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Abstract 

We compare the suitability of short-memory models (ARMA), long-memory 

models (ARFIMA), and a GARCH model to describe the volatility of rare earth 

elements (REEs). We find strong support for the existence of long-memory effects. 

A simple long-memory ARFIMA(     ) baseline model shows generally superior 

accuracy both in- and out-of-sample, and is robust for various subsamples and 

estimation windows. Volatility forecasts produced by the baseline model also 

convey material forward-looking information for companies in the REEs industry. 

Thus, an active trading strategy based on REE volatility forecasts for these 

companies significantly outperforms a passive buy-and-hold strategy on both an 

absolute and a risk-adjusted return basis.  
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1. Introduction 

Rare earth elements (REEs), the fifteen lanthanides plus scandium and yttrium, are critical 

components in many high- and green-technology products (Binnemans et al., 2013; Van Gosen et 

al., 2014; Apergis and Apergis, 2017). In addition to wide-ranging industrial applications, such as 

wind energy turbines and photovoltaic cells, REEs are key for consumer products ranging from 

mobile phones and CD, DVD, and hard disk drives, to hybrid and electric cars (Müller, 

Schweizer and Seiler, 2016). There are virtually no suitable substitutes for REEs. Combined with 

the heavy dependence on China as their main supplier (well over 90% of global REE supply 

originates in China; see Shih et al., 2012), this has induced massive price movements in the past, 

and will presumably do so in the future as well (see Figure 1). 

While the volatility of commodities is comparable to that of stocks (see Proelss and 

Schweizer, 2008), there are hedging instruments available for commodities, such as futures and 

options markets, that can be used for active risk management purposes (Doran and Ronn, 2008). 

The lack of such instruments for REEs poses a serious challenge for (heavily) dependent 

industries (see Shen, 2014, for details about vague plans to establish REEs futures). Currently, 

trading of REEs between supply- and buy-side firms occurs over the counter (OTC).
1
 Unlike 

other metals, physical settlement is the norm. Accordingly, the only methods user industries have 

to shield themselves from price movements are building strategic stockpiles of REEs, or entering 

into long-term contracts (Shih et al., 2012).  

 Therefore, REE price volatility and availability for consumer industries can ultimately 

have severe effects, as illustrated by the following examples: 

                                                           
1
 In 2014, the Baotou Rare Earth Products Exchange was established as a spot exchange in Baotou, China (see 

Bloomberg News, 2014, for further details). However, because the majority of trading remains OTC, this exchange 

has thus far played only a minor role in the industry (personal communication with Dr. Harald Elsner, Bundesanstalt 

für Geowissenschaften und Rohstoffe (BGR), i.e., Federal Institute for Geosciences and Natural Resources, 4 May 

2017). 
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One major application of REEs is permanent magnets, which are needed to convert torque 

into electricity and vice versa. Permanent magnets are used in such essential industries as wind 

energy turbines,
2
 electric and hybrid cars, and computer equipment, including DVD and hard disk 

drives. In 2011, in the U.S., many IT companies experienced huge reductions in their gross 

margins due to REE price increases in the July-September 2011 period. For example, Western 

Digital Corporation’s decline reached 21%, while Seagate Technology’s was 37% (Monahan, 

2012). Moreover, while the sharp price increases in 2011 negatively affected industries that 

depend on REEs as inputs in their production processes, the subsequent downward trend also 

spelled disaster for Molycorp, one of the few major suppliers of REEs outside China. Molycorp 

was forced to file for Chapter 11 bankruptcy because its business could not sustain profitability at 

the drastically decreased prices (McCarty and Casey, 2015; Reuters, 2015). Thus, it is clear that 

companies active in REE markets (whether on the supply or demand side) need to reevaluate 

their risk management strategies for handling REE pricing risk. 

Driven by the large REE price movements and their potentially severe impact, the 

German Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) launched a volatility 

monitor in 2014 (BGR, 2014). Each month, this monitor reports the annualized standard 

deviations of monthly commodity returns, including several REEs. However, for practitioners 

and policy makers concerned with strategic metals and REEs, it is more valuable to have an ex 

ante predictor of future volatility rather than an ex post evaluation of it. This would allow REE-

dependent companies to monitor volatility forecasts more effectively and proactively manage risk 

by, for example, stockpiling REEs. 

However, determining a suitable predictor for future REE volatility is complex. In 

markets where options are available and actively traded, implied volatility is commonly agreed to 

                                                           
2
 See Shih et al. (2012) for an overview of the implications for the U.S. wind energy industry. 
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be suitable (Jiang and Tian, 2005; Xingguo, Shihua and Ye, 2016).
3
 The most widely used 

method of modeling financial time series volatility is presumably a GARCH-type model 

(Bollerslev, 1986), where today’s volatility depends on past realizations (typically short-term 

modeling). Nevertheless, GARCH-type models have been found less suitable for long-memory 

volatility, which is arguably the case for REEs. This is because of their distinct demand-side 

cyclicality and inelastic short-term supply side. Adjusting capacity in the mineral industry comes 

with considerable costs and ramp-up time due to long lags in exploration and capital formation 

(Barkoulas, Labys and Onochie, 1997; Labys, 2006).  

Furthermore, REE supply is heavily concentrated in China, and has traditionally been 

controlled directly by the Chinese Ministry of Commerce, or indirectly by setting environmental 

standards (see Hayes-Labruto et al., 2013; Nieto, Guelly, and Kleit, 2013; Müller, Schweizer, and 

Seiler, 2016; Zhang, Kleit, and Nieto, 2017; Proelss, Schweizer, and Seiler, 2018; Mancheri et 

al., 2019). This clearly adds to the inelasticity of the supply side. Moreover, demand for minerals 

is generally inelastic, too. Because they are used as intermediate inputs, their cost constitutes only 

a small fraction of the overall price of the final goods. However, they are nevertheless essential to 

the end product.  

REEs are no exception. If business cycles exhibit long memories, this is likely to 

influence commodity demand, and translate into the long-run dependence of commodity price 

series themselves (see Barkoulas, Labys and Onochie, 1997). Because supply and demand forces 

are especially important for spot markets, long-memory models seem especially useful here (see 

again Barkoulas, Labys and Onochie, 1997). 

                                                           
3
 See Brous, Ince and Popova, 2010, for opposing evidence. Moreover, Chernov (2007) shows that implied volatility 

inferred from at-the-money options is an inefficient and biased forecast of future realized volatility. Furthermore, 

Fernandez-Perez, Fuertes and Miffre (2016) show that idiosyncratic volatility seems to be negatively priced when 

using pricing models that do not account for backwardation and contango in commodity futures markets. 
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Our contributions are as follows: First, given the strategic importance of REEs, their 

extreme price movements, the lack of hedging instruments, and the potential of the long-memory 

of volatility, we formally test for fractional integration by applying Sowell’s (1992) maximum 

likelihood estimator to the simplest ARFIMA(     ) (autoregressive fractionally integrated 

moving average) baseline model. We find strong evidence for the presence of long-memory for 

both individual REEs and two REEs indices. This result is also supported by using the non-

parametric log periodogram regression approach of Geweke and Porter-Hudak (1983) and 

Phillips (1999, 2007). When comparing the ARFIMA(     ) baseline model with specifications 

that include additional autoregressive (AR) and moving average (MA) terms, the likelihood ratio 

test implies the baseline model is most suitable for describing REE volatility. 

Second, we conduct extensive robustness checks, and find that our results remain robust 

for most REEs for various in- and out-of-sample periods and for most model specifications. 

Overall, our findings imply that ARFIMA(     )-generated volatility forecasts for REEs that 

explicitly allow for long-memory characteristics generally outperform traditional ARMA 

forecasts, as well as forecasts generated by a GARCH(1,1) model.
4
 

Third, we note that the outperformance of long-memory volatility models vis-à-vis short-

memory models with regard to forecasting accuracy has been documented elsewhere (see, e.g., 

Chortareas, Jiang and Nankervis, 2011; Harris and Nguyen, 2013). Therefore, we go one step 

further. We aim to determine whether volatility forecasts based on the ARFIMA(     ) baseline 

model convey material or economically meaningful information about Chinese publicly listed 

companies
5
 in the REE market in the absence of, e.g., forward-looking implied volatilities, and 

                                                           
4
 Due to the absence of intraday data, we are not able to use advanced approaches for modelling long-memory such 

as realized volatilities, especially the heterogeneous autoregressive (HAR) model and its extensions (Andersen, 

Bollerslev and Diebold, 2007; Corsi, 2009 Bollerslev, Patton and Quaedvlieg, 2016). 
5
 Because there is no electronic REE trading, we extrapolate from the direct development of a trading strategy based 

on the metals themselves. Our design allows us to show that information concerning expected REE volatility inferred 

from these metals is economically meaningful for companies active in this market. To ensure a clean research setup, 
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thus less consensus about expected REE volatility. If so, we expect substantial changes in 

forecasted volatility, versus actual REE volatility, to predict the direction of future price 

developments of REE companies. If the volatility forecasts of the ARFIMA(     ) baseline 

model can predict future stock price movements, then an active trading strategy based on this 

prediction may be able to systematically outperform a passive buy-and-hold strategy on a return- 

and risk-adjusted basis.  

We compare Sharpe ratios for an active trading strategy with those for a naïve buy-and-

hold strategy. We find statistically significantly higher Sharpe ratios for most specifications of 

our active trading strategy (see Harris and Nguyen, 2013, for the suggestion to evaluate portfolios 

based on ARFIMA forecasts with the help of Sharpe ratios). This result is in line with Li, 

Nishimura and Men (2016) who find that, in the majority of cases, a trading strategy based on 

long-memory forecasts of NYMEX futures, and implemented with the help of binary options, 

will produce higher Sharpe ratios than those of a moving average or momentum strategy.
6
 We 

interpret this result as strong support for the notion that volatility forecasts convey material 

information about Chinese companies in the REE industry, and are therefore of strong economic 

importance. 

