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Abstract

Security Auditing and Multi-Tenancy Threat Evaluation in Public Cloud

Infrastructures

Taous Madi, Ph.D.

Concordia University, 2018

Cloud service providers typically adopt the multi-tenancy model to optimize resources

usage and achieve the promised cost-effectiveness. However, multi-tenancy in the cloud is

a double-edged sword. While it enables cost-effective resource sharing, it increases secu-

rity risks for the hosted applications. Indeed, multiplexing virtual resources belonging to

different tenants on the same physical substrate may lead to critical security concerns such

as cross-tenant data leakage and denial of service. Therefore, there is an increased necessity

and a pressing need to foster transparency and accountability in multi-tenant clouds. In this

regard, auditing security compliance of the cloud provider’s infrastructure against stan-

dards, regulations and customers’ policies on one side, and evaluating the multi-tenancy

threat on the other side, take on an increasing importance to boost the trust between the

cloud stakeholders.

However, auditing virtual infrastructures is challenging due to the dynamic and layered

nature of the cloud. Particularly, inconsistencies in network isolation mechanisms across

the cloud stack layers (e.g., the infrastructure management layer and the implementation

layer), may lead to virtual network isolation breaches that might be undetectable at a sin-

gle layer. Additionally, evaluating multi-tenancy threats in the cloud requires systematic

ways and effective metrics, which are largely missing in the literature. This thesis work

addresses the aforementioned challenges and limitations and articulates around two main
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topics, namely, security compliance auditing and multi-tenancy threat evaluation in the

cloud.

Our objective in the first topic is to propose an automated framework that allows audit-

ing the cloud infrastructure from the structural point of view, while focusing on virtualization-

related security properties and consistency between multiple control layers. To this end, we

devise a multi-layered model related to each cloud stack layer’s view in order to capture

the semantics of the audited data and its relation to consistent isolation requirements. Fur-

thermore, we integrate our auditing system into OpenStack, and present our experimental

results on assessing several properties related to virtual network isolation and consistency.

Our results show that our approach can be successfully used to detect virtual network iso-

lation breaches for large OpenStack-based data centers in a reasonable time.

The objective of the second topic is to derive security metrics for evaluating the multi-

tenancy threats in public clouds. To this end, we propose security metrics to quantify the

proximity between tenants’ virtual resources inside the cloud. Those metrics are defined

based on the configuration and deployment of a cloud, such that a cloud provider may

apply them to evaluate and mitigate co-residency threats. To demonstrate the effectiveness

of our metrics and show their usefulness, we conduct case studies based on both real and

synthetic cloud data. We further perform extensive simulations using CloudSim and well-

known VM placement policies. The results show that our metrics effectively capture the

impact of potential attacks, and the abnormal degrees of co-residency between a victim and

potential attackers, which paves the way for the design of effective mitigation solutions

against co-residency attacks.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing is the paradigm of information technology (IT) as a utility, which has

shifted over the past decade from a buzzword to an integral part of IT. Companies are

rapidly incorporating the cloud to run their business applications instead of investing up-

front capital and operational expenditures for deploying and maintaining heavy on-premise

IT infrastructures.

Cloud service providers (CSPs) leverage large pools of high performance configurable

computing platforms, virtualization technologies and high-speed networks to deliver ubiq-

uitous, convenient and on-demand access to a seemingly unlimited amount of resources

that can be rapidly commissioned, scaled in and out, and released with minimal interaction

effort. There exist three well established cloud service models, namely, infrastructure as a

service (IaaS), platform as a service (PaaS), and software as a service (SaaS). Furthermore,

cloud computing offerings can be classified based on their deployment models into two

main categories: public and private clouds. In the former deployment, the cloud infrastruc-

ture is meant to be simultaneously used by multiple customers (e.g., industrial companies,

government organizations, academic institutions, etc), while in the latter deployment, the

1



cloud infrastructure is meant to be exclusively provisioned by a unique customer. The work

of this thesis specifically focuses on IaaS models in public cloud deployments.

The multi-tenancy model enables CSPs to achieve the promised cost-effectiveness,

which has been, so far, the key for the wide cloud adoption. However, virtualization

technologies, which make resource multiplexing possible, typically do not provide per-

fect logical isolation between tenants’ resources and add an important layer of complexity

to the cloud-stack. This makes the security-level of public cloud vary inversely with the

multi-tenancy model payoff [5]. Therefore, the cloud security concerns together with the

loss of control, the lack of transparency and the non-compliance risks, make many business

owners and prospective customers still reluctant towards the adoption of the cloud [6]. Au-

diting security compliance of cloud implementations with respect to standards, and threat

evaluation constitute viable solutions to bring more visibility into the cloud and boost the

trust of tenants in CSPs as for the proper management and the protection of their assets.

Security auditing is an assurance approach which consists of checking whether the

cloud-stack implementations are compliant with regulatory requirements and predefined

security policies, while threat-evaluation consists of identifying and quantifying potential

security threats in cloud deployments as part of the risk assessment process. The outcome

of both security auditing and threat evaluation processes enables CSPs, on one side, to

enhance the transparency of their services by providing customers with more awareness re-

garding the contractual compliance aspects and the security risks related to their outsourced

applications. On the other side, it enables CSPs to improve the applied security measures

and management strategies to have better control over different risks.

However, auditing in the cloud constitutes a real challenge. First, the significant gap

between the high-level description of compliance recommendations (e.g., Cloud Control

Matrix (CCM) [7] and ISO 27017 [8]) and the low-level raw logging information drasti-

cally hinders the auditing automation process. Second, the coexistence of a large number
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of virtual resources on one side (e.g., a decent-size cloud is said to have around 1,000

tenants and 100,000 users [2]), and the important complexity that is brought by the virtu-

alization layer on the other side, constitute a real challenge for identifying the relationship

between different components. Third, the layered nature of the cloud-stack and the inter-

layer dependencies make existing per-layer verification approaches ineffective, as multiple

layers maintain different but complementary views of the isolation mechanisms configu-

ration. Finally, correctly identifying the relevant data and their sources in the cloud for

each security requirement increases the complexity of auditing. From another perspective,

some policies and business requirements, may naturally require quantitative approaches to

provide tenants with more visibility about the security posture of their outsourced virtual

infrastructures. For instance, a tenant may want a specific threshold for resource sharing

to minimize the multi-tenancy threats. In this case, appropriate tools (i.e., security metrics)

are needed for threat evaluation to inform the tenant about the degree of compliance with

his predefined requirements.

