopting and applying

the approaches to the testing processes of Ericsson. In the end, we conquered the problems and

documented the challenges, our solutions and the lessons learned as an experience report. We

believe that our experience in adopting existing test selection and prioritization approaches can help

software practitioners and researchers who want to adopt software testing approaches into their work

environment.

The major contributions of this part are:

• We adopt and evaluate test selection and prioritization approaches with the goal of improving

test effectiveness in a large industrial system with a complex testing infrastructure.

• We demonstrate the value of test execution history for improving test effectiveness in a large-

scale industrial system in practice.

• We provide an industrial experience report that documents the challenges that are encountered

and our lessons learned during the adoption process of the test selection and prioritization

approaches.

In the second part of this thesis, we study batch testing and its implications for reducing test ex-

ecutions in large-scale software development environments. To isolate test failures, many companies

have adopted the DevOps strategy of testing each individual commit. While effective at isolation

there are substantial computation requirements. To limit the resource requirements, many software

companies, including Ericsson, have adopted batching to reduce the cost of testing. Batch testing

groups commits and allows all of them to be tested at once. When the batch passes, all of the

commits can proceed in the continuous integration pipeline at once and save the resources.

Although batch testing can reduce test executions, it introduces a new problem. When a batch

fails, the culprit commits causing the batch failure need to be identified. One of the common

approaches used for finding a culprit in a group of failing commits is bisection. When commits are

ordered, GitBisection [GBS] can use an ordered binary search to identify the culprit in log(n) time.

However, GitBisection cannot be used in our studied subsystem in Ericsson as commits are not

2

merged yet and have no order. In this regard, Ericsson has adopted an approach named bisection

were batches are split in half and tested until the culprit is found.

In the first part of this work, we study the impact of batch testing on reducing the test executions

in environments with various test failure rates. In practice, test failure rates in test environments

tend to be very low. For example, on Chrome only 12.5% of tests fail [ZSR18]. Batch testing offers

the highest savings in test environments with low failure rates.

In the second part, we examine flaky tests, which can pass and fail on the same commit. Google

reports that 1 in 7 tests are flaky and that 84% newly failing tests are actually flaky failures [Mic16].

Flaky tests are exacerbated by batching, as the batch size grows the probability that one or more

commits will have a flaky test failure also grows.

In the last part of this work, we propose more efficient approaches for finding the culprits when

a batch failure happens. First, we propose risk-based approaches for calculating risk values for

the commits of a batch. Then we propose a TestTopN approach for testing the riskier commits

individually and the rest of the lest risky commits together in a separate batch. We study how

this approach can reduce the test executions compared to the bisection approach used in Ericsson.

We propose two risk calculation approaches. The first approach is based on well-studied bug model

literature [KSA+13]. Our second approach is based on using test execution history and the file

changes of the commits.

More specifically, we answer the following three research questions.

RQ1: What is the most cost-effective BatchSize for the number of culprits discovered

during testing?

Batching commits for testing is more efficient with a low test failure rate, i.e. CulpritRate. The

smaller the number of the test fails, the larger the BatchSize as there will be few failures. In contrast,

the higher the CulpritRate the larger the number of bisections resulting in more executions.

In this work, we have studied the impact of batch size on the test executions and what an most

cost-effective BatchSize should be. We have seen that in an ideal environment for projects that have

lower CulpritRate, a higher batch size will lead to fewer executions.

The higher the CulpritRate the smaller the most cost-effective BatchSize. For example, Project

A has a CulpritRate of over two times Project C and with a BatchSize of 4, the savings are 46%,

while Project C can have a BatchSize up to 9 with savings of 72%.

RQ2: What is the most cost-effective BatchSize when some bisections are done as

a result of flaky failures?

Test flakiness is an inevitable part of any test environment. Google reports that 1 in 7 tests

are flaky and that 84% newly failing tests are actually flaky failures [Mic16]. A flaky test failure is

defined as a test that passes and fails on the same commit. We study the impact of test flakiness

3

in finding the most cost-effective BatchSize. Our study shows higher FlakeRate will limit the most

cost-effective BatchSize. When commits are tested individually, a flaky failure does not affect other

commits and the number of executions remains constant. In contrast, the larger the BatchSize the

higher the probability that at least one of the commits in the batch will be flaky. Any flaky batch

failure incurs the penalty of an unnecessary bisection.

The higher the FlakeRate the smaller the BatchSize and the smaller the savings in executions.

For example, Project B has a 1/3 higher FlakeRate than Project C and a BatchSize of 4 saves 14%

of the executions compared to 41%, respectively. With flaky failures, Project C’s most cost-effective

BatchSize and savings are reduced from a BatchSize of 9 and execution savings of 72% to 4 and

41%, respectively.

RQ3: Can risk models predict the culprit commit and reduce the number of execu-

tions to find the culprits on failing batches?

Batch testing is effective in reducing the test executions, however, introduces a new problem.

When a batch fails, the root cause of the failure, i.e. culprit, needs to be found among the failed

commits. We use commit risk models to predict the culprit commit when a batch fails. We use two

types of models, Bug models, and historical test information.

Bug models have been effective at identifying the commits that are most likely to lead to future

bugs, i.e. bug introducing changes. [HBB+12, RHTZ13, TMH+15, Aki71, DLR10, Has09, ZPZ07,

MW00, MPS08, NZZ+10, RPH+11, KZJZ07, GFS05, LHSR06, MK92, CMRH09, MKAH14, Moc10,

SJI+10, SMK+11, KSA+13]. We use these techniques to identify which of the commits is the most

likely culprit. We then test the riskiest commits individually and batch the remaining commits.

Our second approach is based on using test execution history. Test executions history has

been largely studied for performing test selection and prioritization [KP02, ERP14, ASD14, ZSR18,

CMBA17]. In contrast, we use test execution history to predict a culprit commit given a batch test

failure. Particularly we use the relationship between file changes and test failures extracted from the

test execution history. Campbell et al. [CMBA17] have proposed an approach for suggesting tests

to run based on file changes. We reverse this idea by determining the most likely culprit given the

failing test and the files under change. We found that our risk-based approaches can significantly

reduce the number of test executions by predicting the culprit commits.

Both culprit risk prediction models are effective, but TestExecutionHistory outperforms Bug-

Model . TestExecutionHistory is able to predict the culprits using the Top2 predictions are sufficient

and correct 63% and 66% of the time for Projects B and C with BatchSizes = 4. Compared to

FifoBisection this results in -9.0% and -7.6% fewer executions, respectively.

The results we present here have convinced Ericsson developers to implement our culprit risk

predictions in the CulPred tool that will make their continuous integration pipeline more efficient.

4

The thesis is structured as a manuscript thesis with a background literature review and two

complete papers. The complete introduction for each paper and research questions is contained

in the paper chapter in which they are fully presented. Chapter 2, gives an extensive literature

review for our studied topics. Chapter 3 is dedicated to our experience report regarding adopting

different test selection and prioritization approaches in the test environment of Ericsson. Chapter 4 is

dedicated to our experiments regarding batch testing and isolating the culprits. Finally, we conclude

the thesis in Chapter 5.

5

Chapter 2

Background and Literature

Software testing over the time has received a lot of attention from research communities and there

have been numerous proposals ranging from how the testing should take place, how to revise the

tests and improve the test effectiveness to ways for finding the root causes of the test failures and

automatic classification of them. In this section, we go over some of the background and literature

related to software testing and improving test effectiveness in general and then more specifically doing

so using test executions history. Later on, we explore the literature related to fault localization and

more specifically locating root causes in batch testing.

2.1 Test Selection

Improving regression testing is a very well studied subject in software engineering literature and

has attracted a lot of attention from both industry and academic communities. The proposed

techniques for tests selection and prioritization range from optimization algorithms for maximizing

some objective function, maximizing code coverage of the test executions to minimizing the execution

time. Kazmi et al. [KJMG17] and Suleiman et al. [SAH17] propose extensive surveys on the recent

studies related to tests selection and prioritization.

Laali et al. [LLH+16] talks about three ways that can make regression testing more effective.

test suite minimization, test case selection, and test case prioritization. For the first two techniques,

a subset of test cases is selected from a tests pool to be executed. On the other hand, in the third

approach, none of the tests are excluded but just the order of running them are changed. This work

proposes an approach for online prioritization of the test cases based on tests coverage data. This

work is an improvement to the work done by Zhou et al. [Zho10] which is instead based on off-line

information. These works are closely related to our approach, however, as opposed to us they rely

on tests coverage data such as statement or branch coverage information. Our approach instead

6

relies on empirically inferred information about the previous test results and how effective each test

has been in its history.

Koochakzadeh et al. [KG10] propose a human-assisted approach for removing the tests redun-

dancy. They build upon their previous work [KGM09] that only relies on test coverage data and

show that utilizing test coverage data alone can be misleading for eliminating the tests redundancy

and result in weaker test cases. They show that their new approach facilitates the process of test

redundancy analysis for testers and that they get better results than their previous fully automated

method. Our work also partly addresses the matter of tests redundancy and their importance.

However, we take a different approach to eliminating it. We do not rely on tests coverage data and

also do not require any human intervention. Instead, we use association rules mining techniques for

mitigating the problem.

Labuschagne et al. [LIH17] propose a study for cost measurement of regression testing in practice.

They study 61 Java projects running on Travis CI and find that 18% of test suite executions fail and

that 13% of these failures are flaky. Among the non-flaky failures, only 74% were true positives and

the remaining 26% were false positives. Their study emphasizes the importance of the works like

ours for improving test effectiveness of the continuous integration flow in large software projects.

Noor et al. [NH17] propose a comparison of using different test measures in a logistic regression

model for ranking the effectiveness of test cases. They use this ranking for prioritizing test case

executions and compare the results. The measures that they use include historical fault detection

rate, method coverage, changed method coverage, size of tests and a similarity-based quality metric

that they define. They conclude that no individual metric will outperform others in all of their

projects, however, a combined set of metrics will give superior prioritization results. This work can

complement our study by using logistic regression as a method for calculating ranking values of the

test cases. However, our approach does not depend on test case coverage in any way.

Shi et al. [SYGM15] compare and combine a test-suite reduction and a regression test selection

technique. Their test reduction technique permanently removes tests from the flow. On the other

hand, their test selection technique suggests running only tests that their outcome will be changed

by the new changes introduced in the new revision of the software. Their approach, as opposed to

ours, relies on code coverage information like statement or branch coverage. They also do not talk

about the concept of tests prioritization as we describe it.

Saha et al. [SZKP15] propose a new approach for solving the test prioritization problem by

reducing it to a standard information retrieval problem. They assume that test cases and source

code usually embody meaningful identifiers and comments which can be treated as natural language.

Therefore, information retrieval techniques can be utilized on them to give priority to running

tests. They mainly focus on addressing the limitations of mostly coverage-based test prioritization

7

techniques such as profiling overhead and also the change of coverage information over time when

significant changes are applied to the main code base. This work does not directly relate to our study

as we do not utilize test coverage information to our techniques. However, can be a complementary

approach for improving our test selection results.

Wang et al. [WNT17] propose a tool named Quality-Aware Test Case Prioritization which

aims to improve the limitation of current coverage-based test case prioritization algorithms. They

mention typical related coverage-based techniques assign higher priorities to test cases that have

higher dynamic or static code coverage. However, they do not take into account the fault-proneness

of different code segments. They aim to solve this limitation by benefiting from two widely studied

approaches in code inspection research, namely static bug finders and defect prediction models.

Their approach does not directly relate to our study as we do not use test code coverage in our

approaches. Instead, we identify more effective tests based on a few metrics extracted from tests

execution history and prioritize them for next runs.

Nardo et al. [NABL] propose a study in which they evaluate 7 coverage-based test improvement

techniques on a common carefully designed industrial system to give a good measure for comparing

the performance of the different approaches. They evaluate four prioritization techniques, a test se-

lection technique, a test suite minimization technique and a hybrid approach that combines selection

and minimization. They also examine the effect of choosing different coverage criteria on the results.

Among their findings is that they conclude test suite minimization using finer grained coverage cri-

teria could provide 79.5% savings in execution costs while maintaining a fault detection capability

level above 70%. Their approach, as opposed to ours, relies on code coverage information. However,

their findings confirm ours. Moreover, they correctly point to the trade-off between tests reductions

and tests fault detection capability, something that we have encountered in our approaches as well.

Shi et al. [SGG+14] propose a new measure for evaluating test reduction techniques. They

mention 3 limitations in the traditional evaluation of test reduction techniques and claim their new

evaluation criteria will address those. Their metrics mostly address coverage-based test reduction

techniques which are irrelevant to our study.

Kumar et al. [KSK] consider the concept of tests improvements as an optimization problem that

they try to solve using a fuzzy-ant colony optimization technique. They define a fitness function based

on code coverage, client requirements coverage, fault coverage, mutant-killing score in minimum

effort, and cost. By optimizing the fitness function they try to find a subset of test cases that

maximize the achievement of all of the test objectives. Their approach is irrelevant to our study,

however, they also emphasize the importance and possibility of improving the test executions in

software development processes.

8

Gligoric et al. [GEM15] propose a tool named Ekstazi based on dynamic analysis of file depen-

dencies. In their approach for each test entity, they create a collection of files that are accessed in

test executions. Then they suggest tests based on whether the dependent files have been changed or

not. Their approach relies on the dependency analysis of the test suites and tracking what files have

been accessed during test execution. Our approach on the other hand, mostly relies on empirical

analysis of the test executions history and how effective each test has been in the past. This makes

it ideal for situations where performing dependency analysis on test suites is impractical.

Panichella et al. [POPDL15] propose an approach for test case selection using genetic algorithm.

They attempt to improve the current state of the art by diversifying the solutions (sub-sets of the

test suites) generated during the search process. They mention how other approaches such as greedy

algorithms or multi-objective genetic algorithms have been experimented in previous works, but they

do not demonstrate a clear winner. Besides, their combination does not necessarily produce better

results as well. They attempt to address this by introducing a new approach named Diversity based

Genetic Algorithm (DIV-GA). This work does not directly relate to our study.

Xu et al. [XGKS14] propose a test selection mechanism based on fuzzy expert systems. Their

approach correlates the information represented by customer profile, analysis of prior test case re-

sults, system failure rate, and changes in system architecture. Using the aforementioned information

they suggest a list of test cases that are potentially critical for a regression testing scenario which

then can be used in the decision-making process of regression test case selection. For building their

fuzzy expert system, they have consulted human experts to construct a knowledge base that can be

later fed to a fuzzy inference engine. This work aims to solve the same issue as we do, however, their

approach to addressing the problem and the information they use is different from our study.

Souza et al. [dSPdAB14b] propose a comparison study for binary multi-objective particle swarm

optimization approaches used for test case selection. They consider the test selection process as an

optimization problem that tries to find a subset of test cases which optimizes one or more objective

functions. They account for maximizing requirements coverage and minimizing the cost of test

execution efforts in their objective function. For finding the optimal value they propose a new

approach based on particle swarm optimization. In a similar work, [dSPdAB14a] authors consider

maximizing branch coverage while minimizing execution time as their objectives. Apart from the

common goal of test selection, these studies do not directly relate to our approaches.

Fourneret et al. [FCB+14] propose a test classification and selection tool based on UML/OCL

models to validate a new version of the system. Their approach is based on dependence analysis of

behaviors from state charts and class diagrams. This work does not directly relate to our study.

Kumar et al. [KC15] propose a new test case prioritization technique based on the coupling

information between different modules of a program. The idea is to find the modules that are

9

most affected and run their relevant test cases so that more bugs can be found earlier. They

use call graphs as an architectural design for coupling information between modules and module

dependency matrices as a quantitative measure for the dependence of the system modules. This

work can compliment our study by adding the coupling information as a new dimension to the

analysis. However, we tend to stay away from call graphs and tests coverage data as we claim in

certain scenarios it is difficult to obtain accurate enough information about them for doing such

analysis.

Konsaard et al. [KR15] propose a technique for test case prioritization based on genetic algorithm.

Their prioritization technique attempts to achieve full code coverage in a timely manner. This study

relies on code coverage and is irrelevant to our work.

Klindee et al. [KP15] propose a test case prioritization approach based on information retrieval

and text similarity techniques for an introduced change request. They store test case documents

describing the test cases. Then later on by querying on a change request, they retrieve the list of

the most relevant test cases. They also rank those test cases using the analytic hierarchy process.

This study is irrelevant to our work as we do not keep track of test case description documents and

also change requests. Instead, we propose a generic approach to trimming the tests pool in a test

environment.

Singh et al. [SS14] propose a multi-criteria test prioritization technique for improving regression

testing. They utilize code coverage, branch coverage, re-usability coverage, path coverage and fault

coverage for their prioritization technique and compare their results with other available methods.

This study is irrelevant to our work as we do not utilize coverage information in our analysis.

Tyagi et al. [TM14] propose multi-objective particle swarm optimization technique for test case

prioritization. Their approach relies on three steps, removing redundant test cases using simple

matrix operation, selecting test cases which cover all the faults in minimum execution time using

particle swarm optimization techniques and then prioritizing test cases based on the ratio of fault

coverage to the execution time. The ranking methodology of this study is similar to our approach

for test case prioritization. However, we use the number of false positives, number of true positives

and average execution time for suggesting an order for the test executions.

Magalhães et al. [MaBMM16] propose a test case selection and prioritization approach based on

information retrieval techniques. They address the problem of finding the relevant test cases given a

list of test cases and change requests described in natural language. This approach does not directly

relate to our study.

10

2.2 Test Selection Using Execution History

Kim et al. [KP02] propose a history based test prioritization technique. They mention the problems

with regression testing in resource-constrained environments and how a prioritization technique can

help the environment. Their prioritization technique gives probabilities for each test case to be

executed during the next test session run. They propose 3 approaches for calculating the probability

values. The first approach is based on execution history, the test cases that have not been executed

recently, get a higher probability. The second approach is based on fault detection effectiveness.

Tests that have revealed more faults recently will get a higher chance to be executed again. And

the last approach is based on the coverage of program entities like statements, paths, functions, etc.

