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Representing local dynamics within water resource systems through a 

data-driven emulation approach 

 

Shahin Zandmoghaddam 

 

Abstract 

Growing population and socio-economic activities along with looming effects of climate 

change have led to enormous pressures on water resource systems. To diagnose and quantify 

potential vulnerabilities, effective tools are required to represent the interactions between 

limited water availability and competing water demands across a range of spatial and temporal 

scales. Despite significant progresses in integrated modeling of water resource systems, the 

majority of existing models are still unable to fully describe the contemplating dynamics within 

and between elements of water resource systems across all relevant scales and/or variables. 

Here, a data-driven approach is suggested to represent local details of a water resource system 

through emulating an existing water resource system model, in which these details have been 

missed. This is through advising a set of interconnected functional mappings, i.e. integrated 

emulators, parameterized using the simulation results of the existing model at a common scale 

and/or variable but can support process representation with finer resolution and/or details. The 

proposed approach is applied to a complex water resource system in Southern Alberta, Canada, 

to provide a detailed understanding of the system’s dynamics at the Oldman Reservoir, which 

is the key to provision of effective water resource management in this semi-arid and already 

stressed cold region. By proposing a rigorous setup/falsification procedure, a set of alternative 

hypotheses for emulators describing the local dynamics of local irrigation demand and 

withdrawals along with reservoir release and evaporation is developed. Findings show that 

emulators formed using Artificial Neural Networks mainly outperform simpler emulators 

developed for the variables considered. The non-falsified emulators are then coupled to 

represent the local dynamics of the water resource system at the reservoir location, considering 

the underlying interplays with hydro-climatological conditions and human decision on the 

irrigation area. It is found that emulators with input variables identified through expert 

knowledge can outperform fully data-driven emulators in which proxies were selected based 

on an input variable selection method.  The top non-falsified coupled models are able to capture 

the dynamic of lake evaporation, water withdrawal, irrigation demand, reservoir release and 

storage with coefficient of determination of 0.80 to 0.82, 0.45 to 0.55, 0.52 to 0.59, 0.98 to 0.99 
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and 0.72 to 0.88, respectively. The practical utility of the proposed approach is demonstrated 

through an impact assessment study by analysing four performance criteria, corresponding to 

reservoir’s storage, local irrigation demand, number of spill events and median reservoir 

release, in three stress-tests. These stress tests asses the local sensitivity of water resource 

system at the Oldman reservoir at three different levels, corresponding to (1) changing 

incoming streamflow to the basin in a bottom-up approach; (2) joint scenario of changing 

streamflow and warming climate, using a coupled bottom-up/top-down approach; and (3) 

specific changes in incoming streamflow, climate and irrigation area in a heuristic approach. 

For the first experimentation, weekly realizations for possible water availability are 

stochastically reconstructed and fed into the top non-falsified integrated emulator. By defining 

warm/dry, historical and cold/wet flow conditions, we found through alteration from dry to wet 

regime condition, the expected number of low storage duration is not changed, and expected 

annual water deficit is declined. Moreover, the expected number of spill events increases 

whereas median reservoir release increases. In the next impact assessment study, different 

scenarios of warming climate obtained from NASA-NEX downscaled global climate 

projections and the joint impact of changing streamflow and temperature on the system’s 

behaviour is evaluated. This assessment demonstrated that in warmer climate, the expected 

number of low storage duration in dry condition increases whereas in historical and wet 

conditions, the low storage duration does not change. In addition, the expected annual water 

deficit increases while the expected number of spill events decreases in the three flow regime 

conditions. Moreover, the expected median reservoir release increases in the dry, historical and 

wet regime conditions. In the final level of assessment, vulnerability of the system under 

changing streamflow, climate including temperature and precipitation and changing irrigation 

area is assessed. Results show that increasing irrigation area combined with declining inflow 

can considerably increase the duration of low reservoir storage in the Oldman Reservoir. 

Increasing temperature can lead to decline in both reservoir storage and outflow. In addition, 

when combined with declining inflow, increasing temperature can severely increase the annual 

water deficit for irrigation sector. Furthermore, it is noted that although the performance of 

unfalsified models are identical in representing the dynamics of the Oldman Reservoir under 

the historical data, but assessment can be slightly to moderately different depending on the 

defined scenarios of change. This is due to the choice of model configuration and can address 

the uncertainty regarding the system’s behaviour. Our study shows the promise of data-driven 

emulation approach as a tool for developing more enhanced water resource system models to 

face emerging management problems in the era of change. 
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Chapter 1: Introduction 

1.1 Background 

Freshwater scarcity is now turning into a threat for the sustainable development of human 

society. In terms of potential impact, water crisis are currently considered as the largest global 

risk (Mekonnen and Hoekstra 2016). Most importantly, both water demand and water demand 

per capita, have increased drastically over the past few decades due to rapid population and 

socio-economic growth (Vörösmarty et al. 2010; McDonald et al. 2011). In parallel, climate 

change has significantly altered the regional characteristics of water availability (Arnell 2004; 

Falkenmark et al. 2007; Parry et al. 2007; Hurrell and Deser 2010; Beck and Bernauer 2011; 

Falkenmark 2013; Kundzewicz et al. 2018) and water demand (Vörösmarty and Sahagian 

2000; Jackson et al. 2001; Kirk et al. 2002; Oki and Kanae 2006; Krausmann et al. 2009; 

Brownson et al. 2011). Human activities related to land and water management have also 

affected water availability across various scales (Nazemi and Wheater 2015a; b), which in 

some cases resulted into increasing imbalances between water availability and demand. The 

combination of these stressors, endanger water security (Döll 2002; Werritty 2002; Solomon 

2007; Bates et al. 2009; Sušnik et al. 2015), which is  often politically sensitive (Nazemi and 

Madani 2017) and may trigger national and international conflicts (Gemenne et al. 2014; 

Petersen-Perlman et al. 2017).  

 

As stated in IPCC (2007), vulnerability is defined as the degree to which a system is not able 

to manage the unfavorable effects of water scarcity. Regionally, the imbalances between water 

demand and water availability are much more severe in semi-arid and arid regions. In these 

areas, along with natural water shortages due to specific climate and hydrological conditions, 

the ineffectiveness of water recourse management itself can be a major cause for vulnerability 

(AghaKouchak et al. 2015b; Lemieux et al. 2015).  Under future climate change, precipitation 

is projected to decrease whereas temperature is expected to increase, which can in turn result 

in severe natural water shortage (Lee and Wang 2014; Vasseur et al. 2014). There are already 

relevant examples indicating the increase in water security crisis in arid and semi-arid regions, 

such as  South Asia, the Middle East, Mexico, North East Brazil, Canadian Prairies and Africa, 

affecting agriculture, energy production, and water quality and quantity (Kusangaya et al. 2014; 

Selby and Hoffmann 2014).  This issue results in significant amounts of economic and 

environmental losses in these regions (Bergstrom and Randall 2016; Carleton and Hsiang 2016; 

Hsiang et al. 2017).  
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To investigate the future challenges, decision makers require effective tools in order to take 

into account various scenarios for changing in climate, water availability and water demand at 

local and regional scales, and to foresee their potential impacts on water resource systems. 

Developing such models are urgent needs in the face of changes in natural and anthropogenic 

systems as they can help water managers to understand how different sectors would be affected 

under different scenarios of change and therefor can contribute in to development of sustainable 

water management strategies (Herrera-Pantoja and Hiscock 2015).    

 

1.2. Statement of the problem 

Effective water resource management should ensure the satisfaction of all of the water sectors 

with their demands, prevent water-related damages related to extreme events (e.g. floods and 

droughts) and maintain the resources for future human and environmental use. In many cases, 

these diverse objectives are in conflict and the goal of ‘integration’ demonstrates that resources 

management should be tackled from a broad perspective which includes conflicting objectives 

and competing water demands. The aim of integrated water resource management is therefore 

representing all potential trade-offs in system objectives and performance across different 

spatial and temporal scales (Pahl-Wostl 2007). Although various, so-called Integrated Water 

Resource Models (IWRMs) have been developed, current models include different levels of 

simplifications that result in inability to explicitly represent some of the details within water 

resource systems. For instance, water availability and demand are fed into IWRMs as 

prescribed inputs and as a result the physical processes behind these processes are not clear. 

As another example, evaporation is provided to models as constant input values and the link 

between available stored water and temperature is missing. One way to tackle this issue is 

developing new IWRMs which can address all the required details within water resource 

systems. This can be a time consuming approach and increases the model complexity. On top 

of that IWRMs are problem-oriented and they could be outdated when new details are required 

to be tackled. An alternative approach is to develop some sub-models that can be coupled with 

the original IWRM and are able to add the required details to the main model. These modules 

can be developed by replicating the results of the original model at common variables/scales 

and can address the required details within and between the main model.   
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The focus of this research is to reveal the local details within a complex water resource system 

located in a semi-arid region. Here, the specific goal is to represent the local interplay between 

water availability, water demand and water withdrawals, and their interactions with climate 

conditions and human decisions which are missed in the original integrated water resource 

model. A comprehensive model development protocol is proposed to configure a wide range 

of add-on modules to the original model. Then their performance is rigorously tested 

individually or in a coupled setting mode when non-falsified models for each variable are 

linked with one another. Then the practical utility of this approach is tested through stress-test 

analysis to reveal the impact of changes in natural and human conditions on the performance 

of the water resource system. Different scenarios of impact assessment are employed to 

evaluate the performance of the system to changing natural and anthropogenic changes that are 

taking place outside or within the selected water resource system.  

 

1.3 Research purpose and objectives 

The purpose of this research is to provide a detailed understanding of the dynamics within a 

complex water resource system located in a semi-arid region. This is done through developing 

and adding add-on modules to the original model that are able to address the required details 

that are missing in the main model. The specific objectives are: 

 

1. Developing a wide range of add-on modules that are able to address specific details 

regarding local lake evaporation, water withdrawal and demand as well as reservoir release 

within the selected water resource system. A two data-driven approach, i.e. Artificial 

Neural Networks and Multiple Linear Regression, is used to develop add-on modules.  

2. Coupling the developed modules with one another to establish a wide range of models that 

can represent the local behaviour of the selected system.  

3. By applying a reductionist approach, coupled models are falsified and top non-falsified 

models are selected to assess the vulnerability of the system. 

4. Through defining various scenarios of change in hydroclimatic and anthropogenic variables 

the impact of changing scenarios on the system’s performance is investigated. The impact 

assessment is run in three levels using bottom-up, coupled top-down/bottom-up and 

bottom-up approaches: 
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4.1.  In the first level of scenario assessment, the sensitivity of the system to changing 

streamflow is evaluated. 

 

4.2. In the second level, changing scenarios of temperature are included in the impact 

assessment study. By obtaining temperature data from NASA-NEX downscaled global 

climate projections, the joint scenarios of changing streamflow and temperature are 

defined and the response of the system to changing hydroclimatic variables is assessed.  

 
4.3. The third scenario assessment is related to analysing the system’s performance under 

changing streamflow, climate (temperature and precipitation), and human intervention 

manipulated in irrigation area. In other words effects of changing hydroclimate and 

anthropogenic conditions is evaluated in this scenario assessment. 

 
5. The last objective of this thesis is to compare the performance of nan-falsified models under 

the same scenarios of change and to check the uncertainty regarding the performance of 

top selected integrated emulators. 

 

1.4 Expected contribution 

This research aims at developing a tool with which it would be possible to address the missing 

details within a water resource system where and when needed. These details are missed in the 

main water resource management model that is currently used in this water system. With the 

approach applied in this study the missing details are found without developing new models. 

This approach can be used until an improved integrated model would be available. In addition, 

this tool is a transitional solver which can be used to assess the impact of unseen drivers on a 

water system behaviour which cannot be addressed in the main model. Moreover, the 

contribution of this research in water resource engineering is that the developed model can be 

used for long term planning and management, understanding the risk of a water resource system 

under natural (climate variability and change) and anthropogenic (human decision on changing 

the area of irrigation districts) stressors on the behaviour of a water system. As an example, 

with the developed model, it would be possible to assess the effect of changing streamflow, 

temperature and irrigation area on behaviour of a water resource system.  
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1.5 Layout of the thesis 

Chapter 2 reviews water security issues due to the imbalance between water availability and 

demand, discusses how IWRMs are developed, and demonstrates the logic behind emulation 

approach. Chapter 3 introduces the case study, along with available data and existing IWRM, 

for which emulation models are developed to better represent the local details at a critical part 

of the system. Chapter 4 provides a rationale for developing emulators for such applications 

and briefly introduces methodological elements used in this thesis for setting up these models. 

In Chapter 5, the model development protocol is proposed to systematically build alternative 

emulation models for different water sectors, and to falsify them based on their performance in 

individual and coupled modes. Chapter 6 provides the results of modeling attempts, which 

leads to a suite of non-falsified surrogate models for representing the local dynamics within 

and between water sectors at the Oldman Reservoir. Chapter 7 uses these emulation models for 

impact assessment study and in the context of stress-test analysis, and shows the influence of 

various scenarios of (1) changing water availability (2) changing water availability along with 

climate and (3) changing water availability, climate and human management on the system’s 

performance. Finally, Chapter 7 concludes the study and provides further remarks.   
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Chapter 2: Literature review 

In this chapter the focus is on water resources system vulnerability due to imbalances between 

water availability and demand, in particular in arid and semi-arid regions and the assessment 

of the impact of changing conditions on water security. This leads to the urgent need for 

diagnosing and proposing improved management strategies to achieve food and water security. 

For this purpose, the concept of Integrated Water Resources Management (IWRM), which is 

the process of development and management of freshwater supply and demand and 

understanding their interplay with natural and human conditions is introduced. The last part 

reviews the approach used through which the required details within a water resource system 

can be addressed. In addition, this section illustrates the theories, methods, and 

implementations of this approach in environment and water resource management modeling.  

 

2.1. Vulnerability in water resource systems 

Regional water resource systems are under an unprecedented pressure due to changing climate 

and anthropogenic conditions (Elliott et al. 2014; Haddeland et al. 2014; Schewe et al. 2014). 

This pressure arises from water scarcity, which by definition means lack of available freshwater 

compared to existing water demand. This can result in extensive ecological and human 

livelihood crises (Gleick 1998). Natural and anthropogenic factors are considered as key 

drivers of water scarcity (Falkenmark et al. 2007; Falkenmark 2013). Climate variability and 

change are natural sources of water scarcity. Climate variability is change in naturally-

occurring, often periodic, patterns of atmospheric and oceanic variability, such as El Niño- 

Southern Oscillation and the North Atlantic Oscillation, which is leading to significant 

variations in weather and climate throughout a great part of the earth over inter-annual 

timescale (Hurrell and Deser 2010). Temperature and precipitation change are caused by 

climate variability which have effects on droughts and floods. A relevant example is Sahel 

droughts, in which Sahel region of West Africa is faced with a multi-decadal decline in total 

annual rainfall (Janicot et al. 1996). Also, in case of warming condition climate variability can 

have significant consequences in the regions where snowpack is the main source of water 

budget (Barnett et al. 2004). Stewart et al. (2005) showed that in Pacific Northwest where 

snowmelt dominates river flows, temperature rise increased runoff in winter whereas less 

runoff was occurred in summer. In addition, earlier peak snowmelt, runoff and soil moisture 

recharge in spring were other consequences of climate variability. According to Merritt et al. 

(2006) in Okanagan River Basin, Canada the major consumptive water use is irrigation while 
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increased temperature as a result of climate variability has resulted in significant environmental 

and economy costs for the region. This study showed warming climate make imbalances 

between water availability and demand.  

 

Human and natural factors are main drivers of change in atmospheric greenhouse gasses and 

aerosols, land surface properties and solar radiation which affect the energy balance of the 

climate system resulting in climate change. Human activities such as fossil fuel use and land-

use change as well as agricultural activities and natural drivers due to solar activity and 

volcanoes have increased the global atmospheric concentration of carbon dioxide, methane and 

nitrous oxide contributing to climate change (Climate change 2007; Parry et al. 2007). Potential 

regional impacts of climate change are considered as increased magnitude and duration of 

floods and droughts, changes in precipitation, temperature, humidity, soil moisture and 

duration of accumulated snowpack (Solomon 2007). Climate change increases temperature 

which directly affect evapotranspiration and atmospheric water storage. Therefore, this leads 

to potential change in magnitude, frequencies and intensities of rainfall. In addition, the 

seasonality and inter-annual variability and spatial distributions of rainfall are affected due to 

climate change.  

 

Climate change have effects on water availability and demand. Schewe et al. (2014) used an 

ensemble of global hydrological models as well as the latest greenhouse-gas concentration 

scenarios to assess the effect of climate change on water availability. They concluded that 

climate change exacerbates the regional and global water scarcity remarkably and showed that 

in case of climate warming of 2 °C above present, additional 15% of population of the world 

will be faced with severe water shortage and will live under the absolute water scarcity. Studies 

have carried out to understand the impact of climate change on irrigation water demand in 

various spatiotemporal scales. Al-Najar and Ashour (2013) analysed the impacts of 

temperature and precipitation change on irrigation water demand in an orchard crops (olive, 

palm, grapes, citrus and guava) in Gaza Strip, Lebanon. They concluded that increased 

temperature by 1 or 2 °C rises the annual average evapotranspiration by 45 or 91 mm leading 

to 3.28 or 6.68% growth in irrigation requirements. In addition, Wada et al. (2013) used seven 

global hydrological models to assess the effect of projected global climate change on irrigation 

water demand. Their results showed an increasing trend in the future irrigation water demand 

while the increase is substantially dependent on global warming and regional precipitation 

patterns. Based on their findings, under the highest greenhouse gas emission scenario, irrigation 
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water demand increases during the summer in the Northern Hemisphere and the maximum 

demand shifts almost a month or more. Accordingly, it can be concluded that irrigation water 

demand increases due to increased evapotranspiration and decreased soil moisture which 

occurs under warmer climate conditions.  

 

In addition to irrigation water demand, climate change affects industrial, domestic and 

ecological water demand. The majority of industrial water need is used for cooling purposes 

while due to climate change and warming climate condition, water temperature rises and its 

efficiency in cooling process declines. This results in the additional need for water supplies in 

order to compensate for decreased efficiencies of cooling systems. Residential purposes, in-

house water use for drinking, bathing, etc., is considered as domestic water demand which is 

supposed to increase due to projected rising temperature and evapotranspiration. However, this 

change is not significant in many regions due to increased precipitation resulting from climate 

change. Moreover, water demand for ecological system protection and environmental 

maintenance is defined as ecological water demand which is subject to increase due to 

increased evapotranspiration and water temperature. In general, it can be concluded that 

climate change increases different sectors’ water demand (Wang et al. 2016).  

 

In addition, climate change can considerably affect human health, energy supply, fisheries, 

forestry, etc., (Olmstead 2014). The dryer and warmer a region becomes, the water is less 

available and the amount of water demand is higher. This will influence irrigation, which is the 

largest water use sector, and affects future water and food security (Döll 2002; Werritty 2002; 

Solomon 2007; Bates et al. 2009; Change 2014; Sušnik et al. 2015).  

 

Anthropogenic factors putting pressure on water resource systems are considered as developing 

socio-economic activities, population growth, land use and land management as well as human 

intervention in terrestrial water cycle. Intensive socio-economic development, such as 

agricultural and industrial activities, energy production, and municipalities are sectors of water 

consumption facing rapid expansion which heightens water demand   (Tilman 1999; Kirk et al. 

2002; Brownson et al. 2011). Moreover, during the 20th century, there was a significant increase 

in population and the size of the global economy. In brief, the global population hit 6.2 billion 

and global economic output was raised over 20-fold (Jackson et al. 2001; Oki and Kanae 2006; 

Krausmann et al. 2009).  Vörösmarty et al. (2000) conclude that the future relationship between 

water supply and demand is greatly dependent on the forthcoming change in global-scale 



9 
 

population and economic development. Land use and land management have also altered the 

global environment. Almost half of the ice-free land surface have been transformed into 

agricultural and urban systems globally. Deforestation, as an example of land transformation, 

has raised the concentration of atmospheric carbon dioxide, which contributes to climate 

warming (Vitousek et al. 1997; Carpenter et al. 1998; Chapin Iii et al. 2000). Another 

anthropogenic factor affecting global water supply is human intervention in terrestrial water 

cycle. Through construction of dams and water withdrawals for agricultural, industrial and 

domestic purposes (water resource management), human significantly changes the local or 

regional dynamics of water cycle. In brief, human intervention in terrestrial water cycle, in 

particular alters the timing of the released flow from man-made reservoirs (Nazemi and 

Wheater 2015a). In addition, construction of dams and reservoirs is leading to the trapping of 

freshwater runoff, loss of surface runoff to groundwater, corresponding to impoundment, 

increased evaporation from reservoirs and the changing of the overall water budget of 

catchments (Vörösmarty and Sahagian 2000). Haddeland et al. (2014) analysed direct human 

and climate change impacts on terrestrial water cycle using seven hydrological models that had 

been forced with multiple climate projections. Results showed that in some regions such as 

parts of Asia and western United States, the direct human impacts on water cycle is the same 

or even more severe than moderate levels of global warming. Moreover, a research conducted 

by Fekete et al. (2010) showed that the impact of human intervention through construction of 

dams in some water systems is equal or even more severe that the impact of climate change in 

the next 40 year period.  

 

Water scarcity is more evident in arid and semi-arid regions where precipitation is less than 

potential evapotranspiration. In these regions there is a significant pressure on water supplies 

and the competition is severe between different sectors such as agriculture, domestic and 

industry to satisfy their water needs. In addition, historical land use has degraded soil in arid 

and semi-arid regions resulted into low soil quality and its poor structure. Salinity, erosion, 

degradation due to human activity and loss of soil water storage are major threats to soils in 

these regions (Garcia-Franco et al. 2018). In fact, semi-arid and arid regions are facing 

disastrous consequences of water shortage such as declined standard of life, biodiversity loss, 

land degradation and migration (Azarnivand and Chitsaz 2015). Moursi et al. (2017) used a 

probabilistic assessment of changing climate on water shortage in the Sevier River Basin of 

Utah, USA. This semi-arid region is faced with high agricultural water demands and the water 

supply in the basin is mostly snowmelt-driven. Thirty one general circulation models have been 
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used to assess the vulnerability to water scarcity in the study area for the whole twenty-first 

century. Results demonstrated that off-season precipitation and temperature are the most 

sensitive factors which affect water shortage in the basin. In addition, a considerable probability 

of water shortage was found for the period 2025 to 2049. Faramarzi et al. (2017) analyzed 

uncertainties in water supply in another semi-arid region, Alberta, Canada. Major geo-spatial 

heterogeneity and hydrological features were included in the study. They assessed the effects 

of climate, vegetation and glaciers as natural factors as well as irrigation, dams and industrial 

development as anthropogenic factors on water scarcity in water resources in the basin. They 

found severe water scarcity in spring and summer months due to agricultural activities while 

in winter months the scarcity is resulted from demands of petroleum or other industries. In 

addition, their results showed over exploitation of the groundwater in southern sub-basins. 

 

The mentioned stressors and pressures on water supplies coupled with the increasing trend on 

water demand make water resource systems vulnerable and create serious water security threats 

and introduce challenges to water resource management. In particular, these threats are more 

highlighted in complex water resource systems that include a great amount of details. This 

results in the need for assessment of the vulnerability of water resource systems to climate 

change and is aimed at development of policies in order to reduce the risks resulting from 

climate change. The two crucial responses from the vulnerability impact assessment studies are 

limiting global climate change by controlling and reducing the related stressors and moderating 

the effects of unavoided consequences by applying a wide range of policies that are targeted at 

a vulnerable system. As an example, Gosain et al. (2006) conducted an impact assessment 

study on the water resources of Indian River systems and showed that under the different 

greenhouse gas emission scenarios a general reduction in the available runoff is expected. In 

another study on the Yakima River Reservoir system in USA, (Vano et al. 2010) simulated the 

effects of climate change on irrigated agriculture and found increased water shortage for the 

short, middle and long temporal perspectives under different scenarios of climate warming. 

The above mentioned discussions on the limited water availability and increasing water 

demand are resulted in vulnerability of water resource systems as well as some serious water 

security threats which indicates concerns regarding potential harmful states of both human and 

natural water systems (Hall and Borgomeo 2013). A majority of the world’s population 

confronts a high-level of water security which by definition is an acceptable level of water-

related risks to humans and ecosystems. Based on this definition, we need adequate quantity of 

water with acceptable quality to support livelihoods, ecosystems, human health and national 
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security (Bakker 2012).  Therefore, it brings about a crucial need for water resource planning 

and management in particular in arid and semi-arid regions in order to decrease water scarcity, 

increased water and food security and assessment of changing conditions on water security. In 

order to manage water resource systems, decision makers need practical tools to simulate the 

systems’ behavior and analyse the potential threats under different scenarios of change. Next 

section introduces the need for water resource management and explains different methods 

which are widely taken for assessment of water resource systems.  

 

2.2. Integrated water resource management models 

Loucks et al. (2005) argue that limited water quantity and deteriorating water quality have 

constrained countries around the world to revise their development policies based on the 

management of their finite sources of water. This means that Water Resource Management 

(WRM), which has been considered as a supply-oriented, engineering-based approach, has 

been experiencing a change to a demand-oriented, multispectral approach, which can be 

described as integrated water resources management. In other words, IWRM has evolved from 

a water master planning to a comprehensive water policy planning. The previously used 

method is a top-down management approach, whose main focus is on water availability and 

development, whereas the more recent method concentrates on comprehensive water policy 

planning, which addresses the dynamic between subsectors, explores priorities, and builds 

management capacity.  

 

During 1990s members of water professions began to appreciate that water problems are multi-

dimensional, multi-sectorial and multi-regional. This is due to the fact that water raises interest 

in multiple sectors that have multiple causes and/or agendas. As a result, water as a natural 

resource should be considered holistically and be managed across sectors, with wide 

participation in decision making (Giordano and Shah 2014). This resulted in the idea of 

integrated water resource management and more refined definition for IWRM (Biswas 2004). 

The Global Water Partnership (2000) defines integrated water resource management as “a 

process which promotes the coordinated development and management of water, land and 

related resources, in order to maximize the resultant economic and social welfare in an 

equitable manner without compromising the sustainability of vital ecosystems”. 
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In order to practically implement the integrated management strategy in a water system, 

practical tools that integrate knowledge about all the components of the system are required. 

This have resulted in developing integrated water resource management models. In brief, 

integrated assessment is an approach for assessing the trade-offs within components of a water 

resource system such as water and land related management options and stakeholders 

engagement. With this approach, water managers are provided with information that is required 

for diagnosing potential vulnerabilities and advising improved management strategies for 

facing future water security threats and decision making processes (Pahl-Wostl 2003). Nikolic 

et al. (2013) explained that in order for these model to totally fulfill the thorough definition and 

displayed standards, the IWRM modeling process requires (1) formation of feedback system 

structure to understand the dynamic of water resource system’s nature, (2) having adequate 

temporal and spatial scales and (3) engaging stakeholders in the decision making process.   

 

So far, substantial progresses has been made by the integrated assessment strategy. For this 

purpose various integrated water resource management models have been developed and 

employed around the world. These models are able to integrate knowledge from different 

disciplines to address multiple cause effect relationships within a water system. IWRM 

modeling needs a generic, multi-faced modeling approach and it is more valuable when 

economic and environmental objectives are combined. Harou et al. (2009) explained that 

models that integrate different aspects of a water systems, such as hydrology, environment, 

engineering and economy, are called hydro-economic models. In brief, these models are able 

to capture the interaction between water and economy. Moreover, hydro-economic models 

assess the effects of economic water use on water availability and quality in the both short and 

long run (Brouwer and Hofkes 2008). These progresses in IWRM modeling resulted in 

capability of models to include various aspects and components of water systems such as water 

quantity and quality, environment, economy and stakeholder’s participation in decision making 

processes.  

