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Abstract

A Multiple Level-Set Approach for Modeling Unconstrained

Solidification

Hasan Shetabivash, PhD

Concordia University, 2018

This thesis focuses on numerical simulation of the freezing process of liquid droplets
on cold substrates. Solidification of droplets is one of the most challenging phenomenon
for numerical modelling since various complicated physical mechanisms are involved.
Dealing with the jump conditions at interfaces has been a long-term concern in numeri-
cal simulations. Moreover, the tri-junction point where three-phases come into contact
requires special treatment. Furthermore, density expansion during freezing process
should be taken into account.

In this thesis, we propose a level-set based model to represent three-phase solidifica-
tion physics. Liquid and solid interfaces are represented by two different level-sets in
order to deal with the phases separately. The liquid-gas interface is advected under an
external velocity field obtained from solving Navier-Stokes equations. The solid-liquid
level-set, on the other hand, evolves according to the freezing rate of the liquid. The
level-set associated with the solid-liquid interface is comprised of two segments: active,
and passive. The active part of the level-set evolves based on temperature gradients
and latent heat of fusion. While, the passive part is merely utilized for imposing the
angle at the tri-junction point. We solve a Hamilton-Jacobi type equation in the passive
part of the liquid-solid interface to impose a constant or variable angle at the tri-junction
point.

Furthermore, to consider the effect of density expansion, we added a source term
into the continuity equation. The source term induces velocity in the domain by which
the liquid-gas interface evolves. Moreover, a source term is added to the level-set
advection equation to impose mass conservation in the liquid phase. The effect of
density variation is included in the energy equation as well.

The proposed numerical approach is validated using benchmark problems. In
addition, we compared numerical results of water droplet freezing on a cold substrate
with experimental results available in the literature. Through the comparison, we prove
that the proposed model is capable of accurately predicting solidification behavior.
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Chapter 1

Introduction

1.1 Background and Motivation

There are applications of water droplet solidification on solid surfaces in various
industries (Fig. 1.1). For instance, snow or freezing rain may lead to formation of
slush, or clear ice on aircraft critical surfaces. Even in ambient conditions above
freezing temperatures, ice can be formed as a result of existence of fuel in the fuel tanks
which is below freezing temperature. Moreover, droplets in clouds usually reach to
high altitudes where super-cooling occurs. In this conditions, droplets may become
extremely super-cooled to around —40°C. Airplanes flying in this altitudes, are at risk
of having ice accumulated on their critical surfaces, as result of impact and immediate
freezing of super-cooled droplets (Bragg [1]).

Ice accumulation on critical parts of an airplane (e.g. wings, tail, and stabilizers) de-
grades its overall aerodynamic behavior. Even small changes in the aerodynamics of the
airplane could cause significant reduction of stability, maximum lifting capability, con-
trol surface effectiveness, and engine performance. Having considered aforementioned
risks caused by ice formation on aircraft surfaces, evaluation of anti-icing capabilities
performed by advanced freezing tests is essential in the aerospace industry.

Deposition of ice on the turbine blades and tower, operating in cold weather con-
ditions is one of the most critical issues in the wind turbine industry. Efficiency of
turbines may be degraded as a result of formation of ice layer and subsequent alteration
of blades profile shape. Even a thin layer of ice on wind turbine blades undermines
their aerodynamic performance and hence power generation would be reduced consid-
erably. In addition, increase of maintenance costs, structural failure, fatigue of blades
are another results of ice accretion on turbine blades. Furthermore, ice can be detached
and thrown from rotating blades posing catastrophic safety issues, especially at the
vicinity of public roads, power lines, and shipping routes.



Figure 1.1: Ice accumulation on critical parts of airplane and wind turbines

Another application of solidifying droplets is in thermal spraying industry. Surface
treatment using plasma spraying is one of the most promising methods for producing
surfaces with special characteristics such as wear, corrosion, erosion and thermal shock
resistance. In thermal spraying process fine particles are injected into plasma jet,
while are melted and thrown on designated substrate to form a thin layer. Successive
impingement of these molten particles builds up coating which provides the surface
with special characteristics. The quality of coating and thermal properties of the coated
surface is considerably correlated to the behavior of impinging droplets. Spreading and
solidification of impinging droplets on the surface and subsequently buildup of splats
on the substrates on top of each other will finally determine the quality and micro-
structure of the surface. Dynamics of deformation and solidification of particles, greatly
affects the physical properties of the substrate such as surface roughness, porosity, and
adhesion strength of coating.

1.2 Dimensionless Parameters

Several non-dimensional numbers can be utilized to establish major parameters de-
scribing solidification physics and to enable direct comparison between various cases.
We use these parameters to characterize the heat transfer and fluid flow (Vu et al. [2]).
Since heat transfer is the principal mechanism in droplet solidification we use liquid
thermal properties to scale the time.
piCpiDf t
T =200

r kl ’ T= ;r, (1.1)



where p;, Cpj, k; are liquid density, liquid specific heat and liquid heat conductivity,
respectively. Hence the dimensionless number representing time would be the ratio of
time to the characteristic time. As a scale for velocity we use the ratio of length scale
which is droplet diameter to the time scale.
Dy
u, = =2 1.2
= (12)

and we use the following dimensionless temperature

_ T_TC
- Tm_TC'

Q) (1.3)

One of the major parameters governing the droplet freezing process is Prandtl

number which is the ratio of momentum diffusivity to thermal diffusivity.
pr = CpikL, (1.4)
ki
Where y; represents the viscosity of the liquid. The rate of solidification can be
characterized with the Stefan number which is the ratio of sensible heat to latent heat.

Ly

Where Ly represents the latent heat of fusion. The ratio of inertial to the surface

St (1.5)

tension forces are represented by Weber number,

_ pU*Dy
—.

We (1.6)

Where U represents the magnitude of velocity and ¢ is the surface tension. Taking
into account the effects of gravity, the dimensionless parameter related to gravity and

surface tension forces is Bond number

DZ
BO:Plg 0

> (1.7)

representing the ratio of gravity to surface tension forces.

1.3 Experiments on Droplet Solidification

This section is dedicated to experimental studies investigating droplet impact and sub-
sequent solidification process. Overall procedure of droplet impact and solidification
can be divided into two distinct phases; Spreading of the droplet on the surface; Solidifi-
cation of droplet. After droplet impacts on the surface, depending on the characteristics



of the liquid and the substrate, droplet spreads on the surface. Afterwards, solidification
of the droplet will be initiated and it takes some time for droplet to completely freeze.
The influence of these mechanisms on each other, was investigated experimentally by
Madejski [3], who postulated that spreading diameter of droplet is almost independent
on the thermal properties of the surface. Bennett and Poulikakos [4] conducted a com-
bined theoretical and experimental study in order to investigate influential parameters
in heat transfer of solidifying metal droplet. They represented that thermal conductivity
of substrate significantly affects cooling process of the droplet. Performing various
experiments, they concluded that thermal conductivity of the substrate can markedly
affect the grain size of solidified splat.

Kang et al. [5] provided experimental results on subsequent impingement of two
droplets on a substrate indicating that cooling rate at the bottom of the droplet which
is in contact with the substrate is markedly higher. In addition, they postulated that
contact resistance at splat substrate and at the interface of two splats significantly affects
the solidification process. Performing experimental studies alongside numerical results,
Pasandideh-Fard et al. [6] concluded that influence of solidification process on droplet
impact dynamics can be neglected for v/St/Pr << 1.

Fukumoto and Huang [7], based on experimental results, concluded that transi-
tion from splash to disk shape spreading will occur by increasing temperature of the
substrate. Besides, experimental results yielded that solidification rate at the inter-
face between splat and the substrate is higher than inner region of the splat, in the
case of low temperature substrate. Regarding effect of substrate temperature on the
spreading dynamic they postulated that flattening rate of droplet on surfaces with high
temperatures are greater. An experimental research focused on impingement of molten
particles on aluminum surface, performed by Bhola and Chandra [8], revealed that
solidification process could hardly affect the dynamics of impact. Besides, they found
that reducing substrate temperature may stimulate droplet break up. Attinger et al.
[9] used surfaces with various temperatures to investigate influence of spreading and
solidification on each other. Based on the results, solidification time is dependent on
the substrate temperature. In addition, substrate temperature markedly influences
spreading process for St ranging from 0.77 to 0.48. However, at high temperatures
spreading factor is essentially independent of the substrate temperature.

Various experimental studies attempted to investigate liquid droplet solidification
and its characteristics. For instance, Hindmarsh et al. [10] performed experimental
study and provided different stages of droplet solidification. Wang et al. [11] experi-
mentally investigated water droplet solidification with the focus on morphology and
shape of freezing during solidification. They reported that droplet shape changes while
solidifying and grows in the direction perpendicular to the surface. In order to quantify
the morphological changes of droplet during freezing, they used deformation factor as



Figure 1.2: Freezing process of a droplet under constant surface temperature (Marin
et al. [12])

following:

Where, H, and H; are instantaneous and initial height of the droplet, respectively.
They reported that deformation factor of water droplet is about 1.15-1.2 after complete
solidification process. Based on reported results, droplet freezing starts when the
temperature of substrate is cooled far enough below the freezing point of water and
freezing front starts from the surface and moves to the top of the liquid droplet. At the
final steps of solidification, a protrusion which is a result of density difference between
ice and water is formed at the top of the droplet which gives the droplet a peach shape.
Several techniques have been used by researchers to study droplet morphology change
during solidification. Jin et al. [13] used LIF method to visualize the freezing process
of small droplets. Hu and Jin [14] used a novel lifetime-based molecular tagging ther-
mometry (MTT) technique to experimentally investigate droplet solidification process.
Based on the detailed spatially and temporally resolved temperature distribution mea-
surements they found that the temperature of liquid part of the droplet increases while
the solidifying interface moves upward. They proposed that the increase in the liquid
temperature is a result of latent heat release at the solidification line. Marin et al. [12]
experimentally studied the droplet solidification process in a Hele-Shaw geometry.
They suggested that the cone angle at top of the droplet is independent of substrate
temperature and wetting angle of the droplet.

Effect of hydrophobicity of the surface on freezing of the droplet is an area which
attracts attention of many researchers during the last decade. The substantial strategies
to form hydrophobic or super-hydrophobic surfaces is roughening of a hydrophilic
surface or alteration of the surface chemistry using low surface energy materials. There



are two different models to describe behavior of droplet on textured hydrophobic
surfaces: Wenzel; Cassie Baxter. In the former state droplet conforms to the contour of
textured surface and in the latter regime droplet rests on the surface, over the trapped
air in the cavities. Tourkine et al. [15] used experimental approach to investigate
effect of Cassie-Baxter state hydrophobicity on icing of water droplet. Based on their
results, hydrophobicity of the surface delays the freezing process by a factor of 3 and 5
which is mainly caused by trapped film of air which hinders the heat transfer to the
substrate. Moreover, Singh and Singh [16] investigated effect of non-columnar thin film
on freezing process, by performing an experimental study on Ag non-columnar thin
film samples. Their results unveiled that the non-columnar film significantly hinders
the freezing rate mainly because of reduced effective liquid-solid interface area.

Effect of hydrophobicity on the freezing of water droplet further investigated by
Huang et al. [17] by comparing freezing of droplet on various surfaces with different
contact angles. They fabricated super-hydrophobic surfaces by etching and fluorinat-
ing modification method and the 156° was the largest obtained contact angle. The
experimental results, divulged that contact angle directly affects the freezing of droplet
and alters the crystal formation and growth. They postulated that freezing process
initiated later because of smaller contact area between the droplet and the surface. They
also reported formation of protrusion on the top of the droplet and they related this
phenomenon to density change of water and the dissolved air discharge in water.

Most of the studies regarding water droplet solidification focused on the effect of
substrate properties, such as super-hydrophobicity, on the freezing process neglecting
the effect of surrounding gas characteristics. Jung et al. [18], performed an experimental
study to investigate how shear gas flow can alter freezing of super-cooled droplet
mechanism. Ice-phobicity of the surface can become ineffective by some changes in en-
vironmental conditions. Based on their results, crystallization of super-cooled droplets
can be initiated at the interface of droplet and gas because of evaporative cooling.
By subjecting super-cooled sessile water droplet to nitrogen shear flow with various
humidity, they showed that crystallization is initiated by homogeneous nucleation near
the gas-liquid interface. Chaudhary and Li [19] confirmed delayed freezing process
of water droplet on hydrophobic surfaces by carrying out experiments on various
hydrophilic and hydrophobic surfaces.

1.4 Numerical Methods for Modelling Solidification

Due to the fast paced progress in computer hardware and software technologies,
numerical simulations have become attractive for investigation of flows with free

surfaces as a complement of experimental studies. However, in spite of decades



of continuous research the numerical simulations of free-surface flows are still far
away from being an efficient approach for studying complicated multiphase physical
phenomenon. The major challenges include, but not limited to, the accurate time and
space tracking of the free surface, the existence of high density ratios within the flow
field, and the accurate calculation of the surface tension forces. Complexities associated
with the numerical simulation of droplet solidification are because various physical
processes should be taken into account. From fluid flow point of view, appropriate
methodologies are needed to track the interface between the liquid and the gas. In
addition, growth of the liquid-solid interface, heat transfer, and phase change during
solidification need special treatment. Generally, available methods for treating the
solidification of liquids can be categorized into four distinct groups namely; enthalpy,
front tracking, phase field, and level-set. The details of these methods will be discussed
in this section.

