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Highlights

• We generate optimal Runge-Kutta schemes for the artificial compressibility method.
• These are optimized for high-order unstructured spatial discretizations.
• Significant speedup factors are observed relative to classical Runge-Kutta schemes.
• We demonstrate that these scheme are suitable for incompressible turbulent flows.
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Abstract

In this study we generate optimal Runge-Kutta (RK) schemes for
converging the Artificial Compressibility Method (ACM) using dual
time-stepping with high-order unstructured spatial discretizations. We
present optimal RK schemes with between s = 2 and s = 7 stages for
Spectral Difference (SD) and Discontinuous Galerkin (DG) discretiza-
tions obtained using the Flux Reconstruction (FR) approach with
solution polynomial degrees of k = 1 to k = 8. These schemes are opti-
mal in the context of linear advection with predicted speedup factors in
excess of 1.80× relative to a classical RK4,4 scheme. Speedup factors of
between 1.89× and 2.11× are then observed for incompressible Implicit
Large Eddy Simulation (ILES) of turbulent flow over an SD7003 airfoil.
Finally, we demonstrate the utility of the schemes for incompressible
ILES of a turbulent jet, achieving good agreement with experimen-
tal data. The results demonstrate that the optimized RK schemes
are suitable for simulating turbulent flows and can achieve significant
speedup factors when converging the ACM using dual time-stepping
with high-order unstructured spatial discretizations.
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1 Introduction

The Artificial Compressibility Method (ACM) is an alternative to pressure
correction based methods for solving the incompressible Navier-Stokes equa-
tions [1]. In the ACM, pressure is solved together with other variables from a
transformed hyperbolic steady-state system instead of via an elliptic Poisson
equation. Combined with dual time stepping [2], the ACM can be applied
to incompressible unsteady flows by approximately solving the steady-state
problem in fictitious pseudo-time at each physical time step. In practice, the
computational cost of this approach is dominated by the rate of convergence
of the solution in pseudo-time. There are several popular approaches to
performing pseudo-iterations, such as implicit pseudo-time stepping with
the Lower-Upper Symmetric Gauss Seidel (LU-SGS) method [3, 4], or using
explicit schemes such as Runge-Kutta (RK) methods [2].

Recent research has led to the development of high-order unstructured spa-
tial discretizations suitable for the ACM, such as the Discontinuous Galerkin
(DG) [5, 6], Spectral Difference (SD) [7, 8], and Flux Reconstruction (FR)
approaches [9]. It has been demonstrated previously that these methods are
particularly appealing for scale-resolving simulations of unsteady turbulent
flows via Large Eddy Simulation (LES), Implicit LES (ILES), and Direct
Numerical Simulation (DNS) [10, 11, 12]. They are able to provide accurate
solutions on mixed-element unstructured grids, and have been shown to be
more accurate than industry standard second-order tools per degree of free-
dom [13]. While significant contributions have been made to the application
of high-order unstructured methods to incompressible flows [4, 14, 15, 16], the
majority of previous work has focused on their application to the compressible
Navier-Stokes equations. Recently, it has been demonstrated that the FR
approach can be extended to solve incompressible flow problems using the
ACM and dual time stepping. Furthermore, it has been demonstrated that
FR with explicit time stepping can be scaled to tens of thousands of GPU
compute nodes achieving > 50% of peak performance on modern many-core
hardware architectures [17].

The main advantages of using the ACM with explicit pseudo-time stepping
are its scale invariance and low memory footprint, making it well-suited
for modern many-core hardware platforms. Although explicit schemes are
relatively inexpensive per time step, they are restricted by their conditional
stability limit and, hence, a greater total number of pseudo time steps must
be taken. This issue can be addressed by adopting implicit schemes, allowing
significantly larger pseudo-time steps. However, the trade-off with implicit
schemes is that they require the computation and storage of Jacobian matrices.
This becomes prohibitively expensive for higher-order spatial discretizations
and is typically memory bandwidth bound. In addition, many methods for
solving the resulting linear system, such as Lower-Upper Symmetric Gauss-
Seidel (LU-SGS) or Newton-Krylov methods, are not scale invariant and
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increasing the amount of parallelism also reduces the numerical effectiveness of
the preconditioner. Hence, in the context of high-order spatial discretization
using the ACM on modern hardware architectures, explicit approaches remain
relevant even though a relatively large number of explicit iterations are usually
required to converge the pseudo time system to pseudo-steady-state [18].

The maximum stable time-step for an explicit discretization is a function
of both the temporal scheme, such as the particular explicit RK method being
used, and the spatial discretization [19]. In this study we develop optimal
explicit RK methods in order to reduce the total number of pseudo time steps
and hence total computational cost of an explicit high-order unstructured
ACM implementation. The methods are optimal in that they allow the
largest possible pseudo time step to be taken for a given number of RK stages.
The rest of the manuscript is organized as follows. In Chapter 2 we discuss
the general ACM formulation and its solution using dual time stepping. In
Chapter 3 we summarize general RK methods and in Chapter 4 present the
FR approach. We then derive optimal RK schemes for pseudo time stepping,
and demonstrate their application to incompressible turbulent flow over an
SD7003 airfoil and an incompressible turbulent jet in Chapter 5. Finally, we
present conclusions in Chapter 6.