For example, using functions as the program entities of interest, a higher probability is given to test

cases that cover functions which are infrequently covered in the past testing sessions. This work

aligns very well with parts of our approaches for test prioritization discussed in this work, although

with some differences. Our approach relies more on the attributes of the test execution history while

calculating the probability values. These are attributes such as the number of false positives and

test cases average duration time. Besides, we do not use tests coverage information as we claim it

is impractical to obtain that type of information in a clean and reliable manner from complicated

and interleaved software development environments such as our industry partner which has a huge

volume of low-level hardware-related programming procedures.

Anderson et al. [ASD14] study reducing regression tests based on tests execution history. There

are two main techniques utilized in their study. Frequency and association analysis of the test

executions. In the frequency analysis approach or also referred to as most common failures, test

cases that previously failed the most are recommended as test cases that are likely to fail in the

future. Their second approach is described as failure by association where failures in certain subsets

of tests are used to determine other subsets that are likely to fail. This work is closely related

to our techniques. Their frequency approach confirms our results obtained from our environment.

However, their association analysis technique differs from ours in a few ways. First of all, they rely

on smoke tests for generating their association rules. They run some smoke tests in prior to the next

regression test run. Using the results of the smoke tests they predict which regression tests will fail

consequently, and use them in their test selection process. Our approach, however, is based on the

fact that redundant tests should not be executed. If one test can find the failure the execution of

another correlated test should be eliminated. They conclude that their association analysis did not

improve the results significantly. On the other hand, our approach for removing the redundant test

executions using association rules mining significantly improves the results.

Herzig et al. [HGCM15] propose a tool named THEO which stands for Test Effectiveness Opti-

mization using Historic data. THEO is a generic test selection tool that is supposed to accelerate test

11

processes without sacrificing product quality. It is based on a cost model which dynamically skips

tests when the expected cost of running one exceeds the expected cost of removing it. This work is

closely related to ours. Our discussed cost analysis method is a replication of Herzig’s approach which

we compare to our other proposed methods in our study. We also propose an attempt to improve

this approach by utilizing the tests association information in the cost analysis formulas, however,

it does not prove to outperform the Herzig’s method. From the other hand, our prosed frequency

and association analysis approach outperforms Herzig’s costs analysis method significantly.

Anderson et al. [ASD15] propose a classification based approach for predicting the test failures.

They show that using attributes like historical test case pass and fail information, organizational

information, code complexity information, and code change information, test failures can be pre-

dicted. This data can be used to help improve the development of certain code areas or maximize

the benefits of scarce testing resources. The classification based approach proposed in this work

can complement our research and open new research directions for our future studies. However,

we mostly focus on test selection and ways to reduce test executions efforts most efficiently while

maintaining the software quality.

Elbahum et al. [ERP14] propose a time-window based test selection and test prioritization tech-

nique for improving regression testing in continuous integration development environments. They

use their test selection technique in a pre-submit phase in their studied testing process so that they

can run a subset of the required tests instead of all. Moreover, they use their test prioritization

technique in the post-submit phase to find the faults faster. This work similarly to ours do not rely

on test coverage data and likewise demonstrates the importance and effectiveness of test selection

and prioritization techniques for improving regression test executions.

Yuecai et al. [ZSR18] propose three test re-prioritization approaches that use co-failure dis-

tributions of tests to dynamically re-prioritize test executions. CoDynaQSingle is their first re-

prioritization technique which changes the order of running test dynamically based on the recent

test failures. In order to address the starvation problem for this approach, they proposed two

other re-prioritization techniques, named CoDynaQDouble and CoDynaQFlexi. Our study adopts

CoDynaQSingle approach as one of our test prioritization techniques.

2.3 Fault Localization

Due to the increasing scale of software developments, and consequently increasing complexity of soft-

ware debugging, fault localization techniques have become a popular field of research during the past

few years. Software fault localization while being crucial is widely recognized to be one of the most

expensive, and time-consuming activities in the process of software development [WGL+16, Ves85].

12

There have been hundreds of different attempts to locate the riskier and error prone parts of a code

base and guide the testers and developers toward the root causes of the test failures. [WGL+16]

provides an extensive review of the fault localization literature. Fault localization techniques mostly

attempt to find the buggy statements in a code base. Our approach, on the other hand, attempts to

find the buggy commit among a group of batch tested commits. Technically, most of the fault local-

ization techniques available in the literature can complement our debugging approach by enhancing

the process of finding the buggy statements after the culprit change has been located. Apart from

this, they do not directly relate to our methodology.

Zhang et al. [ZZ14] propose a bug localization approach using Markov logic. The problem is

to find the buggy statements of the code base and they do so by combining different information

sources like statement coverage, static program structure information, and prior bug knowledge.

This approach does not directly relate to our study.

Cellier et al. [CDFR11, CDFR08] propose an interactive tool for multiple faults localization

using formal concept analysis and association rules mining. They use execution traces like executed

lines or variable values to suggest occasions when appearing certain events in a trace will most likely

lead to an execution failure. This study does not directly relate to our work as we do not use code

statements coverage.

Nessa et al. [NAW+08] propose a fault localization technique based on N-gram analysis. They

use the exact execution sequence of the failed test cases to suggest failing patterns. N-grams are

subsequences of length N. They choose N-grams that appear more than a certain number of times

in failing traces and also calculate the conditional probability of a test case being failed given that

the N-gram appears in that test case’s trace. This approach does not directly relate to our study.

Ji et al. [JXxC+04] propose a model-based statistical approach for locating faults at input level.

They extract failure patterns from a given set of failure samples and then use it to analyze the

statistical correlation between those patterns and the observed failures to locate the faults. This

approach does not directly relate to our study.

Baah et al. [BPH10a] propose an approach in which they combine the concepts of program de-

pendence graph and dependency networks to construct a probabilistic graphical model of program

behavior. Program dependence graph is like a flow graph of the program statements and the de-

pendency network is a type of probabilistic graphical model. Their approach facilitates probabilistic

reasoning about program behaviors which can be used in fault localization and fault comprehension.

This approach does not directly relate to our study.

Aberu et al. [AVG09] utilizes the problem of minimal hitting sets (MHS) in the context of

model-based diagnosis as a way of locating faults. MHS is the problem of finding an approximate

collection of minimal hitting sets of a collection of sets. In this context, the minimal hitting sets are

13

the solutions for the diagnostic problem. These solutions are basically programs statements that are

spotted to be faulty. This study does not directly relate to our work as we locate faults in commits

level as opposed to program statements level.

Wong et al. [WQ09] propose a fault localization approach based on neural networks. They train

a back propagation neural network using statement coverage data and the test execution results

(success or failure). Using the trained network they compute the suspiciousness of each executable

statement to be faulty. This study does not directly relate to our work as we do not intend to predict

faulty code statements and we do not use test coverage information.

Ascari et al. [AAPV09] extend [WQ09] by applying the neural network technique to object-

oriented programs. They also investigate the use of support vector machines as a better and more

efficient training algorithm. They report similar results based on class methods covered by different

test cases and ranking them by the possibility of being faulty. This study does not directly relate

to our work.

Wong et al. [WDG+12] propose an improved version of their previous work [WQ09] by using

RBF instead of back propagation neural network which are believed to have several advantages

including a faster learning rate, and resistance to some issues like paralysis and local minima. They

train a neural network to learn the relationship between the statement coverage information of a test

case and its corresponding execution results. Then use virtual test cases that cover only one code

statement as the input to the trained neural network to get the suspiciousness of each corresponding

statement in terms of its likelihood of being faulty. This study does not directly relate to our work.

Briand et al. [BLL07] attempt to improve the approach presented by Jones et al. [JHS02].

They use code coverage information and also test specifications to create a C4.5 decision tree and

report probability rankings for faulty code statements. They attempt to address the Tarantula’s

[JHS01, JHS02] difficulty to deal with the presence of multiple faults. They categorize test failures

such that failed test cases in the same partition most likely fail due to the same root cause. This

approach does not directly relate to our study.

Jeffrey et al. [JGG08] propose a fault localization approach using value replacement. For a given

failed test case, they search for statements that change the test results by trying to apply different

values to the statements. When they find such cases they call it Interesting Value Mapping Pair

(IVMP) and they show that IVMPs often occur at faulty statements or statements that are directly

linked to faulty statements via a dependency edge. This study does not directly relate to our work.

Zhang et al. [ZGG06] propose a fault localization approach based on predicate switching. They

mention that finding buggy statements by changing the states of the programs is an expensive

process and involves a massive search space especially in cases where there exist float or integer

variables. Instead, they propose to utilize branch predicate switching. They force the execution

14

along the different paths of branches like an if-else branch and see if they can get the correct test

result. As branch predicates are either true or false, the search space will be reduced significantly.

This work does not directly relate to our study.

Abramson et al. [AFMS95] propose an automatic debugging approach named relative debugging

based on the process of comparing a modified code against a correct reference code. The idea behind

the tool is to find program bugs by runtime comparison of the internal state of a new program and

a reference version of it. This approach does not directly relate to our study.

Zeller et al. [Zel02] propose a fault localization approach named delta debugging. They analyze

the difference in the program states of a failing run and a passing run related to a bug in question

and narrow the search down to a small set of variables. They search for suspicious variables in

the failed run using their values from the corresponding point in the passing run and repeating the

program execution. This approach does not directly relate to our study.

Pearson et al. [PCJ+17] perform an experiment by replicating 7 previously proposed fault local-

ization techniques on real faults. They point to the fact that these approaches have been evaluated

using artificial faults, hence they use real faults in their study. While replicating the methods using

artificial faults, they can verify the results of 70% of the studies. On the other hand, they show that

using real faults in their analysis leads to the results of 40% of the techniques to be refuted and the

other 60% to be statistically insignificant. In the end, they propose a hybrid approach utilizing the

more significant factors of all of the approaches which are claimed to outperform the other methods.

Our study uses real faults for evaluation. Besides, we locate a culprit commit in a group of batch

tested commits. This is not the goal of the above-mentioned approaches.

Liblit et al. [LNZ+05] propose a statistical approach for identifying software bugs known as Lib-

lit05 in the literature. They rerun the tests many times and utilize a random sampling methodology

for instrumenting the software executions and calculate probability values of the software predicates

to be faulty based on whether they have been observed in successful or failed executions. Then they

report the predicates in a prioritized order based on a calculated importance score. This approach

does not directly relate to our study as we do not do software instrumentation.

Liu et al. [LFY+06] propose another statistical technique named SOBER for fault localization

which attempts to improve Liblit05 [LNZ+05]. Their approach is inspired by the concepts of hy-

pothesis testing. As opposed to Liblit05 which selects predicates correlated with program failures,

they model predicate evaluations in both correct and incorrect runs and treat the divergence of the

two models as a measure of fault relevance. This approach does not directly relate to our study as

we do not rely on dynamic analysis of the runtime behavior of the program executions.

Wong et al. [WDX12] propose a cross-tabulation statistical technique for fault localization.

They use the coverage information of the code statements and the relevant test execution results

15

to calculate suspiciousness probabilities for code statements. In their technique, they construct a

crosstab for each statement and then a hypothesis test is used to measure the dependence between

the execution results and the coverage of each statement. The exact suspiciousness of each statement

depends on how much its coverage and the execution results are correlated. This study does not

directly relate to our approach as we do not use test coverage information.

You et al. [YQZ12] propose a statistical approach for fault localization using the execution

sequence of the program predicates. Predicates are branches, returns, and scalar-pairs. They note

the predicates of a program as the vertices of a graph, the transition of two sequential predicates in

the execution trace of a program as edges of the graph, and the frequency of each transition as the

label of the edges. Then they apply hypothesis testing to evaluate the statistical difference between

edge values among the failed and passed executions of the program. As for all of the statistical

fault localization methods, this approach also relies on collected information from plenty of program

executions. This study does not relate to our work as we do not rely on coverage information of the

programs and also we do not rerun the same version of the software multiple times to find the root

cause of the failures.

Baah et al. [BPH10b] propose a statistical fault localization technique based on causal inference.

They present a causal effect estimator that covering a statement has on program failures. The

estimator is based on a linear regression model trained on the data from coverage of statements

and their predecessors in the control-dependence graph. This study does not directly relate to our

work as we do not utilize code coverage data and do not predict program statements suspiciousness

values.

Modi et al. [MRA13] propose a statistical bug localization technique that attempts to improve the

predicate-based bug localization techniques by using program phases. Program phases are intervals

of program execution that show similar values for architectural metrics like branch misprediction

rates, cache miss rates, CPU or Memory usages. Predicate-based techniques, on the other hand,

collect predicate profiles such as branch conditions, return values, comparison of pairs of variables

over multiple program executions and correlate that with the execution results. This study does not

directly relate to our work as we do not utilize program instrumentation.

Renieres et al. [RR03] propose a fault localization technique based on program spectra and

models. Program spectra are collections of program execution features such as the number of times

each line of the program is executed, function call counts, program paths, and program slices. After

collecting the different instances of program spectra from multiple runs, they abstract the spectra

so that they can be comparable. They need at least one failed spectrum and multiple successful

ones. Then they build a model from the successful spectra and differentiate that with the failing run

and map the results back to source code as suspicious locations. They use different approaches for

16

their modeling and differentiating. Union of the spectra of all successful runs is one and finding the

intersection of them is another. Also, they propose a nearest neighbor approach to find the closest

passed run to a fail run and find the difference between them. This study does not directly relate

to our approach as we do not utilize any software instrumentation or profiling methods.

Jones et al. [JHS01, JHS02] propose a visualization tool based on an approach named Tarantula

for highlighting the program statements based on their possibility to be faulty for assisting with

fault localization. They use test results and also the code coverage information of the test cases to

calculate color codes for suspicious source code statements. These color codes are supposed to help

the developers localize the bugs. For calculating the statements, they use a combination of measures

like the number of failed test cases that do not cover a statement or number of successful test cases

that cover a statement. This study does not directly relate to our work as we do not rely on code

coverage and also we aim to locate a culprit change in a batch testing process as opposed to source

code statements.

Wong et al. [WDGL14] propose a coefficient-based fault localization technique named DStar

which is based on code coverage information and test results. Like other coefficient-based techniques,

they use measures like the number of failed test cases that cover the statement or number of successful

test cases that do not cover the statement to calculate a suspiciousness value for each statement of

the code and report them to the user. DStar’s coefficient formula proves to be superior to its similar

fault localization counterparts. This study does not directly relate to our work as we do not use

code coverage in our method.

Weiser et al. [Wei81] propose the concept of program slicing and specifically static slicing. A

program slice is the portion of the code statements that could affect values of a certain set of variables

at certain points of the program. The idea of slicing is to reduce the number of statements that a

developer needs to check and debug. Static slicing is the practice of doing so using static analysis

of the program source code. This work does not directly relate to our study.

Korel et al. [KL88] propose dynamic slicing as an improvement to static slicing. The problem

with static slicing is that it can involve excessive statements that do not really affect the variables

of interest as it does not consider the runtime states of the program during the execution. Dynamic

slicing is proposed to fix this issue so that fewer and more accurate set of statements will be left for

the programmers to debug. The dynamic slice of an incorrect value at a certain point of a program

(or known as a backward dynamic slice) includes all of the statements that actually affect the value

of a variable at that certain point [ZGG]. This work does not directly relate to our study.

Gupta et al. propose two other dynamic slicing approaches, forward dynamic slice of the minimal

failure-inducing input difference and the bidirectional dynamic slice of a critical predicate [GHZG05,

ZGG06]. According to [ZGG], the minimal failure-inducing input difference is the part of the input

17

that is found to cause a program failure given that input and the critical predicate is an execution

instance of a conditional branch predicate such that if the outcome of the predicate’s execution

instance is reversed, the program terminates producing the correct output. In [ZGG] the authors

propose to use a combination of backward, forward and bidirectional dynamic slicing methods to

come up with a smaller set of faulty statement candidates known as multiple points dynamic slices.

These studies do not directly relate to our work.

Sterling et al. [SO05] propose an approach for isolating bugs named program chipping. They use

specific simplifications on different program elements like blocks, loops, and if statements to chip

away parts of a program that do not relate to a failure. This approach is similar to program slicing,

however, with slicing, a set of statements are extracted based on the program behavior with respect

to a variable or group of variables, but in program chipping, statements are chosen based on the

behavior of the overall program, somehow similar to delta debugging. This study does not directly

relate to our approach.

Mohapatra et al. [MMK04] propose a dynamic slicing technique specifically for object-oriented

programs to take into account matters like classes, dynamics binding, encapsulation, inheritance,

and polymorphism. Their technique is based on the extended system dependence graph proposed

by Horwitz et al. [HRB88]. This approach does not directly relate to our study.

Agrawal et al. [AHLW95] propose a fault localization technique based on execution slices. Static

slices are statements that may affect the output of a variable. Dynamic slices are statements that

actually do affect the output of a variable under a specific input. On the other hand, execution slices

are all of the statements that are executed while running a test under a specific input. Execution

slicing is basically based on collecting test coverage information which is relatively easy to collect,

compared to resources required for constructing dynamic slices [WGL+16]. It is shown that by

getting a difference between the execution slice of a failed and passed test run (known as execution

dice), the debugging context can be effectively narrowed down for the developers. This study does

not directly relate to our approach.

Wong et al. [WSQM03] propose a technique using software architectural designs. They attempt

to extend the ideas of fault localization and execution slicing from the source code level to high-level

specification and description language (such as SDL). This work does not directly relate to our study.

Wong et al. [WQ06] propose a program debugging technique using execution slices and also data

dependency between blocks of a program. A basic block or also shortly known as a block is defined

as a sequence of consecutive statements or expressions that do not contain any transfers of control

except at the end. They first use the difference between the execution slice of a failed test execution

and its passed versions. Then they refine the search by using the data dependency between code

blocks, i.e. cases where a variable used in a block is defined in another block or vice versa. This

18

study does not directly relate to our approach.