There exist various efforts on cloud auditing, however, those works either focus on

verifying the operational properties that assess the behavioral aspect of the cloud (e.g., net-

work reachability) [9], and omit the structural settings of tenants’ virtual infrastructures, or

they conduct the auditing process at a single layer of the cloud, which makes their solution

not effectively capturing isolation breaches [10]. Furthermore, quantitative approaches and

supporting metrics for per tenant threat evaluation are largely missing in the literature (a

detailed literature review will be provided in Section 2.3).

1.2 Problem Statement

The research problem addressed in this thesis is drawn from the above mentioned chal-

lenges and limitations. We consider the broad context of security compliance auditing and
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multi-tenancy threat evaluation in public cloud virtualized infrastructures. Specifically, to-

days’ IaaS cloud platforms (e.g., Amazon AWS EC2 [11], Google Cloud Platform (GCP)

[12] and Microsoft Azure [13]) expose rich APIs through which tenants can create several

virtual infrastructures, which are mainly composed of virtual machines (VMs) and their

connecting virtual private networks. Tenants’ virtual infrastructures are then implemented

at the physical-level via the cloud infrastructure management system (e.g., OpenStack),

which is in charge of maintaining the logical segregation between tenants’ resources. How-

ever, the highly dynamic, elastic and self-service nature of the cloud, together with the

continuously increasing size of the managed resources (e.g., AWS reports 100K new VM

instances created per day [14]) introduce a very high-level of complexity that may pre-

pare the floor for misconfigurations leading to non-compliance with security standards and

increased threat-levels. Particularly, failure to properly implement network isolation mech-

anisms to segregate multiple segments of virtual private networks may lead to interference

of traffic belonging to different corporations. Moreover, the cloud elasticity mechanisms

may cause VMs belonging to different trust levels to co-reside within a close proximity,

leading to potential threats (e.g., information leakage through side channel attacks [15]).

In this thesis, we propose approaches and tools to bring more transparency into the

security posture of actual cloud implementations, which would provide CSPs with more

credibility and increase tenants’ trust.

Particularly, for security auditing, we address the following research questions:

• How to bridge the gap between high-level standards and low-level cloud implemen-

tation details, and automate the security auditing process?

• How to leverage the complex inter-dependencies between the cloud-stack layers to

capture subtle virtual network isolation breaches in tenants’ virtual infrastructures?

As for threat evaluation in cloud infrastructures, the questions we tackle are:
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• How to evaluate the degree of exposure of tenants’ virtual infrastructures with respect

to other potentially distrusted tenants based on resource sharing at different levels of

the cloud infrastructure?

• How to evaluate abnormal degrees of co-residency between a victim and potential

attackers independently of specific attacks?

We elaborate on our contributions to address those questions in the following section.

1.3 Contributions

Our contributions mainly revolve around providing a formal verification support for the

compliance auditing of cloud infrastructures, and security metric tools to support per tenant

threat evaluation, which provides an increased level of transparency to tenants.

Automated security auditing of cloud virtualized infrastructures. The objective of the

first work of the thesis is to provide an automated approach for the verification of the

proper configuration of virtual resources based on structural properties (e.g., assignment of

instances to physical hosts and configuration of virtualization mechanisms). To this end,

we focus on filling the existing gap between the high-level security standards, and low-

level cloud implementations. In this respect, we first compile a list of structural security

properties relevant to the cloud virtualized environment. The latter list maps into different

recommendations described in several security compliance standards in the field of cloud

computing. Afterwards, we map each security property to the relevant set of cloud in-

frastructure data sources (e.g., configuration and logged information from different cloud

layers). Additionally, we formalize the extracted properties into First Order Logic (FOL).

Finally, we transform the formalized properties and the audit data into a constraint satis-

faction problem (CSP) to verify the security properties and provide audit evidence using
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an off-the-shelf CSP-solver. We furthermore implement our auditing approach into Open-

Stack [16], one of the most commonly used cloud infrastructure management systems,

and conduct experiments to show the scalability of our approach (e.g., we audit a dataset

of 300,000 virtual ports, 24,000 subnets, and 100,000 VMs in less than 8 seconds). We

elaborate on the details of this work in Chapter 3.

Consistent virtual layer 2 network isolation verification. As network isolation failures

are among the foremost security concerns in the cloud [17, 18], our objective in the second

part of this work is to verify layer 2 virtual private networks isolation1, taking into con-

sideration the inter-dependencies between different cloud layers’ views. To the best of our

knowledge, this is the first effort on auditing cloud infrastructure isolation at layer 2 virtual

networks and overlay taking into account cross-layer consistency in the cloud-stack. To

capture the semantics of the audit data and its relation to consistent isolation requirements,

we first devise a multi-layered model for data related to each cloud layer’s view, then we

derive a set of concrete security properties to check the proper configuration of layer 2 and

overlay isolation mechanisms. Furthermore, we integrate our auditing system into Open-

Stack, and present our experimental results on assessing several properties related to virtual

network isolation and consistency. Our results show that our approach can be successfully

used to detect virtual network isolation breaches for large OpenStack-based data centers

in a reasonable time (e.g., we audit a dataset of 60k VMs in less than 4.6 seconds). The

details of this work are presented in Chapter 4.

Distance metrics for evaluating multi-tenancy threats. The multi-tenancy threats result-

ing form resource sharing at different levels of the cloud infrastructure, constitute some of

the main security concerns as tenants’ resources are exposed to distrusted parties. In this

work, we define a multi-level physical distance that captures the threats related to cross-

tenant attacks requiring resource sharing not only at the host-level but also at higher levels

1We refer to the network layers defined in the Open Systems Interconnection (OSI) model
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of the cloud infrastructure. We then refine this physical distance along the compute and net-

work dimensions to evaluate the degree of compute and network resource exposure with

respect to potential attackers. We show the effectiveness of our metrics through case studies

conducted both on real and synthetic cloud data. We further show the applicability of our

metrics for quantified auditing and per tenant risk assessment. We elaborate on the details

of this work in Chapter 5.