2 The Artificial Compressibility Method

2.1 Formulation

The ACM was originally introduced by Chorin [1] in the late 1960s for
solving steady incompressible fluid flow problems. Rather than relying on a
Poisson equation based projection, a coupling pressure term is introduced
to the continuity equation to drive the system towards a solenoidal velocity
field in the limit of steady state. The original formulation preserves the
hyperbolic nature of the system, but destroys time accuracy. The most
common procedure for recovering time accuracy is the dual time stepping
approach of Jameson [2].

The artificial compressibility system can be written in a conservation
form as

∂u

∂t
+∇ · f = 0, (1)

where

u =

⎧⎪⎪⎨
⎪⎪⎩

p
vx
vy
vz

⎫⎪⎪⎬
⎪⎪⎭ , (2)
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and

f =

⎧⎨
⎩
fex − fvx
fey − fvy
fez − fvz

⎫⎬
⎭ , (3)

with

fex =

⎧⎪⎪⎨
⎪⎪⎩

ζvx
v2x + p
vxvy
vxvz

⎫⎪⎪⎬
⎪⎪⎭ , fey =

⎧⎪⎪⎨
⎪⎪⎩

ζvy
vyvx
v2y + p

vyvz

⎫⎪⎪⎬
⎪⎪⎭ , fez =

⎧⎪⎪⎨
⎪⎪⎩

ζvz
vzvx
vzvy
v2z + p

⎫⎪⎪⎬
⎪⎪⎭ , (4)

fvx = ν

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
∂vx
∂x
∂vy
∂x
∂vz
∂x

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, fvy = ν

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
∂vx
∂y
∂vy
∂y
∂vz
∂y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, fvz = ν

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
∂vx
∂z
∂vy
∂z
∂vz
∂z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (5)

where ζ is the artificial compressibility relaxation factor, ν is the kinematic
viscosity, p is the pressure, and vi is a velocity component for i ∈ {x, y, z}.
The ACM formulation has a hyperbolic nature in pseudo time, similar to the
linear advection equation, since artificial pressure waves travelling at a finite
speed are introduced. The eigenvalues of the inviscid flux Jacobian matrices

Ji =
∂fei
∂u

, (6)

are
λi = {vi − ci, vi, vi, vi + ci}, (7)

where ci =
√
v2i + ζ is the pseudo speed of sound. The pseudo speed of sound

is proportional to the artificial compressibility relaxation factor ζ, which is
adjusted to downscale the wave speed to reduce system stiffness.

2.2 Dual Time Stepping

Dual time stepping can be considered as consecutive pseudo steady-state
simulations [2]. In this approach, the real time is discretised with a backward
difference (BDF) scheme, whose solution is found by marching the governing
equation in pseudo time. A conservation law with an additional pseudo time
derivative can be marched towards a pseudo steady state following

∂u

∂τ
+ Ic

∂u

∂t
+∇ · f = 0. (8)

A cancellation matrix Ic = diag{0 1 1 1} needs to be added as a coefficient
for the real time derivative to eliminate it from the continuity equation. This
ensures that the solution is driven towards the divergence free state.

As the solution is integrated with respect to pseudo time, the real time
derivative can be considered as a source term for the right-hand side that
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is updated at every real time step. Defining R = R− St, where R = −∇ · f
and St = Ic

∂u
∂t , Equation 8 reads

∂u

∂τ
= R = R− St. (9)

Discretizing the real time derivative with an M -stage BDF [19] scheme and
the pseudo time derivative with a smax-stage explicit RK scheme [19], we can
write a single pseudo iteration as

un+1,m+1,0 = un+1,m

un+1,m+1,s = un+1,m+1,0 + αsΔτRn+1,m+1,s−1, for s = 1 ... smax (10)

un+1,m+1 = un+1,m+1,smax ,

where the superscripts n and m denote real and pseudo time levels, s is the
stage index, and αs is the stage coefficient. Different real time levels are
needed for the BDF expansion in the right hand side computation according
to

Rn+1,m+1,s−1 =
1

αPI

[
Rn+1,m+1,s−1 − IcS

n+1,m+1,0
t

]
(11)

=
1

αPI

[
Rn+1,m+1,s−1 − Ic

Δt

(
B0u

n+1,m+1,0 +

M∑
σ=0

Bσ+1u
n−σ

)]
,

in which Bσ are the coefficients of the BDF schemes listed in Table 1. In this
study, the leading term in the BDF is expressed at the first RK stage, which
is often referred to as point-implicit source term treatment. The treatment
also introduces a scaling coefficient αPI = 1 + αsΔτB0/Δt which effectively
limits Δτ if Δτ � Δt. In this instance, however, best performance was
achieved with αPI = 1.