Ren et al. [RST+04] propose a tool for change impact analysis of Java programs. Their approach

uses two different versions of a software to extract a set of atomic changes. These atomic changes

include added, deleted and changed classes, added, deleted and changed methods, and etc. Then

they construct a dynamic call graph for each of the available regression tests using the test execution

traces. Using this analysis they can report a subset of regression tests that can potentially be affected

by a given set of atomic changes. Also, they can determine what subset of atomic changes can be

related to a test failure. The concept of this study is very closely related to our work with some

differences. They harvest atomic changes, like method or class modifications, and use those as the

building blocks of their analysis. However, we focus on the change (commit) level. It’s very easy to

track a change back to a developer or just revert the change to get the development back on track

pretty quickly. A more important difference is their usage of tests call graphs or basically coverage

information. We have proposed an empirical approach that can infer the correlation between file

changes and test failure over the time, without requiring to analyze the tests call graphs or coverage

information. We believe extracting call graphs are not always easy as in the case of our industrial

partner which have complicated and interleaved hardware level programming procedures.

2.4 Fault Localization in Change Level

In the previous section, we went over different studies that aim for finding the faulty statements

or at least narrowing down the search for the buggy statements for the developers. Our work,

however, aims to find a culprit change in the first place. Companies sometimes test groups of

commits (changes) together in a batch, with the goal of saving part of their testing infrastructure

and resources. In such cases, after a test failure, the first problem is to find which of the commits

have been the culprit. In this section, we review some of the studies related to our work in finding

the culprit changes in testing environments.

Ziftci et al. [ZR17] propose an approach for finding the culprit commits using the software

build system. They have experimented their approach in Google using Google’s build system. The

problem they attempt to solve is the matter of finding the culprit change when a post-submit test

has failed on a group of changes together. They assume changes get submitted after passing the

pre-submit tests. They describe pre-submit tests to run on every change separately, so it is obvious

which change was the root cause in case of a test failure. However, they define post-submit tests

as the lengthy and more expensive tests that cannot be run on every change individually. In turn,

they are run on every n changes together or periodically every n hours. For these tests, a failure

requires pinpointing the culprit change. They propose an approach that suggests suspiciousness

19

values to the changes involved in a post-submit test failure. They use build files to generate a build

graph so that they only consider the changes that have modified any of the files that the test of

interest depends on. The bigger the size of the change, more suspicious it is. Another factor is the

dependency distance between the files and the test of interest. The farther the dependency is, the

less probable the change is to be the culprit. This study directly relates to our work with some

considerations. First of all, our study aims to find the culprit changes in an environment that the

code is not submitted (merged) yet. So we don’t have any specified order for the group of changes.

On the other hand, we do not use static test coverage or test dependency information. Instead, we

propose an empirical approach that learns the correlations between files changes and test failures

over time. Our approach assumes much less knowledge from the software ecosystem and therefore

can be more easily integrated into other software environments. Another point of difference is the

evaluation approach. They do not rerun the tests and therefore cannot locate the exact culprit

change deterministically. Instead, they rely on human feedback which may be easily biased and may

not be reliable. In our study, however, we evaluate the results against the exact deterministic culprit

of every batch testing process which is available from the test executions history.

Kamei et al. [KSA+13] propose a risk analysis approach in change level. They construct a

logistic regression model for analyzing changes using different factors under six high-level categories

of diffusion, size, purpose, history, and developer experience to calculate the risk values. The number

of modified subsystems, lines of code added, the average time interval between the last and the

current change, and recent developers experience are among the utilized metrics. This work is closely

related to our study and can be a good complement to our culprit change prediction methodology.

The difference, however, is that this study does not deal with any test failure or a deterministic fact

that there is a fault somewhere in the system or not. So their predictions are just guesses implying

that there is a risk of having a bug somewhere in the code. Our approach, on the other hand, deals

with the concrete test failures and the fact of having bugs somewhere in the code that need to be

located.

Yang et al. [YLX+15] propose a deep learning based technique for predicting the faulty changes.

They use an advanced deep learning algorithm named Deep Belief Network for extracting a set

features for measuring the changes. Then they train a logistic regression classifier for predicting the

risk values of the changes. Similar to [KSA+13], this approach also just predicts the risks associated

with different changes but does not associate them with any concrete test failure. Our approach,

however, starts from a concrete test failure and attempts to locate the change associated with that

test failure.

Kim et al. [KJZ08] propose an approach for classifying the developer changes as buggy or

clean. They extract features like the lines modified in each change, author and time of the change,

20

complexity metrics and etc. from software revision history and train a Support Vector Machine

classifier to predict the changes as buggy or clean. This approach also just examines the risk

associated with each submitted change without connecting them to a concrete fault localization

context of a test failure. Our approach, on the other hand, does so using an empirical approach that

points to the culprit change that is involved in a test failure.

Śliwerski et al. [SZZ05] propose an approach known as SZZ for finding bug-inducing changes.

They start with a bug fix report, then they find where the changes have been applied to and then

extract the last time those locations have been modified. In this way, they introduce the associated

changes as bug-inducing ones. They use the built-in annotation feature of software configuration

management (SCM) in their analysis. This study is related to ours in the sense of trying to locate

a buggy change, however, the approach they use and its context is different from ours. We aim to

locate a faulty change among a group of batch tested commits. On the other hand, this approach

attempts to locate the bug-inducing change which is associated with a bug fix change.

Kim et al. [KZPW06] similar to [SZZ05] propose an approach for locating the bug-inducing

changes after a bug fix change has been reported. This study attempts to improve [SZZ05] by using

annotation graphs [ZKZW06] instead of the built-in annotation feature of SCM used by [SZZ05].

Their new approach shows to have higher accuracy in finding the bug-inducing changes. This study

aims to find a related buggy change to a reported bug fix change. Therefore, it does not directly

relate to our study. We attempt to locate a buggy change in a group of changes tested in batch.

Wen et al. [WWC16] propose an information retrieval (IR) based technique for locating bug-

inducing changes. As opposed to [SZZ05] and [KZPW06], this approach does not rely on a bug

fixing change to locate the relevant bug-inducing one. Instead, this approach relies on bug reports.

Bug reports are submitted by testers or developers whenever a bug is found somewhere in the

system. A bug report consequently leads to a debugging process. Their approach is based on the

assumption that change logs usually include descriptions about the intention or functionality of the

changed pieces of a code which share common tokens with their relevant bug reports. Therefore,

they propose an IR-based bug localization technique called Locus and predict bug locations both

in the change and file levels. As this study relies on text analysis of the bug reports, it does not

directly relate to our study as we do not utilize such information.

Git bisect [GBS] is a tool that helps to find the culprit change in a software revision history. It

uses binary search on a given range of commits from the user. It is manual and requires rerunning

the tests. Although we were inspired by this approach, it does not directly relate to our methodology.

21

Chapter 3

Improving Test Effectiveness Using

Test Executions History: An

Industrial Experience Report

This chapter has been submitted verbatim and been accepted in the SEIP track of the

ICSE 2019 conference

3.1 Abstract

The cost of software testing has become a burden for software companies in the era of rapid release

and continuous integration. Our industrial collaborator Ericsson also faces the challenges of expen-

sive testing processes which are typically part of a complex and specialized testing environment. In

order to assist Ericsson with improving the test effectiveness of one of its large subsystems, we adopt

test selection and prioritization approaches based on test execution history from prior research. By

adopting and simulating those approaches on six months of testing data from our subject system,

we confirm the existence of valuable information in the test execution history. In particular, the

association between test failures provide the most value to the test selection and prioritization pro-

cesses. More importantly, during this exercise, we encountered various challenges that are unseen or

undiscussed in prior research. We document the challenges, our solutions and the lessons learned as

an experience report. Our experiences can be valuable for other software testing practitioners and

researchers who would like to adopt existing test effectiveness improvement approaches into their

work environment.

22

3.2 Introduction

Testing is an important, yet time consuming and costly process, especially for large software sys-

tems. Prior research estimates that testing consumes between 30% to 50% of the time in software

development life-cycle [PZTM13]. For example, an industrial case study shows that it takes over

two days to complete testing on a medium size video conferencing system [MGS13].

The cost of testing has become a burden for software companies during rapid release [Bec00],

where continuous integration techniques are widely adopted in practice to receive feedback from

testing as soon as changes are made to the source code [DMG07]. With thousands of commits

made to the source code every day, it is challenging to keep up with the speed of development.

Google’s version control repository receives over 16,000 commits every day [PL16], which results in

a median of 27 test requests per minute [ZSR18]. Our industrial collaborator Ericsson has faced the

same challenges for testing its large-scale software systems. Moreover, the changes in their testing

processes may be even greater due to the complex testing infrastructures that are purposely designed

for each software subsystem.

Test selection and test prioritization are proposed by prior research to improve the effectiveness

of test executions [ASD14, HGCM15, ERP14, KP02, ZSR18]. With test selection, tests are either

executed or skipped on the fly. With test prioritization, tests are reordered such that more test

failures can be captured earlier using limited testing resources. We leverage prior research to assist

Ericsson with improving the testing process of one its large-scale software systems. Since prior

research is typically evaluated on a particular industrial subject system (e.g., from Microsoft or

Google), it is unclear to what extent the existing approaches can improve the test effectiveness in

our subject system and whether there are challenges that are unseen by prior research.

In this paper, we share our industrial experience for adopting test selection and prioritization

approaches to improve the test effectiveness of one of the large software systems at Ericsson. In

particular, the adopted approaches are based on historical test failure frequency, test failure asso-

ciation, and the costs associated with the testing process. In order to evaluate the usefulness of

these adopted approaches, we simulate applying these approaches using six months of testing data

from a large-scale system at Ericsson. Our results show the importance of test execution history in

enabling the test selection and prioritization approaches to help with software testing in practice.

We encountered many engineering and design challenges for adopting and applying the approaches

to the testing processes of Ericsson. In the end, we conquered the problems and documented the

challenges, our solutions and the lessons learned as an experience report. We believe that our experi-

ence in adopting existing test selection and prioritization approaches can help software practitioners

and researchers who want to adopt software testing approaches into their work environment.

The major contributions of this paper are:

23

• We adopt and evaluate test selection and prioritization approaches with the goal of improving

test effectiveness in a large industrial system with a complex testing infrastructure.

• We demonstrate the value of test execution history for improving test effectiveness in a large-

scale industrial system in practice.

• We provide an industrial experience report that documents the challenges that are encountered

and our lessons learned during the adoption process of the test selection and prioritization

approaches.

The remainder of this paper is organized as follows. Section 3.3 describes the background of the

subject system and its testing process. Section 3.4 discusses the approaches that are adopted by

our study to improve the test effectiveness of our subject system. Section 3.5 presents the results of

evaluating the adopted approaches. Section 3.6 discusses the challenges that we have encountered

and the lessons learned during the experiments. Section 3.7 discusses the threats to the validity

of our findings. Section 3.8 presents other related research in the literature. Finally, Section 3.9

concludes the paper.

3.3 Background and Subject System

In this section, we explain the background required for this paper, i.e., the subject system that we

studied at Ericsson. Figure 1 presents an overview of the testing process of our studied system.

Version
control

repository

Commit waiting
zone

code commit

code commit

code commit

Testing
environment

test

test

test
\if any test fails Expert

Yes

No

Bisect

Merge the
commits

wait until the
testing

environment is
free

Manual checking
results

test pass

test fail

test fail FP

TP

... ...

Bisect buffer

Second half of
the commits

from the bisect

First half of the commits
from the bi-section

wait until
waiting
zone
empty

Figure 1: An overview of the testing process of ELS.

24

3.3.1 Subject system

The subject system in this study is a large-scale software component at Ericsson. The software

system has a large user base across the world and is currently being developed on a daily basis for

new features and performing maintenance activities. The teams that develop this system consist of

a large number of developers and testers across the globe. The system is developed using a modern

typical programming language that is hosted in a typical version control repository. To ease the

discussion about the subject system, we refer to it as ELS (Ericsson’s Large-scale System) in the

rest of this paper. Due to the criticality of the system, our study is conducted based on simulating

rerunning tests on the software system according to the test results from the six months of real test

execution data.

3.3.2 Testing process

The testing process in ELS is conducted on special purpose testing infrastructures with limited

resources. Therefore, in general, the changes to the source code of ELS are queued to get tested in

such a complex environment. In particular, the testing process consists of four steps. 1) Collecting

commits. The commits that are made in the version control repository are collected and put in a

queue to be tested as soon as the testing environment is available. 2) Testing the commits. Once

the testing environment is free, commits from the queue are consolidated as a batch and are moved

into the testing environment. There exists a large number of pre-designed tests which are executed

on the new commits. If all of the tests pass, the commits will be merged into the main trunk of

the version control repository. If any of the tests fail, the commits will be sent back for a bisection

process [Zel99]. 3) Bisection. The bisection process splits the commits of a failed batch in half by

their time stamps. The first half of the commits are sent directly to the queue, with other commits

that are already waiting in the queue to be tested. The second half of the commits will be waiting for

the queue to be empty to enter the queue. 4) Manual check of the test results. Due to the complex

testing infrastructure, not all test failures are due to software bugs. Therefore, once the test failures

are located in one single commit (after multiple iterations of the bisection process), a system expert

will manually check the failures. A test failure will be labeled as a false-positive if it is not caused

by a software bug, but rather by an infrastructure issue in the testing environment. Or it can be

labeled as a true-positive if the test failure is identified to be an actual bug in the main software

system. Please note that the testing process described above does not include all details about the

software quality assurance process in Ericsson. There may exist other approaches, infrastructures

or test stages available in the testing flow. However, for the scope of this study, we only focus on

the above-described testing process.

25

3.4 Adopted Approaches

Software testing and regression testing improvement have been largely studied in the software engi-

neering literature. Kazmi et al. [KJMG17] and Suleiman et al. [SAH17] provide extensive reviews

on the recent studies in the literature for test selection and prioritization. In this section, we present

the approaches that we have adopted in order to improve the test effectiveness of ELS in Ericsson.

In particular, we adopted approaches that perform test selection and test prioritization.

3.4.1 Test Selection

We adopt test selection approaches that are based on prior test failure frequency, association, and

the costs of the testing process. Test selection approaches are applied before the start of each batch,

for which all of the test execution results before the day of testing are used as learning data for our

analysis. We do not learn from the test execution data from the same day of the test executions, as

test failure results need to be manually labeled as true-positives or false-positives by the testers by

the end of each day. Therefore, we only obtain the latest labels at the end of each day.

Based on Failure Frequency

Intuitively, tests that previously failed frequently are more likely to fail again later [ASD14,

ZSR18]. Therefore, the frequency of past test failures can be used as an indicator for suggesting test

selection opportunities.

Microsoft’s FreqSelect Anderson et al. [ASD14] propose an approach that calculates the fre-

quency of test failures using the test executions history. The tests that failed more frequently in the

past are recommended to be selected again later.

FreqSelect Our adopted approach is closely related to the test selection approaches proposed by

Anderson et al. [ASD14], where only the tests that have prior failures are selected. In addition, to

consider the cases where test failures can be false-positives in our testing process, we only consider

the tests that have prior true-positive test failures as opposed to considering all of the test failures.

Based on Failure Association

As the prior study shows, there exists a large number of co-failures in test executions [ZSR18].

Hence, associations can be effectively leveraged for improving test effectiveness [ZSR18].

Microsoft’s AssocSelect Anderson et al. [ASD14] perform association analysis on the test

failures. In particular, failures in certain subsets of tests are used to determine other subsets that

are likely to fail. With the identified association rules, Anderson et al.’s approach selects the tests

that are more likely to fail again.

26

AssocFreqSelect We adopted Microsoft’s AssocSelect with the goal of minimizing the redun-

dancy among tests by only selecting the cheapest test to run if multiple tests are associated with each

other. In particular, we leverage test failures in each batch (see Section 3.3) to perform association

rules mining using the Apriori algorithm [AMS+96]. We obtain a list of association rules pointing to

the test cases that tend to co-fail with each other. Some rules may have low confidence and should

not be used to perform selection. Therefore, we only consider the association rules that have over

0.8 confidence.

Afterward, we use these rules to dynamically select the test cases that are most effective and at

the same time have the least amount of redundancy among each other. We first rank the test cases

based on their probability of finding true-positive test failures as extracted from the test executions

history (c.f. the FreqSelect approach). Then we iterate through the list from the top one by one and

check if there exists any association rule between the current test and any of the previously analyzed

ones. If there exists such a rule, we only keep the test that has a shorter average execution time in

the list. In this way, we remove the redundancy among the tests while shortening the tests duration

time and maintaining the effectiveness of the tests in finding true-positive failures.

The goal of our AssocFreqSelect approach is different from Microsoft’s AssocSelect by Anderson

et al. Microsoft’s AssocSelect aims to select the tests that are more likely to fail using failure associ-

ations. However, AssocFreqSelect aims the opposite, i.e., associated test failures may be redundant

and they should not be executed. AssocFreqSelect removes tests based on the existence of association

to avoid redundancy among the test failures.

Based on Cost

Test execution comes with a cost, especially for the complex testing infrastructure that is used

by ELS. With such high testing costs, tests can be skipped if skipping them is more cost-effective

than executing them [HGCM15].

Microsoft’s Theo Herzig et al. [HGCM15] propose a tool named THEO that stands for Test

Effectiveness Optimization using Historic data. THEO is designed based on a cost model that

dynamically skips tests when the expected cost of running one exceeds the expected cost of skipping

it. In particular, Microsoft’s Theo calculates two values for every test execution, cost of execution

and cost of skip, and decides which action is more economical. Similarly, in our TheoSelect approach,

we select test cases based on an online cost analysis for every test case execution. Two costs are

calculated for every test case execution: the cost of execution and cost of skip, calculated as follows:

27

costexec = costmachine + (PFP ∗ costinspect)

costskip = PTP ∗ costescaped ∗ timedelay ∗#engineers
(1)

In this equation, costmachine is an estimate of the costs associated with running a test in the

test environment for a certain amount of time. costinspect is an estimate for the time delay and

the costs associated with the engineers that will perform the inspections after a test failure. This

parameter mainly affects the costs associated with running a test case when a false-positive needs

to be inspected. costescaped represents the average cost of an escaped defect. #engineers is the

number of engineers that will get involved when a new slip-through is introduced into the test flow.

timedelay is the amount of time delay that a new slip-through will impose on the test flow. Moreover,

PFP and PTP are the probabilities for finding a true-positive or a false-positive for every test case.