Security metrics for evaluating and mitigating co-residency threats. Although cross-

tenant attacks may target different resources, they all require a degree of co-residency with

the victim as a prerequisite for the attacks to succeed. While existing metrics enable only to

detect attacks at run-time by monitoring resource usage (e.g., the throughput [19]), we pro-

pose a set of attack-agnostic security metrics that capture abnormal degrees of co-residency

between tenants’ virtual infrastructures along two different dimensions, namely, the attack

extent and the attack intensity. Our metrics enable to apply mitigation measures (e.g., VM

migration) in order to avoid large scale damage. To show the applicability of our metrics

and their usefulness in capturing increased co-residency threats, we conduct a case study

on a real cloud data, and perform extensive experiments using CloudSim. The obtained

results show the applicability of our metrics and their effectiveness in capturing abnormal

co-residency degrees with the increased attacks’ success rates. The details of this work are

presented in Chapter 6.

In summary, the main contributions of this thesis are the following.

• We provide an automated solution for auditing the security compliance of cloud

infrastructures against standards and tenants’ predefined requirements. As per our

knowledge, this is the first effort for formally verifying security properties related to

the structural settings of tenants’ virtual infrastructures implementations in the cloud.

• While existing works focus on one cloud layer only, we propose an automated frame-

work for auditing consistent isolation between virtual networks in OpenStack-managed
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cloud spanning over overlay networks and layer 2 virtual networks by considering

multiple cloud layers’ views.

• We integrate our auditing systems into OpenStack, and present our experimental re-

sults to show the applicability and the scalability of our auditing solutions.

• We propose suites of security metrics to evaluate the threat-level related to the multi-

tenancy situation in public cloud. We conduct case studies and experiments on both

real and fictitious clouds. The obtained results show the effectiveness and applicabil-

ity of our metrics.

1.4 Thesis Structure

This thesis is organized into six chapters as follows. Chapter 2 provides a background on

cloud computing, virtualization and multi-tenancy, and discusses existing works on secu-

rity auditing and threat evaluation in the cloud. Chapter 3 presents our security auditing

solution for virtualized cloud infrastructures. Therein, we further detail our formal verifi-

cation methodology, elaborate on the implementation details, and discuss the experimental

results. In Chapter 4, we detail our approach for layer 2 virtual networks isolation verifica-

tion in OpenStack-managed cloud deployments. In Chapter 5, we present our multi-level

security metrics for evaluating the distance between tenants’ virtual infrastructures inside

cloud deployments. We further show through several use cases, the applicability and use-

fulness of our metrics. Chapter 6 details our methodology for deriving security metrics

to evaluate the proximity between tenants’ resources starting from the common prerequi-

sites to co-residency attacks in multi-tenant clouds. We show the usefulness of our metrics

through use cases and extensive simulations. The conclusion and discussion on potential

future works are summarized in Chapter 7.
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Chapter 2

Background and Related Work

2.1 Introduction

Cloud service providers typically adopt the multi-tenancy model to optimize resources us-

age and achieve the promised cost-effectiveness. Sharing resources between different ten-

ants and the underlying complex technology increase the necessity for transparency and

accountability. In this regard, auditing security compliance of the provider’s infrastructure

against standards, regulations and customers’ policies, and evaluating the potential threats

related to the multi-tenancy situation, take on an increasing importance to boost the trust

between the cloud stakeholders. In this chapter, we provide a description of the cloud and

its services. Furthermore, we briefly elaborate on virtualization and multi-tenancy, as those

are the main aspects of IaaS around which articulates our thesis work. Finally, we provide

a literature review on cloud security auditing and multi-tenancy threats evaluation.

2.2 Cloud Computing

To run their business workloads, enterprises traditionally have to invest prohibitive costs

for owning or licensing, running and maintaining data center equipment. In this respect,
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cloud offerings propose to substantially lighten this burden by providing underlaying in-

frastructures and services enabling customers to more focus on their core business.

In [20], the National Institute of Standards and Technology (NIST) defines the cloud as

”a model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction”. Furthermore, NIST specifies three main cloud models based

on the delivered resources and customers’ capabilities. Those models can be described as

follows:

• Software as a service (SaaS). In this model, CSPs offer ready to use applications that

can be enjoyed by the customers through the Internet. SaaS offerings are currently

massively used both by individuals and organizations. For instance, Google offers

the Google Calendar application. In this model, tenants do not have control, neither

over the applications’ development platform nor over the virtual infrastructure.

• Platform as a service (PaaS). In this model, CSPs provide ready to use development

platforms. Tenants run their applications on top of those frameworks and control

their settings and configuration, but they do not have control over the underlying

virtual infrastructure. An example of PaaS provider is Google App Engine1.

• Infrastructure as a service (IaaS). In this model, tenants can provision basic com-

puting resources (i.e., processing, networking and storage) to deploy and run their

own virtual infrastructures. Those virtual infrastructures are mainly composed of

VMs and their connecting virtual private networks. Tenants’ VMs are self-controlled

and are allocated into virtualised physical machines using VM placement policies.

Virtual private networks connecting those VMs are implemented using software net-

working devices (e.g., Open vSwitch [21]) and network virtualization mechanisms

1https://cloud.google.com/appengine/docs/
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such as virtual LAN (VLAN) and Virtual Extended LAN (VXLAN). Examples of

commercial IaaS providers are Amazon AWS EC2 [11], Google Cloud Platform

(GCP) [12] and Microsoft Azure [13].

In this thesis, we are more interested in IaaS model, where tenants have control over

their virtual infrastructures, which are directly implemented on top of the cloud facilities.

Specifically, we focus on public cloud deployments, where virtualization is leveraged to

enable resource sharing between multiple tenants.

2.2.1 Virtualization

Virtualization is the key underlaying technology for IaaS cloud. It provides the required

elasticity for on demand services, and enables resource sharing to achieve cost-effectiveness.