Table 1. Coefficients for the backward difference formulas

B0 B1 B2 B3

Backward-Euler 1 −1 – –
BDF2 3

2 −2 1
2 –

BDF3 11
6 −3 1

2 -13

The sub-iteration procedure according to Equation 9 is repeated until
the solution has reached a specified convergence tolerance. Subsequently, the
pseudo steady-state solution is stored as the real solution and assigned as
the initial value for the next time level un+1 = un+2,0. Furthermore, the rest
of the terms in St are updated accordingly, un−(σ+1) = un−σ for σ = 1...M .
Algorithm 1 illustrates the dual time stepping methodology with BDF2.
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Algorithm 1: Dual Time Stepping with BDF2.

while t < tmax do
while ∂u

∂τ > ε do
Solve Equation 9

end
Return un+1

un−1 = un

un = un+1

t = t+Δt
end

3 Runge-Kutta Schemes

3.1 Explicit Schemes

A general s-stage explicit RK scheme can be represented in matrix-vector
form by the Butcher tableau [19]

c A

b
(12)

where

ci =

s∑
j=1

aij , (13)

s∑
i=1

bi = 1, (14)

and
aij = 0, j ≥ i, (15)

which ensures A is strictly lower triangular.
When applied to ODE’s of the form du/dt = ωu, where ω ∈ C, a pth-order

explicit RK method can always be expressed as [20]

un+1 = Ps,p(z)u
n, (16)

where Ps,p(z) is the schemes stability polynomial and z = ωΔt. The resulting
scheme will be linearly stable provided |Ps,p| ≤ 1, where | · | is the complex
modulus. The stability polynomial can be determined directly from the
Butcher tableau according to

Ps,p(z) = 1 + zbT (I− zA)−1 e =
|I− zA+ zebT |

|I− zA| . (17)
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where e is a vector of ones. The region of absolute stability S of the RK
method is the set in the complex plane where |Ps,p| ≤ 1 holds, that is [20],

S = {z ∈ C : |Ps,p| ≤ 1} , (18)

and the linear stability condition is

Δtω ⊆ S. (19)

The eigenvalues ωδ of a general spatial discretization can be obtained via
von Neumann analysis for each permissible wavenumber θδ. Therefore, to
ensure linear stability of any fully-discrete scheme consisting of a spatial
discretization and RK pair we require

|Ps,p(Δtωδ)| ≤ 1, ∀ωδ. (20)

3.2 Optimizing Runge-Kutta Methods

In general, the stability polynomial Ps,p of an explicit RK method is a
polynomial of degree s defined by polynomial coefficients γj according to [20]

Ps,p(z) =
s∑

j=0

γjz
j . (21)

For the method to be accurate to order p, we require the stability polynomial
coefficients to be identical to the exponential function up to terms of at least
order p, that is

γj =
1

j!
, 0 ≤ j ≤ p. (22)

For any explicit scheme we can determine the largest time-step Δt for
which Equation 20 remains satisfied. Our objective is to determine the set
of free parameters {γ0, γ1, . . . , γs} that yield the largest possible value of Δt
for a given spatial discretization to accelerate the convergence of Equation 9.
This can be cast as an optimization problem [20]

maximize
γp+1,γp+2,...,γs

Δt

subject to |Ps,p(Δtωδ)| − 1 ≤ 0, ∀ωδ.
(23)

We use Δtopt to denote the solution to this optimization problem (the opti-
mal time-step size), and Popt to denote the corresponding optimal stability
polynomial. Finding the global optimum in Equation 23 can be particularly
challenging, as it is nonconvex for s > 2 and there are typically several
sub-optimal local minima.
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Ketcheson and Ahmadia [20] proposed an alternate optimization approach,
which seeks to first determine how small the maximum modulus of Ps,p(Δtωδ)
can be for a given Δt, which can be cast as

minimize
γp+1,γp+2,...,γs

max
ωδ ∈ωωωδ

(
|Ps,p(Δtωδ)| − 1

)
. (24)

The solution to Equation 24 is denoted rs,p(Δt,ωωωδ) and we note that |Ps,p(z)|
is linear in γj . Therefore, Equation 24 is convex [20]. Ketcheson and
Ahmadia [20] then reformulated the problem defined by Equation 23 as

maximize
γp+1,γp+2,...,γs

Δt

subject to rs,p(Δt,ωωωδ) ≤ 0.
(25)

This is an optimization problem in a single variable, and can be solved using
the bisection method outlined in Algorithm 2. The solution of Algorithm 2
yields the maximum possible linearly stable time-step Δtopt, as well as the
corresponding optimal stability polynomial Popt.

Algorithm 2: Finding Δtopt.

Select Δtmax

Δtmin = 0
while Δtmax −Δtmin > ε do

Δt = Δtmin+Δtmax
2

Solve Equation 24
if rs,p(Δt,ωωωδ) ≤ 0 then

Δtmin = Δt
else

Δtmax = Δt
end

end
return Δtopt = Δtmin

Finally, to generate Butcher tableaus based on the optimal stability
polynomial Popt we used RK-Opt, a package for optimization of Runge-Kutta
methods [21, 22]. RK-opt has also been used in related work, such as Parsani
et al. [22] who found optimal RK schemes for the SD method, and Kubatko
et al. [23] who used it to determine Strong Stability Preserving (SSP) RK
schemes for DG methods. Our FRDG schemes differ from those of Kubatko et
al. [23] in that we relax the order of accuracy of the identified RK schemes to
first-order, since we do not require accuracy in pseudo time. Also, due to the
smooth nature of incompressible flows, we focus on optimizing linear stability
limits rather that SSP properties. Applying these accuracy constraints to
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the stability polynomial we obtain

Ps,1(z) = 1 + z +
s∑

j=2

γjz
j , (26)

which has s− 1 free parameters {γ2, γ3, . . . , γs}. In the current study we con-
verge the bisection method in Algorithm 2 to 10−12 using Matlab 2016a [24].
To solve the convex minimization problem in Equation 24 we used CVX,
which is a Matlab-based package for specifying and solving convex programs,
using the “best” precision setting [25, 26].