Fourth, our paper touches the fields of finance and natural resources, and thus contributes 

to the evolving literature in the field of resources finance (Lucey et al., 2018). 

The remainder of this paper is structured as follows. Section 2 provides an overview of 

the methodology used to study long-memory processes. Section 3 describes our data in-depth. In 

section 4, we present the empirical results, and section 5 concludes. 

 – Please insert Figure 1 about here – 

                                                                                                                                                                                            
and avoid any influence from currency fluctuations, we use Chinese companies only, so that both the companies and 

the REEs are traded in renminbi. 
6
 However, the trading strategy of Li, Nishimura and Men (2016) was not profitable after accounting for trading 

costs. 
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2. Long-Memory Processes 

Long-memory processes are generally characterized by persistent and hyperbolically 

decaying autocorrelations, rather than by the exponentially decaying autocorrelations seen with 

autoregressive integrated moving average (ARIMA) processes. Technically speaking, these 

slowly decaying autocorrelations are due neither to processes with an order of integration of 1 

(    ), nor 0 (    ). In other words, long-memory time series are neither stationary      nor unit 

root processes     . Instead, Mandelbrot (1977) characterizes them as fractal, giving rise to the 

class of ARFIMA processes. The restriction of the differencing parameter   to integer values 

yields the ARIMA model. Accordingly, the ARFIMA class of models is a generalization of the 

latter. 

Formally, an ARFIMA(     ) model introduced by Granger and Joyeux (1980) and 

Hosking (1981) for some time series    (in our case, a measure of REE volatility) is given as: 

                       ,            
  ,              (1) 

where   is the lag (or backshift) operator,   is the time series mean, and   is the fractional 

differencing operator that is allowed to assume any real value.        is then defined by: 

        
        

           

 
   ,                 (2) 

where   is the gamma function. 

With regard to the fractional differencing parameter, the larger   is, the higher the degree 

of long-memory. More precisely, if         , the process will exhibit intermediate memory, 

i.e., long-range negative dependence, and will be said to be anti-persistent (Mandelbrot, 1977). If 

   , the process will exhibit only short-memory, and will correspond to the standard ARMA 

model. For      , the process is discrete-time     noise (Mandelbrot, 1967). For        , 
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the process is mean-reverting. If    , the process is integrated of order 1, i.e., a unit root 

process, and corresponds to the standard ARIMA model (Baillie, 1996). 

Several procedures have been proposed to estimate the degree of long-memory and 

fractional integration, such as log periodogram regressions (Geweke and Porter-Hudak, 1983; 

Phillips, 1999, 2007), and maximum likelihood estimation (Sowell, 1992). Phillips (1999, 2007) 

extends the original non-parametric approach of Geweke and Porter-Hudak (1983) to the unit 

root null. However, Sowell (1992) proposes a maximum likelihood estimator of 

ARFIMA(     ) models that explicitly allows for handling short-run dependence via AR and 

MA parameters. Thus, we can directly compare them with other parametric approaches, such as 

traditional short-memory ARMA and GARCH-type models (Bollerslev, 1986). We base our 

results on the maximum likelihood procedure, and use the semi-parametric approaches in a 

robustness check. 

3. Data 

3.1 REE Data 

All REE (price) data come from the Asian Metal database, the leading data provider in the 

REE field, and cover the January 28, 2005-February 28, 2015 period. The Asian Metal database 

is used by major research institutions such as the Federal Institute for Geosciences and Natural 

Resources (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR), which is the central 

geoscientific authority providing advice to the German federal government on geo-relevant 

questions. 

The Chinese government has essentially established a dual pricing system: Companies 

based in China pay the domestic price, while buyers outside China pay the significantly higher 

FOB (freight on board) price, i.e., the export price (see Müller, Schweizer and Seiler, 2016, and 

Proelss, Schweizer and Seiler, 2018, for further details on the dual pricing structure in the REE 
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market, and Charlier and Guillou, 2014, for details on the dual pricing structure of various other 

raw materials). For our analysis, we focus exclusively on listed Chinese companies and the 

domestic China prices (RMB/kg), so as to avoid any influence of exchange rate effects. 

Moreover, an exclusive focus on companies in one particular country eliminates confounding 

effects due to institutional factors, such as different legal systems or differences in corporate 

governance. This is especially important given the unique features and dynamic nature of the 

Chinese capital market. 

In order to ensure sufficient observations in the (in-sample) estimation, as well as during 

the forecast (out-of-sample) period, we restrict our analysis to the four largest REE oxides in 

terms of market share (Goonan, 2011). Together, they account for about 90% of overall usage: 

cerium (42,220 metric tons/32.94%), lanthanum (38,665 metric tons/30.16%), neodymium 

(22,868 metric tons/17.84%), and yttrium (11,610 metric tons/9.06%). We also mandate that data 

be available in Asian Metal since at least January 2005. 

Based on these usage statistics, we construct an equally weighted index (EWI), as the 

mean of weekly returns, and a value-weighted index (VWI). Moreover, we follow Ghysels, 

Santa-Clara and Valkanov (2006) and Forsberg and Ghysels (2007), and use absolute REE 

returns to proxy for volatility.
7
 This choice is motivated by the fact that the influence of outliers 

is reduced with absolute returns, while squaring only amplifies that impact (Brous, Ince and 

Popova, 2010). For a recent application of absolute returns as a volatility proxy, see Fernandez 

(2010). 

3.2 Chinese Stock Price Data 

                                                           
7
 Alternatively, we could use range-based volatility estimators, which are more accurate than squared returns due to 

less noise (Molnár, 2012). Because the Asian Metal database does not report open or closing prices, we are not able 

to use alternative volatility proxies such as that of Garman and Klass (1980). 
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We obtain the stock price data used in the trading strategy for all Chinese firms listed on 

the Shanghai, Shenzhen, and Growth Enterprise Market (GEM) stock exchanges from the China 

Stock Market Trading Database (CSMAR). CSMAR is the leading data provider for Chinese 

stock price information. The data series in this study covers the same sample period, January 28, 

2005-February 28, 2015. Note that our volatility forecast model requires 300 weeks of continuing 

REE data to be calibrated. Thus, the earliest date our trading models can begin is June 3, 2011 (= 

January 28, 2005 + 300 weeks).
8
 

If an REE or a company’s stock is not traded for more than twelve consecutive days, we 

set the return to “Not Available” in order to avoid high price/return jumps, which could influence 

the results. Because of lower REE liquidity during the 2005-2007 period, and several stock 

market holidays (such as, e.g., lunar year celebrations), an average trading year in China for the 

2005-2015 period contains forty-eight trading weeks. 

4. Results 

Due to the previously discussed features of the REE market (distinct cyclicality, inelastic 

short-term supply and demand, and governmental regulations), we expect REE volatility to 

exhibit long-memory, i.e., fractional integration. In subsection 4.1, we provide first evidence by 

evaluating the descriptive statistics of REE absolute returns and their autocorrelation structure. 

Next, we formally test for fractional integration (see Sowell, 1992) for the entire sample period, 

and compare the baseline model against more complex ARFIMA(     ) specifications and a 

standard GARCH model in an in-sample setting. In subsection 4.2, we investigate the out-of-

sample forecasting performance of our ARFIMA(     ) baseline model against alternative 

parameterizations. Subsection 4.3 gives a short summary of our most important findings. To test 

                                                           
8
 In a robustness check, we also test our trading strategy by using a period beginning in January 2008 that includes 

both a bull and a bear market. We then estimate a volatility forecast model with a shorter calibration period of 100 

weeks of REE volatility (see Figure A3 and Tables A2, A4, and A6 in the online appendix). 
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the economic significance of our baseline model forecasts, we provide results for a simple trading 

strategy based on a rolling one-step-ahead out-of-sample volatility forecast in subsection 4.4.  
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4.1 Long-Memory of Volatility 

Figure 1, panel A, shows the price development of the four REE oxides; panel B shows 

the two REE indices over time, as well as the development of the absolute returns, which we use 

as our volatility measure (Ghysels, Santa-Clara and Valkanov, 2006; Forsberg and Ghysels, 

2007). REEs exhibit phases of strong and persistent volatility clusters, especially around the price 

run-up in 2011, indicating the importance of an ARFIMA(     ) model in modeling REE 

volatility. No structural breaks are apparent in the absolute return series.
9
  

Table 1 presents the related descriptive statistics. Our volatility measure is right-skewed 

and leptokurtic for both the four individual REEs and the two indices. This finding of deviations 

from the normal distribution due to skewness and leptokurtosis indicates non-linear dynamics 

(Fang, Lai and Lai, 1994), another hint of potential long-memory. The Ljung-Box (1978) test up 

to lag 20 and the magnitudes of the autocorrelation coefficients up to lag 5 exhibit a statistically 

significant serial correlation structure for the individual REEs and the REE indices. Accordingly, 

a simple short-memory ARFIMA(      ) model specification would make it necessary to 

incorporate many AR terms, because autocorrelations at even higher lags are statistically 

significant. However, including a higher number of AR terms can increase the risk of “over-

parameterization.” It also violates the principle of parsimony (McLeod, 1993), which is 

particularly important when it comes to time series forecasting (Ledolter and Abraham, 1981). 

Hence, these rather simple metrics indicate that a long-memory model could be better suited to 

capture the slowly decaying autocorrelation structure. 