Host virtualization enables to run multiple VMs on top of one hardware platform. Those

VMs are managed by a software called hypervisor (also called virtual machine monitor).

The latter partitions the physical machine’s resources and provides a logical isolation be-

tween VMs so that each VM has access and visibility to its assigned resources only [5].

To provide network connectivity between tenants’ VMs, especially in large scale cloud

infrastructures, network virtualization plays a vital role, as an example, virtual switches

such as Open vSwitch (OVS) [22] are used. Furthermore, in order to support the highly

dynamic and elastic nature of tenants’ virtual infrastructures, virtual switches export in-

terfaces for remote and runtime configuration, as a response to various events (e.g., VMs

creation, shut down or migration).

Those interacting layers of virualization induce an increased complexity in cloud in-

frastructures, which opens up the floor for security breaches and vulnerabilities that can

be exploited by malicious entities. For instance, a poorly configured hypervisor can be an

easy target to different attacks (e.g., escape and hyper-jacking attacks) [23], which would

threaten all the VMs running on top of it. Furthermore, the complex interactions between
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the cloud management layers and the virtualized network layer at the implementation level,

together with the large number of tenants’ virtual private networks, may result in network

misconfigurations leading to traffic interference (a detailed example will be discussed in

Chapter 4). Additionally, virtualization technologies inevitably create side channels that

can be exploited by malicious insiders to breach tenants’ confidentiality (e.g., Hammer

attack [24]).

2.2.2 Multi-Tenancy

CSPs adopt the multi-tenancy model through resource sharing to increase the financial

gain, which is one of the driving factors to the adoption of public cloud. On the down

side, by allowing co-residency between business competitors or selfish and malicious cus-

tomers [25], multi-tenancy significantly expands the attack surface of shared cloud en-

vironments [26, 27]. In fact, recent works have demonstrated the feasibility of real-life

attacks conducted in commercial clouds including Amazon EC2, aiming at forcing mali-

cious virtual machines (VMs) to co-reside with targeted VMs either inside the same host or

at higher proximity levels (e.g., the rack level) inside the cloud data center [28, 29]. Once

co-residency achieved, attackers can mount harmful attacks against integrity, availability

and confidentiality of their target’s assets via side-channels, covert-channels, etc.

2.3 Related Work

This section reviews the related work on cloud security auditing and multi-tenancy threats

evaluation.
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2.3.1 Security Auditing

Table 2.1 summarizes the qualitative comparison between existing works on compliance

verification in the cloud and our work. We compare the proposals based on the types of

verified properties, structural or operational (structural properties are related to the static

configuration of the virtualized infrastructure, while operational properties are related to

the forwarding network functionality), the coverage of multiple cloud stack layers and

cross-layer consistency, and finally the approach, which is either retroactive (off-line) or

intercept-and-check (on-line) [30].

Proposal
Properties Coverage Approach

Struct-

ural

Operat-

ional

One/Multiple

layers

Cross-

layer

Retro-

active

Intercept-

and-check

Anteater [31] • One •
Hassel [32] • One •

VeriFlow [33] • One •
NetPlumber [34] • One •

Save [35] • One •
CloudRadar [36] • One •

Xu et al. [37] • Multiple • •
Congress [38] • One • •

Majumdar et al. [39] • One •
Majumdar et al. [40] • One •

Madi et al. [41] • Multiple • •
ISOTOP [42] • Multiple • •

Table 2.1: Comparing features of existing solutions with our works. The symbol (•) indi-

cates that the proposal offers the corresponding feature

To the best of our knowledge, our works on security auditing are the first to tackle

the verification of the structural configurations and the topology isolation and consistency

between cloud stack layers’ views of the virtual layer 2 and overlay networks.

Several works target the verification of forwarding and routing rules, particularly in

OpenFlow networks (e.g., [9, 43]). For instance, Anteater [31] verifies network invariants

by translating them into instances of SAT problems and translating data plane information

into boolean expressions. Then, it uses a SAT solver to check the resulting SAT formulas
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to detect violations of key network invariants such as absence of loops and black-holes.

Hassel [32] is a protocol agnostic tool for checking network invariants and reachability-

related policies. It is built on a geometric model where packet headers are modeled as

points in a geometric space and network devices are modeled as invertible transfer functions

defined on the same space. Then, custom algorithms are used to check network invariants

and reachability-related policies.

VeriFlow [33], NetPlumber [34] (extension of [32]), and AP verifier [44] propose a near

real-time verification, where network events are monitored for configuration changes, and

verification is performed only on the impacted part of the network. Libra [9] uses a divide

and conquer technique to verify forwarding tables in large networks. It encompasses a

technique to capture stable and consistent snapshots of the network state and a verification

approach based on graph search techniques that detects loops, black-holes and other reach-

ability failures. Sphinx [43] enables incremental real-time network updates and constraints

validation. It allows detecting both known and potentially unknown security attacks on

network topology and forwarding plane. These works are complementary to our work as

they aim at verifying operational properties of networks including reachability, isolation

and absence of layer 3 network misconfiguration (e.g., loops, black-holes, etc.). However,

they target mainly SDN environments and not necessarily the cloud, whereas our focus is

more oriented towards auditing the structural properties of cloud virtualized infrastructures.

Some other works focus on security as a service to provide needed security. For in-

stance, Mundada et al. [45] propose SilverLine, a collection of techniques that enables

cloud providers to enforce data and network isolation for a cloud tenant’s service. It uses a

transparent operating system-level information-flow tracking layer assisted by an enforce-

ment layer in the virtual machine monitor to provide data isolation. Our work aims at

auditing compliance of security controls, which is considered as security assurance, and

thus can be applied to such proposed security enforcement services.
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In the context of cloud auditing, several works (e.g., [10, 46]) focus on firewalls and

security groups. Probst et al. [46] present an approach for the verification of network ac-

cess controls implemented by stateful firewalls in cloud computing infrastructures. Their

approach combines static and dynamic verification with a discrepancy analysis of the ob-

tained results against the clients’ policies. Bleikertz [10] analyzes Amazon EC2 cloud in-

frastructures using reachability graphs and vulnerability discovery and builds attack graphs

to find the shortest paths, which represent the critical attack scenarios against the cloud.