 

To implement integrated water resource management, simulation, optimization or coupled 

simulation/optimization models are applied. Various methodologies have been widely used to 

develop optimization and simulation models such as System Dynamics (SD), Bayesian 

networks, coupled component models, agent-based models and knowledge-based models 

(Kelly et al. 2013). These methods are widely used mainly due to their simple modification 

characteristic. To be more precise, based on the structure of these models, when inclusion of 
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new components to the model is required it is possible to modify the model with affordable 

necessities. Table 1, presents the integrated models that have been developed so far and 

explains the techniques and methodologies used for model development and demonstrates the 

components that have been included in models. 

 

 

Table 1. Techniques, methodologies and components applied to develop integrated water 

resource management models. 

Author 
(Year) 

Location Model type Method Components 

Graveline et 
al. (2014) 

Gállego 
catchment, 

Spain 
Simulation 

Linear 
programming 

algorithm 
Water quantity, economy 

Varela-Ortega 
et al. (2011) 

Upper 
Guadiana, 

Spain 
Simulation 

Linear 
programming 

algorithm 
(weap) 

Water quantity, economy 

Gober et al. 
(2010) 

Phoenix, USA Simulation 
System 

dynamic 
Water quantity, stakeholder 

participation 

Schreinemach
ers and Berger 

(2011) 

Chile, 
Germany, 

Ghana, 
Thailand, 

Uganda, and 
Vietnam 

Simulation 
Agent-based 

model 
Environment, water 
quantity, economy 

Lam et al. 
(2004) 

Seymour 
reservoir, 
Canada 

Simulation 
knowledge-
based model 

Environment, water 
quantity, water quality 

Guan and 
Hubacek 
(2008) 

North China Simulation 
System 

dynamic 
Water quantity, water 

quality, economy 

Molina et al. 
(2010) 

Murcia, Spain Simulation 

Object-
Oriented 
Bayesian 
Networks 

Water quantity, economy, 
stakeholder participation 

Qin et al. 
(2011) 

Shenzhen, 
China 

Simulation 
System 

dynamic 
Environment, water 

quantity, water quality 

Xue et al. 
(2017) 

Northwest 
China 

Simulation 
Bayesian 
networks 

Environment, water 
quantity, stakeholder 

participation 

Molina et al. 
(2011) 

South east 
Spain 

Simulation 
Bayesian 
networks 

Environment, water 
quantity, economy, 

stakeholder participation 

Van Delden et 
al. (2009) 

Guadalentín, 
Spain 

Simulation 
Coupled 

component 
models 

Environment, water 
quantity, water quality, 
economy, stakeholder 

participation 
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Cai et al. 
(2002) 

Syr Darya 
River Basin, 
central Asia 

Optimization 

Genetic 
algorithm and 

linear 
programming 

Environment, water quantity 

Wang et al. 
(2009) 

Haihe River 
basin, China 

Optimization 
Hybrid genetic 

algorithm 
Environment, water 
quantity, economy 

Draper et al. 
(2003) 

South 
California 

water system, 
USA 

Optimization 
Linear 

programming 
algorithm 

Environment, water 
quantity, economy 

Cai et al. 
(2003) 

Maipo River 
Basin, Chile 

Optimization 

General 
Algebraic 
Modeling 
System 

Environment, water 
quantity, water quality, 

economy 

George et al. 
(2011) 

Krishna Basin, 
India 

Simulation-
optimization 

Linear 
programming 

algorithm 
Water quantity, economy 

Ferreyra et al. 
(2008) 

Ontario, 
Canada 

Simulation-
optimization 

Linear 
programming 

algorithm 

Water quantity, water 
quality, stakeholder 

participation 
 

Simulation models address “what-if” scenario situations to assess design or operating 

strategies. Simulation models are relatively precise tools for the investigation of various 

conditions such as different scenario assessment. They are ideally suited to explore specific 

management strategies and are of quantitative understanding and have the capability of 

simulating field behaviour. If properly designed in a common framework, it is possible to 

develop, test and employ simulation models of components of a larger water resource system 

and then compile or link them together to investigate more integrated decisions and behaviours. 

To be more precise, simulation models can assess the effects of alternative water management 

strategies (Loucks et al. 2005). One critical characteristic for simulation models is that they 

permit the examination of the impact of future changes in the water resources systems (Heinz 

et al. 2007) which have resulted in numerous examinations of water resources systems under 

various scenarios and policies (Marques et al. 2006; Kalbus et al. 2012). As an example of 

integrating water quantity and economy components of a catchment, Varela-Ortega et al. 

(2011) conducted a research in the Upper Guadiana basin located in a central arid region of 

Spain, for the purpose of conserving groundwater resources. The competition for water 

between different sectors has risen social conflicts over the years in this arid region. The 

developed simulation based model was able to integrate an economic and a hydrology model, 

WEAP (Water Evaluation And Planning system), to evaluate the spatiotemporal effects of 

water and agricultural policies regarding different climate scenarios. Their model was able to 

predict the response of the system at local and regional scale and in both short and long run. 
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Their results showed that under current water withdrawal policy water supplies are not able to 

satisfy rural communities’ water demand. In another study, Graveline et al. (2014) proposed 

an integrated hydro-economic model which couples physical (hydrology) and economic 

processes (agricultural water demand, reservoir operation) to assess the effect of global climate 

change and policy options on water scarcity and the agricultural economy in the Gállego 

catchment in Spain. A linear programing algorithm was the method applied in the simulation 

model and the authors evaluated different scenarios of ongoing changes in climate conditions, 

hydrology and agriculture. They found that in order to mitigate the negative impacts of climate 

change on irrigation districts, modernization of irrigation technology would be a practical 

approach. In addition, their findings showed the ineffectiveness of a planned reservoir 

extension project.  

 

Gober et al. (2010) used WaterSim, a system dynamic based simulation model, to study the 

role of climatic and uncertainty about the consequences of climate change in the water 

management process in Phoenix, USA. This study assessed the impact of different climate 

scenarios on the catchment’s water budget and identified various policy options to confront 

climate uncertainties. Their model included participation of policy makers and stakeholders in 

decision making process. The article argued that instead of searching for the optimal solution 

for a single reasonable set of future outcomes, actions should be taken to look for adaptive 

behaviors to manage the risk regarding the uncertainty around future climate. Results of the 

study showed that under most of the defined scenarios, per capita water use could not be 

supported anymore and that prompt action must be taken since Phoenix’s water security was 

under serious threat, due to global warming and population growth. Schreinemachers and 

Berger (2011) extended the integration concept by including environment, water quantity, and 

economy component of water systems and developed a software package, which is an agent-

based simulation model, and is built on a decision-making platform in agricultural systems. 

The model has an empirical application and has been used in different study sites such as 

Germany, Thailand and Vietnam. The purpose of this study was to understand how agricultural 

technology, environmental change and management policies affect the population of 

households. The combination of microeconomic modeling approach and the choice of 

alternative biophysical modules make this software package unique.  

 

Lam et al. (2004) developed a knowledge-based model for watershed management to evaluate 

the water quality consequences regarding various proposed policy strategies. The model was 
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able to integrate environment, water quantity, and water quality components by integrating 

hydrological, agricultural, hydrodynamic, transport and dispersion, and water quality modules 

to simulate sediment transportation and water quality for the Seymour reservoir, B.C., Canada. 

Using a simulation model, Guan and Hubacek (2008) presented an analytical approach that 

linked an economic system with a hydrological system in North China, with the ability of 

analysing interactions between the two systems. Their hydro-economic analytical framework 

allowed tracking the amount of input water to the catchment, which was being consumed, and 

the pollution, which was leaving the catchment. This model was developed to assess water 

quantity, water quality and economy elements of the system. In another study, Molina et al. 

(2011) included other aspects of integrated modeling by developing an integrated model to 

assess the issue of water management in an overexploited aquifer in south east Spain, where 

interdisciplinary examinations, in view of integrated methodologies, were required. To 

evaluate the hydrological behaviour of the system, a groundwater flow model was used. In 

parallel, to determine the impacts of various management scenarios on environmental, 

economic, and social aspects in the study area, a decision support system using Bayesian 

networks was built. This integrated model created a robust tool to assess sustainable 

alternatives for the damaged aquifer. Then management strategies were selected to evaluate 

their possible impact in future water management scenarios. Their results suggested a drastic 

change in the groundwater abstraction to long term sustainability of the aquifer. This model 

was developed to look at water quantity, economy and stakeholder participation in decision 

making processes within the water resource system. To understand the integrated socio-

economic and water management system in Shenzhen River catchment in China, Qin et al. 

(2011) developed an integrated model that incorporated environment, water quantity and water 

quality components with the system dynamic platform. The model was able to assess the effects 

of the growing population and the socio-economic development for the succeeding 10 years on 

both water resources and water quality. The model was capable of replicating the interactions 

between social, economic, supply, and environmental issues, plus the pollutant convection in 

the river.  

 

In order to couple ecosystem services  into integrated water resource management, Xue et al. 

(2017) proposed an ES–based IWRM framework, based on a Bayesian network  approach. The 

model was developed, evaluated, and applied with the participation of stakeholders, water 

managers, water management experts, and the research team in Qira oasis area, Northwest 

China. The area is faced with an intense competition between human activities and natural 
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ecosystems. Results demonstrated that the model could successfully integrate ecosystem 

services into the IWRM framework with the engagement of different water users. Molina et al. 

(2010) developed an integrated simulation model for a semi-arid water system in the Altiplano 

region of Murcia in south east Spain. In this area, agriculture and tourism are the main 

consumer sectors of water, while the region relies on groundwater resources. In addition, water 

deficit is extreme and water abstraction exceeds recharge. The aim of the study was to build a 

Decision Support System (DSS) using Object-Oriented Bayesian Networks technique in order 

to improve decision making to engage stakeholders, enabling water managers to identify water 

supply scenarios to find the best policies for the area and integrating hydrological, economy, 

and social factors. The study assessed the impact of a range of management interventions and 

showed efforts should be made for Stakeholder participation in decision making processes. 

Van Delden et al. (2009) increased the number of assessing components of a water system 

including environment, water quantity, water quality, economy, and stakeholder participation 

to developed a flexible modelling framework (DeSurvey IAM) for Guadalentín river basin in 

Spain, which incorporated various pre-existing model components such as hydrology, climate, 

water management, erosion, salinization, land use, irrigation, (coupled component models). 

This model had various spatiotemporal scales with a temporal resolution varying between 

minutes and years and spatial scale from regional to local (1 ha) levels. The model was able to 

capture the non-linear behaviour of a system, had the flexibility to configure integrated models 

while highly improving user interaction. This tool has been developed for strategic planning 

and supporting long-term development of integrated visions within the basin or for the region. 

By increasing the number of options, simulation models are not able to evaluate all possible 

alternatives and the number of required runs increases drastically. Even by using the most 

efficient simulation software, reducing the time and cost of a simulation run will not solve this 

issue. To find a solution in a large complex space of various combinations, optimization models 

are required. They usually benefit from simpler formulations of the system, in comparison to 

simulation models.  

 

To maximize financial proficiency (Alvarez et al. 2004; Moghaddasi et al. 2010) and/or 

potentially minimize the hazard in environmental protection (Fang et al. 2010; Chang et al. 

2011), the optimization method is regularly applied. Optimization method addresses “what’s 

best” scenarios and the system objectives are formulated as an optimization problem. 

Optimization models may be useful in recognizing the decision-variable values, which address 

the best plan, considering assumptions included in the model. As an example, in order to find 
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sustainable development patterns in irrigative basins, Cai et al. (2002) used quantified 

sustainability criteria to form a new optimization modeling framework of the Syr Darya River 

Basin in central Asia. The method used to develop the model was a hybrid genetic algorithm 

and linear programming method. The model ensured long-term and flexible water supply 

capacity in order to satisfy crop water demands as well as industrial and municipal water needs 

with minimized negative environment consequences due to irrigation. Using the model’s 

output, they proposed long-term reservoir operations, facility improvement and crop pattern 

change. Moreover, they showed that long-term water and soil salinity are quite sensitive to 

irrigation expansion and even a small development in irrigation area without investments in 

infrastructure advancement can have negative impacts on environment. Their model was 

considering water quantity and environment whereas IWRM needs a broader modeling 

approach.  

 

Wang et al. (2009) developed a nonlinear optimization model to allocate water resources 

among competing users at the basin scale that also accounted for environmental water demand. 

The model was developed using a hybrid genetic algorithm and applied to the Haihe River 

basin in China. Implementing this approach they were able to consider economic, social and 

eco-environmental objectives and provide better results in comparison to other simple linear 

programming solutions through the integration of all the objectives simultaneously. They also 

proposed a forecasting method in order to predict industrial and domestic water needs and at 

the same time, the model performed better results in comparison to previously developed 

models due to incorporation of various forecasting methods. Another economic-engineering 

model (California Value Integrated Network - CALVIN) was created by Draper et al. (2003) 

for the South California water system, USA. This is a large-scale optimization model that uses 

linear programing algorithm to optimally allocate available water to demands in a great spatial 

scope. Having considered the physical, environmental and policy aspects of the state, the model 

allocated surface and groundwater resources over the historical hydrologic record, to maximize 

the economic indices of agricultural and urban water use. The model was created for providing 

of planning information that previously was not available due to loosely knitted mix of separate 

models whereas by its integration policy and including various components of the water 

system, this model showed much greater spatial scope and detail in comparison with previously 

developed models. The model included environment, water quantity and economy components 

of the water system. Cai et al. (2003) included water quality component and developed an 

optimization model implementing general algebraic modeling system method to integrate 
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hydrologic-agronomic-economic components for the Maipo River Basin, a key agricultural 

region in central Chile. To have a better understanding and management of the basin, the model 

had several components. Flow and pollutant transport, irrigation and drainage processes, 

investment on infrastructure and institutional management governing water policies and 

environmental water use were the main aspects that the model was able to address. Results of 

the study proved that in order for farmers to have more economic proficiencies, investment in 

improvement of irrigation technologies and selling surplus water to urban areas is required.  

 

Nevertheless, optimization models have their own limitations and require simplifications, in 

order to take optimization solution algorithms into consideration. Joint simulation-optimization 

strategies permit optimization models to recognize promising mixes of choices, to test and 

refine the results of the simulation model (Heinz et al. 2007). In Addition, in some cases, it is 

necessary that the solutions of optimization models be examined in more details through the 

use of simulation models. As an example, in order to assess different policy scenarios for the 

water allocation to some sources of demand, George et al. (2011) linked a simulation-based 

model (network allocation model which uses a fast network linear programming algorithm) 

with an economic model (Cost Benefit economic model), in the Krishna Basin, India. Their 

study showed that the coupled models present a more complete analysis and is capable of 

supporting decision making, in comparison to other previously used uncoupled models. In fact, 

the model results was superior to other models due to considering the concept that water should 

be looked at as an economic good and should be allocated with respect to its value. With this 

approach, policy managers can make judgments in terms of both water security and economic 

value. They concluded that in the basin, completion for water amongst different sectors is very 

high and is getting more intense in the future due to the low value of water in agricultural zones 

resulting in high tendency to transfer water to urban users. To analyse agro-environment 

policies to secure water quality in the Province of Ontario, Canada, Ferreyra et al. (2008) 

applied an integrated framework. In this study, the strategy included participant observations, 

document analysis, and semi-structured interviews. They concluded that exploration and 

examination of new ways to link watershed needs to current socially and politically meaningful 

scales in agricultural areas was warranted. Water quantity, water quality and stakeholder 

participation were integrating components of the model. 

 

As presented above, simulation, optimization or coupled simulation optimization techniques 

with different methodologies used to develop integrated water resource management models 
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and were used to tackle a specific problem. For any specific case and problem, a unique model 

was developed and used while for the assessment of a new sort of details within a system a 

different model was being developed. This presents that IWRMs are mainly developed based 

on a specific problem or particular details. In the requirement of any new details, the models 

should be redesigned from scratch and the already available models are not able to be applied.  

In addition, despite substantial progress, integrated water resource models often undergo 

various levels of simplifications, which results in the ignoring of some of the existing details 

in representing water resource systems (McIntosh et al. 2011; Simonovic 2012). For instance, 

information related to water availability and demand are often provided to integrated water 

resource models as prescribed inputs; therefore, physical processes driving these variables are 

not considered. Also, the dynamic between some processes within a water system may not be 

known. As an example, the link between water supply and water demand/withdrawal may be 

unknown or the effect of climate on some processes in a system (e.g. irrigation water demand 

and withdrawal) may be unexplained. In addition, water can be used for in-stream e.g. 

hydropower generation and recreation, or off-stream purposes e.g. agricultural, industrial and 

municipal demands. These processes have different time resolutions. For instance from 

hydropower generation to agricultural activities time scale varies from hourly to weekly or 

monthly. In order to incorporate these processes in integrated water resource models, the 

processes with finer resolutions are often lumped in a way to have the same resolution as the 

processes with coarse resolution. Moreover, these models are regularly developed to analyse 

water systems regionally or globally (including various number of lakes and reservoirs), 

whereas it may be necessary to assess the behaviour of a local reservoir or lake in a basin. To 

overcome these and other limitations in IWRMs, one approach is to develop new models that 

take into account all of the required details, which is obviously time consuming and 

substantially increases the modeling complexity. In some cases, the simulation process takes a 

great amount of time due to unavailability of adequate computational hardware. In addition, as 

IWRMs are often problem-oriented, they become outdated when a new process and/or detail 

needs to be represented (Sterman 2000).  

 

An alternative approach would be to build new generic sub-models, that can be coupled with 

the original IWRM, to describe the required details only where and when needed. These 

modules include new functionalities to represent the required details at the scale of interest. 

This is done with emulation approach which its definition and application is discussed in the 

next subsection.   
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2.3. Emulation Approach 

To tackle the shortcomings of IWRMs and having better representation of water systems, 

emulation approach can be applied. By using this approach, new sub-models are developed 

that are coupled with the original model and are able to add required details of interest to the 

original model. These “adds-on” modules can be seen as model emulators that replicate the 

result of the original IWRM at a common scale and/or variable; but, they include new 

functionalities to represent the required details at the scale of interest (Castelletti et al. 2011; 

Hamilton et al. 2015). In brief, the aim of emulation is to establish trackable surrogate models 

that adequately represent the main dynamics of the original model (Castelletti et al. 2012a; 

Castelletti et al. 2012b; Machac et al. 2016). Ratto et al. (2012) argue that emulation is a vital 

and extending zone of research and represents one of the real advances in the investigation of 

complex mathematical models, with applications ranging from model reduction to sensitivity 

analysis or increasing details within a system. 

 

The application of this approach can be traced back to Blanning (1975), who argued that it is 

possible to utilize the information produced by past simulations for developing a new model 

that addresses some of the limitations in the past model, particularly with respect to reducing 

complexity and/or adding new details. In the context of water resource systems, this can be 

achieved through two distinct approaches based on emulating the structure (i.e. structure-

driven) or the simulation results (i.e. data-driven) of the original model. The structure-driven 

method is based on manipulating the high-dimension equations of the process-based model, 

onto simplified lower-dimension space. This method is mostly used for linear and weakly non-

linear models (Rudnyi and Korvink 2002; Phillips 2003). In addition, Castelletti et al. (2012b) 

argue that structure-driven emulator is basically used in management problems. In addition, 

due to the strong non-linearity of the environment field, structure-driven dynamic emulation 

modeling has been restrictively adopted (Crout et al. 2009; Siade et al. 2010).  

 

In a data-driven approach, the emulator is defined based on a data set of input and output 

samples which have been generated by the main model. The data-driven emulation technique 

is more powerful and flexible, in comparison to a structure-driven technique, due to its ability 

to deal with the non-linear relationship between input and output (Ratto et al. 2007). In 

comparison to the structure-driven technique, this method has been explored largely for 

environment modeling purposes. As an example, van der Merwe et al. (2007) adopted this 
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framework to develop neural network based emulators that could represent the dynamic of a 

large-scale circulation model, extremely fast and accurately. The original model had a thousand 

degrees of freedom and was highly non-linear. Emulators provided accurate simulation of the 

original model, 1000 times faster. 

 

Emulation approach has been increasingly used in recent water resources applications 

(Castelletti et al. 2010; Razavi et al. 2012). To implement this approach, Gaussian process 

(GP), Polynomials, kriging, k-nearest neighbour (kNN), Multiple Linear Regression (MLR), 

Artificial Neural Network (ANN), System Dynamics (SD) and Radial Basis Function (RBF) 

are some methods adopted to develop emulation models. As an example, Hassanzadeh et al. 

(2014) developed an integrated water resource model using system dynamics for scenario 

assessment in the Saskatchewan River Basin, Canada. By emulating an existing water resource 

management model (WRMM), an irrigation and an economic sub-models developed to 

estimate dynamic irrigation demand and the value of water use for various sectors of economy. 

Their results showed that the water system is sensitive to expansion of the irrigation area. 

Through this approach they added required details to the already available model. In another 

study, Di Pierro et al. (2009) used a non-dynamic approach stipulating that designing of water 

distribution systems is a non-linear optimization problem with a great amount of complexities 

which should be tackled through the use of network design models. Global stochastic search 

methods have been used for the design purposes, and since this approach requires a huge 

number of iterations to achieve a satisfactory solution, it is computationally expensive. To 

remedy this issue, in Southern Italy, a metamodeling approach with two multi-objective, hybrid 

algorithms, ParEGO and LEMMO, was implemented to design a medium size network. Results 

of the study suggested that both algorithms are effective tools to design large-scale water 

distribution networks. The use of this approach in their study was for model simplification. In 

addition, Shaw et al. (2017) emulated a hydrodynamic and water quality model (CE-QUAL-

W2) using an artificial neural network and integrated the emulator into a genetic algorithm 

optimization approach in order to maximize hydropower generation conditional to constraints 

on water quality. This method applied to a multipurpose reservoir in Tennessee, USA. The 

model was able to increase hydropower production value with improved water quality. The 

emulation approach was implemented in their study in order for model simplification and 

adding details to the original model. In another study, Castelletti et al. (2010) applied a 

structure-driven emulation approach for iterative approximation of a complex process‐based 

simulation model for scenario assessment in Googong Reservoir, Australia. They integrated 
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science‐oriented and engineering‐oriented sub-models in order to improve water quality in the 

study area. Their results indicated significant improvements by changing the location of already 

installed mixers. In the mentioned study, the application of emulation was for reducing model 

complexity, identifying the underlying mechanism of the system and adding details to the 

already available model. 

 

This thesis suggests a data-driven emulation approach, applied to an optimization-based water 

allocation model in order to reveal the local details within a complex water resource system 

with a greater goal of representing local interplay between water availability, water demand 

and water withdrawals, and their interactions with climate conditions and human decisions. 

Due to intensive socio-economic activities in the region, there are intensive competition for 

water amongst different water use sectors. In addition, due to looming effects of climate change 

in the region, (i.e. declining streamflow, rising temperature and decreasing precipitation), the 

stress on available water in the system is and will be intensified. Applying this approach will 

provide water managers with tools through which they would be able to (1) have better 

understanding regarding water allocation, (2) assess the behaviour of the system under different 

scenarios of change and (3) by having knowledge regarding response of the system to changing 

condition water managers can come up with practical decision making for the system.  
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Chapter 3: Case study and available water resource model 

3.1. Oldman River Basin 

The focus of this study is on Oldman River basin which is a cold climate catchment (27,600 

km2), located in southern Alberta, Canada. The catchment initiates from mountainous 

headwaters in eastern slopes of the Canadian Rockies and extends eastward into the prairies 

towards Alberta/Saskatchewan border. In this region, mountain streams have the fundamental 

role of providing reliable water resource for both nature (aquatic ecosystems) and human needs 

(settlement, food production and industrial activities). Having the mean annual precipitation of 

580 mm to 380 mm and the mean annual potential evapotranspiration of 350 mm to 600 mm 

from west to east, the basin is marked as semi-arid cold region. In semi-arid areas, imbalances 

between water availability and demand is more highlighted and local water availability is 

insufficient to satisfy all demands.  

 

The Oldman River basin has been under enormous pressures during the recent past and the 

extent of water demand in the basin is high relative to the water availability. As discussed 

above, incoming streamflow to this region initiates from Rocky Mountains and is subject to 

change. This change is attributed in two certain characteristics of the headwater streams, 

namely the timing of the annual peak and the annual volume. These characteristics are the main 

factors in order to develop regional water resource management. These components have been 

traditionally assumed to be unchanged in time. This makes management practices sensitive 

when increased variability and change in streamflow characteristics are occurred (Fleming and 

Sauchyn 2013). AghaKouchak et al. (2015a) argue that the variability and change in 

streamflow characteristics are due to changes in natural (climate) and anthropogenic (human 

management practices) systems. In western North America climate variability is mainly due to 

various large‐scale climate circulation patterns, in particular the Pacific Decadal Oscillation 

which results in increased variability in streamflow in this region (Doney and Sailley 2013). It 

is expected that warming climate due to climate change and variability causes more decline in 

winter snow pack in the Rocky Mountains resulting in changing flow characteristics (Prowse 

et al. 2006; Schindler and Donahue 2006; Hipel et al. 2011). This can largely affect the 

interplay between natural and anthropogenic drivers of water resources at this basin and beyond 

(Nazemi and Wheater 2014).  
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In the study area, increased variability has been emerging from recent past and highly variable 

streamflow characteristics included extreme events such as droughts and floods with 

substantial socioeconomic impacts. A major 5-year drought from 2000 to 2004 resulted in a 

$5.8 billion drop in Canada's gross domestic product. During this period, the Oldman Reservoir 

was depleted to its minimum level within 1.5 years (South Saskatchewan Regional Plan 2010). 

This was followed by the flooding in 2013 in which the peak flow reached to 2370 CMS at 

Lethbridge (Alberat Environement 2013) with an estimated cost of at least $5.0 billion (Bonsal 

and Regier 2007; Wheaton et al. 2008; Nazemi et al. 2017).  

 

In addition, in this semi-arid region due to climate warming temperature is increasing. Warmer 

climate increases irrigation water demand and decreases soil moisture. This contributes to 

heighten the vulnerability of this complex water resource system (Tanzeeba and Gan 2012). 

Moreover, plus changes in temperature the form and amount of precipitation are also changing. 

This is considered as other climatic sources of change in the streamflow regime and is attributed 

to global warming (Forbes et al. 2011). Moreover, Climate variability and change can indirectly 

impact streamflow regime through changing the controlling mechanisms of vegetation (Ireson 

et al. 2015). Evapotranspiration dynamics is dependent on natural vegetation and consequently 

have indirect effect on streamflow regime. Due to human intervention in the region’s landscape 

through forest cuts, urbanization and change in the type of vegetation from natural grassland 

to farms, evapotranspiration pattern has changed in time and space resulting in indirect effects 

on streamflow regime (Wheater and Gober 2013). In this region, decreased annual mean 

streamflow combined with the earlier occurrence of the annual peak flows make water resource 

systems vulnerable with significant policy implications (Nazemi et al. 2013).  

 

In addition, in this region water resource management have significant direct impact on 

streamflow characteristics through regulating the natural streamflow regime with large 

networks of dams which store and redistribute natural flows mostly for irrigation purposes. 

Direct human-driven impact on streamflow characteristics is due to abstraction and storage of 

streamflow for consumptive use, resulting in manipulating flow peak, increased evaporation 

and its feedbacks on climate (Nazemi and Wheater 2015b).  