– Please insert Table 1 about here – 

                                                           
9
 See Caporale and Gil-Alana (2013) for the use of absolute returns as a volatility proxy for the USD/GBP spot 

exchange rate, and visual inspection of the time series plots with regard to structural breaks. Note that, because we 

complement our analysis by using rolling estimates, we allow for the presence of structural breaks (Fernandez, 

2010). 
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This first impression of potential long-term dependence is formally supported by the 

findings of Sowell’s (1992) long-memory test: The degree of fractional  integration (d) of the 

volatility series falls into the [0.2,0.4] interval, and is statistically significant (see columns 

“(0,d,0)” in Table 2).
10

 Adding AR and MA terms to explicitly capture short-term influences to 

the ARFIMA(     ) baseline model does not change our findings (see all columns “(1,d,0),” 

“(2,d,0),” “(1,d,1),” and “(2,d,1)” for rows “d” in Table 2). For all parameterizations, we find a 

statistically and economically significant degree of long-memory, except for neodymium, 

yttrium, and lanthanum when including two autoregressive terms. Moreover, comparing the 

baseline model with higher-order parameterizations using a likelihood ratio test (see rows “LR” 

in Table 2),
11

 we find that adding AR or MA terms does not result in statistically significant 

improvements for either single REEs or for the REE indices. This finding is further underlined by 

the AIC (Akaike, 1974) and BIC (Schwarz, 1978) information criteria. The only exception is 

yttrium, for which short-memory AR and MA components should be included. 

The different behavior of yttrium might be explained by the fact that it is a heavy rare 

earth element. This differentiation between light (cerium group, elements with atomic numbers 

57-63) and heavy (yttrium group, elements with atomic numbers 64-71 plus yttrium) REEs is 

important, as light REEs are more abundant and concentrated and usually account for 80% to 

99% of a given mineral deposit (see Humphries, 2010). Yttrium is extracted primarily from 

                                                           
10

 To check for robustness, we also apply the non-parametric estimators of Geweke and Porter-Hudak (1983) and 

Phillips (1999, 2007) using periodogram ordinates in the spectral regressions equal to      (Diebold and Rudebusch, 

1989, and Cheung, 1993). The results are similar, except for neodymium (           ,             ) and the 

value-weighted index (           ,             ). Moreover, for cerium and lanthanum, the semi-parametric 

estimators     
             ,     

                , and      
                      conomically meaningful, but 

not statistically significant (see Table A1 in the online appendix). In unreported results, we test the stability of the 

non-parametric estimators of Geweke and Porter-Hudak (1983) and Phillips (1999, 2007) by using a range of 

periodogram ordinates in the spectral regressions, from      to     , with a step size of 0.05. The results indicate that 

the non-parametric tests provide results very similar to Sowell’s (1992) maximum likelihood approach for      and 

higher. The table is available from the authors upon request. 
11

 The test statistic of the likelihood ratio is defined as             , where    and    are the log-likelihoods of 

the full and constrained model. The    statistic is approximately    distributed. 
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Xenotime (Hedrick, 2004, and Hurst, 2010), which is only available in a few mines and at 

relatively low concentration. This also holds for planned mineral mining projects (TMR, 2015). 

Overall, the availability and the difficulties of the yttrium supply will most likely also 

impact yttrium’s price formation, making it more sensitive to supply-side news. Therefore, it 

seems plausible that the demand side will cause a long-memory effect, as is the case for the other 

REEs, too. However, the difference in the supply side may also cause overlying short-term 

effects. 12  Our intermediary result for the entire sample period is that the baseline model – 

ARFIMA(     ) – is the most suitable for single REEs and the related indices, except for 

yttrium. 

– Please insert Table 2 about here – 

Next, we examine the stability of the long-memory parameter over time using various 

subperiods (see, e.g., Cajueiro and Tabak, 2005; Tabak and Cajueiro, 2007; Cajueiro, Gogas and 

Tabak, 2009; Hull and McGroarty, 2014;, and Auer, 2016, for time-varying long-memory 

effects). We estimate   and the AR and MA terms on a 300 ( )-week rolling basis (moving 

forward on a weekly basis until the end of the observation period) for different ARFIMA(     ) 

parameterizations (see Figure A1 in the online appendix for more details about the rolling 

window). More precisely, for the first subperiod, we use data from            , with a 

window width  , to estimate the ARFIMA(     ) models. Setting   equal to 300 (weeks) is 

arguably a good compromise. We therefore have a sufficiently long in-sample estimation period 

for the long-memory coefficient (  ), and a sufficient number of out-of-sample weeks to 

meaningfully evaluate the out-of-sample forecasting performance in subsection 4.2. This window 

is moved ahead one time period (one week), and the models are re-estimated using data from   

                                                           
12

 This view is supported by Apergis and Apergis (2017) using a cointegration approach to analyze the impact of 

REE prices on renewable energy consumption. They find that neodymium and yttrium have the highest adjustment 

coefficients, so shocks do not last long and instead return to equilibrium quickly, which is similar to what we 

observe. 
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        until              , which is the end of our time series at      . This gives 

us a total of 189 subsamples, with different in-sample periods for estimating the models as well 

as different out-of-sample periods.
13

 

A first visual inspection of the fractional integration term   over time for our 

ARFIMA(     ) baseline model in Figure 2 shows no severe fluctuations or jumps. For all REEs 

and REE indices, the fractional integration term falls in the [0.2,0.5] interval for the 

ARFIMA(     ) specification. However, although the fractional differencing parameter is quite 

stable over time for the ARFIMA(     ) baseline model and the ARFIMA(     ) model, 

adding an additional AR term results in large fluctuations in   for all REEs and the two related 

indices (see the ARFIMA(     ) model in Figure 2).
14

 We observe similar behavior for 

lanthanum for the ARFIMA(     ) model in later periods (     ). Thus, it seems that 

including additional AR and MA terms does not necessarily cause model improvements but 

might instead result in parameter instability. 

– Please insert Figure 2 about here – 

To more formally test the stability of the fractional integration term  , Table 3 replicates 

Table 2 for five subperiods (  1, 48, 95, 142, and 189) instead of the entire period. Overall, and 

in line with the visual inspection in Figure 2, we find that fractional integration for the baseline 

model is statistically significant for all REEs and indices for all shown subperiods, with only 

minimal variations. Similarly to Figure 2, it seems that the ARFIMA(     ) model is not stable 

over time. This results in an insignificant fractional integration term that also changes sign in the 

                                                           
13

 In unreported results, we find that our results for the degree of fractional integration and for the in-sample 

performance of our baseline model are not distorted when we use a 100 ( )-week rolling basis instead of the 300. 

However, we do find, on average, that the baseline model for the 100 ( )-week rolling basis is less dominant than for 

the 300-day observation period, because it seems that a longer observation period is needed for long-term memory 

models. Most importantly, the out of-sample performance remains intact for the 100-day estimation window. See 

Figure A2 in the online appendix. Additional tables are available from the authors upon request.  
14

 Note that ARFIMA(     ) cannot be estimated for lanthanum, neodymium, or the VWI for some windows, 

because the roots of the MA polynomial are approaching the unit circle. This further supports our argument that, for 

REE data, a simpler model is preferable to a more complex model. 
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later subperiods t > 142 covering 300 subsequent weeks, which translates to early January 2008 

through the end of our sample and includes the most severe REE price jumps in history. These 

sharp price increases occurred when the Chinese Ministry of Commerce, also known as 

MOFCOM, heavily intervened in the REE market by setting export quotas and only allowing 

certain companies (so-called qualified export enterprises) to export REEs (see Müller, Schweizer 

and Seiler, 2016, for an overview).  

Given such politically motivated interventions in the REE market, which presumably 

caused some short- to mid-term disruptions, we further extend the comparison to different 

ARMA (ARFIMA(     )) specifications and a GARCH model to capture whether this effect is 

present in the data. Neither model type has a long-memory component, but both can account for 

relatively short-term influences. In detail, as per Gallant, Hsu and Tauchen (1999) and Alizadeh, 

Brandt and Diebold (2002), we consider ARFIMA(     ) and ARFIMA(     ) parameterizations 

(see also Pong et al., 2004), and the presumably most widely used GARCH(   ) model (see 

Bollerslev, 1986; Bollerslev, Chou and Kroner, 1992; Engle, 2001). 

To effectively judge the model choice, we calculate the AIC and BIC for each of the 189 

different rolling 300-week windows for all models and specifications. We then calculate the 

percentage to which the ARFIMA(     ) baseline model outperforms the other models with 

regard to the information criteria (see “    ” and “    ” in the three bottom rows in Table 3).  

To summarize, the ARFIMA(0    ) baseline model is equal to or better than the more 

complex ARFIMA(p     ) specifications in at least 97% (86%) of all window iterations 

measured by BIC (AIC) for cerium, neodymium, and the two REE indices, and in 80% (31%) for 

lanthanum. For yttrium, we continue to find that the ARFIMA(0    ) specification is equal to or 

better than ARFIMA(1    ) and ARFIMA(0    ) in at least 50% of the iterations measured by 
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BIC, but not for ARFIMA(     ). Similarly to our prior findings, the baseline model is subpar 

for modeling yttrium’s volatility structure.  

We next compare the ARFIMA(     ) baseline model with the two pure short-memory 

models, ARFIMA(      ) and ARFIMA(      ). We find a similar picture for lanthanum, 

neodymium, and the two REE indices, with information criteria at least equal to or lower in 88% 

(70%) or more window iterations. However, for cerium and yttrium, the picture is somewhat 

mixed, because the two information criteria return some opposing results. We find that, based on 

the information criteria, the baseline model is almost always superior to the GARCH      model 

for the REE indices. However, the GARCH      model appears to work better for individual 

REEs (cerium, lanthanum, and yttrium).  

Note that the information criteria provide a somewhat mechanical model selection rule, 

and do not offer any guidance about the economic meaningfulness of the various specifications. 

Therefore, we examine the out-of-sample forecasting performance of the different models and 

specifications in the next subsection. Even when a model or specific model specification works 

well in-sample, the results can be dramatically different out-of-sample. However, high out-of-

sample accuracy is vital when using volatility forecasts for the active trading strategy (see 

subsection 4.4). 