The proposed approaches tackle layer 3 isolation mechanisms, but do not address chal-

lenges related to network virtualization mechanisms configuration issues and their impact

on layer 2 virtual networks isolation, which are addressed by our work on cloud security

auditing.

Other works focus on virtualization aspects (e.g., [35, 47, 48]). Bleikertz et al. [35, 47]

propose SAVE, a static information flow analysis system for virtualized infrastructures

based on graph traversal towards verifying information flow isolation. The configuration

information is captured from the virtualization infrastructure via a set of probes created for

different virtualization technologies. Then, the approach transforms the discovered config-

uration input into a graph, where vertices are resources such as virtual machines, hyper-

visors, physical machines, storage and network resources and edges represent information

flows. The graph is traversed based on explicitly specified trust rules and information flow

rules. Bleikertz et al. [36] extend the previous work to tackle near-real time security anal-

ysis of the virtualized infrastructure in the cloud. Their objective is mainly the detection

of configuration changes that impact the security. A differential analysis based on comput-

ing graph deltas (e.g., added or removed nodes and edges) is proposed based on change

events. The graph model is maintained synchronized with the actual configuration changes

through probes that are deployed over the infrastructure and intercept events that may have

a security impact. Contrarily to our auditing approach, this works do not involve properties
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verification at multiple layers and cross-layer consistency verification, which reduces the

scope of violations that can be detected compared to our approach. In our case, we cor-

relate audit data collected form different sources and at different layers in order to detect

violations that would definitely go unnoticed if relying only on one cloud layer at a time.

In [49], an autonomous agent-based incident detection system is proposed. The system

detects abnormal infrastructure changes based on the underlying business process model.

The framework is able to detect cloud resource and account misuse, distributed denial of

service attacks and VM breakout. This related work is more oriented towards monitor-

ing changes in cloud instances and infrastructures and evaluating the security status with

respect to security business flow-aware rules.

Xu et al. [37] investigate network inconsistencies between network states extracted

from OpenStack and the configuration of network devices. They use Binary Decision Di-

agrams (BDDs) to represent and verify these states. Similarly to our work, they tackle

inconsistency verification. Xiang et al. [50] propose a graph-based OpenStack debugging

approach enabling to extract the interaction between different modules from log files and

databases. However, in these works, authors do not check isolation properties across dif-

ferent layers as suggested by our work. Furthermore, we are interested in auditing, thus our

approach supports a wider view than simple verification, where log files are as important

source of information as configuration.

In [51], authors propose a cross-layer data collection approach to reconstruct the net-

work connectivity graph in cloud infrastructures. Our work can be extended to use the

constructed connectivity graphs in order to audit tenant predefined security policies.

There exist other works (e.g., [38], [52], [30]) offering runtime security policy checking

and enforcement in the cloud. Our work in [30] proactively verifies security compliance ef-

ficiently through pre-computation by utilizing dependency models. Weatherman [52] aims
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at mitigating misconfigurations and enforcing security policies in a virtualized infrastruc-

ture. CloudSight [53] is a transparency-as-a-service abstraction that enables to track state

changes of different tenants’ components (e.g., VMs and virtual interfaces) by inserting

monitoring functions in the infrastructure management system’s modules.

In [54], authors propose a framework to evaluate the CSP’s services prior to and after

cloud adoption. However, the proposed framework only defines a set of generic concepts

around which the auditing process should be articulating (e.g., actors, goals, risks and

evidences) without providing any concrete implementation.

Congress [38] is an open project for OpenStack platforms. It enforces policies ex-

pressed by tenants and then monitors the state of the cloud to check its compliance. Further-

more, Congress attempts to correct policy violations when they occur. Our work shares the

policy inspection aspect with Congress. Therefore, we integrated our solution in Congress

as part of our contributions (see details in Section 4.4).

In the same fashion as the current work, formal verification approaches in [39, 55, 56]

are proposed for checking security compliance in other security domains, mainly, Identity

and Access Control. Majumdar et al. [39] propose auditing the multi-domain cloud at

the user level with OpenStack as an application, which is a complementary effort to our

work. Cotrini et al. [55] use FOL to express Role-based Access Control (RBAC) policies

and rely on an off-the-shelf SMT solver to analyze them. In [56], authors apply model

checking techniques to verify that access control policies implemented locally at the VM

and hypervisor levels actually satisfy the global access control policies.

2.3.2 Multi-Tenancy Threats Evaluation

As per our knowledge, the work of this thesis is the first to propose metrics for quantifying

the distance between tenants’ virtual infrastructures inside cloud deployments.
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Few works provide quantitative assessment frameworks to evaluate Security SLAs (Se-

cLAs) in the cloud [57, 58, 59, 60]. For instance, Luna et al. [57] developed a set of

metrics to quantitatively compare, benchmark and evaluate the security level of CSPs’

reference SecSLAs. Authors in [58] propose a framework enabling cloud customers to

choose the appropriate CSP according to their security requirements. In the same fashion,

authors of [59] propose a CSPs’ ranking mechanism based on Analytic Hierarchy Pro-

cess (AHP). The latter work is extended in [60] by leveraging specific notions of Cloud

SecSLAs adopted from current standardization efforts and real-world case studies. While

those approaches provide valuable frameworks for prospective cloud customers to choose

the right CSP based on the advocated SecLAs, our security metrics enable tenants to have

more visibility on the multi-tenancy threat-level with respect to cloud implementation mea-

surements.

Since VM-placement policies constitute the cloud infrastructure management compo-

nent in charge of mapping tenants’ VMs to hosts, many efforts have been deployed to

harden placement policies against co-residency attacks. For instance, Han et al. [61, 62]

proposed a VM-placement policy, namely, PSSF, to increase attackers’ difficulty in achiev-

ing malicious co-residency with the victim. To evaluate the resistance of their placement

policy to co-residency attacks, they further proposed a theoretical model composed of three

metrics (efficiency, coverage and VMmin). Contrarily to our metrics, the proposed model

is based on the assumption that the attacker is known, which is not the case in real cloud.

