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ABSTRACT 

Time-Domain System Identification for Long-EZ Fixed-Wing Aircraft Based on Flight Test 

Data 

Danyang Xu 

 

System identification using flight test data based on time-domain method is an accurate 

way of getting a reliable mathematical aircraft model. This thesis provides a system 

identification procedure on a canard configured fixed-wing aircraft Long-EZ, which is the early 

and critical stage of providing accurate aircraft models for designing an effective autopilot in 

the future.  

Flight test designed for Long-EZ aircraft has been carried out by International Test Pilot 

School (ITPS Canada Ltd). The real flight test data recorded from the testbed has been utilized 

for the identification and verification of a linear transfer function model, a nonlinear neural 

network model, and a block-oriented model consisting of linear and nonlinear parts. The linear 

transfer function structure has been determined with aircraft’s physical dynamics, and the 

model parameters have been identified using MATLAB System Identification toolbox. The 

nonlinearity of the aircraft dynamics has been treated with a Multilayer Perceptron (MLP) 

neural network structure, which has been developed with a set of Python codes. Flight data has 

been utilized to train this MLP structure.  

The results demonstrate different predicting capabilities of the developed linear, nonlinear, 
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and combined linear and nonlinear structure, which is also known as the neural network Wiener 

model. The developed Wiener model in general shows satisfactory predicting capability for the 

testbed Long-EZ aircraft. 

  



v 
 

Acknowledgements 

I would first give my sincere thanks to my thesis supervisor Dr. Youmin Zhang, who has 

given me this precious opportunity to be enrolled in the M.ASc. program of Concordia 

University, and NAVL lab research associate, Dr. Zhixiang Liu, who has given me valuable 

academic advices throughout my study and thesis work. 

Secondly, I’d like to express my gratitude to ITPS Canada Ltd., the president Mr. Giorgio 

Clementi who has given me a precious internship opportunity while I was completing master’s 

program, where I have gained valuable hands-on experience from aviation industry. I would 

like to give my special thanks to ITPS supervisor Dr. Andre Celere who have given me valuable 

training during the internship, and colleagues Mr. João Falcão and Dr. Panos Vitsas who have 

spent time reading through this thesis and given me valuable suggestions. 

Last but not least, I’d like to thank all my family members and friends in China who have 

encouraged and supported me through my master’s study in Canada. 

 

  



vi 
 

Table of Contents 

List of Figures ........................................................................................................................ viii 

List of Tables ............................................................................................................................. x 

 Chapter 1  Introduction ................................................................................................. 1 

1.1 Literature Review ................................................................................................................ 6 

1.2 Research Motivation ............................................................................................................ 8 

1.3 Contributions of This Thesis ............................................................................................... 9 

1.4 Thesis Layout ...................................................................................................................... 11 

 Chapter 2  Aircraft Dynamics and Modelling ........................................................... 12 

2.1 Aircraft Equations of Motion ............................................................................................ 12 

2.2 Long-EZ Baseline Model ................................................................................................... 16 

 Chapter 3  Flight Test Design ...................................................................................... 22 

3.1 Aircraft Description ........................................................................................................... 23 

3.2 Optimal Input Design ........................................................................................................ 24 

3.3 Flight Test Instrumentation .............................................................................................. 30 

3.4 Flight Test Results .............................................................................................................. 33 

3.5 Data Compatibility Check ................................................................................................. 37 

 Chapter 4  Equation Error Method ............................................................................ 39 

4.1 Introduction ........................................................................................................................ 39 

4.2 Transfer Function Model Identification ........................................................................... 46 

4.2.1 Longitudinal model........................................................................................................ 47 

4.2.2 Lateral model ................................................................................................................. 53 

4.3 Analysis and Discussion ..................................................................................................... 59 

 Chapter 5  Artificial Neural Network......................................................................... 62 

5.1 Introduction ........................................................................................................................ 62 

5.2 MLP Neural Network Model Identification .................................................................... 67 

5.2.1 Longitudinal model........................................................................................................ 68 

5.2.2 Lateral model ................................................................................................................. 71 

5.3 Neural Network Wiener Model Identification ................................................................. 73 

5.3.1 Longitudinal model........................................................................................................ 77 



vii 
 

5.3.2 Lateral model ................................................................................................................. 81 

5.4 Analysis and Discussion ..................................................................................................... 87 

 Chapter 6  Conclusions and Future Works ................................................................ 89 

Bibliography ........................................................................................................................... 92 

 

  



viii 
 

List of Figures 

Figure 1.1: Aircraft system identification flow chart ................................................................. 4 

Figure 2.1: Rotation from Earth axes to body axes [2] ............................................................ 13 

Figure 2.2: Relationship between body, stability and wind axes ............................................. 13 

Figure 3.1: Aircraft Long-EZ with canard configuration, © ITPS Canada Ltd. ...................... 24 

Figure 3.2: Schematics of typical inputs [46] .......................................................................... 26 

Figure 3.3: Typical flight-test program for system identification [3] ....................................... 26 

Figure 3.4: Typical frequency sweep input [4] ......................................................................... 27 

Figure 3.5: Typical 3-2-1-1 input and response [47] ................................................................ 29 

Figure 3.6: SBG, © SBG-systems. ........................................................................................... 32           

Figure 3.7: Graphtec, © Graphtec corp. ................................................................................... 32 

Figure 3.8: Input and output measurements for Long-EZ test flight ....................................... 33 

Figure 3.9: Longitudinal frequency sweep input and pitch rate response, test point one ........ 35 

Figure 3.10: Longitudinal 3-2-1-1 input and pitch rate response, test point one ..................... 35 

Figure 3.11: Lateral frequency sweep input and pitch rate response, test point two ............... 36 

Figure 3.12: Lateral 3-2-1-1 input and pitch rate response, test point two .............................. 36 

Figure 3.13: Data compatibility check in longitudinal and lateral axes ................................... 38 

Figure 4.1: Block diagram for output-error parameter estimation [2] ..................................... 39 

Figure 4.2: Block diagram of filter-error parameter estimation [2] ......................................... 40 

Figure 4.3: Block diagram for equation-error parameter estimation [2] .................................. 41 

Figure 4.4: Identified longitudinal transfer function model output compared to flight data, 

frequency sweep ............................................................................................................... 49 

Figure 4.5: Identified longitudinal transfer function model residuals, frequency sweep ......... 50 

Figure 4.6: Identified longitudinal transfer function model output compared to flight data, 3-2-

1-1 input ........................................................................................................................... 51 

Figure 4.7: Identified longitudinal transfer function model residuals, 3-2-1-1 input .............. 52 

Figure 4.8: Identified lateral transfer function model output compared to flight data, frequency 

sweep ................................................................................................................................ 55 

Figure 4.9: Identified lateral transfer function model residuals, frequency sweep .................. 56 

Figure 4.10: Identified lateral transfer function model output compared to flight data, 3-2-1-1 

input .................................................................................................................................. 56 



ix 
 

Figure 4.11: Identified lateral transfer function model residuals, 3-2-1-1 input ...................... 57 

Figure 4.12: Long-EZ baseline model compared with flight data and identified transfer function 

model in longitudinal axis ................................................................................................ 59 

Figure 5.1: Single neural network model ................................................................................. 63 

Figure 5.2: Threshold function ................................................................................................. 63 

Figure 5.3: Linear function ....................................................................................................... 63 

Figure 5.4: Nonlinear function ................................................................................................. 64 

Figure 5.5: MLP structure ........................................................................................................ 65 

Figure 5.6: MLP neural network structure for system identification ....................................... 68 

Figure 5.7: Longitudinal MLP output compared to flight data, frequency sweep ................... 70 

Figure 5.8: Longitudinal MLP output compared to flight data, 3-2-1-1 input ......................... 71 

Figure 5.9: Lateral neural network model output compared to flight data, frequency sweep . 72 

Figure 5.10: Lateral neural network model output compared to flight data, 3-2-1-1 input ..... 73 

Figure 5.11: Wiener system ...................................................................................................... 74 

Figure 5.12: Series parallel SISO neural network Wiener model ............................................ 76 

Figure 5.13: Wiener model structure for longitudinal model ................................................... 77 

Figure 5.14: Identified Wiener model compared to flight data, longitudinal frequency sweep79 

Figure 5.15: Identified Wiener model output compared to flight data, 3-2-1-1 input .............. 80 

Figure 5.16: Wiener model structure for lateral model ............................................................ 81 

Figure 5.17: Identified Wiener model output compared to flight data, lateral frequency sweep

 .......................................................................................................................................... 83 

Figure 5.18: Identified Wiener model output compared to flight data, 3-2-1-1 input .............. 84 

Figure 5.19: Long-EZ MLP model and Wiener model compared with flight data .................. 86 

Figure 5.20: RMSE and R2 of identified transfer function model, MLP, and Wiener model . 88 

 

  



x 
 

List of Tables 

Table 2.1: Long-EZ aircraft parameters ................................................................................... 19 

Table 2.2: Long-EZ baseline model parameters ....................................................................... 20 

Table 3.1: Test conditions of Long-EZ parameter identification flight .................................... 29 

Table 3.2: Typical instrumentation errors ................................................................................. 37 

Table 4.1: Identified transfer function parameters in longitudinal axis ................................... 52 

Table 4.2: Identified transfer function parameters in lateral axis ............................................. 57 

Table 4.3: RMSE and R2 of transfer function model and baseline model ............................. 60 

Table 5.1: RMSE and R2 of identified transfer function model, MLP, and Wiener model ... 88 

  



xi 
 

NOMENCLATURE 

List of Symbols 

𝑎𝑥, 𝑎𝑦, 𝑎𝑧  Accelerations along 𝑥, 𝑦, 𝑧 body axes, 𝑚/𝑠2 

𝑏 Span of the aircraft, 𝑚 

𝑐̅ Mean aerodynamic chord, 𝑚 

𝐶𝐿 , 𝐶𝐷, 𝐶𝑚 Longitudinal aerodynamic force and moment coefficients 

𝐶𝑌, 𝐶𝑙, 𝐶𝑛 Lateral directional aerodynamic force and moment coefficients 

𝐶𝐿0
, 𝐶𝐷0

, 𝐶𝑚0
 Longitudinal aerodynamic force and moment coefficients at zero 

sideslip angle 

𝐶𝑌0
, 𝐶𝑙0

, 𝐶𝑛0
 Lateral directional aerodynamic force and moment coefficients at 

zero sideslip angle 

𝐶𝐿𝛼
, 𝐶𝐷𝛼

, 𝐶𝑚𝛼
 Derivatives of longitudinal force and moment coefficients w.r.t 

angle of attack 

𝐶𝑌𝛽
, 𝐶𝑙𝛽

, 𝐶𝑛𝛽
 Derivatives of lateral directional force and moment coefficients 

w.r.t sideslip angle 

𝐶𝐿𝑞
, 𝐶𝐷𝑞

, 𝐶𝑚𝑞
 Derivatives of longitudinal force and moment coefficients w.r.t 

pitch rate 

𝐶𝑌𝑝
, 𝐶𝑙𝑝

, 𝐶𝑛𝑝
 Derivatives of lateral directional force and moment coefficients 

w.r.t roll rate 

𝐶𝑌𝑟
, 𝐶𝑙𝑟

, 𝐶𝑛𝑟
 Derivatives of lateral directional force and moment coefficients 

w.r.t yaw rate 



xii 
 

𝐶𝐿𝛿𝑒
, 𝐶𝐷𝛿𝑒

, 𝐶𝑚𝛿𝑒
 Derivatives of longitudinal force and moment coefficients w.r.t 

elevator deflection  

𝐶𝑌𝛿𝑎
, 𝐶𝑙𝛿𝑎

, 𝐶𝑛𝛿𝑎
 Derivatives of lateral directional force and moment coefficients 

w.r.t aileron deflection 

𝐶𝑌𝛿𝑎
, 𝐶𝑙𝛿𝑎

, 𝐶𝑛𝛿𝑎
 Derivatives of lateral directional force and moment coefficients 

w.r.t rudder deflection 

𝐼𝑥x, 𝐼𝑦𝑦, 𝐼zz, 𝐼𝑥z Moment of inertia about 𝑥, 𝑦, 𝑧 body axis, and product moment 

of inertia, 𝑘𝑔 𝑚2 

𝐽 Cost function 

𝑝, 𝑞, 𝑟 Roll, pitch and yaw rates respectively, 𝑟𝑎𝑑/𝑠 

𝑆 Wing planform area, 𝑚2 

𝑢, 𝑣, 𝑤 Airspeed components along 𝑥, 𝑦, 𝑧 body axis, 𝑚/𝑠 

𝑉, 𝛼, 𝛽 Airspeed, 𝑚/𝑠, Angle-of-attack, deg, Angle of sideslip, deg 

𝛿𝑎, 𝛿𝑒 , 𝛿𝑟 Aileron, elevator and rudder deflection angles, deg 

𝜙, 휃, 𝜓 Angle of roll, pitch and yaw, deg 

Θ Vector of unknown parameters 

𝜔 Frequency of interest, 𝑟𝑎𝑑/𝑠 

 

 

  



xiii 
 

Abbreviations and Acronyms 

ANN Artificial Neural Network 

ATO Approved Training Organization 

EASA European Aviation Safety Agency 

FCS Flight Control System 

HITL Hardware-in-the-Loop 

LOES Low Order Equivalent System 

MISO  Multi-Input-Single-Output 

MLP Multilayer Perceptron 

OLS Ordinary Least Squares 

OPV Optionally Piloted Vehicle 

POH Pilot Operation Handbook 

RNN Recurrent Neural Network 

RPV Remotely Piloted Vehicle 

SISO Single-Input-Single-Output 

SITL Software-in-the-Loop 

SAS Stability Augmentation system 

UAV Unmanned Aerial Vehicle 



1 
 

 Chapter 1  Introduction 

System identification is an old and well-developed discipline that has been broadly utilized 

in the engineering world. Zadeh [1] has provided a clear definition of system identification: 

System identification is the determination, based on observation of input and output, of a 

system within a specified class of systems to which the system under test is equivalent. 

System identification, simulation and control are three general problems in aircraft 

dynamics and control which are very closely linked to each other [2]. Simulation and control 

can be carried out on a computer with modern computational technologies. Moreover, more 

comprehensive data can be gathered to analyze an aircraft’s aerodynamic characteristics in 

wind-tunnel testing. However, system identification has still been intensively utilized to verify 

theoretical analysis and wind tunnel test results, and furthermore, to obtain more accurate and 

comprehensive aircraft dynamic models. These models can be more mathematically reliable so 

that at later stage, aircraft systems such as Stability Augmentation System (SAS) and Flight 

Control System (FCS), and flight simulators can be designed based on this identified model. 