 

Although this is a semi-arid area, the region is one of the main producers of Canada's irrigated 

agriculture and a majority of the available water is consumed by irrigation activities. This 

shows the importance of headwater streams to determine the water availability in this area 
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(Nazemi et al. 2017). The water resource system in this basin is complex, including more than 

100 clusters of demands, along with irrigation, hydropower, industrial, municipal, 

environmental and recreational water demands that are mainly supported by the surface water 

(Alberta Environment 2002b). 88% of the licensed water use is related to irrigated agriculture, 

which are supported by several man-made reservoirs, built since early 20th century. Although 

the basin is currently considered as over-allocated (Nicol and Klein 2006), water withdrawals 

are expected to increase due to socio-economic growth and recognition of environmental needs 

in the system (Alberta Environment 2002a; Gober and Wheater 2014). Among the existing 

reservoirs, the Oldman Reservoir is the largest, with the storage capacity of approximately 490 

Million Cubic Meter (MCM), and plays a key role in regulating the flows and meeting 

downstream water demands. Constructed in 1984 as a multipurpose reservoir (Shpyth 1991), 

the Oldman Reservoir is located downstream of the confluence of the Oldman, Castle and 

Crowsnest Rivers, which respectively have the mean annual discharge of 13.1, 15.9 and 4.9 

Cubic Meter per Second (CMS)  just upstream of the confluence (Rood and Tymensen 2001).  

Oldman Reservoir, is responsible for providing agriculture, industry and municipality sectors 

with their water needs. Lethbridge Northern Irrigation District (LNID) with the area of 92,000 

hectare is irrigated with the stored and regulated water in the Oldman Reservoir. Thirteen 

irrigation districts are forming the Alberta Project Association and the LNID comprises almost 

82% of the irrigation land in the Province. This highlights the importance of the Oldman 

Reservoir in providing LIND with its water demand. In particular, looking at the history of 

droughts in this region illustrates the importance of this reservoir in drought mitigation through 

a practical management. In addition, city of Lethbridge with the population of 93,000 people 

is located downstream of the reservoir which is prone to floods. Again, according to history of 

flooding in this region, Oldman Reservoir can play an important role in flood mitigation. For 

these reasons Oldman Reservoir is the key to provision of the effective water resource 

management in this already-stressed semi-arid cold basin and is selected as the case of this 

study. 

 

The dynamics of the storage at the Oldman Reservoir can be described by the inflow to the 

reservoir, losses through lake evaporation, local water withdrawals as well as the reservoir 

release. The reservoir release supplies the water for the LNID and passes through the city of 

Lethbridge. Figure 1 shows the schematic of the Oldman River up to downstream of 

Lethbridge. 
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Fig. 1. A schematic look at the water resource system developed around Oldman River in 

southern Alberta, Canada, up to city of Lethbridge with the focus on the Oldman Reservoir. 

 

Figure 1 presents the three streamflows to the Oldman Reservoir including Oldman River, 

Crowsnest and Castle River which are joining at UPRES215 junction and enter the Oldman 

Reservoir. The area and length of the reservoir are 17 km2 and 15 km respectively. The river 

passes through the city of Lethbridge which is located at 40 km downstream of the dam. LNID 

was formed in 1919 and located on the northern side of Oldman River and city of Lethbridge. 

57% of cultivated irrigation area goes to forage while cereal, oils, specialty crops and 

miscellaneous are limited to 22%, 15%, 4% and 2%. The figure also shows the loss through 

lake evaporation, the water which is withdrawn to satisfy the local demand and the outflow 

which is released to meet the regional water demand. Based on the available data, expected 

annual lake evaporation, local water withdrawal and reservoir release are 14, 13 and 836 MCM 

at the Oldman reservoir, respectively. These values show the importance of these processes 

because a considerable amount of water is evaporated, allocated to local irrigation networks or 

released for downstream environmental needs, agricultural or other water-based activities.   

 

In Alberta province in order to allocate water to all sub-basins a Water Resource Management 

Model (WRMM) has been developed by Alberta Environment. This model is used for water 

resource management and planning in this semi-arid region and simulates river flows and water 

uses under different current and future scenarios. A description of WRMM is presented in the 
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next section. Using this model, a lot of important water management decisions have been made. 

The model and its application is demonstrated in the next sub-section. 

 

3.2. Water Resource Management Model (WRMM) 

Water Resource Management Model (WRMM) is an operational IWRM, developed for 

planning, decision-making and management purposes for water resources utilization in 

southern Alberta. WRMM is an optimization-based water allocation model that uses the Linear 

Programming technique (LP) to allocate available water to the competing demands, given the 

water allocation priorities and the state of the system. The early versions of the WRMM go 

back to the 1980s, but the model has been continuously updated to accommodate new demands 

and operational policies in the system - See (Alberta Environment 2002a; Nazemi and Wheater 

2014) for more information on the WRMM model used in this study.  

 

WRMM is a surface water allocation model, and in the modelling procedure, a river basin is 

the fundamental unit of the study. The model is able to be run repeatedly, in order to account 

for the response of the river system to changing natural conditions or planning alternatives. 

Application of the model has developed in two forms: basin planning and operational planning. 

The former is applied to assess long term water use alternatives in future with respect to the 

historical data, whereas the latter is employed to assess the short-term future consequences of 

various operational strategies. The basin planning model have been used in this study. 

 

The model has the ability to apply various operating policies/priorities in order to allocate water 

to different sources of demands within a system. In this model, water allocation priorities are 

characterized by a penalty point system and the purpose is to limit the overall system penalty. 

The system topology is represented by a standard set of components. These components are: 

reservoir, hydropower, natural channel, appointment channel, diversion channel, irrigation 

network, junction, and major and minor withdrawal.  The model simulates different choices of 

planning by allocating supply to current or projected demands. The model has the ability to 

represent: (a) water supplies, such as headwater, runoff, in-diversion, (b) reservoir storage, 

outflow, precipitation, and evaporation, (c) diversion channels, (d) irrigation consumption, (e) 

hydropower production, (f) major and minor consumption demands from large cities or 

industries, to small municipalities and industrial uses. The model application may vary from a 

simple system, including some of the above mentioned processes, to an extensive complex 
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system comprising hydroplants, diversion canals, in-stream channels, irrigation, and other 

consumptive uses.  

 

The system operating policy is based on a defined ideal state and a number of zones 

corresponding to derivations above and below the ideal state. In the case that enough water is 

available, the model satisfies all ideal requirements. Otherwise, the needs are satisfied in the 

order of priorities, which have been assigned by the user. These priorities are specified by 

penalty values that represent derivation from ideal levels. The higher penalty represents the 

higher priority of allocation. In the simulation procedure, deviations initially happen in those 

zones that have low penalty values, and after that, continues to zones having higher penalty 

amounts. 

 

In order to clarify how the model works mathematically, a simple water system, as an example, 

is explored – see Figure 2. This system includes a single reservoir with two penalty zones 

corresponding to maximum and minimum water level/storage, an urban centre, an irrigation 

district, and a natural channel. Except for the reservoir, all other components have one penalty 

zone. The values of the penalty zones are: 1000 when the water level in the reservoir stands 

beyond minimum and maximum limits, 900 for natural channel, 650 for urban centre, and 600 

for irrigation district. Water demand for the natural channel, urban centre and irrigation district 

are 10, 20 and 15 cubic meter per week, respectively. In this system the reservoir is the source 

of water allocation to all of the components. However, the water level/storage should not go 

beyond the minimum or maximum levels, otherwise a penalty of 1000 is applied. Therefore, 

the objective function of this simple system would be as presented in Equation 1. 

 

 

 

 

 

 

 

 

Fig. 2. A schematic of a water system to 

explain WRMM operation mechanism 

(Hosseini Safa 2015). 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑚𝑖𝑛൫900 × (|10 − 𝑥ଵ|) + 650 × (|20 − 𝑥ଶ|) + 600 × (|15 − 𝑥ଷ|)൯ (1) 

  

where 𝑥ଵ, 𝑥ଶ and 𝑥ଷ are the volume of water allocated to the natural channel, urban centre, and 

irrigation district, respectively. In the case that water level goes under or above the minimum 

or maximum level, a penalty of 1000 is applied to the equation. If the system has enough water 

to allocate to all the defined needs, the objective function would be zero. However, at the water 

scarcity condition, the model allocates more volume of water to natural channel to minimize 

the objective function. The reason is that the penalty value of this component is higher than 

others. The second and third priorities go to the urban center and irrigation district as they are 

of less penalty value. 

 

WRMM has successfully been applied to the South Saskatchewan River Basin with the greater 

goal of project planning. This model has been used to analyse: (a) a broad range of networks 

of rivers and reservoirs, (b) various water use options, and (c) several water allocation 

priorities. Alberta Environment has used this model to make decisions on irrigation licensing, 

reservoir operation, and instream flow allocations. This model has also been applied to analyse 

the consequences of operating strategies in dry years. The new versions of this model are able 

to capture the behaviour of the modelled system in weekly time-steps which raise the accuracy 

of the simulations.  

 

The model used in this study, operates at the weekly scale and requires streamflow, water 

demands, license priorities, operational policies, in-stream flow needs, and the apportionment 

requirements, along with physical characteristics of the reservoirs, as prescribed inputs. 

Therefore, the model has limited application if some input variables such as irrigation water 

demand or lake evaporation are subject to change; or understanding the interactions between 

these variable and their natural and anthropogenic drivers are sought. For instance, irrigation 

demand is a prescribed input to WRMM and the model does not consider the dynamic 

interactions between the irrigation demand, local climate, and antecedent water availability 

(Hassanzadeh et al. 2014). Similarly, reservoirs’ gross evaporation are provided to the model 

as prescribed inputs; therefore, the effects of changing temperature and/or lake storage on 

reservoir evaporation are not represented. In addition, the dynamic interplay between water 

demand and water withdrawal is determined through a complex optimization procedure; hence, 
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the effects of relevant drivers on changing the demand-withdrawal dynamics is not explicitly 

characterized. Here the aim is representing these details at the Oldman Reservoir through the 

proposed emulation framework, with the greater goal of understanding the integrated 

performance of the Oldman Reservoir under changing inflow, climate, and irrigated area. 

 

3.2. Available data 

The aim of this study is to represent local details within Oldman Reservoir which are missed 

in the main water resource system model (WRMM) and to evaluate the behaviour of the system 

in different defined scenarios through an impact assessment study. To develop sub-models that 

address the required details, the data is derived from WRMM. Precisely, the inputs/output pairs 

of the weekly WRMM model are used to develop our models. The data consists of lake 

evaporation, precipitation, water withdrawal, irrigation water demand, reservoir release and 

storage available for 63 years spanning from January 1938 to December 2000. In addition to 

agriculture, Oldman Reservoir allocates water to other sectors such as industry and 

municipality. Since here the focus is on irrigation, water demand related to other sectors are 

treated as must-meet constant values. In this case, the data related to industry and municipality 

water demand are obtained from WRMM and lumped together and is added to estimated 

irrigation demand to find total water demand. In addition temperature time series obtained from 

Environment Canada’s historical climate archive (http://climate.weather.gc.ca). The biweekly 

time series of the data used in this study is presented in the Supplementary Information 

(Appendix).  

 

Having the required data, a comprehensive model development protocol is proposed to 

configure a wide range of alternative hypotheses for emulation models. Then their performance 

is rigorously tested, individually and in coupled settings, where non-falsified emulators for 

each variable of interest are linked with one another. To showcase the practical utility of the 

proposed emulation approach, sensitivity analyses are performed to reveal the impact of 

changes in natural and human conditions (i.e. inflow, temperature, precipitation and irrigation 

area) on the reservoir’s performance. 
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Chapter 4. Rationale and Methodology 

As discussed previously, water resources are under enormous pressure. Due to natural and 

anthropogenic stressors, imbalances between water availability and demand is heightened. This 

makes water resource systems vulnerable and brings about needs for managing water system. 

To examine the future challenges, practical tools are required in order to investigate different 

scenarios of changing climate, water availability and water demand at different spatial and 

temporal scales and understand their potential impact on water resource systems. These tools 

can help water experts to understand the effect of scenarios of change on different sectors and 

develop sustainable water management strategies. As integrated water resource management 

models are often problem-oriented, they focus only on those processes, variables and/or scales 

that are relevant to the problem in hand. In many cases, therefore, a new model is needed if a 

new process and/or detail needs to be represented in the model structure. A good example in 

that regard is the issue of water demand, which is given to water allocation models mainly as 

prescribed inputs. As a result, the effects of local climate and/or human management cannot be 

directly seen by the model. Here, instead of building up a new IWRM model to support more 

details, it would be more efficient to develop adds-on modules that can represent more details 

only when and where needed. These sub-models include new parametric functionalities to 

support representing new processes, variables and/or scales and can be identified in a way that 

replicate the results of the already available integrated water resource management model at a 

common scale and/or variable.  

 

As a result, the key assumption here is that the existing IWRM (and/or its prescribed inputs) 

can sufficiently represent the system dynamics at larger scales and/or lower resolutions. 

Therefore, using surrogate models (or emulators) for developing these adds-on modules is 

suggested. Referring back to the example of water demand, the emulator can include a 

procedure for calculating water demand from climate (e.g. by incorporating temperature in the 

emulator) and anthropogenic proxies (e.g. by considering human intervention embedded is 

changing irrigation area) and can be parameterized in a way that can replicate the prescribed 

water demands of the existing IWRM. Emulators can also include new functionalities to 

represent the processes that take place within the simulation time-step of the existing IWRM. 

For instance, the common scale of the existing IWRM can be monthly, including for the water 

allocation for hydropower production. In such cases, the emulator can represent the water 

allocation for hydropower at finer daily or hourly scale and can be parameterized in a way that 
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can replicate the monthly hydropower allocations, represented by the original IWRM. 

Parameterized emulator can be then used to explore the behaviour of the water resource system 

where more details are needed either individually or in relation to other system components. 

Figure 3 shows the general idea behind the proposed emulation framework, in which the 

emulator can be parameterized using the input-output relationships of the original IWRM.  

 

 

Fig. 3. A schematic view to the proposed data-driven emulation framework for supporting 

detailed representation in an existing IWRM. The emulator is calibrated in a way that replicates 

the result of an existing IWRM at a common scale and/or variable.  

 

Wheater et al. (1993) classified modeling techniques based on their model structure, spatial 

distribution, and spatial-temporal application in three clusters namely, metric, conceptual and 

physics-based models. Characteristics of metric models are found based on observations. In 

brief, the system response is established from the available data. Therefore, this approach is 

essentially empirical. The simplicity of this technique has allowed it to be applied in different 

fields, in particular hydrological modeling. However, metric models are dependent on the range 

of available data with which they have been developed and although they have been used for 

extrapolating (e.g. extreme events or ungauged catchments), results are not often reliable. Data-

driven is a metric modeling approach and is applied for time series analysis and simulation. 

The model structure is an empirical transfer function developed based on the available input-
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output data. The advantage of this technique is its ability to determine the structure of the model 

without prior hypothesis. In contrast, in conceptual models the structure is described before 

any modeling being undertaken. In addition, not all the model parameters have physical 

interpretation. Hence these parameters should be estimated through calibration using observed 

data. In terms of complexity, these models can vary from simple to highly complex levels. 

Moreover this modeling technique perform less accuracy in comparison with metric models. 

Physic-based models are developed based on continuum mechanics. In these models, equations 

are solved numerically using a finite difference or a finite element scheme. Therefore, the 

complexity of these models are rather high. The physics behind the model structure are based 

on small-scale experiments. The parameters of physics-based models are found at a point. Then 

model uses averaged parameters at grid scale which is greater than the scale of variation of the 

process. This affects the accuracy of this method. These models perform less accuracy and 

highest uncertainty in comparison with the other two models (Pechlivanidis et al. 2011).  

 

Since the metric technique is a simple and accurate data modeling approach, is applied in this 

research. Here, statistical modeling (data modeling) technique in time domain is applied in 

order to develop metric models (hereafter data-driven models). Data modeling procedure often 

include a standard approach: 

1- Determining independent variables that can affect dependent variables. 

2- Examining any significant time lag between dependent and independent variables. 

3- Finding potential mathematical functions that can map from independent to dependent 

variables. 

4- Finding the parameters of the chosen model.  

5- Evaluating the accuracy and uncertainty of parameterized models. 

6- Testing the parameterized models. 

7- Falsifying developed models to fine top non-falsified options that can properly describe 

the dependent variable.  

 

Here, using the data-driven approach for developing emulators is suggested. Mathematically, 

the structure of a data-driven emulator can be described using a functional mapping as the 

following:  

 

𝑉෠(𝑡) = 𝐹(𝑿( 𝜣∗)) (2) 
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where 𝑉෠  is the emulated results of the existing IWRM model at a common scale and/or variable; 

𝐹(. ) is the functional mapping; 𝑿 is the vector of emulator inputs and 𝜣∗ demonstrates the 

matrix of time signatures, for which inputs to emulators are provided. As an example, if 𝑌 =

𝑓൫𝑋ଵ(𝑡 − 1), 𝑋ଶ(𝑡)൯, X = ൤
𝑋ଵ

𝑋ଶ
൨ and  𝜣∗ =  [1   1]. ቂ

𝑡 − 1
𝑡

ቃ. In this equation X is the matrix of 

predictors, 𝑋ଵ 𝑎𝑛𝑑 𝑋ଶ, in time 𝑡 − 1 𝑎𝑛𝑑 𝑡, respectively.  

 

The procedure of developing emulators involves finding the optimal inputs, structures and/or 

parameters of the functional mapping in a way that emulated results replicate the simulations 

of the existing IWRM. Here, the focus is on two data-driven methodologies, i.e. Multiple 

Linear Regression (MLR) and Artificial Neural Networks (ANNs) to form the structure of the 

emulators. These approaches represent the two ends of the data-driven modeling spectrum in 

terms of transparency and complexity. The input variables to emulators are identified either 

through expert knowledge (i.e. prescribed inputs) or through a formal input variable selection 

(i.e., Partial Correlation Input Selection – hereafter PCIS). Below these methodologies are 

briefly introduced.  

 

4.1 Multiple Linear Regression 

Multiple Linear Regression (MLR) is a generalized form of Linear Regression, by including 

many terms in a function rather than one intercept and a slope. The MLR represents the linear 

association of a set of independent variables to one predictand – see Draper and Smith (2014). 

The MLR with response 𝑌 and terms 𝑋ଵ, 𝑋ଶ, … to 𝑋௣ has the general form of: 

 

𝐸(𝑌|𝑋) = 𝛽଴ + 𝛽ଵ × 𝑋ଵ + ⋯ + 𝛽௣ × 𝑋௣ + 𝜀 (3) 

 

where 𝐸(𝑌|𝑋) means that 𝑌 is conditioned to 𝑋s. the 𝛽s are unknown parameters that need to 

be estimated. Ɛ is the remaining unexplained noise in the data, or the related error. The equation 

is a linear function of the parameters. When 𝑃 = 1, the simple linear regression function is 

obtained. At the time 𝑃 = 2, the response surface is in a three dimensional plane. When 𝑃 > 2 

the response surface changes to a hyperplane in a 𝑃 + 1 dimensional space.  
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The null hypothesis in linear regression technique is that the coefficient relating independent 

variables to dependent variable is zero. In other words, there is no relationship between 

predictand and predictors. Whereas the alternative hypothesis is that this coefficient is not equal 

to zero, meaning that there is some kind of relationship between independents and dependent 

variables. In linear regression technique there are some underlying assumptions, such as: (a) 

the constant variance of residuals, (b) no existence of outliers and (c) normal distribution of 

residuals. These assumptions can be assessed by examining the residuals. By plotting the 

predicted values against the residuals it would be possible to assess the constant variance 

between model estimations and residuals. In addition, from the plot it is possible to look for 

outliers in the data. To check the third assumption, it is possible to produce a normal probability 

plot. The ordered values of residuals are plotted against the expected values from the normal 

distribution. In the case that residuals are normally distributed, they lie on the diagonal 

approximately (Tranmer and Elliot 2008).  

 

The statistical regression is the simplest form of data modeling and is one of the most widely 

used statistical methods in different fields. It is normally the first approach adopted for 

statistical modeling and is considered as a benchmark modeling approach due to its simplicity. 

Here, both independent and dependent variables are normalized using their observed range in 

the scale of [0.1 0.9]. Having the normalized values they are used to develop emulation models. 

This makes equations dimensionless and considered buffers would facilitate accommodating 

outliers and extreme events. Then observed data ranges are used to rescale estimations obtained 

from dimensionless equations into their actual domain (Hsu et al. 1995). MLR is associated 

with powerful parameterization schemes such as the Maximum Likelihood Method, with which 

the associated parametric confidence interval and predictive uncertainty can be quantified 

(Beven and Smith 2014; Giles et al. 2016). Due to its simplicity, the MLR has been widely 

used to find functional mappings in the context of emulation models (House 2011; He et al. 

2014; He et al. 2015; Malik and Kumar 2015; Mogaji et al. 2015).  

 

4.2 Artificial Neural Networks 

ANNs are robust tools that can be used for the modeling of complex non-linear relationships 

between inputs and outputs by simulating the functional aspects of biological neural networks 

(Bishop 1995; Russell and Norvig 2016). ANNs behave similarly to statistical methods and 

learn from the empirical samples. The structure of ANNs is not specified prior to any modelling 
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being undertaken and this makes the method a non-rule-based technique. The network consists 

of a number of neurons as information processing units, which are linked to input variables, a 

central processing unit and outputs – see Figure 4. Inputs are received through the links from 

outside the network or other neurons (𝑋). Each link is assigned a weight (𝑊) which represents 

the strength of the connection between two nodes. The information is processed in each neuron 

by adding up the weighted inputs and bias (𝑏) – see Equation 4, and is passed through the 

activation function 𝑓(𝑡) – see Equation 5. The activation function is a mathematical transfer 

operator that maps predictors to target variables and forms the output of the nodes. There are 

various types of activation functions, i.e. sigmoid, linear, threshold, Gaussian, or hyperbolic 

tangent function, that can be chosen based on the network’s type and the training algorithm. 

One of the most commonly used functions that has been employed in this study is log-sigmoid 

because it is continuous, its derivatives are simple to find, and it provides non-linear response 

(ASCE 2000). ANNs have the ability of learning through training. This requires a set of data 

which consists of series of input and corresponding output vectors. During training, the weights 

in the network are adjusted to find desired output. The estimation may not equal the desired 

output. In this case an error signal (difference between actual and desired output) is defined 

and the network uses this signal to justify the weights to minimize the error signal (Gardner 

and Dorling 1998).   

 

𝑡 = ෍ 𝑊௜𝑋௜ + 𝑏

௡

௜ୀଵ

 (4) 

𝑓(𝑡) =
1

1 + 𝑒ି௧
 (5) 

 

 

Fig. 4. Schematic diagram of an artificial neuron (Gardner and Dorling 1998).  
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In water resource problems, one of the most popular types of ANNs is the feed forward neural 

networks (FFNNs). In the structure there are input layers with different numbers of neurons, 

one or more hidden layers, and an output layer – see Figure 5. In FFNNs the information flows 

in one direction, from input layer through hidden layer, and finally goes to the output layer. In 

this process the neurons are fully connected. Each neuron in the hidden layer receives the 

information from the input layer through the weighted connection links. Then the signals is 

processed in each hidden layer and the output is passed to the output layer.  

 

 

Fig. 5. Configuration of three-layer feed forward ANN with three neurons in input layer, four 

neuron in hidden layer and one output (Gardner and Dorling 1998). 

 

When developed models are running with different initial conditions (weights and biases), the 

results are different estimations of observed output. Ensemble of estimations is known as the 

uncertainty regarding developed modes. The uncertainty reflects the inability to determine 

exact values of model parameters, process understanding and model approximations. Various 

techniques such as Generalized Likelihood Uncertainty Estimation (GLUE), frequentist 

approaches, and standard Bayesian approach have applied to quantify the uncertainty in 

hydrologic predictions. Having knowledge regarding the uncertainty of model estimation will 

help decision makers to assess the behaviour of systems under possible scenarios (Renard et 

al. 2010). Here, to address the predictive uncertainty, each developed ANN-based model is 

trained under a certain number of iterations with different initial conditions, resulting in 

different estimations of the target value. The ensemble of all estimations represents an envelope 

which shows the predictive uncertainty of the developed model.   

 

Neural networks have been considered an effective alternative to traditional statistical 

techniques. It has been shown that this technique can approximate any smooth and measurable 

function. It has the capability of modeling highly non-linear functions and if properly trained 
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can accurately generalize with new unseen data. These characteristics make this technique 

attractive alternative to numerical models and other statistical approaches (Gardner and Dorling 

1998). Moreover, there are various neural networks architectures which are being used in 

environment science, e.g., static-feedforward and dynamic-feedback neural networks (Chiang 

et al. 2004), hierarchical neural networks (Schaap et al. 1998), and hybrid neural networks (Jain 

and Kumar 2007). 

 

Here, a feed-forward neural networks, equipped with Levenberg-Marquardt back propagation 

learning algorithm, is used (Riedmiller and Braun 1993). The back propagation algorithm is 

the most widely recognized training algorithm in the FFNNs in water resource modeling (Maier 

and Dandy 2000).  This method is a gradient descent technique that adjusts system weights and 

biases in a way that minimizes network error. This algorithm benefits from iterative processes 

that lead to minimization of the error between network output and targeted output. Initially, the 

data goes through the network to the output unit. Then the network error is computed and is 

fed backward to the network towards the input layer depending on the magnitude of the error. 

This process continues until the output data reaches an acceptable level – see Deswal and Pal 

(2008). This ANN structure has been extensively applied in hydrological modeling literature 

(Dawson and Wilby 2001; Mekonnen et al. 2015).  

 

4.3 Partial Correlation Input Selection  

The performance of statistical models considerably depends on input variable selection. Linear 

correlation-based selection algorithms are among the most widely used input variable selection 

schemes in hydrology (Wu et al. 2014). Partial Correlation Input Selection (PCIS), proposed 

by May et al. (2011), is a popular linear correlation-based scheme and is used in this study in 

order to select best models’ proxies form a potential pool of variables. The PCIS adopts a 

forward selection strategy looking at the linear relationship between predictors and predictand. 

The methodology is based on the residual information from a new predictor and is terminated 

when adding new predictors causes no improvement in 𝐵𝐼𝐶 value (see Equation 17) obtained 

for predictand residuals. The Sum of Squared Errors is considered as the error density function 

for 𝐵𝐼𝐶 calculation. This will provide a trade-off between goodness-of-fit and model 

complexity by penalizing more complex models. Here the proxies that can improve the BIC 

value for predictand residual more than 10% are considered.  
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In simple PCIS, the linear correlation coefficient (i.e. Pearson correlation coefficient) is utilized 

to measure the strength of the relationship between predictors and predictand, and MLR is used 

to estimate the residuals. However, a sensitivity analysis is also carried out by implementing 

Spearman’s rho and Kendall’s tau dependence coefficients in the input variable section scheme 

in this research, instead of Pearson correlation coefficient – see Genest and Favre (2007) for 

information about Spearman’s rho and Kendall’s tau dependence coefficients. In brief, given a 

candidate set, 𝑆, and output variable, 𝑌, the PCIS proceeds at each iteration by finding the new 

candidate, 𝐶, that minimizes the 𝐵𝐼𝐶 value with respect to output variable, conditioned on the 

previously selected input. If adding the candidate 𝐶, improves the performance of the model 

by decreasing the 𝐵𝐼𝐶 evaluation criterion, the selection continues, otherwise, there are no 

more significant candidates remaining and the algorithm terminates (Fernando et al. 2009; May 

et al. 2011).  