By considering that any tenant sharing the cloud is a potential attacker, our metrics en-

able CSPs to proactively mitigate co-residency attacks, and tenants to have visibility on the

security posture of their virtual infrastructures from the co-residency point of view.

SMOOP [63] is a security aware multi-objective VM-placement algorithm, which is

based on risk assessment. The latter relies on a set of metrics to evaluate the cloud-level

risk from multiple perspectives (VMs, hosts and network connections). Although, our
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metrics do not provide risk assessment, they can be used to assess the co-residency threat

related to different cloud deployments of tenants’ virtual infrastructures.

In [29], authors propose an experimental approach to assess real cloud placement poli-

cies against co-residency attacks. They consider the random-placement policy as a yard-

stick against which they evaluated the success rate and relative cost of malicious VM-

launch strategies for actual cloud VM-placement policies. Similarly, authors in [28] pro-

pose an experimental study based on intensive measurement probing to evaluate how re-

sistant modern IaaS models (e.g., Amazon EC2 and their VPC) are against co-residency

threats both at the host-level and at the rack-level. In this work, we take a complementary

direction as we propose a suite of security metrics that enables to evaluate the co-residency

threats according to tenants’ virtual infrastructures with respect to current cloud deploy-

ments.

In [64], authors propose a CSP-assisted VM migration service that aims at limiting the

information leakage due to side channels, by applying the moving target defense technique.

Migrate [65] is another VM migration-based solution that mitigates side channel attacks

in multi-tenant clouds. Our metrics can be used to evaluate the effectiveness of those

approaches in reducing the multi-tenancy threats in cloud deployments.
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Chapter 3

Auditing Security Compliance of the

Virtualized Infrastructure in the Cloud:

Application to OpenStack

3.1 Introduction

Several security challenges faced by the cloud, mainly the loss of control and the difficulty

to assess security compliance of the cloud providers, leave potential customers reluctant

towards its adoption. These challenges stem from cloud-enabling technologies and charac-

teristics. For instance, virtualization introduces complexity, which may lead to new vulner-

abilities (e.g., incoherence between multiple management layers of hardware and virtual

components). At the same time, concurrent and frequent updates needed to meet various

requirements (e.g., workload balancing) may create even more opportunities for miscon-

figuration, security failures, and compliance compromises. Cloud elasticity mechanisms

may cause virtual machines (VMs) belonging to different corporations and trust levels to

interact with the same set of resources, causing potential security breaches [66]. Therefore,
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cloud customers take great interest in auditing the security of their cloud setup.

Security compliance auditing provides proofs with regard to the compliance of imple-

mented controls with respect to standards as well as business and regulatory requirements.

However, auditing in the cloud constitutes a real challenge. First, the coexistence of a large

number of virtual resources on one side and the high frequency with which they are created,

deleted, or reconfigured on the other side, would require to audit, almost continuously, a

sheer amount of information, growing continuously and exponentially [67]. Furthermore,

a significant gap between the high-level description of compliance recommendations (e.g.,

Cloud Control Matrix (CCM) [7] and ISO 27017 [8]) and the low-level raw logging infor-

mation hinders auditing automation. More precisely, identifying the right data to retrieve

from an ever increasing number of data sources, and correctly correlating and filtering it

constitute a real challenge in automating auditing in the cloud.

We propose in this work to focus on auditing security compliance of the cloud virtual-

ized environment. More precisely, we focus primarily on virtual resources isolation based

on structural properties (e.g., assignment of instances to physical hosts and the proper con-

figuration of virtualization mechanisms), and consistency of the configurations in different

layers of the cloud (infrastructure management layer, software-defined networking (SDN)

controller layer, virtual layer and physical layer). Although there already exist various ef-

forts on cloud auditing (a detailed review of related works is given in Section 2.3.1), to the

best of our knowledge, none has facilitated automated auditing of structural settings of the

virtual resources while taking into account the multi-layer aspects.

Motivating example. The following illustrates the challenges to fill the gap between

the high-level description of compliance requirements as stated in the standards and the

actual low-level raw audit data. In CCM [7], the control on Infrastructure & Virtualization

Security Segmentation recommends “isolation of business critical assets and/or sensitive
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user data, and sessions”. In ISO 27017 [8], the requirement on segregation in virtual com-

puting environments mandates that “cloud service customer’s virtual environment should

be protected from other customers and unauthorized users”. Moreover, the segregation

in networks requirements recommends “separation of multi-tenant cloud service customer

environments”.

Clearly, any overlap between different tenants’ resources may breach the above re-

quirements. However, in an SDN/Cloud environment, verifying the compliance with the

requirements requires gathering information from many sources at different layers of the

cloud stack: the cloud infrastructure management system (e.g., OpenStack [16]), the SDN

controller (e.g., OpenDaylight [68]), and the virtual components and verifying that effec-

tively compliance holds in each layer. For instance, the logging information corresponding

to the virtual network of tenant 0848cc1999-e542798 is available from at least these

different sources:

• Neutron databases, e.g., records from table “Routers” associating tenants to their vir-

tual routers and interfaces of the form 0848cc1999e542798 (tenants id)

‖ 420fe1cd-db14-4780 (vRouter id) ‖ 6d1f6103-9b7a-4789-ab16

(vInterface id).

• Nova databases, e.g., records from table “Instances” associating VMs to their

owners and their MAC addresses as follows: 0721a9ac-7aa1-4fa9 (VM ID)

‖ 0848cc1999e542798 (tenants id) and fa:16:-3e:cd:b5:e1

(MAC)‖ 0721a9ac-7aa1-4fa9(VM ID).

• Open vSwitch databases information, where ports and their associated tags can be

fetched in this form qvo4429c50c-9d (port name)‖1084(VLAN ID).

As illustrated above, it is difficult to identify all the relevant data sources and to map infor-

mation from those different sources at various layers to the standard’s recommendations.
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Furthermore, potential inconsistencies in these layers make auditing tasks even more chal-

lenging. Additionally, as different sources may manipulate different identifiers for the same

resource, correctly correlating all these data is critical to the success of the audit activity.