System identification models   

There are different ways to classify the identified models. One way is to classify them into 

parametric models and nonparametric models. Parametric models can be expressed as state 

space equations, transfer functions, differential equations, etc. They can be linear, nonlinear, 

continuous or discontinuous, time-invariant or time-variant, deterministic or stochastic. Non-

parametric models do not require explicit specification of the system dimension, which can be 
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expressed as impulse or step responses, frequency responses, correlation functions, spectral 

densities, etc.  

In terms of parametric models, a state space representation in the time-domain is closer to 

physical reality than any of the frequency-domain transform techniques [3]. Linearized models 

are often used in the Flight Control System (FCS) design as they replicate aircraft dynamics 

very well during normal flight (excluding large and rapid maneuver scenarios) and computation 

load has been greatly reduced for simulation purposes. However, when large and rapid 

maneuvers are involved, nonlinearity also needs to be considered in the modeling process.  

For nonparametric models, frequency response has been commonly used. A frequency 

response is a data curve identified from the flight-test data that displays the ratio of the response 

per unit of control input [4]. Fourier transform has been intensively utilized in transforming the 

time-domain data into frequency domain data, which is often followed by data reduction 

techniques such as the windowing techniques to get frequency response. The identified results 

are often presented in Bode plot format, which illustrates the log-magnitude and phase vs log-

frequency on a semilog scale. This kind of models are often utilized in rotary-wing 

aircraft/UAVs system identification [4]. 

 Another way of classifying aircraft models is based on the priori knowledge about the 

aircraft. These models include White-box models, Black-box models, and Gray-box models. 

White-box models are often used in the early stage of aircraft system identification as they are 

close to phenomenological models, which are based on the basic physics principles. These 

phenomenological models are derived on the Newtonian mechanics. Therefore, the identified 

parameters often are related to physical interpretations. On the contrary, Black-box models are 
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close to behavioral models, which provide an alternative way of describing the cause-effect 

relationship. Neural network is an example of Black-box model that is capable of matching 

input-output without any specific relevance to the internal behavior of the actual process. Gray-

box models are a combination of these two models. A block-oriented approach is a good 

illustration of the Gray-box modelling. A gray-box model can be represented by a linear block 

and a nonlinear block. The linear block is similar to a White-box model, and the nonlinear block 

resembles a Black-box model in its form. Therefore, both linear characteristics corresponding 

to the Newtonian physics and nonlinear uncertainties in the system have been addressed in the 

block-oriented Gray-box model. 

System Identification Procedure 

The proposed system identification procedure in this thesis can break down into a few more 

detailed steps. Firstly, flight test plan has been designed based on a priori knowledge about the 

aircraft. Secondly, flight test instrumentations have been installed to the aircraft to record 

required flight test data. Thirdly, detailed data reduction technique has been carried out. This 

part includes data compatibility check, model structure determination, model parametrization, 

and validation. The whole proposed procedure is illustrated in Figure 1.1. 
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Figure 1.1: Aircraft system identification flow chart 

A comprehensive flight test plan is essential to a successful test flight. A flight test plan 

usually includes test objectives, scope of the test, description of test items, mission 

description/profile, test schedule, support requirements, flight clearance and operating 

limitations, instrumentation and data processing, pretest checks, risk analysis, etc. A flight test 

card can be prepared based on this fight test plan, which is convenient to carry onto the aircraft. 

The flight test card incorporates all test points to be carried out in sequence in that flight test. 

Each test point includes detailed descriptions such as test objective, speed and altitude setup 

and tolerance, aircraft configuration, test maneuvers and procedure, pilot’s comments, and data 

recording section. In this way, both the pilot and engineer will be clear about what to expect 

during the flight test. 

Flight test instrumentations have been chosen and installed to the aircraft to record input-

output data of the aircraft flight dynamics. Input variables mainly include control stick inputs: 

𝑢𝑙𝑜𝑛  on longitudinal axis and 𝑢𝑙𝑎𝑡  on lateral axis, respectively. Output variables mainly 

include Euler attitude angles  (𝜙, 휃, 𝜓) , angular velocities (𝑝, 𝑞, 𝑟, �̇�, 휃̇, �̇�) , and translational 

accelerations (𝑎𝑥, 𝑎𝑦 , 𝑎𝑧).  
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It is assumed that the measured input data is free of measurement noises and process noises.  

However, measured aircraft response data usually contains measurement noises and system 

errors. Therefore, data compatibility check is required to decide whether the flight data is 

satisfactory for analysis and modeling.  

Model structure has been determined based on the aircraft dynamics and flight test data 

available. Model structure determination means a specific form of model needs to be selected 

based on a priori knowledge about the aircraft and measured values, whether it is parametric or 

nonparametric, linear or nonlinear. Aircraft models are not unique. A good model should be 

simple enough to fit in with the measured data and complicated enough to present the aircraft’s 

characteristics with good prediction capabilities. 

For parametric models, estimation and optimization algorithms have been defined to 

parametrize the model. Currently, two most frequently used methods are equation-error method 

and output-error method. The equation-error method is based on linear regression using 

ordinary least-squares principle. The output-error method minimizes the sum of weighted 

square differences between the measured aircraft outputs and model outputs. Iterative nonlinear 

optimization techniques such as Gauss-Newton (GN) method and Levenberg-Marquard (LM) 

methods are often used to solve nonlinear equations. For nonparametric models such as neural 

network structures, learning algorithm such as backpropagation method is often used which 

requires enough training data to get ideal results. 

Finally, the identified model should have satisfactory accuracy and prediction capability. 

Another set of flight data that has not been used in the identification process has been utilized 

to validate the models. Model validation methods include residual analysis, autocorrelation 
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analysis, etc. 

1.1   Literature Review   

A comprehensive introduction of history and evolution of flight vehicle system 

identification is given by Hamel and Jategaonkar [5]. At early stage, ordinary and nonlinear 

least squares method were utilized by Milliken [6] in 1947. With the development of digital 

computers, Ljung [7] has explicitly explained MATLAB as a system identification tool. In 

addition, more attention has been paid to flight test and large maneuvers to explore the boundary 

of the aircraft dynamics. Klein [8] and Klein and Murphy [9] addressed the problem of highly 

maneuverable modern aircraft system identification. Recent studies [10] [11] [12] have also 

stressed on rotary-wing and fixed-wing UAVs as testbeds. Liu et al [13] did online parameter 

identification based on small fixed-wing UAV with recursive techniques which can be applied 

to real-time onboard data validation. Abdulhamid et al [14] has also studied modeling and 

identification methods based on UAV platform.  

Currently, system identification methods can be classified to three categories: output error 

method (maximum likelihood method) [15] [16] [17] [18] [19] [20], filter error method [21] 

[22] [23] [24], and equation error method (least-squares method) [25] [13] [18]. Both time-

domain and frequency-domain analyses are applicable to these categories of identification 

methods. Klein et al [2], Jategaonkar [3], and Tischler et al [4] specially aimed at aircraft system 

identification. Klein et al [2] provided several explicit examples, such as 1) NASA twin otter 

yawing moment coefficient estimation using linear regression and output error method with 

time-domain and frequency-domain data respectively; 2) F-16XL parameter estimation based 
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on Schroeder sweep forced oscillation data from water tunnel; and 3) Tu-144LL with Low-

Order Equivalent System (LOES) model derived from 2-1-1 maneuver. Jategaonkar [3] focused 

on time-domain system identification. Meanwhile, Tischler et al [4] put the emphasis on the 

identification of rotorcraft XV-15 with frequency-domain data using CIFER. 

With the development of artificial intelligence, modern system identification methods have 

also greatly evolved towards using neural network to identify nonlinearity in the system [26] 

[27] [28] [29] [30]. Deboeck and Kohonen [31] described Neural Networks (NNs) as a 

collection of mathematical techniques that can be used for signal processing, forecasting and 

clustering and termed it as non-linear, multi-layered, parallel regression techniques [27]. In 

1943, McCulloch and Pitts [32] proposed first mathematical model of the neurons and showed 

how neuron-like networks can be computed. In 1949, the first set of ideas of learning in neural 

networks was contained in Hebb’s book The Organization of Behaviour [33]. In 1962, 

Rosenblatt [34] invented a class of simple neuron-like learning networks called perceptron 

neural network. In 1969, Minsky and Papert [35] proved that single layer perception has its 

limitations in learning and presenting abilities which caused researchers to develop symbolic 

AI methods and systems. In 1974, Werbos [36] presented the Backpropagation (BP) method 

which has been widely used in NN studies since. From 1977 onwards, Multilayer Perceptron 

(MLP) has been introduced. Furthermore, Hopfield [37] invented Recursive Neural Network 

(RNN) with feedback structure which resembles the state space model representations in 1982. 

In 1988, Radial Basis Function (RBF) neural networks were addressed, which have drawn lots 

of attention due to its simple network structure and good generalization ability.  
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Moreover, block-oriented approach is another interesting field being explored. Janczak [26] 

has explicitly studied block-oriented approach for system identification, and different Wiener 

models and Hammerstein models with neural network and polynomial as the nonlinear static 

part have been intensively studied. Wang and Chen [38] have proposed a Hammerstein-wiener 

recurrent neural network model, where a unique structure of two nonlinear recurrent neural 

network components with linear state space dynamic model in the middle has been studied.   

1.2   Research Motivation  

Currently, most studies on aircraft system identification are based on UAV testbeds. 

However, fixed-wing aircrafts are less studied compared to rotary-wing aircraft, rotary-wing 

UAVs, and even fixed-wing UAVs as a research testbed due to the following reasons: 

Firstly, more rotary-wing UAVs have been researched in the lab environment than fixed-

wing UAVs or fixed-wing aircraft in general. Rotary-wing UAVs tests can be conveniently 

conducted in a lab environment, whereas fixed-wing UAVs and aircrafts flight tests are more 

susceptible to space requirements, higher flight test instrumentation costs, aircraft availability, 

pilot availability, weather conditions, etc., which make the fixed-wing testbeds more costly in 

the long run.  

Secondly, test flights for fixed wing aircrafts need to be carried out in higher altitude 

condition, in which case the gust wind interference is not controllable. On the contrary, UAV 

(especially rotary-wings) test flights happen at lower altitude or indoor environment with milder 

test environment and less interference. In this case, some of the flight data for fixed-wing 

aircraft may not be ideal for analysis due to noises and interferences. Only those data that passes 
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data compatibility check can be utilized for the modeling, which greatly reduces the data 

available for modelling and analysis.  

Thirdly, most rotary-wing system identification uses frequency sweep as their flight test 

maneuver and frequency-domain method for data analysis. Frequency sweep is very commonly 

used in the frequency-domain system identification, which has already been elaborated by 

Tischler [4]. Commercial software such as CIFER also provides very good reference to verify 

the identification results in frequency domain. The flight test maneuvers for fixed-wing 

aircraft/UAVs can be more versatile, and proper flight test instrumentation for the fixed-wing 

aircraft is required to record the data for analysis.  

The Long-EZ aircraft studied in this research is a canard-configured fixed-wing aircraft. 

ITPS Canada Ltd. intends to modify this aircraft to an Optionally Piloted Vehicle (OPV). As 

part of the project, a mathematical model of the aircraft is required for software-in-the-loop 

modeling before carrying out the autonomous flight. Therefore, system identification for 

mathematical modelling has become the foundation of this project which is essential to the 

flight tests safety in the future.  

1.3   Contributions of This Thesis 

The main contributions of this thesis can be summed up as follows: 

1. Baseline aircraft model structure of the Long-EZ aircraft has been determined. Stability 

and control derivatives from this baseline model have been calculated with Roskam’s 

[39] method. Empirical data from a Cessena 172p model (which shares similar size and 

dynamics with Long-EZ) has been used as reference. This baseline model is essential to 
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the software-in-the-loop simulations, which will identify potential risks in the flight 

dynamics of the modified aircraft system in a low-cost and timely manner. 

2. Based on the flight test instrumentations available at ITPS, system identification flight 

test has been planned and carried out to get sufficient data for modeling. Based on this 

experience, improved flight tests can be planned in the future to improve the baseline 

model. 

3. Linear transfer function model structures have been determined with the physics of the 

aircraft. Model parameters have been identified on both longitudinal and lateral axes 

using time-domain method, and have been compared with baseline model and flight 

data. This linearized transfer function model can be utilized in the future for flight 

controller design of the Long-EZ aircraft.  

4. Nonlinear Artificial Neural Network (ANN) and block-oriented neural network Wiener 

model structure have been designed. Python codes have been developed and fine-tuned 

for both structures. The neural networks have been trained with both longitudinal and 

lateral flight data and compared with the linear model.  

All the contributions above have shed some light on the future works that require to be done 

in the future at ITPS. Various models have been developed for the Long-EZ aircraft, and the 

model responses have been compared. The linear transfer function and the neural network 

Wiener model can be used in the future flight controller design for the aircraft. The baseline 

model parameters can be further improved when air data is available from the testbed, which 

gives more precise simulation results.  
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1.4   Thesis Layout 

Chapter 1 consists of a system identification introduction, a literature review, and research 

motivation and main contributions of this research. Chapter 2 introduces detailed aircraft 

dynamics, which forms the physical basis for modeling the baseline model. Chapter 3 describes 

the aircraft Long-EZ details as the testbed, the a priori knowledge about the aircraft and detailed 

flight test plan and results for this study. Chapter 4 introduces the equation error method, and 

the reason of choosing it out of the three methods for system identification. Moreover, it gives 

details on how the transfer function model structures have been determined and how the model 

parameters have been identified. Chapter 5 presents a developed multilayer perceptron neural 

network, and a block-oriented model consisting of a linear part and a nonlinear part, which is 

also known as neural network Wiener model, and the comparison among the linear, nonlinear 

and block-oriented Wiener model. Chapter 6 is the conclusion of this study and an extension to 

future works.  
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 Chapter 2  Aircraft Dynamics and Modelling 

2.1   Aircraft Equations of Motion 

When describing aircraft flight dynamics, several different reference frames have been 

utilized to describe aircraft’s coordinate systems. The definitions are summed up as follows.  

Inertia axes: Newton’s laws apply in an inertia reference frame. Its origin is fixed or moving 

with a constant velocity. 

Earth axes 𝑂𝑥𝐸𝑦𝐸𝑧𝐸
: The origin is at an arbitrary point on the earth surface with positive 

𝑂𝑥𝐸
 axis pointing toward the geographic north, 𝑂𝑦𝐸

 pointing to the east, and 𝑂𝑧𝐸
 pointing to 

the center of the earth. The earth axes are assumed to be inertial axes. 