These probabilities are extracted from the test executions history. Consequently, after evaluating

the equations, if the cost of running a certain test case is shown to be higher than skipping it, the

test case execution will be skipped or vice versa.

TheoSelect : We have adopted the approach proposed by Herzig et al. [HGCM15] as is. We

call this approach Microsoft’s Theo and is identical to our TheoSelect with different parameters.

Microsoft’s Theo is a generic test selection tool that selects test cases based on a cost analysis of

each execution on the fly. We cannot unveil the exact values that we have chosen for the parameters

due to confidentiality reasons. However, as the ratio of the parameters matter in our use case, we

set costmachine to 1 unit, costescaped to 13.1 unit and costinspection to 30 units as the ones used by

Herzig et al. [HGCM15].

3.4.2 Test Prioritization

Our main goal in test prioritization is to find more failures in shorter duration time. For this purpose,

we have been inspired by some of the works in the literature as follows.

Kim’s Prio: Kim et al. [KP02] propose a test prioritization technique based on test execution

history. The prioritization technique gives priority scores to each test for their execution. They

propose three approaches for calculating the scores. First, the tests that have not been executed

recently are given a higher score. Second, the tests that have revealed more faults recently will

receive a higher score. Finally, a higher score is given to the tests that cover functions which are

infrequently covered in the past testing sessions.

Google’s Prio: Elbaum et al. [ERP14] propose another test selection and prioritization tech-

nique. Their approach prioritizes tests that have recently found failures in a specified time window

based on the previous execution history.

28

Prio: Our prioritization technique is similar to Kim’s Prio and Google’s Prio. In our approach,

we give a higher priority to tests that have found more failures and have a shorter average execution

time. We rank the test cases based on the ranking values calculated as follows:

priority_value =
#total_failures

total_executions_duration
(2)

where the #total_failures is the true-positive failures detected by the tests and the total_executions_duration

is all the time that is spent on executing the tests. The total duration of test execution has been

incorporated into the equation in order to normalize the effectiveness of the test cases. In this way,

we give a higher priority to tests that find more failures with shorter execution time, i.e., less effort.

Comparing Kim’s Prio and Google’s Prio, our approach relies only on the test executions history,

such as the number of true-positive failures and test executions’ duration to calculate the priority

values. We do not use test coverage information since all too often, it is not available in the test

process of ELS in Ericsson. Similar to test selection approaches, we learn on all of the test execution

results until one day before of every test.

3.5 Results of the Adopted Approaches

In this section, we present the simulation results of our adopted approaches (see Section 3.4) using

six months of test execution data from ELS. We present the results for test selection approaches and

test prioritization approaches will follow.

3.5.1 Test Selection

We use three metrics to evaluate the adopted approaches for test selection.

Total test execution time reduction: Our first metric demonstrates how much test execution

time is reduced by performing each of our test selection techniques. In particular, we first calculate

the total time that is needed to execute all of the tests. Then using each test reduction technique,

we calculate the required time to only execute the tests that are selected (i.e., not removed) by each

technique. Finally, we calculate the reduction percentage based on the total time needed for running

all of the tests and running only the selected tests by each selection approach.

Number of slip-through test failures: Our second metric, reveals the percentage of the true-

positive test failures that may have been missed due to a test not being selected. The value zero for

this metric means that our test selection approach does not remove any test that would have been

a true-positive test failure. Intuitively the lower the value of this metric is, the better the approach

29

is. This metric is particularly important since the slip-through true-positive test failures may have

a direct impact on the quality of the product and the end users.

Total cost reduction: This metric is a measure for showing the impact of the test reductions and

their side effects in terms of a concrete cost value. For this metric we calculate the costs of running

each test case or encountering a missed true-positive using the parameters given in Section 3.4. In

particular, cost of running each batch can be calculated as follows:

costbatch =
∑

test_cases

test_caseexecution_time ∗ costmachine

+#FP ∗ costinspection

+#slip_throughs ∗ costescaped ∗ timedelay ∗#engineers (3)

where the total cost is the sum of the costs of the test infrastructure during the test execution, the

effort by the practitioners to inspect any false-positive test failures and the cost of the slip-through

test failures if an important test is not selected. Afterward, we calculate the total cost by assuming

that all of the tests are selected, i.e., there exist no slip-through test failures. Finally, the total cost

reduction is calculated based on the cost of using each test selection approach and the total cost of

selecting all tests as follows.

reduction_percentage_in_cost = 100 ∗ (1−
simulated_total_cost

total_cost
) (4)

Table 1 shows the results of our evaluations for each of our approaches. The results show that by

only considering the frequency of past test failures, reducing the test execution time is not trivial.

In fact, by only saving 0.01% of the test execution time, the approach let 10.22% of the true positive

test failures untested. Such missed true-positive failures result in an increase in cost. On the other

hand, the AssocFreqSelect approach shows significant improvement over the FreqSelect approach.

The AssocFreqSelect approach is able to maintain a similar slip-through rate but reducing both the

time of test executions (13.91% reduction) and the costs (13.08% reduction). Our results confirm the

findings from recent research by Zhu et al. [ZSR18] where the association between the test failures

are found to be effective for re-ordering the tests.

Associations between tests are a valuable source of information for improving test effective-

ness.

The cost analysis approach, i.e. TheoSelect , is designed to optimize the cost of testing. The

results for this approach demonstrates much higher (almost three times) cost reduction in testing

30

Table 1: Overall comparison of the three adopted test selection approaches.

Reduction in

execution time
Slip-throughs Reduction in cost

FreqSelect 0.01% 10.22% -0.73%

AssocFreqSelect 13.91% 11.36% 13.08%

TheoSelect 41.78% 34.65% 39.23%

compared to AssocFreqSelect . On the other hand, the slip-through test failures are also almost three

times of that compared to AssocFreqSelect . Therefore, the practitioners can choose to lower the

total costs and prefer to tolerate the fact that some failures may be missed by the testing process.

This can be especially tolerable if it can be proved that there are other mechanisms in the flow that

can catch these missed failures (c.f., Section 3.6). Otherwise, having too many slip-throughs, despite

reducing the costs can have a significant impact on the end users.

Even by taking advantage of a cost-based test selection approach, practitioners may still face

the trade-off between the slip-through test failures and the cost of testing.

3.5.2 Test Prioritization

There are generally two criteria for evaluating test prioritization; Reaching the first test failure, or

reaching all test failures as early as possible [ZSR18]. In order to evaluate the adopted approach,

we consider both of the two metrics for our evaluations.

Reduced execution time until the first failure. Our first prioritization specific metric simply

accounts for how fast a given order of running tests can find the first test failure. For each batch, we

first reorder all of the tests using our test prioritization approach. Based on the prioritized order,

we calculate the total execution time until we encounter the first test failure. We compare the test

execution time to the actual test execution time that was spent to reach the first test failure in

the test execution history from ELS. In order to minimize the bias of the original order in the test

execution history of ELS, we also compare the test execution time with prioritizing the tests in

random order. We repeat the random prioritization 1,000 times for each batch and calculate the

average execution time needed to reach the first test failure.

Area under the curve of the cumulative lift chart of the test failures. The second metric

compares the order given by our adopted approach with the optimal order. The optimal order gives

priority to the tests that would fail in each batch and have shorter execution time. In particular,

we use cumulative lift charts [MK09]. Figure 5 shows an example of the cumulative lift chart of

31

−40%

0%

40%

80%

AssocFreqSelect+Prio FreqSelect+Prio Prio TheoSelect+Prio

D
u
ra

ti
o
n
 d

if
fe

re
n
c
e

Figure 2: Bean plots of test execution time reduction by comparing our prioritization with the

original order

−150%

−100%

−50%

0%

50%

AssocFreqSelect+Prio FreqSelect+Prio Prio TheoSelect+Prio

D
u
ra

ti
o
n
 d

if
fe

re
n
c
e

Figure 3: Bean plots of test execution time reduction by comparing our prioritization with the

random order

the test failures of a batch, where the y-axis shows the number of test failures and the x-axis shows

the percentage of the spent test execution time so far. For each batch, we generate such chart

for both the optimal order and the order given by our adopted approach. The effectiveness of the

prioritization technique is evaluated by the size of the area under the curve in each chart. Hence,

for each batch, we calculate the size of the area under the curve for the optimal order and the given

order by our adopted approach. We calculate the percentage (Popt) of the area under the curve of

the optimal order, that is covered by the order from our adopted approach. Therefore, Popt has a

range from 0 to 1. The closer Popt is to 1, the better our prioritization algorithm is, i.e., closer it is

to the optimal prioritization of the tests.

Our test prioritization approach can be used after the test selection approaches or as a standalone

approach (as practitioners may not want to skip any tests). Figures 2 and 3 show the evaluation of

our approaches for reaching the first failure, i.e., the reduced execution time until the first failure

32

0%

25%

50%

75%

100%

AssocFreqSelect+Prio FreqSelect+Prio Prio TheoSelect+Prio

P
o
p
t

Figure 4: Distribution of the Popt values of our prioritization results.

happens. The results show that our Prio approach can effectively reduce the test executions without

having any impact on the product quality. Using our prioritization algorithm after our selection

techniques leads to further reductions in total test executions. However, this comes with the cost of

introducing missed true positives into the product line and a worse test ordering. Figure 2 compares

our prioritization techniques with the current default order obtained from the execution history of

our subject system in Ericsson. This figure shows that all of our approaches demonstrate significant

improvement over the default order in required test execution time for reaching the first failure.

Particularly, our best approach, standalone Prio reduces the time for finding the first failure, with a

median of 60.05%. Figure 3 shows similar evaluations for comparing the results of our approaches to

the results obtained from averaging 1,000 iterations of random order. Although prior studies show

that prioritizing tests in random order can be surprisingly effective [ZSR18, KP02], our standalone

Prio approach, demonstrates significant improvement over the averaged random order, with a median

of 38.01%.

Figure 4 presents the results of our evaluations using the metric related to the area under the

curve of the commutative lift chart of the test failures (Popt). The median value of Popt for each

batch is almost 100% for all of our adopted approaches. Such results show that for almost half of the

batches, the order provided by our approaches are either exactly or very close to the optimal order.

The results show that similar Popt performance is demonstrated when our Prio approach is used

standalone or combined with FreqSelect or AssocFreqSelect . On the other hand, although combining

Prio with TheoSelect shows a better prioritization, it is considered to be due to the removal of too

many tests by TheoSelect , leading to a rather easier ordering for each batch.

Test prioritization by simply considering the past effectiveness of the tests can significantly

help with reducing the time to reach the first failure as well as providing a close-to-optimal

order for running the tests.

33

There is always a rather conservative approach for test executions by having a preference for

increasing the level of quality assurance of the software with the price of spending more time and

resources. As a result, even though our initial analysis revealed that some tests can be removed due

to their low effectiveness, the preference of the test managers was to keep them anyway. Therefore,

we put more emphasis on our test prioritization techniques as in prioritization, no tests will be

removed and only the order of running them will be changed.

Solution: We leveraged two approaches to address this challenge. First of all, we focused our

techniques on test prioritization rather than test removal, i.e., instead of removing the tests, we

adopted techniques that assign a low priority to running them. Therefore, the practitioners can still

execute those tests if it is necessary and the required extra resources are available. Second, instead

of only providing historical evidence, we aimed to provide an explanation on why those tests can

be removed. For example, we can explain that Test A can be removed since the exercised APIs are

obsolete, as opposed to only show that Test A has never detected a bug in the system.

Lessons learned: Due to the important role of testing in practice, developers and testers are often

very wary of any changes in their testing processes. Therefore, they would prefer a solution that is

less invasive and is less likely to do any harm in their processes.

Lesson 1: To help with the engagement of our research, we find that a less intrusive approach

is much easier to be accepted.

After having discussions with the practitioners, we find that some of the tests are implemented

with a special purpose. For example, a test may be particularly designed to capture a very rare but

critical issue. In such cases, testers would certainly not skip those tests since no other tests aim to

detect the bugs for those scenarios.

Lesson 2: Tests that are shown to be ineffective may be particularly designed for a special

purpose as opposed to being obsolete. Test selection and prioritization techniques should

consider the special characteristics of those tests.

Challenge 2: Coping with false-positive test failures

Description: Failures in test results may not always be associated with software issues. In testing

processes of our industrial partner, we often observe test failures that are false-positives. One reason

for this is the complicated hardware and test infrastructure involved in testing the code in Ericsson,

the test failures may just be associated to a hardware failure or a noise in the system as opposed to

an actual problem in the main product code. Such false-positives introduce challenges to our test

selection and prioritization techniques. While learning the history of test executions, we need to

35

take the false-positives into consideration. In addition, our approach should prioritize the tests that

give fewer false-positive failures.

Solution: In order to address the false-positives in the test results, we first incorporate analysis of the

test logs in order to assist with determining whether a test failure is due to the test infrastructure

or a real product issue. After we identify the false-positives in our test results, we change the

existing test selection and prioritization approaches to consider the existence of false-positives. The

original Microsoft’s FreqSelect and Microsoft’s AssocSelect consider all test failures. However, our

adopted approaches FreqSelect and AssocFreqSelect only consider the test execution history with

true-positive test failures. Hence our approaches favor selection and prioritization of the tests that

provide a higher number of true-positive test failures.

Lessons learned: We observe a prevalence of false-positive test failures in our experiments. Par-

ticularly, in certain software systems, the field environment can be noisy. Therefore, the testing

infrastructure and the environment may contribute to a significant amount of test failures as false-

positives.

Lesson 3: Proactively addressing the false-positives in the test results can help practitioners

in accepting our suggestions for test selection and prioritization techniques.

Challenge 3: Trade-off between slip-through test failures and testing costs

Description: Reducing the test costs can lead to an increase in the chance of having slip-throughs,

i.e. having bugs in the final software product. The general goal for test selection and prioritization

is to minimize both the costs of tests and also the number of slip-throughs. However, since there is

a trade-off between the two, it is challenging to decide how much slip-throughs are accepted when

aiming to reduce the cost of tests.

Solution: Although we provide different approaches for test selection and prioritization, there is no

gold standard to help us decide what is a good trade-off between the slip-through rate and the costs.

First, we tried to leverage the approach proposed by Herzig et al. [HGCM15] in order to generalize

both the slip-throughs and the test costs into one consolidated cost metric. Moreover, we conducted

meetings with practitioners to seek policies that may especially have been put in place for making

decisions about the slip-through trade-offs.

Lessons learned: We were surprised to find that practitioners not always have a strong negative

opinion towards having slip-throughs, with the argument that some bugs will be certainly caught in

the following test stages and it may be more economical to let certain bugs slip through certain test

stages, and be caught later in future test stages.

36

Lesson 4: Slip-through test failures are not always a negative phenomenon. Practitioners

may prefer to lower the costs of the tests at certain stages and use other testing strategies

to catch the slip-through failures in other stages of the test flow, given that the practice will

lead to lowering the costs and will not affect the quality of the final product.

Challenge 4: Coping with test dependencies

Description: Tests are observed to be frequently co-failing during our experiments. Our approach

AssocFreqSelect aims to identify the tests that often co-fail in order to reduce the testing costs.

Intuitively, the co-failure of multiple tests may be due to test dependencies. Test dependencies are

often considered harmful in prior research [ZJW+14]. For example, if two tests have a dependency on

ordering (Test A needs to run before Test B), we may not leverage our test selection and prioritization

techniques to reduce the testing costs.

Solution: We aim to identify and resolve these dependencies to improve the quality of the tests.

However, in most of the associations that were identified by our AssocFreqSelect approach, we could

not find any functional dependencies among the tests.

By manually examining the tests and conducting deeper investigations with the practitioners,

we found that the tests that are found to co-fail with each other, are often both dependent on some

common external resource. For example, it can be the case that both tests depend on a common

hardware component that is currently failing to load. This can lead both of the tests to fail at the

same time.

Current research on test dependencies does not focus on the cases where external resources are

the root cause of the co-failures. Therefore, we had to manually label the tests with their external

dependencies with the relevant hardware to help with maintaining the tests.

Lessons learned: There exist many tests in our study that co-fail with each other, even though they

may be functionally independent or may be considered irrelevant to each other. We find research

efforts may be allocated to provide more sophisticated static analysis techniques to automatically

identify the root cause of the associations among the tests, leading to a more optimized test selection

and prioritization approach.

Lesson 5: Tests that co-fail may not be functionally dependent on each other. Instead, they

may co-fail due to their co-dependence on some external resource.

37

Challenge 5: Deciding on the granularity of the tests

Description: There exist different granularity levels for testing software code. Unit tests are more

focused and localized while end-to-end system tests have a larger scope and scale. It is sometimes

challenging for the practitioners to decide the right granularity level of each testing process. On one

hand, the focused unit tests are less costly to run and investigate. On the other hand, the end-to-end

system tests may be more realistic and be more effective in catching bugs that are more likely to

exist in real environments.

Solution: We analyzed the associations obtained from the co-failure analysis of our AssocFreqSelect

approach, with the goal of examining whether there exist any associations among the lower level unit

tests and the more expensive end-to-end system tests. If so, practitioners may consider executing

only the unit tests in order to save the costs associated with the end-to-end system tests.

Lessons learned: We find that there exists an insignificant overlap among the unit tests and the end-

to-end system tests in our studied subsystem. In particular, we find that 80% of all true-positive

test failures that are detected in the test results are detected by the end-to-end system tests and

only 34% of them are detected by the unit tests. Such results show that 1) The more expensive

end-to-end system tests capture most of the true-positive test failures and 2) The two test categories

do not overlap heavily since only 13% of the failures are detected by both of the categories.