 

4.4 Impact assessment  

 So far, different methodologies have been adopted to address vulnerability of water resource 

systems (Conway 1996; Sheffield et al. 2009). Two top-down and bottom-up approaches are 

taken in order to apply the vulnerability assessment studies in a water resource system. In the 

top-down approach, different climate scenarios are obtained from Global Climate Models 

(GCM). However, the climate variables need to be bias corrected (Piani et al. 2010) and using 

downscaling techniques their spatial resolution adjusted to the scale of interest prior to their 

use in hydrological models (Wilby et al. 2002). Then based on downscaled climate projections, 

Hydrological Models (HMs) are used to estimate different scenarios of streamflow. This data, 

in the next stage is fed into a water resource system model to estimate the performance of a 

water resource system under the projected scenarios of streamflow (Vicuna et al. 2010).  

However, both climate models and downscaling techniques are uncertain (Jenkins and Lowe 

2003; Smith et al. 2009). In parallel, hydrological models translate climate projections to 

streamflow with a large uncertainty which later propagates in the impact assessment analysis 

of a water resource system (Nazemi and Wheater 2014).   

 

An alternative approach for water resource system vulnerability assessment is analyzing the 

response of the systems without using downscaled GCMs projections (Prudhomme et al. 2010). 

In other words, in this approach in order to implement vulnerability assessment study, the focus 

is not only on the future states of the system. this makes a difference between this approach 
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and the previously introduced top-down vulnerability assessment method (Wiley and Palmer 

2008). Instead of predicting the future risks, the bottom-up approach identifies the critical 

conditions under which the system is vulnerable (Brown and Wilby 2012). In order to 

implement assessment studies using bottom-up approach, initially a set of critical variables to 

which water resource systems are sensitive are defined. Then a feasible range is determined for 

each critical variable which reflects different possibilities for future climate scenarios. A large 

number of climate projections or stakeholders’ needs can be considered in order to identify the 

range associated to each climate variable (Stainforth et al. 2007; Brown et al. 2011). Then using 

the defined range for critical variables, the response of the water resource systems can be 

assessed through water resource system models. Since this approach covers a wider range of 

scenarios, therefore is able to address better understanding of possible systems’ response to 

changing conditions (Herman et al. 2015).  
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Chapter 5. Model development  

5.1 Variables and data support  

Here, the objective is to represent local details which are missed in the existing water resource 

system model (WRMM). To add these details, a set of sub-models are developed through which 

it would be possible to describe the required local dynamics. The sub-models determine the 

dynamics of the storage at the Oldman Reservoir. These elements include (1) reservoir 

evaporation, which is the local loss of the available water; (2) local water withdrawal, which is 

the water uptake for local irrigation demands; and (3) regional water withdrawal, which is 

manifested as the reservoir outflow, released for various purposes downstream. Detailed 

understanding of the water withdrawals requires characterizing the water demand, with which 

water deficit can be estimated. Having knowledge regarding water deficit will enable water 

managers to take measures for effective decision making in order to manage, plan and minimize 

the consequences of water shortage. As here the aim is understanding the local details of the 

water resource system at the Oldman Reservoir, the focus is to consider characterizing (4) local 

water demand for irrigated agriculture. It should be noted that there are other non-irrigative 

water withdrawals at the reservoir related to local municipal and industrial demands. These 

withdrawals however are minor and related to constant must-meet demands that can be 

considered as known losses at each time-step.  

 

Here, building up a suite of MLR- and ANN-based emulators for each of the variables 

identified above is considered, using the inputs/output pairs of the weekly WRMM model, 

available for 63 years spanning from January 1938 to December 2000. Then using a 

reductionist bottom-up approach various emulation models are built, in which the available 

data is split into three time episodes for calibration (i.e., 1938 to 1975), testing (1976 to 1988) 

and validation (1989 to 2000). By taking the reductionist bottom-up approach a group of 

alternative hypothesis are defined, developed and refined to adopt the choices that are more 

efficient to represent the required information. Calibration period is exclusively for setting up 

and parameterizing a wide range of competing emulators (i.e. alternative hypotheses) for the 

four variables identified above. The competing alternatives are defined in order to be compared 

with one another and to find models that are describing the required details in the system with 

higher efficiencies. In addition, having a suite of alternatives it would be possible to address 

the uncertainty regarding the variables that are being modeled. The behaviour of emulators 

developed for each of the variables are explored and intercompared based on their optimality 
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and complexity by defining and using goodness-of-fit measures during the testing period, in 

which some emulators are falsified based on their relative performance in tracking the 

corresponding WRMM time series. The selected emulators are then able to represent the 

dynamic of the variables based on which they have been developed with highest efficiency. 

But these individual emulators do not depict interactions between variables and cannot be used 

individually to assess the behaviour and dynamic of the whole system. In order to have the 

required understanding regarding the dynamic of the system, the non-falsified emulators for 

the considered variables are then mixed-and-matched to provide a suite of competing 

Integrated Emulators (IEs). These IEs not only are used for representing the interactions 

between system’s components but based on the underlying concept behind their development, 

thy have the ability for including the effect of climate and human actives (coupled dynamics) 

on water allocation at the Oldman Reservoir. The performance of the IEs are further 

investigated during validation phase and some of the IE alternatives are falsified based on their 

relative performance in tracking the WRMM simulations. The non-falsified IEs are then used 

for impact assessment at the reservoir location. Below the procedure of model development is 

outlined.   

 

5.2 Emulators with known and unknown input variables  

Both MLR- and ANN-based emulators require a set of proxies (predictors) with which the four 

variables of interest, in particular lake evaporation, water withdrawal, irrigation demand and 

reservoir release can be quantified. Three different scenarios with respect to the priori 

knowledge (based on expert knowledge and literature) about the necessary inputs of the 

emulators are considered. In addition, to examine the expert knowledge regarding related 

proxies, the correlation between inputs of each model and the target variables is assessed. In 

the first scenario of input selection, it is assumed that a perfect knowledge about the necessary 

input variables and their associated time signatures is available and therefore the inputs to each 

emulator are fully known. Second and third scenarios are related to different levels of partial 

knowledge about the emulator inputs. In the second scenario, the complexity of predictor 

selection is increased. In this scenario, it is assumed that a pool of potential variables in their 

relevant time signatures is available for each emulator, from which a set of input variables can 

be selected. For each emulator, the pool of potential inputs include same proxies considered 

based on perfect priori along with various nonlinear transformations of these variables (e.g. 

inverse, square root, squared, cubed, logarithm and exponential). In brief, in this scenario, 
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predictors of emulators are unknown but their relevant time signatures are known. In other 

words a partial knowledge regarding the inputs of models is available. In the third scenario, the 

complexity of predictor selection is even heightened. In this level, it is assumed that not only 

the inputs of emulators are unknown but their relevant time signatures are also unexplained 

and therefore they should be identified from a pool of relevant time signatures. In the third 

scenario, similar variables and functional transformations that had been used in the second 

scenario of predictor selection considered. Moreover, the variables with one-step time lag are 

also included in the pool of potential inputs. When emulators’ inputs are unknown, the PCIS 

chooses an optimal set of predictors from a pool of potential input variables. 

 

Here, the input variables and the functional mapping for each emulator related to the first 

scenario (i.e. perfect priori) is outlined and extended to the second and third scenarios for input 

selection. Considering a perfect priori for input variables for emulators, the gross evaporation 

from the Oldman Reservoir at the end of each week as 𝐸  (mm/week), can be linked through a 

MLR- or ANN-based mapping 𝑒𝑣𝑎 to the initial reservoir storage 𝑆 (MCM/week) at the 

beginning of the week and the average temperature  (℃) during the week: 

 

𝐸௧ = 𝑒𝑣𝑎(𝑆௧ିଵ, 𝑇௧) (6) 

 

In developing this equation it is assumed that evaporation throughout the lake area is the same. 

In other words, the effect of water depth in evaporation procedure is ignored. This emulator is 

a continues mathematical function with a negative and positive range. Negative numbers are 

due to winter snow deposit (e.g. blowing snow or sublimation) which is not precipitation 

related. Weekly gross reservoir evaporation at the Oldman Reservoir is a prescribed input in 

the WRMM, with which the parameters of the mapping G can be identified. The storage 

information can be obtained through WRMM simulation and the weekly temperature data at 

the Oldman Reservoir is taken from the climate station at the City of Lethbridge. The time 

series of lake evaporation, temperature and reservoir storage are shown in Figures A2, A4 and 

A8 (Appendix), respectively. This representation allows assessing the effect of climate on the 

evaporation amount. To examine the correlation between lake evaporation and selected 

predictors, the time series of these variables are plotted and presented. Figure 6 shows the 

correlation between evaporation as the predictand and storage and temperature as predictors of 

the model. In this figure, x-axis shows storage in MCM/week (Panel- a) and temperature in °C 
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and y-axis belongs to lake evaporation in mm/week. The range of storage in Pane-a, is from 0 

to 490 MCM and the range of temperature in Panel-b, is from -31 °C to +25 °C.  

 

 

 

 

 

Fig.6. Correlation between dependent variable (lake evaporation) and independent variables 

(storage- Panel a, and temperature- Panel b) at Oldman Reservoir.  

 

Panel (a) shows the correlation between storage and lake evaporation and Panel (b) 

demonstrates the dependency between temperature and lake evaporation. Both Panels show a 

significant correlation between predictors and the predictand. Based on Panel (a), lake 

evaporation is more significant when reservoir storage is more than 250 MCM. Panel (b) also 

shows the strong dependency between the two variables. Increasing temperature results in 

higher evaporations values. In particular, when the temperature is positive, the evaporation 

exacerbates. Based on these panels, the maximum lake evaporation is 50 mm/week. 

 

Since agriculture is a developing activity and is of high priority and interest in this region, water 

withdrawal 𝑊𝐷 (mm/week/hectare) is considered per unit of area in this study. Inclusion of 

area will enable the assessment of response of the system to developing irrigation networks in 

this area. Water withdrawal per unit of area is linked through MLR- or ANN-based mapping 

𝑤𝑤𝑑 to irrigation demand per unit of area 𝐷 (mm/week/hectare), irrigation area 𝐴𝑟𝑒𝑎 (hectare) 

and the reservoir storage 𝑆 at the beginning of allocation week (MCM/week): 

 

𝑊𝐷௧ = 𝑤𝑤𝑑(𝐴𝑟𝑒𝑎 × 10 × 𝐷௧, 𝑆௧ିଵ) /(𝐴𝑟𝑒𝑎 × 10) (7) 
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This equation links the dynamics of water withdrawal to the storage condition and total 

irrigation demand. The multiplier of 10 is for unit conversion. Such inclusion of irrigation area 

in this equation can assist analyzing the sensitivity of the water withdrawal to changes in 

irrigation area. In developing this emulator, we assumed that water withdrawal is constant and 

will not change during an operational week. This equation is a continues mathematical function 

with a positive range. The time series of water withdrawal and irrigation demand derived from 

WRMM are shown in Figures A5 and A6 (Appendix), respectively. Figure 7 demonstrates the 

correlation between water withdrawal as the dependant variable and irrigation demand and 

storage as independent variables of the model. 

 

 

Fig.7. Correlation between dependent variable (water withdrawal) and independent variables 

(irrigation demand- Pane a, and storage- Pane b) at Oldman Reservoir.  

 

Panel (a) shows the correlation between water withdrawal and irrigation demand and the 

dependency between water withdrawal and storage is demonstrated in Panel (b). The figure 

presents a strong dependency in both Panels. In panel (a) two lines belong to irrigative and 

non-irrigative demands for which water was withdrew from the reservoir. Also Panel (b) shows 

that the major withdrawal takes place when reservoir storage is more than 350 MCM.  

Throughout a typical year, water withdrawal can range from 0 to 40 mm/ha/week.  

 

Irrigation demand 𝐷 (mm/week/hectare) is also being looked as per unit of area because of 

enabling the model for assessing the consequences of irrigation development in this region. 

Irrigation demand per unit of area is considered as a MLR- or ANN-based mapping 𝑑𝑒𝑚 as 

the following: 
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𝐷௧ = 𝑑𝑒𝑚(𝑃௧ିଵ, 𝑊𝐷௧ିଵ, 𝑇௧) (8) 

 

𝑃 (mm/week) and 𝑊𝐷 (mm/week/hectare) are local precipitation and the water withdrawal per 

unit of area at the previous time-step. Temperature 𝑇 (℃) during the week is a proxy for 

evaporative need of crops during the week, in which the withdrawal is scheduled. In developing 

this emulator it is assumed that during a week irrigation demand is constant and will not change. 

This equation is a continues mathematical function with a positive range. The time series of 

precipitation derived from WRMM is shown in Figures A3 (Appendix). Consideration of 

precipitation and water withdrawal is to accommodate for the antecedent soil moisture 

condition. Such dynamic calculation of irrigation demand based on water supply and climate 

conditions not only allows more realistic estimation of irrigation demand (Hassanzadeh et al. 

2014) but also assist in quantifying the potential climate control through direct consideration 

of temperature and precipitation. Here, it is assumed that the crop and irrigation practice is 

uniform across the land as a result the total demand can be calculated simply by multiplying D 

to Area. Figure 8 illustrates the correlation between irrigation water demand as the predictor 

and precipitation, and temperature. The dependency between water withdrawal and irrigation 

demand was shown in Figure 7. 

 

 

Fig.8. Correlation between dependent variable (irrigation demand) and independent variables 

(precipitation- Panel a, and temperature- Panel b) at Oldman Reservoir.  

 

In this figure, Panel (a) shows the dependency between irrigation demand and precipitation. 

Panel (b) also presents the correlation between irrigation demand and temperature. Based on 

this figure, irrigation demand and precipitation have negative correlation while irrigation 

demand and temperature have direct relationship. In other words, when precipitation increases, 

irrigation demand decreases. Moreover, in warmer temperature, irrigation demand goes up. 

Based on these panels, maximum irrigation demand is 40 mm/ha/week. 
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Reservoir release R (CMS/week), which is the lumped representation of all withdrawals from 

the Oldman Reservoir for downstream needs, can be described as a MLR- or ANN-based 

mapping of rel as the following:  

 

𝑅௧ = 𝑟𝑒𝑙(𝐼௧, 𝑆௧ିଵ, (𝐸 − 𝑃)௧, 𝐷௧ × 𝐴𝑟𝑒𝑎 × 10) (9) 

 

𝐼, 𝑆, 𝐸 and 𝑃 are inflow to reservoir (CMS/week), reservoir storage (MCM/week), reservoir 

evaporation (mm/week) and local precipitation (mm/week) respectively. 𝐷 and 𝐴𝑟𝑒𝑎 represent 

irrigation demand per unit of area (mm/week/hectare) and irrigation area (hectare). The 

multiplier of 10 is used to convert the unit of irrigation demand from (mm/hectare) to (m3). Our 

assumption in developing this equation is that reservoir release is constant during an 

operational week. This equation is a continues mathematical function with a positive range. 

The time series of inflow to reservoir and reservoir release obtained from WRMM are shown 

in Figures A1 and A7 (Appendix), respectively. Figure 9 shows the correlation between 

reservoir release as the dependent variable and reservoir storage, inflow to reservoir, lake 

evaporation, precipitation and irrigation demand as independent variables. 

 

 

Fig.9. Correlation between dependent variable (reservoir release) and independent variables 

(reservoir storage- Panel a, inflow to reservoir-Panel b, lake evaporation-Panel c, precipitation-

Panel d and irrigation demand-Panel e) at the Oldman Reservoir.  

 

Figure 9 shows the correlation between reservoir release and storage (Panel-a), inflow (Panel-

b), lake evaporation (Panel-c), precipitation (Panel-d) and irrigation demand (Panel-e). Based 

on the panels, reservoir release has a direct relation with storage, inflow, lake evaporation and 

irrigation demand whereas there is a negative correlations between reservoir release and 

precipitation. Panel (a) shows that the reservoir release exponentially increases when reservoir 

storage is more than 450 MCM. Panel (b) explains the significant correlation between inflow 
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and reservoir release. Panel (c) shows that lake evaporation and reservoir release have positive 

correlation. In other words in warmer climate, when the reservoir is under pressure, higher 

amount of water evacuates to downstream. Panel (d) explains that in case of precipitation, 

operators are more intended to store water in the reservoir. In this case, precipitation provides 

environment or downstream irrigation district with their water demands. Based on these panels, 

maximum reservoir release is 600 CMS. 

 

Figure 10, panels (a) to (d) show the functional mappings proposed based on the perfect priori 

about the emulators’ inputs. These emulators can be integrated through the mass balance 

equation (Panel- e), which estimates the change in storage (m3/week) based on the inflow 

(m3/week), net evaporation (m3/week), local withdrawal (m3/week) and reservoir release 

(m3/week): 

 

𝑆௧ = 𝑆௧ିଵ + (𝐼௧ − 𝑅௧) × 604,800 − (𝐸௧ − 𝑃௧) − 𝑎𝑟𝑒𝑎 × 10 × 𝑊𝐷௧                         (10) 
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Fig. 10. The predictor/predictand relationships for emulators developed assuming perfect 

priori for (a) Reservoir evaporation, (b) local irrigation demand, (c) local water withdrawal, 

and (d) reservoir release. Panel (e) shows the integrated emulator obtained by coupling 

individual emulators shown in panels (a) to (d).   

 

Panel (e) shows how the developed emulators are integrated to represent the state of the system 

(storage). This panel presents three levels. The lower and middle dashed rectangulars are input 

variables with which emulators are developed. The lower dashed rectangular shows the 

individual emulators, developed for the four variables and their interactions. For instance, here 

the link between water demand and withdrawal is presented. Irrigation demand emulator uses 

precedent water withdrawal estimations and observed precipitation data as well as current time-

step observed temperature as its inputs to update water withdrawal in the current time-step. 

Whereas Irrigation demand emulator itself in the current time-step along with previous time-
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step storage are the inputs of water withdrawal emulator to update this variable in the current 

time-step. As another example, lake evaporation emulator gets its input variables from previous 

time-step storage and current time-step observed temperature and is fed to reservoir release 

emulator to estimate current time-step reservoir release with current time-step of inflow to 

reservoir, precipitation and irrigation demand. In the third level the water withdrawal, 

evaporation and reservoir outflow estimations as well as observed inflow to reservoir and 

precipitation at the current time-step are also fed into mass balance equation to update current 

time-step of reservoir storage. This procedure continues throughout all the period with which 

the emulators have been developed or can be applied to test or validation periods to evaluate 

the performance of the system. With this approach it is possible to assess the link between 

variables within the system and their interactions. In addition, by including climate data and 

irrigation area in emulators’ equations, it is possible to evaluate the effect of changing climate 

or human intervention in irrigation area on the performance of the system.  

 

5.3 Alternative hypotheses for setting up and falsifying emulators  

For each predictand, a set of alternative hypotheses for emulators is set up by matching MLR 

and ANN mappings with three scenarios outlined above for emulator input selection. Here, the 

two mentioned mapping techniques are used in order to have the capability to compare models 

and find the emulators that can better represent the dynamic of their target variables. Figure 11 

shows the development hierarchy for setting up emulators for the four emulation cases noted 

above and introduce the model IDs for reservoir evaporation (E), local withdrawals (WD), local 

demand (D) and reservoir release (R).  

 

Considering the MLR for developing functional mappings, it would be seven emulators in total: 

One emulator is related to perfect priori and the other six emulators correspond to considering 

the two input variable pools with three setups of the PCIS algorithm using three measures of 

dependence, i.e. Kendall’s tau, Pearson’s correlation coefficient and Spearman’s rho 

respectively. Similar configurations are considered for ANN structures, but each ANN 

structure have been established with 1 to 10 neurons, configured in one hidden layer. 
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Fig. 11. Development hierarchy and the IDs for individual emulators developed for reservoir 

evaporation (E-1 to E-14), local withdrawal (WD-1 to WD-14), local demand (D-1 to D-14) 

and reservoir release (R-1 to R-14) at the Oldman Reservoir.  

 

Simulations with different neuron configurations can address uncertainty regarding developed 

models. In addition, based on Coulibaly et al. (2005) the number of training examples can be 

found using Equation 11.  

 

𝑁 >
|𝑊|

(1 − 𝑎)
 (11) 

 

where N is number of training examples, W is total number of weights and biases of the network 

and a is required accuracy.  

 

Based on the number of available data for training ANN-based emulators, weights and biases 

corresponding to the most complex model and the considered 97.5 percent confident interval, 

here, maximum 10 neurons are examined. This characteristic stays the same for developing 

other ANN-based emulators with lower level of complexity, mainly due to respect 

homogeneity in model development. Also, The only hidden layer for developing networks is 

considered with respect to Hornik et al. (1989) suggestion that a feedforward ANN with enough 

neurons in one hidden layer is a universal approximator.  
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As noted above, the parameters of MLR emulators with associated confidence intervals and 

predictive uncertainty can be obtained by the Maximum Likelihood Method. In this regard, the 

parameters of emulators which are developed with MLR approach are found with 95% level of 

confidence. Here, the range of each parameter is divided to four segments resulting in five 

different realizations for each parameter of the equations. Having the different realizations for 

all the parameters, equations are run with mixed and matched realizations. The ensemble of 

estimations can create the uncertainty regarding the emulation variable. For ANN-based 

emulators (70 in total for each emulation variable – 7 input configurations matched with 1 to 

10 hidden neurons), the training is repeated 100 times using different initial conditions to 

provide an ensemble of 100 independent sets, with which parametric and predictive uncertainty 

can be characterized. Figure 12 shows five realizations of one parameter of reservoir release 

MLR-based emulator and 100 different weights that link storage values as an input to a neuron 

in hidden layer for water withdrawal ANN-based emulator. 

 

 

Fig. 12. Different realizations of parameters and weights for (a) MLR-based emulator of 

reservoir release and (b) ANN-based emulator of water withdrawal.  

 

Panel (a) shows different realizations of a parameter in reservoir release emulator developed 

by MLR approach. The lower and upper bounds have been found with 95% confidence interval 

and other values have been uniformly distributed between these limits. In other words, with 

95% level of confidence, the parameters of MLR emulator are 0.797 and 0.83. Three other 

values generated between these values as shown in the panel. Panel (b) also presents weights 

in an ANN-based emulator of water withdrawal. The weights link an input variable (storage) 

to one neuron in a hidden layer.  
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To assess the performance and to discriminate between different emulators, a set of goodness-

of-fit measures are used. These measures include Coefficient of Determination (𝑅ଶ), Root 

Mean Square of Errors (𝑅𝑀𝑆𝐸), Logarithmic RMSE (𝐿𝑅𝑀𝑆𝐸), Nash-Sutcliffe Efficiency 

(𝑁𝑆𝐸), Relative error in Peak (𝑅𝐸𝑃), Ideal Point Error (𝐼𝑃𝐸) and Bayesian Information 

Criterion (𝐵𝐼𝐶). The definitions and formulations of these error measures are described as 

bellow: 

 

The coefficient of determination (𝑅ଶ) can be described as: 

 

𝑅ଶ =

⎝

⎛
∑ (𝑂௜ − 𝑂ത)(𝑃௜ − 𝑃ത)௡

௜ୀଵ

ට∑ (𝑂௜ − 𝑂ത)ଶ௡
௜ୀଵ ට∑ (𝑃௜ − 𝑃ത)ଶ௡

௜ୀଵ ⎠

⎞

ଶ

 (12) 

 

where O is the simulated values of the WRMM model; P is the simulated values of the 

surrogate model; and 𝑛 is the number of data points. The range of 𝑅ଶ lies between zero and 

one and representing the ratio of variance in O that is described by P. 

 

The overall (dis)agreement between the simulations of WRMM and surrogate models (O and 

P, respectively) can be measured by the RMSE – see Equation S1-2. The higher the difference 

between O and P is, the higher value of 𝑅𝑀𝑆𝐸 is.  

 

𝑅𝑀𝑆𝐸 =  ඨ
∑ (𝑂௜ − 𝑃௜)ଶ௡

௜ୀଵ

𝑛
 (13) 

 

As RMSE considers the squares of errors, it tends to minimize larger errors that are normally 

associated with high data points. In order to reduce the sensitivity of the error measure to higher 

data points, we calculated the RMSE of the logarithmically transformed data, i.e. LRMSE. The 

logarithmic transformation results in flattening the higher values, which makes lower values 

more influential in assigning the goodness-of-fit.  

 

The Nash-Sutcliffe efficiency (𝑁𝑆𝐸) proposed by Nash and Sutcliffe (1970) is defined as 

Equation S1-3. This coefficient is between –∞ and 1.  
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𝑁𝑆𝐸 = 1 −
∑ (𝑂௜ − 𝑃௜)ଶ௡

௜ୀଵ

∑ (𝑂௜ − 𝑂ത)ଶ௡
௜ୀଵ

 (14) 

 

The negative values of 𝑁𝑆𝐸 indicate accuracies below the long-term mean of the time series. 

Zero means the accuracy equal to the long term mean of the time series and one means a perfect 

fit. The Relative Error of Peak (𝑅𝐸𝑃) is defined as: 

 

𝑅𝐸𝑃

=
𝑚𝑒𝑎𝑛(𝑚𝑎𝑥 𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑎𝑥 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

𝑚𝑎𝑥 𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 

(15) 

 

The 𝑅𝐸𝑃 indicates the expected magnitude of error in estimating the annual peaks. 

 

In order to combine the effect of 𝑅𝑀𝑆𝐸, 𝐿𝑅𝑀𝑆𝐸, 𝐸𝑉 and 𝑅𝐸𝑃 measures in one indicator, 

Elshorbagy et al. (2010) defined the Ideal Point Error (𝐼𝑃𝐸) as define below. The lower values 

for the 𝐼𝑃𝐸 correspond to higher level of accuracy and it means that the model is closer to the 

ideal point with coordinates of  𝑅𝑀𝑆𝐸 = 0, 𝐿𝑅𝑀𝑆𝐸 = 0, 𝑅𝐸𝑃 = 0.  

 

𝐼𝑃𝐸 =  ඨ. 25 × ൤(
𝑅𝑀𝑆𝐸

max(𝑅𝑀𝑆𝐸)
)ଶ + (

𝐿𝑅𝑀𝑆𝐸

max(𝐿𝑅𝑀𝑆𝐸)
)ଶ + (

𝑅𝐸𝑃

max(𝑅𝐸𝑃)
)ଶ൨ (16) 

 

The 𝐵𝐼𝐶 is a likelihood measure that assesses the accuracy and complexity of a model. Lower 

values of 𝐵𝐼𝐶 corresponds to higher level of efficiency meaning that results are more accurate 

and parsimonious (Mekonnen et al. 2015). The BIC can be quantifies as below: 

 

𝐵𝐼𝐶 = 𝑛𝑙𝑜𝑔(𝑀𝑆𝐸) + 𝑘𝑙𝑜𝑔(𝑛) (17) 

 

In which, 𝑛 is the total number of observations and 𝑘 is the model parameter. The 𝑀𝑆𝐸 is the 

mean of squared errors, and is defined as: 

 

𝑀𝑆𝐶 =  
∑ (𝑂௜ − 𝑃௜)ଶ௡

௜ୀଵ

𝑛
 (18) 
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The first level of falsification takes place when the optimal number of neurons for each ANN 

configuration is found. In the first level of falsification, the best parametric set among 100 

training trials based on the RMSE during the calibration period is selected. By having ten ANN 

trained structures, corresponding to 1 to 10 hidden neurons, then the ANN emulator that has 

the lowest BIC value during the calibration period is selected and therefore this makes an 

optimal trade-off between the model complexity and accuracy. The second level of falsification 

takes place when some of the 14 emulators configured for each variables (see Figure 11) are 

selected based on their relative performance compared to others. Here, emulators are evaluated 

based on their optimality and uncertainty which is characterized by the BIC during the testing 

period. For each emulator, the optimality is represented by the BIC of the best fit during the 

testing period. In parallel, the uncertainty is quantified based on the 95% confidence interval 

of the empirical cumulative distribution of 𝐵𝐼𝐶 values during the testing phase (between 

0.025% and 0.0975% percentiles corresponding the 95% parametric confidence interval). For 

each variable, (1) best emulator configured based on perfect priori along with other emulators 

that have (2) the highest accuracy, (3) the least uncertainty, and (4) the least trade-off between 

accuracy and uncertainty are selected. Having the non-falsified emulators for each variable, 

various configurations for IEs can be set up through mix-and-match. The IEs are then tested in 

two different periods, i.e. semi- and fully-coupled modes. In brief in the semi-coupled 

evaluation, which is performed during the testing phase, the storage time series is not updated 

through integrated simulation; therefore, errors propagate between emulators (and represent in 

the storage time series) only at any given time-step. In the fully-coupled mode, in contrast, the 

storage at every time-step is updated through simulation; therefore, errors can propagate from 

one time-step to another. The fully-coupled evaluation of IEs are take place during the 

validation phase, in which IEs are discriminated based on their performance in tracking the 

weekly time series of storage according the IPE criterion. In the next chapter, the result of 

model development procedure is presented. 