Body axes 𝑂𝑥𝑦𝑧: The origin is at the aircraft C.G., with positive 𝑂𝑥 axis pointing forward 

through the nose of the aircraft, 𝑂𝑦 pointing out the right wing, 𝑂𝑧 pointing downwards. The 

𝑂𝑥𝑧 plane is usually the plane of symmetry of the aircraft.  

Stability axes 𝑂𝑥𝑆𝑦𝑆𝑧𝑆
 : 𝑂𝑥𝑆

  is aligned with the direction of the velocity of the aircraft 

projected to the 𝑂𝑥𝑧 plane.  

Wind axes 𝑂𝑥𝑊𝑦𝑊𝑧𝑊
: Positive 𝑂𝑥𝑊

 is aligned with the air-relative velocity vector, 𝑂𝑦𝑊
 

axis is out the right side of the aircraft, 𝑂𝑧𝑊
 axis is through the underside in the 𝑂𝑥𝑧 plane.  

Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a 

rigid body with respect to a fixed coordinate system. The angular differences between the body 

axes and earth axes are denoted as Euler angles (ϕ, 휃, 𝜓), which are illustrated in Figure 2.1. 

Angle of attack (AOA, or 𝛼) is the angle between the angle of an aircraft’s body and wings 

relative to its actual flight path. Sideslip angle (𝛽) is the angle between the direction an aircraft 
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is pointing and the actual flight path. The relationship of body axes, stability axes, wind axes, 

angle of attack and sideslip angle is presented in Figure 2.2. 

 

Figure 2.1: Rotation from Earth axes to body axes [2] 

 

Figure 2.2: Relationship between body, stability and wind axes 

The reference frames in this research are right handed and with mutually orthogonal axes. 

Angular velocities, applied moments, and control surface deflections all follow the right-hand 

rule. Positive control surface deflections normally have a negative impact on the aerodynamic 

moment on the aircraft. For example, the positive canard deflection is trailing edge up. Positive 

aileron deflection is defined as: 

          𝛿𝑎 =
1

2
(𝛿𝑎𝑅

− 𝛿𝑎𝐿
)               (2.1)  

Positive rudder deflection is trailing edge left.  

𝛿𝑟 =
1

2
(𝛿𝑟𝑅

− 𝛿𝑟𝐿
)        (2.2) 

There are a few assumptions about the aircraft: 1) The aircraft is a rigid body with fixed 
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mass and mass distribution, aircraft C.G. is at the center of mass. 2) Aircraft is symmetric in the 

𝑂𝑥𝑧 plane. 3) Wind and gust are not taken into consideration. 4) Earth is fixed in inertial space; 

flight is so close to the earth surface that the surface is considered flat. 

The transformation of coordinate system from one to each other is required to simplify the 

calculation. Relative orientation of body coordinate system to inertial coordinate system is 

described by three sequential rotations and end up in the following form:  

𝑇𝐵𝐼 = [
1 0 0
0 cos 𝜙 sin 𝜙
0 − sin 𝜙 cos 𝜙

] [
cos 휃 0 − sin 휃

0 1 0
sin 휃 0 cos 휃

] [
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

] 

= [

cos 휃 cos 𝜓 cos 휃 sin 𝜓 − sin 휃
sin 𝜙 sin 휃 cos 𝜓 − cos 𝜙 sin 𝜓 sin 𝜙 sin 휃 sin 𝜓 + cos 𝜙 cos 𝜓 sin 𝜙 cos 휃
cos 𝜙 sin 휃 cos 𝜓 + sin 𝜙 sin 𝜓 cos 𝜙 sin 휃 sin 𝜓 − sin 𝜙 cos 𝜓 cos 𝜙 cos 휃

] 

(2.3) 

where (ϕ, 휃, 𝜓) are the Euler attitude angles between the earth axes and body axes. 

From body to stability coordinate system: 

𝑇𝐵𝑆 = [
cos 𝛼 0 sin 𝛼

0 1 0
− sin 𝛼 0 cos 𝛼

]       (2.4) 

where 𝛼 is the angle of attack (AOA). 

From stability to wind coordinate system: 

𝑇𝑆𝑊 = [
cos 𝛽 sin 𝛽 0

− sin 𝛽 cos 𝛽 0
0 0 1

]       (2.5) 

where 𝛽 is the sideslip angle. 

According to Newton’s second law, aircraft’s translational and rotational motions can be 

described as: 

        𝐹 =
𝑑

𝑑𝑡
(𝑚𝑉) = 𝑚�̇� + 𝜔 ×  𝑚𝑉            (2.6) 
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𝑀 =
𝑑

𝑑𝑡
(𝐼𝜔) = 𝐼�̇� + 𝜔 ×  𝐼𝜔         (2.7) 

where 𝐹 is the applied force, 𝑚 is the mass, V is the translational velocity, 𝑀 is the applied 

moment about the C.G., 𝜔 is the angular velocity, and 𝐼 is the inertia matrix, which break 

down to three body axes with the following notations: 

𝐹 = [
𝑋
𝑌
𝑍

]    𝐹𝐴 = �̅�𝑆 [
𝐶𝑋

𝐶𝑌

𝐶𝑍

]    𝑉 = [
𝑢
𝑣
𝑤

]      (2.8) 

𝑀 = [
𝑙

𝑚
𝑛

] = �̅�𝑆 [

𝑏𝐶𝑙

𝑐̅𝐶𝑚

𝑐̅𝐶𝑛

]     𝐼 = [

𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧

]    𝜔 = [
𝑝
𝑞
𝑟

]   (2.9) 

 Forces acting on an aircraft consist of aerodynamic force 𝐹𝐴, gravity 𝑚𝑔 and propulsion 

𝑇. But the gravity is not causing any moments as it is applied thorough the C.G. Forces and 

moments acting on the aircraft can be further broken down to three body axes [2]. Equations of 

motion to an aircraft can be represented as follows: 

Forces equations in body axis [2]: 

𝑋 = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣) = �̅�𝑆𝐶𝑋 − 𝑚𝑔 sin 휃 + 𝑇          (2.10) 

𝑌 = 𝑚(�̇� + 𝑟𝑢 − 𝑝𝑤) = �̅�𝑆𝐶𝑌 + 𝑚𝑔 cos 휃 sin 𝜙     (2.11) 

𝑍 = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢) = �̅�𝑆𝐶𝑍 + 𝑚𝑔 cos 휃 cos 𝜙    (2.12) 

Force equations in wind axis: 

𝐷 = �̅�𝑆𝐶𝐷 = �̅�𝑆(−𝐶𝑋 cos 𝛼 + 𝐶𝑍 sin 𝛼)     (2.13) 

𝐿 = �̅�𝑆𝐶𝐿 = �̅�𝑆(−𝐶𝑍 cos 𝛼 + 𝐶𝑋 sin 𝛼)     (2.14) 

where 𝐷 and 𝐿 are drag and lift. 

Moment equations [2]:  

                       𝑙 = �̅�𝑆𝑏𝐶𝑙 = 𝐼𝑥𝑥�̇� + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 − 𝐼𝑥𝑧(𝑝𝑞 + �̇�)    (2.15) 
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                    𝑚 = �̅�𝑆𝑐̅𝐶𝑚 + 𝐼𝑝Ω𝑝𝑟 = 𝐼𝑦𝑦�̇� + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟 + 𝐼𝑥𝑧(𝑝2 − 𝑟2)    (2.16) 

               𝑛 = �̅�𝑆𝑐̅𝐶𝑛 − 𝐼𝑝Ω𝑝𝑞 = 𝐼𝑧𝑧�̇� + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 + 𝐼𝑥𝑧(𝑞𝑟 − �̇�)      (2.17) 

where 𝐼𝑝 is the inertia of rotating mass from aircraft propulsion system, and Ω𝑝 is the angular 

velocity. The term 𝐼𝑝Ω𝑝 will be zero when the angular velocity of the mass is constant.  

Translational kinematics [2]:  

�̇� = 𝑟𝑣 − 𝑞𝑤 +
�̅�𝑆

𝑚
𝐶𝑋 − 𝑔 sin 휃 +

𝑇

𝑚
                (2.18) 

�̇� = 𝑝𝑤 − 𝑟𝑢 +
�̅�𝑆

𝑚
𝐶𝑌 + 𝑔 cos 휃 sin 𝜙     (2.19) 

�̇� = 𝑞𝑢 − 𝑝𝑣 +
�̅�𝑆

𝑚
𝐶𝑍 + 𝑔 cos 휃 cos 𝜙        (2.20) 

Rotational kinematics [2]:  

�̇� = 𝑝 + 𝑡𝑎𝑛 휃 (𝑞 𝑠𝑖𝑛 𝜙 + 𝑟 𝑐𝑜𝑠 𝜙)     (2.21) 

휃̇ = 𝑞 𝑐𝑜𝑠 𝜙 − 𝑟 𝑠𝑖𝑛 𝜙        (2.22) 

�̇� =
𝑞 𝑠𝑖𝑛 𝜙+𝑟 𝑐𝑜𝑠 𝜙

𝑐𝑜𝑠 𝜃
         (2.23) 

Or,  

𝑝 = �̇� − 𝑠𝑖𝑛 휃 �̇�          (2.24) 

𝑞 = 𝑐𝑜𝑠 𝜙 휃̇ + 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 휃 �̇�       (2.25) 

𝑟 = 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 휃 �̇� − 𝑠𝑖𝑛 𝜙 휃̇        (2.26) 

2.2   Long-EZ Baseline Model 

Stevens et al [40] summed up typical aerodynamic component buildup equations and gave 

the structure of the aerodynamic model as follows in body axis: 

𝐶𝑋 = 𝐶𝑋0
(𝛼) + 𝐶𝑋𝑞

(𝛼)
𝑞𝑐̅

2𝑉
+ 𝐶𝑋𝛿𝑒

(𝛼)𝛿𝑒       (2.27) 

𝐶𝑍 = 𝐶𝑍0
(𝛼) + 𝐶𝑍𝑞

(𝛼)
𝑞𝑐̅

2𝑉
+ 𝐶𝑍𝛿𝑒

(𝛼)𝛿𝑒       (2.28) 
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𝐶𝑚 = 𝐶𝑚0
(𝛼) + 𝐶𝑚𝑞

(𝛼)
𝑞𝑐̅

2𝑉
+ 𝐶𝑚𝛿𝑒

(𝛼)𝛿𝑒       (2.29) 

𝐶𝑌 = 𝐶𝑌0
(𝛼) + 𝐶𝑌𝛽

(𝛼)𝛽 + 𝐶𝑌𝑝
(𝛼)

𝑏

2𝑉
𝑝 + 𝐶𝑌𝑟

(𝛼)
𝑏

2𝑉
𝑟 + 𝐶𝑌𝛿𝑎

(𝛼)𝛿𝑎 + 𝐶𝑌𝛿𝑟
(𝛼)𝛿𝑟 (2.30) 

𝐶𝑙 = 𝐶𝑙0
(𝛼) + 𝐶𝑙𝛽

(𝛼)𝛽 + 𝐶𝑙𝑝
(𝛼)

𝑝𝑏

2𝑉
+ 𝐶𝑙𝑟

(𝛼)
𝑟𝑏

2𝑉
+ 𝐶𝑙𝛿𝑎

(𝛼)𝛿𝑎 + 𝐶𝑙𝛿𝑟
(𝛼)𝛿𝑟  (2.31) 

𝐶𝑛 = 𝐶𝑛0
(𝛼) + 𝐶𝑛𝛽

(𝛼)𝛽 + 𝐶𝑛𝑝
(𝛼)

𝑝𝑏

2𝑉
+ 𝐶𝑛𝑟

(𝛼)
𝑟𝑏

2𝑉
+ 𝐶𝑛𝛿𝑎

(𝛼)𝛿𝑎 + 𝐶𝑛𝛿𝑟
(𝛼)𝛿𝑟  (2.32) 

Taking the lift coefficient dependence on angle of attack and pitch rate in wind axis as an 

example, the Taylor series expansion can be written as:  

 𝐶𝐿 = 𝐶𝐿0
+

𝜕𝐶𝐿

𝜕𝛼
∆𝛼 +

𝜕𝐶𝐿

𝜕𝑞
𝑞 +

1

2
[

𝜕2𝐶𝐿

𝜕𝛼2
(∆𝛼)2 + 2

𝜕2𝐶𝐿

𝜕𝛼𝜕𝑞
∆𝛼 𝑞 +

𝜕2𝐶𝐿

𝜕𝑞2 𝑞2] + ⋯     

        = 𝐶𝐿0
+ 𝐶𝐿𝛼

∆𝛼 + 𝐶𝐿𝑞

𝑞𝑐̅

2𝑉0
+

1

2
[𝐶𝐿

𝛼2
(∆𝛼)2 + 2𝐶𝐿𝛼𝑞

(∆𝛼 
𝑞𝑐̅

2𝑉0
) + 𝐶𝐿

𝑞2 (
𝑞𝑐̅

2𝑉0
)2] + ⋯  (2.33) 

For large-amplitude maneuvers and flight at high angle of attack such as spin, flight near 

stall, polynomial approximation could be inadequate and nonlinear models must be used. 

Solutions are to add more terms to the model or identify separate models for partitions to the 

independent variable space, and the latter is easier to solve several smaller subproblems instead 

of having a very complicated model structure.  

Several common tools for non-linear system identification include: polynomials, splines, 

multi-variable orthogonal model, multipoint method, and Artificial Neural Network (ANN). 

ANN will be discussed as nonlinear system identification method in later chapters.     

For linearization purposes, there are a few assumptions about the equations: firstly, the 

airspeed does not affect aerodynamic coefficients for subsonic flight. Secondly, �̇� 

contributions to the longitudinal lift and pitch moment coefficients are included in the 𝑞 terms. 

Small disturbance theory can be applied to the nonlinear equations of motion. Each variable is 

assumed to be composed of two parts – a constant component associated with the steady 
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reference condition, and a perturbation associated with the linear model [2]. Wind axes are used 

for the force equations and body axes are used for the moment equations. Steady values for 

each variable are denoted by subscript 𝑜, and perturbations are denoted by the prefix ∆. For 

steady, straight, wings-level symmetric flight with no sideslip at a reference condition, and 

constant power setting: 

𝛽0 = 𝑝0 = 𝑞0 = 𝑟0 = 𝜙0 = Δ𝑇 = 0 

To make the Long-EZ aircraft autonomous, the autopilot requires to be tested in a software-

in-the-loop simulation environment, where the linearized baseline model simulated in the 

JSBSim can be represented as [41]: 

𝐶𝑎 = 휃0 +  ∑ 휃𝑗𝑥𝑗
𝑛−1
𝑗=1         (2.34) 

where 𝐶𝑎 is the aerodynamic coefficient, 휃0 and 휃𝑗 are the parameters to be identified, 𝑥𝑗 

includes both input and output variables. 