Lesson 6: The test failures from the unit tests and the end-to-end system tests have little

overlap. Removing the more expensive tests in this case in order to reduce costs may lead to

major consequences in the overall product flow.

3.7 Threats to Validity

In this section, we discuss the threats to the validity of the findings of this paper.

External validity. Our study is only conducted on one area of the testing processes of one of the

subsystems of Ericsson. Although ELS may carry many characteristics that are common in large-

scale software systems, the findings and experiences may not be generalizable. For example, many

of our findings are associated with the complex testing infrastructure that is specially designed for

ELS. In addition, our results are only based on the simulation of six months testing results. However,

adopting test selection and prioritization techniques on systems with shorter test execution history

may result in different experiences. Finally, the parameters that are used for tuning our adopted

approaches may be only suitable for ELS.

Construct validity. The evaluation of our adopted approaches is based on the simulation of the

testing processes. Therefore, the actual quality of the system has not been evaluated by incorporating

38

our approaches into practice. In addition, the goals of our test selection and prioritization approaches

may not always align with the goals of the practitioners. For example, our association based test

selection approach aims to reduce the redundancy among the tests while practitioners may opt to

favor those redundancies to retrieve more information about the test failures. Further research may

focus on evaluating such adopted approaches considering different goals of the practitioners.

The parameters used in cost functions in the TheoSelect approach are either estimated by the

practitioners or adopted from the Microsoft’s Theo approach. These parameters may not always

exactly match the reality. Sensitivity analysis on the parameters may complement our findings and

experiences.

Our test evaluation is based on training on all data that is available prior to the testing day.

However, the testing results that are closer to the testing day may have a better power to predict

the testing results. Future research may evaluate the best duration of training data in an industrial

testing environment. Our test evaluation simulation has an assumption for independence among the

tests, meaning tests can be re-ordered or skipped without impacting others. However, as observed

by Zhang et al. [ZJW+14] this assumption may not always hold. Future research by leveraging our

approaches in practice may consider the dependencies among the tests for better test selection and

prioritization results.

Internal validity. Our approach relies on the labels that are provided by practitioners to decide

whether a test failure is a false-positive. These labels may be inaccurate and inconsistent due to

the experience and subjective bias from the practitioners. Further validation of the labels may

complement the results of our study.

The simulation of evaluating the adopted approaches does not consider the impact of the ap-

proaches on batches of commits which are being tested. For example, skipping certain tests may

lead to different testing processes. However, our simulation cannot change the execution of tests in

history. Future research may study such impacts by using the adopted approaches in practice to

select and prioritize tests on the fly.

3.8 Related Work

Tremendous research efforts have been dedicated to improving test effectiveness. The effectiveness of

the tests is optimized typically by test case minimization, selection, and prioritization, as proposed

by Laali et al. [LLH+16].

Static analysis and test coverage are leveraged as the major source of information to improve

the effectiveness of the tests [NH17, SYGM15, WNT17, NABL, KSK, KR15, SS14, JKS12, KHT13,

NTV+14, QCR08]. For example, in a recent work, Saha et al. [SZKP15] propose to address the

39

test prioritization problem by reducing it to a standard information retrieval problem. They assume

that test cases and source code usually embody meaningful identifiers and comments which can be

treated as natural language. Therefore, information retrieval techniques can be utilized on them to

give priority values for running the tests. Nardo et al. [NABL] evaluate seven coverage-based test

improvement techniques on a common carefully designed industrial system. Their findings show that

finer grained coverage information can be leveraged to provide 79.5% savings in execution costs while

maintaining a fault detection capability level above 70%. On the other hand, Koochakzadeh et al.

claim that the test coverage information itself can be misleading for eliminating the test redundancy

and can result in weaker test cases [KG10, KGM09]. Despite prior research, static analysis and test

coverage based approaches are not suitable for our subject system. Due to the complexity of our

subject system, the source code is often not or only partially available. Therefore, in this paper, we

adopted approaches that depend on historical test execution information.

Historical information about the test executions is a valuable source for improving test effec-

tiveness. A recent work by Zhu et al. [ZSR18] demonstrates the use of learning co-failures in test

execution history to assist with test prioritization. Their approach prioritizes the tests by using

the co-failure history of the tests and information about the tests that just recently failed at any

moment. Noor et al. [NH17] build logistic regression models from the test executions history in

order to rank the effectiveness of test cases. Anderson et al. [ASD15] propose a classification based

approach for predicting the test failures based on the test executions history.

Research also leverages search-based techniques to optimize test effectiveness. Panichella et

al. [POPDL15] propose an approach for test case selection using a customized genetic algorithm

named Diversity based Genetic Algorithm (DIV-GA). Their approach is shown to improve the

current state of the art by diversifying the solutions (sub-sets of the test suites) generated during the

search process. Multi-objective based approaches are used in prior research by Tyagi et al. [TM14]

and Souza et al. [dSPdAB14b] to assist with test prioritization and selection. Both pieces of research

use the multi-objective particle swarm optimization technique. Their objective functions include

covering more faults, maximizing the test coverage and minimizing the execution time. We do not

consider the use of a search-based approach due to its limitation on scalability and the need for

optimizing a large number of tests for the subject system.

Empirical studies are conducted on the testing practices. Labuschagne et al. [LIH17] propose

a study for cost measurement of regression tests in practice. They study 61 Java projects running

on Travis CI and find that 18% of test suite executions fail and that 13% of these failures are

flaky. Among the non-flaky failures, only 74% were true-positives and the remaining 26% were

false-positives. Their study emphasizes the importance of the works like ours for improving test

effectiveness of continuous integration flows in large software projects.

40

3.9 Conclusion

Software testing consumes a significant amount of resources in software projects. Therefore, it is

of major importance for our industrial partner to improve its test effectiveness. In this paper, we

adopted and customized multiple test selection and prioritization techniques from prior research

to improve the effectiveness of testing processes for ELS. By simulating the use of our adopted

approaches on six months of testing data, we demonstrated the effectiveness of our approaches in

reducing the costs, and test execution time. Our results show that for test selection, a combination

of association and frequency analysis of the test failures can give acceptable results. However, our

best results are obtained when doing test prioritization and using Prio approach. This approach

which is basically based on frequency analysis of the past test failures significantly outperforms all

of our other prioritization approaches. Therefore, we conclude that test prioritization is the most

effective and the least invasive approach for saving costs in testing processes. On the other hand, test

selection approaches can be used in scenarios where slip-throughs are tolerable. More importantly, we

documented our challenges and lessons learned as an experience report. Such information is valuable

for practitioners who are willing to adopt test selection and prioritization techniques into their day-

to-day workflow. Our findings highlight the opportunities and challenges involved in leveraging test

execution history for improving test effectiveness in both research and practice.

41

Chapter 4

Bisecting Commits and Guiding Test

Bisection to find Culprits with Risk

Models

This chapter will be submitted verbatim to a journal

4.1 Abstract

Software testing is one the costliest stages of software development life cycle. One approach to

reducing the test execution costs is to group changes into groups and test all the changes as a

batch. In this work we study the impact of batch testing in reducing the number of test executions

to deliver changes and find true failures, i.e. culprit commits. Based on the FailureRate we run

simulations to determine the optimal BatchSize for three projects at Ericsson. Flaky test failures

are tests that pass and fail on the same change. We factor test flakiness into our simulations as

they increase the number of executions to test changes. The larger the FlakeRate the smaller the

BatchSize. Although batch testing can help to reduce the test executions, unlike testing each change

independently, when there is a failure a bisection must be done to find the likely true failing culprit

commit. We introduce a novel technique where we guide bisection based on two risk models: a bug

model and a test execution history model. We isolate the risky commits by testing them individually,

while the less risky commits are tested in a single large batch. Our results show that batch testing in

ideal environments with low test failure rates can reduce the test executions up to 72%. We also show

that test flakiness will limit the savings to 42% as larger batches increase the probability of flakiness

and hence extra executions. Moreover, we show that risk calculation approaches can be effectively

42

used to predict the culprit commits in a failing batch. Moreover, we show that culprit predictions

can be used with our TestTopN approach to help to reduce the test executions up to 9% compared

to our FifoBisection baseline. The results we present here have convinced Ericsson developers to

implement our culprit risk predictions in the CulPred tool that will make their continuous integration

pipeline more efficient.

4.2 Introduction

Software testing is one of the costliest stages of the software development process. Prior research

estimates that testing consumes between 30% to 50% of the time in software development life

cycle [PZTM13]. To isolate test failures, many companies have adopted the DevOps strategy of

testing each individual commit. While effective at isolation there are substantial computation re-

quirements. To limit the resource requirements, many software companies, including Ericsson, have

adopted batching to reduce the cost of testing. Batch testing groups commits and allows all of them

to be tested at once. When the batch passes, all of the commits can proceed in the continuous

integration pipeline at once and save the resources.

Although batch testing can reduce test executions, it introduces a new problem. When a batch

fails, the culprit commits causing the batch failure need to be identified. One of the common

approaches used for finding a culprit in a group of failing commits is bisection. When commits are

ordered, GitBisection [GBS] can use an ordered binary search to identify the culprit in log(n) time.

However, GitBisection cannot be used in our studied subsystem in Ericsson as commits are not

merged yet and have no order. In this regard, Ericsson has adopted an approach named bisection

were batches are split in half and tested until the culprit is found.

In the first part of our work, we study the impact of batch testing on reducing the test executions

in environments with various test failure rates. In practice, test failure rates in test environments

tend to be very low. For example, on Chrome only 12.5% of tests fail [ZSR18]. Batch testing offers

the highest savings in test environments with low failure rates.

In the second part we examine flaky tests, which can pass and fail on the same commit. Google

reports that 1 in 7 tests are flaky and that 84% newly failing tests are actually flaky failures [Mic16].

Flaky tests are exacerbated by batching, as the batch size grows the probability that one or more

commits will have a flaky test failure also grows.

In the last part of our work, we propose more efficient approaches for finding the culprits when

a batch failure happens. First, we propose risk-based approaches for calculating risk values for

the commits of a batch. Then we propose a TestTopN approach for testing the riskier commits

individually and the rest of the lest risky commits together in a separate batch. We study how

43

this approach can reduce the test executions compared to the bisection approach used in Ericsson.

We propose two risk calculation approaches. The first approach is based on well-studied bug model

literature [KSA+13]. Our second approach is based on using test execution history and the file

changes of the commits.

More specifically, we answer the following three research questions.

RQ1: What is the most cost-effective BatchSize for the number of culprits discovered

during testing?

Batching commits for testing is more efficient with a low test failure rate, i.e. CulpritRate. The

smaller the number of the test fails, the larger the BatchSize as there will be few failures. In contrast,

the higher the CulpritRate the larger the number of bisections resulting in more executions.

In this work, we have studied the impact of batch size on the test executions and what an most

cost-effective BatchSize should be. We have seen that in an ideal environment for projects that have

lower CulpritRate, a higher batch size will lead to fewer executions.

The higher the CulpritRate the smaller the most cost-effective BatchSize. For example, Project

A has a CulpritRate of over two times Project C and with a BatchSize of 4, the savings are 46%,

while Project C can have a BatchSize up to 9 with savings of 72%.

RQ2: What is the most cost-effective BatchSize when some bisections are done as

a result of flaky failures?

Test flakiness is an inevitable part of any test environment. Google reports that 1 in 7 tests

are flaky and that 84% newly failing tests are actually flaky failures [Mic16]. A flaky test failure is

defined as a test that passes and fails on the same commit. We study the impact of test flakiness

in finding the most cost-effective BatchSize. Our study shows higher FlakeRate will limit the most

cost-effective BatchSize. When commits are tested individually, a flaky failure does not affect other

commits and the number of executions remains constant. In contrast, the larger the BatchSize the

higher the probability that at least one of the commits in the batch will be flaky. Any flaky batch

failure incurs the penalty of an unnecessary bisection.

The higher the FlakeRate the smaller the BatchSize and the smaller the savings in executions.

For example, Project B has a 1/3 higher FlakeRate than Project C and a BatchSize of 4 saves 14%

of the executions compared to 41%, respectively. With flaky failures, Project C’s most cost-effective

BatchSize and savings are reduced from a BatchSize of 9 and execution savings of 72% to 4 and

41%, respectively.

RQ3: Can risk models predict the culprit commit and reduce the number of execu-

tions to find the culprits on failing batches?

Batch testing is effective in reducing the test executions, however, introduces a new problem.

When a batch fails, the root cause of the failure, i.e. culprit, needs to be found among the failed

44

commits. We use commit risk models to predict the culprit commit when a batch fails. We use two

types of models, Bug models, and historical test information.

Bug models have been effective at identifying the commits that are most likely to lead to future

bugs, i.e. bug introducing changes. [HBB+12, RHTZ13, TMH+15, Aki71, DLR10, Has09, ZPZ07,

MW00, MPS08, NZZ+10, RPH+11, KZJZ07, GFS05, LHSR06, MK92, CMRH09, MKAH14, Moc10,

SJI+10, SMK+11, KSA+13]. We use these techniques to identify which of the commits is the most

likely culprit. We then test the riskiest commits individually and batch the remaining commits.

Our second approach is based on using test execution history. Test executions history has

been largely studied for performing test selection and prioritization [KP02, ERP14, ASD14, ZSR18,

CMBA17]. In contrast, we use test execution history to predict a culprit commit given a batch test

failure. Particularly we use the relationship between file changes and test failures extracted from the

test execution history. Campbell et al. [CMBA17] have proposed an approach for suggesting tests

to run based on file changes. We reverse this idea by determining the most likely culprit given the

failing test and the files under change. We found that our risk-based approaches can significantly

reduce the number of test executions by predicting the culprit commits.

Both culprit risk prediction models are effective, but TestExecutionHistory outperforms Bug-

Model . TestExecutionHistory is able to predict the culprits using the Top2 predictions are sufficient

and correct 63% and 66% of the time for Projects B and C with BatchSizes = 4. Compared to

FifoBisection this results in -9.0% and -7.6% fewer executions, respectively.

The results we present here have convinced Ericsson developers to implement our culprit risk

predictions in the CulPred tool that will make their continuous integration pipeline more efficient.

This paper is structured as follows. In Section 4.3, we discuss the batching and bisection process

used at Ericsson. In Section 4.4, we explain how we guide the bisection process to fewer executions.

In Section 4.5. we introduce the theory behind bisection and introduce our commit risk models. In

Section 4.6, we introduce our simulations methodology and data used in the study. In Sections 4.7,

4.8, 4.9, we present results for each of our research questions. In Section 4.10, we describe the threats

to validity and how we mitigate them. In Section 4.11, we discuss related work to our study. In

Section 4.12, we present our contributions and conclude the work.

4.3 Background on Batching and Bisection

To reduce test execution costs, instead of testing each new commit submitted by developers indi-

vidually, commits can be collected in groups called batches and tested together. Ericsson uses this

technique to reduce test executions as part of its Continuous Integration processes.

In this context, every batch is a group of one or more commits that require specific tests. As

45

developers submit new changes, commits enter the test queue. The batching process consists of

periodically collecting commits from the top of the queue and running their required tests. As tests

are combined into a single build and tested together, batching can reduce test executions significantly.

Although batch testing can reduce test executions significantly, when a test fails on a batch,

we need to isolate the commit that is causing the failure, i.e. the culprit commit. One approach

to isolate the culprit commit is to run a binary search on the commits contained in a batch. This

process is called Bisection at Ericsson and is run until the culprit is isolated.

The bisection process involves splitting the commits of the batch in half and is illustrated in

Figure 6. This produces two new batches that are each half the size of the original batch. If the

tests pass on a batch, we know the culprit is not among these commits. If a batch fails, we continue

the bisection process. The stopping condition is when the remaining batches contain a single commit

and the tests on that commit fail. A single commit with a failing test is the isolated culprit. The

culprit will be subject to further investigations by testers or developers.

For example, in Figure 6, the process starts with Batch #1. This batch fails because it includes

one culprit commit: Commit #102. The commits in Batch #1 are split into Batch #2 and Batch

#3. Batch #2 passes because it includes no culprits. Therefore, all of its commits get delivered.

Batch #3 however, fails because it includes the culprit commit. Batch #3 is split into Batch #4

and #5. Batch #5 passes. Batch # 4 however fails and because it consists of one commit it is the

culprit.

Mathematically, we know that a binary search always requires log2(n) executions. However, as

can be seen in the example, the tests must be run on both sides of the split binary tree. As a result,

we must run 2 ∗ log2(n) executions. Since we must determine if the starting batch passes, we need

an additional execution. With n commits, the number of executions required to find a single culprit

is

2 ∗ log2(n) + 1 (5)

4.4 Guiding Bisection based on Risk

Commits are batched and tested in the order in which they arrive (FIFO queue). However, some

commits contain more risky changes than others [KSA+13]. Our goal is to model the risk and group

changes such that risky commits are tested individually while less risky commits are grouped into

batches that will likely pass without requiring bisection. In this section, we describe how we guide

bisection by risk, in subsequent sections we show how we calculate the risk for our two models:

TestExecutionHistory and BugModel .

46

The bisection process is inefficient because when any batch fails, there are at least 2 ∗ log(n)

additional executions, where n is the number of commits in the failing batch. We introduce the

TestTopN approach to isolate the top N riskiest commits and test them individually while batching

the remaining commits into a single large batch.

Figure 7 provides an illustration of top1. The process starts with Batch #1, which fails because

it includes a culprit. After the failure, we calculate risk values for the commits and test the topn

individually. For top1 we individually test the riskiest commit. The remaining commits are tested

as a single batch of size three. To find the culprit and deliver the commits, we need three executions

instead of the five used for normal bisection (see Figure 6).

4.5 Culprit Risk Models

BugModels have been used to suggest risky files and changes [KSA+13] that are more likely to contain

future bugs. However, it has been difficult for developers to act upon these predictions as they do

not indicate specific problems in the source code. TestExecutionHistory has been used to determine

which tests should be run for a set of files as well as to prioritize tests in a queue [CMBA17], but

has not been used to create batches of commits. In this work, we modify these approaches to assign

risk to each of the changes under test and to determine which commit is most likely to be the true

test failure, i.e. culprit. We guide the bisection processes by testing high risk commits individually.