1.4.1 The Enthalpy Method

Enthalpy method, proposed by Voller [20] has been extensively used for numerical
simulation of solidification of liquids. In this method, an indicator function, which
ranges from zero to one, is introduced to track the volumes of different phases. Each
phase can be distinguished based on the values of the indicator function. At the
interface, however, the indicator function is discontinuous. General form of the energy
equation based on the total enthalpy, can be written in the following form,

opH

T +V-(puH)=V - (kVT). (1.8)

Where p, and H represent the density and enthalpy. Note that properties of materials
are calculated by weighted averaging based on the indicator function. This equation
can be discretized and solved like other diffusion equations with available discretiza-
tion schemes and methods. However, in the presence of solidification treating the
solidification front is problematic because there is a we need to include release of latent
heat of fusion at the solidifying front. There are several approaches to include latent

heat of fusion in the energy equation which are represented in the following sections.

Apparent Capacity Method

In this method which is proposed by Hashemi and Sliepcevich [21] an apparent thermal
capacity is defined in such a way that includes the latent heat of fusion. Apparent
capacity is defined in the range of phase change temperatures to consider the latent
heat as well as the sensible heat at the liquid-solid interface. Apparent capacity for



uniformly released latent heat at the liquid-solid interface can be defined as follows,

T,
o TSZC(T)dT—l-LH
app = T — T, ’

(1.9)

where Ts, Tj, T and C(T) indicate solid temperature, liquid temperature, temperature,
and specific capacity as a function of temperature, respectively. Using this method
the energy equation can be simplified and written based on temperature as a single

variable.

ot
Where p represents the density. Apparent specific heat can be calculated either explicitly

+ V- (0CappuT) =V - (kVT). (1.10)

or implicitly. In the explicit scheme, the apparent capacity is calculated from previous
temperature in the computational domain. Using implicit scheme the capacity is
evaluated from current field of temperature. Despite the simplicity of this method,
it has a problem in dealing with nodes that their temperature falls from above the
liquidus temperature to below the solidus temperature. As a result, heat of fusion
would not be accounted in those cells.

Effective Capacity Method

Effective capacity method (Poirier and Salcudean [22]) is an extension of the apparent
capacity method which can be evaluated by integrating apparent capacity over the
control volume.

Ceff = fC(T‘)/””pdV, (1.11)
where, V' is the volume of the control volume, and C(T),p) is the apparent heat capacity.
For the cases with steep temperature gradients at the interface like what happens in
solidification of water, this method will be considerably expensive. Because higher sam-
pling frequencies are required during the numerical integration (Poirier and Salcudean

[22]). Using this method, final form of energy equation can be written as following,

apCeffT
ot

+ V- (0CefpuT) =V - (kVT), (1.12)

Source Based Method

Source based method is presented by Voller and Cross [23]. In this method the enthalpy
is expressed as a function of temperature,

H=CpT + AH, (1.13)



where AH is the heat of fusion during solidification process. Substituting this relation
into Eq. 1.8 yields,

ap(Cpgt‘i‘ AH) | o (ou(CpT + AH)) =V - (kVT), (1.14)

where S; is source term which can be expressed as following,

Sp=— (apaAtH +V- (puAH)) , (1.16)

In order to calculate the source term, latent heat should be represented as a function
of temperature. There are two approaches in the literature for expressing the latent
enthalpy as a function of temperature. In the first approach the latent enthalpy is
expressed directly as a function of temperature (Voller et al. [24]).

0 T < Tsoi
BH = & (T— 224 5) Ty < T< Ty (1.17)
L T> Tliq
where, Ly is the latent heat of fusion, and 6 = Th%m is a temperature half range

over which the phase change occurs. Using this function, source term in Eq. 1.15 is
calculated implicitly or explicitly. The set back of this method is difficulty in calculation
of solid fraction from calculated enthalpy of the domain. Another approach which is

easier for implementation is expressing the enthalpy of fusion in terms of solid fraction.
AH = CyT + yLp. (1.18)

Consequently, the source term in Eq. 1.15 can be calculated as follows,

0
S =Ly (g’y e (Pu7)> , (119)

where u, 7y represent velocity and solid fraction, respectively. Various functions are
proposed for evaluating solid fraction from temperature. For instance, a linear approxi-
mation of solid fraction as a function of time can be expressed as following,

1 T > Tliq
T-T,
T= Tliq—Ts;(;l‘Fe Tt <T < Tliq (1.20)

0 T < Tsy
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Alternatively, an error function expressed by Rosler and Briiggemann [25] can be
used for evaluation solid fraction as following,

o Tliq+T‘ol

=05+05erf | 4—2— |, (1.21)
i f( Tliq_Tsol"‘f_e)

where Ty, Tso1, €, are liquidus temperature, solidus temperature, and a small number

used to avoid division by zero.

Enthalpy Transformation Method

In the enthalpy transformation approach, introduced by Cao et al. [26], temperature
is expressed as a function of enthalpy to represent energy equation based a single

variable.
T(H)=T(H)H+S(H), (1.22)
where
ks
G, Hs
I'(H)=<0 0<H<L (1.23)
k
CTIn H>L
and
0 H<0
S(H) =<0 0<H<L (1.24)
—Lk
c, H>L

where L, Cy, k;, Cp,, and ks, are enthalpy of fusion, heat capacity of liquid, conductivity
of liquid, heat capacity of solid, and conductivity of solid, respectively. Substituting the
temperature into the energy equation yields,

agf{ + V- (puH) = V?(TH) + V?(S), (1.25)
which is based on a single variable, the enthalpy H. Using this method, an algorithm
(Voller and Cross [23]) is needed to obtain the solid fraction from the enthalpy values
in the numerical domain. This method is used by Pasandideh-Fard et al. [27] for
simulation of tin droplet solidification which suggested to give reasonable results
compared to experimental results. Raessi and Mostaghimi [28], also used this method
for simulation of tin droplet solidification.
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1.4.2 The Front-Tracking Method

Unverdi and Tryggvason [29] proposed a method named front tracking for tracking
interfaces in multi-phase flows. Juric and Tryggvason [30] utilized this approach for
solving solidification problems. In this method, the interface is marked by connected
points. Marker points are used to advect the interface and consequently updating the
material properties throughout the domain. In the proposed front-tracking approach
heat equation is represented by a simple heat equation as follows:

apCpT
ot

where Q is a source term in energy equation representing the liberation of latent heat of

=V (kVT)+Q, (1.26)

fusion at the interface:

Q= [ 48(x ~xy)da, (1.27)

where q is the heat source at the interface and J represents the delta function which is
zero all over the domain except at the interface. The idea of representing the heat of
fusion by source term is similar to enthalpy method. However in front-tracking method
we explicitly track the interface and its detailed micro-structure . As a result we can
precisely locate the interface and express the latent heat release as a source term. One of
the major concerns in front-tracking method is constructing the interface. The interface
is comprised of massless points connected to each other by elements. The points at the
interface can be stored without any special order. However the elements connecting
the points at the front have information about their points. In order to calculate the

latent heat at the interface we can use Stefan condition at the interface:
qg=[ksVT —kVT]-n, (1.28)

where ks, k;, and n represent solid heat conductivity, liquid heat conductivity, and
normal to interface, respectively. Accurate prediction of g is a challenging step in
numerical simulation of solidification because special care should be taken to calculate
gradient of temperature in both liquid and solid regions. In order to deal with this
problem Alexiades [31] proposed the following relation for heat release at the interface

as a function of temperature:
q=[Lu + (Cp1 — Cps)(Tf — T))] vp- (1.29)

where v,,, Tf, and T;, represent normal velocity of the solidifying interface, interface
temperature, and mean temperature, respectively. Considering the effect of Gibbs-

Thomson temperature condition one can use the following relation to calculate normal
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velocity of the solidifying front.

Tm(CPl — CPs)
L

v(n) Ty, Uy

Ty
Ty —Tu+ <TflnTm + Ty — Tf> + =0. (1.30)
In order to differentiate the material properties of liquid, and solid an indicator function
can be used similar to enthalpy methods. However, in front-tracking approach we can
accurately construct the indicator function from the known position of the interface.
Using the indicator function we can update the material properties throughout the
domain.

C(x) =G+ (G = CIx),

where C;, C;, and C(x) are liquid, solid, and weighted average of properties throughout
the computational domain. The principal disadvantage of explicit method such as
front-tracking, is the fact that spacial care is required when dealing with topological
changes such as merging or breaking.

1.4.3 The Phase Field Method

Similar to enthalpy method, the phase field method utilizes an indicator function to
identify liquid and solid phases. However, instead of using a scalar function ranging
from zero to one, phase field method uses an indicator function ranging from -1 to 1.

So the phase field function can be defined by:

p(x b) = { 1  if xis in the liquid phase (131)

—1 if xis in the solid phase

The interface in the phase field method is defined as the region in which —1 < ¢ < 1.
The heat equation in the phase-field framework can be written as,

9pCpT L3¢
ot 2 ot

— V- (kVT), (1.32)

where %—‘f expresses the displacement of interface location. In order to calculate the
derivative of phase field with respect to time, one can use the following relation:

9 _ OF

Yot T g

(1.33)

where v is a parameter that determines the thickness of the interface, and % represents
the variational derivative of F with respect to ¢. In this relation, F represents the
free energy which is a function of ¢. The most important characteristic of phase field
methods is sharp variation of phase field at the interface which motivates the utilization
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of an adaptive grid refinement strategy. As a matter of fact, as it is shown in Merriman
et al. [32] if the grid size is not proportional to v, the numerical results are not generally
accurate. In contrast with front-tracking method that exact location of interface is
known, the phase field method has merely an approximation of the interface location
which thus implied a less accurate results near the interface. Moreover, formulating
a phase field model needs an asymptotic expansion analysis be performed using the
v parameter which determines the interface thickness. As a result only in the limit as
v — 0 the phase field model converges to a sharp interface model. In this sense, even if
second order numerical discretizations are utilized, the overall accuracy of the phase
tield method is first order accurate.

1.4.4 The Level-Set Method

In the level-set method (Osher and Fedkiw [33]), the interface is represented as the
zero-contour of a higher dimensional function called level-set function. The level-set
function is defined as the signed distance function to the interface. As a result we have
negative and positive values at different regions while at the interface the level-set is
identically zero.

+d if x is in the liquid phase
¢(x) =< —d if xisin the solid phase (1.34)
0  if xis on the interface

where d is distance to the interface. In contrast to front-tracking, phase-field and
enthalpy methods, in the level-set method heat equation is represented without source

term as follows:
apCpT

ot
This equation is solved for the whole domain using a simple first or second order

V- (oCpuT) =V - (kVT). (1.35)

discretization. However at the interface the ghost cell method of Gibou et al. [34] can
be used to consider the discontinuities and apply boundary conditions at the interface.
The interface location can be evaluated using the level-set values using the following
equation:

xr =x — ¢(x) V(x). (1.36)

Where xr is the location of interface. The interface in the level-set method evolves
under the velocity field calculated from the following equation.

oLy, = [ksVT — K, VT]  n, (1.37)

where v, is the normal velocity of the interface. The latent heat of fusion which is

one of the major challenges in simulation of solidification process, is included in the
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calculation of normal velocity at the interface. As a result, level-set method can provide
a sharp interface solution without explicitly tracking the interface.

The major advantage of implicit representation of a moving front is its capability
in treating the complex topology changes such as pinching and merging. This is in
contrast to explicit tracking the interface which needs special consideration in dealing
with topology changes specially in three dimensions. On the other hand, front tracking
approach, is more accurate in terms of mass conservation. Enthalpy and phase field
methods also adopt an implicit formulation using volume fraction of one phase in each
computational cells. These methods are conserving mass while are more complicated
when it comes to accurately evaluating the interface properties such as curvature.
Moreover, in these methods exact location of the interface is unknown and we are
dealing with a interface region.

1.5 Numerical Simulation of Droplet Solidification

During the last decade many scientists endeavored to simulate droplet solidification
using available methods for solving multiphase flows. However, the physics of the
droplet solidification is far away from accurately modeled. The complexity of simula-
tion of droplet solidification process is due to dealing with three phases which means
we need to deal with more than one sharp interface. One of the key difficulties in simu-
lation of droplet solidification process is tri-junction point where three phases come
into contact. The angle between droplet surface and solidifying front is a fixed value
which may change continuously during the solidification process. Another difficulty in
numerical modeling of droplet freezing is accurately predicting the freezing front inside
the droplet. Consequently we need to deal with discontinuities and jump conditions
inside the droplet. Furthermore, density expansion during phase change should be
taken into account in numerical models. Based on available experimental results in the
literature (Marin et al. [12], Jin et al. [13]) we know that liquid expansion or shrinkage
during freezing process crucially affects the final morphology of the solidified droplet.
For example, many researchers suggested that the droplet expansion during freezing
process is a main cause of protrusion formation on top of the droplet after complete
solidification.