4 The Flux Reconstruction Approach

In the current study we use the FR approach for spatial discretization, noting
that the RK optimization procedure is also applicable to other general spatial
discretizations such as the finite difference, finite volume, finite element, or
DG methods. The FR approach, first introduced by Huynh [9], later described
using our notation in [27, 28, 29] and summarized here for completeness, is
used to spatially discretize a 1D hyperbolic conservation law of the form

∂u

∂t
+

∂f

∂x
= 0, (27)

in a domain Ω, where u = u(x, t) is the solution with a given initial dis-
tribution u(x, 0) = u0, t is time, f = f(u) is the flux, and x is the spatial
coordinate.

We start by splitting the domain Ω into a mesh composed of elements

Ω =

Ne⋃
n=1

Ωn,

Ne⋂
n=1

Ωn = ∅, (28)

where Ωn is one of Ne elements in the domain. For simplicity, each element
Ωn is mapped to a reference element I via the linear mapping

ξ = Γn(x) = 2

(
x− xn

xn+1 − xn

)
− 1, (29)

where xn is the mesh node corresponding to the left face of Ωn, Γn is the
mapping function, and ξ is the location in reference space. This mapping can
be inverted according to

x = Γ−1
n (ξ) =

(
1− ξ

2

)
xn +

(
1 + ξ

2

)
xn+1, (30)

which is also linear. This allows us to construct the transformed solution in
computational space according to

ûδn = ûδn(ξ, t) = uδn
(
Γ−1
n (ξ), t

)
, (31)
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and a transformed flux in computational space according to

f̂ δ
n = f̂ δ

n(ξ, t) =
f δ
n

(
Γ−1
n (ξ), t

)
hn

. (32)

The system of equations in computational space can then be written as

∂ûδn
∂t

+
∂f̂ δ

n

∂ξ
= 0. (33)

Following Huynh [9], the solution within each element is represented by a
degree k polynomial, which is allowed to be discontinuous at the interface
between elements. This polynomial is supported by nodal basis functions
generated at k+1 solution points. Therefore, the solution within each element
in computational space can be approximated as

ûδn =
k∑

l=0

ûδn,lφ̂l, (34)

where ûδn = ûδn(ξ, t) is the polynomial representation of the solution within
an element, ûδn,l = ûδn,l(t) is the value of the solution at solution point l, and
φ̂l = φ̂l(ξ) is its corresponding nodal basis function in reference space. For
the one-dimensional case these basis functions are the Lagrange polynomials

φ̂l(ξ) =
k∏

m=0,m �=l

ξ − ξm
ξl − ξm

. (35)

A polynomial representation of the discontinuous flux function f̂ δD
n = f̂ δD

n (x, t)
can be constructed using the same polynomial basis as the solution according
to

f̂ δD
n =

k∑
l=0

f̂ δ
n,lφ̂l, (36)

where the superscript D denotes that this flux, like the solution, is allowed
to be discontinuous at the interface between elements and f̂ δ

n,l = f̂ δ
n,l(t) is

the flux evaluated at the solution points. This discontinuous flux is then
corrected to be C0 continuous by

f̂ δC
n =

(
f̂CL
n − f̂ δD

n,L

)
gL +

(
f̂CR
n − f̂ δD

n,R

)
gR, (37)

where gL = gL(ξ) and gR = gR(ξ) are correction functions, f̂ δD
n,L = f̂ δD

n (−1, t),
and f̂ δD

n,R = f̂ δD
n (1, t). The terms f̂CL

n = f̂CL
n (u−L ,u

+
L ) and f̂CR

n = f̂CR
n (u−R,u

+
R)

are common interface fluxes computed at the flux points between elements
by an appropriate Riemann solver using the interpolated values u−L , u+L , u−R,
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and u+R of the solution from the adjoining elements at the left (L) and right
(R) interfaces. The correction functions are degree k + 1 polynomials with
the constraints

gL(−1) = 1, gL(1) = 0, (38)

gR(−1) = 0, gR(1) = 1. (39)

The gradient of the continuous flux function can then be found according to

∂f̂ δ
n

∂ξ
=

∂f̂ δD
n

∂ξ
+
∂f̂ δC

n

∂ξ
=

k∑
l=0

f̂ δ
n,l

∂φ̂l

∂ξ
+
(
f̂CL
n − f̂ δD

n,L

) ∂gL
∂ξ

+
(
f̂CR
n − f̂ δD

n,R

) ∂gR
∂ξ

,

(40)
which is of degree k and in the same polynomial space as ûδn.

The behaviour of an FR scheme depends on the choice of correction
functions gL and gR for the left and right hand boundaries, respectively.
Huynh [9] originally introduced several correction functions including one
that recovered a collocation-based nodal DG scheme (FRDG), one that
recovered an energy-stable SD scheme (FRSD), and one that recovered a so-
called g2 scheme. Vincent et al. [27, 30] later introduced a single-parameter
family of energy-stable flux reconstruction schemes, whose semi-discrete
dispersion and dissipation behaviour was studied.

4.1 Von Neumann Analysis

To determine the stability constraints of an FR scheme we perform Von
Neumann analysis following Huynh [9], Vincent et al [27], and Vermeire et
al. [28, 29]. For this study, we consider the linear advection equation with
fully upwind fluxes at element interfaces, since the ACM requires the solution
of a non-linear advection problem.