4.5.1 BugModel

BugModels have a long history in the software engineering literature. Researches have predicted

which files and modules are most likely to contain defects, i.e. which are riskiest[HBB+12, RHTZ13,

TMH+15, Aki71, DLR10, Has09, ZPZ07, MW00, MPS08, NZZ+10, RPH+11, KZJZ07, GFS05,

LHSR06, MK92, CMRH09, MKAH14, Moc10, SJI+10, SMK+11].

In contrast, Kamei et al. [KSA+13] quantified the risk of a commit instead of an individual file

or module. In this way, the authors were able to alert developers to the changes that may need

additional review. However, the measures are difficult to act upon because they simply indicate that

a change is “large” or that a developer has less experience, instead of indicating specific problems in

the source code. Since our goal is to simply identify the riskiest commit and test to determine if it

is the culprit, these models are sufficient.

Instead of training on the likelihood that a change will introduce a bug, we are interested in how

likely a commit is to fail tests, i.e. is a culprit indicating a system fault. We train a logistic regression

model to distinguish the commits that are most likely culprits, so our unit is the commit. We use

many of the measures proposed by Kamei et al. [KSA+13]. As each commit may have multiple file

48

changes, if a measure is related to specific files, the average of the metric over all of the file changes

of the commit is considered. The measures are explained below:

1. Number of line changes: Total number of lines deleted and inserted in the commit.

2. Number of file changes: Total number of file changes in the commit.

3. Number of modified subsystems: Kamei et al. [KSA+13] define a subsystem as the root

directory of a file path in a project tree. For this metric, we simply count the number of file

changes that have different root directories.

4. Commit message: A boolean value based on availability of “bug”, “fix”, or “defect” in the

commit message [KSA+13].

5. Developers: Number of developers that were involved in change history of the changed files

of the commit, averaged over the files.

6. Experience: Experience of the author of the commit on each of the changed files of the

commit, averaged over the files.

7. Change time interval: Time interval between the current change and the previous change

of each of the changed files of the commit, averaged over the files.

4.5.2 TestExecutionHistory

Previous work has shown that tests that have failed in the past are likely to continue failing [ASD14,

KP02, ERP14, ZSR18]. Preliminary work at Ericsson has shown a relationship between failing tests

and the files in the change under test [CMBA17]. While these works use test history to select and

prioritize the tests that should be run for a change, we are the first to use this relationship to

determine which change in a failing batch is the likely culprit. For each historical culprit, we record

the tests that fail and the files that were changed, so that we can calculate how likely a test is to

fail for a given file. The following process is used to calculate a culprit score for each commit in a

batch.

1. Given the frequency of historical file and test failures, we calculate the probability that the

culprit is related to a file and test as:

Prob(filen, testx) =
#filen_fails_testx
#total_fails_testx

(6)

2. We normalize this probability, by the number of lines changed in the file over the total lines

changed in the commit:

49

define the CulpritRate to be the number of culprit commits divided by the total number of commits

for the project.

CulpritRate =
#CulpritCommits

#TotalCommits
(9)

The respective CulpritRate for projects A, B, and C is 6.8%, 8.6%, and 2.8% culprits. Project

A and B have a similar CulpritRate, with Project B having slightly more culprits. Project A and B

have slightly over twice as many culprits as Project C.

We must quantify the FlakeRate for our simulations because flaky test failures require additional

bisections and executions. A flaky test failure is defined as a test that passes and fails on the same

commit. We define a FlakyBatch as a batch that initially fails, but does not lead to an individual

failing commit, i.e. no culprits are identified. We define the FlakeRate as the number of flaky batches

divided by the total number of batches.

FlakeRate =
#FlakyBatches

#TotalBatches
(10)

The respective FlakeRates for Projects A, B, and C are 23.6%, 23.1%, and 16.9%. Projects A

and B have a similar FlakeRate, with Project A being slightly higher. Projects A and B have 1/3

more flaky failures than Project C.

4.6.1 The Impact of BatchSize on FlakeRate

We calculated the overall FlakeRate for all BatchSizes. However, the larger the BatchSize the higher

the probability that at least one of the commits in the batch will be flaky. We do not know the

FlakeRate for individual commits or tests. Instead, we know the size of the batch and whether or

not it was a FlakyBatch. Any flaky batch failure incurs the penalty of unnecessary bisection and

executions that must be accounted for in a simulation. We create a logistic regression model to

determine the probability that a batch of size n will result in a flaky failure.

In Figure 9, we plot the logistic regression line indicating the probability of failure for batch sizes

1 to 20. Ericsson requested that we do not show the actual FlakeRate for batches, so the y-axis is

unlabeled. However, it is clear that as the BatchSize grows, the probability that a batch is flaky

increases dramatically.

Equation 11 shows how we correct for these flaky batches. We multiply the number of batches

by the FlakeRate to give us the expected number of flaky batches. Each flaky batch requires an

additional bisection, the cost in executions is defined in Equation 5.

#FlakyExecutions = #Batches ∗ FlakeRate ∗ 2 ∗ log2(n) (11)

51

of culprits. We use the first 3 months as an initial training period. After this period, we test the

approaches on the commits that are available for the test each day, t = 90 to t = 270. To predict

whether a failure on day D = t will lead to a culprit, we train on the historical data from D = 0 to

D = t− 1 and test on D = t. We repeat this training and testing cycle for each day until we reach

D = 270.

We also run a simulation, using a sliding training window of three months. In this case, to predict

whether a batch failure on day D = t will lead to a culprit, we train on the historical data from

D = t− 90 to D = t− 1 and test on D = t. We repeat this training and testing cycle for each day

until we reach D = 270.

While we simulate batching on Ericsson data, our method and measures are not tied in any way

to Ericsson data. To run this simulation on other projects, one simply needs the test outcomes for

each change. The test outcome will allow one to calculate the CulpritRate and FlakeRate.

4.7 Result 1: BatchSize given CulpritRate

RQ1: What is the most cost-effective BatchSize for the number of culprits discovered

during testing?

Batching commits for testing is more efficient with a low test failure rate, i.e. CulpritRate.

The higher the CulpritRate the larger the number of bisections resulting in more executions. In

the extreme case, where there are no test failures, all commits could be placed in a single massive

batch requiring a single passing execution and saving n-1 executions, where n is the total number of

commits.

In practice, the CulpritRate tends to be very low. For example, on Chrome 12.5% of tests

fail [ZSR18]. Since the vast majority of tests do not fail, testing all commits individually wastes

resources. Theoretically, the lower the CulpritRate, the higher the BatchSize.

The first step in finding most cost-effective BatchSize is quantifying how often tests and commits

under test fail and lead to an investigation by developers. This matter relates to the CulpritRate

of te projects. For confidentiality reasons, we cannot report the CulpritRate for the three Ericsson

projects. However, projects A and B have higher culprit rates, at least two times higher than Project

C. Project B has a slightly higher CulpritRate than Project A. With these variable CulpritRates, we

simulate the savings relative to testing all commits individually, TestAllCommits, for BatchSizes 1

through 20.

Figure 10 shows the simulation results. The savings are substantial even for the smallest Batch-

Size = 2 commits. The figure shows that this batch size requires 34%, 34%, and 44% fewer executions

for projects A, B, and C, respectively.

53

We see that the savings are logarithmic, with the majority of the savings occurring with Batch-

Sizes up to 4. For Project C with the lowest CulpritRate, we note that the savings plateau with

BatchSizes greater than 9 providing little additional savings. The maximum saving is 50%, 47%,

and 74% for the projects respectively.

These savings and BatchSizes validate our conjecture. Project A and B have similar CulpritRates

and see similar most cost-effective BatchSizes and savings in executions. Project B has a slightly

higher CulpritRate than project A and also sees slightly less savings. Project A and B have two

times more culprits than Project C. Project C has the highest BatchSize and the greatest savings.

The higher the CulpritRate the smaller the most cost-effective BatchSize. For example,

Project A has a CulpritRate of over two times Project C and with a BatchSize of 4, the

savings are 46%, while Project C can have a BatchSize up to 9 with savings of 72%.

4.8 Result 2: BatchSize given FlakeRate

RQ2: What is the most cost-effective BatchSize when some bisections are done as a

result of flaky failures?

A flaky test failure is defined as a test that passes and fails on the same commit. We define a

FlakyBatch as a batch that initially fails, but does not lead to an individual failing commit, i.e. no

culprits are identified.

Flaky tests are a significant problem, with Google reporting that 1 in 7 tests are flaky and that

84% newly failing tests are actually flaky failures [Mic16]. When commits are tested individually,

a flaky failure does not affect other commits and the number of executions remains constant. In

contrast, the larger the BatchSize the higher the probability that at least one of the commits in the

batch will be flaky. Any flaky batch failure incurs the penalty of an unnecessary bisection. As the

BatchSize grows the probability of a flaky failure increases according to the models in Figure 9. The

FlakeRate will limit the most cost-effective BatchSize.

In Section 4.6.1, we modeled the FlakeRate for batches of size 1 to 20 for each project. In this

section, we adjust the simulation for the varying FlakeRate of our studied Ericsson projects. While

we cannot report the actual FlakeRate at Ericsson, we note that projects A and B have 1/3 more

flaky failures than Project C. Project A has a slightly higher FlakeRate than Project B.

Figure 11 shows the simulation results after correction for the FlakeRate of the projects for

different batch sizes. At BatchSize = 2 we see a reduction in executions of 7%, 9%, and 30%

respectively for projects A, B, and C. We see that the savings in executions are logarithmic up to

BatchSize 2, 4, and 4, respectively. After BatchSize = 4 we see a decrease in the savings with an

54

increase in the number of executions as flaky failures become more frequent in larger batch sizes.

The maximum saving is 7%, 14%, and 41% for projects A, B, and C at BatchSize = 4 for projects

B and C and at BatchSize = 2 for project A.

These savings and FlakeRates validate our conjecture. Acknowledging flaky failures reduces the

most cost-effective BatchSize. Project A has the highest FlakeRate and the smallest most cost-

effective BatchSize of 2 and lowest savings of 7%. Project B has slightly lower FlakeRate and has

more commits than Project A, its most cost-effective BatchSize is 4 with savings of 14%. Projects

A and B have a FlakeRate at least 1/3 larger than Project C. Project C has an most cost-effective

BatchSize of 4 with savings of 41%.

Without considering the FlakeRate, Project C had a BatchSize of 9 and a savings of 72%.

However, in Figure 11, we can see by a BatchSize of 4, Project C already saves 64%. Creating

larger batches of commits leads to a higher probability that any one of them will be a flaky failure

requiring additional wasted executions. The trade-off between savings and additional executions is

optimized at a BatchSize of 4 for Project C. Clearly the FlakeRate must be taken into account when

performing simulations to find the most cost-effective BatchSize for a software project.

The higher the FlakeRate the smaller the BatchSize and smaller the savings in executions.

For example, Project B has a 1/3 higher FlakeRate than Project C and a BatchSize of 4

saves 14% of the executions compared to 41%, respectively. With flaky failures, Project C’s

most cost-effective BatchSize and savings are reduced from a BatchSize of 9 and execution

savings of 72% to 4 and 41%, respectively.

4.9 Result 3: Risk Models to Predict Culprit Commits

RQ3: Can risk models predict the culprit commit and reduce the number of executions

to find the culprits on failing batches?

In this section we use BugModels and TestExecutionHistory models to predict which commit in a

batch is the true culprit. Our goal is to reduce the number of executions to find the culprit by testing

high-risk commits in isolation. We isolate the top K riskiest commits and test these individually

while combining the remaining less risky commits in a single large batch. In the background on

bisection in Section 4.3, we use Figure 7 to illustrate how the riskiest commit, Top1, is tested in

isolation, while the remaining 3 commits are tested in a batch. However, if the risk prediction is

incorrect, we would need a maximum of 7 executions to find the culprit. In contrast, Figure 6 shows

a bisection of a failing batch will always require 5 executions to find a single culprit. An accurate

risk model will reduce the number of executions, while an inaccurate model can even increase the

56

number of executions to find culprits.

We evaluate the BugModels and TestExecutionHistory models on two evaluation measures: Suf-

ficientAndCorrectAtK, and PercentExecutionDifferenceWithBisection.

SufficientAndCorrectAtK determines how many of the total culprits in each batch are correctly

predicted in the TopK suggested commits of the algorithm.

SufficientAndCorrectAtK =
NumCorrectCulpritPredictionsAtK

TotalCulprits
(13)

For example, a batch with two culprits using K = 1 has a maximum SufficientAndCorrectAt1 of

1/2 or 50%, as no single prediction can find two culprits. In contrast, the maximum SufficientAnd-

CorrectAt2 is 2/2 or 100%.

Our ultimate goal is to reduce the number of total executions. We calculate the difference in the

number of executions for the risk models relative to the current process at Ericsson.

PercentExecutionDifferenceWithBisection = 1−
NumExecutionsBisection

NumExecRisk
(14)

A negative percent difference indicates a saving in executions when compared with FifoBisection,

while a positive percentage indicates that the risk-based approach does not outperform FifoBisection

and requires more executions.

BatchSize for Culprit Prediction. In the previous section, we found that Project A has an

most cost-effective BatchSize of 2, which means that when there is a test failure, there will always

be two executions regardless of commit risk, i.e. both commits need to be tested individually. We

exclude Project A from this analysis. In contrast, we found that the optimal BatchSize for bisection

for Projects B and C is four commits. We use BatchSize = 4 to evaluate our risk-based algorithms.

We also experimented with BatchSize = 1 . . . 16 and found that size 4 produced the best result.

We evaluate Top1 and Top2 only because with a BatchSize = 4, TestTop3, TestTop4, and TestAll

are equivalent requiring all commits to be tested individually. For example, if we test the Top 3

ranked commits in isolation the remaining batch has only one commit, so all commits are tested

effectively in isolation, which is equivalent to TestAll.

Results for Culprit Risk Prediction

The results of our analysis are shown in Table 2 1 2. For TestTop1, the top-ranked commit will be

tested in isolation, while the remaining three commits will be tested as a batch. If the prediction is

incorrect, we re-run the process on the next highly ranked commit. The BugModel with TestTop1

has SufficientAndCorrectAt1 of 22% and 34% for Projects B and C respectively. However, it requires

1Project A most cost-effective BatchSize is 2, so both must be tested regardless of risk.
2Considering how the TestTopN approach works we can see Top3 = Top4 = TestAll.

58

Table 2: Results of risk-based approaches

TopK = 1 TopK = 2

Project B SufficientAndCorrect Difference in Executions SufficientAndCorrect Difference in Executions

BugModel 22% 5.0% 59% -7.4%

TestFile 33% 0.7% 63% -9.0%

Project C SufficientAndCorrect Difference in Executions SufficientAndCorrect Difference in Executions

BugModel 34% 2.6% 59% -4.3%

TestFile 46% -5.0% 66% -7.6%

5.0% and 2.6% more total executions than FifoBisection, for Projects B and C. TestExecutionHistory

with TestTop1 has a SufficientAndCorrectAt1 of 33% and 46%, for Projects B and C respectively.

For Project B TestExecutionHistory with TestTop1 requires 0.7% more executions. However, for

Project C we see fewer total executions are needed, -5.3%, when compared to FifoBisection.

When there is more than one culprit, a model that only predicts one culprit, i.e. TestTop1, will

not be able to find all culprits and will require additional executions. Project B has batches with

two or more culprits 25% of the time and clearly requires at least TestTop2. In contrast, Project C

has two or more culprits only 6% of the time. The BugModel ’s predictions are not accurate enough

at TestTop1 and require more executions than FifoBisection due to these inaccurate predictions.

In contrast, TestExecutionHistory ’s Top1 prediction is accurate enough to reduce the number of

execution, -5.0%, for Project C.

For TestTop2, the commits ranked 1 and 2 by the commit risk model are tested individually,

while the other commits are tested in a single batch. The BugModel with TestTop2 has a RecallAt2

of 59% for both Project B and C. The corresponding values for TestExecutionHistory are 63% and

66%. TestExecutionHistory with Top2 is the most effective technique improving on the BugModel by

4 and 7 percentage points for the projects respectively. Both commit risk models are more effective

than FifoBisection for Project B and C with -7.4% and -4.3% executions for BugModel and -9.0%

and -7.6% executions for TestExecutionHistory , respectively. The model accuracies at Top2 are

sufficient to reduce the number of executions when compared with FifoBisection.

Both culprit risk prediction models are effective, but TestExecutionHistory outperforms Bug-

Model . TestExecutionHistory is able to predict the culprits using the Top2 predictions with

a SufficientAndCorrectAt2 of 63% and 66% for projects B and C with BatchSizes = 4. Com-

pared to FifoBisection this results in -9.0% and -7.6% fewer executions, respectively.

59

4.10 Threats to Validity

Our study only considers three projects in the software development environment of Ericsson. Al-

though we believe that these projects can be good representatives of generic projects in industry, our

results may not generalize to other projects. They also have varying size, Project A is the smallest,

and variations in FailureRate and FlakeRate, Project A has twice as many culprits as C and Project

B has 1/3 more flaky failures. Our methodology and simulation only requires the test outcomes on

commits and can easily be applied to other projects to determine the most cost-effective BatchSize

for a project.

Our simulations include simplifications of some of the Ericsson processes and may not exactly

match the reality of the development environment of Ericsson. In order to verify our results, we

suggest practitioners implement our approaches in production workflows and evaluate the results in

real environments after determining the most cost-effective BatchSize.

Notes on other experimental conditions. As explained in Section 4.6.2, we have experi-

mented two training models: a sliding window training model and also using all previous data. Our

results show that the savings using a sliding window training model is slightly lower than using all

previous data. Particularly, for our best approaches, i.e. TestTop2 BugModel and TestExecution-

History , savings are -8.2% and -5.2% instead of -9.0% and -7.4% respectively for Project B and

-7.0% and -3.6% instead of -7.6% and -4.3% respectively for Project C. Hence, the diagrams and

distributions explained in this section are based on using all previous data at each iteration day.