Pasandideh-Fard et al. [27] simulated droplet impact including heat transfer and
solidification. They intended to simulate impact molten tin droplets onto stainless steel
surfaces. They extended the three-dimensional model presented by Bussmann et al.
[35] to take into account the heat transfer. Pasandideh-Fard et al. [27] utilized enthalpy
transformation method to consider release of latent heat of fusion. However, since

enthalpy method generally is not able to handle discontinuities, their model can only be
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justified for modeling alloys because of existence of the mushy zone at the solidifying
interface. However, utilization of the model presented by Pasandideh-Fard et al. [27]
is not justifiable for water or pure material solidification because of discontinuities at
the interface. In order to set the velocity to zero Pasandideh-Fard [36] used a variant of
fixed velocity approach originally presented by Voller [20]. In this approach in order to
have zero velocities at the solidified region they used an indicator function representing
water volume fraction.

Raessi and Mostaghimi [28] presented a model which is an extension of the work of
Pasandideh-Fard et al. [27] to simulate metal droplet freezing taking into account the
density change. They applied the model to investigate the effect of density variation
during solidification of an impacting molten tin droplet on a substrate. The model
presented by Raessi and Mostaghimi [28] is a two-phase model which neglects the
effect of tri-junction point which is of the utmost importance in droplet freezing process.
They used a simplified model by only taking into account the liquid and solid phases
while the actual droplet physics is a three-phase phenomenon.

Vu et al. [2] extended the front tracking method of Al-Rawahi and Tryggvason
[37] to simulate two dimensional three-phase droplet freezing process. They used
front-tracking to capture liquid-air and liquid-solid interfaces. They applied a constant
angle at the tri-junction point between solidifying and droplet interfaces. In addition,
they considered water expansion as a result of phase change to study the variation
of droplet interface. In spite of the accurate prediction of droplet morphology they
overestimated the freezing time because in their model effect of volume expansion in
heat transfer is neglected.

As reviewed in this section, there is a variety of models presented in the litera-
ture for modeling two phase solidification process. Among the models, it has been
known that the front-tracking and level-set methods are able to handle many physical
occurrences during the freezing process especially for pure materials where there is
a discontinuity at the interface. During the last decade many scholars endeavored to
extend the two phase solidification to three-phase solidification to simulate freezing
of impacting droplets on solid substrates. Enthalpy and front-tracking methods have
been already improved to simulate droplet solidification. However, those methods are
not inherently capable of handling complicated physical mechanisms in solidification
process. For instance, enthalpy method is developed based on the assumption that
there is a mushy zone at the solidifying front which not physical for pure materials. As
a result, the models developed using enthalpy method are only justified for simulation
of solidification of alloys. On the other hand, in spite of the fact that front-tracking has
been effectually used for modeling freezing process of pure materials in several papers,
the model requires special care in the case of complicated morphological changes such
as pinching and merging.



16

The level-set method has been demonstrated to be a powerful approach for treating
multiphase flows. Since the location of the interface is tracked implicitly, complex
morphological changes can be treated accurately. In addition, the method has been
improved during the last decade to apply jump conditions and discontinuities at the
front. As a result level-set method is an appropriate approach for simulation of a
variety of multiphase flows including solidification of pure materials. However, level
set method is merely developed for modeling two-phase solidification and there is
a gap in the literature to extend the level-set method for three-phase solidification
process. It is therefore the objective of this study to develop a numerical model based
on the level-set method to simulate droplet solidification that takes into account several
physical phenomenon.

1.6 Objectives and Thesis Outline

The aim of current study is to propose a numerical model based on the level-set method
for modelling water droplet freezing on cold plates. We developed a multiple level-
set method for capturing two moving interfaces: liquid-gas; liquid-solid. In general

objectives of the current study can be summarized as follows:
¢ Extend level-set method to solve three-phase problems

* Impose fixed temperature at the moving solidifying front

Impose a fixed angle at the tri-junction point

Modify heat equation to consider effect of density expansion on the rate of solidi-

fication

Modify mass conservation equations in order to take into account the effect of

density expansion

The structure of this thesis is based on the stages undertaken in developing the
model. In Chapter 2, we described level-set method and the computational algorithm in-
corporated to simulate two-phase solidification process. Moreover, detailed numerical
implementation of continuity and Navier-Stokes equations followed by modifications
required for considering volume expansion during the phase change is presented. In
Chapter 3, we use standard benchmark problems to validate the accuracy of proposed
numerical approach. Then the numerical model will be utilized to investigate physics
of water droplet solidification. Chapter 5, the last chapter, summarizes the thesis and

provides conclusions and future works.



Chapter 2
Computational Methodology

In this chapter the details of numerical methods used for simulation of water droplet
solidification will be presented. In order to model physics of water droplet freezing
process we need to solve and couple multiple physics (Fig. 2.1). We start the chapter
by describing numerical details of level-set method and heat equation in the presence
of thermal jumps at the solidifying interface. The methods utilized to solve Navier-
Stokes equations for two-phase flows will be described afterwards. We will present the
proposed model and modifications required for extending level-set method for three-
phase problems. Moreover, the details of coupling heat transfer and fluid dynamic
equations to take into account the density expansion will be discussed in the last section.

‘ Simulate Freezing Droplet ‘

‘ Include Density Change ‘

‘ Extend To Three-Phase ‘

‘ Solve Momentum Equations ‘

Solve Energy Equation ‘

Figure 2.1: Schematic of procedure of numerical modelling of water droplet freezing
process

17
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2.1 Level-Set Method

Interface tracking is one of the fundamental parts of numerical simulation of multiphase
flows. One of the most efficient and accurate methods proposed by Osher and Fedkiw
[33] is level-set method which is level-sets of a higher dimensional function (Fig. 2.2).
The level-set method is capable of naturally handling complicated topological changes
such as pinching and merging. In this chapter we introduce the level set method and

its application in simulation of solidification physics.

1

(V)

/F\
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Figure 2.2: Level-set representation of an interface in two spatial dimensions

An interface, I', in level-set method is represented as the zero-contour of a higher
dimensional function which is defined as signed distance function to the interface.

+d if x is in the liquid phase
¢(x) =< —d if xisin the solid phase (2.1)
0  if xis on the interface

where d is the distance to interface and defined as;
d(x,t) = min(x — x;(t)) (2.2)

where x; denotes the position of the interface. Signed distance functions posses a
number of properties that are useful in numerical treatments of interfaces. One of the

most important characteristic of signed distance functions is,

Vel =1 (2.3)

In practice, however by moving the level-sets this condition may be violated. In order
to avoid numerical difficulties associated with the signed distance property of level-sets
we perform a re-initialization step by which we ensure that the value of the gradient
of the level-set function is equal to 1. Sussman et al. [38] proposed the reinitialization
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equation:

d¢ 0 _
-+ Se(¢”) (|Ve| —1) =0, (2.4)

to convert a level-set function to a signed distance function. In this equation the S,
represents a smoothed-out sign function, ¢ is initial level-set, and 7 is a fictitious time
controlling the width of the region around the zero level-set in which the level-sets are
signed distanced. A signed distance level-set function can be used to project any point
onto the interface using the following equation.

xr =x — ¢(x) V(x) (2.5)

Another characteristic of a signed distance function is having a kink at the interface
where d = 0. Because of this characteristic we should be cautious in calculation of gradi-
ent near the interface which are explained in Section. 2.2.3. Moreover, signed distance
functions are monotonic across the interface and can be differentiated accurately.

In each time step we need to advect the level-set function with an appropriate
velocity field. The evolution of the interface will be performed implicitly by solving the
following equation,

d9¢

5 Tu V=0 (2.6)

The level-set advection equation can also be written in the form of normal velocity
to the interface.
d¢

Lt onlVgl=0 27)

where v, = u - n. Solving the advection equation can be complicated if the velocity
is only defined at the interface. This condition happens in the case of solidification
process where velocity of the solidifying front is only defined at the interface. In this
situations we need to extend the velocity off the interface to have velocity in all grid
cells in the domain. The details of velocity extension will be explained later in Section.
2.24.

Accuracy of numerical results using level-set method depends on the numerical
schemes used for spatial and temporal discretizations. In the following sections we
represent the details of numerical schemes used to solve differential equations utilized
in level-set method.

2.1.1 Hamilton-Jacobi ENO

In order to improve spatial discretizations we may use higher order and more accurate
approximations for single sided gradients. Hamilton-Jacobi ENO proposed by Shu
and Osher [39] can be used to improve numerical discretizations. In this thesis we use

second order accurate ENO scheme.
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Assume we want to evaluate one sided gradients of the variable ¢. We start with
the zeroth divided differences of ¢ defined at cell centers as:

D¢ = ¢i, (2.8)

while the first divided difference of ¢ are defined at the faces between grid cells as

DY 1 — D¢

Djj1jpp=—"— 2.9)
D¢ — D ¢

Di1jpp=—""F5"" 2.10)

Note that the first divided differences are simply first order backward and forward
approximations of the derivatives. In order to obtain second order approximations we
define the second divided differences at cell centers as follows:

1
Di+1/2¢ B Dil—l/ch

D2p = e (2.11)
The divided differences can be used to form a polynomial of the form
¢(x) = Qo(x) + Qu(x) + Q2(x) (2.12)
which can be differentiated as
x(xi) = Qi (xi) + Qa(x;) (2.13)
To evaluate first order gradients we use
Qi(x1) = Dy, 19, (214)

where k should be substituted by i — 1 to calculate ¢~ (x), and i for ¢ (x). For higher
order accuracy we need to obtain a relation for Q5. Since it is desirable to avoid discon-

tinuities for evaluation of gradients we use the following second order approximation.
Qy(x;) =c(2(i —k) — 1)Ax (2.15)
where ¢ = D¢ if |D}| < |D;, 14|, otherwise c = D} .

2.1.2 Advection Equation

An interface can be evolved under a velocity field which is normal to the interface
and is dependent on the characteristic of the interface itself similar to evolution of
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solidifying front. In this condition the velocity is normal to the interface and equation
of motion can be represented as,

0
a—‘f +0,|Vo| =0, (2.16)

where v, is the normal velocity and can be positive or negative. In the case of spatially
constant interface it can be shown that if the level-set function is initially signed distance,
it will remain signed distance over time.

The advection equation of level-set is a Hamilton-Jacobi type equation which has a

general form of

%‘f +H(V$)=0 (2.17)

where H is a function of first derivate of level-set function which depends on time and
space.
The Hamiltonian function can be spatially discretized using Godunov’s method,

= o AT ma e P, oesa
where
b=Dj¢;; = ‘Piﬂi ; i
c=Dy¢i;= W

which is a first order, consistent, monotone scheme. In these equations the a™ or
a~ represents positive part or negative part of 2 which are defined as max(a,0) and
min(a,0), respectively. In order to achieve higher order accuracy in discretization we
can use second order Hamilton-Jacobi ENO one sided approximations represented in
Section 2.1.1

For temporal discretization we use third order Total Variation Diminishing Runge-
Kutta scheme. Third order Runge Kutta is a combination of multiple Euler steps (Shu
and Osher [39]). We take the first step to calculate a temporary ¢"*1! at time #"*1;

n+l _ 4n
A" N Y+ Heg" =0, (2.19)
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followed by another step to find temporary ¢"*2,

¢n+2 _ (P}’Hrl

H n+1y — 0. 9
At + G(‘P ) 0 (2.20)
The ¢"*1/2 can be evaluated by averaging of ¢" and ¢"*2 as,
P =g 1, (2.21)
4 4
followed by another Euler step to calculate ¢"+3/2 as,
n+3/2 _ pn+1/2
F Helg ) =0 e2)

At

which is finally used to update ¢"*! by averaging as follows,
1 2
¢7’l+1 — g4)}’1 + §¢H+3/2‘ (223)

that produces a third-order accurate approximation of ¢.
In many cases we need to evolve level-sets under externally generated velocity

fields. The equation of level-set advection is defined by

% +u-V¢=0. (2.24)
ot
Once u and ¢ are defined at grid cell centers we can use upwind advection scheme to
evolve level-sets in time. In upwinding scheme we use one sided forward or backward
approximations of the gradients based on the sign of velocity. If u; > 0 it means that
the ¢; ; will move from left to right which implies that backward approximation of
gradients should be used. The same thing applies in the vertical direction. On the
other hand if u; < 0, the values of ¢ will move from right to left which implies that we
should use forward approximations for calculation of gradients. The combination of
first order Euler time discretization and the upwind difference scheme is consistent
and Stability can be enforced by using Courant-Friedreichs-Lewy (CFL) condition. The
CFL condition asserts that the numerical wave should propagate at least as the physical
waves which leads to the CFL time step restriction of

At< DX (2.25)

max |u|

where Ax is grid size, and max|u| is the largest absolute value of velocity over the

entire computational domain.
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2.1.3 Reinitialization

As stated before a lot of simplifications can be made if level-sets are signed distance
function from the interface. However, as the level-sets evolves, it may drift away
from its initialized signed distance function. As a result, depending on the sensitivity
of our implementations we need to reinitialize level-sets to ensure that level-sets are
signed distance function. Sussman et al. [38] provided the following equation for
reinitialization of level-sets.

9¢

2+ 5(po) (IV9] —1) =0 (2.26)
where S(¢p) is a sign of level-set. Solving this equation using fictitious time to reach
steady state condition will create a signed distant level-set field.