 

5.4 Alternative hypothesis for impact assessment study 

Having developed integrated emulators, it is possible to assess the performance of the system 

under changing scenarios. Based on declining streamflow, increasing temperature and 

developing socio-economic activities in the region, three scenarios is defined: 
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In the first level of scenario assessment, a bottom-up impact assessment method is applied. Due 

to changing incoming flow to the region, here changing two main characteristics of streamflow, 

namely the annual flow volume and annual flow peak are considered. For annual flow volume 

11 scenarios of change (from 75% to 125% of historical flow volume in increments of 5%) and 

for annual flow peak 14 scenarios (from -5 to +8 weeks change in historical annual peak in 

increments of 1 week) are defined. In total 154 different scenarios of changing both annual 

flow volume and peak are considered. For each scenario, 100 realizations for streamflow 

generated by applying Ensemble generation scheme, introduced by Nazemi et al. (2013). All 

the scenarios of change are fed into best integrated emulator and the response of the system to 

changing scenarios is assessed. 

 

In the second vulnerability study, a joint bottom-up/top-down approach applied. As discussed 

previously, temperature is getting warmer in the study area which not only puts pressure on 

water availability but can significantly increase water demand. For this reason using NASA-

NEXT downscaled global climate projections daily temperature data for the period of 1950 to 

2100 is obtained. Then the resolution of this data is changed to weekly format. By defining a 

30 year window and moving it throughout the whole time series, expected annual temperature 

for each window is found. In the next stage these realizations are clustered in pools 

corresponding to no change in expected historical temperature to +3 °C change in historical 

temperature in increments of 0.5 °C. From each pool 100 realizations are randomly chosen. 

Having scenarios of changing temperature (7 × 100) and scenarios for changing streamflow 

(154 × 100) it would be possible to assess the behaviour of the system under joint changing 

scenarios of streamflow and temperature. Due to the extensive computational runs, instead of 

evaluating the selected IE for all 154 scenarios of changing the annual flow volume and peak, 

the focus is on dry (-4, 75%), historical (0, 0) and wet (+4, 125%) regime conditions. 

 

In the third level of vulnerability assessment study, a heuristic impact assessment is applied. 

Based on developing socio-economic activities in the region, there is a serious competition for 

water by different sectors of water use such as agriculture, industry and municipality. In 

particular, agriculture is of high importance in this region because Alberta is one of the most 

important food producers in Canada and water managers and stakeholders are willing to expand 

agricultural activities in this region. Therefore, in this level of assessment the joint effect of 

changing streamflow, temperature, precipitation and irrigation area on the water resource 

system is evaluated. For this purpose, it is assumed that streamflow, precipitation and irrigation 
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area can decrease (-25%) or increase (+25%) in historical time series. Also another scenario is 

defined under which these variables will not change. For temperature three scenarios for 

decrease (-2 °C), no change and decrease (+2 °C) in historical time series are defined as well. 

These scenarios are coupled and fed in top selected IE and the vulnerability of the system under 

defined scenarios of change will be evaluated.    
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Chapter 6. Results 

6.1 Individual emulators for each variable  

As described in Chapter 5, for each variable 77 alternative hypotheses are developed. 7 

emulators are MLR-based (according to 7 scenarios of predictor selection) and other 70 

emulators are ANN-based (according to 7 scenarios of predictor selection × 10 scenarios for 

number of neurons ranging from 1 to 10). For emulators developed using ANN approach, 

corresponding to minimum best BIC, optimal number of neuron for each variable is found. 

This leads to selected 7 ANN-based individual emulators. As a result, for each variable, 14 

alternative hypotheses for emulators based on the configuration hierarchy outlined in chapter 

5 has been set up. Here, the focus is on presenting the optimum neuron number for each variable 

developed using ANN approach. Figures 13 to 20 show the optimum neuron number for each 

variable during the calibration period.   

 

 

Fig 13. Optimum neuron number for individual emulator of lake evaporation for the perfect 

priory scenario in predictor selection during the calibration period. 

 

As shown in Figure 13, in the case that lake evaporation emulators developed with perfect 

priory knowledge regarding the independent variables, the emulator with only one neuron 

shows the highest accuracy and least complexity. Results of the optimum neuron numbers for 

the emulators developed in the two other defined scenarios of predictor selection are 

demonstrated in Figure 14. 
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Fig 14. Optimum neuron numbers for individual emulators of lake evaporation during the 

calibration period when (1) predictors are known but their relevant time signatures are 

unknown (E-9, E-11 and E-13) and (2) predictors and their relevant time signatures are 

unknown (E-10, E-12 and E-14). 

 

Panels (a), (b) and (c) in Figure 14 present lake evaporation individual emulators which have 

been developed in the second scenario of predictor selection. In this scenario, the predictors 

are unknown and have been chosen from a pool of variables. Based on emulator configuration 

hierarchy, these models are called E-9, E-11 and E-13. In the right side of the figure, Panels 

(d), (e) and (f) belong to the individual emulators that their predictors as well as their relevant 

time signature are unknown. These emulators are named as E-10, E-12 and E-14. As presented 

in the figure, the optimum neuron number for the emulators with known predictors and 

unknown time signatures is one. Whereas for the other three individual emulators, the optimum 

neuron number is two, one and six for E-10, E-12 and E-14, respectively. Figure 15 shows the 

optimum neuron number of individual emulator for water withdrawal when a perfect 

knowledge about the necessary input variables and their associated time signatures is available. 

Based on emulator configuration hierarchy, WD-8 is the model of water withdrawal with 

known proxies. In this figure, x-axis presents the number of neurons and y-axis shows best BIC 

values corresponding to each neuron number.  

 



61 
 

 

Fig 15. Optimum neuron number for individual emulator of water withdrawal for the perfect 

priory scenario in predictor selection during the calibration period. 

 

Based on Figure 15, when the required predictors with their relevant time signatures are known, 

optimum neuron number for developed individual emulator of water withdrawal is seven. The 

optimum number of neurons for developed individual emulators of water withdrawal for the 

other two scenarios of predictor selection is demonstrated in Figure 16.  

 

 

Fig 16. Optimum neuron numbers for individual emulators of water withdrawal during the 

calibration period when (1) predictors are known but their relevant time signatures are 

unknown (WD-9, WD-11 and WD-13) and (2) predictors and their relevant time signatures are 

unknown (WD-10, WD-12 and WD-14). 
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Figure 16 shows the individual emulators for water withdrawal developed with known 

predictors but unknown time signatures in panels (a), (b) and (c) corresponding to emulators 

WD-9, WD-11 and WD-13. Moreover, panels (d), (e) and (f) demonstrate individual emulators 

of water withdrawal with unknown predictors and time signatures corresponding to models 

WD-10, WD-12 and WD-14. Based on this figure, optimum neuron number for models WD-

9, WD-11 and WD-13 are seven, five and three, respectively. Also all the individual models 

developed with the third predictor selection scenario show that their optimum neuron number 

is two. The optimum neuron number for irrigation demand emulator is demonstrated in Figure 

17.  

 

 

Fig 17. Optimum neuron number for individual emulator of irrigation demand for the perfect 

priory scenario in predictor selection during the calibration period. 

 

As shown in the figure, individual emulator of irrigation demand that have been developed 

using the perfect priori knowledge regarding the predictors has three neurons. Figure 18 

illustrates the optimum number of neurons for the irrigation demand emulators in the second 

and third scenarios of predictor selection.  
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Fig 18. Optimum neuron numbers for individual emulators of irrigation demand during the 

calibration period when (1) predictors are known but their relevant time signatures are 

unknown (D-9, D-11 and D-13) and (2) predictors and their relevant time signatures are 

unknown (D-10, D-12 and D-14). 

 

Panel (a), (b) and (c) are related to the individual emulators of irrigation demand with known 

predictors but unknown time signatures (D-9, D-11 and D-13). Moreover, Panels (d), (e) and 

(f) belong to the individual emulators of irrigation demand with unknown predictors and their 

related time signatures (D-10, D-12 and D-14). The optimum number of neurons for models 

with only known predictors are three, two and three, as shown in Panels (a) to (c) and for 

models with the third scenario of predictor selection are one, three and three, indicated in Panels 

(d) to (f). The optimum number of neurons for the individual emulator of reservoir release with 

perfect priori knowledge of the model’s predictors is shown in Figure 19. According to 

emulator configuration hierarchy, R-8 is the model of reservoir release with known proxies. In 

this figure, x-axis presents different number of neurons which have been considered in this 

study, and y-axis shows best BIC values corresponding to each neuron number. Since we 

considered 1 to 10 neurons to develop emulators for the four variables (i.e. lake evaporation, 

water withdrawal, irrigation demand and reservoir release) the range of x-axis varies between 

1 to 10. 
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Fig 19. Optimum neuron number for individual emulator of reservoir release for the perfect 

priory scenario in predictor selection during the calibration period. 

 

Based on Figure 19, when a complete knowledge regarding predictors and their relevant time 

signature is available, an individual emulator with 9 neurons can optimally describe reservoir 

release. Figure 20, demonstrate optimum number of neurons for the emulators that their 

predictors and/or their time signature are unknown.  

 

 

Fig 20. Optimum neuron numbers for individual emulators of reservoir release during the 

calibration period when (1) predictors are known but their relevant time signatures are 

unknown (R-9, R-11 and R-13) and (2) predictors and their relevant time signatures are 

unknown (R-10, R-12 and R-14). 
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Figure 20 shows the individual emulators of reservoir release when their predictors are known 

but there is no knowledge about their time signatures. These emulators are presented in Panels 

(a), (b) and (c) which correspond to models R-9, R-11 and R-13. In the right side of the figure, 

Panels (e), (f) and (g), present individual emulators that their predictors and the relevant time 

signatures are unknown. These models are R-10, R-12 and R-14, based on the emulator 

configuration hierarchy. For the first group of emulators, optimum number of neurons 

corresponding to models R-9, R-11 and R-13 are three, five and two and individual emulators 

in the second group are optimised with three, four and two neurons for emulators R-10, R-12 

and R-14, respectively.  

 

Having developed 14 alternative hypotheses for emulators, the behaviour of models in 

representing the four variables based on which the models have been developed is assessed. 

This assessment is run during the test data period. Based on this study, it would be possible to 

investigate the accuracy and uncertainty of emulators to track the WRMM simulations. The 

expected annual WRMM lake evaporation and model estimations for the emulators developed 

using MLR and ANN techniques during test period are shown in Figure 21.  

 

 

 

Fig 21. Expected annual WRMM lake evaporation simulations (solid line) and best-fit 

emulators’ estimation (dashed line) and corresponding predictive uncertainty bound (the grey 

envelope) during the test period for the emulator developed using: (a) MLR and (b) ANN 

techniques when perfect priori knowledge about predictors is available. 
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Left panel in Figure 21 belongs to the individual emulator of lake evaporation developed using 

MLR technique. For this emulator, perfect knowledge regarding the model’s predictors is 

available (E-1). Right panel presents the emulator which have been developed using ANN 

technique. For this emulator also predictors and their time signatures are fully known (E-8). In 

these panels, the solid lines belong to WRMM lake evaporation simulation during the test 

period, dashed lines represent best emulator estimations and the gray envelops demonstrate the 

uncertainty of models. Results show that both emulators overestimate WRMM lake 

evaporation during spring and fall and underestimate WRMM lake evaporation during summer. 

Moreover, comparing two panels, it is clear that the emulator developed with ANN technique 

is less uncertain in comparison with the MLR-based emulator. Figure 22 presents weekly time 

series of WRMM lake evaporation simulations, best-fit emulator’s estimation and 

corresponding uncertainty bound for emulators E-1 and E-8.  

 

 

Fig 22. Weekly time series of WRMM lake evaporation simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using: (a) MLR and (b) ANN 

approaches when perfect priori knowledge about predictors is available. 

 

The description of lines and features in the figure is the same as what mentioned above. Panels 

(a) and (b) belong to emulators E-1 and E-8, respectively. Based on this figure, model E-8 

shows less uncertainty. In particular, model E-1 demonstrates high uncertainty in extreme low 

values which dominantly occurs throughout the period. Figure 23 shows the expected annual 
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estimations of emulators developed based on partially known or unknown predictors with MLR 

and ANN techniques during the test period.  

 

 

Fig 23. Expected annual WRMM lake evaporation simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using MLR and ANN techniques 

when predictors are partially known or unknown. 

 

Panels (a) to (f) belong to emulators of lake evaporation developed using MLR technique. 

Emulators shown in Panels (g) to (l) are developed by applying ANN technique. As presented 

in Panels (a) to (f), models E-2, E-4 and E-6 are less uncertain in comparison with models E-

3, E-5 and E-7. For the first three emulators although the predictors were unknown and were 

chosen from a pool of potential variables but their relevant time signatures were known. 

However, for the three latter emulators, both predictors and their time signatures were 

unknown. In the other side, Panels (g) to (l) show that except E-14 that performs higher 

uncertainty bound, all the other five emulators are almost equally uncertain. In addition, the 

models developed with ANN technique are less uncertain in comparison with models 

developed using MLR technique. Moreover, all the models shown in Figure 23 overestimate 

WRMM lake evaporation in spring and fall and underestimate WRMM lake evaporation during 

summer. Figure 24 presents the weekly time series of WRMM lake evaporation simulations, 

best-fit emulator’s estimation and corresponding uncertainty bound for emulators developed 

with partially known or unknown predictors.  



68 
 

 

Fig 24. Weekly time series of WRMM lake evaporation simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using MLR and ANN techniques 

when predictors are partially known or unknown. 

 

As shown in the figure, models E-2, E-4 and E-6 which have been developed by applying MLR 

technique are presenting low uncertainty in comparison to models E-3, E-5 and E-7 which are 

ANN-based emulators. But the uncertainty in low extremes in these models are considerable. 

Models E-3, E-5 and E-7 are uncertain throughout the whole period. E-9, E-11, E-12 (MLR-

based) and E-13 (ANN-based) are emulators that estimate the WRMM lake evaporation 

simulations acceptably. Models E-10 and E-14 are mostly uncertain in particular in extreme 
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low values. Two periods in model E-10 (weeks 190 and 540) and one period in model E-14 

(week 500) are showing high uncertainty. Figure 25 presents expected annual water withdrawal 

per unit of area emulators developed with MLR and ANN techniques while the complete 

knowledge regarding predictors and their time signatures are available.  

 

 

Fig 25. Expected annual WRMM water withdrawal per unit of area simulations (solid lines) 

and best-fit emulators’ estimations (dashed lines) and corresponding predictive uncertainty 

bound (the grey envelopes) during the test period for the emulator developed using: (a) MLR 

and (b) ANN techniques when perfect priori knowledge about predictors is available. 

 

The left and right panels belong to the emulators developed using MLR and ANN techniques 

(WD-1 and WD-8), respectively. In these models, full knowledge regarding the predictors and 

their relevant time signatures are available. The figure shows that the best-fit WD-1 estimation 

systematically overestimates the WRMM water withdrawal whereas WD-8 best simulation is 

more accurate. However, WD-1 is less uncertain in comparison with WD-8. Figure 26 presents 

weekly time series of WRMM water withdrawal per unit of area simulations, best-fit 

emulator’s estimation and corresponding uncertainty bound for emulators WD-1 and WD-8. In 

this figure, x-axis shows the weeks in which the estimations have been done. Since this 

simulation is done in the test data period, x-axis covers 676 weeks. In this figure, y-axis shows 

the variation of water withdrawal throughout the period. Based on this figure, maximum water 

withdrawal per unit of area is 60 mm/ha/week. 
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Fig 26. Weekly time series of WRMM water withdrawal per unit of area simulations (solid 

lines) and best-fit emulators’ estimations (dashed lines) and corresponding predictive 

uncertainty bound (the grey envelopes) during the test period for the emulator developed using: 

(a) MLR and (b) ANN approaches when perfect priori knowledge about predictors is available. 

 

The figure presents time series of water withdrawal per unit of area emulators’ estimations 

(WD-1 and WD-8). In Figure 26, Panel (a) belongs to estimations of water withdrawal applying 

MLR technique while estimations shown in Panel (b) developed using ANN technique. In both 

panels, x-axis shows weeks throughout the test period and y-axis belongs to water withdrawal 

per unit of area. As shown in the figure, in contrast to WD-1, emulator WD-8 is more uncertain 

in particular around weeks 450, 500 and 650. The expected annual estimations of water 

withdrawal per unit of area for emulators developed with MLR and ANN techniques in the 

case that predictors are partially known or unknown as well as WRMM estimation during the 

test period are shown in Figure 27. In the figure, Panels (a) to (f) show the emulators developed 

using MLR technique and Panels (g) to (l) belong to emulators that ANN technique was applied 

to develop emulators for water withdrawal. In models WD-2, WD-4, WD-6, WD-9, WD-11 

and WD-13 predictors were unknown while their time signatures were known whereas in 

models WD-3, WD-5, WD-7, WD-10, WD-12 and WD-14 both predictors and their relevant 

time signatures were unknown. As presented in the figure, models developed with ANN 

technique are showing less uncertainty bound in comparison with MLR-based emulators. 
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Fig 27. Expected annual WRMM water withdrawal per unit of area simulations (solid lines) 

and best-fit emulators’ estimations (dashed lines) and corresponding predictive uncertainty 

bound (the grey envelopes) during the test period for the emulator developed using MLR and 

ANN techniques when predictors are partially known or unknown. 

 

In addition, looking at individual emulators developed applying MLR technique, model WD-

2 is performing less uncertainty. Moreover, among ANN-based emulators of water withdrawal, 

WD-10 is the less uncertain model. However, ANN-based water withdrawal emulator, 

outperform MLR-based emulator in terms of uncertainty. Figure 28 presents the weekly time 

series of WRMM water withdrawal per unit of area simulations, best-fit emulator’s estimation 

and corresponding uncertainty bound for emulators developed with partially known or 

unknown predictors. Among emulators shown in the figure, WD-2 to WD-7 have been 

developed applying MLR technique while WD-9 to WD-14 are ANN-based emulators. In the 

first three MLR- and ANN-based emulators, the predictors were known while their relevant 

time signatures were unknown. In other words, proxies of the equations were partially known. 

On the other hand, in the latter three MLR- and ANN-based emulators, the predictors and their 

relevant time signatures were unknown. In the case that predictors are not fully known, they 

have been selected by the previously mentioned input variable selection scheme. Among 

models developed with MLR technique (i.e. WD-2 to WD-7), emulator WD-2 is showing less 

uncertainty. Also, the other ANN based emulators (i.e. WD-9 to WD-14) are presenting less 

uncertainty in comparison with MLR-based emulators in a majority of weeks except three 

periods around weeks 190, 450 and 500.  
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Fig 28. Weekly time series of WRMM water withdrawal per unit of area simulations (solid 

lines) and best-fit emulators’ estimations (dashed lines) and corresponding predictive 

uncertainty bound (the grey envelopes) during the test period for the emulator developed using 

MLR and ANN techniques when predictors are partially known or unknown. 

 

Comparing Figures 26 and 28, it can be concluded that emulators WD-1 and WD-8 outperform 

other emulators in terms of presenting lower uncertainty. Expected annual irrigation demand 

per unit of area emulator’s estimations in the two case that emulators have been developed by 

MLR and ANN techniques are presented in Figure 29. In addition, in the two panels WRMM 

estimations and best emulators’ estimations have been shown. In this figure, x-axis shows 52 

weeks throughout a year and y-axis shows irrigation demand per unit of area in mm/ha/week.  
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Fig 29. Expected annual WRMM irrigation demand per unit of area simulations (solid lines) 

and best-fit emulators’ estimations (dashed lines) and corresponding predictive uncertainty 

bound (the grey envelopes) during the test period for the emulator developed using: (a) MLR 

and (b) ANN techniques when perfect priori knowledge about predictors is available. 

 

Model D-1 and D-8 developed using MLR and ANN techniques, respectively. As shown in the 

figure, model D-8 is less uncertain in comparison with model D-1. Figure 30 shows weekly 

time series of WRMM irrigation demand per unit of area simulations, best-fit emulator’s 

estimation and corresponding uncertainty bound for emulators D-1 and D-8. 

 

 

Fig 30. Weekly time series of WRMM irrigation demand per unit of area simulations (solid 

lines) and best-fit emulators’ estimations (dashed lines) and corresponding predictive 

uncertainty bound (the grey envelopes) during the test period for the emulator developed using: 

(a) MLR and (b) ANN approaches when perfect priori knowledge about predictors is available. 
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Figure 30 presents irrigation demand per unit of area emulators’ estimations (D-1 and D-8). As 

shown in the figure, D-8 shows better estimations of WRMM irrigation demand simulations in 

comparison with D-1. The expected annual estimations of irrigation demand per unit of area 

emulators developed with MLR and ANN techniques as well as WRMM estimation during the 

test period are shown in Figure 31.  

 

 

Fig 31. Expected annual WRMM irrigation demand per unit of area simulations (solid lines) 

and best-fit emulators’ estimations (dashed lines) and corresponding predictive uncertainty 

bound (the grey envelopes) during the test period for the emulator developed using MLR and 

ANN techniques when predictors are partially known or unknown. 

 

Panels (a) to (f) belong to emulators developed MLR technique and for emulators shown in 

panels (g) to (l) are ANN-based emulators. In models D-2, D-4 and D-6 as well as D-9, D-11 

and D-13 predictors were known but their time signatures are unknown. Whereas in other 

models, both predictors and time signatures were unknown. Panels (a) to (f) show that the first 

three models (i.e. D-2, D-4 and D-6) that are developed with the second scenario of predictor 

selection are less uncertain in comparison with the three other models. However, for the 

emulators developed implementing ANN technique, except D-10 that shows less uncertainty, 

the other models are almost equally uncertain. But the last six models show less uncertainty in 

comparison with the first six emulators. Figure 32 shows the weekly time series of WRMM 

irrigation demand per unit of area simulations, best-fit emulator’s estimation and corresponding 

uncertainty bound for emulators developed with partially known or unknown predictors. 
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Fig 32. Weekly time series of WRMM irrigation demand per unit of area simulations (solid 

lines) and best-fit emulators’ estimations (dashed lines) and corresponding predictive 

uncertainty bound (the grey envelopes) during the test period for the emulator developed using 

MLR and ANN techniques when predictors are partially known or unknown. 

 

Models D-2 to D-7 are MLR-based emulators while D-9 to D-14 are ANN-based emulators. In 

the three first models, predictors were partially known whereas in the latter three models’ 

proxies were fully unknown and found by applying an input variable selection scheme. Based 

on this figure, among models developed with MLR technique, emulator D-7 shows higher 

uncertainty. Also, the other six ANN-based emulators are presenting almost the same 

uncertainty in in comparison with D-2, D-3, D-4, D-5 and D-6 emulators. The expected annual 

reservoir release estimation of WRMM and the emulators developed with respect to fully 

knowledge about their predictors are presented in Figure 33.  
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Fig 33. Expected annual WRMM reservoir release simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using: (a) MLR and (b) ANN 

techniques when perfect priori knowledge about predictors is available. 

 

Left panel belongs to emulator developed with MLR technique while in the right panel, the 

emulator was developed with ANN technique. Based on this figure, emulator R-8 estimates 

WRMM reservoir release with higher accuracy and less uncertainty in comparison with model 

R-1. Figure 34 presents weekly time series of WRMM reservoir release simulations, best-fit 

emulator’s estimation and corresponding uncertainty bound for emulators R-1 and R-8. 

 

 

Fig 34. Weekly time series of WRMM reservoir release simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using: (a) MLR and (b) ANN 

approaches when perfect priori knowledge about predictors is available. 
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Figure 34 shows reservoir release emulators’ estimations (R-1 and R-8). R-1 and R-8 are 

developed applying MLR and ANN techniques, respectively. As presented in the figure, R-8 

demonstrates better estimations with less uncertainty of WRMM reservoir release simulations 

with less uncertainty in comparison with R-1. Figure 35 shows the expected annual reservoir 

release for the emulators developed using MLR and ANN techniques and the predictors of the 

models were partially known or fully unknown.  

 

 

Fig 35. Expected annual WRMM reservoir release simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using MLR and ANN techniques 

when predictors are partially known or unknown. 

 

In this figure also Panels (a) to (f) and (g) to (l) are developed with MLR and ANN techniques, 

respectively. In the models R-2, R-4, R-6, R-9, R-11 and R-13 predictors were known but their 

time signatures were unknown. Whereas in the other models (R-3, R-5, R-7, R-10, R-12 and 

R-14) not only predictors were unknown but there was no available knowledge regarding their 

time signatures. Between MLR-based emulator, model R-2 shows the minimum uncertainty. 

Moreover, models R-9 to R-14 are showing almost the same uncertainty bound. In addition, 

the uncertainty of these models are less in comparison with the other six MLR-baseed 

emulators. Figure 36 shows the weekly time series of WRMM reservoir release simulations, 

best-fit emulator’s estimation and corresponding uncertainty bound for emulators developed 

with partially known or unknown predictors. 
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Fig 36. Weekly time series of WRMM reservoir release simulations (solid lines) and best-fit 

emulators’ estimations (dashed lines) and corresponding predictive uncertainty bound (the grey 

envelopes) during the test period for the emulator developed using MLR and ANN techniques 

when predictors are partially known or unknown. 

 

Based on this Figure 36, among models developed with MLR technique, emulator R-2 and R-

4 are showing less uncertainty bound. Also, in ANN based emulators, R-9, R-11, R-12 and R-

14 are presenting less uncertainty in comparison with other emulators. Having developed 

individual emulators for the four variables, it is possible to falsify these emulators in order to 

choose best emulators that are able to represent the dynamic of variables that based on them 

emulator have been developed. With this approach, the aim is finding emulators that address 

higher accuracy and less uncertainty. For this purpose, different emulators are compared based 

on their optimality (BIC of the best fit) and uncertainty (95% confidence interval for BIC) 
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during the testing phase. Here, BIC is chosen to compare different emulators because this 

goodness-of-fit index addresses both accuracy and complexity together (see – equation 17). 