We follow the notation of Vincent et al. [27] for Von Neumann analysis
of a general linear advection equation

∂u

∂t
+

∂u

∂x
= 0, (41)

which admits plane wave solutions of the form

u = eI(θx−ωt), (42)

provided the temporal frequency ω = ω(θ) satisfies the dispersion relation
where θ is the wave number and I =

√−1. Specifically, we consider a mesh
where all elements have constant width h = 1. The flux reconstruction scheme
can then be cast in matrix-vector form for any element as

∂ûδ

∂t
= −2Dûδ −

(
f̂CL − 2lT ûδ

)
gξL, (43)
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where ûδ is the vector of solution point values, gξL is the gradient of the
correction function evaluated at the solution points,

l[k] = φ̂j,k(−1), (44)

is the boundary extrapolation operator, and D is the nodal gradient operator.
We seek Bloch wave type solution to Equation 43 of the form

ûδ = e
I
(
nθ

δ−ωδt
)
v̂δ, (45)

where θ
δ is a prescribed baseline wavenumber within the range −π ≤ θ ≤ π

and ωδ is the resulting temporal frequency of the scheme. The upwind
interface flux can then be written as

f̂CL = 2rT e
I
(
nθ

δ−θ
δ−ωδt

)
v̂δ, (46)

where
r[l] = φ̂n,l(1). (47)

By substituting Equation (45) and Equation (46) into Equation (43) we
obtain

Qv̂δ = ωδv̂δ, (48)

where
Q = −2I

[
D+ gξL

(
rT e−Iθ

δ − lT
)]

. (49)

Equation (48) is a classical eigenvalue problem, where v̂ is one of k + 1
valid eigenvectors with an associated eigenvalue ωδ. The operator Q is a
function of θδ, and it follows that so too are v̂δ and ωδ. In order for a fully
discrete scheme to remain stable, all of the eigenvalues ωδ from the spatial
discretization must be contained within the region of absolute stability of the
temporal discretization for all permissible values of θδ for a given Δt.

4.2 Optimal Methods for DG

By using the FRDG correction function described by Huynh [9] and Vincent
et al. [30] in Equation 40 we recover the DG method. Values of Δtopt
obtained using Algorithm 2 are summarized in Table 2 for FRDG schemes
with polynomial degrees k = 1 to k = 8 using between s = 2 and s = 7
RK stages. These results are also plotted in Figure 1. Tabulated stability
polynomial coefficients and corresponding Butcher tableau coefficients are
provided as Electronic Supplementary Material with this article. We observe
that, for a given polynomial degree, optimal RK schemes with more stages
have a larger stability limit. Also, for a given number of stages, optimal RK
schemes for higher degree FRDG schemes have a smaller stability limit.
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Although optimal RK schemes with more stages permit larger time-steps,
they also require an additional residual evaluation per stage. Therefore,
the effective computational cost is obtained by normalizing Δtopt of a given
scheme by the total number of stages as Δtopt/s as shown in Figure 1. In
Table 3 we present the effective speedup of the optimal RK schemes obtained
in this study relative to the classical RK4,4 scheme. We observe speedups
in excess of 1.80× depending on the polynomial degree, suggesting that the
optimal RK schemes developed in the current study could be nearly twice as
fast as conventional methods for converging the ACM in pseudo time when
using FRDG. Furthermore, as shown in Figure 1, the benefit of increasing
the number of stages beyond s = 7 is only marginal.

We are also interested in the computational cost of converging the pseudo
time problem for a fixed spatial resolution. This is proportional to (k +
1)Δtopt/s, which normalizes Δtopt by both the number of stages and the
number of degrees of freedom per element. Referred to here as the effective
resolution, this measure accounts for the fact that for a fixed spatial resolution
fewer relatively large high-order elements can be used. Results for this, shown
in Figure 1, demonstrate that we can expect higher-order FRDG schemes to be
more expensive than lower-order schemes per degree of freedom. Interestingly,
the additional cost of moving to subsequently higher-order schemes reduces
as the order is increased. This suggests that the additional computational
cost of using, for example, a k = 8 FRDG scheme compared to a k = 7
scheme with an equivalent number of degrees of freedom could be marginal
when using the current optimized RK schemes.

Finally, we have plotted a sampling of the eigenspectra for the k = 4
FRDG scheme scaled by the maximum stable time step (ωωωδΔtopt) alongside
the region of absolute stability (S) and contours of |Ps,p(z)| in Figure 2. It
can be seen that large portions of the region of absolute stability for optimal
schemes with a low number of stages are effectively unused. For example, for
s = 2 there are large stable regions above and below the eigenspectra that are
not utilized when the maximum stability condition Δtopt is met. However, as
the number of stages, and hence degrees of freedom available to be optimized
are increased, the scaled eigenspectra and boundary of the region of absolute
stability are nearly identical. This suggests that, given an RK scheme with
enough stages, the optimizer will generate a scheme whose stability boundary
mimics the shape of the spatial discretization’s eigenspectra.