In discretization of Equation. 2.26 we use Godunov’s method similar to the advec-
tion of level-set with internally generated velocity field as follows,
1 0

where S, (¢? ].) is smeared out sign function of initial level-set function. It is shown we
can obtain better results using the following smeared out sign function,

/12 2
i,j—l—e

0
i,j

Se(¢ij) = (2.28)

where the grid size Ax can be used instead of €. H(¢;.) is Hamiltonian function which

can be discretized as,

\/max((aﬂz,(b*)z) +max((ct)?,(d—)%) —1, if (})gj >0

vmax((a=)2,(b1)2) + max((c™)%, (d)2) — 1, if (ng <0 (2.29)

H"(¢);j = {

We can increase the accuracy of our approximations by using second order Hamilton-
Jacobi ENO scheme.

Min [40] discussed the difficulties associated with the reinitialization of level-set
process using the above method. They represented that using the artificially smeared-
out sign function the interface moves and would decrease the volume inside the
interface considerably. In order to avoid artificial movement of interface over time,
we use the subcell modifications presented by Min [40]. Near the interface, finite
difference approximations of one sided derivations we impose the condition that ¢ =0
whenever ¢° = 0. For brevity we consider modifications made for D*¢;; in the case

of ¢;j¢ir+1,; < 0 which means that interface is located between ¢; ; and ¢; 1. In this
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situation the distance to the interface can be obtained by

0
AxT = Ax 5 Pij

(2.30)
Py~ Pk,

Now by imposing ¢ = 0 on the calculated interface point (xr,yr), the forward one sided
derivative can be modified as,

0—¢ii AxT .
D;‘Pz‘,j = Ax+l] — Tmmmod(Dqubi,j, Dsx¢iy1,) (2.31)

where minmod(x,y) is defined as,

if x> 1lyl
minmod(x,y) = o > y (2.32)
y otherwise
For the backward derivative we first calculate Ax~ as,
0
Ax_ - Ax# (233)
‘Pi,j - (Pz'fl,j
then we can calculate backward derivations as,
_ ¢ij—0  Ax— .
Dy ¢ij = A + Tmznmod(Dqu)i,j,Dxx¢i_1,j) (2.34)

The discretization presented here can be extended to other directions in a direction by
direction fashion. The discretization is second order accurate with subcell resolution
near the interface.

2.14 Poisson Helmholtz Equation

Generally Poisson-Helmholtz equation is the major building block for solving differ-
ential equation encountered in fluid flow and heat transfer. The simulation of many
diffusion-dominated phenomena require the solution of Poisson Helmholtz type equa-
tion. The general form of the equation can be written as follows

V- (BVa)+Aa=b, (2.35)

where B and A are coefficients that can be spatially constant or variable. Linearity
is an important aspect of the resulting system. This characteristic can be used to
estimate the solution by successive corrections to an initial guess. Assume that 4; ; is
an approximation of the exact solution 4; ;, and da is the difference between exact and
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approximate solution defined as,
da=a—a (2.36)

If we define Poisson operator, £(a) as,
L(a) =V -(BVa)+ Aa, (2.37)
the correction of the approximate solution can be obtained from,
L(da)=L(a) — L(a) =b— L(A) (2.38)

where £(da) is the error or residual of the solution. In each iteration we need to
calculate discretized residuals and using a relaxation operation we can calculate the
correction to approximate calculations. The iteration can be continued until the residual
is less than a predefined criteria. The Poisson-Helmholtz equation can be discretized

with second-order accuracy as,

Ajy1—4a; a;—aj_
5i+% < +A]x > - :Bi—% < Ax :
Ax
where B is defined at cell faces and other variables are defined at cell centers. Hence

> + /\iai = bi (239)

the residual can be calculated as,

Rty =, Pl (") — By ("a) i 010

Corrections are calculated from the following discretized relaxation operation.

Ax*(R(d;) — Aida;) — 5i+%ﬁi+1 + B;
:Bi_|_% — B

da; = (2.41)

In each iteration we add the corrections calculated in this step to the approximate
solution of previous iteration. The procedure continues until the residual is less than

the specific criteria.

2.2 Poisson Equation on Axisymmetric Domains

In this section we describe the modifications required for solving Poisson equation in

axisymmetric domains. The Poisson equation on axisymmetric grids can be written as,

10 d 0 0
o 183) o (Pay) = 24
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If we multiply both sides of the equation by r we obtain,

d da d Ja
5 (r,[%ar) + 3y (rﬁay> =r (2.43)
by defining B = 7B, and b = rb, we can wirte,
9 [ 50a 9 ([ ,0a .
o (B5r) + a5 () =t .

which is similar to Poisson equation in Cartesian grids and can be discretized using the
same approach described previously.

2.2.1 Poisson Helmholtz Equation on Irregular Domains

In the case regular Cartesian grids we can use the discretization presented in the
previous section to solve Poisson equation. However, there are many cases that we
want to solve Poisson equations on irregular domains that are represented by level-set.
The domain is divided into two different regions by the zero-th level set. If we want
to impose Dirichlet boundary condition, we need to use special discretization for the
Poisson equation.

First, assume that the interface x; is located between x; and x;,1 and we want
to apply Dirichlet boundary condition (# = uj) at the interface. The second order
discretization of Poisson equation for grid cells situated at the left of the interface is the
same as Eq. 2.126. However, the value of x; 1 is not valid for discretizing at x;. At this
point we use ghost cell method to impose Dirichlet boundary condition at the interface.

G
B.i1 Bipg —fi —B. 4=
i+5 Ax i—5 Ax
Ax

is the ghost value at the right of the interface. We approximate af, ; using

+ Aja; =b; (2.45)

G
i+1
linear extrapolation as,

where a

G al—l—(G—l)ai

ol = ; (2.46)

where 0 is defined as 6 = %. In the case of 8 < 1 we use g4; instead of a; to avoid poor
behavior of the extrapolations. Now by substituting Eq. 2.46 into Eq. 2.45 yields,

ar—a; . a;—a;_q
Piii < 9Axl> iy ( Ax )
Ax

+ )\iﬁl,' = bl' (2.47)

which is second order accurate. If we use the same approach for extrapolation of ghost
values when interface is located between x; and x;_ the discretized Poisson Helmholtz
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equation can be written as,

Aip1 =4\ __ ai—aj
lBi+% < Ax ) 131'7% ( éAx )
Ax

+ Aja; = b; (2.48)

In situations where f is defined at grid cell centers, the face centered values, ;. 1
can be obtained from the ghost values using the following equation.

Bi+ B
Biy=—5 (2.49)
noting that the ghost value is calculated as,
0 —1)6;
ge, = P 0= Dpi (6= 1)f: (2.50)

6

For higher dimensions we use the above mentioned approach in a dimension by

dimension manner.

2.2.2 Energy Equation

General form of energy equation can be written in the following form.
E
o5F +pu-VE=V-(kVT) (2.51)
where k, T represent the thermal conductivity and temperature, respectively. The
energy equation can be written based on the temperature as follows,

oT
which can be simplified to the following form if the advection term is negligible.
aT
P ot
Implicit Euler temporal discretization of the equation leads to the following equation.

pC =V - (kVT) (2.53)

Tn+1 _Tn

=V (kVT”“) (2.54)

which is first order accurate in time and second order accurate in space. Hence in
order to have second order accuracy we need to choose At proportional to Ax2. The
Crank-Nicolson scheme can be used instead to achieve second order accuracy in time
and space. Temporal discretization of using Crank-Nicolson can be written as,
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Tn+1 _Tn
At
which can be written in the form of Poisson-Helmholtz equation as,

_ 1 PN n+1 1 N n
=V (kT )+§v (RVT") (2.55)

n+1 n
V. (WT"“) - ZTN - —ZATt — V- (RVT") (2.56)

which can be solved using the algorithm mentioned before in Section. 2.2.1.

2.2.3 Interface Velocity

In solidification we are dealing with Stefan type problems in which the liquid is being
converted to solid at the interface. Hence the interface between liquid and solid will
move with a specific velocity. The normal interface velocity can be computed using the

Stefan jump condition as,
plLan :KZ(VT-II)Z —KS<VT'1’1)S (257)

where p;, Ly, x;, and s represent liquid density, latent heat of fusion, liquid heat
conductivity, and solid heat conductivity, respectively. One of the challenges in level-set
method is to accurately predict gradients at the interface. In order to calculate the
gradients near the interface we use the approach presented by Gibou et al. [41]. Lets
tirst consider evaluation of gradients in the liquid phase. Generally four case may
happen at the interface depending on the position of the interface with respect to
the cell center. Here we consider one dimension while it can be extended for higher

dimensions.

Case I The interface is located between x;, and x;_; and 8 > 1. We use T; and T; to

calculate gradient as,
T T, —T
ox  OAx

(2.58)

Case II The interface is location between x;, and x;_1 and 6 < Ax. We use T;1 and T

to calculate gradient as,

oT Ty — T
= 0Ar (2.59)

Case III The interface is location between x;, and x;.1 and 6 > Ax. We use T; and Tj to

calculate gradient as,
or _T; T,
ox  O0Ax

(2.60)
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Case IV The interface is location between x;, and x;,1 and 8 < Ax. We use T;_1 and T}

to calculate gradient as,
oT T —T,4
= 2.61
ox 6Ax (2.61)
The same procedure is used for calculation of gradients in the solid phase. For higher
dimensions we repeat the procedure in a dimension by dimension manner. For example

for Case I the gradient can be written as,

oT _Ti =T
dy Ay

(2.62)

2.2.4 Extension Velocity

In many moving interface problems, such as Stefan type problems, the speed of the
interface has significance only at the interface itself. However, having velocity discon-
tinuity at the interface is not desirable for numerical algorithms. Moreover, in order
to advect level-sets we need to have velocity of the interface defined not only at the
interface but also at all grid cells around the interface. To this end, the velocity should
be extrapolated from the interface to neighboring grid cells which is referred to as
velocity extension.

The normal velocity in Eq. 2.7 is physically meaningful when ¢ = 0. However, in
order to solve the Eq.2.7 we need to extrapolate the normal velocity such that,

chigr}zvext(x) =Un (El) (2.63)

where a is a point on the interface (¢ = 0). There is a number of algorithms to construct
extension velocities. One approach is to solve equation

Vo, V=0 (2.64)

by a process called Fast Marching Method proposed by Adalsteinsson and Sethian [42].
In this approach, extension will be constructed by sweeping in the upwind direction
from the interface. An alternative approach, which is utilized in this study, is to solve
the following advection equation

dvuy,

—- +5(¢)Vou-n=0 (2.65)

where 7 is a fictitious time and is not related to the domain time and S(¢) represents sign
function. By solving this equation to reach steady state condition we will extrapolate
normal interface velocity off the interface which are constant along lines normal to the

interface. While we can use central differencing scheme for discretization of Vv, - n,
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one sided upwind differencing scheme is advantageous. In order to decide whether
backward or forward differencing we consider ¢; 1 and ¢;_;. If either of these values
are smaller than ¢; we use the minimum of these values to evaluate g—i’. On the other

hand, if both of these values are greater that ¢;, we will set g—‘ﬁ =0.

2.3 Incompressible Flows

In this section we present numerical methods for solving equations governing multi-
phase flows. Firstly, we present numerical methods used for solving Navier-Stokes
equations for single phase fluid flows. Afterwards, we represent numerical details of
two-phase flows with discontinuities at the interface including surface tension forces.
Governing equations for fluid flow are obtained based on the two basic physical
laws namely conservation of mass and momentum. The principle of conservation of
mass represents that mass cannot be created nor destroyed which can be represented

mathematically in the integral form as,

;t/vpdv: —/Spu~nds (2.66)

which can be written in the form of partial differential equation as,

?;; + V- (pu)=0. (2.67)

Since for incompressible flows the density is constant over time the conservation of
mass equation simplified as,
V-u=0. (2.68)

The equation of motion is derived by employing the conservation of momentum.
The conservation of momentum states that the rate of change of fluid momentum in a
fixed volume is the difference of flux across the boundaries and can be expressed in the

integral form as,

tjt/v dv:—fgpu(u-n)ds—i—/Vdev—l—jén-Tds, (2.69)
which can be written in the form of partial differential equations as,

E)g:l =—-V.(puu)+F,+V-T. (2.70)
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where Fy, is body force and T is stress tensor. The simplified form of the momentum
equation for incompressible flows can be written as follows,

d
o5 +pu-Vu=—Vp+V - (2uD) +F. @.71)
with u = (1,0,w) , the fluid velocity, p = p(x,t) the fluid density, and y = p(x,t) the
dynamic viscosity of the fluid and D the deformation tensor defined as D;; = (d;u; +

aju,-)/Z

2.3.1 Temporal Discretization

For incompressible flows the pressure should give a divergence-free velocity field at
the end of each time step. The staggered in time discretization of pressure leads to the
following second-order accurate discretization.

n+1 _ ..n 1
o [ = Wyt :_vp"+%+v-[yf(D”JrD”“)]JrFJ’Z*z 2.72)

V.ou'=0 (2.73)

In order to assure that the velocity field is divergence free we use the classical time
splitting projection method of Chorin [43]. In this method a temporary velocity field is
first found by ignoring pressure gradients using the following relation.