Based on this criterion, the mean square error term defined in the equation addresses accuracy 

while more complex models are penalized. To tackle complexity, BIC prevents overfitting by 

introducing a penalty term for the number of parameters in the model. Deviation from target 

values or increased number of parameters result in increased BIC index. The results of 

comparing developed emulators for the four variables are shown in Figure 37. In this figure, 

panels (a), (b), (c) and (d) are related to emulator developed for reservoir evaporation, local 

irrigation withdrawal, local irrigation demand and reservoir release. Based on Panel (a), ANN-

based emulators are predominantly presenting less uncertainty in comparison with MLR-based 

emulators. Moreover, except models E-1, E-3 and E-7 all other emulators are able to track 

WRMM lake evaporation estimations with the same range of optimality. Moreover, MLR-

based emulators are covering larger range of both uncertainty and optimality. In addition, Panel 

(b) demonstrates that the emulators developed applying MLR technique are performing closely 

in terms of optimality. Also the range of uncertainty covered with these emulators is less in 

comparison with ANN-based emulators. In contrast, ANN-based emulators are dispersedly 

distributed in the panel. This implies that ANN-based emulators are covering a larger range of 

optimality and accuracy. Panel (c) provides information about irrigation demand emulators. 

Based on this panel, all ANN-based models are showing better optimality in comparison with 

other developed emulators. Also except D-1 and D-7 all other models are almost equally 

uncertain. Based on this panel, the range of uncertainty of MLR-based emulators is larger 

whereas these emulators cover a smaller range of optimality. For reservoir release emulators 

(Panel-D), MLR-based emulators are presenting less range of optimality but they cover larger 

range of uncertainty. Majority of ANN-based emulators are able to track WRMM estimations 

with better optimality and uncertainty. 

 

Considering reservoir evaporation, E-12 represent the configuration with the highest optimality 

as well as the least trade-off between the optimality and uncertainty. E-9 and E-11 are rather 

undistinguishable and provide the emulators with the least uncertainty. For irrigation 

withdrawal, the ANN emulator identified through perfect priori (i.e. WD-8) represent the 

modeling option with the highest optimality and the least accuracy/uncertainty trade-off; the 

MLR-based emulator with known inputs (WD-1), however, represents the option with the least 

uncertainty. Regarding irrigation demand, D-12, D-10 and D-14 are the hypotheses with 
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highest optimality, least uncertainty and the least trade-off between optimality and uncertainty. 

For reservoir release, these hypotheses would be R-11, R-2 and R-9 respectively. 

 

 
 

Fig. 37. Performance of alternative hypotheses for emulation models in representing (a) 

reservoir evaporation, (b) local irrigation withdrawal, (c) local irrigation demand, and (d) 

reservoir release.  

 

In addition to the chosen emulators, the best emulators identified through perfect priori has 

also been selected. For all variables, ANN-based configurations outperform MLR options 

based on the BIC measure during the testing phase. In total, the 14 non-falsified configurations 

(i.e. four for reservoir evaporation, two for irrigation withdrawal, four for irrigation demand 

and four of reservoir release) are considered, with which the integrated emulators are built. 

Table 2 and 3 summarize the configurations of these non-falsified emulators and their 

associated goodness-of-fit measures during calibration and testing periods.  
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Table 2. The ID, input variables and structure of non-falsified emulators identified for the four 

variables of lake evaporation (E), locall water withdrawal (WD), local water demand (D) and 

release (R) at the Oldman Reservoir.  

    Variable Model Predictors 
# of hidden 

neurons 

E 
(mm/week) 

E-8 [𝑆௧ିଵ, 𝑇௧] 1 
E-9 [𝑇௧

ଶ, 𝑇௧ , 𝑇௧
ିଵ] 1 

E-11 [𝑇௧
ଶ, 𝑇௧ , 𝑇௧

ିଵ] 1 
E-12 [𝑇௧ , 𝑇௧ିଵ

ଷ , 𝑇௧
ଶ, 𝑇௧ିଵ] 1 

WD 
(mm/ha/week) 

WD-1 [𝐷௧, 𝑆௧ିଵ] N/A 
WD-8 [𝐷௧, 𝑆௧ିଵ] 7 

D 
(mm/ha/week) 

D-8 [𝑃௧ିଵ, 𝑊𝐷௧ିଵ, 𝑇௧] 3 
D-10 [𝑒𝑥𝑝(𝑊𝐷௧ିଶ), 𝑊𝐷௧ିଵ

ଶ , 𝑇௧ିଵ
ଶ , 𝑃௧ିଶ

ିଵ ] 1 
D-12 [𝑊𝐷௧ିଶ

ଷ , 𝑙𝑜𝑔(𝑊𝐷௧ିଶ), 𝑒𝑥𝑝(𝑇௧ିଵ), 𝑒𝑥𝑝(𝑊𝐷௧ିଵ) ] 3 
D-14 [𝑒𝑥𝑝(𝑊𝐷௧ିଶ), 𝑊𝐷௧ିଵ

ଶ , 𝑇௧ିଵ,  𝑃௧ିଶ
ିଵ ] 3 

R 
(CMS/week) 

R-2 [𝐷௧
଴.ହ, 𝐼௧

ିଵ, 𝐼௧, 𝑆௧ିଵ
ଷ ] N/A 

R-8 [𝑆௧ିଵ, 𝐼௧, 𝐸௧, 𝑃௧ , 𝐷௧] 9 
R-9 [𝐷௧

଴.ହ, 𝐼௧
ିଵ, 𝐼௧, 𝑆௧ିଵ

ଷ ] 3 
R-11 [𝐷௧

଴.ହ, 𝑒𝑥𝑝(𝐼௧), 𝑆௧ିଵ
ଷ , 𝑙𝑜𝑔(𝐼௧)] 5 

 

As presented in Table 2, all the non-falsified emulators of lake evaporation are developed by 

ANN technique. Among these emulators, only E-8 is the model in which the predictors are 

selected based on perfect priori knowledge. In the other three emulators predictors are partially 

known or unknown. However, these three emulators are only dependant on different functions 

of temperature (i.e. 𝑇௧ିଵ
ଷ , 𝑇௧ିଵ𝑇௧ , 𝑇௧

ିଵ, 𝑇௧
ଶ). This implies that ANN can adequately estimate any 

variable even when proxies are not physically meaningful. In addition, for ANN-based 

irrigation demand emulators in which predictors and their relevant time signatures are unknown 

(i.e. D-10, D-12 and D-14) same issue happens. Water withdrawal or precipitation occurred in 

two previous time-step are among the selected predictors of these models. However, these 

information is not physically meaningful. Because the resolution of data used in this study is 

weekly and water withdrawal or precipitation that occurred back in two weeks does not affect 

the amount of irrigation water demand in the current week. Since both water withdrawal 

emulators are the ones in which perfect priori knowledge about their proxies is available, the 

predictors of these models are physically meaningful. For reservoir release emulators also, 

except R-8 in which proxies are fully known, in other emulators predictors were partially 

known (R-2, R-9 and R-11). However, the selected predictors are physically meaningful.  
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Table 3. Goodness-of-fit measurement for the selected emulation models for lake evaporation, 

water withdrawal, irrigation demand and release at the Oldman Reservoir, during calibration 

and testing periods. 

Variable Model Period RMSE R2 NSE LRMSE REP 

E 
(mm/week) 

E-8 
Calibration 5.51 0.82 0.82 1.33 0.12 

Testing 5.79 0.80 0.80 0.93 0.13 

E-9 
Calibration 5.51 0.82 0.82 1.28 0.12 

Testing 5.79 0.80 0.80 0.96 0.15 

E-11 
Calibration 5.51 0.82 0.82 1.28 0.13 

Testing 5.79 0.80 0.80 0.92 0.14 

E-12 
Calibration 5.24 0.84 0.84 1.34 0.10 

Testing 5.45 0.82 0.82 0.90 0.14 

WD 
(mm/ha/week) 

W-1 
Calibration 4.71 0.79 0.78 1.82 0.15 

Testing 5.44 0.63 0.59 1.73 0.05 

W-8 
Calibration 2.01 0.96 0.96 1.60 0.01 

Testing 2.20 0.93 0.93 1.35 0.06 

D 
(mm/ha/week) 

D-8 
Calibration 5.98 0.67 0.67 2.08 0.14 

Testing 7.25 0.54 0.53 2.39 0.24 

D-10 
Calibration 6.16 0.65 0.65 1.99 0.12 

Testing 7.38 0.51 0.51 2.30 0.24 

D-12 
Calibration 5.52 0.72 0.72 2.06 0.06 

Testing 6.50 0.63 0.62 2.31 0.11 

D-14 
Calibration 5.38 0.73 0.73 2.01 0.03 

Testing 6.67 0.60 0.60 2.20 0.14 

R 
(CMS/week) 

R-2 
Calibration 18.25 0.90 0.90 0.26 0.08 

Testing 17.02 0.78 0.77 0.33 0.08 

R-8 
Calibration 11.84 0.96 0.96 0.18 0.02 

Testing 13.83 0.85 0.85 0.21 0.11 

R-9 
Calibration 11.56 0.96 0.96 0.16 0.01 

Testing 11.79 0.89 0.89 0.18 0.07 

R-11 
Calibration 11.44 0.96 0.96 0.16 0.00 

Testing 11.29 0.90 0.90 0.17 0.04 
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6.2 Integrated emulators 

The non-falsified individual emulators are able to represent the dynamics of the four variables 

(i.e. lake evaporation, water withdrawal, irrigation demand and reservoir release) with highest 

accuracy and less uncertainty. However, here the aim is understanding the local dynamics of 

the water resource system at the Oldman Reservoir, considering the underlying interplays with 

hydro-climatological conditions and human decision on the irrigation area. The protocol 

applied to develop individual emulators will enable them to see the interactions between these 

variables and hydro-climatological conditions and/or irrigation area. But they are not able to 

represent the local dynamics of within the water system. For this purpose, the non-falsified 

emulators are coupled to develop integrated emulators through which the dynamics of the 

system with accounting for the climate condition and human intervention in irrigation area can 

be assessed (see – Figure 38 for IEs description).  

 

Fig 38. The description of 128 IEs obtained by coupling of four non-falsified individual 

emulators for lake evaporation, two non-falsified individual emulators for water withdrawal, 

four non-falsified individual emulators for irrigation demand and four non-falsified individual 

emulators for release. 
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Considering the 14 non-falsified emulators, there can be 128 configurations for IEs, obtained 

through mix-and-match (i.e. 4 × 2 × 4 × 4 = 128). These IEs can be used for detailed 

description of the water allocation at the Oldman Reservoir – see Figure 10(e) for an IE 

example, obtained by linking emulators with known input variables.  

 

In order to easily compare the goodness-of-fit measures of the 128 emulators in tracking 

WRMM storage estimations they ranked and plotted. Figure 39 compares the goodness-of-fit 

measures of the IEs in tracking the weekly WRMM simulations of the storage in the Oldman 

Reservoir in the semi-coupled mode during the testing period.  

 

 

 

Fig 39. Performance measures of the 128 IEs in representing reservoir storage in semi-coupled 

simulation mode during the testing phase. 

 

This analysis can reveal how error propagation between individual emulators can contribute 

into formation of error in estimation of the storage at the same time-step. Considering the 

results of this analysis, it is obvious that apart from RMSE, the difference between IEs in the 

semi-coupled mode is quite marginal. The differences between IEs with respect to RMSE is 

also marginal when it is put in the context of massive water storage in the Oldman Reservoir, 

which is at least around 100 MCM at any given week during testing period – see Figure 44 (a) 

for the weekly WRMM simulation of the Oldman Reservoir during this time episode.  
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Differences between IEs however are revealed in the fully-coupled simulation mode, 

performed during the validation phase. In the fully-coupled simulation, the storage values are 

updated at every time-step and therefore the error can propagate from one time-step to the next. 

To discriminate between the IEs in the fully-coupled mode, the IPE index during the validation 

period is calculated. Results are demonstrated in Figure 40 in which panel (a) presents the 

sorted 𝐼𝑃𝐸 index for the 128 IEs and panel (b) focuses on the top seven IEs that have marginal 

differences with respect to the IPE index. These IEs include IE-26, IE-6, IE-18, IE-22, IE-10, 

IE-14 and IE-2. The description of the top seven IEs is presented in Table 4. 

 

 

Fig. 40. Calculated IPE index for the performance of 128 the IEs in the fully-coupled 

simulation mode during the validation phase.  

 

Table 4. The description of seven best IEs for describing the detailed dynamics at the Oldman 

Reservoir. 

ID  
Emulator for 

the lake 
evaporation 

Emulator for 
the local water 

withdrawal 

Emulator for 
the local water 

demand 

Emulator for 
the reservoir 

release 
IE-26 E-12 WD-1 D-8 R-8 
IE-6 E-8 WD-8 D-8 R-8 
IE-18 E-11 WD-1 D-8 R-8 
IE-22 E-11 WD-8 D-8 R-8 
IE-10 E-9 WD-1 D-8 R-8 
IE-14 E-9 WD-8 D-8 R-8 
IE-2 E-8 WD-1 D-8 R-8 
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It is worthwhile to emphasize that all these seven IEs are identified by linking emulators that 

are identified through perfect priori for irrigation withdrawal (WD-1 and WD-8), local 

irrigation demand (D-8) and reservoir release (R-8). This highlights the fact that emulators, in 

which input variables are selected based on some physical justifications are more robust in 

fully-coupled simulations and therefore they can be more suitable for continuous simulations. 

To have a more rigorous understanding of the performance of the seven IEs described in Table 

4, the goodness-of-fit measures in representing the lake evaporation, local water withdrawal, 

local water demand, reservoir release and storage in semi-coupled and fully-coupled modes 

during testing, validation and the whole data periods are compared.  Figures 41, 42 and 43 

depict these results. In these figures the goodness-of-fit measures of all the four variables as 

well as reservoir storage that had been estimated by the top seven non-falsified IEs in the three 

mentioned periods (test- Figure 41, validation- Figure 42 and whole data period- Figure 43) 

are compared. From left to right, columns belong to lake evaporation, water withdrawal, 

irrigation demand, reservoir release and storage, respectively. In each subplot, the top seven 

non-falsified emulators (i.e. IE-26, IE-6, IE-18, IE-22, IE-10, IE-14, and IE-2) are presented in 

x-axis. Also in the five rows, RMSE, R2, NSE, LRMSE and REP of IEs are compared.    

 

As can be seen, the seven IEs perform similarly for all considered variable with respect to 

𝑅𝑀𝑆𝐸, 𝑅ଶ, 𝑁𝑆𝐸 and 𝐿𝑅𝑀𝑆𝐸 in representing the dynamic of lake evaporation, water 

withdrawal, irrigation demand, reservoir release and storage. For instance, in all seven IEs, 

nash sutcliffe efficiency (NSE) for lake evaporation, water withdrawal, irrigation demand, 

reservoir release and storage in the test period is almost 0.8, 0.39, 0.5, 0.98 and 0.8, 

respectively. However, IEs can be discriminated based on their REP, particularly for water 

withdrawal and water demand in which IEs can be clearly clustered into two groups (IE-6, IE-

22, IE-14 and IE-26, IE-18, IE-10, IE-2). As the emulator of water demand in all IEs is the 

same (D-8), the difference between IEs in representing the water demand is due to the errors 

introduced through coupling with different water withdrawal models. Systematically, it can 

been seen models IE-6, IE-22 and IE-14 that are identified using the WD-8 show improved 

REP measures. Also the selected individual emulators of water withdrawal, irrigation demand 

and reservoir release are ANN-based emulators. Accordingly, the three selected IEs (IE-6, IE-

22, and IE-14) are used in order for further impact assessments studies.  
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Fig 41. Comparison between 𝑅𝑀𝑆𝐸, 𝑅ଶ, 𝑁𝑆𝐸, 𝐿𝑅𝑀𝑆𝐸 𝑎𝑛𝑑 𝑅𝐸𝑃 measures of (from top to bottom respectively) of IE-26, IE-6, IE-18, IE-22, IE-

10, IE-14 and IE-2 in representing lake evaporation, water withdrawal, irrigation demand, reservoir release and storage (from left to right 

respectively) during the testing period.  
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Fig 42. Comparison between RMSE, R2, NSE, LRMSE and REP measures of (from top to bottom respectively) of IE-26, IE-6, IE-18, IE-22, IE-

10, IE-14 and IE-2 in representing lake evaporation, water withdrawal, irrigation demand, reservoir release and storage (from left to right 

respectively) during the validation period.  

  



89 
 

 

Fig 43. Comparison between RMSE, R2, NSE, LRMSE and REP measures of (from top to bottom respectively) of IE-26, IE-6, IE-18, IE-22, IE-

10, IE-14 and IE-2 in representing lake evaporation, water withdrawal, irrigation demand, reservoir release and storage (from left to right 

respectively) during the whole data period.  
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Figure 44 and 45 compare the weekly time series as well as the expected annual fluctuations 

of the reservoir storage simulated at the Oldman Reservoir using the WRMM (solid line) and 

the three non-falsified IEs in semi- and fully-coupled modes during the testing, validation and 

the whole data periods. Considering the semi-coupled mode, non-falsified IEs provide very 

similar simulations that match the WRMM results almost perfectly – see panels (a) and (b) in 

Figure 44. Considering the fully-coupled simulations made during the validation and the whole 

data periods, the difference between IEs become more obvious and the departure between 

results obtained by IEs and WRMM increases. For continuous weekly simulations, non-

falsified IEs can adequately capture the reservoir dynamics during high storage periods, 

although the performance of IEs declines during periods with low storage (see Panel (c) in 

Figure 44 and Panel (a) in Figure 45). Considering the expected annual storage, non-falsified 

IEs underestimate WRMM simulations during winter and spring and overestimate the WRMM 

results during the fall season (see Panel (d) in Figure 44 and Panel (b) in Figure 45). 

 

 

Fig. 44. Weekly time series of WRMM storage and the three non-falsified IEs in semi- and 

fully-coupled modes during testing and validation periods along with corresponding expected 

annual storage of WRMM and non-falsified IEs.  

 

In Figure 44, Panels (a) and (c) belong to time series of reservoir storage in test and validation 

periods. Also Panels (b) and (d) show the expected annual storage in the two mentioned 

periods. In all panels, four lines are presented of which three belong to the top non-falsified 

emulators and one is reservoir storage.    
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Fig. 45. Weekly time series and expected annual storage of WRMM and seven selected  

Integrated Emulators in fully-coupled mode in the whole data period. 

 

In panel (a), x-axis shows the whole data period (63 × 52 = 3276 weeks) and y-axis belongs 

too weekly storage in MCM. Also in Panel (b), x-axis presents 52 weeks in a whole year. In 

Panel (a) the time seris of reservoir storage is presented in which three belong to top three non-

falsified integrated emulators and one is WRMM reservoir storage. Panel (b) demonstrates the 

expected annula storage. Based on Panel (b), WRMM estimation is understimated in winter 

wheras in summer and fall stimations by IEs are overstimating WRMM reservoir storage.  
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Chapter 7. Application of integrated emulators for impact 

assessment  

So far, individual emulators developed, tested and falsified and top emulators that adequately 

represent dynamics of WRMM variables were selected. Then, they coupled to create integrated 

emulators through which dynamics of the system, considering the underlying interplays with 

hydro-climatological conditions and human decision on the irrigation area can be assessed. The 

inclusion of hydro-climatological conditions in emulators is mainly due to the fact that climate 

variability and change is predominantly taking place in this region. Consequently, this has 

effects on streamflow, lake evaporation and irrigation water demand. In addition, agriculture 

is a primary activity in the Oldman River basin and both policy makers and stakeholders are 

interested in increasing the area of irrigation districts in this region. Decreasing water 

availability and increasing water demand with a severe completion for water in this region are 

resulting in vulnerability of this water resource system. To understand the sensitivity of the 

water resource system at the Oldman Reservoir to changing streamflow, climate, and irrigation 

area the non-falsified IEs are used. It should be noted that the sensitivity analysis made by 

developed IEs is more informative locally than the one performed by the WRMM as, (i) the 

dynamics of reservoir evaporation are directly linked to the climate and storage state, and (ii) 

the dynamics of water withdrawal and water demand are coupled and linked to climate 

condition and antecedent soil moisture conditions, manifested through water withdrawal at the 

previous time-step.  

 

Here, the vulnerability assessment study is performed in three different levels: 

(a) In the first level of impact assessment, the response of the system to changes in inflow 

characteristics, namely annual flow volume and peak is analysed. In this regard, 

different scenarios of changing annual flow volume and peak are defined. For each 

scenario different realizations for streamflow are stochastically reconstructed and the 

effect of changing streamflow characteristics on the performance of the system is 

evaluated.  

(b) In the second level of impact assessment study, different scenarios of temperature are 

obtained from NASA-NEX downscaled global climate projections. Seven scenarios of 

warming are defined and various realizations for each scenario of warming will be 

found. Having different scenarios for changing streamflow and temperature, it will be 

possible to assess the response of the system to the joint scenarios of these variables.  
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(c) Finally in a more broad view, in the third level of assessment, the sensitivity of the 

system to changing streamflow, climate including both precipitation and temperature 

as well as irrigation area is assessed. Therefore, for inflow to reservoir, precipitation 

and irrigation area three scenarios of zero or ±25% and for temperature also three 

scenarios of zero or ±2°C change in the historical time series are considered to provide 

a holistic understanding of the system response to changes in both natural and 

anthropogenic conditions. These can make various scenarios of change under which the 

sensitivity of the system can be assessed. 

 

To assess the system sensitivity to changing conditions, a set of performance indicators is 

considered. These indicators include (1) the expected number of weeks in a typical year in 

which the reservoir storage goes below 25% of its capacity, (2) the expected local water supply 

deficit during a typical year, (3) the expected number of weekly spill events during one typical 

year, and (4) the expected median release from reservoir during a typical year. These 

performance indicators, together, provide a holistic view on the performance of the Oldman 

reservoir, both locally and regionally. In fact, low storage and annual water supply deficit are 

indicators describing the performance of the system locally. In addition, number of spill events 

and median outflow are describing the regional behaviour of the system. This is due to the fact 

that (1) Lethbridge is located downstream of the reservoir and is prone to excessive flow that 

evacuates from reservoir and (2) reservoir outflow describes how regional irrigation networks 

are supplied due to manifestation of their water demand in this indicator.  

 

Having defined scenarios of change in streamflow, climate, and human management practices, 

it is possible to assess the behaviour of the system under each or joint scenarios of change. 

Here, in order to assess the behaviour of the system under changing condition, each 

performance indicator is found based on different realizations of streamflow and temperature 

or other drivers of change on the water system and then is averaged for a long-term period (30 

year). In fact the impact assessment study is done based on the long-term behaviour of the 

Oldman Reservoir. Assessment of the system’s behaviour under changing scenarios is 

performed in the vulnerability assessment study. Here, in order to perform this analysis, the 

conventional methods which are regularly used are implemented.  In particular, two bottom-

up, top-down and joint bottom-up top-down impact assessment methods are applied in this 

study, as introduced in Chapter 4. In addition, one heuristic approach which can be considered 

as a bottom-up approach is defined and proposed. All three vulnerability studies will show the 
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impact of changing condition on the Oldman Reservoir. The definition, implementation and 

the data support of these methods of assessment are presented in the next sub-sections. 

 

 

7.1 Assessment Framework 

Here, in order for impact assessment study, both bottom-up and top-down approaches are 

adopted. In the first level of impact assessment, the bottom-up approach is used to evaluate the 

effect of changing streamflow on the system’s behaviour. In this respect, characteristics of 

streamflow, namely timing of the annual peak flow and annual flow volume are considered and 

streamflow regime is stochastically reconstructed and fed into the top non-falsified emulator 

to evaluate the behaviour of the system under changing streamflow. Moreover, in the second 

scenario of impact assessment, a top-down approach is used to generate various scenarios of 

temperature. In this assessment study, different scenarios of warming climate are considered 

and the joint impact of changing streamflow and temperature on the behaviour of the system is 

evaluated. To apply this study a joint bottom-up/top-down approach is used. In the third impact 

assessment study, implementing a heuristic approach, different scenarios for inflow to the 

reservoir, temperature and precipitation and changing the irrigation area of local irrigation 

districts are considered and the behaviour of the system under defined changing condition is 

analysed. Next section describes the methods employed for flow reconstruction and developing 

scenarios of warming temperature. 

 

7.1.1 Streamflow reconstruction for bottom-up impact assessment 

In order to assess the effect of changing water availability on the defined performance 

indicators, two indicators of flow regime, namely annual flow volume and timing of the annual 

peak, are considered. These characteristics are subject to change due to observed changes in 

streamflow characteristics of the Oldman River headwaters. Then for the bottom-up impact 

assessment of changing streamflow regime, Ensemble generation scheme, introduced by 

Nazemi et al. (2013), is applied to stochastically reconstruct weekly realizations for possible 

water availability. These realizations are produced under pre-defined historical annual volume 

and timing of the annual peak. In this level of assessment climate variables are not incorporated 

in the reconstruction procedure.  
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The selected range for timing of the annual peak and annual flow volume includes -5 to +8 

weeks and -25% to +25%, respectively. These ranges are examined because they have been 

considered in the previous research studies. Considering one week and 5% increment in annual 

timing of the peak and annual flow volume, 14 × 11 = 154, possible streamflow regime 

conditions are produced. For each of the 154 scenarios, 100 realizations for streamflow are 

reconstructed. Moreover each realization is generated for a 30 year (1961 to 1990) period of 

weekly data. For 154 possible regime conditions and 100 realization of streamflow for 30 year 

weekly data, 154 × 100 × 30 = 462,000 years of simulations for each performance indicator 

(low storage duration, water supply deficit, number of spill events and median reservoir 

release) are developed. Then for each streamflow realization, the considered performance 

indicators are found annually and averaged for the whole period to come up with an expected 

measure during a typical operational year. For this impact assessment study, the top non-

falsified IE, i.e. IE-6 is selected as the best emulator of WRMM. 

 

In addition, among 154 different scenarios of changing annual flow volume and timing of the 

annual peak, three specific flow regime conditions, i.e., (-4, -25%), (0, 0), and (4, +25%) are 

getting more focused. These three conditions are representations of dry, historical and wet 

regime conditions, respectively – see Figure 46. Based on different realizations of streamflow 

in the three selected regime conditions, the probabilistic profiles (risk profiles) for the defined 

performance indicators can be developed. These representations are used for quantifying the 

risk in the system performance due to changing water availability.  

 

 

Fig. 46. Defiened three regime conditions for dry (-4, -25%), historical (0, 0) and wet (+4, 

+25%)  regime conditions. 
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7.1.2 Temperature scenarios for joint bottom-up/top-down impact assessment 

Due to climate change and variability, temperature in the study area in increasing. This has 

significant effects on water availability and demand. In order to assess the impact of warming 

climate on the Oldman River system, using a top-down approach different scenarios of 

changing temperature are developed. For this purpose, temperature data is derived from 

National Aeronautics and Space Administration (NASA). NASA has downscaled historical 

and future daily temperature simulations for the period of 1950 to 2099 of 21 IPCC-CMIP5 

models. The spatial resolution of this data is 25 × 25 Kilometers globally. Since the resolution 

of the NASA data is compatible with the study area, this data is directly used without 

downscaling in this study.  

 

To use the obtained daily data for the scenario assessment, first the temporal resolution of 

temperature time series is changed to weekly scale. Then different scenarios of warming are 

defined in a way that the long term expected annual temperature is equal to the historical 

temperature, or it increases in increments of +0.5 °C, up to the long term expected annual 

temperature plus 3 °C. For this purpose, a 30 year period window is defined and moved 

throughout the whole period of data. Then expected annual temperature for each 30 year period 

is found and clustered to seven defined groups. Finally, from each group 100 realizations of 

temperature are randomly selected.  