To facilitate automation, we present a compiled list of security properties relevant to the

cloud virtualized environment that maps into different recommendations described in sev-

eral security compliance standards in the field of cloud computing. Our auditing approach

encompasses extracting configuration and logged information from different layers, corre-

lating the large set of data from different origins, and finally relying on formal methods to

verify the security properties and provide audit evidence. We furthermore implement the

verification of these properties and show how the data can be collected and processed in

the cloud environment with an application to OpenStack. Our approach shows scalability

as it allows auditing a dataset of 300,000 virtual ports, 24,000 subnets, and 100,000 VMs

in less than 8 seconds.

The main contributions of our work are as follows:

• To the best of our knowledge, this is the first effort on auditing cloud virtualized en-

vironment from the structural point of view taking into account consistency between

multiple control layers in the cloud.

• We identify a list of security properties from the literature that may fill the gaps

between security standards recommendations and actual compliance validation and

allows audit automation.

• We report real-life experience and challenges faced when trying to integrate auditing

and compliance validation into OpenStack.

• We conduct experiments whose results show scalability and efficiency of our ap-

proach.
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3.2 Methodology

In this section, we present some preliminaries and describe our approach for auditing and

compliance validation.

3.2.1 Threat Model

We assume that the cloud infrastructure management system has implementation flaws and

vulnerabilities, which can be potentially exploited by malicious entities. For instance, a

reported vulnerability in OpenStack Nova networking service, OSSN-0018/2014 [69], al-

lows a malicious VM to reach the network services running on top of the hosting machine,

which may lead to serious security issues. We trust cloud providers and administrators,

but we assume that some cloud users and operators may be malicious [70]. We trust the

cloud infrastructure management system for the integrity of the audit input data (e.g., logs,

configurations, etc.) collected through API calls, events notifications, and database records

(existing techniques on trusted auditing may be applied to establish a chain of trust from

TPM chips embedded inside the cloud hardware to auditing components, e.g., [71]). We as-

sume that not all tenants trust each other. They can either require not to share any physical

resource with all the other tenants, or provide a white (or black) list of trusted (or untrusted)

customers that they are (not) willing to share resources with. Although our auditing frame-

work may catch violations of specified security properties due to either misconfiguration

or exploits of vulnerabilities, our focus is not on detecting specific attacks or intrusions.

Example 3.1. For illustrating purposes in our running example, we consider two tenants.

Tenant Alpha can be exposed to malicious outsiders and insiders. A malicious insider could

be either an adversary (tenant Beta) sharing the same cloud resources with tenant Alpha

or a malicious operator with a higher access privilege.
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3.2.2 Modeling the Virtualized Infrastructure

In a multi-tenant cloud Infrastructure as a Service (IaaS) model, the provider’s physical

and virtual resources are pooled to serve on demands from multiple customers. The IaaS

cloud reference model [72] consists of two layers: The physical layer composed of net-

working, storage, and processing resources, and the virtualization layer that is running on

top of the physical layer and enabling infrastructure resources sharing. Figure 3.1 refines

the virtualization layer abstraction in [72] by considering tenant specific virtual resources

such as virtual networks and VMs. Accordingly, a tenant can provision several VM in-

stances and virtual networks. VMs may run on different hosts and be connected to many

virtual networks through virtual ports. Virtualization techniques are used to ensure isola-

tion among multiple tenants’ boundaries. Host virtualization technologies enable running

many virtual machines on top of the same host. Network virtualization mechanisms (e.g.,

VLAN and VXLAN) enable tenants’ network traffic segregation, where virtual networking

devices (e.g., Open vSwitches) play a vital role in connecting VM instances to their hosting

machines and to virtual networks.

In addition to these virtual and physical resources illustrated as nodes, Figure 3.1 shows

the relationships between tenants’ specific resources and cloud provider’s resources. These

relations will be used in Section 3.4 for the formalization of both the virtualized infrastruc-

ture model and the security properties. For instance, IsAttachedOnPort is a relationship

with arity 3. It attaches a VM to a virtual subnet through a virtual port. This model can be

refined with several levels of abstraction based on the properties to be checked.

3.2.3 Cloud Auditing Properties

We classify virtualization related-properties into two categories: Structural and operational

properties. Structural properties are related to the static configuration of the virtualized
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Figure 3.1: A generic model of the virtualized infrastructures in the cloud

infrastructure such as the assignment of instances to physical hosts, the assignment of vir-

tual networking devices to tenants, and the proper configuration of isolation mechanisms

such as VLAN configuration of each port. Operational properties are related to the for-

warding network functionality. Those are mainly reachability-related properties such as

loop-free forwarding and absence of black holes. Since the latter category has received

significant attention in the literature (e.g., [9], [10], [43]), the former category constitutes

the main focus of the current work. As the major goal of this work is to establish a bridge

between high-level guidelines in the security standards and low-level logs provided by cur-

rent cloud systems, we start by extracting a list of concrete security properties from those

standards and the literature in order to more clearly formulate the auditing problem. Table

3.1 presents an excerpt of the list of security properties we consider for auditing relevant
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standards (e.g., ISO 27002 [73], CCM [7]). Therein, we also classify properties based on

their relevance to the stakeholders. In the following, we provide a brief description fol-

lowed by an illustrating example for the sample properties, namely, absence of common

ownership of resources, no co-residency, and topology consistency.

Virtual Resource Isolation (No common ownership). Resource sharing technology was

not designed to offer strong isolation properties for a multi-tenant architecture and thus has

been ranked by the CSA among the nine notorious threats related to the cloud [74]. The

related risks include the failure of logical isolation mechanisms to properly segregate virtual

resources assigned to different tenants, which may lead to situations where one tenant has

access to another tenant’s resources or data. The no common ownership property aims at

verifying that no virtual resource is co-owned by multiple tenants. Tenants are generally

allowed to interconnect their own virtual resources to build their cloud virtual networks

by modifying their configurations. However, if a virtual resource (e.g., a router or a port)

is co-owned by multiple tenants, it can be part of several virtual networks belonging to

different tenants, which can potentially create a breach of isolation.