* _ . 1
or | ar +u”*5'Vu”+%} = V- [u(D" +D*)] +F; 2 @74)

which can be rearranged as,

u” * n u” n+1 n+ ”+%
pr—V«[ny]:V~[ny]+pf[At—u 2-Vu"'z| +F; (2.75)
where pr and ji¢ are face centered density and viscosities. In this equation the right
hand side only depends on the values at time 7 and 7 + 3. The resulting equation is
a Poisson-Helmholtz type equation and can be solved using iterative methods. The
velocity field obtained from this equation is not divergence free and should be modified
in the next step by adding an appropriate pressure gradient as,

wtl — gt — Ayt (2.76)
Pf
Applying the continuity equation at the each time step implies that the velocity field

should be divergence free.
V-u"tl=0. (2.77)
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Substituting Eq. 2.77 into Eq. 2.76 yields the following Poisson equation for pressure.

V- LA)th"*%] —V-u. (2.78)
f

Finally the velocity at the next time step can be obtained from Eq. 2.76

2.3.2 Spatial Discretization

2.3.3 Advection Term

The advection term u"*2Vu"*tz is discretized using the second order Godunov ap-
proach proposed by Bell et al. [44]. The advection term at cell centers can be written
based on the fluxes at the cell faces.

/C“H%'V“H;:/CV'[““]H%:%E“;JF%(“?%'nf> (2.79)

which for Cartesian grids can be written as,

1oal
Ax (u”J“% : Vu"*%) = Zu;ﬂu;ﬂ (2.80)
f

1
where u"*? is the velocity at the center of the face and u;h is the normal component
of the velocity at the face centers.

In order to approximate face centered values at the time n + % we use the Taylor

series expansion as,

L Bx O Ao
M2 dx 2 ot

n n
n+3,R " Axa”i,j Ata”i,j

u, . u. - —_—
i3, Moo ox 2 ot

LB Ay o N AtOu
ij+3 o2 9y 2 ot
ST ga”?,]’ ga”Zj
ij—3 o2 9y 2 ot

superscripts L, R, B, T, indicate the extrapolation of u;; to the left, right, bottom, and
top edges of the cell. The temporal derivative can be substituted by spatial derivative
using Euler equation.

2 2%

ou’. ou’.
ntyl o Ax _ At L] ﬂ n_ L g n
i+hi =Y { ax T 2%t 2 VP (281)
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Normal derivatives are evaluated using the limited slopes whereas transverse deriva-

tives are treated in an upwind manner as follows,

ouj;i i —uji—; 1 Atv; i\ Dyu;; — Dyu; i

L _ 2 1,j—1 4= <1 . z,]> yHij yHi,j 1’ v; >0
ay Ay 2 Ay Ay -
ouji  Ujiy1— Ui 1 Atv; i\ Dyu;jiy1 — Dyu; ;i

Lj _ Mgl o1 <1 + u]) yHi i1 Yy Y v;; <0
y Ay 2 Ay Ay -

where Dy represents central differencing operator. Finally approximation for advection

term, u”+% Vu’”% can be written in the following discretized form.

u. 1.1 — U u 1. 0...1U0..,1—7.. 1U
B S v e I letas U ¥ et l*%JJr ijt3 ity Cij=g i
Ax Ay
1 ui+l L
2/ 2/
——(u.,1.+u
2( i+1,j T 1—54) Ax
1
V.., 1—0,. n+j3
IS i M/ B
2 L,]+5 Lj—>5 Ay

which can be further simplified to the following form,

2.3.4 Projection

In order to make our computed face center velocity field divergence free we need to
solve Eq.2.77 equation. In this equation the right hand side is calculated at each grid

cells as,
* * * *

v u* _ ui""%/j B Mi_%'j _I_ Ui/]""% B Ui/j_% (2 82)
b Ax Ay ' '

Then using the iterative methods we solve the resulting Poisson equation.

At .
V- (pfvpi,]) =V uf;. (2.83)
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We update the face centered velocity field by adding the pressure differences as,

S At (Pi+1,j—Pi,f> LA

. = U .= i1
i+1j Uity Pisl, Ax Pir1 P
e S . At Pij — Pi-1, n At F
i~3i imui ; Ax p; 1 T2l
27

2.3.5 Viscous Term

The integral of viscous fluxes at the cell faces can be spatially discretized as,

?‘xl.— xx Tiy_l i+l - xj{l -1
1+1, 1, 1+5,]+5 I+5,]—5
(Dx)jy1 ;= ]Ax 4 2Ay o (2.84)
™ v TV, TV
J+1 , i+5,j+3 i—5,j+5
(Dy)l,]—‘r% = b Ay L] + 2 ZAX 2 2. (285)

where T, T*Y, T** are viscous stress tension components. Using second order central

differentiating, viscous stress tension components can be written as,

unl_unl

xx _ n 3] v
T =M e - (2.86)
wt o=t o =t
+5,j+1 i+t5,] i+1,j+5 ij+5
™V, L =u" ok 2 1 2 2 2.87
i+3,j+3% Pivljrl Ay Ax ’ (2.87)
Un 1 u P |
Tyy — . l’]+§ L]—3 (2 88)

2.3.6 Two-Phase Flows

Sussman et al. [38] proposed a level-set model for simulation of two-phase flows. In
this model we use the Navier-Stokes equations represented in Section. 2.3 to simulate
fluids behavior on the both sides of the interface.

Ju

o +ou- Vu=-Vp+V.-(2uD)+F,,. (2.89)

where p, and y are not spatially constant. Generally in two-phase flows properties of
fluids are different and there is a jump at the interface in properties of the fluids. The
following relations can be used to define properties throughout the whole domain.

p(p)=p" + (0" —p7) H(9), (2.90)
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u(p)=pu=+ (" —u")H(9), (2.91)

where p~, o, u, and u~ represent densities and viscosities in each phase. H(¢) is

Heaviside function define as
1 ¢>0
H(p) = (2.92)
0 ¢<0
This equation to define properties may induce discontinuities at the interface. The jump
at the interface may cause several numerical issues specially when difference between
properties is large. In order to alleviate the discontinuity of properties in two-phase
flows we use smeared-out functions to define properties throughout the whole domain.
Sussman et al. [38] proposed the following smeared-out Heaviside function to avoid

sharp jumps at the interface.

0 P < —€
He(¢) =< 1+ £ + Lsin (%4’) —e<¢<e (2.93)
1 €e<¢

where € can be chosen as 1.5Ax which makes the interface width equal to three grid
cells. In certain situations we need to define fluid properties at cell faces instead of cell
centers. In order to approximate face centered values we have two options. First we
can use simple averaging of cell centered values as,

_ Pij T piy

pir1; = (2.94)

However, we use a more accurate approach for approximation of face centered values

using the following equation.

p(@)=p" + (0" —p ) He(¢;. 1), (2.95)

where He is smeared-out Heaviside function and ¢, 1 is the value of level set function

at the cell faces, defined by
_ $ij+ Pit1

oy . (2.96)

2.3.7 Pressure Jump

One of the most important aspect of multiphase flows is dealing with pressure jump at
the liquid-gas interfaces resulting from surface tension forces. The Laplace’s relation
between pressure and surface tension can be expressed as,

[p] = o (2.97)
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where [p] represents the jump of the pressure across the interface and ¢ is liquid surface
tension coefficient, and « is curvature. There are various approaches in the literature
to evaluate pressure jumps. In the first approach the surface tension forces are added
as volumetric source term in momentum equation. If we set u = 0 in Navier-Stokes

equations, we get the following equilibrium condition.
— Vp+okné. =0, (2.98)

where ¢, is smeared-out delta function defined as,

0 P < —€
de(P) = % + Zl—ecos (%4’) —e<¢p<e (2.99)
0 €<¢

where € = 1.5Ax. In the context of level-set method curvature, k, can be evaluated as,

\Y%
n= Ve and x=V-n. (2.100)
V¢l
which represents the curvature of the local contour of the level-set and defines the
curvature everywhere in the domain, not just at the interface. An accurate estimation
of curvature is centeral to the performance of volumetric surface tension force model.

A simple discretization of curvature equation can be performed using the following

relation. i e
_ Kij T Kig
Kyl = 5 (2.101)
where k; is evaluated at cell centers as,
ki = (V-(V)s), (2.102)

However using this naive discretization may result in a curvature field that is not
constant across the interface which consequently will lead to violation of the Laplace’s
equilibrium condition. An improved version of curvature approximation is proposed
by Fedkiw et al. [45] as,

o Kilgi] + K|l (2.103)

|pi] + |pit1]

which provides better and more accurate approximation of curvature.

Nl—

i+

Another approach to deal with surface tension forces at liquid gas interfaces is to
impose the pressure jump directly in the pressure projection equation. In this approach

we use the GFM to solve variable coefficient Poisson equation with jump condition at
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the interface.

V- (BVp) =1, (2.104)
[pl=a, (2.105)
[Bpn] =0 (2.106)

where in the context of pressure correction f = %, and a = ox, and for simplicity we can
assume that the b = 0. The one dimensional second order discretization of the equation

without jump at the interface can be written as,

j1—a; a;—a;_
ﬁi-l—%( ]+Al‘x 1) _51'—%( “Ax 1) y
Ax R

(2.107)

which can be written for each unknown p;. Assume that interface is located between x;
and xy, 1. We discretize the jump condition [Bpx] = b as,

Pr+1 — PI —(Pr—pr) _
ﬁ+<(1—9)Ax>_’B ( 0Ax )‘b (2108)

by solving the equation for p; we have

_ BTprn0+ B pr(1—6) —b6(1 — 6)Ax

P1 B0+ B (1—6) , (2.109)
so that left and right side derivatives can be approximated as,
© (PP _a(Peei—pi) |, PO
pr (Pt it ) = (M) + (.110)
(P PE _ A Pei—pr)  pb(1—0)
p ( 0Ax > =F < Ax ) gt @111)
where f3 represents an effective 8 defined as,
: BB
= 2.112
p BT+ p=(1-10) ( )

By substituting it into the Poisson equation we obtain the following symmetric

linear equation.

== fz + FL + FR (2.113)
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where B, 1 is evaluated based on the interface location. If interface is located between
2
xx and x; 1, Fy = 0 and Fg is evaluated as,

_ pa pe
Fr= o2 Boax (2.114)

where the effective B is evaluated from Eq.2.112, and 6 is obtained from

|pi—1]
0= ————— . 2.115
AR (2115)

On the other hand if interface xr is located between x; and x;_; the Fg will be zero and
F; can be obtained as

_ pa | pp(1-9)
F = (Ax)? BT Ax (2.116)
where 0 is calculated as,
g |Pinl (2.117)
il + |Pita]

For the sake of simplicity it can be assumed that there is no jump in the value of Bp,
which implies that b = 0. In addition after obtaining pressure from Poisson equation as
described above one needs to correct velocities by including surface tension force.

2.4 Three Phase Liquid Solidification

In this section we describe a new level-set approach for modelling three-phase uncon-
strained solidification problem by considering the effect of liquid density expansion
effect during solidification. The unconstrained solidification problem refers to liquid
solidification where the interface of liquid is not confined by a container. In this case the
interface of the liquid will be affected by solidification process specially when there is a
significant amount of density expansion or shrinkage during freezing process. An exam-
ple of unconstrained freezing is droplet solidification on cold plates where solidification
interface starts to move upward from bottom of the droplet. In the proposed approach,
we use two different level-sets for tracking liquid-gas and liquid-solid interfaces. The
liquid-gas interface is affected by fluid dynamics while the energy equation and release
of latent heat of fusion are governing the solid-liquid interface.

2.4.1 Multiple Level-Sets

In the case of three-phase physical problems there are two interface that need to be
tracked using an appropriate method. We define two level-sets in the whole domain
and associate each interface with a particular phase. As illustrated in Fig. 2.3 the level-
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Droplet Level Set(¢)

Ice Level Set (1))

Figure 2.3: Schematic of multiple level-sets for modeling three phase flows.

set ¢ represent the interface of liquid-gas and i represents the liquid-solid interface.
Hence each phase can be distinguished based on the sign of each level-set as,

Liquid ¢<0 & >0
Phase = { Solid ¢ <0 & ¥ <0 (2.118)
Gas >0 & >0

Properties are constant in each phase but varying throughout the domain. In order to
set properties of each phase we use Heaviside function.

C(x) = (1= H(¢))Csotia + H(¢)(1 — H(¥))CLiguia + H(¢)H(4)Cas (2.119)

where C can be a property of each phase such as density, viscosity, heat conductivity or
heat diffusivity. In order to avoid discontinuities at the interfaces we use smeared-out
Heaviside function. The level-set associated with the solidifying interface is divided
into two segments: active; passive. The active segment is governed by heat transfer and

solidification rate while the passive part only is used for imposing tri-junction angle.

2.4.2 Imposing Tri-Junction Angle

The intersection of liquid-solid interface with liquid-gas interface forms a tri-junction
point which needs to be treated carefully. At this point there is a discontinuity in the
slope of solidifying and droplet interface (Fig. 2.4). Using the model proposed in this
study we can implicitly impose the angle between two interfaces as described in this
section. Using the fact that the angle between normal to each interface should be equal
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Figure 2.4: Schematic of tri-junction angle.

to the angle of two interfaces, we can write
n; - n; = cos(0) (2.120)

where 1, n;, and 6 are normal to solid interface, normal to liquid interface, and the
angle of solidifying and droplet interfaces. Rewriting normals based on the gradients

of level-sets yields,
Vo V¢

Vol [Vyl

where we only update values of level-sets associated with the solidifying interface. In

= cos(0), (2.121)

order to solve this equation we use pseudo-time dependent equation and solve it to
reach steady-state condition.