 

Based on the fact that both streamflow and temperature are changing in the study area, in this 

vulnerability assessment study, the joint impact of changing streamflow and temperature are 

considered. In order to assess the joint impact of changing streamflow and temperature on the 

system’s behaviour, joint bottom-up and top-down approaches introduced previously is 

applied. The protocol of reconstructing the streamflow is the same as what have been explained 

in the previous sub-section. As shown in Figure 46, 154 scenarios for timing of the annual peak 

flow and annual flow volume are defined. For each scenario, 100 realizations for streamflow 

have been developed as defined in the previous sub-section. In addition, as discussed here, for 

each of the 7 scenarios of changing temperature (i.e. from zero to +3 °C), 100 weekly 

realization of weekly temperature are developed. All the realizations of streamflow and 

temperature are generated representing 30 year of weekly data. In the case of coupling all the 

mentioned scenarios for streamflow and temperature, 154 × 100 × 7 × 100 × 30 = 323,400,000 

years of simulation would be developed. For this huge amount of calculation there was not 
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adequate hardware available to run all the simulations within the period that this study was 

being done. For this reason we only focused on the three regime conditions i.e. dry, historical 

and wet that have been introduced in the previous sub-section. By this approach, 3 × 100 × 7 

× 100 × 30 = 6,300,000 years of simulations for each performance indicator are developed. 

 

7.1.3 Scenarios of inflow, climate and irrigation area for bottom-up impact assessment 

For the third level of vulnerability assessment study, a bottom-up approach is applied. For this 

purpose, three predefined states, representing increase, no-change and decrease in streamflow, 

climate and irrigation area are considered. For inflow, precipitation and irrigation area, the 

scenarios for increase and decrease are identified as ±25% change in the historical time series. 

For temperature, the scenarios of change have been considered as ±2°C change in historical 

temperature series during this period. Combining these ad-hoc scenarios of change, there would 

be 81 (3ସ) joint settings for independent variables, with which the sensitivity of the system at 

the Oldman Reservoir can be assessed.  

 

7.1.4 Data support for top-down impact assessment 

Here, in order to implement top-down impact assessment study, temperature data is derived 

from National Aeronautics and Space Administration (NASA). NASA has downscaled 

historical and future daily temperature simulations for the period of 1950 to 2099 of 21 IPCC-

CMIP5 models. The spatial resolution of this data is 25 × 25 Kilometers globally. Since the 

resolution of the NASA data is compatible with the study area, this data is directly used without 

downscaling in this study. The multi-model downscaled data product is available in NASA's 

Earth Exchange Global Daily Downscaled Projections. Table 5 presents the list of climate 

models used in order to extract temperature data for the impact assessment study. 

 

Table 5. Description of the 21 IPCC-CMIP5 climate models. 

Model's name Institution 
Latitude 

resolution 
(°) 

Longitude 
resolution 

(°) 

ACCESS1-0 

CSIRO (Commonwealth Scientific and 
Industrial Research Organisation, 
Australia), and BOM (Bureau of 
Meteorology, Australia) 

1.2500 1.8750 
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CSIRO-MK3-6-0 

Commonwealth Scientific and Industrial 
Research Organisation in collaboration with 
the Queensland Climate Change Centre of 
Excellence 

1.8653 1.8750 

MIROC-ESM 

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

2.7906 2.8125 

BCC-CSM1-1 
Beijing Climate Center, China 
Meteorological Administration 

2.7906 2.8125 

GFDL-CM3 
NOAA's Geophysical Fluid Dynamics 
Laboratory 

2.0000 2.5000 

MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

2.7906 2.8125 

BNU-ESM 
College of Global Change and Earth 
System Science, Beijing Normal University 

2.7906 2.8125 

GFDL-ESM2G 
NOAA's Geophysical Fluid Dynamics 
Laboratory 

2.0225 2.0000 

MIROC5 

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

1.4008 1.4063 

CanESM2 
Canadian Centre for Climate Modelling and 
Analysis 

2.7906 2.8125 

GFDL-ESM2M 
NOAA's Geophysical Fluid Dynamics 
Laboratory 

2.0225 2.5000 

MPI-ESM-LR 
Max Planck Institute for Meteorology 
(MPI-M) 

1.8653 1.8750 

CCSM4 National Center for Atmospheric Research 0.9424 1.2500 

INMCM4 
Institute for Numerical Mathematics, 
Moscow, Russia 

1.5000 2.0000 

MPI-ESM-MR 
Max Planck Institute for Meteorology 
(MPI-M) 

1.8653 1.8750 

CESM1-BGC 
National Science Foundation, Department 
of Energy, National Center for Atmospheric 
Research 

0.9424 1.2500 

IPSL-CM5A-LR Institut Pierre-Simon Laplace 1.8947 3.7500 

MRI-CGCM3 Meteorological Research Institute 1.1215 1.1250 

CNRM-CM5 

Centre National de Recherches 
Météorologiques/Centre Européen de 
Recherche et Formation Avancées en 
Calcul Scientifique 

1.4008 1.4063 
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IPSL-CM5A-MR Institut Pierre-Simon Laplace 1.2676 2.5000 

NorESM1-M Norwegian Climate Centre 1.8947 2.5000 

 

7.2 Impact assessment of changing water availability 

In the first impact assessment study, different scenarios of streamflow are stochastically 

reconstructed and fed into the top non-falsified integrated emulator i.e. IE-6. This assessment 

is applied for 14 scenarios for changing annual timing of the peak and 11 scenarios for change 

in annual flow volume, as shown in Figure 46. Then, the effect of changing streamflow on the 

four defined performance indicators is assessed. As introduced previously, these indicators are 

expected number of low storage duration, expected annual water deficit, expected number of 

spill events and expected median outflow. Figure 47 presents the response surfaces for the four 

defined performance criteria. 

 

 

Fig. 47. Response surface for performance indicators under changing water availability. In this 

figure, Panel (a) to (d) belong to expected number of low storage duration, expected annual 

water deficit, expected number of spill events and expected median outflow, respectively. 

 

Panel (a) presents the expected annual number of low storage duration. This panel shows a 

strong dependency between this indicator and the annual flow volume. When the flow volume 

rises up to +25%, the low storage does not take place, even if the annual peak ranges from -5 

to +8 weeks. When the annual volume decreases by -25%, then the duration of low storage is 

dependent on the timing of the annual peak. In this case when the timing of the annual peak 



100 
 

changes from -5 to +8 weeks, the low storage duration ranges from almost 3 to 1 week per 

year. In addition, when the annual peak does not change, the low storage duration is almost 

zero for all scenarios of annual flow volume. From this assessment it can be concluded that in 

dry conditions the duration in which the reservoir storage is below 25% of its capacity 

increases. 

 

Panel (b) shows the effect of water availability on the water supply deficit. Based on this figure, 

this indicator is significantly sensitive to annual flow volume. By changing the annual flow 

volume from -25% to +25%, the annual water supply deficit varies from 7 to 2 MCM in a 

typical operational year. In other words, by increasing flow volume, the annual water supply 

deficit decreases. Moreover, for each scenario of annual flow volume ranging from -25% to 

+25%, water supply deficit is minimum when the timing of the annual peak flow doesn’t 

change (i.e. timing of the annual peak is equal to zero). It implies that if peak flow happens in 

advance or is delayed, it is not matched with the peak irrigation water demand resulting is 

increased water supply deficit.   

 

Panel (c) shows the impact of water availability on expected number of spill events. Based on 

this figure, with increasing annual volume to +25%, the expected annual number of spill events 

increases to over 4 weeks. This indicator is more sensitive to annual volume rather than timing 

of the annual peak. But there is a slight sensitivity when the two marginal values for timing of 

the peak is considered. In brief, when the annual peak moves toward -5 and +8 week, the 

expected number of spill events gradually decreases. Whereas when the annual peak is not 

changed (i.e. equals to zero), the spill events indicator is of the maximum number of 

occurrences. In other words, when the annual peak is delayed or advanced, the number of 

annual spill events declines. Based on this assessment, in wet regime conditions due to 

increased number of spill events, measures should be taken in order to handle excessive flows 

evacuated from reservoir that can result in damages for the both human and properties located 

downstream of the dam. 

 

Panel (d) demonstrates the dependency between median reservoir release and the annual flow 

volume and timing of the peak. Based on this figure, when the annual flow volume increases, 

the median reservoir release is significantly increased as well. It implies that local irrigation 

demand can be satisfied and higher amount of water is released to allocate regional water 

demand since downstream irrigation demand has been incorporated in the outflow. 
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Consequently water supply deficit related to both local and regional irrigation districts declines 

with increased flow volume. In addition, by altering the timing of the annual peak, the median 

release is subjected to change. When timing of the annual peak moves toward -5 and +8, the 

median outflow rises. It can be interpreted that by changing the annual timing of the peak, the 

peak flow and peak irrigation water demand are not synchronized and excessive water that 

have not been used in the local irrigation network releases to downstream. Based on this study, 

the minimum median release takes place when the annual flow volume decreases to -25% and 

the annual peak advances toward +8 weeks. In this case the median release decreases to almost 

18 CMS. In addition, the maximum outflow happens when the annual flow volume goes up to 

+25% and the annual peak is delayed for -5 weeks. In this case the maximum Q50 is 24 CMS. 

The result of this assessment shows that in dry regime condition median outflow is decreased 

while in the wet regime condition this indicator rises.  

 

These vulnerability maps only show the expected of performance indicators over 100 

realizations in each cell for one statistical measure. As a result, the risk in the system 

performance due to random variability in each cell is not addressed. At this point, by 

considering different realizations for streamflow in the three defined regime conditions (i.e. 

dry, historical and wet regimes), the Empirical Cumulative Distribution Function (ECDF) of 

the four performance indicators (i.e. expected number of low storage duration, expected annual 

water deficit, expected number of spill events and expected median outflow) can be found. 

With this approach these information can provide a notion of risk due to natural variability in 

the system performance. To obtain risk profiles, each performance indicator is found during a 

typical operational year and averaged for the whole 30 year of the period. Since 100 realizations 

for streamflow are available, for each performance indicator 100 values are obtained. Having 

the ensemble of all values it would be possible to find ECDF for each performance indicator 

and in each regime condition.  Figure 48 shows the risk profiles of the performance indicators 

under selected specific flow conditions. In Panel (a), x-axis shows the number of weeks in 

which low storage takes place in a typical year. The y-axis in this panel, and the other three 

panels, also corresponds to the density of the occurrence of each indicator. This panel shows 

that in historical and wet conditions, the duration of low storage is zero, while in dry condition, 

up to 3 weeks of low storage is expected with highest probability. In addition, the maximum 

number of weeks in which the reservoir experiences low storage takes place in dry regime 

condition with 10 weeks in an operational year. The panel also shows that wet regime condition 
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provides the highest variation in comparison to historical and dry regimes, indicating that 

wetter regime leads to larger uncertainty in duration of low storage. 

 

Panel (b) presents the probabilistic risk profile of expected annual water deficit. In this figure, 

x-axis corresponds to the annual volume of water deficit in MCM. Based on this panel it can 

be concluded that in dry condition the water supply deficit happens with the highest probability 

with the maximum of 7.5 MCM. When changing toward wet condition, this indicator decreases 

to 3.5 and 2 MCM in historical and wet regime conditions. In addition, maximum annual water 

supply deficit in the dry, historical and wet regimes are 11.5, 6 and 3 MCM, respectively. Based 

on this panel, the minimum annual water supply deficit for the dry, historical and wet regimes 

are 3.5, 1 and 0 MCM. Amongst the three regimes, dry regime condition shows the highest 

variation in comparison to historical and wet regimes, stipulating that dryer regime leads to 

larger uncertainty in annual water supply deficit. 

 

 

Fig. 48. Probabilistic risk profiles for the defined performance indicators under selected 

specific flow conditions. Panel (a) to (d) belong to expected number of low storage duration, 

expected annual water deficit, expected number of spill events and expected median outflow, 

respectively. 

 

Panel (c) shows the risk profiles of expected number of spill events for the three specific regime 

conditions. In this figure, x-axis corresponds to number of weeks in which spill events occur. 

The figure indicates the gradual change of this indicator when the condition varies from dry to 
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wet. In brief, towards wet condition, the expected number of spill events increases. Based on 

this panel, number of weeks in which spill events occur with the highest probability in dry, 

historical and wet regimes are 0.7, 2.2 and 4, respectively. Based on extremes in this panel, the 

minimum number of spill events in dry and historical regimes is 0 while the minimum in wet 

regime would be 2 weeks. Focusing on the maximum extreme, 2.2, 4.2 and 6.3 weeks are 

expected as highest number of spill events during an operational year for dry, historical and 

wet regimes, respectively. Based on this panel, wet regime condition shows the highest 

variation in comparison to historical and dry regimes, showing that in wet regime larger 

uncertainty in annual number of spill events is expected. 

 

Finally, Panel (d) analyses the median reservoir release, and the figure shows that in dry 

condition the median release with the highest probability is less than 20 CMS and gradually 

increases when the condition shifts to historical and wet to 21 and 23 CMS, respectively. In 

addition, looking at minimum extremes indicates that in dry, historical and wet regimes, the 

minimum annual reservoir outflows are almost 18 MCM. Also maximum extremes for this 

indicator in the dry, historical and wet regimes are 21.7, 23.8 and 27.9 CMS, annually. 

Moreover, wet regime condition shows more variation in comparison to the other two 

conditions. 

 

Based on findings in this section, in dry condition low storage occurs more in comparison to 

the other two regimes. This can affect recreational activities around the Oldman Reservoir 

which can have social consequences in this region. At the same time in this condition, water 

supply deficit in local irrigation area increases. By decreased median outflow, it can be induced 

that regional irrigation districts will be faced with water scarcity as well. Since the region is 

one of the main food producers in Canada, measures should be taken by water managers to 

come up with solutions and adaptation strategies to compensate probable losses. In contrast, in 

wet condition the probability occurrence of low storage and local water supply deficit 

decreases. Consequently, by increased median outflow it can be concluded that regional water 

supply deficit decreases. But in this condition, number of spill events increases and since 

Lethbridge is located downstream of the reservoir, individuals and their properties are prone to 

extensive losses. In this case, water managers should be aware and equipped with protocols 

and strategies to minimize the effects of flooding in this region.  
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7.3 Joint impact assessment of changing streamflow and temperature 

As discussed before, due to climate variability and change, not only the incoming inflow to the 

Oldman River basin is declining but the weather is getting warmer. This puts the water system 

under a significant pressure due to limited water availability and increased water demand 

resulting from changing climate. In brief, these stressors make the water system vulnerable. In 

order to assess the effect of changing streamflow and temperature on the system, joint bottom-

up and top-down methods is applied. First, implementing a bottom-up approach, streamflow 

which originates from Rocky Mountains is stochastically reconstructed. Defining the three 

conditions, namely dry, historical and wet, 100 realizations for streamflow corresponding to 

each condition reconstructed. Then applying a top-down approach scenarios of changing 

temperature obtained from NASA climate models. In this regard, seven scenario for warming 

temperature defined. These scenarios correspond to realizations in which the long term 

expected temperature is equal to the historical temperature, or it increases in increments of +0.5 

°C, up to the long term expected annual temperature plus 3 °C. For each scenario, 100 

realizations for temperature in dry, historical and wet regime conditions found. Finally, 

different scenarios of streamflow and temperature are fed into the top non-falsified emulator 

(i.e. IE-6) and the behaviour of the system is evaluated. Here, the response of the system to 

changing scenarios is evaluated through four performance indicators which are expected 

number of low storage duration, expected annual water deficit, expected number of spill events 

and expected median outflow. Figure 49 shows the probabilistic risk profiles for the expected 

number of low storage duration in the three regime conditions. In these panels the performance 

indicators are shown when only streamflow is changing or the both streamflow and temperature 

are subject to change. For changing temperature, as mentioned before, seven warming 

scenarios are defined. 
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Fig. 49. Probabilistic risk profiles for expected number of low storage duration under the joint 

scenarios of change of stremflow and temperature in three specific flow regime conditions. 

Panels (a) to (c) belong to expected number of low storage duration in dry (-4, 25%), historical 

(0, 0) and wet (+4, 25%) regime conditions, respectively. 

 

In Figure 49, x-axis presents the number of weeks in which low storage happens and y-axis 

shows the density of expected number of low storage duration. Black solid lines are the 

probability distribution functions of expected low storage duration, which had been developed 

with different scenarios of streamflow in the three regime conditions. To find expected low 

storage duration only under different scenarios of streamflow, 100 reconstructed realizations 

of streamflow are fed to the selected IE and temperature is kept as historical values. Then low 

storage duration for each operational year is found and averaged for the whole period. Having 

100 values for this indicator, it would be possible to find the probability distribution function. 

Colored-dashed lines are probability distribution functions of this indicator under the joint 

scenario of changing streamflow and temperature. Again under joint scenario of changing 

streamflow (100 realizations) and temperature (100 realizations) and for 7 scenario of warming, 

annual low storage duration was found and averaged for all the period. Having 10,000 values 

for this indicator for each scenario of warming the probability distribution functions developed 

and added to the figure. Panel (a) in Figure 49 demonstrates that in the case of warming 

scenarios in dry regime condition, the expected number of low storage duration increases. This 

performance criteria can go up from 3.1 to 6.5 weeks, with the highest density when the 

temperature increases. In addition, in dry regime condition, warmer weather increases the 

maximum number of low storage duration to 17 weeks during an operational year. Also the 

variability of the probability distribution functions for scenarios of changing streamflow and 

joint scenarios of changing streamflow and temperature are almost the same. 

 

Panel (b) shows this indicator in the historical regime condition. Based on this panel, with the 

maximum probability, expected annual low storage duration in this regime is zero. Moreover 

the maximum extreme value of expected low storage duration in this condition increases to 1 

week per year with the highest probability for the all scenarios of warming. Also the variation 

of all the probability distribution functions are almost the same in the joint scenarios of 

changing streamflow and temperature. But the variability of the probability distribution 

function related to changing scenarios of streamflow is less. This implies that under the joint 

changing streamflow and temperature, the uncertainty in this indicator is increased. 
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Panel (c) shows that in wet regime condition the expected annual low storage duration is equal 

to zero, and warming condition does not affect this performance criteria. The maximum low 

storage duration decreases to 0.6 week per year for all the joint scenarios of streamflow and 

temperature. Also the variability in this indicator are almost the same in the all assessed 

scenarios. But the variation of expected low storage duration decreases when regime condition 

changes from dry to historical and wet. It can be noted that in wetter climate the uncertainty 

regarding this indicator is declined. 

 

As discussed previously, declining headwaters streamflow incoming to the system, increasing 

temperature and developing socio-economic activities in this region puts an unprecedented 

pressure on water resources in the study area. Agriculture is the major activity in this region as 

the main food producer. This brings about the need to assess how agriculture activities are 

affected under different scenarios of change. Figure 50 presents the joint impact of streamflow 

and temperature on expected annual water deficit. 

 

 

 

Fig. 50. Probabilistic risk profiles for expected annual water deficit under the joint scenarios 

of change of stremflow and temperature in three specific flow regime conditions. Panels (a) to 

(c) belong to expected annual water deficit in dry (-4, 25%), historical (0, 0) and wet (+4, 25%) 

regime conditions, respectively. 

 

In Figure 50, x-axis shows the volume of water deficit in MCM, and y-axis presents the density 

of expected annual water deficit. The black solid lines are the probability distribution functions 

of this indicator under different scenarios of streamflow in the three regime conditions. The 

water supply deficit under changing streamflow has been found for each operational year and 
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averaged for the whole period. Then for 100 realization of streamflow the probability 

distribution function obtained and added to this figure. Colored-dashed lines represent this 

indicator under the joint impact of streamflow and temperature. Annual water supply deficit 

under the joint changing scenarios of streamflow (100 realizations) and temperature (100 

realizations) for each warming scenario (7 scenarios) was found and averaged for the whole 

period. Then the probability distribution functions found and presented in the figure. The figure 

shows that when the temperature gets warmer the expected annual water deficit increases in all 

three regime conditions in comparison with the scenario that only streamflow is changed. In 

the dry regime condition (Panel- a) the maximum change of this indicator with the highest 

density when the temperature varies from historical values to historical values plus 3 °C is 1.3 

MCM, and the expected annual water deficit changes from 7.5 MCM to 8.8 MCM. 

Corresponding to joint scenario of changing streamflow and temperature under T = 0 °C, the 

annual water supply deficit under changing streamflow is 7.5 MCM with the highest 

probability. In this regime condition, minimum and maximums extremes are increased with 

increasing temperature but the variability of probability distribution functions for the joint 

scenarios of changing streamflow and temperature in 7 scenarios of warming are the same. In 

contrast, the variability of this indicator when only scenarios of changing streamflow is 

considered is larger. This indicated that in warmer climate the uncertainty in water supply 

deficit is smaller.  

 

In historical regime condition, this performance criteria varies from 3.4 to 4.8 MCM with the 

highest probability (1.4 MCM increase, as shown in Panel- b). In addition, extreme maximum 

of water supply deficit increases when the temperature gets warmer in all the scenarios of 

change. Maximum water deficit when the historical temperature is raised to +3 °C is almost 8 

MCM. Moreover, the variability of this indicator is almost the same when either scenarios of 

changing streamflow or the joint scenarios of changing streamflow and temperature are 

considered. 

 

In wet regime condition (Panel- c), this indicator changes from 1.6 MCM (identical to water 

supply deficit under changing streamflow only) to 3.0 MCM, corresponding to a 1.4 MCM 

increase with the highest probability. With increasing temperature extreme maximum water 

supply deficit rises to 6 MCM annually. Moreover, the variability of this indicator is larger 
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when the temperature is getting warmer. This shows higher uncertainty in this indicator in 

warmer climate. 

 

As mentioned before Lethbridge is located downstream of the Oldman Reservoir and is prone 

to excessive flows that evacuate from the reservoir. In the case of flood events a great amount 

of loss can be expected in this region. This shows the importance of vulnerability assessment 

of the system under flood events. Figure 51 presents the joint impact of streamflow and 

temperature on expected number of spill events. 

 

 

 

Fig. 51. Probabilistic risk profiles for expected number of spill events under the joint scenarios 

of change for stremflow and temperature in three specific flow regime conditions. Panels (a) 

to (c) belong to expected number of spill events in dry (-4, -25%), historical (0, 0) and wet (+4, 

+25%) regime conditions, respectively. 

 

Figure 51 shows the probability distribution functions of expect number of spill events under 

changing streamflow with historical temperature (black solid lines) and seven defined scenarios 

of changing streamflow and temperature (colored-dashed lines). Similar to previous analysis, 

under changing streamflow, annual number of spill events have been found and averaged for 

the whole data period. Having 100 values of this indicator corresponding to 100 realizations of 

streamflow the probability distribution function was developed (Black solid line). Same 

procedure was taken to add PDFs under joint scenarios of changing streamflow and 

temperature. For 100 scenarios of streamflow and 100 scenarios for temperature, the 

performance indicator was found under 7 scenarios of warming. Having 10,000 values for each 

scenario of warming, PDFs developed and added to the panel. Panel (a), (b), and (c) belong to 

the dry, historical and wet conditions, respectively. The panels represent that warming 
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scenarios can decrease the expected number of spill events and this change is more significant 

in the wet regime condition. In the dry regime condition, the expected annual number of spill 

events under changing streamflow and joint scenario of changing streamflow and temperature 

when T = 0, is 0.85 week with the highest probability. With warming climate, this indicator 

declines to 0.65 weeks (0.2 week change). Based on this panel, extremes and variation of all 

PDFs are almost the same. In historical regime condition, expected number of spill events for 

changing streamflow and joint changing streamflow and temperature is 2.2 weeks per year with 

the highest probability. Warmer climate decreases this indicator to 1.9 weeks (0.3 week 

change). Based on this study, extremes and variability are almost the same for all PDFs 

presented in the panel. In wet regime condition, expected annual number of spill events in the 

case of changing streamflow and the scenario of changing streamflow and temperature for no 

change in expected temperature is 4 weeks. When T goes up to +3 °C this indicator declines 

to 3 weeks corresponding to 1 week decrease. In addition, extreme minimum for the 3 °C 

warming decreases to 0.3 week and extreme maximum for the same scenario moves to 5.2 

weeks. In all the scenarios PDFs have the same variability. Looking at the panels again, it can 

be found that by moving from dry to historical and wet regimes, the most change in the 

expected number of spill events happens in Panel (c) with 1 week decrease in this performance 

indicator. This shows that in wet regime condition, the system is more uncertain in spill events 

in comparison with historical and dry regime conditions.   

 

The Oldman Reservoir not only allocates water to the local irrigation districts but it provides 

regional irrigation districts with their water demand. The regional water demand is manifested 

in the Oldman Reservoir outflow. By considering the changes in streamflow and temperature 

that have been and are currently taking place in this region, assessing the behaviour of reservoir 

under changing condition is important. The effect of changing both streamflow and temperature 

on the reservoir median release is demonstrated in Figure 52. 
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Fig. 52. Probabilistic risk profiles for reservoir’s median release under the joint scenarios of 

change of stremflow and temperature in three specific flow regime conditions. Panels (a) to (c) 

belong to expected low outflow in dry (-4, -25%), historical (0, 0) and wet (+4, +25%) regime 

conditions, respectively. 

 

In Figure 52, x-axis shows the reservoir release in CMS and y-axis is the density of this 

indicator. Black solid lines are the probability distribution functions of median release, which 

had been found through different scenarios of streamflow in the three regime conditions. The 

median reservoir release found for each operational year for each streamflow realization and 

averaged for the whole period. Having 100 realizations for streamflow, this indicator had 100 

values with which the corresponding PDF developed. Colored-dashed lines show the 

probability distribution functions of median release under the joint impact of changing 

streamflow and temperature in the mentioned regime conditions. Reservoir median release 

found for 100 realizations of streamflow and 100 realizations for temperature under 7 scenarios 

of warming climate. This results in 10,000 values for median reservoir release for each 

warming scenario. With these values PDFs under climate warming scenarios found and added 

to the figures. As shown in Figure 52, with warming temperatures, the expected median 

reservoir release increases in the three panels. The maximum increase happens in dry regime 

condition, whereas the minimum change takes place in the wet regime condition. Based on 

Panel (a), median reservoir release for changing streamflow scenario and the joint changing 

streamflow and temperature under T = 0 °C, is 19.3 CMS with the highest probability. In the 

scenario in which T =3 °C, this indicator increases to 20.9 CMS corresponding to 1.6 CMS 

change. In this regime condition, extreme minimums and maximums also rise with warming 

scenarios. In the warmest scenario, extreme minimum increases to 19 CMS and extreme 

maximum goes up to 23 CMS. The variability of PDFs under changing streamflow and joint 

streamflow and temperature are almost the same.  
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In historical regime condition, expected median reservoir release increases in warmer climate. 

The PDF corresponding to reservoir release under changing streamflow and joint changing 

streamflow and temperature is 20.2 CMS with the highest probability. When temperature goes 

up, this indicator rises to 21.1 CMS (0.9 CMS change). In the warmest scenario, extreme 

minimum and maximum are corresponding to 19 and 24 CMS, respectively. Moreover, the 

variability of PDFs in this figure are almost the same. 