4.3 Optimal Methods for SD

It should be noted that the optimization strategy used in this study is not
limited to the FRDG correction function, and can be generalized to any
valid FR correction function or to other types of spatial discretizations. For
example, by using the FRSD correction function described by Huynh [9]
and Vincent et al. [30] in Equation 40 we recover a SD scheme. We can
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Figure 1. Optimal time-step Δtopt (top), time-step per stage (middle), and
time-step per stage normalized by effective resolution (bottom) for optimal
RK schemes using FRDG.
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Figure 2. Contours of stability polynomials for optimal RK schemes for k = 4
FRDG with the stability boundary (blue line) and eigenvalues from von
Nuemann analysis (black circles) scaled by Δtopt.
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Table 2. Values of Δtopt for optimal RK schemes of order k = 1 for FRDG.

Stages k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

2 0.333 0.167 0.102 0.070 0.051 0.039 0.031 0.026
3 0.590 0.301 0.186 0.129 0.095 0.074 0.059 0.048
4 0.825 0.418 0.260 0.181 0.135 0.105 0.084 0.069
5 1.051 0.529 0.331 0.231 0.172 0.135 0.108 0.090
6 1.274 0.639 0.400 0.280 0.209 0.163 0.132 0.109
7 1.493 0.748 0.468 0.328 0.245 0.192 0.155 0.128

Table 3. Speedup factor in terms of maximum effective time-step size Δtopt/s
relative to RK4,4 for FRDG.

Stages k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

2 1.43× 1.42× 1.41× 1.40× 1.40× 1.40× 1.40× 1.41×
3 1.69× 1.70× 1.70× 1.71× 1.73× 1.74× 1.75× 1.75×
4 1.77× 1.77× 1.79× 1.81× 1.83× 1.85× 1.87× 1.88×
5 1.81× 1.80× 1.82× 1.85× 1.87× 1.90× 1.92× 1.94×
6 1.82× 1.81× 1.83× 1.86× 1.89× 1.92× 1.94× 1.96×
7 1.83× 1.81× 1.84× 1.87× 1.90× 1.93× 1.95× 1.98×

then generate optimal RK schemes, with values of Δtopt obtained using
Algorithm 2 summarized in Table 4 for FRSD schemes with polynomial
degrees k = 1 to k = 8 using between s = 2 and s = 7 RK stages. These
results are also plotted in Figure 3. Tabulated stability polynomial coefficients
and corresponding Butcher tableau coefficients are provided as Electronic
Supplementary Material. We observe that, for a given polynomial degree,
optimal RK schemes with more stages have a larger stability limit. Also,
for a given number of stages, optimal RK schemes for higher degree FRSD
schemes have a smaller stability limit. Furthermore, we note the similarity of
the results with those obtained for FRDG schemes of the same polynomial
degree. This is because cSD → 0 = cDG for large values of k where cSD
and cDG are the coefficients that recover the FRSD and FRDG schemes,
respectively, following Vincent et al. [30]. Therefore, the higher-order FRSD
schemes have similar eigenspectra to their FRDG counterparts and recover
similar optimal RK schemes. Also similar to the previous results using the
FRDG scheme, we observe speedup factors in excess of 1.80× for all solution
polynomial degrees. This suggests that the optimal RK schemes developed
in the current study could be nearly twice as fast as conventional methods
for converging the ACM in pseudo time when using FRSD. Furthermore, we
have demonstrated that optimal RK schemes can be readily generated for
various FR correction functions.
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Figure 3. Optimal time-step Δtopt (top), time-step per stage (middle), and
time-step per stage normalized by effective resolution (bottom) for optimal
RK schemes using FRSD.
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Table 4. Values of Δtopt for optimal RK schemes of order k = 1 for FRSD.

Stages k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

2 0.361 0.173 0.104 0.071 0.052 0.040 0.032 0.026
3 0.632 0.311 0.190 0.130 0.096 0.074 0.059 0.049
4 0.883 0.432 0.265 0.183 0.136 0.105 0.085 0.070
5 1.124 0.547 0.337 0.234 0.174 0.135 0.109 0.090
6 1.360 0.660 0.407 0.283 0.211 0.164 0.132 0.109
7 1.594 0.772 0.477 0.332 0.247 0.193 0.156 0.129

Table 5. Speedup factor in terms of maximum effective time-step size Δtopt/s
relative to RK4,4 for FRSD.

Stages k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

2 1.43× 1.42× 1.40× 1.40× 1.40× 1.40× 1.40× 1.40×
3 1.67× 1.70× 1.70× 1.71× 1.72× 1.74× 1.75× 1.75×
4 1.75× 1.76× 1.79× 1.81× 1.83× 1.85× 1.87× 1.88×
5 1.78× 1.79× 1.81× 1.84× 1.87× 1.90× 1.92× 1.94×
6 1.80× 1.80× 1.83× 1.86× 1.89× 1.92× 1.94× 1.96×
7 1.81× 1.80× 1.83× 1.87× 1.90× 1.93× 1.95× 1.98×

5 Numerical Test Cases

5.1 SD7003

We investigate transitional and turbulent turbulent flow over an SD7003
airfoil [31] to assess the performance benefits of the optimal RK schemes for
ILES of the incompressible Navier-Stokes equations. We use k = 1, 2, and 3
FRDG schemes with their correspondingly optimal RK7,1 schemes and the
classical RK4,4 scheme to solve the pseudo time problem in the ACM. Each
simulation is run using a modified version of PyFR 1.6.0 [32] with full details
supplied as Electronic Supplementary Material. Each case is run at an angle
of attack α = 8◦ and Reynolds number Re = V∞c