+ e T = Cos

Vol [V

Note however that by solving this equation we are updating values of ¢ throughout

a"’ VO V¥ os(0) (2122)

the whole domain which is not desirable. We use smeared-out Heaviside function to
restrict updating of ip where the value of ¢ is positive. Hence, the equation can be

written as,

Vo V.
Vol [Vyl

where |V¢|, | V|, and V¢ are discretized using central differencing scheme while for

o

o T He(@) g1

= He(¢)cos(0) (2.123)

| V| we use upwind differencing scheme based on the sign of He(cp) Vol 4)'
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2.4.3 Poisson Equation

In the proposed three-phase model we need to solve Poisson equation throughout the
whole domain while applying fixed value boundary condition on the active segment
of moving solidifying front. To this end, we modified the approach explained in
Section. 2.2.1. Mathematical expression of Poisson equation with fixed value boundary
condition only at active part of the solidifying interface can be written as,

V- (BVa)=f (2.124)
T = T] on F1 (2125)

where I'y is defined in the active part of the interface. We use the sign of ¢ to distinguish
active and passive parts of the . Discretization of Poisson equation for cells with ¢ >0
or cells with i < 0 that are not in the vicinity of the interface can be written as,

14\ a;i—ai1
5z‘+%( Ax ) ﬁi—%( Ax )

- .y (2.126)
otherwise we use either
a—a; a—a;_
Bis1 ( ohx ) —Biy (Tl) b, %<1 < Xis (2.127)
Ax
or a a
aia—a) a;—aj
,31'+% < Ax )Ax :Bze% ( 0AX ) b, xq<x] <X (2.128)

Note that using this modification we can impose the fixed value boundary condition at
a segment of the interface which is located inside the liquid.

2.4.4 Interface Velocity

In three-phase level-set method interface velocity only has meaning in the liquid phase.
However, the level-sets associated with the solidifying interface are defined everywhere.
Hence, before the extension of the interface velocity using the scheme represented in
Section. 2.2.4 we modify interface normal velocity as,
1
Uy = T(l — He(¢)) (VT -n); — k(VT - n)g] (2.129)
PILH

where H, is smeared-out Heaviside function. This modification results in having

interface velocities only in the liquid region. After this step we can extend the interface
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velocity by
dv,

oT

+5(¢)Vo,-n=0 (2.130)

2.4.5 Density Variation

During the solidification process there is a density change between the liquid and the
solid phases. Some materials such as water expand during solidification. In order to
include the density variation in our model we need to find a relationship between the
liquid and solidifying interface velocities. To this end, we use the mass conservation
law. In an arbitrary control volume that contains both liquid and solid phases the

conservation of mass can be written as,

D
— (M) =0, 2.131
B (M) (2:131)
where m can be written as,
M= / 0dV, (2.132)
%4

where p is expressed by the following expression,

p(x) = ptH(¥) + ps(1 = H()). (2.133)

By substituting Eq. 2.133 into Eq. 2.132, and writing conservation of mass we obtain

D
o7 L PiH) + (L= H(p)ps] av =o0. (2134
Using Reynolds” Transport Theorem and setting zero velocity in the solid phase we
have 5 ;
/, [at@ZH () + V- (o H@)uw) — = (psH($)) | do =0, (2.135)
that can be rewritten as
—ps 0
V- (H(yp)w) = —plplpsat(H(lP)) (2.136)

Using the chain rule and the fact that u = wyH(¢) + us(1 — H(y)) we can write

—ps D 9
Vou= —p’plpw(H(tp))E;f (2.137)
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By definition derivative of Heaviside function is called Delta function which implies

P oY
V-ou= Pl O () == o (2.138)
which can be simplified by substituting time derivative of level-set from level-set
advection equation as

V- u = Boe()oa| VY| (2.139)

where = % and J¢(¢) is the smeared-out delta function. The parameter 8 represents
the volumetric expansion or shrinkage depending on the its sign. Eq. 2.139 is used in
the projection step to calculate pressure from intermediate velocity field as

v. <ffv;o> =V u* — Boc()0a| VY| (2.140)

Note that the velocity field is divergence free every where in the domain except at the
liquid-solid interface. The term Bde(¢)vn|Vip| acts as a source term in the pressure
equation which induces negative or positive pressure gradients at the interface. In the
proposed three-phase level-set model we multiply the interface velocity by Heaviside
function so that the source term is only active inside the droplet creating pressure
gradients only at the solidifying interface which is situated inside the droplet.

Asides from mass conservation at the liquid-solid interface we need to impose mass
conservation in the liquid phase since in the level-set method there is no explicit mass
conservation equation. In general mass of the liquid in a three phase problem can be
obtained from:

Mi(t) = [ (oHe(p)He(~9))aV @.141)
where p is the density of the fluid. The the mass conservation can be written as,
dM(t) _
T 0. (2.142)

Now by taking the differentiation of Eq. 2.141 with respect to time we have

WU [ (Frwr-o)+ o™ o) ot P9 Yav 289

which can be further simplified as,

dAglt(t) = /V <dee(¢)H( ¢) + pHe(1)d, (4>>i;f) dv (2.144)
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by knowing the fact that dHe((p) = ’iﬂf Ljft) and in the advection step the solid interface is

not moving which implies that dlf = 0. Furthermore by using the continuity equation
of the fluid field

Z‘t’ +V - (pu) =0, (2.145)
Eq. 2.144 can be written as
M d
W= [ (-7 (w9 pHp) 5 ) av. 2149

Then, using V - (He(—¢)pu) = pdeu - Vi + V - (pu)He(—¢), Eq. 2.146 can be written

in the form

DU [ (wptcto) (3 +u-T0) 4 V- (etppw Jav. 147

The advection equation of level-set with the modification term for mass conservation

can be written as
d¢
ot

Since in the level-set advection numerical diffusion is negligible we can assume that

+u-Vo=7(xt). (2.148)

t) is merely a function of time. Hence by setting 24 — 0 the Eq. 2.147 can be written
y y 8 “dt 9

as,

—(p / (06e(¢))dV + / V- (He(¢)pu)dV = 0. (2.149)

Now the {(t) term can be obtained as,

[y V - (He(p)pu)dVv
€ = T e

By expanding the V - (He(¢)pu) = pHe(¢)V - u+u - V(pHe(¢)) and substituting the

term V - u = Bde(¢)vn| V|, the modification term can be written as,

(2.150)

Jv (0He(9)Boe(@)vu VY|)dV + [y, (00e(¢)u - V(9))dV
fV (P‘Se(‘l’)) av
To sum up, in order to impose mass conservation in the liquid phase we use the term
(t) obtained from Eq. 2.151 in the the Eq. 2.148.
In order to take into account the effect of density variation in the heat transfer

Z(t) = (2.151)

equation we write the energy balance at the liquid-solid interface as,

prHi(wy—up) - n—kVT -n=psHs(us —uy) -n—k;VT - n (2.152)
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where H; = Cple + Ly and H; = CpsT);, represent enthalpies of liquid and solid,
respectively. Rewriting Eq. 2.152 based on the normal interface velocity yields,

losLe + (01Cp1 — psCps) Tin)| vn = ksVT -n — K VT - n. (2.153)
which can be further simplified as,

0sLyvy =ksVT-n—kVT-n. (2.154)

where Ly = Ly + (0,Cp; — psCpsTm)/ ps represents the effective latent heat of fusion
which takes into account the effect of density variation during solidification process.



Chapter 3

Validation and Results

In this chapter we use benchmark problems and experimental results in the literature to
validate the model presented in Chapter. 2. In the first step we use benchmark problems
to validate implementation of two-phase level-set method including re-initialization,
advection, velocity extension, and Poisson equation in irregular domains. In the next
step, we validate implementation of two-phase Navier-Stokes equations using standard
benchmark problems. In addition we use various test cases to validate the proposed
model for simulation of three-phase problems with density variation during the phase
change process. Finally we present results of droplet solidification process on a flat
cold substrate and compare our results with the experimental results in the literature to

validate the model.

3.1 Level-Set Re-Initialization

The re-initialization of level-sets is of the utmost importance in the accuracy of numeri-
cal simulations. In the re-initialization procedure the zero level-set artificially moves
which would decrease the volume inside the interface in considerable amount. In
the case of solidification this artificial movements of the solidifying interface leads to
overestimation of solidification rate. In this section we verify the procedure described
in Section. 2.1.3, using the test case taken from Russo and Smereka [46], to ensure that
the interface is not moving during the re-initizalization process. In this problem we

have an ellipse as

2 2
¢°(x,y) = f(x,y) ( <f‘2 + g2> - 1) , (3.1)
where
flxy) =e+ (x —x0)* + (y — y0)? (3.2)

46
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and the parameters are given by A = 0.4, B=0.2, ¢ = 0.01, x9 = 0.35, and yp = 0.2. The
initial condition for the level-set has both small and large gradients at the vicinity of

the interface.

| |
—-04 —0.2

Figure 3.1: Results of re-initialization of level-set method. The domain is [—0.5,0.5] x
[—0.5,0.5] and number of cells are 128 in each direction. The number of iterations is a)
0, b) 30, c) 60, d) 90

We use L! norm of the difference between exact distant function and the computed
distant function to validate implementation of numerical methods. The L! norm can be

evaluated as

= [l¢ — gell = Y_Iij — pei | Ax? (3.3)

i

where ¢, is the exact values of signed distance function from the interface evaluated as

Peij = mzn |x,] —xp|Szgn(4>l]) (3.4)
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where xp is the exact location of the interface, and N is number of points on the interface.
The interface location, x, = (xp,Y;) , can be calculated as

Xp = Acos(zzp) (3.5)
.27
Yp= Bszn(Wp). (3.6)

In Fig. 3.1 contours of computed signed distance function in different times are plotted.
Note that the location of interface where the value of ¢ is zero is not moving. Moreover,
the log plot of the L! error for various grid resolutions are plotted in Fig. 3.2 which
implies that the algorithm converges as grid resolution increases. As can be seen in Fig.
3.2 the rate of convergence is between first and second order which can be justified by

pointing out that in calculating smeared out sign function we scaled € as Ax.

10~2

T T TTTTTT
Lo il

10~3

Ll

T T TTTTT0
Ll

10~4

T T TTTTT0
Ll

Figure 3.2: L! error for re-initialization of level-sets against various number of grid cells
in each direction.

3.2 Advection in Externally Generated Velocity Field

Advection of level-sets under externally generated velocity fields is an important source
of errors in multi-phase flows. Inaccurate calculations of gradients in the advection
equation may result in mass loss after some time-steps. In this section we assess the
performance of the Hamilton-Jabocbi ENO scheme described in Section. 2.1.1 in the
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presence of shear flow. In time reversed shear flow benchmark problem which is taken
from Rudman [47] the velocity field is given by

) SEIe0s) 0 7 (3.7)
u(x,y) = .
77 | sin(x)eosty) T<t<T
—cos(x)sin(y) 0<t<Z%
e 3.8
o(x.y) cos(x)sin(y) 7 <t<T B

The above velocity field constitutes a time reversed shear flow field defined in
the domain [0,1] x [0,1] which is divided into 128 cells in each direction. A circular
interface with the radius of 0.15 is placed in the velocity field centered at (0.5,0.25).
The interface is advected under the shear velocity field such that the interface is largely
distorted until the % After that the velocity field is reversed to time T. Ideally the
interface of circle should be the same for times 0 and T. However, errors in calculation
of gradients may result in error in the position of the interface and possible loss of mass.
In Fig. 3.3 results of shear flow advection test case using first order and Hamilton-Jacobi
ENO schemes are presented. The solution error is measured in terms of difference
between initial and final interfaces which is presented by Sussman and Fatemi [48].
The error measure is given by

1
Ep =7 3 [He(¢i) — He(9p)|Ax? (39)

where L is the perimeter of the initial interface, ¢; is level set field, ¢ £ is the final level-set
field, and H is the smeared out Heaviside function. This error measures the amount
of mass loss during the advection. A summary of errors for various grid resolutions
can be find in Table. 3.1. The order of convergence is between first order and second
order because we used a combination of HJ]-ENO and Runge-Kutta schemes. In order
to achieve higher order accuracies H]-WENO scheme should be employed.