– Please insert Table 3 about here – 

4.2 Forecasting Performance 

To test the out-of-sample performance for the different models and parameterizations, we 

first use a parameter set estimated over the first 300 weeks (in-sample period) for the different 

ARFIMA        model specifications, as well as for the GARCH(   ) model. Given these 

estimated parameters, we predict the volatility for the subsequent week (     ) until the end of 

our observation period (      , and we obtain 189 volatility forecasts for the out-of-sample 
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period. To quantify the forecasting performance of the different models, we regress the volatility 

forecasts on the ex post observed volatility, and calculate the coefficient of determination (  ) 

and the root mean squared error (RMSE). Note that the RMSE is considered a loss function, 

while the    captures the information content of the respective forecasting method (see also Pong 

et al., 2004).  

To assess the robustness of our results, we roll the window one week forward, and repeat 

these steps. Therefore, the in-sample period still includes 300 weeks, but it begins and ends one 

week later, and we re-estimate all models and parameterizations based on the new in-sample 

period. The first out-of-sample volatility forecast is then      , but the ending period remains 

     , reducing the number of volatility forecasts to 188. We roll the in-sample period forward 

on a weekly basis until week 95 (about two years), in order to ensure a sufficient number of 

weeks in the out-of-sample period for a meaningful estimation of the    and RMSE (see Figure 

A1 in the online appendix for more details about the in- and out-of-sample periods for the rolling 

window). 

The resulting   s for all REEs, their related indices, and the model specifications for the 

different rolling windows are displayed in Figure 3, which is essentially a visualization of Table 

4. For the sake of brevity, we only visualize the   s, not the RMSEs.
15

 Table 4 shows the 

resulting   s for the various starting points                  , and compares the 

ARFIMA(       baseline model to all other specifications. The last two lines of Table 4 indicate 

how many times (of the ninety-five different starting points) the baseline model is equal to or 

outperforms the other model specifications with respect to    and RMSE. Figure 3 shows that the 

                                                           
15

 Note that visualizing the RMSEs is not useful for determining performance differences between the models over 

the various subperiods. The absolute differences are very low in comparison to the changes in RMSE between the 

subperiods (this is due primarily to the shortening of the out-of-sample period). 
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  s for all REEs and related indices are generally among or the highest for the ARFIMA(       

baseline model, except for cerium.  

These out-of-sample results are strongly similar to the in-sample ones, with two main 

differences: Our baseline model was not suitable in-sample for yttrium, but it exhibits good out-

of-sample performance. The opposite is true for cerium.
16

 The forecasting performance of the 

ARFIMA(     ) baseline model is better than or equal to that of all the other models in at least 

60% (64%) of all iterations for the individual REEs as measured by    (RMSE). At 75% (85%), 

it is exceptionally good for the REE indices. Only toward the end of our dataset do the volatility 

forecasts from the GARCH model exhibit better performance for neodymium and the value-

weighted index. It seems the GARCH model is better at adjusting to extreme short-term changes 

in volatility, being present in this time period, than the ARFIMA(     ) baseline model. 

– Please insert Figure 3 and Table 4 about here – 

4.3 Summary of Results 

To summarize, we find that for the baseline model all REEs and the respective indices 

show a long-memory effect (see column “Long-Memory” in Table 5). Overall, the 

ARFIMA(0    ) baseline model appears to be the best choice for the ARFIMA-type models for 

all REEs and both indices, except for yttrium (see columns “ARFIMA(     )” in Table 5). The 

in-sample fit reveals that the baseline model is the best fit for the REE indices, but the 

GARCH      model is best for three of the four REEs (see column “In-Sample” in Table 5). 

Most importantly for forecasting, we find that the ARFIMA(     ) baseline model exhibits the 

best out-of-sample performance overall for the individual REEs (except cerium), and especially 

                                                           
16

 We find that our RMSEs are somewhat lower than those of Pong et al. (2004), which we suspect is attributable to 

the fact that 1) they annualize the data before running their regressions, 2) they use higher-frequency data (sampled 

every five minutes, and every thirty minutes in robustness checks) than we do, and 3) the foreign exchange market is 

fundamentally distinct from the commodity market in general, and the REE market in particular. 
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for the two indices (see column “Out-of-Sample” in Table 5). Therefore, we are confident that the 

baseline model provides the best choice for generating robust volatility forecasts. We use these 

forecasts in the next subsection for the active trading strategy. 

– Please insert Table 5 about here – 

4.4 Trading Strategy  

4.4.1 Methodology  

To measure the economic importance of the volatility forecasts produced by our baseline 

model, we set up an active trading strategy for Chinese companies operating in the REE industry. 

We then compare it with a passive buy-and-hold strategy by analyzing the difference in Sharpe 

ratios. The active trading strategy is based on the idea that, if these forecasts are good predictors 

of future REE volatility, and, if REE fluctuations serve as material information for companies in 

the REE industry, we can indirectly forecast the direction of stock price movements. To measure 

the effectiveness, i.e., the economic importance, of our volatility forecasts, we compare the risk-

adjusted performance of the active trading strategy against the passive buy-and-hold alternative 

using Opdyke’s (2008) Sharpe ratio test. 

Because there are no available tradable financial products based on REEs, we first need to 

identify Chinese companies active in the REE market on which we can base the trading strategy. 

Nevertheless, we also provide evidence based on a non-investable paper portfolio that invests 

directly in REEs themselves as a robustness check. We use the following statistical method to 

identify those companies active in the REE industry.  

First, we consider only three of the six industries classified under Industry Code A by the 

CSMAR database, because REE companies are most likely present in Public Utilities, 

Conglomerates, and Industry, but not in Finance, Properties, or Commerce. Second, to calculate 

reliable correlations, we require that each company be listed and have weekly returns for more 
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than 70% of each year’s total trading weeks prior to the subsequent trading year (2007-2014). 

Third, we require a minimum availability of stock returns, so we exclude stocks with weekly 

return data for less than 280 trading weeks for the overall trading period (2008-2015). 1,158 

companies with A shares meet these conditions, and can theoretically be chosen by the active 

trading strategy. There is no single best way to identify companies in the REE industry based on 

a statistical method, so we tried a few alternatives. To identify which of the 1,158 companies are 

most sensitive to changes in REE returns, we calculate the Pearson correlation for each company 

  with its respective two REE indices (EWI and VWI) for each year from 2007 through 2014, as 

follows: 

                
                             

            
                            (3) 

where      is company  ’s vector of weekly returns for year  ;      is the mean return of company 

  in year  ; and      is the standard deviation for company   in year  , where   ranges from 2007 

to 2013.       ,       , and        denote the same quantities for the respective REE index 

(VWI and EWI). Our rationale is that the higher the          , the higher the exposure to the 

REE industry, because a larger proportion of a company’s stock price variations can be explained 

by REE price movements. We calculate           for each year separately, which allows us to 

consider different companies each year for our active trading strategy. 

To assess the robustness of our results, we vary several elevating screws, e.g., the number 

of possible REE companies included in the trading strategies, and the selection of REE 

companies based on either positive or absolute correlations as measured by either the VWI or the 

EWI REE index. First, we select the three, five, eight, or ten companies with the highest positive 

           according to Equation (3), as well as the three, five, eight, or ten companies with the 

highest absolute             for each year during the 2007-2014 period, using the VWI or EWI 
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REE index as a reference. We keep the REEs identified as the highest positive and absolute 

correlations within a respective year the same, but we repeat the exercise at the beginning of each 

subsequent year (rolling strategy).
17

 This implies that, within one year, both the active trading and 

the buy-and-hold strategies can only select REE companies identified in the previous year. 

We are left with sixteen possible combinations = 4 (3, 5, 8, and 10 selected REE 

companies)   2 (VWI or EWI REE index)   2 (           or             ). Table 6 reports 

the mean, minimum, and maximum correlations aggregated for all years for the three, five, eight, 

and ten companies, as well as for the two REE indices. We manually check three company 

profiles identified as having the highest correlations with the REE indices, and find that all 

operate directly in the REE industry or hold stakes in REE companies (see Table A8 in the online 

appendix). Therefore, we are convinced this procedure is suitable for identifying companies with 

REE exposure. If we mistakenly include a company that does not have REE exposure, and if our 

reasoning that REE volatility forecasts can predict future stock prices of REE companies is 

correct, this would work against the statistical significance in our tests, and would render our 

results conservative. 

– Please insert Table 6 about here – 

For our trading strategy, we use the rolling one-step-ahead volatility forecasts based on 

the ARFIMA(     ) baseline model for the two REE indices, with an estimation period of 300 

( ) weeks as described in subsection 4.2. This translates to a start date of June 2011 for the 

trading strategy.
18

 The active trading strategy is then based on the divergence between the most 

recent observed volatility and the one-step-ahead volatility forecast: If this discrepancy contains 

                                                           
17

 For example, REE companies identified on the basis of the correlation in 2007 are used for the trading strategies in 

2008. 
18

 In a robustness check, we reduce the rolling window estimation period to 100 ( ) weeks. Accordingly, the start 

date for the trading strategy is January 2008. 
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material information for the identified REE companies, we expect the active trading strategy to 

generate risk-adjusted returns that will exceed those of a buy-and-hold strategy.  

More precisely, the active trading strategy is based on the following principle: An 

increase (decrease) in REE volatility is, on average, accompanied by a decrease (increase) in 

stock prices. This rationale builds on Duffee (1995), who establishes a relationship between firm-

level volatility and returns, but recent research describes an increasing integration of commodity 

and stock markets. As a result, the correlation and volatility spillovers across different markets 

increased over time (see Silvennoinen and Thorp, 2013).
19

 Note that ample evidence of volatility 

spillovers exists between, e.g., commodity and financial markets. As we are interested in the 

spillover of REE volatility changes to the stock returns of companies active in the REE market, 

our study is more in line with Antonakakis et al. (2018), who examine volatility spillovers of oil 

prices to stock prices of a sample of major oil and gas companies. 

Let          denote the (ex post) observed volatility of the respective REE index at time  , 

and               be the one-step-ahead out-of-sample forecast from time   to    . To generate a 

trading signal, we use a straightforward and intuitive trading rule: If the volatility forecast 

considerably (as measured by  ) exceeds (falls below) the most recent observed volatility, the 

REE companies are sold (bought) if their correlations to the REE index are positive (negative). 