Aircraft’s longitudinal dynamics can be modeled as: 

𝐶𝐿 = −𝐶𝑍 𝑐𝑜𝑠 𝛼 + 𝐶𝑋 𝑠𝑖𝑛 𝛼 = −
𝑚𝑎𝑧

�̅�𝑆
𝑐𝑜𝑠 𝛼 +

(𝑚𝑎𝑥−𝑇)

�̅�𝑆
𝑠𝑖𝑛 𝛼 = 𝐶𝐿0

+ 𝐶𝐿𝛼
∆𝛼 + 𝐶𝐿𝑞

𝑞𝑐̅

2𝑉
+

           𝐶𝐿𝛿𝑒
∆𝛿𝑒                    (2.35) 

𝐶𝐷 = −𝐶𝑋 𝑐𝑜𝑠 𝛼 − 𝐶𝑍 𝑠𝑖𝑛 𝛼 = −
(𝑚𝑎𝑥−𝑇)

�̅�𝑆
𝑐𝑜𝑠 𝛼 −

𝑚𝑎𝑧

�̅�𝑆
𝑠𝑖𝑛 𝛼 = 𝐶𝐷0

+ 𝐶𝐷𝛼
∆𝛼 + 𝐶𝐷𝑞

𝑞𝑐̅

2𝑉
+

           𝐶𝐷𝛿𝑒
∆𝛿𝑒                    (2.36) 

𝐶𝑚 =
1

�̅�𝑆𝑐̅
[𝐼𝑦𝑦�̇� + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟 + 𝐼𝑥𝑧(𝑝2 − 𝑟2)] = 𝐶𝑚0

+ 𝐶𝑚𝛼
∆𝛼 + 𝐶𝑚𝑞

𝑞𝑐̅

2𝑉
+ 𝐶𝑚𝛿𝑒

∆𝛿𝑒   

                         (2.37) 

where 𝛿𝑒 represents the deflection of canard, which is the only longitudinal control surface of 

this aircraft. 

Lateral dynamics can be represented as: 
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𝐶𝑌 =
𝑚𝑎𝑦

q̅S
= 𝐶𝑌0

+ 𝐶𝑌𝛽
𝛽 + 𝐶𝑌𝑝

𝑏

2𝑉
𝑝 + 𝐶𝑌𝑟

𝑏

2𝑉
𝑟 + 𝐶𝑌𝛿𝑎

𝛿𝑎 + 𝐶𝑌𝛿𝑟
𝛿𝑟     (2.38) 

𝐶𝑙  =
1

�̅�𝑆𝑏
[𝐼𝑥𝑥�̇� + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 − 𝐼𝑥𝑧(𝑝𝑞 + �̇�)] = 𝐶𝑙0

+ 𝐶𝑙𝛽
𝛽 + 𝐶𝑙𝑝

𝑝𝑏

2𝑉
+ 𝐶𝑙𝑟

𝑟𝑏

2𝑉
+ 𝐶𝑙𝛿𝑎

𝛿𝑎 +

          𝐶𝑙𝛿𝑟
𝛿𝑟                      (2.39) 

𝐶𝑛 =
1

�̅�𝑆𝑏
[𝐼𝑧𝑧�̇� + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 + 𝐼𝑥𝑧(𝑞𝑟 − �̇�) = 𝐶𝑛0

+ 𝐶𝑛𝛽
𝛽 + 𝐶𝑛𝑝

𝑝𝑏

2𝑉
+ 𝐶𝑛𝑟

𝑟𝑏

2𝑉
+ 𝐶𝑛𝛿𝑎

𝛿𝑎 +

          𝐶𝑛𝛿𝑟
𝛿𝑟                  (2.40) 

where most of the aerodynamic coefficients have been calculated with Roskam’s method [39] 

and they have been summed up in  

Table 2.2. In terms of the other coefficients such as the control derivatives which cannot be 

calculated with this method, Cessna 172p’s values have been taken as reference [42]. Aircraft’s 

moments of inertia have been calculated with OpenVSP [43] software based on Long-EZ’s 3D 

dimensions, which is also validated with two empirical functions. The baseline model has been 

tested various times in JSBSim. 

Table 2.1: Long-EZ aircraft parameters 

Parameter Symbol Value 

Aircraft gross weight m 650.5 

Reference wing span b 9.9 

Reference wing area S 9.511 

Mean aerodynamic chord 𝑐̅ 1.411 

Roll moment of inertia 𝐼𝑥𝑥 487.67 

Pitch moment of inertia 𝐼𝑦𝑦 535.58 

Yaw moment of inertia 𝐼𝑧𝑧 981.69 

Product moment of inertia 𝐼𝑥𝑧 12.75 

C.G. location 𝑥𝑐𝑔 2.78 
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Table 2.2: Long-EZ baseline model parameters 

𝐶𝐿0
 0.3632 𝐶𝑌𝑟

 -0.3022 

𝐶𝐿𝛼
 0.1093 𝐶𝑌𝛿𝑟

 1.04 

𝐶𝐿𝑞
 1.102 𝐶𝑙𝛽

 -0.001965 

𝐶𝐿𝛿𝑒
 0.1074 𝐶𝑙𝑝

 -4.5 

𝐶𝐷0
 0.01315 𝐶𝑙𝑟

 0.4399 

𝐶𝐷𝛼
 0.0036 𝐶𝑙𝛿𝑎

 2.4 

𝐶𝑚0
 0.6 𝐶𝑙𝛿𝑟

 0.0349 

𝐶𝑚𝛼
 -0.1 𝐶𝑛𝛽

 0.001 

𝐶𝑚𝑞
 -3.0 𝐶𝑛𝑝

 -0.098 

𝐶𝑚𝛿𝑒
 1.1 𝐶𝑛𝑟

 0.014 

𝐶𝑌𝛽
 -0.506 𝐶𝑛𝛿𝑎

 -0.01521 

𝐶𝑌𝑝
 -0.0242 𝐶𝑛𝛿𝑟

 -0.437 

In terms of the baseline model, its derivatives have been calculated with empirical functions 

largely based on the dimensions of the aircraft which need to be validated with flight data. This 

part has been presented briefly in Chapter 4. However, with no air data available at this stage, 

the stability and control derivatives calculated based on aircraft dimensions in the baseline 

model pertaining to these terms may not be very accurate. The baseline linear model is a good 

foundation to build upon, which could be improved in the future with air data recordings 

available for the aircraft Long-EZ. 

Linear aircraft models can conform well with the aircraft response at a smooth flight 

condition. However, when flying at high angle of attack or high-G maneuvers, the linear models 

may not be sufficient to present aircraft dynamics. Therefore, nonlinear aircraft models are 
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required to improve the accuracy of predicting aircraft maneuverability. In many practical 

applications, the aerodynamic models for large amplitudes or rapid excursions from reference 

flight conditions need to add nonlinear terms. In this thesis, a block-oriented model consisting 

of linear term and nonlinear term has been studied, which has been explained in Chapter 5.  
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 Chapter 3  Flight Test Design 

Flight testing the piloted and unmanned aerial vehicles is an interdisciplinary process that 

involves many expertise in different branches such as aerospace engineering, electric 

engineering, and mechanical engineering. Aerospace engineers are normally responsible for the 

aerodynamics, stability and control of the specific vehicle configuration. Electric engineers are 

helpful in developing the appropriate instrumentation, evaluating the feedback control loops, 

and electronics subsystems. Mechanical engineers are specialized in designing mechanical, 

hydraulic and pneumatic subsystems.  

The main purposes of flight testing can be summed up as three-fold: determining the actual 

characteristics of the machine, providing developmental information, and obtaining research 

information [44]. The most common way of flight tests classification is associated with the 

stage of development, such as Developmental Test and Evaluation (DT&E) and Operational 

Test and Evaluation (OT&E). 

The factors that need to be considered in test planning are safety, cost and schedule. Flight 

testing always comes with risks. However, the risks can be greatly reduced by proper risk 

management. Moreover, flight test instrumentation is one of the most costly areas. Adequate 

instrumentation should be installed to the aircraft to collect data. Flight test schedule should be 

carefully planned to improve efficiency. 

Risk management needs to be embedded in the flight plan. All the risks and their 

probabilities, and mitigation methods have been intensively studied to reduce risks to the 

minimum level.  
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The following aspects have been defined for the flight test of Long-EZ: which physical 

quantities will be measured, how are they going be measured, what the test conditions will be, 

and how the aircraft is going to be excited. Based on these questions, flight test instrumentations 

have been specified, flight test condition and aircraft configurations have been determined, and 

flight maneuvers and inputs have been designed for system identification purpose.  

3.1   Aircraft Description 

The Long-EZ is a lightweight, home-built experimental class aircraft designed by Rutan 

Aircraft Factory (RAF), Inc. and features the latest advances in aerodynamics and structure. It’s 

equipped with the Lycoming O-235 (108hp) engine and has an alternator powered electrical 

system. The canard configuration was designed for improved performance, flying qualities, and 

safety compared to conventional light plane. Modern airfoils have been used: modified Eppler 

1230 airfoil is used for the main wing, and GU25-5(11)8 is used for the canard. The high-lift 

canard wing has full-span flaps which double as elevator and landing flap [45]. NASA 

developed winglet system is applied to the aircraft to offset the wingtip vortex and reduce 

induced drag. It has a reversible type mechanical flight control system with push rods for canard 

and aileron, and cables for rudders (independent ones). Cockpit adjustable trim is provided for 

pitch and roll only. Pitch and roll trim tabs are not used. There is a pitch trim lever on the side 

of the left armrest which is redundant from pitch control, similar to the roll trim mechanism 

with trim handle located on the right console [45]. 
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Figure 3.1: Aircraft Long-EZ with canard configuration, © ITPS Canada Ltd. 

It’s cockpit layout is designed to reduce pilot workload with throttle, mixture, carb heat, 

pitch trim and landing controls on the left side console and a side stick controller on the right 

console [45]. The inboard portion of wing strakes can be utilized as storage area, which 

alleviates the situation of a compact cockpit. According to the owner of this aircraft, the empty 

weight of the aircraft is around 927lb, and the max gross takeoff weight is 1325lb, and can reach 

1425lb under certain conditions. The fuel system consists of two individually selected wing 

tanks, each with 26-gallon capacity.  

3.2   Optimal Input Design 

Aircraft dynamics can be excited by applying control pulse, step, multistep, or harmonic 

inputs (Figure 3.2). Flight test maneuvers for system identification purpose include short period 

maneuver, phugoid maneuver, pushover-pull-up, level turn, thrust variation, bank-to-bank roll, 

Dutch roll maneuver, and steady heading steady sideslip [3].  
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Short period maneuvers can be excited with doublet, 2-1-1 and 3-2-1-1 inputs. The natural 

frequency of the aircraft 𝑓𝑛 determines the input duration ∆𝑡 which has been explained below. 

The phugoid mode will be excited with speed variation around trim point and trust variation. 

Level turn maneuver starts at a wings level flight by smoothly banking the aircraft to 30, 45, 60 

deg bank at a rate of 10 deg/s, holding the bank attitude for 5 seconds, and then rolling to the 

opposite direction, holding for 5 seconds, and then return to wings-level again, resulting an S-

type flight path. Longer-duration doublet throttle input can be performed to determine the 

dynamic effects due to thrust variation on the longitudinal motion. Bank-to-bank roll and Dutch 

roll maneuvers are necessary to get lateral-directional derivatives. Bank-to-bank is performed 

by starting from a level flight, applying a sharp aileron input, holding till at least 30-deg bank 

and followed by rapid bank input to the opposite side, and then returning to wings-level 

conditions. This test will be repeated with increasing bank angles 30, 45 and 60. The Dutch roll 

mode of the basic aircraft is usually lightly damped and will be excited with rudder doublet 

inputs. Steady Heading Steady Sideslip (SHSS) provides information on the directional stability, 

lateral-directional control and cross coupling effects. SHSS is started from a horizontal level 

flight by applying pedal input and opposite aileron to maintain constant heading for about 10-

15 s. The same procedure will be repeated in the other direction of side slipping. 
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Figure 3.2: Schematics of typical inputs [46]  

Apart from choosing appropriate maneuver inputs, a variety of different flight test 

conditions (altitude and speed) are required to form a test matrix. An example has been shown 

in Figure 3.3. 

 

Figure 3.3: Typical flight-test program for system identification [3] 

At current stage, there is no system available to record the air data for Long-EZ aircraft, 

therefore, it is not feasible to get complete stability and control derivatives at this stage to 

validate the baseline model in Chapter 2. However, frequency sweep and 3-2-1-1 input have 
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been designed for parameter identification test flight with a range of different test conditions. 

Only two maneuvers have been chosen considering the flight endurance. The flight test data 

will still be a valuable source to validate the baseline model.   

Frequency sweep 

Frequency sweep is a series of sinusoidal inputs in one axis with gradually increased 

frequency to excite the aircraft’s primary oscillation mode. It has been planned in this system 

identification flight for pilot to get a feeling of the aircraft Long-EZ’s natural frequency, which 

will be utilized as a basis to design the short-period test maneuver inputs. A typical example of 

frequency input has been presented in Figure 3.4.  

 

Figure 3.4: Typical frequency sweep input [4]  

 The frequency sweep maneuver has many advantages in system identification. The 

excitation spectral content has a very uniform distribution across the desired frequency range. 

Therefore, the frequency-sweep input delivers accurate and reliable identification results 

without the requirement of a priori knowledge about the aircraft. A good frequency sweep 

maneuver usually starts and ends at a trimmed condition. The response time-history is roughly 
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symmetrical, with deviations in input and output generally symmetrical around a trimmed point. 

However, frequency sweeps are more time-consuming compared with optimal inputs such as 

the 3-2-1-1 input.  

3-2-1-1 input 

3-2-1-1 is a series of alternating inputs with widths in the ratio 3-2-1-1. The time step ∆𝑡 is 

chosen so that the natural frequency of the mode being excited lies in the center or in the upper 

third of the input spectrum: 

∆𝑡3211 ≈
1

4𝑓𝑛
         (3.12) 

or: 

∆𝑡3211 ≈
1

3𝑓𝑛
         (3.13) 

3-2-1-1 inputs are easy to implement in flight as long as there is a preliminary knowledge 

of the aircraft’s natural frequency. 3-2-1-1 can be repeated, with one starting by pulling the 

aircraft and the second time by pushing the stick.  