This parameter can be easily changed based on the results attained for other projects.

Moreover, our experiments show that some of our extracted features for creating bug models lead

to deterioration of the results. Notably, features regarding average developer experience, number

of file changes and average time interval among file changes have been excluded from because the

reduced the quality of the culprit risk predictions.

Finally, we assume that a FlakyBatch will result in the same number of executions as is required

to find a single culprit, i.e. 2 ∗ log2(n). However, given that the test is flaky, all tests may pass on

the first split in the bisection. In the case of batches of size 8, finding a single culprit requires 6

executions. However, if all commits pass after the first split, there are only 2 additional executions

required. Our approach is conservative when treating bisections adding the number of executions

required to find a culprit even if one does not exist, i.e. a flaky batch.

Different combinations of commits in a batch can be another source of test flakiness. For example,

when commit a and commit b are tested together they are flaky. However, when combined with

commit c they are not flaky anymore. We have not taken into account the impact of combining

different commits together on test flakiness.

60

4.11 Related Work

There are two reasons why commits are grouped: test efficiency and integration. When resources

are scarce, e.g. expensive specialized test hardware, individual commits must be grouped together

as there are not enough resources to test each commit individually. While unit tests can determine

that each individual commit is working, we must test to ensure that when the changes are combined,

i.e. integrated, there are no new faults. Regardless of the reason for a batch, once it fails the commit

or commits that are causing the problem must be identified and fixed, i.e. the root cause or culprit

must be found [Rei09].

One of the common approaches used for finding a culprit in a group of failing commits is bisec-

tion. When commits are ordered, GitBisection [GBS] can use an ordered binary search to identify

the culprit in log(n) time. At Google integration tests can run on the order of hours and can cover

thousands of commits, making GitBisection too computationally expensive. Instead, Google devel-

opers use the static build dependencies to determine which tests must be run when a file is changed.

When a group of changes fails during integration testing, Google developers can immediately elimi-

nate all changes that do not individually relate to the failing test. Since there can be thousands of

changes in an integration test, Google also scores the remaining commits on the basis of the number

of files in a change (more files, more likely to be the culprit) and the distance to the root of the build

test dependency DAG (closer to the root, safer as more developers have assessed it by now) [ZR17].

At Ericsson, GitBisection is not possible because the commits are combined into an unordered

group of changes. A bisection on an unordered set of commits is more expensive than an ordered

GitBisection requiring 2 ∗ log2(n) + 1 executions (see Section 4.3). Furthermore, at Ericsson, it is

complicated to extract the static build dependency graph of which tests will be run. In our work, we

evaluate the optimal batch size given the FailureRate and the FlakeRate. We then guide bisection

by using historical models, instead of statical dependencies.

Test Selection

The goal of test selection is to choose the most appropriate tests to be run for a given change. In

our work, we use these ideas to determine which change is the most likely culprit given the tests

that have failed.

Early work on test selection used static analysis and code coverage [NH17, SYGM15, WNT17,

NABL, KSK, KR15, SS14, JKS12, KHT13, NTV+14, QCR08, LLH+16]. The Google culprit

finder [ZR17] uses similar information in the form of build test file dependencies to select the most

likely culprit.

In contrast, our work builds on the history of test failures. To prioritize tests, previous works have

61

used the recency of the test failures to determine which test is most likely to fail [KP02]. Building

on these ideas, researchers have developed sliding windowed predictions [ERP14], used association

rule mining [ASD14], and test co-failure distributions [ZSR18]. These only consider the tests and

do not consider the unit under test. In contrast, a preliminary work at Ericsson determined which

tests to run on the basis of which tests have failed with commits containing similar files [CMBA17].

We reverse this idea and instead of predicting which tests to run given the files in a change, we

determine which is the most likely culprit given the failing test and the files under change.

Through test selection, Elbaum et al [ERP14] report a savings of 70% to 80% of executions. In

our work, we run all the tests and are able to save 50% to 74% of executions. When flaky test

failures are accounted for, the results show savings of 7% to 41% compared to our testing all of the

commits as our baseline.

Anderson et al [ASD14] use association rule mining to predict the tests that are most likely to

fail. They report a precision of up to 46.3 and recall of up to 76.6. Their goal is to select tests to

run for a change, while in our work we select the commit that is most likely to have a failing test.

Our average SufficientAndCorrectAt2 which is the same as RecallAt2 is 64.5%, and although has a

different purpose is comparable to other results.

BugModels

Recent works have extensive studied bug predictions and bug models. The focus of earlier work has

been on predicting defective software modules or evaluating the impact of different software met-

rics related to that [HBB+12, RHTZ13, TMH+15, Aki71, DLR10, Has09, ZPZ07, MW00, MPS08,

NZZ+10, RPH+11, KZJZ07, GFS05, LHSR06, MK92, CMRH09, MKAH14, Moc10, SJI+10, SMK+11].

However, other studies focus on predicting defects on the change level. Predicting bugs on the

change level makes it easier for developer address the issues and act on the predictions. For example,

Kim et al. [KJZ08] propose an approach for classifying the developer changes as buggy or clean. They

extract features like the lines modified in each change, author and time of the change, complexity

metrics and etc. from software revision history and train a Support Vector Machine classifier to

predict the changes as buggy or clean. This approach also examines the risk associated with each

submitted change without connecting them to a concrete fault localization context of a test failure.

Our approach, on the other hand, does so using an empirical approach that points to the culprit

change that is involved in a test failure.

Kamei et al. [KSA+13] propose a risk analysis approach in change level. They construct a

logistic regression model for analyzing changes using different factors under six high-level categories

of diffusion, size, purpose, history, and developer experience to calculate the risk values. The number

of modified subsystems, lines of code added, the average time interval between the last and the

62

current change, and recent developer experience are among the utilized metrics. We adopt this

study as one of our risk prediction approaches.

Yang et al. [YLX+15] propose a deep learning based technique for predicting the faulty changes.

They use an advanced deep learning algorithm named Deep Belief Network for extracting a set

features for measuring the changes. Then they train a logistic regression classifier for predicting the

risk values of the changes. Similar to [KSA+13], this approach also just predicts the risks associated

with different changes but does not associate them with any concrete test failure. Our approach,

however, starts from a concrete test failure and attempts to locate the change associated with that

test failure. Yang et al. [YLXS17] propose another similar study for predicting defective changes

using a two-layer ensemble learning approach. Young et al. [YAB18] propose a replication of this

study.

What all these studies have in common is predicting the buggy commits as early as possible, a

process called just-in-time defect prediction. A problem with these bug models is that there is no

concrete evidence that a suggested change is actually problematic and needs to be investigated as

soon as possible. Our study, however, focuses on predicting culprit commits. A culprit commit is

one of the multiple changes that have actually failed a test and needs to be found and addressed

right away.

Kamei et al. [KSA+13] report an average precision of 37% and recall of 67%. Kim et al. [KJZ08]

report an average precision of 61% and recall of 62% for the same projects. Yang et al. [YLX+15]

use deep learning on the same projects and achieve an average precision of 35% and a recall of 69%.

Our BugModel achieves an average SufficientAndCorrectAt2 (RecallAt2) of 59%. While our recall is

comparable to previous works, our goal is to find the culprit that is causing a test failure instead of

the potential introduction of a bug in a commit. By incorporating historical test information in the

TestExecutionHistory model, we attain an average SufficientAndCorrectAt2 (RecallAt2) of 64.5%,

which outperforms the BugModel .

4.12 Conclusion

The resources required for testing large-scale modern software systems has grown dramatically.

Each change must be tested and integrated. To save resources, commits are grouped into batches

for testing. We are the first work to study to examine the most cost-effective BatchSize based on

the number of true test failures, FailureRate. Flaky tests are a known problem on all large systems,

we factor FlakeRate into our simulations. The FlakeRate is more damaging with large batch sizes as

the number of commits in a batch grows so does the probability of the batch failing due to a flaky

test. We also use risk prediction models to more quickly isolate commits that are the likely culprits

63

using BugModels and TestExecutionHistory models.

We make three major contributions:

1. We find the higher the FailureRate the smaller the most cost-effective BatchSize. We see a

logarithmic increase with most of the savings in executions being realized before batches of

size four. Our results show that Project C, with the lowest FailureRate, can optimally use

BatchSize = 9 and have savings above 72% of executions.

2. We model the FlakeRate. With moderate levels of flakiness, the savings seen above a BatchSize =

4 do not outweigh the additional executions required to identify a flaky failure. The FlakeRate

controls the BatchSize and the project with the highest flake rate does not see any advantage

above BatchSize = 2. Project C still attains high executions savings, at 41% with a BatchSize

of 4.

3. Using risk predictions from BugModels and TestExecutionHistory models, we are able to rank

the commits by how likely they are to contain the culprit. We find that the TestExecution-

History model achieves an average SufficientAndCorrectAt2 of 64.5% and outperforms the

BugModel . By using these risk predictions compared to FifoBisection we need fewer execu-

tions, between -9.0% and -7.6%.

Our work opens a new area of research into culprit finding and prediction. While we have exam-

ined preliminary BugModels and modified the work on test selection to identify potential culprits in

the TestExecutionHistory model, we feel that there is much further work to be accomplished. The

results we present here have convinced Ericsson developers to implement our culprit risk predictions

in the CulPred tool that will make their continuous integration pipeline more efficient.

64

Chapter 5

Conclusions

In this thesis, we proposed approaches for reducing test executions and improving test effectiveness in

large-scale test environments. Software testing is one of the costliest stages of software development

life cycle. In Chapter 3, we proposed our adopted approaches for test selection and test prioritization

approaches in order to reduce the test executions in Ericsson. Our experiments revealed that test

prioritization approaches are generally more efficient than test selection approaches in improving

test processes. Moreover, it was shown that due to the non-invasive nature of test prioritization

approaches, they have the least amount of impact on the final product quality. We observed that test

prioritization using simple frequency analysis of the test failures was the most preferable approach

in improving test effectiveness.

The major contributions of Chapter 3 are:

• We adopt and evaluate test selection and prioritization approaches with the goal of improving

test effectiveness in a large industrial system with a complex testing infrastructure.

• We demonstrate the value of test execution history for improving test effectiveness in a large-

scale industrial system in practice.

• We provide an industrial experience report that documents the challenges that are encountered

and our lessons learned during the adoption process of the test selection and prioritization

approaches.

The resources required for testing large-scale modern software systems has grown dramatically.

Each change must be tested and integrated. As an approach to save the resources, commits can be

grouped into batches for testing. In Chapter 4, we experimented batch testing and its impact on

test executions and test flakiness. We are the first work to study to examine the most cost-effective

BatchSize based on the number of true test failures, FailureRate.

65

We observed that higher batch sizes can reduce executions, however, also lead to higher test

flakiness. Therefore, we proposed a methodology on how to find the optimal batch size for each test

environment. Moreover, we proposed approaches for how to isolate a culprit commit when a new

batch failure happens. Our results show that our BugModel and TestExecutionHistory approach can

effectively reduce the test executions by predicting the buggy commits and testing them individually.

We make three major contributions in Chapter 4:

1. We find the higher the FailureRate the smaller the most cost-effective BatchSize. Our re-

sults show that test executions can be reduced up to 72% with our dataset with the lowest

FailureRate.

2. We model the FlakeRate and its impact on most cost-effective BatchSize. The FlakeRate

controls the BatchSize. We observe that test flakes can limit the savings.

3. Using risk predictions from BugModels and TestExecutionHistory models, we are able to rank

the commits by how likely they are to contain the culprit. We find that our risk models on

average are sufficient and correct in up to 64.5% of the time. Furthermore, reduce the test

executions up to -9.0% compared to FifoBisection approach.

Our work opens a new area of research into culprit finding and prediction. While we have exam-

ined preliminary BugModels and modified the work on test selection to identify potential culprits in

the TestExecutionHistory model, we feel that there is much further work to be accomplished. The

results we present here have convinced Ericsson developers to implement our culprit risk predictions

in the CulPred tool that will make their continuous integration pipeline more efficient.

66

Bibliography

[AAPV09] L. C. Ascari, L. Y. Araki, A. R. T. Pozo, and S. R. Vergilio. Exploring machine

learning techniques for fault localization. In 2009 10th Latin American Test Workshop,

pages 1–6, March 2009.

[AFMS95] D. Abramson, I. Foster, J. Michalakes, and R. Sosic. Relative debugging and its

application to the development of large numerical models. In Proceedings of the

IEEE/ACM SC95 Conference, pages 51–51, 1995.

[AHLW95] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using execu-

tion slices and dataflow tests. In Software Reliability Engineering, 1995. Proceedings.,

Sixth International Symposium on, pages 143–151, Oct 1995.

[Aki71] Fumio Akiyama. An example of software system debugging. In IFIP Congress (1),

volume 71, pages 353–359, 1971.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, A Inkeri

Verkamo, et al. Fast discovery of association rules. Advances in knowledge discovery

and data mining, 12(1):307–328, 1996.

[ASD14] Jeff Anderson, Saeed Salem, and Hyunsook Do. Improving the effectiveness of test

suite through mining historical data. In Proceedings of the 11th Working Conference

on Mining Software Repositories, MSR 2014, pages 142–151, New York, NY, USA,

2014. ACM.

[ASD15] J. Anderson, S. Salem, and H. Do. Striving for failure: An industrial case study about

test failure prediction. In 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, volume 2, pages 49–58, May 2015.

[AVG09] Rui Abreu and Arjan JC Van Gemund. A low-cost approximate minimal hitting set

algorithm and its application to model-based diagnosis. In SARA, volume 9, pages

2–9, 2009.

67

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[BLL07] L. C. Briand, Y. Labiche, and X. Liu. Using machine learning to support debugging

with tarantula. In The 18th IEEE International Symposium on Software Reliability

(ISSRE ’07), pages 137–146, Nov 2007.

[BN10] P. Bhattacharya and I. Neamtiu. Fine-grained incremental learning and multi-feature

tossing graphs to improve bug triaging. In 2010 IEEE International Conference on

Software Maintenance, pages 1–10, Sept 2010.

[BPH10a] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program depen-

dence graph and its application to fault diagnosis. IEEE Transactions on Software

Engineering, 36(4):528–545, July 2010.

[BPH10b] George K. Baah, Andy Podgurski, and Mary Jean Harrold. Causal inference for

statistical fault localization. In Proceedings of the 19th International Symposium on

Software Testing and Analysis, ISSTA ’10, pages 73–84, New York, NY, USA, 2010.

ACM.

[CDFR08] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Formal concept

analysis enhances fault localization in software. In Raoul Medina and Sergei Obiedkov,

editors, Formal Concept Analysis, pages 273–288, Berlin, Heidelberg, 2008. Springer

Berlin Heidelberg.

[CDFR11] Peggy Cellier, Mireille Ducasse, Sébastien Ferré, and Olivier Ridoux. Multiple fault

localization with data mining. In SEKE 2011 - Proceedings of the 23rd International

Conference on Software Engineering and Knowledge Engineering, pages 238–243, 07

2011.

[CMBA17] M. Campbell, K. Martin, F. Bozóki, and M. Atkinson. Dynamic test selection using

source code changes. In 2017 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C), pages 597–598, July 2017.

[CMRH09] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software dependencies,

work dependencies, and their impact on failures. IEEE Transactions on Software

Engineering, 35(6):864–878, Nov 2009.

[DLR10] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction

approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR 2010), pages 31–41, May 2010.

68

[DMG07] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous Integration: Im-

proving Software Quality and Reducing Risk (The Addison-Wesley Signature Series).

Addison-Wesley Professional, 2007.

[dSPdAB14a] L. S. d. Souza, R. B. C. Prudêncio, and F. d. A. Barros. A hybrid binary multi-

objective particle swarm optimization with local search for test case selection. In

2014 Brazilian Conference on Intelligent Systems, pages 414–419, Oct 2014.

[dSPdAB14b] L. S. de Souza, R. B. C. Prudêncio, and F. d. A. Barros. A comparison study of

binary multi-objective particle swarm optimization approaches for test case selection.

In 2014 IEEE Congress on Evolutionary Computation (CEC), pages 2164–2171, July

2014.

[ERP14] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improving

regression testing in continuous integration development environments. In Proceedings

of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2014, pages 235–245, New York, NY, USA, 2014. ACM.

[FCB+14] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, and J. Botella. Setgam: Gen-

eralized technique for regression testing based on uml/ocl models. In 2014 Eighth

International Conference on Software Security and Reliability (SERE), pages 147–

156, June 2014.

[GBS] bisect - https://git-scm.com/docs/gitbisect.

[GEM15] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test selection

with dynamic file dependencies. In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, ISSTA 2015, pages 211–222, New York, NY, USA,

2015. ACM.

[GFS05] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented met-

rics on open source software for fault prediction. IEEE Transactions on Software

Engineering, 31(10):897–910, Oct 2005.

[GHZG05] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty code

using failure-inducing chops. In Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’05, pages 263–272, New York,

NY, USA, 2005. ACM.

[Has09] A. E. Hassan. Predicting faults using the complexity of code changes. In 2009 IEEE

31st International Conference on Software Engineering, pages 78–88, May 2009.

69

[HBB+12] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature

review on fault prediction performance in software engineering. IEEE Transactions

on Software Engineering, 38(6):1276–1304, Nov 2012.

[HGCM15] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. The art of

testing less without sacrificing quality. In Proceedings of the 37th International Con-

ference on Software Engineering - Volume 1, ICSE ’15, pages 483–493, Piscataway,

NJ, USA, 2015. IEEE Press.

[HN15] K. Herzig and N. Nagappan. Empirically detecting false test alarms using associ-

ation rules. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, volume 2, pages 39–48, May 2015.

[HRB88] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language

Design and Implementation, PLDI ’88, pages 35–46, New York, NY, USA, 1988.

ACM.

[JGG08] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. Fault localization using value re-

placement. In Proceedings of the 2008 International Symposium on Software Testing

and Analysis, ISSTA ’08, pages 167–178, New York, NY, USA, 2008. ACM.