Otherwise, no trading will take place.   denotes the sensitivity to the signal, and is set to 5%, 

10%, and 15%, respectively. We formalize this trading rule as follows: 

  

                                                           
19

 Examples of volatility spillovers include the oil and stock markets as a whole (see, for example, Malik and 

Hammoudeh, 2007; Arouri, Jouini and Nguyen, 2012; Bouri, 2015; Boldanov, Degiannakis and Filis, 2016), as well 

as spillovers between oil and different stock market sectors (see Malik and Ewing, 2009; Sadorsky, 2012). Beyond 

the oil market, recent studies have covered volatility transmission between energy, agricultural, and precious metal 

commodities and equity markets (Mensi et al., 2013), precious metal ETFs and global equity markets (Lau et al., 

2017), commodity and currency markets (Antonakakis and Kizys, 2015; Yip, Brooks and Do, 2017), and commodity 

and CDS markets (Bouri, de Boyrie and Pavlova, 2017). 
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Trigger 

Positively 

Correlated REE 

Companies 

Negatively Correlated 

REE Companies 

                              Sell Buy 

                              Buy Sell 

Otherwise No Investment No Investment 
 

4.4.2 Results 

The trading results for the forty-eight strategies (= 16 (company, index, and correlation 

combinations)   3 (5%, 10%, and 15% trading signal sensitivities)) are reported in Table 7; some 

are graphed in Figure 4. The benchmark for comparing the trading strategy results is a naively 

diversified long buy-and-hold portfolio. Figure 4 clearly shows that the active trading strategy 

outperforms the buy-and-hold strategy (regardless of whether three, five, eight, or ten REE 

companies are combined in a portfolio) for both REE indices used for a given sensitivity ( ) of 

5%. This is the first (visual) evidence that the volatility forecasts for the REE indices convey 

material information for REE companies, which can be exploited by using an active trading 

strategy. 

Table 7 explores whether these results are generalizable for all forty-eight strategies, and 

tests whether the outperformance (on a risk-adjusted return basis) is significantly greater than that 

for the buy-and-hold portfolio return. We find that our trading strategy always results in 

significantly higher Sharpe ratios when selecting the REE companies with the highest absolute 

correlations (           ) to the respective REE indices. This represents strong support for our 

argument that REE volatility forecasts convey material information for firms active in this 

industry. This result is similar when REE companies are chosen based on positive correlations, 

          , but the active trading strategy does not outperform based on all possible 

combinations.  
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The statistically insignificant results are most likely attributable to the combinations used 

when choosing ten REE companies, and can be explained as follows. First, by definition, the 

correlations decrease with a higher number of companies included in the portfolios. This implies 

that the link to sensitivity to REE prices is likewise decreasing, which works against our strategy. 

Second, because we only consider positive correlations, we virtually exclude REE user 

companies. These companies would arguably react differently to REE price changes because they 

are expected to react negatively to REE price increases. Thus, intuitively, we expect to observe a 

positive correlation between the level of absolute correlations of REE companies with respective 

REE indices and trading strategy outperformance.  

On a related note, as the number of REE companies in the portfolio increases from five to 

ten, the average (absolute) correlation, and thus the outperformance of the trading strategy, 

decreases (compared to the buy-and-hold strategy). This result makes intuitive sense, because the 

weaker the link between REE price fluctuations and stock price reactions (measured by 

correlation), the lower the informational content of the REE volatility forecasts. This translates 

into lower expected total returns and lower Sharpe ratios.
20

 

– Please insert Table 7 and Figure 4 about here – 

4.4.3 Robustness Checks  

To test the stability of our results, we perform the following series of robustness tests: 1) 

we determine whether our results are sensitive to the estimation period, 2) we measure the 

influence of direct trading costs on the results, 3) we estimate the sensitivity of our results when 

considering direct and indirect trading costs, and 4) we apply our trading strategy directly to 

REEs. 

                                                           
20

 Note that the results for the three REE companies in our portfolio can be less stable, despite having a higher 

(absolute) correlation to the respective REE index. This can occur simply because one “outlier” in a three-stock 

portfolio technically has a higher weight, and thus a greater influence, on portfolio performance. 
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First, when changing the rolling window of the estimation period to 100 weeks (including 

the 2008 bear market), the results are very similar. This indicates that the length of the estimation 

period, and whether it includes both bull and bear markets, has no obvious impact on the 

profitability of the trading strategy (see Table A2 and Figure A3 in the online appendix). 

Second, to check robustness with regard to the transaction costs of the various active 

trading portfolios, we multiply the number of trades (# p.a.) times the transaction costs of 0.169% 

(i.e., handling fee of 0.0487%, plus management fee of 0.02%, plus stamp duty of 0.1%, based on 

the latest fees at the Shanghai and Shenzhen stock exchanges). We find that statistical 

significance is not affected for the vast majority of specifications (see Table A3 in the online 

appendix). By “not affected,” we mean that, for a given specification of the trading strategy (e.g., 

the number of REE companies traded in the strategy (#) and the sensitivity to changes in 

volatility (ς)), the Δ Sharpe ratio remains significant at the same level. We find nearly identical 

results for the rolling window of the 100-week estimation period specification (see Table A4 in 

the online appendix). 

Third, the actual transaction costs charged by the stock exchanges account for only the 

direct trading costs. To measure the impact of total trading costs, we must also consider indirect 

costs, such as bid-ask spreads. These costs are more difficult to measure because they generally 

depend on variables such as trading volume, liquidity and trading time. Thus, because it is 

impossible to fairly estimate indirect trading costs, we calculate an annual return buffer instead.  

In detail, we calculate the maximum return deduction per year so that the trading strategy 

remains statistically significant at the same level (and, if applicable, at lower levels of 

significance). This allows us to form our own opinion about total (relative) trading costs, and to 

gauge whether the outperformance of the active trading strategy would remain statistically 

significant at a certain level. When considering the three REE companies in the active trading 
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portfolio, and when using the EWI REE index for the volatility forecasts (see panel A of Table 

A5 in the online appendix), we find that the annual return buffers are fairly large (7%-17%). We 

argue that these buffers are sufficient to absorb even outsize trading costs, and will still result in a 

statistically significant outperformance of the active trading strategy. However, we find that the 

return buffers tend to be lower 1) when using the VWI REE index, 2) when a higher number of 

REE companies are included in the portfolio, and 3) if companies are selected based on positive 

correlations only. This reflects our previous observation from Table 7. Results for the rolling 

window of the 100-week estimation period are comparable (see Table A6 in the online appendix).  

Note that our goal in assessing the active trading strategy is not to show monetizable 

trading profits after including trading costs. Rather, we aim to show that our REE volatility 

forecasts convey economically meaningful material information that can be used by the REE 

companies to proactively manage uncertainty in the REE market. This is evidenced by the 

statistically significant outperformance of the active trading strategy without trading costs. 

Fourth, we apply our trading strategy for listed companies to the REE industry, which is 

clearly an indirect approach to using the REEs themselves.
21

 As previously mentioned, REEs are 

not readily investable. Nevertheless, if our REE volatility forecasts convey material information 

about future price developments, we expect the economic importance of REEs themselves to be 

higher. We therefore replicate the previous procedure and apply it directly to the REE indices. In 

line with our intuition, we find that the active trading strategy largely outperforms the buy-and-

hold strategy on a risk-adjusted basis, irrespective of the REE index, the estimation period, or any 

sensitivity to changes in volatility (see Table A7 in the online appendix). 

                                                           
21

 The significant outperformance could be driven by systematic risk factors such as Fama and French’s Small-

Minus-Big or High-Minus-Low factors. We could certainly control for both factors in the Chinese market. But we do 

not expect any impact on our results, because the active trading strategy and the buy-and-hold strategy have identical 

shares in the portfolio (“matched portfolio” comparison). Therefore, both are exposed equally to such systematic risk 

factors. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

27 

To summarize, we find compelling evidence that the out-of-sample volatility forecasts 

generated by the long-memory ARFIMA(     ) baseline model convey material information 

that predicts the stock prices of Chinese REE companies and REE indices. The price movements 

are not only predictable to a certain extent, but they can also be measured by using an active 

trading strategy. We interpret these results as strong evidence that REE volatility forecasts are of 

strong economic importance. 

5. Conclusion 

REEs have garnered increasing attention lately due to their importance for various high- 

and green-technology applications, China’s monopoly over this key industry, and the resultant 

dramatic price increases instituted by China in recent years, which sparked a series of U.S. 

Congressional reports (Humphries, 2010; Morrison and Tang, 2012; Bailey Grasso, 2013). 

Because there are currently no effective methods available to hedge against REE price volatility 

(such as derivatives), industries that depend on REEs for production require a reliable estimate of 

volatility. The creation of a volatility monitor is a first step in this direction. 

However, we suggest complementing observed volatility with reliable volatility forecasts. 

In this paper, we show that the time series of REE volatilities exhibit long-memory, and we find 

that a simple ARFIMA(     ) model is generally the most accurate method by which to describe 

the volatility of REEs and their related indices. The use of different observation periods, 

estimation windows, and out-of-sample analyses do not alter these results: REE volatility remains 

highly persistent throughout time.  

Moreover, we find that, in the absence of, e.g., forward-looking implied volatilities and 

thus a weaker consensus about expected REE volatility, a volatility forecast based on the 

ARFIMA(     ) baseline model can foreshadow, or predict, future price developments of REE 

companies. Using this information in an active trading strategy generates statistically higher risk-
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adjusted returns (as measured by the Sharpe ratio) than a buy-and-hold strategy. We interpret this 

as solid support for the notion that our REE volatility forecasts convey economically meaningful 

material information that can be used by companies in the REE market to proactively manage 

uncertainty. 