 

In wet regime condition (Panel- c), same as the two other regimes, the median reservoir release 

increases with rising temperature. With the highest probability, this indicator in the scenario of 

changing streamflow and joint changing streamflow and temperature is 22.9 CMS and 

increases to 23.6 CMS in the warmest temperature scenario with the highest probability (0.7 

CMS change). Extreme minimum and maximum as well as variability of PDFs are almost the 

same. Comparing the changes happens in the values of the median reservoir release with 

highest probability indicates that by altering the regime condition from dry to historical and 

wet, the magnitude of change decreases. This demonstrates that in wet regime condition the 

system’s outflow is less uncertain.  

 

In order to identify the effect of warming climate on the four performance indicators, each 

indicator that had been found under the joint changing scenarios of streamflow (100 

realizations) and temperature (100 realizations) in 7 scenarios of warming averaged and 

presented in Figure 53. With this approach it is possible to assess the behaviour of the system 

(which is defined with the four performance criteria) under warming climate. 
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Fig. 53. Joint impact assessment of changing streamflow and temperature on the four defined 

performance criteria in the three specific flow regime conditions. Panel (a) to (d) show the 

effect of changing temperature on expected annual low storage duration, expected annual water 

deficit, expected number of spill events and expected median reservoir release. 

 

In Panel (a) and all other panels, x-axis shows the temperature increments from 0 to +3 °C, 

which demonstrate different scenarios of warming conditions. In addition, three lines with 

different color saturations in all panels are representing wet, historical, and dry regime 

conditions, from highest to lowest saturation, respectively. In this panel, y-axis presents the 

expected annual low storage duration. As shown in this panel, expected annual low storage 

duration in historical and wet conditions is not sensitive to climate warming. However, in dry 

regime condition this performance criteria increases when temperature goes up. Based on this 

panel, although there is no variability in historical and wet regime conditions but change in this 

index is significant in dry regime condition. In dry regime, 1 °C rise in temperature results in 

1.6 weeks increase in expected low storage duration. This implies that in dry regime condition, 

this indicator is more uncertain in comparison with the other two regime conditions. Therefore, 

in dry regime condition measures should be taken by water managers in order to face this 

extreme event condition.  

 

Panel (b) also shows the joint impact of changing streamflow and temperature on the expected 

annual water deficit. Based on the figure, this criteria increases when temperature goes up in 

all the considered scenarios. The rates of increase are almost the same which indicates the same 
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variability in all three regime conditions. When temperature gets warmer for 1 °C, the expected 

water supply deficit increases 0.5 MCM during a growing season. This shows that the system 

is of the same uncertainty in water supply deficit in dry, historical and wet regimes. Moreover, 

in wet regime condition, the expected annual water supply deficit is minimum in comparison 

to the historical and dry regime conditions, respectively. In addition, the increase in this 

performance indicator, from wet to historical and from historical to dry regime condition, are 

not the same. It can be concluded that, in this case, the system is more sensitive when a dry 

condition happens. Since the system is more vulnerable in providing irrigation water demand 

with adequate water quantity, actions should be taken to minimize the risk in the system. 

 

As shown in Panel (c), when temperature is getting warmer the expected number of spill events 

decreases. This index is more sensitive to temperature in wet regime condition, with the higher 

line gradient, in comparison to the other two regime conditions. With 1 °C increase in 

temperature, expected number of spill events decreases 0.3 week per year in wet regime 

condition. Whereas in historical regime condition 1 °C rise in temperature makes 0.07 week 

decline in this indicator. However, in dry regime condition, the sensitivity of number of spill 

events to temperature is marginal and with 1 °C increased temperature only 0.03 week change 

in this indicator is expected. This shows that in wetter climate, number of spill events is more 

uncertain in comparison to the other two regimes. Moreover, the decrease in this performance 

indicator, from dry to historical and from historical to wet regime condition, are not the same. 

It can be concluded that, in this case, the system is more sensitive when a wet regime condition 

takes place.  

 

Panel (d) also shows the sensitivity of the median reservoir release to the changing conditions. 

At the first glance, the panel presents that when the regime condition changes from dry to wet, 

Q50 significantly increases. In addition, with increasing temperature this indicator rises as well. 

As discussed previously, the reservoir release is a representative of the water that is allocated 

to regional irrigation networks. Increasing reservoir release under warming condition 

demonstrates that when the system is under pressure, higher amount of water is evacuated from 

the reservoir in order to provide regional agriculture sectors with their water demand. This is 

in accordance with the main model. In the original model (WRMM), regional irrigation 

networks have higher priority in comparison to local irrigation district. The gradient of the lines 

in historical and wet regimes shows that this indicator is not highly dependent on warming 

condition. In other words, with 1 °C increase in temperature, median reservoir outflow rises 
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quite limited in wet and 0.3 CMS in historical regime conditions. Whereas in dry regime 

condition, expected median release increases 0.5 CMS with 1 °C increased temperature. This 

shows that the variability in dry condition is greater in comparison with the other two regimes 

and the behaviour of the system under dry regime condition in more uncertain. It is of a great 

interest that in dry and historical regime conditions, when the climate is warmer by +2 °C or 

more, expected Q50 in dry regime condition approaches the values of this indicator in the 

historical regime condition. It can be concluded that in both dry and historical regime 

conditions, when temperature rises to expected long term historical plus 2 °C or more, the 

expected median release will be almost the same.  

 

Based on the presented panels, low storage in historical and wet conditions is not occurred 

while in wet regime it increases in warmer weather. Also local and regional (Q50) water supply 

deficit increase in the three regimes when temperature rises. But the rate of increase in local 

water supply deficit is more in comparison with regional water supply deficit. It implies that 

when there is a pressure on this water system, the priority is to maintain reservoir storage. It 

can be due to preventing sediment spreading or the importance of recreational activities in this 

region. Regional irrigation networks also have the second priority due to our findings. In 

warmer climate, when the system is under pressure, Q50 rises whereas local irrigation networks 

are facing increasing water deficit. Based on our findings, it can be concluded that in this water 

system, reservoir storage, regional and local irrigation networks have the highest to lowest 

priority. 

 

7.4 Impact assessment of changing inflow, climate and irrigation area  

In order to accomplish the third level of vulnerability assessment, a heuristic approach is 

applied. Due to changing climate, as discussed in previous sections, incoming inflow to the 

system is subject to change. In addition, the climate is getting warmer and the magnitude and 

variability of temperature and precipitation are changing. Moreover, considering developing 

socio-economic activities in this region water demand has an increasing trend and requests for 

water is heightened. In this level of impact assessment study, the vulnerability of the system 

under changing streamflow, climate including temperature and precipitation and the effect of 

human intervention in changing irrigation area is evaluated. In this scope, three predefined 

states, representing increase, no-change and decrease in streamflow, climate and irrigation area 

are considered. For inflow, precipitation and irrigation area, the scenarios for increase and 
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decrease are identified as ±25% change in the historical time series. With this approach 

different realizations for these variables are developed. For temperature, the scenarios of 

change have been considered as ±2°C change in historical temperature series during this period. 

The combination of all the considered scenarios of change, will produce 81 joint settings for 

each variables. Input time series corresponding to these joint scenarios are fed to the top 

selected non-falsified IE to simulate the local behaviour of water resource system at the Oldman 

reservoir. Then the effect of defined scenarios of change on the expected number of low storage 

duration in a typical year, the expected local water deficit during a typical year, the expected 

number of weekly spill events during one typical year, and the expected median release from 

reservoir during a typical year is analysed. Figure 54 shows the sensitivity of above 

performance measures to the considered joint scenarios of change based on the top non-

falsified IE (i.e. IE-6), which stands as the most accurate non-falsified IE based on the analysis 

made in Chapter 6. In each panel, the joint scenarios for inflow, temperature, precipitation and 

irrigation area along with the corresponding sensitivity in the performance indicator are shown 

from left to right, respectively. The color bar shows the magnitude of considered indicators, 

sorted from the lowest to the highest values. White, gray and black colors show decrease, no-

change and increase in magnitude of independent variables.  
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Fig. 54. The effect of changing Inflow, temperature (T), precipitation (P) and irrigation area 

(Area) on (a) the number of low storage duration, (b) annual water deficit, (c) number of spill 

events and (d) median release. Color bar shows the value of performance indicator (PI) under 

scenarios of change. Black, grey and white bars show increase, no change or decrease in 

independent variables. 

 

Based on Figure 54, decreased inflow particularly when it combines with increased irrigation 

area and warming temperature can severely change the number of weeks with low reservoir 

storage. Considering the local irrigation deficit, inflow and temperature are the key triggering 

factors for alteration in this indicator. Considering spill events, it can be argued that inflow is 

the most influencing variable on increasing the expected number of event in a typical year and 

25% increase in inflow can change the spill event from two to five weeks in a typical year. This 

finding is in accordance with the study run in the first level of impact assessment. Inflow is 

also the main triggering factor for changes in the median reservoir release in a typical 

operational year, although changes in the local temperature can perturb the effect of the 

changing factors on the annual median release, due to alteration in the reservoir evaporation.   
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It should be noted that changing the integrated emulator, with which the performance of the 

system is assessed, can alter the results of the sensitivity analysis. To showcase the uncertainty 

in the impact assessment as a result of altering the emulator, the sensitivity analysis with other 

two non-falsified emulators has been repeated, i.e. IE-22 and IE-14, and the changes in the 

estimated performance indicators under the same joint scenarios of change has been inspected 

and ordered according to Figure 55 for each performance indicator. It should be noted that 

these IE-22 and IE-14 differ from IE-6 only in terms of the emulator used for lake evaporation: 

E-8 in IE-6 is substituted by E-11 and E-9 in IE-22 and IE-14, respectively. Figure 55 

summarizes the findings. In panels, x-axis belong to models IE-22 and IE-14. These panels 

show how much change in performance indicators takes effect when the emulator of lake 

evaporation is change. In all panels, colorbars show the magnitude of change in the four 

performance indicators. No change is corresponding to white color white positive and negative 

changes are shown with red and blue colors. Larger distance from zero (white) gets more 

saturation in red or blue. Considering low storage periods, altering the emulators related to 

reservoir evaporation can cause up to 20% change in the estimated performance indictor 

depending to the changing condition considered. In this case, altering the emulator for lake 

evaporation mainly results in overestimating the changes witnessed by IE-6, which is more 

highlighted when E-8 is substituted by E-9. Similarly, the identified deficit in local irrigation 

supply is sensitive to the choice of emulator used for representing reservoir evaporation. In 

particular, substituting E-8 by E-9 can result up to 10% change in the performance indicator. 

Considering the number of spill events in a typical year, changes in the emulators related to 

reservoir evaporation can cause between ±5% changes in the estimated value. Considering the 

expected median of annual reservoir release, the changes in the identified sensitivity due to 

changes in the IEs are rather marginal and stay between 0 to 1% under the considered scenarios 

of change. From the figure it can be concluded that the major change is in the expected low 

storage duration indicator and the minor change is in median reservoir release. This indicates 

that IEs with marginal differences during the historical conditions can provide rather different 

estimates under changing conditions – see Bormann et al. (2011). This can highlight the role 

of impact model in portraying the sensitivity of water resource systems to changing conditions, 

indicating added uncertainty as a result of the choice of the model with which the vulnerability 

is assessed.  
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Fig. 55. Relative change in the performance indicators obtained by IE-22 and IE-14, compared 

to IE-6 for expected number of low storage duration, expected annual water deficit, expected 

number of spill events, and expected median flow during a typical year. 

 

In order to quantify the level of confidence of top non-falsified models, IE-22 and IE-14, in 

representing the behaviour of Oldman Reservoir, the probability distribution functions for to 

the four performance criteria are found and presented in Figure 56. In this Figure, Panels (a) to 

(d) belong to expected low storage duration, expected annual water deficit, expected number 

of spill events and expected Q50, respectively. Also x-axis shows the percent of change in 

estimation of performance indicators with respect to model IE-6 and y-axis shows the density. 

The performance of the two models are presented by red (IE-22) and blue (IE-14) colors. Based 

on Panel (a), in estimation of low storage duration, model IE-22 shows -10 to +10 percent of 

change whereas model IE-14 ranges between -9 to +25 percent. Moreover, as presented in 

Panel (b), for the expected annual deficit, IE-22 performs a range of change from -1.5 to +7 

percent while IE-14 has a greater range from -1.5 to +9 percent. Panel (c) belongs to expected 

number of spill events in which IE-22 and IE-14 show a range of ±4 percent and -4 to +2 

percent of change with respect to model IE-6, respectively. The last panel also shows the 

performance of the two models in estimation of Q50. Based on this panel, the percent of change 

in representing this indicator by the models are marginal and similar.  

 



119 
 

 
Fig. 56. Probability distribution functions related to models IE-22 and IE-14 in representing 

the change in the four performance criteria with respect to model IE-6. Panels (a) to (d) belong 

to low storage duration, expected annual water deficit, expected number of spill events and 

expected Q50, respectively. 
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Chapter 8. Summary and conclusions 

The increasing pressure on freshwater resources necessitates developing improved tools with 

which potential vulnerabilities in water resource systems can be diagnosed and quantified. 

Despite major breakthroughs in integrated water resource management models, existing 

IWRMs do not reveal required details within all components of the system in consideration. 

To overcome the limitations in existing IWRMs in terms of representing details, here, using an 

emulation approach is suggested with which a new set of functional relationship can be added 

to the original model to improve process representations only where and when needed. The 

functionality of this approach in understanding the detailed dynamics of water resource systems 

developed around the Oldman River in southern Alberta, Canada which is tested in this study. 

An existing IWRM, i.e. WRMM, developed by Alberta Environment (2002a) as a benchmark 

model is considered for which the emulators are developed. To represent a detailed 

representation of the system dynamics at the Oldman Reservoir, MLR- and ANN-based 

emulators for (1) lake evaporation, (2) irrigation water withdrawal, (3) irrigation water demand 

and (4) the reservoir release are developed considering different scenarios for input selection. 

In the first scenario, it was assumed that a complete knowledge regarding predictors and their 

time signatures is available. This knowledge was taken from literature and was proven with 

available data related to the case study. In the second scenario, predictors were chosen from a 

pool of potential variables in which time signatures were known. In this scenario various 

nonlinear transformations of these variables were considered. In the third scenario, time 

signatures of predictors were also unknown and potential variables with time lags were 

included in the pool of potential predictors. An input variable selection scheme was applied to 

find most relevant predictors in second and third scenarios. To apply the input variable 

selection scheme three measures of dependence i.e. Kendall’s tau, Pearson’s correlation 

coefficient and Spearman’s rho were considered.  

 

For each variable, 77 emulators, (7 with MLR and 70 with ANN technique) were developed 

and their performance was evaluated based on various goodness-of-fit measures against 

WRMM simulations. Then some of the emulators were falsified based on their relative 

performance with respect to accuracy, uncertainty as well as the trade-off between accuracy 

and uncertainty. The non-falsified emulators were coupled to form 128 IEs, with which the 

detailed dynamics at the Oldman Reservoir can be described. These IEs were rigorously 

intercompared in semi- and fully-coupled simulation modes in testing and validation periods. 
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The performance of the integrated emulators was assessed and top non-falsified integrated 

emulators were chosen.  

 

Considering emulation models developed, the results showed that ANN-based emulators 

generally outperform simpler emulators developed using MLR. Moreover, it was found that 

ANN is a powerful tool that can estimate variables even with not physically meaningful 

predictors. As an example, although based on the considered configuration, lake evaporation 

is dependent on both temperature and reservoir storage but some lake evaporation emulators 

are only dependent on different functions of temperature. These emulators are amongst the 

models that perform highest accuracy or less uncertainty. In addition, although emulators 

developed assuming partial knowledge of the input variables were able to simulate the 

considered variables in individual and semi-coupled mode, they were outperformed by 

emulators configured based on the perfect priori. This can highlight the importance of the 

expert knowledge in forming efficient emulators.  

 

Accordingly, the top selected non-falsified emulators were used to explore the sensitivity of 

the water resource system at the Oldman Reservoir to (1) changing streamflow, (2) streamflow 

and temperature and (3) streamflow, climate and irrigation area. To evaluate the reservoir 

sensitivity to changing conditions, a set of performance indicators defined. These include (1) 

the expected number of weeks in an operational year in which the reservoir storage goes below 

25% of its capacity, (2) the expected local water deficit during a typical year, (3) the expected 

number of weekly spill events during one typical year, and (4) the expected annual median 

reservoir release. Expected low storage duration and water supply deficit indicate local 

behaviour of the reservoir whereas expected number of spill events and median reservoir 

release are representations of regional behaviour of the system as the reservoir release supplies 

water for the Lethbridge northern irrigation district. In order to evaluate the vulnerability of the 

system under the three defined changing scenarios, bottom-up, joint bottom-up/top-down, and 

a heuristic techniques of impact assessment applied. For the first impact assessment study, two 

indicators of flow regime, namely annual flow volume and timing of the annual peak, were 

considered. 11 scenarios of change for annual flow volume (ranging from 0.75% to 1.25%) and 

14 scenarios of change for the annual peak (ranging from -5 to +8 weeks) resulted in 154 

scenarios for changing streamflow. Then for each scenario applying ensemble generation 

scheme, 100 realizations for this variable were found. These scenarios fed into the top non-

falsified emulator (IE-6) and the behaviour of the system under changing scenarios assessed. 
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By defining three regime conditions corresponding to dry (-4, -25%), historical (0, 0) and wet 

(+4, +25%), findings show that in the historical and wet regime conditions, low storage 

duration is not changed whereas in dry condition up to 3 weeks of low storage is expected. 

Also in wet condition, expected annual water deficit with higher variability is less in 

comparison with the other two regimes. In addition, expected number of spill events and its 

variability are subject to increase from dry to historical and wet regime conditions. This shows 

that this indicator is more uncertain in wetter conditions. Moreover, median reservoir release 

and its variability are subject to increase from dry to historical and wet regime conditions. This 

study not only evaluates the behaviour of the system under different scenarios but shows the 

variability in the performance indicators. The variability of performance indicators implies that 

how much the system is uncertain under defined scenarios of change. As an example, the PDF 

of expected number of spill events in wet regime condition with high variability intersects the 

PDF corresponds to historical and even dry regime conditions. This shows that although the 

regime condition is wet, but under certain streamflow characteristics, number of spill events 

can be similar to historical or even dry regime conditions. Based on the first level of impact 

assessment study, in dry and historical conditions, low storage does not occur in the system 

while local and regional irrigation networks are facing water deficit. It implies the higher 

priority of maintaining reservoir storage in comparison with allocating water to local and 

regional irrigation demand. Moreover, in wet regime condition more spill events are expected 

which necessitates awareness of water managers to prevent the probable consequences.   

 

In the second level of impact assessment study, a joint bottom-up/top-down approach applied. 

First, temperature data obtained from NASA-NEX downscaled global climate projections. 

Then different scenarios of warming were defined in a way that the long term expected annual 

temperature is equal to the historical temperature, or increases in increments of +0.5 °C, up to 

the long term expected annual temperature plus 3 °C. Finally, from each group 100 realizations 

of temperature were randomly selected. The joint scenarios of streamflow and temperature 

were fed into the top non-falsified model and the sensitivity of the system under changing 

streamflow and temperature was assessed. With this assessment it was shown that in a warmer 

climate, the duration of low storage is extended, the water supply deficit will increase, the 

number of spill events decreases and the median reservoir release will increase. This study 

showed that although in warmer climate the stress on the system increases but the reservoir 

release which represents the regional water allocation is increased as well. This indicates that 

the priority of regional irrigation districts is higher rather than the local irrigation network. This 
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is due to the importance of the LNID over the local irrigation networks in terms of the area. 

(LNID area is 92,000 hectare and local irrigation network area is 6,700 hectare). In addition, 

although in historical and wet regime conditions local and regional irrigation districts are facing 

water supply deficit but the duration of low storage in these conditions is not changed. This 

highlights the higher priority of maintaining storage level in comparison with allocating water 

to local and regional irrigation districts. Higher priority of maintaining reservoir level is due to 

preventing sediment spreading in the region which can have significant environment 

consequences. Therefore, it can be concluded that in the system, highest to lowest priorities go 

to preventing low storage occurrence, allocating regional and local water demand. These 

findings are in accordance with the priority policy in the original water resource model 

(WRMM). 

 

In the third level of vulnerability assessment, a heuristic approach was applied. In this study, 

the sensitivity of the system to streamflow, climate including temperature and precipitation and 

human intervention due to change in irrigation area was assessed. Three states for increase, no-

change and decrease in streamflow, precipitation and irrigation area considered. The scenarios 

for increase and decrease were identified as ±25% change in the historical time series for 

streamflow, precipitation and irrigation area and ±2°C change in historical temperature series. 

All settings were fed to the top non-falsified model with which the sensitivity of the system at 

the Oldman Reservoir was assessed. It was found that inflow to reservoir and area of irrigation 

are the most significant drivers affecting number of low storage duration and spill events. Water 

deficit is sensitive to inflow, temperature and irrigation area while median release is dependent 

on inflow to reservoir and temperature. This holistic knowledge on local sensitivity to changing 

condition was not attainable using the original WRMM model.  

 

Also it was shown that although the performance of the non-falsified IEs are identical in 

representing the dynamics of the Oldman Reservoir under historical data, simulations results 

can differ under scenarios of change. It was argued that this uncertainty, originated from the 

impact model with which the system sensitivity is assessed, should be recognized and handled 

particularly under uncertain future conditions.  

 

Considering the promising results obtained, the application of proposed emulation approach is 

promoted in other case studies and/or IWRMs. Having said that, it is believed much more can 

be done:  
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(1) For developing emulators, 60% of available data was used for training emulators. It is 

possible to check the effect of changing this range on the performance of emulators. Also 

this data was taken from the beginning of the time series while it is possible to take the 

data randomly from anywhere throughout the whole data period and investigate any 

improvement in the performance of emulators. Similar to what mentioned about the data 

which was used for training emulation models, it is possible to consider different periods 

of data for testing and validating purposes or selecting these periods randomly from the 

whole data period.  

(2) In this study, emulators were developed applying MLR and ANN approaches. However, 

other data-driven approaches such as Genetic Symbolic Regression (Hassanzadeh et al. 

2013) can be used for building emulators. 

(3) In the first level of predictor selection, we assumed that a complete knowledge regarding 

proxies of emulators is available. For further studies, it is possible to include other 

variables as predictors and check whether they can improve the performance of emulators 

or not. 

(4) In the second and third scenarios of predictor selection scheme, only 6 different functions 

of potential variables considered while it is possible to apply different other functions. 

(5) In the second and third scenarios of predictor selection, it was assumed that the proxies 

that can improve the BIC value for predictand residual more than 10% are considered. This 

limit can be decreased or increased to see the effect of including or excluding predictors 

in emulators’ performance. 

(6) In developing individual emulators we assumed that water evaporates from the lake with 

the same amount throughout the surface and we ignored the effect of water depth on the 

evaporation process. Therefore, it would be possible to include the effect of reservoir depth 

on the lake evaporation. In addition, we assumed that irrigation demand, water withdrawal 

and reservoir release are of constant values during an operational week. So it is not possible 

to detect changes in these variables in finer temporal resolutions. It can be possible to 

modify the model in a way that can address different time scales.  

(7) We found the parameters of MLR-based emulators with 95% level of confidence. In the 

future studies this range can be changed.  

(8) In order to find predictive uncertainty in MLR-based emulators, the range of each 

parameter was divided to four segments resulting in five different realizations for each 

parameter of the equations. The number of segments can be changed and by having less or 
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more number of parameters the predictive uncertainty regarding each emulator can be 

found and compared. 

(9) To assess the performance of emulators RMSE, R2, NSE, LRMSE and REP were used 

whereas it is possible to consider other error measures.  

(10) In the semi-coupling mode, best emulators were selected based on the highest accuracy 

and least uncertainty which had been found using BIC measure. It was possible to take 

other goodness-of-fit measures such as Nash-Sutcliffe Efficiency indicator to select best 

emulators. 

(11) In order to falsify integrated emulators, IPE measure was used. This indicator is a 

representation of RMSE, LRMSE and REP. It is possible to choose other error measures 

to define IPE. 

(12) We only focused on the 7 top nan-falsified IEs while it was possible to consider more 

IEs. 

(13) Emulators can be used to link the dynamics of water resource systems across a range of 

spatial and temporal scales and/or between water quantity and quality. 

(14) The emulators developed using input and output sets of the original model (WRMM). 

Simulations of WRMM were based on predefined policies and priorities. Now if these 

policies change, the developed IEs are not able to be updated and used as emulator of 

WRMM. In order to tackle this issue, it is possible to define some parameters in the 

individual emulators in order for them to be able to take into account the policies 

according to the original model.    

(15) In this study, only one component of the river system was emulated (Oldman Reservoir). 

Now if including another components is sought one way is to develop another set of 

emulators and going through the same procedure step by step to fine best integrated 

emulators. Having best IEs for the second component of the system, the next step is to 

coupling them with the top selected IEs of the first component and assessing the 

behaviour of the system under different scenarios. Developing different hypothesis for 

emulators, falsifying and finding best IEs and coupling them for different components of 

the system not only increases the complexity of the problem in hand but it needs a great 

amount of time to be dealt with. Another solution would be defining some parameters in 

the developed individual emulators based on the physical properties of reservoirs. Then 

by modifying the parameters it would be possible to have new IEs without the need of 

developing them. With this approach by one already developed IE it would be possible 

to assess the behaviour of the system with other components.  
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(16) Here, it was assumed that only one type of crop exists in the local irrigation networks. 

However, it is possible to consider different crop types with different water needs and by 

applying the top selected IE developed in study identify the vulnerability of the system 

under changing crop types.  

(17) In the first level of impact assessment, the annual flow volume and annual peak were 

considered to change. Other characteristics of streamflow such as variability, rescission 

or the shape of the hydrograph can be included in the impact assessment study as well.  

(18) In the second level of impact assessment study, the focus was only on the dry (-4, -25%), 

historical (0, 0) and wet (+4, +25%) regime conditions. It is possible to expand this 

analysis for all the 154 defined scenarios as presented in Figure 43. 

(19) Also in the second level of impact assessment study, only scenarios of changing 

streamflow and temperature were considered. It is possible to include different scenarios 

of changing precipitation in the impact assessment study.  

(20) In addition, the temperature data obtained from NASA-NEX global climate projections 

was used in this study without downscaling. The spatial resolution of this data is 25 × 25 

Kilometers globally. However, it is possible to downscale this data to a finer resolution 

and apply it in the vulnerability assessment study.  

(21) In the third level of impact assessment study, by applying a constant multiplier, values 

of the considered variables homogeneously decreased or increased. However, in the 

nature these changes are not homogeneous. Therefore, it would be possible to consider 

change in these variables non-homogeneously. 

(22) In the third level of impact assessment, we only considered ±25% change in the historical 

time series of streamflow, precipitation and irrigation area, and for temperature, ±2°C in 

the historical time series. It is possible to consider different values for change in these 

variables. 
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Appendix  

Data used in this study 

 

Fig. A1. Weekly WRMM inflow time series for 63 years spanning from January 1938 to December 2000. 
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Fig. A2. Weekly WRMM Lake evaporation time series for 63 years spanning from January 1938 to December 2000.  
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Fig. A3. Weekly WRMM Precipitation time series for 63 years spanning from January 1938 to December 2000.  
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Fig. A4. Weekly Temperature time series for 63 years spanning from January 1938 to December 2000 from Environment Canada website.  
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Fig. A5. Weekly WRMM water withdrawal time series for 63 years spanning from January 1938 to December 2000.  
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Fig. A6. Weekly WRMM irrigation demand time series for 63 years spanning from January 1938 to December 2000.  
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Fig. A7. Weekly WRMM reservoir release time series for 63 years spanning from January 1938 to December 2000.  
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Fig. A8. Weekly WRMM storage time series for 63 years spanning from January 1938 to December 2000.  

 

 