Table 3.1: Summary of errors for advection of a circle under an externally generated
velocity field using HJ-ENO Scheme

Number of Cells Ey — Error Order
32 x 32 28 x 1072 -
64 x 64 81x103 1.8
128 x 128 34 x 1073 1.3
256 x 256 1.3x 1073 14
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Figure 3.3: Results of advection of a circle in the presence of externally generated shear

velocity field at various times b) 0, c) %, d) %, e) %, T
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3.3 Advection in Normal Direction

In numerical modelling of solidification process the solidifying interface is moving
under a normal velocity. An accurate method for advection of interface should be able
to deal with complicated interfaces. We use evolution of a star shaped geometry to
demonstrate that the method described in Section. 2.1.2 can deal with the complicated
shapes. The initial level-set is defined as,

g0 =/ (x —x0)2 + (y — y3) — (A + Bsin(N6)) (3.10)

where A = 0.5 and B = 0.2 are constant and N = 7 determines the number of arms of
the star. The normal velocity of the interface is assumed to be v, = 1. The results of the
interface at different times for grid resolution of 128 x 128 are shown in Fig. 3.4

0.4 8 0.4 8
0.2 B 0.2 B
P~ 0r B P~ 0 R
—0.2 |- B —0.2 |- -
—0.4 g —0.4 g
Il Il Il Il Il Il Il Il Il Il
—0.4 —0.2 0 0.2 0.4 —0.4 —0.2 0 0.2 0.4
X X
(a) (b)
0.4 e 0.4 i
0.2 B 0.2 B
~  0f 1= o 2
—0.2 |- B —0.2 |- B
—0.4 8 —0.4 }
Il Il Il Il Il Il Il Il Il Il
—-04 —0.2 0 0.2 0.4 —-0.4 —-0.2 0 0.2 0.4
X X
() (d)

Figure 3.4: Evolution of a star-shaped interface which moves outward in the normal
direction after a) 0, b) 0.03, ¢) 0.06, and d) 0.09s

Moreover, in order to measure the errors associated with the advection of level-set
method under normal velocity we used a simple circle which is evolving under constant

normal velocity. The area of the region enclosed by the interface can be computed by

A(t) = /QHe(qb(x,t))dA (3.11)
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where the integral is carried out over the whole domain. The numerical estimation of
the integral can be written as,

A(t) =YY He(¢; )dxdy. (3.12)
i j
The error based on the area can be written as
EA _ |A€xﬂct — Anumerical| (3.13)
Aexact

A summary of Area loss errors for advection of circular interface under normal velocity
field can be found in Table. 3.2. Similar to advection under externally generated velocity
fields the order of accuracy is between one and two which is expected for the schemes
used in this study.

Table 3.2: Summary of errors for advection of a circle under normal velocity field
(v; = 1) measured at t = 0.1s.

Number of Cells Ea — Error Order
32 x 32 81x10°3 -
64 x 64 2.8 x 1073 1.5
128 x 128 12x1073 1.2
256 x 256 5.6 x 1074 1.1

3.4 Poisson Equation in Irregular Domains

In level-set approach, solving Poisson equation on irregular domains is of the crucial
importance. In problems including solidification front we need to deal with a moving
interface where the Dirichlet boundary conditions for some variables should be applied.
The method proposed by Gibou et al. [41] can accurately impose boundary conditions
at irregular interfaces. In order to examine implementation of the method presented in
Section. 2.2.1 we use the test case represented by Gibou et al. [41]. In this benchmark
problem we solve the Poisson equation,

V- (BVu)=f, in Q (3.14)
u=g(x,y) on T (3.15)
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Figure 3.5: Solution of Poisson equation on irregular domain

where I is the interface defined by the parametric curve as,

x(0) = 0.3cos(0) — 0.15c0s(36) (3.16)
y(0) =0.75 + 0.35sin(6) — 0.035sin(36) + 0.1sin(76) (3.17)

where 0 < 6 << 27. The exact solution is defined only in the interior region of the
interface, (), as
ue(x,y) = e*(x%sin(y) + v*) (3.18)

hence the source term, f, can be determined accordingly,
f=pBe"(2+v*+2sin(y) +4xin(y)) if (xy)eQ (3.19)

where f is a constant coefficient throughout the domain. The results are showed in Fig.
3.5.

The boundary condition on the boundary interface are obtained from the exact
solution of the problem. As can be seen in Fig.3.5 Dirichlet boundary condition is
applied on the boundaries. In order to measure the errors we use L! norm defined as,

L= Z |tte(x) — uc(x)] (3.20)
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where the 1, and 1, represent exact and computed fields. L! errors of Poisson equation
are summarized in Table. 3.3. As can be seen in Table. 3.3 numerical results converge
with second order accuracy. Since we use liner interpolation of ghost values near the
interface a small drop in the order of accuracy is expected.

Table 3.3: Summary of errors for solution of Poisson equation inside an irregular domain

Number of Cells LY — Error Order
32 x 32 9.1 x10°*% -
64 x 64 23x 104 1.9
128 x 128 7.1 %1075 1.7
256 x 256 2.1x107° 1.8

3.5 Heat Equation in Irregular Domains

In this section we use the approach presented in Section. 2.2.2 to solve heat equation
which is taken from Gibou et al. [41]

aaf:v-(chu), in Q° (3.21)
u=g(x,y) on T (3.22)

where I' is a star with 5 arms defined by

x(0) = 0.5+ 0.2sin(50)cos(0) (3.23)
y(0) = 0.5+ 0.2sin(50)sin(6) (3.24)

with 6 € [0,271]. The exact solution is represented by

2t

Te(x,y) = e “'sin(x)sin(y) (3.25)

Solution of the heat equation is shown in Fig.3.6. Similar to Poisson equation we use L1

norm to measure the errors.

L' =Y |Te(x) — Te(x)| (3.26)

where the T, and T, represent exact and computed fields. L! errors for various grid
resolutions at final time are presented in Table. 3.4. Similar to solution of Poisson
equation in irregular domains we expect to have a second order accuracy which can be
seen in Table. 3.4. Since we use linear interpolations near the interface the accuracy is
smaller than second order.
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Table 3.4: Summary of errors for solution of Heat equation inside an irregular domain
att=0.1s

Number of Cells LY — Error Order
32 x 32 13x10°3 -
64 x 64 43 %1074 1.6
128 x 128 12x10* 1.8
256 x 256 31x10°° 1.9

3.6 Stefan Problem

We use classical Stefan problem to validate solidification rate calculations. The govern-
ing equations for 1D Stefan problem are represented as,

oT ) oT
oT ) oT

where kj;;, and k) denote the thermal diffusivity in the solid and the liquid phases,
respectively. In this problem we assume that these properties are constant in each phase.

Figure 3.6: Solution of heat equation on irregular domain at time at t = 0.1 with 128
gird cells in each direction.
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The velocity of the interface is calculated from the following relation.

LHU;/[ - ksal aT

o kg (3.29)

where Ly represents th latent heat of fusion. The temperature of the interface is set to
Zero

T(s(t),t) =0, (3.30)

where s(t) is location of the interface. The solution of this problem can be expressed in
the form of

s(t) = so(t) +2a/t, (3.31)
where the constant « is obtained by solving the following equation.

Vi T vk T T o

o2

o= exp(— + exp(——), 3.32
./nLHerfc(ﬁ) p( ks) niL \/nL2—erfc(ﬁ) P kl) (332)
while the temperature can be calculated as,
Tlerfc(zx/\/?;) Tierfe((x—s0)/2+/k;it) .
— , <s(t
T(x,t){ 2erfel/Vh) WERRE iz <) : (3.33)
Tserfe((x—sg)/2+/kst)
Ts — erf(a/(i/@ , ofx>s(t)

Numerical results of level-set method compared with the analytical solution is
plotted in Fig. 3.7 for Ly = 0.53 and k = 1 for both phases. The convergence of the
solution by grid resolution plotted in Fig. 3.7(c) reveals that the numerical method
has first order convergence. The first order convergence of Stafan problem is because
we approximate gradients of temperature using first order accurate method which
consequently results in a first order prediction of interface velocities. Note that the
temperature at the interface is set to zero.

3.7 Pressure Jump

The accurate estimation of the surface tension forces in the Navier-Stokes equations
has proven to be one of the most difficult aspects of the surface tension driven flows.
Laplace balance between surface tension force and pressure gradient at the interface
of two phase flows is difficult to reproduce numerically which leads to production of
so-called spurious currents. In order to reduce the spurious currents at the interface one
needs to accurately treat the pressure jump and force balance at the interface. Using the
ghost fluid method described in Section.2.3.7 it is possible to accurately treat the surface

tension forces at the interface. In order to validate numerical methods for solving
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Figure 3.7: One dimensional Stefan problem using level-set method. a) Interface
position v. s time; b) Temperature field; c) Spatial convergence of interface location

pressure equation in the case of jump condition at the interface we consider a stationary
droplet with the interface defined as

¢(x,y) =1/x*>+y*—Ro (3.34)

where Ry = 0.5 is the radius of the circle. We can describe the problem using the Poisson

equation with jump at the interface as,

V- (VP) =0, (3.35)
[P]=1. xeT (3.36)

which means that the pressure difference between inner and outer regions should be
equal to 1. The result of numerical simulation is shown in Fig. 3.8 which denotes that
the pressure jump at the interface is captured accurately.

Moreover, in order to verify surface tension force balance at the interface we use
wobbling of an ellipse as a result of capillary forces to verify the solution of pressure
equation. In this benchmark problem an elliptic droplet oscillates under the effect of
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Figure 3.8: Results of Poisson equation with jump condition at the interface.

capillary forces. After a few oscillations the droplet reaches to an equilibrium condition
with a circular interface. Ideally after reaching the equilibrium condition there should
not exist any velocity field around the droplet. However, because of numerical errors
there is small spurious current around the droplet finally after reaching the equilibrium
condition. In this example the level set field is initialized using the equation,

¢°(x,y) = ( (X; + yf) - 0.25> , (3.37)

We solve Navier-Stokes equations using the methodology described in Section. 2.3.
We assumed ¢ = 1 and constant density and viscosities (0 = 1, u = 1). The pressure jump
at the interface induce a velocity field in the domain. Finally after several oscillations
takes a circular shape with small spurious flows around it.

3.8 Imposing Constant Angle at Tri-Junction Point

Triple point in solidification of liquid droplet plays a critical role in formation of cusp on
top of the droplet based on the theoretical and experimental studies (Marin et al. [12]).
Moreover, the shape of the solidifying front depends on the angle at the tri-junction
point. In experimental observations it is reported that the shape of interface can be
changed from convex to concave in a droplet resting on a hydrophobic substrate. This
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Figure 3.10: Imposing constant angle at the tri-junction point between two interfaces.

change of solidifying front is partially because of the angle at the tri-junction point.
As explained in Section. 2.4.2 we solve a pseudo time dependent equation to reach
steady state condition based on the predefined tolerance to impose the angle in the
outer region of the droplet. Solving the equation in the outside will also affect the cells
that are situated inside near the interface and inside the droplet.

In this section we use the method described in Section. 2.4.2 to impose a constant
angle between two interfaces. Each interface is associates with a level-set. Initially we
have a circle interface situated at the center of the domain. The second interface which
is initially a straight line is moving from bottom to top of the circle with a constant
velocity. Using the method described in Section.2.4.2 with the tolerance of 1 x 10~ as
a criteria for reaching the steady-state condition, we impose a perpendicular angle at
the tri-junction point. By solving the equation we impose the angle in cells situated
near the interface. However, we use an offset of the circle interface to have the angle

imposed inside the circle. Hence we define an auxiliary level-set field as,

Pe;; = Pij+ € (3.38)

where ¢, is the auxiliary level-sets which is used to impose the angle at the tri-junction
point. We choose € = Ax to have at least one grid cell between auxiliary and circle
level-sets. As can be seen in Fig. 3.10 shape of the moving interface is changing from
convex at the bottom of the circle to concave to top on the circle.
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Figure 3.11: Solution of heat equation in a specific region where one of the level-sets is
positive (solid red line) and the other one (star shape) is negative.

3.9 Multi-Region Heat Equation

In order to solve heat equation for solidifying droplet we need to divide computational
domain into three regions. In this model, each region represents one phase and we
should impose a constant temperature boundary condition on moving solidifying
interface only inside the liquid region. To this end, we use two distinct level-sets to
distinguish phases. Using the approach presented in Section. 2.4.3 we can solve heat
equation only in one region without affecting the solution on the other side. In order
to test the proposed approach we use the same problem presented in Section. 3.4 by
including another level-set with a straight line interface to divide the star shape domain
into two regions, namely active and passive. We wish to solve heat equation only in
the active part where Dirichlet boundary condition is applied at the interface. In the
passive part, on the other hand, we don’t apply boundary conditions at the interface.

We use the sign of level-sets to determine where boundary conditions should be
applied. The equation presented in Section. 3.5 are solved in the same star-shape
domain. However, we divide the domain into two sections and only apply boundary
conditions at the interface in the active segment. As can be seen in Fig. 3.11 the heat
equation is only solved in the upper side of the red line while the other side is not
affected by the heat equation.
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Figure 3.12: (a) Schematic of the three-phase Stefan problem. (b) Location of liquid and
solid interfaces against time

3.10 Solidification of Liquid Column With Density Ex-

pansion

In order to accurately predict the behaviour of droplet freezing process we need to
consider the density expansion of the liquid during phase change. In the three-phase
solidification problem the solidifying interface and liquid interface should be coupled
in some way. In the present study we include the effect of density expansion by
coupling liquid and solid interfaces using a source term in the pressure correction step
as described in Section. 2.4.5. In this approach the moving solidifying interface induces
velocity field by which the liquid interface is evolved.