The minor aspects of 3-2-1-1 inputs are: firstly, it is asymmetric about the trimmed 

condition. There are four steps in one direction and three steps in the other direction. Secondly, 

the first input has larger duration, which leads to deviation from trimmed point before the 

following steps. However, these effects can be minimized by modifying the amplitudes of the 

3-2-1-1 inputs. Another method is to repeat the 3-2-1-1 but start from the opposite direction. 

Another variation of 3-2-1-1 is the 1-1-2-3 which has the same power spectrum but starts with 

the higher frequency which prevents the vehicle from going too far away from the trimmed 

condition. A typical 3-2-1-1 input and response has been presented in Figure 3.5. 
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Figure 3.5: Typical 3-2-1-1 input and response [47] 

Different test conditions have been chosen for the Long-EZ parameter identification flight. 

According to flight test plan, maneuvers speeds have been set at 120kts, 115kts, 110kts, 105kts 

and minimum trim speed, and maneuver altitudes have been set at 8000ft and 5000ft 

respectively. Each maneuver starts at a trimmed condition with clean configuration. Frequency 

sweeps on longitudinal and lateral axes have been carried out and followed by three times of 3-

2-1-1 inputs for each test point. The flight test conditions have been listed in Table 3.1.  

Table 3.1: Test conditions of Long-EZ parameter identification flight 

Test Point Maneuvers 𝑉𝑡𝑟𝑖𝑚 

(KIAS) 

Altitude 

(ft) 

1 Frequency sweep and 3-2-1-1 on 

longitudinal axis 

116 8000 

2 Frequency sweep and 3-2-1-1 on 116 8000 
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lateral axis 

3 Frequency sweep and 3-2-1-1 on 

longitudinal axis 

110 8000 

4 Frequency sweep and 3-2-1-1 on 

lateral axis 

110 8000 

5 Frequency sweep and 3-2-1-1 on 

longitudinal axis 

105 8000 

6 Frequency sweep and 3-2-1-1 on 

lateral axis 

105 8000 

7 Frequency sweep and 3-2-1-1 on 

longitudinal axis 

Minimum trim 

speed 

8000 

8 Frequency sweep and 3-2-1-1 on 

lateral axis 

Minimum trim 

speed 

8000 

9 Frequency sweep and 3-2-1-1 on 

longitudinal axis 

120 5000 

10 Frequency sweep and 3-2-1-1 on 

lateral axis 

120 5000 

3.3   Flight Test Instrumentation 

The accuracy of measured data has a direct impact on the result of parameter identification. 

The following variables need to be measured to build aircraft models: control surface 

deflections, linear and angular rates and accelerations, attitude angles, air data are required to 
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get stability and control derivatives of the aircraft.  

Accurate air-relative velocity data include angle of attack (𝛼 ), sideslip angle (𝛽 ), and 

airspeed (𝑉), which are the most difficult to obtain. These quantities are easily influenced by 

the local flows about the aircraft. At current stage, this kind of sensor is not available to the 

aircraft Long-EZ. Therefore, air data is not available at current stage. 

Aircraft angular velocity components are usually measured using rate gyros attached to the 

aircraft and aligned with body axes. In theory, the location of these sensors can be anywhere on 

the aircraft because angular rates are the same at any point of a rigid body.  

Translational accelerometers should be located near aircraft’s C.G. and aligned with the 

body axes. The main negative aspect of these sensors is that their frequency response is very 

excellent so that they also pick up structural responses and engine vibrations, which makes the 

signals quite noisy.  

Rotational acceleration. This kind of sensors are not common, but they are useful of 

providing additional information content to the data for output-error modeling. This data can 

be extracted from numerical differentiation of rate gyros information. 

Euler angles are usually measured using integrating gyros or magnetometers. Euler angles 

are less important in aircraft system identification because the aerodynamic forces and moments 

do not depend on aircraft orientation relative to earth axes. However, they are useful in data 

compatibility analysis. 

Sensors that measure control surface deflections and pilot control deflections are typically 

some type of potentiometer, which produce a voltage proportional to rotational or linear motion. 

These sensors are reliable and have low noise level.  
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Due to the availability of the current flight test instrumentation at ITPS, the flight test 

instrumentations being used in this project include SBG sensor and Graphtec with string pods, 

which have been installed in the backseat area near the C.G. of the aircraft.  

SBG sensor (Figure 3.6) includes a MEMS-based Inertial Measurement Unit (IMU) 

integrating three gyroscopes, three accelerometers, and three magnetometers. It runs an 

enhanced Extended Kalman Filter (EKF) which fuses inertial data with Global Navigation 

Satellite System (GNSS), Odometer, and Differential GPS (DGPS) information for excellent 

orientation and navigation data in the most challenging environments. It records aircraft 

response such as Euler attitude angles (𝜙, 휃, Ψ ), translational accelerations (𝑎𝑥, 𝑎𝑦, 𝑎𝑧 ) and 

(�̇�,  �̇�,  ẇ), body-axis angular velocities (𝑝, 𝑞, 𝑟) and (�̇�,  휃̇,  �̇�). 

String pods have been used to measure control inputs 𝑢𝑙𝑜𝑛  and 𝑢𝑙𝑎𝑡 , which have been 

recorded real-time by Graphtec (Figure 3.7). The variables being measured during the flight 

test have been summed up in Figure 3.8. 

                           

Figure 3.6: SBG, © SBG-systems          Figure 3.7: Graphtec, © Graphtec corp. 
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Figure 3.8: Input and output measurements for Long-EZ test flight 

Ideally, all the measured signals should be sampled at the same constant rate for 

convenience purpose. But it is also acceptable for the measured quantities to be sampled at 

different sampling rates due to instrumentation limitations. In this case, the high sampling rate 

data need to be reduced to match the low sampling rate data so that all data is converted to the 

same sampling rate before analysis. A good rule of thumb for selecting the sampling rate 𝑓𝑠 is  

𝑓𝑠 = 25𝑓𝑚𝑎𝑥         (3.14) 

 For many aircraft, the frequencies of the rigid-body dynamic modes are below 2Hz, which 

puts the ideal sampling rate 𝑓𝑠 at 50Hz. In our case, the SBG has 50Hz sampling rate, but the 

Graphtec only has 20Hz. Therefore, the data from SBG and Graphtec must be reduced to the 

same sampling rate for data analysis, which has been introduced later. 

3.4   Flight Test Results 

The flight data of test point one and test point two has been presented from 
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Figure 3.9 to Figure 3.12. Aircraft test altitude was at 8000 feet (ft) and airspeed was at 116 

knots (kts), and flight maneuvers were frequency sweep and 3-2-1-1 input on longitudinal and 

lateral axes respectively. The longitudinal frequency sweep has a total length of 2 mins with 

broad frequency from low to high (0.9 - 5 rad/s) covered by pilot. The lateral frequency sweep 

has a total length of 100 seconds also with broad frequency ranged covered (0.6 - 5.6 rad/s). 

Figure 3.10 shows a spike in the input signal around 303 s, which is a noise in the voltage signal 

that should be filtered out.   
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Figure 3.9: Longitudinal frequency sweep input and pitch rate response, test point one 

 

Figure 3.10: Longitudinal 3-2-1-1 input and pitch rate response, test point one 
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Figure 3.11: Lateral frequency sweep input and pitch rate response, test point two 

 

Figure 3.12: Lateral 3-2-1-1 input and pitch rate response, test point two 
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3.5   Data Compatibility Check 

Data compatibility check between measured accelerations, rates, and positions associated 

with the translational and rotational motion about the C.G. is required before further data 

analysis, to ensure the reliability of the produced model. The kinematic relationship among the 

measured quantities has been used to check that the measurements are mutually consistent.  

Translational kinematics and rotational kinematics have been introduced in the second 

chapter from equation (2.24) and (2.25), and they are presented below again for convenience:  

𝑝 = �̇� − 𝑠𝑖𝑛 휃 �̇� 

𝑞 = 𝑐𝑜𝑠 𝜙 휃̇ + 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 휃 �̇� 

A list of typical instrumentation errors that can affect the quality of recorded flight data 

have been presented in Table 3.2. 

Table 3.2: Typical instrumentation errors 

Sensor Variable Bias error Scale factor error 

Translational accelerometer 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 X -- 

Rate gyro 𝑝, 𝑞, 𝑟 X -- 

Airflow angle vane 𝛼, 𝛽 X X 

Dynamic pressure sensor 𝑉 X X 

Integrating gyro 𝜙, 휃, 𝜓 X X 

The data from four frequency sweep test points has been used to present the compatibility 

check results on both longitudinal and lateral axes, which have been presented in Figure 3.13. 

As showed in Figure 3.13, lateral data compatibility checks for test point 1 (longitudinal) and 
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test point 2 (lateral) are in general satisfactory. However, there is a lack of coherence between 

2.02 − 2.04 × 104  sample section on the longitudinal frequency sweep. Possible reasons 

could be: 1) aircraft is experiencing gust wind interference, 2) there is sensor error during that 

period of time, 3) some dynamic mode of the aircraft has been excited, and 4) there is some 

periodical noise on the aircraft. 

The data in general has good coherence. Since this longitudinal test point is the only data 

available at this stage, they will be utilized in this thesis for system identification in Chapter 4 

and Chapter 5. In the later stage where more data is available, more consistent data can be used 

to get a better model. 

 

 

Figure 3.13: Data compatibility check in longitudinal and lateral axes  



39 
 

 Chapter 4  Equation Error Method 

4.1   Introduction 

The system identification methods can be classified into three categories: output error 

method, filter error method, and equation error method. 

Output error method assumes that process noises are negligible, and measurements are 

corrupted by measurement noises only, which is the most widely applied time-domain method 

to estimate aircraft parameters from flight data [2].  

 

Figure 4.1: Block diagram for output-error parameter estimation [2] 

Filter error method accounts for both process and measurement noises. The maximum 

likelihood estimator includes a Kalman filter updating the states and filtering out noises. When 

there is turbulence, the output error method won’t yield very satisfactory results. Besides, they 

generally lead to a faster convergence rate as they are less sensitive to stochastic disturbances. 

The filter error method can be applied to aircraft system identification because the aircraft data 

has been taken at a certain sampling rate, which are a series of discrete numbers.  
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Figure 4.2: Block diagram of filter-error parameter estimation [2] 

Least-squares estimation is one of the oldest estimation theories with broad engineering 

applications. The Least-Squares (LS) technique, also known as regression analysis, belongs to 

the equation-error methods as they minimize a cost function defined directly from input-output 

equation. Classical Ordinary Least-Squares (OLS) method assumes that independent variables 

are error free and noise free, and dependent variables are corrupted by uniformly distributed 

noise, it is based on Fisher model [3]. 

The basic principle of least-squares method is to minimize the sum of squares of the errors 

between the measurements and model response. The estimates can be obtained by applying 

matrix algebra in a one-shot computational procedure, which has great advantages in its 

mathematical simplicity. Nonlinear models can also be solved with the same principle but with 

iterative procedures. 

There are significant advantages of using linear regression methods for modeling aircraft 

aerodynamics based on flight data. The whole modeling of the aircraft can break down into a 

series of small equations that can deal with one problem at a time. Linear regression estimation 
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is relatively simple, and the linear model can be used to test unstable aircraft that must be tested 

with an automatic feedback control system. Moreover, it is simpler to analyze large-amplitude 

maneuvers through a series of linear models, to judge individual parameters through stepwise 

regression, and to apply to unstable aircraft.  

Besides, linear regression model parameters are usually stability and control derivatives 

that multiply aircraft states or controls to form the baseline model of Long-EZ as presented in 

Chapter 2. 

 

Figure 4.3: Block diagram for equation-error parameter estimation [2] 

Depending on the residuals are linear or non-linear, the least-squares can be divided to two 

categories: ordinary least-squares and nonlinear least-squares. The linear least-squares 

technique has its mathematical simplicity. Estimates can be obtained by applying matrix algebra 

in a one-shot computational procedure [3]. However, nonlinear least-squares problems can be 

solved only iteratively. 

The linear equations of measurements can be presented as follows [2]: 

𝑧 = 𝑋휃 + 𝑣         (4.1) 

where 𝑧 is 𝑁 × 1 vector of measurements, 휃 is a vector of unknown constant parameters, 
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and 𝑣  is a random vector of measurement noises. 𝑋  is a matrix of vectors of ones and 

regressors. 

There are three different models for the uncertainties in the parameters and measurements: 

Bayesian model, Fisher model, and least-squares model. Probability density is involved in the 

first two models. For least-squares models, no uncertainty models for 휃 and 𝑣 are used, but 

𝑣 is assumed to be zero mean and uncorrelated, and with constant variance [2].  

𝐸(𝑣) = 0           𝐸(𝑣𝑣𝑇) = 𝜎2𝐼      (4.2) 

The cost function of ordinary least-squares estimator can be represented as [2]: 

𝐽(휃) =
1

2
(𝑧 − 𝑋휃)𝑇(𝑧 − 𝑋휃)       (4.3) 

For the entire measured data 𝑧(𝑖), 𝑖 = 1, 2, … , 𝑁,  the ordinary least-squares estimator is 

obtained by minimizing the cost function [2]: 

𝐽(휃) =
1

2
∑ [𝑧(𝑖) − 𝑋(𝑖)휃]2𝑁

𝑖=1        (4.4) 

The estimated parameter 휃̂ can be obtained by minimizing the cost function [2]: 

𝜕𝐽

𝜕𝜃
= −𝑋𝑇𝑧 + 𝑋𝑇𝑋휃̂ = 0       (4.5) 

therefore,  

휃̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑧        (4.6) 

Define the matrix 𝒟 as [2]: 

𝒟 ≡ (𝑋𝑇𝑋)−1 = [𝑑𝑗𝑘]     𝑗, 𝑘 = 1, 2, … , 𝑛𝑝     (4.7) 

The variance of the 𝑗 th estimated parameter in the parameter vector 휃̂  is the 𝑗 th diagonal 

element of the covariance matrix [2]: 

Var(휃̂𝑗) = 𝜎2𝑑𝑗𝑗 ≡ 𝑠2(휃̂𝑗)   𝑗 = 1, 2, … , 𝑛𝑝     (4.8) 

And the covariance between two estimated parameters 휃̂𝑗 and 휃̂𝑘 is [2]: 
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Cov(휃̂𝑗 , 휃̂𝑘) = 𝜎2𝑑𝑗𝑘   𝑗, 𝑘 = 1, 2, … , 𝑛𝑝     (4.9) 

The correlation coefficient can be represented as [2]: 

𝑟𝑗𝑘 ≡
𝑑𝑗𝑘

√𝑑𝑗𝑗𝑑𝑗𝑘

=
Cov(휃̂𝑗 , 휃̂𝑘)

√Var(휃̂𝑗)Var(휃̂𝑘)

  𝑗, 𝑘 = 1, 2, … , 𝑛𝑝 

−1 ≤ 𝑟𝑗𝑘 ≪ 1   𝑗, 𝑘 = 1, 2, … , 𝑛𝑝       (4.10) 

The residual 𝑣(𝑖) is defined as the difference between measured output 𝑧(𝑖) and the estimated 

output �̂�(𝑖) [2]: 

    𝑣(𝑖) = 𝑧(𝑖) − �̂�(𝑖) = 𝑧(𝑖) − 𝑋(𝑖)휃̂                𝑖 = 1, 2, … , 𝑁 (4.11) 

or, in the vector form: 

𝑣 = [𝐼 − 𝑋(𝑋𝑇𝑋)−1𝑋𝑇]𝑧        (4.12) 

The whiteness of the residual can be checked with the autocorrelation function of the residuals 

[2]: 

ℛ̂𝑣𝑣(𝑘) =
1

𝑁
∑ 𝑣(𝑖)𝑣(𝑖 + 𝑘)𝑁−𝑘

𝑖=1            𝑘 = 0, 1, 2, … , 𝑁 − 1 (4.13) 

When the residuals are completely uncorrelated, ℛ̂𝑣𝑣(𝑘) = 0, 𝑘 ≠ 0. However, in practice, the 

ℛ̂𝑣𝑣(𝑘) values are never exactly zero even with an adequate model, instead, it will vary slightly 

around zero.  