ν = 60, 000, where V∞ is the
freestream velocity and c is the chord length. We used the same quadratically
curved hexahedral mesh as Vermeire et al. [13] that has 138,024 elements and
a span of 0.2c. This test case is commonly used to examine the suitability
of numerical schemes for predicting separation, transition, and turbulent
flow. It has been studied previously by, for example, Visbal and collaborators
including Visbal et al. [33], Garmann et al. [34], and Beck et al. [35] using a
DG Spectral Element Method (DGSEM). The characteristic features of the
flow include laminar separation on the upper surface of the airfoil, which then
reattaches further downstream forming a laminar separation bubble. The
flow transitions to turbulence partway along this separation bubble, creating
a turbulent wake behind the airfoil.
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We start each simulation using solution polynomials of degree k = 1.
These are run for a total of 30tc, where tc =

c
V∞ is a flow convective time.

After 30tc each set of simulations is then restarted and run for an additional
30tc using k = 2 and, in the case of the optimal RK scheme simulation,
switched to the correspondingly optimal RK7,1 scheme for that polynomial
degree. This process is then repeated for each polynomial degree until all
simulations have been run for a total of 30tc. Statistics are collected over
the final 20tc of each simulation at each polynomial degree, allowing any
transient effects from startup or increasing the polynomial degree to be
damped. We use BDF2 for physical time integration with a fixed time-step
of Δt = 10−3tc and the velocity residuals of the pseudo time problem are
converged to 5 × 10−4 at each physical time step. Each scheme was run
using its maximum possible stable pseudo time-step, which was acquired via
bisection with the constraint that the velocity residuals did not diverge.

Results in Figure 4 show isosurfaces of q-criterion for each solution poly-
nomial degree using RK4,4 and their corresponding optimal RK7,1 schemes
in pseudo time. As expected, as the solution polynomial degree is increased
with a fixed number of elements the qualitative fidelity of the scale-resolving
ILES simulations increases. All three polynomial degrees exhibit a short
laminar separation bubble on the leading edge of the airfoil, transition to
turbulent flow, and a turbulent wake that propagates downstream. This
behaviour is consistent with previous studies using high-order compressible
solvers at low Mach numbers. Qualitatively, the results obtained using RK4,4

and the optimal RK7,1 schemes are similar. The measured lift and drag
coefficients for each simulation using RK4,4 and the optimal RK7,1 schemes
are shown in Table 6 for each solution polynomial degree. These values
are generally consistent with those available from similar studies using low
Mach number compressible solvers [33, 34, 35]. Importantly, we note that the
measured lift and drag coefficients are not sensitive to our choice of pseudo
time stepping scheme, with only minor variations observed between the RK4,4

and optimal RK7,1 scheme results. These variations are within the margin of
error expected using the the finite 20tc averaging period.

To assess the relative performance of each scheme we have plotted samples
of their convergence history in Figure 5 towards the end of each simulation.
It is clear from these figures that the RK7,1 schemes converge significantly
faster per iteration than the RK4,4 scheme. In fact, the optimal schemes
can complete four to five time-steps in the same number of iterations that it
takes the conventional scheme to complete one. Furthermore, we note that
simulations using the RK7,1 schemes were between 1.89× and 2.11× faster
in terms of wall-clock time than those using the classical RK4,4 scheme as
shown in Table 7. These results are consistent with results of our theoretical
analysis presented in Table 3 for the FRDG scheme. Therefore, we observe
that the proposed RK7,1 schemes are able to achieve significant speedup over
conventional explicit pseudo time integrators, without any adverse impact on
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simulation accuracy.

Table 6. Lift and drag coefficients for the SD7003 airfoil test case.

k = 1 k = 2 k = 3

CD RK4,4 0.051 0.049 0.049
RK7,1 0.051 0.049 0.049

CL RK4,4 0.945 0.924 0.915
RK7,1 0.947 0.925 0.912

Table 7. Speedup for the SD7003 airfoil test cases using optimal RK schemes
with s = 7 relative to the classical RK4,4 scheme.

k = 1 k = 2 k = 3

Speedup 1.89× 1.82× 2.11×

5.2 Turbulent Jet

To further demonstrate the suitability of the optimal RK schemes for ILES
we consider an incompressible turbulent round jet at Reynolds number
Re =

V0djet
ν = 10, 000 where djet is the jet diameter, and V0 is the midline

velocity of the inflow. Experimental data for this test case is summarized by
Lipari et al. [36] and previous numerical studies include DNS at Re = 5, 000
by Boersma [37] and explicitly filtered LES at Re = 11, 000 by Bogey and
Bailly [38] performed with compressible solvers at Mach numbers Ma = 0.6
and 0.9, respectively.