[JHS01] James A Jones, Mary Jean Harrold, and John T Stasko. Visualization for fault

localization. In in Proceedings of ICSE 2001 Workshop on Software Visualization.

Citeseer, 2001.

[JHS02] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test informa-

tion to assist fault localization. In Proceedings of the 24th International Conference

on Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

[JKS12] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using non-redundant mutation

operators and test suite prioritization to achieve efficient and scalable mutation anal-

ysis. In 2012 IEEE 23rd International Symposium on Software Reliability Engineering,

pages 11–20, Nov 2012.

[JLYX17] He Jiang, Xiaochen Li, Zijiang Yang, and Jifeng Xuan. What causes my test alarm?:

Automatic cause analysis for test alarms in system and integration testing. In Pro-

ceedings of the 39th International Conference on Software Engineering, ICSE ’17,

pages 712–723, Piscataway, NJ, USA, 2017. IEEE Press.

70

[JXxC+04] Wu Ji, Jia Xiao-xia, Liu Chang, Yang Hai-yan, Liu Chao, and Jin Mao-zhong. A

statistical model to locate faults at input level. In Proceedings of the 19th IEEE

International Conference on Automated Software Engineering, ASE ’04, pages 274–

277, Washington, DC, USA, 2004. IEEE Computer Society.

[KC15] H. Kumar and N. Chauhan. A coupling effect based test case prioritization tech-

nique. In 2015 2nd International Conference on Computing for Sustainable Global

Development (INDIACom), pages 1341–1345, March 2015.

[KG10] Negar Koochakzadeh and Vahid Garousi. A tester-assisted methodology for test

redundancy detection. Adv. Soft. Eng., 2010:6:1–6:13, January 2010.

[KGM09] N. Koochakzadeh, V. Garousi, and F. Maurer. Test redundancy measurement based

on coverage information: Evaluations and lessons learned. In 2009 International

Conference on Software Testing Verification and Validation, pages 220–229, April

2009.

[KHT13] N. Kukreja, W. G. J. Halfond, and M. Tambe. Randomizing regression tests us-

ing game theory. In 2013 28th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 616–621, Nov 2013.

[KJMG17] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. Ef-

fective regression test case selection: A systematic literature review. ACM Comput.

Surv., 50(2):29:1–29:32, May 2017.

[KJZ08] S. Kim, E. J. Whitehead Jr., and Y. Zhang. Classifying software changes: Clean or

buggy? IEEE Transactions on Software Engineering, 34(2):181–196, March 2008.

[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing

Letters, 29(3):155 – 163, 1988.

[KP02] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for

regression testing in resource constrained environments. In Proceedings of the 24th

International Conference on Software Engineering, ICSE ’02, pages 119–129, New

York, NY, USA, 2002. ACM.

[KP15] P. Klindee and N. Prompoon. Test cases prioritization for software regression testing

using analytic hierarchy process. In 2015 12th International Joint Conference on

Computer Science and Software Engineering (JCSSE), pages 168–173, July 2015.

71

[KR15] P. Konsaard and L. Ramingwong. Total coverage based regression test case prioriti-

zation using genetic algorithm. In 2015 12th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technol-

ogy (ECTI-CON), pages 1–6, June 2015.

[KSA+13] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi.

A large-scale empirical study of just-in-time quality assurance. IEEE Transactions

on Software Engineering, 39(6):757–773, June 2013.

[KSK] Manoj Kumar, Arun Sharma, and Rajesh Kumar. An empirical evaluation of a

three-tier conduit framework for multifaceted test case classification and selection

using fuzzy-ant colony optimisation approach. Software: Practice and Experience,

45(7):949–971.

[KZJZ07] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting faults from

cached history. In 29th International Conference on Software Engineering (ICSE’07),

pages 489–498, May 2007.

[KZPW06] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead. Automatic identification of

bug-introducing changes. In 21st IEEE/ACM International Conference on Automated

Software Engineering (ASE’06), pages 81–90, Sept 2006.

[LFY+06] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and S. P. Midkiff. Statistical debugging:

A hypothesis testing-based approach. IEEE Transactions on Software Engineering,

32(10):831–848, Oct 2006.

[LHSR06] Paul Luo Li, James D. Herbsleb, Mary Shaw, and Brian Robinson. Experiences and

results from initiating field defect prediction and product test prioritization efforts at

abb inc. In ICSE, 2006.

[LIH17] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring the cost of

regression testing in practice: A study of java projects using continuous integration. In

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2017, pages 821–830, New York, NY, USA, 2017. ACM.

[LLH+16] Mohsen Laali, Huai Liu, Margaret Hamilton, Maria Spichkova, and Heinz W.

Schmidt. Test case prioritization using online fault detection information. In Marko

Bertogna, Luis Miguel Pinho, and Eduardo Quiñones, editors, Reliable Software Tech-

nologies – Ada-Europe 2016, pages 78–93, Cham, 2016. Springer International Pub-

lishing.

72

[LNZ+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable

statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’05, pages 15–26, New

York, NY, USA, 2005. ACM.

[MaBMM16] Cláudio Magalhães, Flávia Barros, Alexandre Mota, and Eliot Maia. Automatic selec-

tion of test cases for regression testing. In Proceedings of the 1st Brazilian Symposium

on Systematic and Automated Software Testing, SAST, pages 8:1–8:8, New York, NY,

USA, 2016. ACM.

[MGS13] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. Test case prioritization for contin-

uous regression testing: An industrial case study. In Proceedings of the 2013 IEEE

International Conference on Software Maintenance, ICSM ’13, pages 540–543, Wash-

ington, DC, USA, 2013. IEEE Computer Society.

[Mic16] John Micco. Flaky tests at google and how we mitigate them. https://goo.gl/

rxFGiw, 2016.

[MK92] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs. IEEE

Transactions on Software Engineering, 18(5):423–433, May 1992.

[MK09] Thilo Mende and Rainer Koschke. Revisiting the evaluation of defect prediction

models. In PROMISE, 2009.

[MKAH14] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The impact

of code review coverage and code review participation on software quality: A case

study of the qt, vtk, and itk projects. In Proceedings of the 11th Working Conference

on Mining Software Repositories, MSR 2014, pages 192–201, New York, NY, USA,

2014. ACM.

[MMK04] D. P. Mohapatra, R. Mall, and R. Kumar. An edge marking technique for dynamic

slicing of object-oriented programs. In Proceedings of the 28th Annual International

Computer Software and Applications Conference, 2004. COMPSAC 2004., pages 60–

65 vol.1, Sept 2004.

[Moc10] Audris Mockus. Organizational volatility and its effects on software defects. In Pro-

ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE ’10, pages 117–126, New York, NY, USA, 2010. ACM.

73

[MPS08] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction. In 2008 ACM/IEEE

30th International Conference on Software Engineering, pages 181–190, May 2008.

[MRA13] Varun Modi, Subhajit Roy, and Sanjeev K. Aggarwal. Exploring program phases

for statistical bug localization. In Proceedings of the 11th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, PASTE ’13, pages

33–40, New York, NY, USA, 2013. ACM.

[MW00] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical

Journal, 5(2):169–180, April 2000.

[NABL] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. Coverage-

based regression test case selection, minimization and prioritization: a case study on

an industrial system. Software Testing, Verification and Reliability, 25(4):371–396.

[NAW+08] Syeda Nessa, Muhammad Abedin, W. Eric Wong, Latifur Khan, and Yu Qi. Software

fault localization using n-gram analysis. In Yingshu Li, Dung T. Huynh, Sajal K. Das,

and Ding-Zhu Du, editors, Wireless Algorithms, Systems, and Applications, pages

548–559, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[NH17] Tanzeem Bin Noor and Hadi Hemmati. Studying test case failure prediction for test

case prioritization. In Proceedings of the 13th International Conference on Predictive

Models and Data Analytics in Software Engineering, PROMISE, pages 2–11, New

York, NY, USA, 2017. ACM.

[NTV+14] Cu Nguyen, Paolo Tonella, Tanja Vos, Nelly Condori, Bilha Mendelson, Daniel Citron,

and Onn Shehory. Test prioritization based on change sensitivity: an industrial case

study, 2014.

[NZZ+10] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. Change bursts as

defect predictors. In 2010 IEEE 21st International Symposium on Software Reliability

Engineering, pages 309–318, Nov 2010.

[PCJ+17] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.

Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving fault localization.

In Proceedings of the 39th International Conference on Software Engineering, ICSE

’17, pages 609–620, Piscataway, NJ, USA, 2017. IEEE Press.

[PL16] Rachel Potvin and Josh Levenberg. Why google stores billions of lines of code in a

single repository. Commun. ACM, 59(7):78–87, June 2016.

74

[POPDL15] Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, and Andrea De Lucia.

Improving multi-objective test case selection by injecting diversity in genetic algo-

rithms. IEEE Transactions on Software Engineering, 41(4):358 – 383, 2015.

[PZTM13] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller. Model-based test oracle gen-

eration for automated unit testing of agent systems. IEEE Transactions on Software

Engineering, 39(9):1230–1244, Sept 2013.

[QCR08] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware regression

testing: An empirical study of sampling and prioritization. In Proceedings of the

2008 International Symposium on Software Testing and Analysis, ISSTA ’08, pages

75–86, New York, NY, USA, 2008. ACM.

[Rei09] Donald G Reinertsen. The principles of product development flow: second generation

lean product development, volume 62. Celeritas Redondo Beach, 2009.

[RHTZ13] Danijel Radjenovic, Marjan Hericko, Richard Torkar, and Ales Zivkovic. Software

fault prediction metrics: A systematic literature review. Information and Software

Technology, 55(8):1397 – 1418, 2013.

[RPH+11] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar Devanbu.

Bugcache for inspections: Hit or miss? In Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of Software Engineer-

ing, ESEC/FSE ’11, pages 322–331, New York, NY, USA, 2011. ACM.

[RR03] M. Renieres and S. P. Reiss. Fault localization with nearest neighbor queries. In 18th

IEEE International Conference on Automated Software Engineering, 2003. Proceed-

ings., pages 30–39, Oct 2003.

[RST+04] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. Chianti:

A tool for change impact analysis of java programs. In Proceedings of the 19th Annual

ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications, OOPSLA ’04, pages 432–448, New York, NY, USA, 2004. ACM.

[SAH17] D. Suleiman, M. Alian, and A. Hudaib. A survey on prioritization regression testing

test case. In 2017 8th International Conference on Information Technology (ICIT),

pages 854–862, May 2017.

[SGG+14] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. Bal-

ancing trade-offs in test-suite reduction. In Proceedings of the 22Nd ACM SIGSOFT

75

International Symposium on Foundations of Software Engineering, FSE 2014, pages

246–256, New York, NY, USA, 2014. ACM.

[SJI+10] Emad Shihab, Zhen Ming Jiang, Walid M. Ibrahim, Bram Adams, and Ahmed E. Has-

san. Understanding the impact of code and process metrics on post-release defects:

A case study on the eclipse project. In Proceedings of the 2010 ACM-IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement, ESEM ’10,

pages 4:1–4:10, New York, NY, USA, 2010. ACM.

[SMK+11] Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.

High-impact defects: a study of breakage and surprise defects. In SIGSOFT FSE,

2011.

[SO05] Chad D. Sterling and Ronald A. Olsson. Automated bug isolation via program chip-

ping. In Proceedings of the Sixth International Symposium on Automated Analysis-

driven Debugging, AADEBUG’05, pages 23–32, New York, NY, USA, 2005. ACM.

[SS14] Satwinder Singh and Fategarh Sahib. Optimized test case prioritization with multi

criteria for regression testing. 2014.

[SYGM15] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. Comparing and combining

test-suite reduction and regression test selection. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 237–247,

New York, NY, USA, 2015. ACM.

[SZKP15] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. An

information retrieval approach for regression test prioritization based on program

changes. In Proceedings of the 37th International Conference on Software Engineering

- Volume 1, ICSE ’15, pages 268–279, Piscataway, NJ, USA, 2015. IEEE Press.

[SZZ05] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce

fixes? SIGSOFT Softw. Eng. Notes, 30(4):1–5, May 2005.

[TM14] M. Tyagi and S. Malhotra. Test case prioritization using multi objective particle

swarm optimizer. In 2014 International Conference on Signal Propagation and Com-

puter Technology (ICSPCT 2014), pages 390–395, July 2014.

[TMH+15] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Matsumoto. The

impact of mislabelling on the performance and interpretation of defect prediction

models. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-

neering, volume 1, pages 812–823, May 2015.

76

[Ves85] Iris Vessey. Expertise in debugging computer programs: A process analysis. Interna-

tional Journal of Man-Machine Studies, 23(5):459 – 494, 1985.

[WDG+12] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham. Effective software

fault localization using an rbf neural network. IEEE Transactions on Reliability,

61(1):149–169, March 2012.

[WDGL14] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The dstar method for effective software

fault localization. IEEE Transactions on Reliability, 63(1):290–308, March 2014.

[WDX12] W. E. Wong, V. Debroy, and D. Xu. Towards better fault localization: A crosstab-

based statistical approach. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 42(3):378–396, May 2012.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on

Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE

Press.

[WGL+16] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault

localization. IEEE Transactions on Software Engineering, 42(8):707–740, Aug 2016.

[WNT17] Song Wang, Jaechang Nam, and Lin Tan. Qtep: Quality-aware test case prioriti-

zation. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, pages 523–534, New York, NY, USA, 2017. ACM.

[WQ06] W. Eric Wong and Yu Qi. Effective program debugging based on execution slices

and inter-block data dependency. Journal of Systems and Software, 79(7):891 – 903,

2006. Selected papers from the 11th Asia Pacific Software Engineering Conference

(APSEC2004).

[WQ09] W Eric Wong and Yu Qi. Bp neural network-based effective fault localization. Interna-

tional Journal of Software Engineering and Knowledge Engineering, 19(04):573–597,

2009.

[WSQM03] W. E. Wong, T. Sugeta, Yu Qi, and J. C. Maldonado. Smart debugging software ar-

chitectural design in sdl. In Proceedings 27th Annual International Computer Software

and Applications Conference. COMPAC 2003, pages 41–47, Nov 2003.

[WWC16] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. Locus: Locating bugs from software

changes. In Proceedings of the 31st IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE 2016, pages 262–273, New York, NY, USA, 2016.

ACM.

77

[XGKS14] Zhiwei Xu, Kehan Gao, Taghi M. Khoshgoftaar, and Naeem Seliya. System regression

test planning with a fuzzy expert system. Information Sciences, 259:532 – 543, 2014.

[XJRZ12] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer prioritization in bug repositories.

In 2012 34th International Conference on Software Engineering (ICSE), pages 25–35,

June 2012.

[YAB18] S. Young, T. Abdou, and A. Bener. A replication study: Just-in-time defect prediction

with ensemble learning. In 2018 IEEE/ACM 6th International Workshop on Realizing

Artificial Intelligence Synergies in Software Engineering (RAISE), pages 42–47, May

2018.

[YLX+15] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-in-time defect

prediction. In 2015 IEEE International Conference on Software Quality, Reliability

and Security, pages 17–26, Aug 2015.

[YLXS17] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. Tlel: A two-layer ensemble learning

approach for just-in-time defect prediction. Information and Software Technology,

87:206 – 220, 2017.

[YQZ12] Zunwen You, Zengchang Qin, and Zheng Zheng. Statistical fault localization us-

ing execution sequence. In 2012 International Conference on Machine Learning and

Cybernetics, volume 3, pages 899–905, July 2012.

[Zel99] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In Proceed-

ings of the 7th European Software Engineering Conference Held Jointly with the 7th

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

ESEC/FSE-7, pages 253–267, London, UK, UK, 1999. Springer-Verlag.

[Zel02] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceedings

of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering,

SIGSOFT ’02/FSE-10, pages 1–10, New York, NY, USA, 2002. ACM.

[ZGG] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faulty code by multiple

points slicing. Software: Practice and Experience, 37(9):935–961.

[ZGG06] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through automated

predicate switching. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, pages 272–281, New York, NY, USA, 2006. ACM.

78

[Zho10] Z.Q. Zhou. Using coverage information to guide test case selection in adaptive random

testing. In Proceedings - International Computer Software and Applications Confer-

ence, number Proceedings - 34th Annual IEEE International Computer Software and

Applications Conference Workshops, COMPSACW 2010, pages 208–213, School of

Computer Science and Software Engineering, University of Wollongong, 2010.

[ZJW+14] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.

Ernst, and David Notkin. Empirically revisiting the test independence assumption. In

Proceedings of the 2014 International Symposium on Software Testing and Analysis,

ISSTA 2014, pages 385–396, New York, NY, USA, 2014. ACM.

[ZKZW06] Thomas Zimmermann, Sunghun Kim, Andreas Zeller, and E. James Whitehead, Jr.

Mining version archives for co-changed lines. In Proceedings of the 2006 International

Workshop on Mining Software Repositories, MSR ’06, pages 72–75, New York, NY,

USA, 2006. ACM.

[ZPZ07] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for

eclipse. In Proceedings of the Third International Workshop on Predictor Models in

Software Engineering, PROMISE ’07, pages 9–, Washington, DC, USA, 2007. IEEE

Computer Society.

[ZR17] Celal Ziftci and Jim Reardon. Who broke the build?: Automatically identifying

changes that induce test failures in continuous integration at google scale. In Pro-

ceedings of the 39th International Conference on Software Engineering: Software En-

gineering in Practice Track, ICSE-SEIP ’17, pages 113–122, Piscataway, NJ, USA,

2017. IEEE Press.

[ZSR18] Y. Zhu, E. Shihab, and P. C. Rigby. Test re-prioritization in continuous testing

environments. In 2018 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 69–79, Sept 2018.

[ZZ14] Sai Zhang and Congle Zhang. Software bug localization with markov logic. In Com-

panion Proceedings of the 36th International Conference on Software Engineering,

ICSE Companion 2014, pages 424–427, New York, NY, USA, 2014. ACM.

79