Our findings provide some instructive insights that should be of interest to practitioners, 

policy makers, and academics concerned with the dynamics of the REE market. For example, the 

volatility distributions seem to be non-normal stable Paretian, rather than Gaussian (Fama, 1963; 

Mandelbrot, 1972; Greene and Fielitz, 1977). Hence, periods of extreme volatility are more 

common than under the normal distribution. Ultimately, this finding has some key implications. 

If options markets for REEs are established, ensuring an adequate option pricing framework 

would be paramount. Current pricing models for commodity options assume either deterministic 

(Back, Prokopczuk and Rudolf, 2013) or stochastic (Arsimendi et al., 2016) seasonal volatility. In 

the case of REEs, volatility does not seem to exhibit a seasonal component. Rather, it is non-

periodic and exhibits “non-sinusoidal” cycles (Mandelbrot, 1971, p. 228), which need to be 

adequately incorporated into the pricing framework. 

Furthermore, given the extreme price movements of REEs and their importance for the 

entire high-tech industry, more research on their dynamics is warranted. Future research should 

consider analyzing the impact of macroeconomic factors, e.g., interest rates, exchange rates, and 

the business cycle, on the dynamics of REE prices in order to foster a fuller understanding of this 

important market. Related research from other commodity markets such as gold and oil may 

provide some additional guidance (see, for example, Faff and Chan, 1998; Tufano, 1998; Boyer 

and Filion, 2007; Batten, Ciner and Lucey, 2010; Baur, 2014; Haugom et al., 2014). 
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Figure 1: Time Series Plot of Rare Earth Element Prices 

This figure illustrates the evolution of weekly REE prices (cerium, lanthanum, neodymium, and yttrium) (panel A) 

and the two REE indices (EWI and VWI) (panel B), as well as the related volatility (measured by absolute returns). 

Prices (RMB/kg) come from the Asian Metal database, and cover the January 28, 2005-February 28, 2015 period. In 

panel A, the prices of cerium, lanthanum, and neodymium are plotted on the Y1 axis, and the price of yttrium on the 

Y2 axis. 

 

               Panel A              Panel B 
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Figure 2: Stability of the Fractional Differencing Parameter for the Volatility Series 

This figure shows the development of the fractional differencing parameter   obtained using maximum likelihood 

estimation (Sowell, 1992) with different specifications of an ARFIMA(     ) model on the absolute returns for the 

four REEs (cerium, lanthanum, neodymium, and yttrium) and the two REE indices (EWI and VWI). We use a rolling 

window of 300 weeks to estimate the degree of long-memory. 
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Figure 3: Out-of-Sample Forecasting Performance for the Volatility Series 

This figure shows the developments of the coefficient of determination (  ) from regressing the one-step-ahead 

volatility forecast generated from different specifications of an ARFIMA(     ) model and the GARCH(1,1) model 

on the absolute returns for the four REEs (cerium, lanthanum, neodymium, and yttrium) and the two REE indices 

(EWI and VWI). We use a rolling window of 300 weeks to estimate the degree of long-memory. 
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Figure 4: Trading Strategy Results for T = 300 Model 

This figure shows the developments of the buy-and-hold strategy versus the trading strategy based on the ARFIMA 

        baseline model with T = 300 (weeks). For the sake of comparability, we standardize weekly trading returns 

into a price index beginning with 100 points. “Buy and hold” refers to the index development based on buy-and-hold 

returns; “trading strategy” refers to that based on trading strategy returns. (+) means REE companies were selected 

based on           , and (+/-) means REE companies were selected based on            . The trading strategy 

includes three, five, eight, or ten REE companies, and covers the June 3, 2011-February 28, 2015 period. 

 

  

  

  
  

(continued)  
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Figure 4: Trading Strategy Results for T = 300 model – continued 

 

 

 

Table 1: Descriptive Statistics 

This table shows the descriptive statistics of volatility (measured by absolute returns) for the four REEs (cerium, 

lanthanum, neodymium, and yttrium) and the two REE indices (EWI and VWI) using the complete sample of 489 

weeks. The Ljung-Box test statistics (Ljung and Box, 1978) show substantial serial correlation in our volatility 

proxy. The autocorrelations from one to five lags are all statistically significant at least at a 10% confidence level. 

 

 
Cerium Lanthanum Neodymium Yttrium EWI VWI 

Mean 0.0167 0.0153 0.0217 0.0175 0.0171 0.0184 

Std. Dev. 0.0333 0.0377 0.0305 0.0391 0.0255 0.0248 

Skewness 3.889 6.002 2.583 5.721 4.982 3.639 

Kurtosis 25.045 53.118 11.712 57.917 43.181 23.869 

Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Maximum 0.3038 0.4055 0.2139 0.5062 0.2994 0.2373 

Autocorrelation 
     

Lag(1) 0.408 0.337 0.376 0.295 0.467 0.442 

Lag(2) 0.353 0.245 0.274 0.378 0.394 0.374 

Lag(3) 0.386 0.143 0.211 0.164 0.347 0.344 

Lag(4) 0.293 0.150 0.099 0.135 0.268 0.198 

Lag(5) 0.209 0.142 0.135 0.087 0.276 0.240 

Ljung-Box Test 
     

Q(20) 316.149 128.752 217.400 232.837 397.590 405.516 
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Table 2: Results of Long-Memory Tests 

This table shows the fractional differencing parameter  , as well as the AR and MA terms obtained using Sowell’s (1992) maximum likelihood estimator of various 

ARFIMA(p    ) specifications for REE volatility (measured by absolute returns) for the four individual elements (cerium, lanthanum, neodymium, and yttrium) and 

the two REE indices (EWI and VWI). It also shows the results of likelihood ratio tests (LR) of the different parameterizations against the ARFIMA(     ) baseline 

model. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. LR: Likelihood ratio test statistic. AIC: Akaike (1974) information 

criterion. BIC: Schwarz (1978) information criterion. 

 

 ARFIMA(     ) ARFIMA(     ) 

Parameter  (0,d,0) (1,d,0) (2,d,0) (1,d,1) (2,d,1) (0,d,0) (1,d,0) (2,d,0) (1,d,1) (2,d,1) 

 
Cerium Lanthanum 

d 0.32*** 0.39*** 0.45*** 0.41*** 0.44*** 0.27*** 0.22*** 0.15 0.25*** 0.22*** 

AR(1) 
 

-0.11 -0.17** -0.03 -0.77*** 
 

0.08 0.15 -0.48 -0.52 

AR(2) 
  

-0.07 
 

-0.17*** 
  

0.06 
 

0.04 

MA(1) 
   

-0.10 0.62** 
   

0.52 0.60 

LR NA 2.30 3.38 2.47 5.96 NA 0.87 1.59 0.68 0.89 

AIC -2,060 -2,060 -2,060 -2,050 -2,060 -1,880 -1,880 -1,880 -1,880 -1,870 

BIC -2,040 -2,040 -2,030 -2,030 -2,030 -1,870 -1,860 -1,860 -1,860 -1,850 

 
Neodymium Yttrium 

d 0.29*** 0.27*** 0.16 0.29*** 0.13 0.25*** 0.41*** 0.16 0.35*** 0.16 

AR(1) 
 

0.03 0.14 -0.34 0.40 
 

-0.24*** 0.03 -0.67*** -0.01 

AR(2) 
  

0.11* 
 

0.08 
  

0.25*** 
 

0.25*** 

MA(1) 
   

0.34 -0.23 
   

0.50*** 0.04 

LR NA 0.12 3.12 0.00 3.77 NA 10.01*** 24.95*** 18.57*** 25.01*** 

AIC -2,110 -2,100 -2,100 -2,100 -2,100 -1,850 -1,860 -1,880 -1,870 -1,870 

BIC -2,090 -2,090 -2,080 -2,080 -2,080 -1,840 -1,850 -1,850 -1,850 -1,850 

 
EWI VWI 

d 0.36*** 0.38*** 0.39*** 0.38*** 0.41*** 0.33*** 0.38*** 0.33*** 0.38*** 0.41*** 

AR(1) 
 

-0.02 -0.03 0.00 -0.78*** 
 

-0.07 -0.02 -0.15 -0.91*** 

AR(2) 
  

-0.01 
 

-0.09 
  

0.05 
 

-0.14** 

MA(1) 
   

-0.02 0.73*** 
   

0.08 0.80*** 

LR NA 0.09 0.11 0.09 2.70 NA 0.90 1.39 0.96 4.50 

AIC -2,350 -2,350 -2,340 -2,340 -2,350 -2,360 -2,360 -2,360 -2,360 -2,360 

BIC -2,340 -2,330 -2,320 -2,320 -2,320 -2,350 -2,340 -2,340 -2,330 -2,330 
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Table 3: In-Sample Parameter Estimation for the Volatility Series 

This table shows the results for the presence of long-memory in REE volatility (measured by absolute returns) using Sowell’s (1992) maximum likelihood estimation 

under various specifications of an ARFIMA(     ) model and two ARFIMA(     ) models for the four REEs (cerium, lanthanum, neodymium, and yttrium) and 

the two REE indices (EWI and VWI). We use a rolling window of 300 weeks to estimate the degree of long-memory; for clarity, we report one iteration each year 

(see Figure A1 in the online appendix for more details about the rolling window). Other iterations are available from the authors upon request. ***, **, and * denote 

statistical significance at the 1%, 5%, and 10% levels, respectively.      (    ) denotes the relative number of rolling periods when the ARFIMA(     ) is equal to 

or better than the respective model measured by     (   ). AIC: Akaike (1974) information criterion. BIC: Schwarz (1978) information criterion. 