In order to validate the approach presented in Section.2.4.5 we simulate the density
expansion of a liquid column. The schematic of problem is depicted in Fig. 3.12. In this
problem we deal with liquid, gas, and solid phases. The liquid-solid phase is governed
by the solidification rate and thermal properties of each phase. In this problem the
liquid interface is initially located at height of Hy. After complete solidification the
height of the solidified liquid is equal to Hy. We assume liquid is denser than the solid.
Thus, from conservation of mass, the final height of the liquid slab Hy, can be obtained

from

Hy = PLH,, (3.39)
Os

To simulate this problem using the proposed method, we use a Hy = 0.2m column
of liquid exposed to cold surface. The solidifying front starts to move from bottom to
top inducing velocity field in the liquid. Here we assume that the density ratio of liquid
to solid is S—i = 2. Thus the final height of the liquid column should be 0.4m. We use the
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following relation to quantify the errors. The order of convergnece of liquid interface
position prediction is affected by the order of accuracy of Stefan problem which is first
order as can be seen in Table. 3.5.

’HNumericul - HExact’
E= 3.40
HExact ( )

Table 3.5: Summary of errors of final solid height Stefan problem with density change

Number of Cells LY — Error Order
32 x 32 43x10°7 -
64 x 64 2.1 x 102 1.0
128 x 128 1.0 x 102 1.1

3.11 Solidification of Water Droplet

Water droplet freezing phenomenon involves various physical occurrences which
should be considered at the same time in an accurate model. One of the most important
aspects of a physical phenomenon is the time scale which should be considered in
numerical investigations. There are three major physics in droplet freezing process:
Surface tension; Density expansion; Solidification. Considering the surface tension

forces the stability constraint can be expressed in the form of

(01 + pg) Ax3

At
o< 4o

(3.41)
where p; and p, are densities of liquid and air. The physical explanation is that the time
step should be small enough to resolve the fastest capillary waves in the system. A
more detailed discussion about time constraints related to capillary forces can be found
in the work of Popinet [49]. On the other hand, the time scale of the solidification is
independent of the fluid flow and mainly depends on the thermal characteristics of
the liquid and the solid. The total freezing time {; mainly depends on the Ste number.
As a result the mean velocity of the interface can be expressed as u fm = A;—fo, where A
is a constant and Ry is droplet radius. The velocity induced by the density expansion
can be expressed as uexp g, , where B represents the expansion ratio and is less
than one. As a result the velocity of the solidifying interface is larger than the velocity
induced by the density expansion and can be used to obtain the maximum velocity
in the domain. In numerical simulations the transport of the interface is subject to the
standard CFL constraint Atyz, < Ax/|us,|. Thus we can express the ratio of these two
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stability constraints as

At 1+ U |2 Ax
where We, is the cell Weber number, which represents the ratio of inertial to surface
tension forces.

In the case of 600um stationary water droplet freezing on a cold plate the freezing
time is around t; = 30s based on the experimental studies in the literature which leads
to a mean solidifying interface velocity of uy,, = 20um/s. Thus the ratio two time

constraints is,

A
Att" — /Wen = VWerN~1/2 =1 x 105N 1/2 (3.43)
adv

where Wer is the droplet Weber number which is based on the droplet radius and
mean solidifying interface velocity, and N is the number of grid points per droplet
radius. Hence, for a moderate resolution of N = 10, the capillary time step is 2 x 10°
times smaller that the freezing time step. This stringent time step restriction leads
to extremely high computational cost for fully resolved water droplet solidification
process.

In addition to computational cost caused by capillary time steps, the numerical
errors induced by each iteration is significant. One of the major sources of error in
numerical simulation in the level-set method is re-initialization process. In each time
step we need to re-initialize both droplet and the solidifying interfaces. These large
number of re-initializations leads to significant mass loss and numerical noise in the
calculation of the curvature which is discussed in du Chéné et al. [50].

In order to avoid the prohibitive time step constraint which is a cause of multi-physic
nature of the droplet freezing we divide our numerical simulations into two parts. In
the first part we neglect the density expansion focusing on the thermal behaviour of
droplet during the freezing process of the droplet. Thermal properties of the droplet
are assumed not to be affected by the fluid flow. In the second part, we will use a small
number for the latent heat of fusion in order to have interface velocities at the same
order of induced fluid velocity. With this assumption we will investigate the droplet
shape change during the solidification. It is notable that all simulations in this section
are performed on axisymmetric coordinates.

In order to verify how accurate the proposed model can predict the thermal be-
haviour of a freezing droplet we use the experimental results presented by Hu and Jin
[14]. The none-dimensional parameters used to simulate the freezing process in this
case are Pr =7.25, 5t = 0.025, % =338, %ﬁ =0.5, % = 1. The required freezing time is
the most important thermal characteristic of freezing droplets on cold substrates. The
freezing time (f5) is defined as the time interval required to have a droplet completely
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Figure 3.13: Comparison of predicted freezing time against experiments of Hu and Jin
[14]
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Figure 3.15: Comparison of numerical simulations against experimental results taken
form Hu and Jin [14]. (a) initial droplet shape, (b) final droplet shape, (c) interface of
droplet at initial and final stages of freezing process using experimental results of Hu
and Jin [14] (symbols) and numerical simulations (solid lines)

turned to ice. The freezing time is of the great importance to aerospace industry since
the required freezing time would determine the types of the ice formation on airplane
wings.

In Fig. 3.13 the freezing time obtained from the proposed model is compared with
those of presented by Hu and Jin [14] for a single droplet deposited on a cold plate for
different substrate temperatures. In this test problem the grid is divided into 128 cells
in each direction. The initial solidifying interface is a straight line above the substrate.
As expected the freezing time decreases exponentially by decreasing the substrate
temperature. Detailed temperature distribution in three phases is plotted in Fig.3.14.
Note that temperature is fixed to zero at the droplet interface and the temperature at
the air is not affected by ice level-set.

The difference between predicted and experimental freezing times is partially caused
by numerical errors specially the errors in the re-initialization step. Since in each time
step we impose the tri-junction angle the solidifying interface may artificially move.
On the other hand, the average droplet temperature increases with time in spite of the
fact that the freezing front is moving upward. This increase in the liquid temperature is
presented by Hu and Jin [14]. They postulated that the release of latent heat of fusion
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Figure 3.16: Droplet shape change for a stationary droplet on a hydrophobic cold
substrate. Left: without imposing tri-junction angle; Right: with imposing tri-junction
angle.

may be a cause of this temperature increase. However, as can be seen in Fig. 3.14 the
temperature of the liquid part of the droplet is around 0°C during the freezing process.
Another reason for difference between numerical and experimental freezing time is
that we neglected the effect of droplet shape change. In the case of expanding droplet
the freezing time will increase by 10 — 30% based on the numerical experiments.

In the next step in order to validate the accuracy of proposed approach for modelling
density expansion we use a small latent heat of fusion (St = 2.5 x 10%). We also used the
density ratio of % = 0.9. Result of stationary water droplet freezing on a cold substrate
is presented in Fig. 3.15. We use the experimental result of Hu and Jin [14] to validate
the proposed model. In the experiment a 500um water droplet is deposited on a cold
plate with the constant temperature of —2°C. The computational domain is divided
into 128 cells in each direction. Initial and final shapes of the droplet are compared with
the experimental observations in Fig. 3.15. As can be seen the presented level-set based
model is capable of accurately predicting the cusp formation on top of the droplet.

Even though the formation of pointy cone on top of the droplet has been attributed
to the expansion of water upon freezing, there is still little explanation for this phe-
nomenon in the literature. Marin et al. [12] postulated that the pointy shape is because
of trijunction angle. In Fig. 3.16 the result of droplet shape is plotted in different times.
In the left side we didn’t impose the tri-junction angle while in the right side we impose
90° tri-junction angle. As can be seen the pointy shape is formed in the case of imposing
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Figure 3.17: Effect of solid to liquid density ratio on protrusion formation on top of
freezing droplet. Red, Blue, and Green lines are associated with 0.85, 0.9, and 0.95 solid
to liquid density ratios, respectively.

constant tri-junction angle. Hence, we can conclude that the formation of pointy shape
on top of freezing droplets is a result of density expansion and fixed tri-junction angle.

It has been known that formation of protrusion on the of water droplets is mainly
because of volume expansion. In order to investigate effect of solid to liquid density
ratio we modelled droplet freezing with different density ratios. As can be seen in Fig.
3.17 the density ratio of ice to water should not be larger than 0.9 to have protrusion
formed. For larger density ratios the pointy cone will not be formed. Furthermore the
angle of protrusion for the case of ps/p; = 0.9 is measure to be 130° which is in the
range of reported measurements of Marin et al. [12] which is between 130° and 145°.
Numerical results indicate that decreasing the density ratio of solid to liquid will lead
to large droplet deformation and smaller cone angle.



Chapter 4
Conclusions

The main aim of this thesis was to extend the level-set method for numerically mod-
elling of water droplet freezing process. The proposed model is generally capable of
modelling solidification of liquids in the presence of three phases. In particular we
used the model for simulation of a stationary water droplet on a cold plate.

We used two distinct level-sets to represent the liquid-solid and liquid-gas interfaces.
The liquid-solid interface is governed by heat transfer equations while the liquid-gas
interface is governed by Navier-Stokes equations. Generally we need to deal with
three different discontinuities at liquid-solid and liquid-gas interfaces. We used the
ghost cell approach to set boundary conditions at the moving interface and deal with
the temperature discontinuity. In addition, the latent heat of fusion is included in the
calculation of solidification speed.

The level-set associated with the solidifying interface is divided into two segments,
namely: active and passive. The active part is governed by heat transfer in the liquid
while the passive part is used to impose a constant angle at the tri-junction point.
In order to impose the angle at the tri-junction point we proposed a pseudo-time
dependent equation which should be solved to reach steady state conditions. By
solving the proposed transient equation we moved only the passive part while the
active part is held fixed.

We solved Navier-Stokes equations using second order spatial and temporal schemes.
In order to impose pressure jump condition at the liquid-air interface we used the ghost
fluid method. Density expansion due to phase change is included in the proposed
model using a source term in continuity equation. The density expansion appears as a
source term creating a high pressure zone at the solidifying front. The high pressure
zone induces velocity in the domain by which the droplet interface is advected.

The numerical model was validated using experimental results in the literature.
Through the comparison the effect of density expansion on the final droplet shape
and cusp formation on top of droplet was investigated. Comparing the numerical

results against experimental images suggested that the proposed level-set approach
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can accurately predict the behavior of solidifying process. The most significant aspects

of this study can be summarized as follows.

Extended level-set approach to model three-phase unconstrained solidification

process.

Extended the ghost cell approach to impose fixed value boundary condition on
moving solidifying front only inside the liquid.

Proposed an equation for imposing constant angle at the tri-junction point.
Modified pressure correction equation to include density expansion.
Modified level-set equation to impose conservation of mass in the liquid part.

Considered effect of density expansion in energy equation which is neglected in
the literature.

The proposed model makes it possible to numerically study a wide range of physical

phenomena which was not feasible before. In the following a few physical occurrences

that can be modelled by the proposed approach are presented.

4.1

Water droplet freezing on cold plates in room temperature.
Super cooled water droplet freezing process.
Solidification of pure materials in the presence of three phases.

Freezing of liquid film layer on flat surfaces, airfoils or any complicated geome-

tries.

Freezing of liquids in open containers.

Computational Challenges

As mentioned before the proposed model is capable of modelling three-phase solidifi-

cation process. However, there are some numerical challenges which will be reviewed

in this section.

Level-set methods are generally known to suffer from mass loss. We used second-

order ENO scheme to alleviate the mass loss in advection equation. However, during

the re-initialization process we may loss mass because of numerical errors. There are

various remedies to reduce the mass loss during the re-initialization process such as

particle level-set method. It can be useful to incorporate those methods in solidification

problems.
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Since in the droplet solidification problem a variety of physics are involved the time
step restrictions are extremely stringent. As a result, the computational cost of refined
grids is high. Therefore, numerical improvements are required in this part to avoid
prohibitively small time steps.

Generally in multiphase problems we are only interested in having refined grids
at the interfaces. In other parts of the domain we can use coarser grids. As a result,
utilization of adaptive grid refinement strategies is useful in three phase solidification
problems.

The numerical model is developed for two dimension problems while extending the
problem into three-dimension is straight forward in a dimension by dimension manner.
However, computational cost of three dimensional simulations are high and parallel
computational techniques should be employed to improve the speed of computations.

4.2 Future Works

Detailed numerical simulation of solidification problems require more improvements
in the level-set framework. Some possible improvements are outlined in this section.
The approach presented in this study is useful for modelling solidification of stationary
droplets. In order to model dynamics of impacting droplets the model requires further
improvements. The incipient of ice formation at the contact line of the droplet and the
substrate requires special treatment. A possible approach is to use temperature field at
the beginning of the solidification and construct level-sets from the temperature field.

In experiments of Hu and Jin [14] it has been observed that the temperature of the
liquid portion is increasing over time (10°) while in the current state of mathematical
description of solidification process the temperature of the liquid part decreases as a
result of heat transfer to the ambient and to the substrate. The increase in the liquid
portion of the droplet should be modelled mathematically.

In the current model we used source term at the solidification interface to induce
velocity in the field as a result of density expansion. However, the source term approach
may be replaced by more accurate approaches similar to ghost fluid method to directly
induce velocity in liquid.
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