Figure 6 depicts a portion of the mesh and the computational domain.
A circular 2D mesh of diameter D = 48djet was extruded to Lx = 100djet
in 250 equal increments. The element count of the cylinderical 3D mesh is
247, 250 hexahedra and 596, 500 prisms. Additionally, in Figure 6, x0 refers
to the streamwise location of the virtual origin which is the starting point of
the self-similar region, associated with a linear velocity decay and spreading
rate [36]. The self-similar region is defined in terms of the self-similarity
coordinate

η =
r

x− x0
, (50)

where r =
√
y2 + z2. The inflow profile of the jet is imposed via

Vjet(r)

V0
=

1

2
− 1

2
tanh(δ(r − rjet)), (51)

where rjet = 0.5djet and δ = 40djet. Additionally, a sponge layer given by a
source term

Si = −(ui − uout
i )

[
1

2
+

1

2
tanh

(
1

2
(x− (Lx − Lspg))

)]
, (52)
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k = 1, RK4,4 k = 1, RK7,1

k = 2, RK4,4 k = 2, RK7,1

k = 3, RK4,4 k = 3, RK7,1

Figure 4. Isosurfaces of Q-criterion coloured by velocity magnitude for the
SD7003 test case with solution polynomial degrees of k = 1, 2, and 3 using
both RK4,4 and RK7,1 schemes.
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solution polynomial degrees of k = 1, 2, and 3 using both RK4,4 and RK7,1

schemes. Spikes in the convergence history correspond to the start of a new
physical time step.
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Figure 6. Computational grid in the y − z plane at x = 0 together with a
schematic of the simulation setup in the y − x plane at z = 0. The virtual
origin is located at (x0,0,0).

is added to R to dissipate transient waves before the jet reaches the outlet
boundary. The distance from the outlet to the point of inflexion of the
hyperbolic tangent that gradually dissipates the flow is Lspg = 10djet, and
the target outflow state variables are uout = {17 0 0 0}T . A no-slip boundary
condition is imposed at the vertical front interface outside the jet inflow zone
and a pressure outlet boundary condition is used for the outlet. The lateral
far-field wall is specified as a non-entraining slip wall boundary. Hence, the
jet receives entrainment by drawing fluid from the edges of the domain, which
is evident by a small backflow at large r.

A single simulation was performed with a solution polynomial order k = 4,
and ζ = 2.5. The BDF2 scheme was used for physical time and the optimal
RK7,1 scheme for k = 4 was used in pseudo-time. Constant time steps of
Δt = 0.008tc and Δτ = 0.0054tc, with tc =

djet
V0

, were used throughout the
simulation. The jet was initially developed up to 1, 040tc to damp initial
transients using 15 pseudo-iterations within each physical time step. The
simulation was then restarted with a convergence criterion of 5× 10−5 for the
velocity residuals and statistics were collected up to 2440tc. The real time
steps converged within 18 to 24 pseudo-iterations, resulting in the L2-norm
of divergence ∇ · u = 1

ζ
∂p
∂τ being approximately 6× 10−4.

Figure 7 shows a volume rendering of the instantaneous velocity field to
visualise the shape of the jet. The experimental study by Panchapakesan
and Lumley [39] at Ma ≈ 0.01 − 0.02 and Re = 11, 000 are used as a
reference for all flow statistics. To find the location of the virtual origin, the
time-averaged midline axial velocity decay was shifted in x to fit a linear
constant decay rate through the origin. The midline velocity decay shifted
by x0 = 3.2djet is shown in Figure 8a together with the experimental rate
observed by Panchapakesan and Lumley [39]. We observe the our predicted
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Figure 7. Volume rendering of the instantaneous volumetric velocity field at
t = 1220.

linear velocity decay region matches with the reference before the sponge
regions starts gradually dissipating the velocity. Figure 8b shows the average
axial velocity with respect to the self-similarity coordinate η. In addition to
averaging in time, the results were spatially averaged along conical surfaces
defined by η(R,x) = R

x−x0
in the self-similar region 24djet ≤ x ≤ 60djet and

normalised by the mean midline velocity vc. From Figure 8b, we can see
that our mean axial velocities agree with the reference data across the entire
self-similarity region. Figures 9a and 9b show the mean axial and radial
velocity fluctuations in the self similar region. Both graphs indicate that the
simulation is able to accurately capture velocity fluctuations in agreement
with the experimental data. These results demonstrate that the optimal RK
schemes combined with a BDF scheme are suitable for simulating turbulent
flows, and that this approach can correctly predict mean flow and turbulent
quantities.

6 Conclusions

In this study we have generated optimal RK schemes for convergence of the
ACM using dual time-stepping. Noting that our approach is generalizable
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Figure 8. (a) The mean axial mid-line velocity decay rate. (b) The mean
axial velocity along the self-similarity coordinate.
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Figure 9. (a) Self-similar mean axial root-mean-square velocity fluctuations.
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to a variety of different spatial discretizations, we have demonstrated its
utility for the FR approach. Specifically, we have generated optimal schemes
for the FRDG and FRSD correction functions, recovering the DG and SD
methods respectively, for spatial polynomial degrees of k = 1 to k = 8 and
for RK schemes with s = 2 to s = 7 stages. These schemes were optimized
in the context of linear advection, predicting speedup factors in excess of
1.80× relative to the classical RK4,4 scheme. In practice, we were able to
demonstrate speedup factors for incompressible ILES of flow over an SD7003
airfoil between 1.89× and 2.11×. Furthermore, we have demonstrated the
utility of the schemes for incompressible ILES of a turbulent jet, achieving
good agreement with experimental data. In summary, these new schemes
yield a significant speedup when solving the ACM via dual time-stepping.
Furthermore, they are easy to implement and only require modification of
a small number of Butcher tableau coefficients for the pseudo time solver.
Future work should investigate the utility of these optimized schemes in the
context of multigrid and implicit preconditioning strategies for convergence
acceleration. Furthermore, the influence of diffusion, boundary conditions,
and mesh topology on the optimization procedure could be explored.
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