  

  ARFIMA(     ) ARFIMA(     ) 
t Parameter  (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) 

  
Cerium Lanthanum 

1 d 0.336*** 0.387*** 0.404*** 0.407*** 
  

0.288*** 0.242*** 0.249*** 
   

1 AR(1) 
 

-0.089 
 

0.046 0.872*** 0.843*** 
 

0.069 
  

0.723*** 0.904*** 

1 AR(2) 
     

0.022 
     

-0.089 

1 MA(1) 
  

-0.113 -0.161 -0.58*** -0.559*** 
  

0.06 
 

-0.433*** -0.601** 

48 d 0.343*** 0.398*** 0.411*** 0.41*** 
  

0.28*** 0.199** 0.219*** 
   

48 AR(1) 
 

-0.091 
 

-0.006 0.859*** 0.793*** 
 

0.115 
  

0.701*** 0.882*** 

48 AR(2) 
     

0.051 
     

-0.087 

48 MA(1) 
  

-0.106 -0.1 -0.554*** -0.509*** 
  

0.092 
 

-0.412*** -0.579** 

95 d 0.336*** 0.386*** 0.395*** 0.394*** 
  

0.279*** 0.191* 0.217*** 
   

95 AR(1) 
 

-0.08 
 

-0.015 0.843*** 0.775*** 
 

0.124 
  

0.69*** 0.843*** 

95 AR(2) 
     

0.051 
     

-0.072 

95 MA(1) 
  

-0.09 -0.075 -0.542*** -0.495*** 
  

0.092 
 

-0.4*** -0.543* 

142 d 0.386*** 0.423*** 0.427*** -0.21 
  

0.426*** -0.426*** 0.321*** -0.5*** 
  

142 AR(1) 
 

-0.061 
 

0.896*** 0.848*** 0.778*** 
 

0.898*** 
 

0.92*** 0.647*** -0.333*** 

142 AR(2) 
     

0.054 
     

0.528*** 

142 MA(1) 
  

-0.065 -0.353** -0.496*** -0.446*** 
  

0.16** 0.058 -0.151** 0.85*** 

189 d 0.431*** 0.477*** 0.47*** -0.155 
  

0.442*** -0.391*** 0.326*** -0.491*** 
  

189 AR(1) 
 

-0.109 
 

0.897*** 0.859*** 0.581*** 
 

0.888*** 
 

0.918*** 0.65*** 0.073 

189 AR(2) 
     

0.221*** 
     

0.331** 

189 MA(1) 
  

-0.078 -0.353*** -0.454*** -0.241** 
  

0.184** 0.078 -0.127** 0.448* 

 
Model GARCH (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) GARCH (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) 

      6% 100% 100% 88% 28% 34% 1% 83% 95% 31% 70% 78% 

      16% 100% 100% 97% 41% 85% 1% 89% 100% 80% 88% 90% 

(continued)  
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Table 3: In-Sample Parameter Estimation for Volatility Series – continued 

 

  ARFIMA(     ) ARFIMA(     ) 
t Parameter (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) 

  Neodymium Yttrium 

1 d 0.246*** 0.345*** 0.338*** 0.331*** 
  

0.325*** 0.408*** 0.375*** 0.394*** 
  

1 AR(1) 
 

-0.153* 
 

-0.257 0.83*** 0.64*** 
 

-0.126 
 

-0.575*** 0.801*** 0.341 

1 AR(2) 
     

0.114 
     

0.264** 

1 MA(1) 
  

-0.133 0.118 -0.608*** -0.455*** 
  

-0.073 0.454* -0.484*** -0.056 

48 d 0.292*** 0.298*** 0.295*** 0.32*** 
  

0.274*** 0.456*** 0.392*** 0.404*** 
  

48 AR(1) 
 

-0.008 
 

-0.377 0.721*** 0.422*** 
 

-0.3*** 
 

-0.717*** 0.856*** 0.149 

48 AR(2) 
     

0.164* 
     

0.411*** 

48 MA(1) 
  

-0.005 0.332 -0.412*** -0.143 
  

-0.173** 0.495*** -0.598*** 0.061 

95 d 0.253*** 0.252** 0.253*** 0.274*** 
  

0.267*** 0.453*** 0.384*** 0.401*** 
  

95 AR(1) 
 

0.001 
 

-0.373 0.693*** 0.419** 
 

-0.297*** 
 

-0.674*** 0.839*** 0.182 

95 AR(2) 
     

0.137 
     

0.386*** 

95 MA(1) 
  

0.001 0.339 -0.423*** -0.175 
  

-0.168** 0.447*** -0.582*** 0.012 

142 d 0.297*** 
 

0.241*** 
   

0.274*** 0.439*** 0.37*** 0.396*** 
  

142 AR(1) 
    

0.657*** 0.535** 
 

-0.256*** 
 

-0.663*** 0.818*** 0.151 

142 AR(2) 
     

0.058 
     

0.379*** 

142 MA(1) 
  

0.084 
 

-0.325*** -0.21 
  

-0.137* 0.459*** -0.549*** 0.067 

189 d 0.314*** 0.237*** 0.259*** 0.399*** 
  

0.262*** 0.432*** 0.363*** 0.385*** 
  

189 AR(1) 
 

0.117 
 

0.784*** 0.678*** 0.573*** 
 

-0.26*** 
 

-0.654*** 0.818*** 0.162 

189 AR(2) 
     

0.054 
     

0.364*** 

189 MA(1) 
  

0.087 -0.855*** -0.318*** -0.219 
  

-0.143* 0.45*** -0.562*** 0.041 

 
Model GARCH (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) GARCH (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) 

      100% 100% 100% 98% 90% 89% 0% 14% 62% 2% 43% 0% 

      100% 100% 100% 99% 100% 100% 0% 50% 100% 41% 98% 4% 

(continued)  

  

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 

43 

Table 3: In-Sample Parameter Estimation for Volatility Series – continued 

 

  ARFIMA(     ) ARFIMA(     ) 
t Parameter (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) 

  EWI VWI 

1 d 0.379*** 0.389*** 0.39*** 0.36*** 
  

0.328*** 0.44*** 0.438*** 0.438*** 
  

1 AR(1) 
 

-0.018 
 

-0.748*** 0.85*** 0.931*** 
 

-0.196*** 
 

-0.211 0.872*** 0.66*** 

1 AR(2) 
     

-0.057 
     

0.156*** 

1 MA(1) 
  

-0.02 0.798*** -0.504*** -0.571*** 
  

-0.174** 0.018 -0.582*** -0.426*** 

48 d 0.376*** 0.372*** 0.372*** 0.354*** 
  

0.341*** 0.414*** 0.403*** 0.406*** 
  

48 AR(1) 
 

0.006 
 

-0.736*** 0.838*** 0.923*** 
 

-0.119 
 

-0.224 0.841*** 0.644*** 

48 AR(2) 
     

-0.059 
     

0.132** 

48 MA(1) 
  

0.006 0.791*** -0.491*** -0.562*** 
  

-0.095 0.112 -0.52*** -0.354*** 

95 d 0.358*** 0.355*** 0.355*** 0.336*** 
  

0.312*** 0.389*** 0.381*** 0.382*** 
  

95 AR(1) 
 

0.004 
 

-0.748*** 0.825*** 0.896*** 
 

-0.123 
 

-0.198 0.835*** 0.645*** 

95 AR(2) 
     

-0.047 
     

0.122** 

95 MA(1) 
  

0.004 0.801*** -0.495*** -0.554*** 
  

-0.104 0.082 -0.544*** -0.383*** 

142 d 0.435*** 0.387*** 0.395*** -0.411** 
  

0.369*** 0.362*** 0.363*** 
   

142 AR(1) 
 

0.079 
 

0.937*** 0.818*** 0.953*** 
 

0.01 
  

0.812*** 0.863*** 

142 AR(2) 
     

-0.094 
     

-0.032 

142 MA(1) 
  

0.07 -0.089 -0.388*** -0.509*** 
  

0.009 
 

-0.45*** -0.497*** 

189 d 0.454*** 0.417*** 0.429*** -0.31 
  

0.388*** 0.385*** 0.386*** 0.075 
  

189 AR(1) 
 

0.069 
 

0.925*** 0.825*** 0.833*** 
 

0.005 
 

0.792*** 0.827*** 0.832*** 

189 AR(2) 
     

-0.006 
     

-0.004 

189 MA(1) 
  

0.05 -0.153 -0.36*** -0.368*** 
  

0.004 -0.476** -0.44*** -0.445*** 

 
Model GARCH (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) GARCH (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) 

      99% 100% 100% 86% 72% 85% 100% 98% 99% 90% 74% 81% 

      98% 100% 100% 99% 97% 100% 99% 100% 100% 100% 96% 100% 
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Table 4: Comparison of Out-of-Sample Forecasting Performance 

This table presents a comparison of the forecasting performance measured by the coefficient of determination (  ) for our out-of-sample forecasts for absolute 

returns using various specifications of ARFIMA(     ) models and the GARCH(1,1) model for the four REEs (cerium, lanthanum, neodymium, and yttrium) and 

the two REE indices (EWI and VWI). We use a rolling window of 300 weeks to estimate the parameters (in-sample). Thus, the number of out-of-sample observations 

to estimate    declines from 190 (over about four years) for t = 1 by one observation for each rolling window. To ensure we are left with a sufficient number of 

observations, we estimate out-of-sample performance until t = 95, which leaves us with a minimum of ninety-six observations (over two years) for our    estimation. 

For clarity, we report two iterations each year (approximately forty-seven weeks). Other iterations, as well as adjusted     and      estimates, are available from 

the authors upon request. Prices (RMB/kg) come from the Asian Metal database, and cover the January 2005-February 2015 period.     (     ) denotes the 

relative number of rolling periods when the ARFIMA(     ) is equal to or better than the respective model measured by    (    ). 