The non-linear least-squares model was formulated as [2]: 

𝑧 = ℎ(휃) + 𝑣         (4.14) 

or  

𝑧(𝑖) = 𝑓[𝑥(𝑖), 휃] + 𝑣(𝑖)                𝑖 = 1, 2, … , 𝑁   (4.15) 

The least-squares estimator can be obtained by minimizing the sum of squared errors [2]: 

𝐽(휃) =
1

2
∑ {𝑧(𝑖) − 𝑓[𝑥(𝑖), 휃]}2𝑁

𝑖=1        (4.16) 
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The minimum of the preceding cost function is found by satisfying the normal equations [2]: 

𝜕𝐽

𝜕𝜃
|𝜃=�̂� = − ∑ {𝑧(𝑖) − 𝑓[𝑥(𝑖), 휃̂]}

𝜕𝑓[𝑥(𝑖),𝜃]

𝜕𝜃
|𝜃=�̂�

𝑁
𝑖=1 = 0   (4.17) 

where 𝜕𝐽/ 𝜕휃 is a row vector containing the partial derivatives of the nonlinear scalar function 

𝐽(휃)  with respect to the elements of 휃 , and 𝜕𝑓[𝑥(𝑖), 휃]/𝜕휃  is a row vector of output 

sensitivities to change in the model parameters. It is a set of nonlinear algebraic equations. This 

means that 휃̂  cannot be obtained by simplex algebra. Instead, an iterative nonlinear 

optimization technique must be used.  

Gauss-Newton method 

The Gauss-Newton method of nonlinear optimization belongs to a class of second-order 

algorithms and is one of the most widely applied methods in flight vehicle system identification 

in the time-domain [3]. It is a modified method based on the Newton method, which is also 

known as the Newton-Raphson method.  

Minimizing the likelihood function with respect to unknown parameters is given by [3]: 

𝜕𝐽(Θ)

𝜕Θ
= 0         (4.18) 

The Taylor-series expansion of the 𝜕𝐽(Θ)/𝜕Θ about the 𝑖th value is given by [3]: 

(
𝜕𝐽

𝜕Θ
)

𝑖+1
≈ (

𝜕𝐽

𝜕Θ
)

𝑖
+ (

𝜕2𝐽

𝜕Θ2)
𝑖

ΔΘ             (4.19) 

where ΔΘ = Θ𝑖+1 − Θ𝑖 is the parameter change and (𝜕2𝐽/𝜕Θ2)𝑖 is the second gradient of the 

cost function with respect to Θ at the 𝑖th iteration. The term ΔΘ can be solved by equating 

the right-hand side of (4.19) to zero [3]: 

ΔΘ = − [(
𝜕2𝐽

𝜕Θ2)
𝑖
]

−1

(
𝜕𝐽

𝜕Θ
)

𝑖
        (4.20) 

The preceding change in Θ  on the (𝑖 + 1) th iteration makes local (𝜕𝐽/𝜕Θ )𝑖+1 
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approximately zero [3]. Therefore, starting from an initial guess value of Θ0, Θ𝑖+1 = Θ𝑖 + ΔΘ 

provides an iterative solution to find the minimum of a function, which is known as the Newton-

Raphson method [48].  

In the case of flight data, the residual covariance matrix can be determined with [3]:  

𝑅 =
1

𝑁
∑ [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)][𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑇𝑁

𝑘=1     (4.21) 

with the cost function being in the form of [3]: 

𝐽(Θ) =
1

2
∑ [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑇𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑁

𝑘=1     (4.22) 

the partial differentiation of Eq. (4.23) gives [3]: 

𝜕𝐽

𝜕Θ
= − ∑ [

𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇

𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑁
𝑘=1      (4.23) 

the partial differentiation of Eq. (4.23) with respect to Θ gives [3]: 

𝜕2𝐽

𝜕Θ2 = ∑ [
𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇

𝑅−1 [
𝜕𝑦(𝑡𝑘)

𝜕Θ
] − ∑ [

𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇

𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑁
𝑘=1

𝑁
𝑘=1  (4.24) 

The residual term [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)] tends to cancel out when summed over a sufficient period 

of time, because the noise is assumed to be zero mean and independent [3]. Therefore, the above 

equation can be simplified as [49]: 

𝜕2𝐽

𝜕Θ2 ≈ ∑ [
𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇

𝑅−1 [
𝜕𝑦(𝑡𝑘)

𝜕Θ
]𝑁

𝑘=1       (4.25) 

The advantage of this simplification is that it greatly reduces the computational burden but 

keeps the rapid, quadratic convergence.  

The quasi-linearization [50] method, which is a first-order approximation, can be expressed 

as: 

𝑦(Θ) = 𝑦(Θ0 + ∆Θ) ≈ 𝑦(Θ0) +
𝜕𝑦

𝜕Θ
∆Θ      (4.26) 

When applied with Eq. (4.24), Gauss-Newton and quasi-linearization methods lead to a 
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system of linear equations, the former equation turns into [3]: 

∑ [
𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇

𝑅−1 [
𝜕𝑦(𝑡𝑘)

𝜕Θ
] ∆Θ = ∑ [

𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇

𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑁
𝑘=1

𝑁
𝑘=1   (4.27) 

which can be represented as [3]: 

Θ𝑖+1 = Θ𝑖 + ΔΘ, and ℱΔΘ = −𝒢      (4.28) 

where 𝑖 is the iteration index, and ℱ and 𝒢 are given by [3]: 

ℱ = ∑ [
𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇
𝑁
𝑘=1 𝑅−1 [

𝜕𝑦(𝑡𝑘)

𝜕Θ
]      (4.29) 

𝒢 = − ∑ [
𝜕𝑦(𝑡𝑘)

𝜕Θ
]

𝑇
𝑁
𝑘=1 𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]    (4.30) 

ℱ is the information matrix and 𝒢 is the gradient vector, and ΔΘ is the parameter change 

vector. Therefore, the measurement noise covariance matrix 𝑅 can be firstly computed using 

Eq. (4.22), and then the Gauss-Newton method can be used to update the parameters by using 

Eqs. (4.29-4.31), which can be solved by any standard algorithm from linear algebra. 

4.2   Transfer Function Model Identification 

According to the principle of parsimony [51]: 

Given two models fitted to the same data with nearly equal residual variances, choose the 

model with the fewest parameters. 

The transfer function models are a very useful intermediate result in the overall flight-

mechanics because they contain the least possible number of parameters that will characterize 

the system response [4]. With this principle in mind, the transfer functions have been 

streamlined to have least parameters but still gives satisfactory results. 
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4.2.1 Longitudinal model 

As for longitudinal axis, there are a few assumptions being made about model structure. 

Firstly, the denominator of the transfer function consists of a pair of conjugate roots 

representing short period mode [휁𝑠𝑝 , 𝜔𝑠𝑝]  and another pair of conjugate roots representing 

phugoid mode [휁𝑝ℎ, 𝜔𝑝ℎ ]. The flight control linkage system from pilot’s stick input to the 

control surface deflection is represented by 1/(𝜏1𝑠 + 1) , where 𝜏1  is an unknown time 

constant. Secondly, the numerator consists of two zeros represented by −1/𝑇𝜃1
 and −1/𝑇𝜃2

. 

Thirdly, constant thrust has been maintained within the same test point, and the aircraft state 

does not deviate too much from its trimmed position. Therefore, the pitch rate transfer function 

full model can be represented as a fifth-order system: 

𝑞

𝑢𝑙𝑜𝑛
=

𝐾(𝑠+1/𝑇𝜃1)(𝑠+1/𝑇𝜃2)

(𝑠2+2𝜁𝑠𝑝𝜔𝑠𝑝𝑠+𝜔𝑠𝑝
2 )(𝑠2+2𝜁𝑝ℎ𝜔𝑝ℎ𝑠+𝜔𝑝ℎ

2 )(𝜏1𝑠+1)
   (4.31) 

In order to minimize the unknown parameters to be identified with MATLAB but still 

remain good model quality, the model order has been reduced from fifth order to third order 

with the phugoid component being eliminated from the model. Moreover, the flight maneuvers 

have been mainly focused on exciting the short-period dynamics. The phugoid mode has not 

been excited with proper maneuvers. Therefore, a simplified third-order system that mainly 

represents the system’s short period dynamics has been generated below.  

𝑞

𝑢𝑙𝑜𝑛
=

𝐾(𝑠+1/𝑇𝜃1)(𝑠+1/𝑇𝜃2)

(𝑠2+2𝜁𝑠𝑝𝜔𝑠𝑝𝑠+𝜔𝑠𝑝
2 )(𝜏1𝑠+1)

     (4.32) 

Parameter identification and model validation are integral parts of system identification. 

The various aspects of model validation can be broadly classified into three subcategories: 1) 

statistical properties of the estimates, 2) residual analysis, 3) model predictive quality, which 
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provide clues into the effectiveness of model parameters. These subcategories can further break 

down to following criteria: 1) Standard deviations of the parameter estimates, 2) Correlation 

coefficients among the estimates, 3) Goodness of fit, 4) Statistical analysis of residuals, 5) 

Model deficiencies in terms of residual control inputs, 6) Plausibility of estimates, and 7) Model 

predictive capability. 

Longitudinal transfer function model parameters have been identified using MATLAB’s 

system identification toolbox. Gauss-Newton method has been chosen as the iteration method. 

The identified longitudinal model response has been compared with flight data. Lower 

frequency sweep input-response from 0 to 70 sec, higher frequency sweep input-response from 

70 sec to 130 sec, 3-2-1-1 input-response, and model residuals have been presented respectively 

from Figure 4.4 to Figure 4.7, and the model parameters have been summed up in Table 4.1. 
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Figure 4.4: Identified longitudinal transfer function model output compared to flight data, 

frequency sweep 
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Figure 4.5: Identified longitudinal transfer function model residuals, frequency sweep 
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Figure 4.6: Identified longitudinal transfer function model output compared to flight data, 3-2-

1-1 input 
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Figure 4.7: Identified longitudinal transfer function model residuals, 3-2-1-1 input 

Table 4.1: Identified transfer function parameters in longitudinal axis 

K -24900 

𝑻𝜽𝟏
 0.837 

𝑻𝜽𝟐
 0.247 

𝜻𝒔𝒑 0.463 

𝝎𝒔𝒑 4.91 rad/s 

𝝉𝟏 0.0138 

The identified longitudinal model has been presented below: 

𝑞

𝑢𝑙𝑜𝑛
=

−24900 𝑠2 − 130500 𝑠 − 120400

𝑠3 + 76.8 𝑠2 + 352.7 𝑠 + 1743
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4.2.2 Lateral model 

As for lateral axis, a complete transfer function model structure includes roll mode, spiral 

model and Dutch roll mode. The flight control system from pilot’s stick input to the control 

surface deflection is represented by 1/(𝜏2𝑠 + 1), 𝜏2 is an unknown time constant.  

𝑝

𝑢𝑙𝑎𝑡
=

𝐿𝛿𝑎(𝑠2+2𝜁𝜙𝜔𝜙𝑠+𝜔𝜙
2 )

(𝑠+1/𝑇𝑟)(𝑠+1/𝑇𝑠)(𝑠2+2𝜁𝑑𝑟𝜔𝑑𝑟𝑠+𝜔𝑑𝑟
2 )(𝜏2𝑠+1)

   (4.33) 

where 𝑇𝑟 is roll mode time constant and the inverse of the roll damping stability derivative 

(1/𝑇𝑟 = −𝐿𝑝 ), 𝑇𝑠  is spiral mode time constant, 𝐿𝛿𝑎
  is the aileron roll-control sensitivity, 

[휁𝜙 , 𝜔𝜙] are complex zeros that determines the appearance of the Dutch-roll model in the roll 

response. [휁𝑑𝑟 , 𝜔𝑑𝑟] is the Dutch-roll complex mode [4].  

In order to reduce the parameters to be estimated, the model order has been reduced from 

fifth to third order with the roll mode and spiral mode being eliminated from the transfer 

function structure. The reduced order transfer function in lateral axis in terms of the stick input 

𝑢 and the roll rate 𝑝 can be simplified as follows: 

𝑝

𝑢𝑙𝑎𝑡
=

𝐿𝛿𝑎(𝑠2+2𝜁𝜙𝜔𝜙𝑠+𝜔𝜙
2 )

(𝑠2+2𝜁𝑑𝑟𝜔𝑑𝑟𝑠+𝜔𝑑𝑟
2 )(𝜏2𝑠+1)

     (4.34) 

Longitudinal transfer function model parameters have been identified using MATLAB’s 

system identification toolbox. Gauss-Newton method has been chosen as the iteration method. 

The identified lateral model has also been compared with flight data. Lower frequency sweep 

input-response from 0 to 75 sec, higher frequency sweep input-response from 75 sec to 100 sec, 

3-2-1-1 input-response, and model residuals have been presented respectively from Figure 4.8 

to Figure 4.11, and the identified parameters have been summed up in Table 4.2. 
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Figure 4.8: Identified lateral transfer function model output compared to flight data, frequency 

sweep 
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Figure 4.9: Identified lateral transfer function model residuals, frequency sweep 

 

 

Figure 4.10: Identified lateral transfer function model output compared to flight data, 3-2-1-1 

input 
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Figure 4.11: Identified lateral transfer function model residuals, 3-2-1-1 input 

Table 4.2: Identified transfer function parameters in lateral axis 

𝑳𝜹𝒂
 66360 

𝜻𝝓 0.206 

𝝎𝝓 2.762 

𝜻𝒅𝒓 0.159 
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𝝎𝒅𝒓 3.08 rad/s 

𝝉𝟐 0.00281 

The identified transfer function has been presented below: 

𝑝

𝑢𝑙𝑎𝑡
=

66360 𝑠2 + 75400 𝑠 + 506200

𝑠3 + 356.8 𝑠2 + 358.4 𝑠 + 3375
 

The baseline model for longitudinal axis generated in Chapter 2 has been compared with 

flight data and transfer function model in Figure 4.12. From this graph, it is concluded that the 

longitudinal baseline model still needs to be improved in terms of amplitude prediction. 

However, the baseline model phase matches well with flight data. 

 

 



59 
 

 

Figure 4.12: Long-EZ baseline model compared with flight data and identified transfer 

function model in longitudinal axis 

4.3   Analysis and Discussion 

One metric to quantify the accuracy of the model prediction �̂�(𝑖) to the flight data 𝑧(𝑖) is 

to use the coefficient of determination 𝑅2, which is related to the total sum of squares 𝑆𝑆𝑇, the 

regression sum of squares 𝑆𝑆𝑅 , and the residual sum of squares 𝑆𝑆𝐸 . They are defined as 

follows [2]: 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸         (4.35) 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
        (4.36) 

where 

𝑆𝑆𝑇 ≡ ∑ [𝑧(𝑖) − 𝑧̅]2𝑁
𝑖=1 = 𝑧𝑇𝑧 − 𝑁𝑧̅2     (4.37) 

𝑧̅ =
1

𝑁
∑ 𝑧(𝑖)𝑁

𝑖=1           (4.38) 

𝑆𝑆𝑅 ≡ ∑ [�̂�(𝑖) − 𝑧̅]2𝑁
𝑖=1         (4.39) 

𝑆𝑆𝐸 ≡ ∑ [𝑧(𝑖) − �̂�(𝑖)]2𝑁
𝑖=1 = (𝑧 − 𝑋휃̂)

𝑇
(𝑧 − 𝑋휃̂)  (4.40) 

= 𝑧𝑇𝑧 − 휃̂𝑇 𝑋𝑇𝑧 
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Value of 𝑅2 varies from 0 to 1, where 1 represents a perfect fit to the data.  

Root Mean Square Error (RMSE) is another measure of accuracy. A value of 0 indicates 

perfect fit to the data. Therefore, a lower RMSE value is better than a higher one. Both the 𝑅2 

and RMSE values of the identified transfer function models have been presented in Table 4.3, 

which shows that the accuracy of identified transfer function models for both pitch and roll 

dynamics is satisfactory in general.  

However, the baseline model accuracy still needs improvement compared to the transfer 

function model. As has been discussed in Chapter 2, the baseline model has been calculated 

based on the empirical functions and aircraft dimensions, which needs to be further improved 

when the air data recording system is available for the aircraft Long-EZ. 

Table 4.3: RMSE and 𝑅2 of transfer function model and baseline model 

 RMSE  𝑅2  

Longitudinal TF 1.0048 0.7322 

Lateral TF 1.8395 0.9354 

Baseline longitudinal 2.9763 0.6301 

Figure 4.4 to Figure 4.11 show that longitudinal model residual is between ±1 deg/s for 

most of the low to middle frequencies (below 4.71 rad/s), and model residual increases to 

±2 deg/s when the frequency increases above 4.71 rad/s, which is very close to the natural 

frequency of Long-EZ’s short period mode (𝜔𝑠𝑝 = 4.91 rad/s).  

Lateral model residual is within ±1 deg/s in the low frequency (below 3.14 rad/s), and 

within ±2 deg/s  in the middle frequency range when frequency increases to around 
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3.14 rad/s, this result matches the identified Dutch roll mode frequency, 𝜔𝑑𝑟 = 3.08 rad/s. 

The lateral model accuracy decreases when the aircraft’s Dutch roll mode has been excited.  

The autocorrelation function of the residuals is presented in Eq. (4.14). When the residuals 

are completely uncorrelated, ℛ̂𝑣𝑣(𝑘) values will vary slightly around zero, as is demonstrated 

from Figure 4.4 to Figure 4.11. 

Figure 4.12 shows the Long-EZ baseline model validated with flight data and compared 

with the identified transfer function model. The baseline model has good predictability in 

middle to high frequency range (above 3.14 rad/s) in terms of its amplitude. However, the 

model tends to generate higher value during low frequency, which is obvious in the 3-2-1-1 

input response. Moreover, the phase delay in the baseline model also needs to be addressed in 

the future. 

The results for the longitudinal and lateral transfer functions have been presented in the 

following equations: 

𝑞

𝑢𝑙𝑜𝑛
=

−24900 𝑠2 − 130500 𝑠 − 120400

𝑠3 + 76.8 𝑠2 + 352.7 𝑠 + 1743
 

𝑝

𝑢𝑙𝑎𝑡
=

66360 𝑠2 + 75400 𝑠 + 506200

𝑠3 + 356.8 𝑠2 + 358.4 𝑠 + 3375
 

The parametric system identification gives a Newtonian physics meaning to the identified 

model. From the figures, it is concluded that the identified transfer function models have good 

predictability of the aircraft dynamics, especially in the low to middle frequency range. The 

short period mode and Dutch roll mode have been identified with the longitudinal and lateral 

transfer functions respectively, which are valuable references for future flight test design.  
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 Chapter 5  Artificial Neural Network   

5.1   Introduction 

Artificial neural Network (ANN) is a network of small processing units or nodes jointed to 

each other by weighted connections. Artificial neural networks are usually defined by type of 

neuron (nodes), connectionist architecture, learning algorithm, and recall algorithm. The input 

and output nodes (neurons or processing elements) are at large fixed. However, the nodes in the 

hidden layer may vary in numbers and structure. The processing elements in the hidden layer 

consist of sigmoidal functions, which provide approximation capabilities to the ANN. The 

output layer elements can be linear or nonlinear. Three commonly used networks in system 

identification are: Feedforward Neural Network (FNN), Recurrent Neural Network (RNN), and 

Radial Basis Function (RBF) neural network.  

FNN normally consists of an input layer, one or two hidden layers, and an output layer. 

FNN processes information in only one direction, which makes it the simplest of the neural 

networks. FNNs are the most powerful and most popular neural networks for nonlinear 

regression [27]. Multilayer feedforward neural network, also referred to as Multilayer 

Perceptron (MLP), is the most widely known and used neural network [28]. MLP is a 

feedforward neural network with one or more hidden layers of nonlinear elements, but one 

hidden layer is the most common choice in practice [26]. MLP has many advantages such as 

high approximation accuracy, lower numbers of nodes and weights, wide variety of functions, 

and does not suffer from oscillatory interpolation and extrapolation. However, it also has some 

drawbacks such as the use of local optimization methods to update the weights, and risk of 
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getting trapped in a shallow local minimum [26].   

For a single neural network, the algorithm of single neural network can be described as: 

𝑁𝑒𝑡𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗𝑗 + 𝑠𝑖 − 휃𝑖      (5.1) 

𝑢𝑖 = 𝑓(𝑁𝑒𝑡𝑖)         (5.2) 

𝑦𝑖 = 𝑔(𝑢𝑖) = ℎ(𝑁𝑒𝑡𝑖)       (5.3) 

where 𝑔(𝑢𝑖) = 𝑢𝑖, 𝑦𝑖 = 𝑓(𝑁𝑒𝑡𝑖).  

The single neural network structure has been illustrated in Figure 5.1. 

 

Figure 5.1: Single neural network model 

Common activation functions 𝑓(𝑁𝑒𝑡𝑖)  include: threshold value, linear function, and 

nonlinear function, which have been presented in the figures below. 

 

Figure 5.2: Threshold function 

 

Figure 5.3: Linear function 
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Figure 5.4: Nonlinear function 

A feed-forward neural network is shown in Figure 5.5, the input of hidden layer is: 

𝑥𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑖          (5.7) 

where 𝑤𝑖𝑗 is the 𝑗th weight of the 𝑖th neuron. 

Output of hidden layer is: 

𝑥′
𝑗 = 𝑓(𝑥𝑗) =

1

1+𝑒
−𝑥𝑗

        (5.8) 

Output of output layer is: 

𝑦𝑜(𝑘) = ∑ 𝑤𝑗𝑜𝑥′
𝑗𝑗         (5.9) 

The approximation error is: 

𝑒(𝑘) = 𝑦(𝑘) − 𝑦𝑛(𝑘)       (5.10) 

The error index function is designed as: 

𝐸 =
1

2
𝑒(𝑘)2          (5.11) 
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Figure 5.5: MLP structure 

Learning algorithms 

The most common technique used for training MLP is the nonlinear optimization of neural 

network weights. The cost function 𝐽, which is the sum of squared errors between the system 

output and the neural network output, can be minimized by using gradient-based learning 

methods.  

Backpropagation (BP) learning algorithm was developed by Werbos in 1974, which is an 

iterative procedure that allows to adjust the weights in a hidden layer. The backpropagation 

learning algorithm uses the backpropagation algorithm as a technique for computing the 

gradient of the MLP w.r.t. its weights [29]. BP learning algorithm operates based on a linear 

approximation of the cost function, which may cause very slow convergence problems [52]. 

Higher order approximations of the cost function should be used to achieve a significantly 

higher convergence rate. Examples of such techniques include Levenberg-Marquard method, 

quasi-Newton methods [29], conjugate gradient methods, and the Recursive Least-Squares 

(RLS) learning algorithms [53]. 

According to the steepest gradient descent method, the learning of weight value 𝑤𝑘𝑖 is 
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∆𝑤𝑗𝑜 = −휂
𝜕𝐸

𝜕𝑤𝑗𝑜
= 휂 ∙ 𝑒(𝑘) ∙

𝜕𝑦𝑜

𝜕𝑤𝑗𝑜
= 휂 ∙ 𝑒(𝑘) ∙ 𝑥′

𝑗    (5.12) 

The weight value at time 𝑘 + 1 is 

𝑤𝑗𝑜(𝑘 + 1) = 𝑤𝑗𝑜(𝑘) + ∆𝑤𝑗𝑜        (5.13) 

The learning of weight value 𝑤𝑖𝑗 is 

∆𝑤𝑖𝑗 = −휂
𝜕𝐸

𝜕𝑤𝑖𝑗
= 휂 ∙ 𝑒(𝑘) ∙

𝜕𝑦𝑜

𝜕𝑤𝑖𝑗
       (5.14) 

where 
𝜕𝑦𝑜

𝜕𝑤𝑖𝑗
=

𝜕𝑦𝑜

𝜕𝑥′
𝑗

∙
𝜕𝑥′

𝑗

𝜕𝑥𝑗
∙

𝜕𝑥𝑗

𝜕𝑤𝑖𝑗
= 𝑤𝑗𝑜 ∙

𝜕𝑥′
𝑗

𝜕𝑥𝑗
∙ 𝑥𝑖 = 𝑤𝑗𝑜 ∙ 𝑥′

𝑗(1 − 𝑥′
𝑗) ∙ 𝑥𝑖 

The weight value at time 𝑘 + 1 is  

𝑤𝑖𝑗(𝑘 + 1) = 𝑤𝑖𝑗(𝑘) + ∆𝑤𝑖𝑗        (5.15) 

The algorithm of weight value is  

𝑤𝑗𝑜(𝑘 + 1) = 𝑤𝑗𝑜(𝑘) + ∆𝑤𝑗𝑜 + 𝛼(𝑤𝑗𝑜(𝑘) − 𝑤𝑗𝑜(𝑘 − 1))  (5.16) 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + ∆𝑤𝑖𝑗 + 𝛼(𝑤𝑖𝑗(𝑡) − 𝑤𝑖𝑗(𝑡 − 1))   (5.17) 

where 휂 ∈ [0,1] is the learning rate, 𝛼 ∈ [0,1] is the momentum factor.  

By using BP neural network approximation, Jacobian value can be calculated as: 

𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
≈

𝜕𝑦𝑜(𝑘)

𝜕𝑢(𝑘)
=

𝜕𝑦𝑜(𝑘)

𝜕𝑥′
𝑗

×
𝜕𝑥′

𝑗

𝜕𝑥𝑗
×

𝜕𝑥𝑗

𝜕𝑥(1)
= ∑ 𝑤𝑗𝑜𝑥′

𝑗(1 − 𝑥′
𝑗)𝑤1𝑗𝑗   (5.18) 

Model structure optimization 

It is well known that the mathematical model should be as complex as necessary and as 

simple as possible. The same principle applies to MLP models. The MLP models should not be 

too complex otherwise they would learn noise. However, they should not be too simple because 

they would not be able to capture the process behavior [29]. For one-layer MLP, the architecture 

optimizing means to choose the number of hidden layer nodes and eliminate insignificant 

weights [29].  



67 
 

The overall model error is composed of bias error and variance error. With growing model 

complexity, the bias error decreases and variance error increases. A bias/error tradeoff needs to 

be found to optimize the model architecture.  

Network growing and network pruning are two methods to optimize neural networks. 

Network growing is to add new nodes or layers to a small size network till the structure meets 

requirement. On the contrary, the pruning method assumes that there is redundant information 

stored in the fully connected MLP. Therefore, some selected weights will be weakened or 

eliminated from a large structure to simplify the network.  

5.2   MLP Neural Network Model Identification 

MLP neural network structure has been realized by a set of python codes developed for the 

system identification purpose. Keras has been utilized to realize the MLP structure. Keras is a 

high-level neural networks Application Programming Interface (API), written in Python and 

capable of running on top of TensorFlow, Cognitive Toolkit (CNTK), or Theano [54]. Keras 

models can be classified to two categories: sequential model and functional API model. The 

sequential model is a linear stack of layers, which is a convenient way of realizing the MLP 

structure. The functional API can define complex models such as multi-output models, MIMO 

models, directed acyclic graphs, or models with shared layers. 