 

 ARFIMA(     ) GARCH ARFIMA(     ) GARCH 

t   (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) (1,1) (0,d,0) (1,d,0) (0,d,1) (1,d,1) (1,0,1) (2,0,1) (1,1) 

 

Cerium Lanthanum 

1 0.044 0.049 0.048 0.047 0.071 0.074 0.019 0.042 0.041 0.041 n/a 0.044 0.042 0.037 

25 0.063 0.071 0.071 0.071 0.079 0.083 0.059 0.053 0.044 0.045 0.042 0.060 0.053 0.035 

48 0.035 0.043 0.043 0.043 0.049 0.054 0.039 0.031 0.023 0.023 n/a 0.035 0.030 0.016 

71 0.041 0.051 0.051 0.051 0.058 0.064 0.046 0.032 0.023 0.024 n/a 0.037 0.031 0.013 

95 0.029 0.039 0.039 0.039 0.045 0.051 0.035 0.035 0.023 0.025 n/a 0.037 0.033 0.009 

    

 

0% 0% 0% 0% 0% 37% 

 

97% 100% 89% 4% 69% 100% 

       17% 18% 17% 0% 0% 69%  97% 100% 89% 53% 96% 100% 

  Neodymium Yttrium 

1 0.236 0.191 0.199 0.194 0.194 0.173 0.184 0.039 0.057 0.048 0.076 0.037 0.073 0.042 

25 0.078 0.074 0.076 0.035 0.064 0.045 0.048 0.027 0.020 0.024 0.016 0.026 0.022 0.008 

48 0.057 0.056 0.057 0.048 0.049 0.032 0.037 0.042 0.037 0.039 0.035 0.039 0.046 0.017 

71 0.059 0.054 0.057 0.048 0.048 0.030 0.039 0.048 0.045 0.046 0.043 0.046 0.054 0.017 

95 0.135 0.136 0.136 0.118 0.130 0.096 0.218 0.016 0.005 0.009 0.009 0.007 0.011 0.001 

      93% 93% 100% 95% 100% 85%   93% 93% 93% 96% 60% 93% 

      
 97% 98% 100% 97% 100% 85%  93% 93% 93% 98% 64% 94% 

  EWI VWI 

1 0.167 0.168 0.168 0.161 0.153 0.154 0.156 0.278 0.234 0.244 0.234 0.230 0.196 0.255 

25 0.078 0.077 0.077 0.072 0.072 0.071 0.067 0.103 0.085 0.091 0.084 0.077 0.061 0.091 

48 0.044 0.044 0.044 0.039 0.043 0.041 0.045 0.082 0.065 0.071 0.064 0.060 0.047 0.075 

71 0.050 0.050 0.050 0.039 0.048 0.046 0.044 0.086 0.065 0.072 0.064 0.061 0.045 0.072 

95 0.067 0.066 0.066 0.053 0.069 0.066 0.053 0.152 0.109 0.120 0.109 0.105 0.077 0.196 

      75% 74% 98% 77% 100% 91%   100% 100% 100% 100% 100% 83% 

       100% 100% 99% 96% 100% 100%  100% 100% 100% 100% 100% 85% 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

45 

Table 5: Summary of Results 

This table provides an overview of Tables 2, 3, and 4 for the four individual elements (cerium, lanthanum, 

neodymium, and yttrium) and the two REE indices (EWI and VWI). “Long-Memory” indicates whether the 

fractional differencing parameter   obtained using Sowell’s (1992) maximum likelihood estimator is different from 0 

at least at the 10% level for volatility. “ARFIMA(     ) +AR/+MA” indicates whether adding AR or MA terms to 

the baseline model (ARFIMA(     )) results in an improvement. “Preferred Model” indicates the best in-sample 

(based on Akaike (1974) and Schwarz (1978) information criterion) and out-of-sample (based on    and RMSE) 

performing model/model specification. 

 

REEs and  

REE Indices 
Long-Memory 

ARFIMA(     ) Preferred Model 

+AR +MA In-Sample Out-of-Sample 

Cerium Yes No No GARCH Indeterminate 

Lanthanum Yes No No GARCH ARFIMA(     ) 

Neodymium Yes No No ARFIMA(     ) ARFIMA(     ) 

Yttrium Yes Yes Yes GARCH ARFIMA(     ) 

EWI Yes No No ARFIMA(     ) ARFIMA(     ) 

VWI Yes No No ARFIMA(     ) ARFIMA(     ) 

 

Table 6: Pearson Correlation Coefficients of REE Companies for Trading Strategy 

This table gives the mean, minimum, and maximum of the annually calculated Pearson correlations for the weekly 

returns of REE companies. Companies are selected for the trading strategy based on their highest positive and 

absolute (positive as well as negative) correlations with the REE equally weighted index (EWI) and the usage-

weighted index (VWI), respectively, for the January 2007-December 2014 period. # refers to the number of REE 

companies considered and ultimately used to calculate the mean, minimum, and maximum, and employed in the 

trading strategy.  

 

Correlation REE Index # Mean  Minimum  Maximum  

         
 

 

EWI 

3 0.398 0.177 

0.546 
5 0.381 0.170 

8 0.360 0.134 

10 0.350 0.122 

VWI 

3 0.373 0.230 

0.503 
5 0.357 0.185 

8 0.340 0.152 

10 0.331 0.144 

            

EWI 

3 0.494 0.406 

0.756 
5 0.476 0.389 

8 0.457 0.355 

10 0.446 0.342 

VWI 

3 0.477 0.365 

0.712 
5 0.462 0.335 

8 0.442 0.325 

10 0.432 0.314 
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Table 7: Results of Trading Strategy versus Buy-and-Hold Strategy for T = 300 Model 

This table shows the results for the volatility trading strategies based on the one-step-ahead ARFIMA        

volatility forecasts using absolute returns of the REE equally weighted (EWI) and usage-weighted (VWI) indices, 

respectively. Panel A gives the trading results for REE companies selected based on the highest positive            

and highest absolute correlation             of REE companies with the EWI REE index. Panel B gives the trading 

results for the REE companies selected based on correlations with the VWI REE index. # refers to the number of 

REE companies traded in the strategy. ς refers to the sensitivity to changes in volatility to obtain a trading signal. 

Total return denotes the cumulative returns of the buy-and-hold and trading strategies, respectively, for the June 

2011-February 2015 period. Sharpe ratio refers to the annualized Sharpe ratio for the buy-and-hold and trading 

strategies, respectively, with a risk-free rate equal to 0%. Δ Sharpe ratio refers to the difference between the 

respective trading strategy’s Sharpe ratio minus the buy-and-hold Sharpe ratio of the buy-and-hold portfolio. ***, **, 

and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

Panel A Buy-and-Hold Trading on            Buy-and-Hold Trading on             

#  ς 
Total 

Return  

Sharpe 

Ratio  

Total 

Return  

Sharpe 

Ratio  

Δ Sharpe 

Ratio 

(Trading - 

Buy and 

Hold) 

Total 

Return  

Sharpe 

Ratio  

Total 

Return  

Sharpe 

Ratio  

Δ Sharpe 

Ratio 

(Trading - 

Buy and 

Hold) 

    EWI 

3 

5% 

33.14% 0.269 

82.78% 0.606 0.337*** 

-36.50% -0.414 

31.28% 0.267 0.681*** 

10% 80.47% 0.606 0.336*** 37.35% 0.315 0.729*** 

15% 96.61% 0.703 0.434*** 37.79% 0.323 0.737*** 

5 

5% 

21.98% 0.219 

68.82% 0.645 0.426*** 

-36.16% -0.452 

4.58% 0.051 0.503*** 

10% 56.56% 0.563 0.344*** 7.31% 0.081 0.533*** 

15% 71.51% 0.694 0.475*** 7.21% 0.082 0.533*** 

8 

5% 

25.42% 0.292 

34.71% 0.425 0.134 

-29.78% -0.414 

-12.22% -0.171 0.243** 

10% 26.79% 0.349 0.057 -9.10% -0.127 0.286*** 

15% 35.06% 0.453 0.161* -6.56% -0.093 0.321*** 

10 

5% 

25.71% 0.318 

21.97% 0.306 -0.012 

-35.31% -0.540 

-22.97% -0.376 0.164* 

10% 17.10% 0.251 -0.067 -18.82% -0.305 0.234** 

15% 22.82% 0.335 0.017 -17.46% -0.289 0.25** 

Panel B Buy-and-Hold Trading on            Buy-and-Hold Trading on             

    VWI 

3 

5% 

-7.15% -0.079 

0.39% 0.004 0.084 

-45.46% -0.618 

-7.59% -0.088 0.53*** 

10% 8.91% 0.098 0.178* -17.23% -0.218 0.400*** 

15% 2.86% 0.033 0.113 -13.73% -0.174 0.444*** 

5 

5% 

0.25% 0.003 

29.11% 0.281 0.279** 

-42.22% -0.541 

15.52% 0.155 0.696*** 

10% 37.23% 0.357 0.354*** 2.90% 0.031 0.572*** 

15% 29.44% 0.296 0.293** 1.61% 0.018 0.559*** 

8 

5% 

-4.18% -0.049 

16.12% 0.180 0.228** 

-42.26% -0.617 

9.29% 0.111 0.728*** 

10% 19.73% 0.223 0.272** -4.43% -0.059 0.558*** 

15% 17.80% 0.208 0.257** -2.73% -0.037 0.581*** 

10 

5% 

-2.07% -0.026 

-0.35% -0.005 0.021 

-32.09% -0.454 

5.36% 0.071 0.526*** 

10% 1.54% 0.020 0.046 -8.38% -0.125 0.329*** 

15% 4.45% 0.058 0.084 -3.12% -0.046 0.408*** 
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Highlights 

 

 We document the existence of long-memory effects in the volatility of rare earth elements 

(REEs) 

 A comparison of the suitability of short-memory models (ARMA), long-memory models 

(ARFIMA), and a GARCH model to describe the volatility of REEs reveals that a simple 

ARFIMA(     ) model shows generally superior accuracy 

 Results hold for in- and out-of-sample, and are robust for various subsamples and 

estimation windows 

 Volatility forecasts produced by the ARFIMA(     ) model convey material forward-

looking information for companies in the REEs industry 

ACCEPTED MANUSCRIPT