The multilayer perceptron neural network model has been chosen and programmed with 

Python. The MLP structure has been developed with network growing and network pruning 

techniques. When the numbers of hidden layer and nodes of each hidden layer are small, the 

training result is not optimized. On the other hand, when too many hidden layers and nodes 
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have been added to the network, the result does not improve significantly. Therefore, 

appropriate numbers of hidden layers and nodes need to be set in the network. After numerous 

times of fine tuning the layers and nodes numbers, the MLP neural network structure has been 

optimized to give the best output which is closest to the flight data. The MLP structure has been 

presented in Figure 5.6. 

Hyperbolic tangent activation function has been chosen as the activation function of hidden 

layers, linear function has been chosen as the output layer activation function. RMSProp has 

been chosen as optimization method, mean square error method has been chosen to deal with 

the loss. Learning rate, batch size, and epoch number have been set at 0.0001, 5 and 100 

respectively.  

 

Figure 5.6: MLP neural network structure for system identification 

5.2.1 Longitudinal model 

The longitudinal MLP neural network in Figure 5.6 has been trained and compared with 

flight data, model output has been presented in Figure 5.7 and Figure 5.8. It shows that the 

model matches flight data well at lower frequency, where the model residual is within 1 deg/s. 
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However, with increased input frequency, the aircraft’s response in pitch rate increases more 

significantly, but the model output does not match the increased magnitude of aircraft response. 

One way to improve the MLP model output accuracy is to increase input variables including 

speed of the aircraft, frequency of the input, etc.  
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Figure 5.7: Longitudinal MLP output compared to flight data, frequency sweep 
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Figure 5.8: Longitudinal MLP output compared to flight data, 3-2-1-1 input 

5.2.2 Lateral model 

The lateral neural network model has been trained with the same MLP structure. Model 

output has been presented against flight data in Figure 5.9 and Figure 5.10. Figure 5.9 shows 

good predictability of the neural network model. The model residuals are in a very reasonable 

range. Figure 5.10 shows that, the model output is still very dependent on the input signal shape.   
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Figure 5.9: Lateral neural network model output compared to flight data, frequency sweep 
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Figure 5.10: Lateral neural network model output compared to flight data, 3-2-1-1 input  

5.3   Neural Network Wiener Model Identification 

In Chapter 4, the transfer function model in general has very good predictability. But the 

accuracy of transfer function model is susceptible to the frequency and trimmed condition. On 

the other hand, the MLP neural network model being trained is very dependent on the input 

shape. A combined structure of transfer function followed by MLP is therefore being studied. 

This method is also known as a block-oriented approach. The most widely used block-oriented 

models are Wiener and Hammerstein models. In Wiener model, the linear element precedes the 

nonlinear one. In Hammerstein model, the nonlinear element precedes the linear one [26]. The 
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transfer function can already predict the system dynamics very well around trimmed condition. 

Therefore, the identified transfer function will form the linear element of the block-oriented 

model, with the nonlinear element being addressed by a MLP.  

The SISO Wiener system presented as follows [28]: 

𝑦(𝑛) = 𝑓 (
𝐵(𝑞−1)

𝐴(𝑞−1)
𝑢(𝑛)) + 휀(𝑛)      (5.19) 

where  

𝐴(𝑞−1) = 1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎𝑞−𝑛𝑎 

𝐵(𝑞−1) = 𝑏1𝑞−1 + ⋯ + 𝑏𝑛𝑎𝑞−𝑛𝑏 

and 𝑞−1 is the backward shift operator, 𝑞−𝑚𝑦(𝑛) = 𝑦(𝑛 − 𝑚), 𝑓(∙) is the nonlinear element, 

𝑎1, … , 𝑎𝑛𝑎, 𝑏1, … , 𝑏𝑛𝑏 are unknown parameters of the linear dynamic system, and 휀(𝑛) is the 

system output disturbance. 

 There are three assumptions about this model: 1) the function 𝑓(∙) is continuous; 2) the 

linear dynamic system is casual and asymptotically stable; 3) the polynomial orders 𝑛𝑎 and 

𝑛𝑏 are known.  

 Given the measured input and output of the aircraft system {𝑢(𝑛), 𝑦(𝑛)}, 𝑛 = 1, … , 𝑁, by 

minimizing the global cost function: 

𝐽 =
1

2
∑ (𝑦(𝑛) − �̂�(𝑛))2𝑁

𝑛=1                          (5.20) 

�̂�(𝑛) is the output of the neural network Wiener model. 

 

Figure 5.11: Wiener system 
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There are two basic approaches to find the minimum of the global cost function: the 

sequential mode (pattern learning) and batch learning. The sequential mode or pattern learning 

uses pattern-by-pattern updating of model parameters, changing their values by an amount 

proportional to the negative gradient of the local cost function: 

𝑤(𝑛) = 𝑤(𝑛 − 1) − 휂
𝜕𝐽(𝑛)

𝜕𝑤(𝑛−1)
      (5.21) 

𝜕𝐽(𝑛)

𝜕𝑤(𝑛−1)
= −(𝑦(𝑛) − �̂�(𝑛))

𝜕�̂�(𝑛)

𝜕𝑤(𝑛−1)
      (5.22) 

where 𝑤(𝑛) is the weight vector containing all model parameters at the time 𝑛, and 휂 > 0 

is the learning rate. This procedure will minimize the global cost function 𝐽 as long as the 

learning rate 휂 is sufficiently small [30].  

 The batch learning approach uses the whole set of input-output data {𝑢(𝑛), 𝑦(𝑛)}, 𝑛 =

1, … , 𝑁, to update model parameters. In this technique, the global cost function 𝐽 is minimized 

iteratively. The parameters change over all training patterns are accumulated before the 

parameters are actually changed [29]. The basic version gradient learning algorithm has its 

drawbacks: the fixed learning rate 휂  may be chosen too large leading to unnecessary 

oscillations or too small to cause very slow learning process.  

  Series-parallel neural network Wiener model is shown in Figure 5.12, it is a feedforward 

type multilayer perceptron model composed of the inverse nonlinear element, a liner node with 

two tapped delay lines, used as a model of the linear dynamic system, and another multilayer 

perceptron used as a model of the nonlinear element. The assumption is that the nonlinear 

function 𝑓(∙) is invertible. Model inputs are the system input 𝑢(𝑛) and system output 𝑦 (𝑛). 

Model output �̂�(𝑛) is defined as: 
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�̂�(𝑛) = 𝑓(�̂�(𝑛), 𝑤)        (5.23) 

with 

�̂�(𝑛) = − ∑ �̂�𝑚�̂�(𝑦(𝑛 − 𝑚), 𝑣) + ∑ �̂�𝑚𝑢(𝑢 − 𝑚)

𝑛𝑏

𝑚=1

𝑛𝑎

𝑚=1

 

𝑓(�̂�(𝑛), 𝑤) = ∑ 𝑤1𝑗
(2)

𝜑 (𝑥𝑗(𝑛)) + 𝑤10
(2)

𝑀

𝑗=1

 

𝑥𝑗(𝑛) = 𝑤𝑗1
(1)

�̂�(𝑛) + 𝑤𝑗0
(1)

 

�̂�(𝑦(𝑛), 𝑣) = ∑ 𝑣1𝑗
(2)

𝜑 (𝑧𝑗(𝑛)) + 𝑣10
(2)

𝑀

𝑗=1

 

𝑧𝑗(𝑛) = 𝑣𝑗1
(1)

𝑦(𝑛) + 𝑣10
(1)

 

where the function 𝑓(∙) describes the nonlinear element model, the function �̂�(∙) describes 

the inverse nonlinear element model, 𝜑(∙)  is the activation function, �̂�1, … , �̂�𝑛𝑎, �̂�1, … , �̂�𝑛𝑏 

are the parameters of the linear dynamic model, 𝑤 = [𝑤10
(1)

… 𝑤𝑀1
(1)

 𝑤10
(2)

… 𝑤1𝑀
(2)

]𝑇  is the 

weight vector of the nonlinear element model, and 𝑣 = [𝑣10
(1)

… 𝑣𝑀1
(1)

 𝑣10
(2)

… 𝑣1𝑀
(2)

]𝑇  is the 

parameter vector of the inverse nonlinear element model.  

 

Figure 5.12: Series parallel SISO neural network Wiener model 
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5.3.1 Longitudinal model 

The linear longitudinal transfer function model identified in Chapter 4 has been utilized as 

the linear part of the Wiener model. The input value to the transfer function 𝑢𝑙𝑜𝑛  remain 

unchanged, output value from transfer function model has been denoted by �̂�(𝑛), which is the 

input to the MLP structure in Figure 5.6. The Wiener model structure is presented in Figure 

5.13. The flight data of test point one has been utilized to train the Wiener model. Wiener model 

response has been compared to flight data, and model residual has also been presented from 

Figure 5.14 (frequency sweep input) to Figure 5.15 (3-2-1-1 input). 

 

Figure 5.13: Wiener model structure for longitudinal model 
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Figure 5.14: Identified Wiener model compared to flight data, longitudinal frequency sweep 
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Figure 5.15: Identified Wiener model output compared to flight data, 3-2-1-1 input 
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5.3.2 Lateral model 

Similar to the longitudinal model, the linear lateral transfer function model identified in 

Chapter 4 has been utilized as the linear part of the Wiener model. The input value to the transfer 

function 𝑢𝑙𝑎𝑡  remains unchanged, output value from the lateral transfer function model is 

denoted as �̂�(𝑛), which is the input to the MLP structure in Figure 5.6. The Wiener model 

structure for lateral dynamics is similar to the longitudinal one, with only the transfer function 

being changed. The flight data of test point two has also been utilized to train the Wiener model. 

Wiener model response has been compared to the flight data, and model residual has also been 

presented from Figure 5.17 (frequency sweep input) to Figure 5.18 (3-2-1-1 input). 

 

Figure 5.16: Wiener model structure for lateral model 
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Figure 5.17: Identified Wiener model output compared to flight data, lateral frequency sweep 
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Figure 5.18: Identified Wiener model output compared to flight data, 3-2-1-1 input 

In addition, the MLP black-box model in Section 5.2 has been compared with the Wiener 

model in Figure 5.19.  



85 
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Figure 5.19: Long-EZ MLP model and Wiener model compared with flight data  
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5.4   Analysis and Discussion 

Similar to Section 4.3, coefficient of determination 𝑅2 and RMSE have been calculated 

and listed in Figure 5.20 and Table 5.1. By comparison, the table shows that the Wiener model 

has lowest RMSE and highest 𝑅2 (closest to 1) on both longitudinal and lateral axes. 

By combining the linear transfer function model and the MLP structure, the Wiener model 

output accuracy has been improved greatly, as is presented visually in Figure 5.19 and 

numerically in Table 5.1. Therefore, the developed block-oriented neural network Wiener 

model approach is an excellent tool of predicting the aircraft dynamics on both longitudinal and 

lateral axes. 

However, both the MLP and Wiener model are only trained at one flight test condition (116 

kts, 8000ft) due to the limited real flight data available currently. When there is more data 

available from different flight conditions in the future, both the Wiener model and MLP model 

structure can be improved by taking the different input conditions into account and forming a 

more complex neural network structure.  
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Figure 5.20: RMSE and 𝑅2 of identified transfer function model, MLP, and Wiener model 

Table 5.1: RMSE and 𝑅2 of identified transfer function model, MLP, and Wiener model 

 RMSE 𝑅2 

Longitudinal Lateral Longitudinal Lateral 

Baseline 2.9763 -- 0.6301 -- 

TF 1.0048 1.8395 0.7322 0.9354 

MLP 1.4232 2.1237 0.5395 0.9004 

Wiener 0.8002 1.6508 0.7628 0.9444 

  



89 
 

 Chapter 6  Conclusions and Future Works 

It is a challenging task to find an accurate mathematical model to represent the aerodynamic 

behavior of a fixed-wing aircraft, which is especially the case when dealing with very limited 

real flight data available. System identification using time-domain method is a very reliable 

way of modeling aircraft dynamics. The primary purpose of this study is to provide an 

identification tool for the aircraft Long-EZ, which provides some information about the aircraft 

aerodynamic characteristics that can be used in the simulation environment at a later stage. The 

identified model also provides some insight for autopilot design, which can also extend to the 

fault-tolerant control in the future.     

This thesis has provided an overview of the time-domain system identification approaches, 

estimation and optimization methods. Fixed-wing aircraft dynamics and flight test plan have 

been intensively introduced. Among the various system identification approaches, baseline 

mode, equation error method, MLP neural network, and block-oriented Wiener model structure 

have been developed and trained based on the real flight data.   

Firstly, baseline aircraft model structure has been determined. Stability and control 

derivatives from this baseline model have been calculated with Roskam’s [39] method. This 

baseline model is essential for software-in-the-loop simulations, which identifies potential risks 

in the flight dynamics of the modified aircraft system in a low-cost and timely way.  

Secondly, based on the flight test instrumentations available at ITPS, system identification 

flight test has been planned and carried out to get sufficient data for modeling. Based on this 

experience, improved flight tests can be planned in the future to improve the baseline model. 
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Thirdly, linear transfer function model structures have been determined with the physics of 

the aircraft. Model parameters have been identified on both longitudinal and lateral axes using 

time-domain method, and have been compared with baseline model and flight data. This 

linearized transfer function model can be utilized for flight controller design of the Long-EZ 

aircraft in the future.  

At last, a set of Python-based code has been developed to deal with the nonlinearities in the 

model, which is also known as the MLP neural network. Real flight data has been used to train 

this neural network, the training result has been plotted against the flight data. Moreover, the 

identified linear model has been combined with the MLP structure to form a block-oriented 

model, which is called neural network wiener model. By comparing the four different models, 

the block-oriented model has overall the best accuracy for predicting the aircraft dynamics on 

longitudinal and lateral axes respectively.  

The future direction of the research is to get more comprehensive flight test instrumentation 

(flight test boom) installed on the testbed Long-EZ, so that air data will be available for 

modelling. New flight test plan with different maneuvers can be designed with this air data 

probe being installed. More comprehensive aircraft models, such as MIMO state-space model, 

can be identified with flight test data. Long-EZ aircraft’s aerodynamic and control derivatives 

can also be calculated with the equation error method, making the model more accurate and 

complete for software-in-the-loop simulation. Moreover, the SISO structure Wiener model can 

also be extended to a MIMO structure model, with different flight test condition (such as speed, 

altitude) being considered as input variables. The MLP structure can also be upgraded to a 

recursive type neural network structure, which takes the current state of the aircraft in the 
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feedback loop, making the model more accurate and flexible in dealing with the nonlinearities 

with the change of flight conditions in the future. 
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