Example 3.2. (No common ownership) This property has been violated in a real-life Open-

Stack deployment by exploiting the vulnerability OSSA-2014-008 [75] reported in the Neu-

tron networking service, which allows a tenant to create a virtual port on another tenant’s

router. An instance of our model can capture this violation as illustrated in Figure 3.2.

The model instance on the left side illustrates the initial entities and their relationships

before exploiting the vulnerability. Assume that Tenant Beta, by exploiting the said

vulnerability, created vPort 21, and plugged it into vRouter A1, which belongs to

Tenant Alpha. This would modify the model instance as illustrated on the right side

showing the violation of no common ownership. Indeed, Tenant Beta is the owner

vPort 21 as he is the initiator of the port creation. But since the port is connected to
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vRouter A1, the created port would be considered as a common resource for both ten-

ants.

 vPort_10  vPort_20

HasInterface HasInterface

 vRouter_B1 vRouter_A1

BelongsTo

BelongsTo

 

Tenant_

Alpha

 vPort_10  vPort_21  vPort_20

HasInterface HasInterface

 vRouter_B1 vRouter_A1

BelongsTo BelongsTo
BelongsTo BelongsTo

BelongsTo

HasInterface

Creation 

of vPort_21

Before After

BelongsTo
BelongsTo

 

Tenant_

Alpha  

Tenant_

Beta

BelongsTo

 

Tenant_

Beta

Figure 3.2: Model instances for the no common ownership property before and after the

violation of no common ownership property. After creating port vPort 21, the latter

becomes owned by two tenants.

Physical Isolation (No VM co-residency). To maximize resources utilization, cloud providers

consolidate virtual machines, possibly belonging to competing customers, to be run on the

same physical machine, which may cause major security concerns as described in [76].

Physical isolation [77] aims at preventing side and covert channel attacks, and reducing

the risk of attacks staged based on hypervisor and software switches vulnerabilities (e.g.,

[78]) by hosting VMs in different physical servers. Such attacks might lead to performance

degradation, sensitive information leakage, and denial of service.

Example 3.3. (No VM co-residency) Figure 3.3 consists of two subsets of instances of the

virtual infrastructure model presented in Section 3.2.2. At the left side of the figure, we

have two virtual machines VM A1 and VM A2 belonging to Tenant Alpha and running

at compute node CN 1, and VM B1 owned by Tenant Beta while running at compute

node CN 2. Because of lack of trust, Tenant Alpha may require physical isolation of

his VMs from those of Tenant Beta. However, as illustrated at the right side of Figure

3.3, VM A2 can be migrated from CN 1 to CN 2 for load balancing. This new instance of

the model after migration illustrates the violation of physical isolation.

Topology consistency. As stated in [79], it is critical to maintain consistency among cloud
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VM_A1
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VM_B1
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Alpha  
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VM_A1

 

VM_A2
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CN_2

HasRunningVM HasRunningVM

IsLocatedAt IsLocatedAt IsLocatedAt

DoesNot

Trust

Migration 

of VM_A2

Before After

HasRunningVM

Figure 3.3: Subsets of the virtual infrastructure model instances before and after violation

of the no VM co-residency property illustrating an example of data on VM locations. After

migration, VM A2 becomes co-resident with VM B1 at compute node CN 2.

layers. The architectural model of the cloud can be described as a stack of layered services:

physical layer, system resources layer, virtualized resources layer, support services layer,

and at the top cloud-delivered services. Additionally, using SDN to implement network

services increases management flexibility but also adds yet another layer in the stack. The

presence of inconsistencies between these layers may lead to security breaches, which in

turn makes the security controls at higher layers inefficient. Topology consistency consists

of checking whether the topology view in the cloud infrastructure management system,

matches the actual implemented topology, while considering different mappings between

the physical infrastructure, the virtual infrastructure, and the tenants’ boundaries.

Example 3.4. (Port consistency) We suppose that a malicious insider managed to deliber-

ately create a virtual port vPort 40 on Open vSwitch 56 and label it with the VLAN iden-

tifier VLAN 100 that is already assigned to tenant Alpha. This would allow the malicious

insider to sniff tenant Alpha’s traffic by mirroring the VLAN 100 traffic to the created port,

vPort 40. This clearly would lead to the violation of the network isolation property.

As illustrated in Figure 3.4, we build two views of the virtualized topology: The actual

topology is built based on data collected directly from the networking devices running at

the virtualization layer (Open vSwitches), and the perceived topology is obtained from the

infrastructure management layer (Nova and Neutron OpenStack databases). The dashed
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lines map one to one the entities between the two topologies (not all the mappings are

shown for more readability). We can observe that vPort 40 is attached to VLAN 100, which

maps to Net 01 (tenant Alpha’s network), but there is no entity at the infrastructure man-

agement layer that maps to the entity vPort 40 at the virtualization layer, which reveals a

potential security breach.
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Figure 3.4: Virtualized infrastructure model instance showing an OpenStack representation

and the corresponding actual virtual layer implementation. VXLAN 72 and its ports are

part of the infrastructure implementation and do not correspond to any component in tenant

Alpha’s resources.

Other Security Properties. In the following, we briefly describe other security properties

presented in Table 3.1.

• Data and processing location correctness One of the main cloud specific security
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Subject Properties and Sub-Properties
Standards

ISO27002 [73] ISO27017 [8] NIST800 [81] CCM [7]

Tenant

Data and processing location correctness 18.1.1 18.1.1 IR-6, SI-5 SEF-01, IVS-

04

Virt. resource isolation (e.g., no common ownership) - CLD.9.5.1 - STA-5, IVS-

09

Physical isolation (e.g., no co-residency) - 13.1.3 SC-2 IVS-8, IVS-9

Fault tolerance

Facility duplication

17.1, 17.2 12.1.3, 17.1, 17.2 PE-1, PE-13 BCR-03Storage service duplica-

tion

Redundant network con-

nectivity

Provider
No abuse of resources

Max number of VMs
- - - IVS-11

Max number of virtual

networks

No resource exhaustion - - - IVS-05

Both Topology consistency
inf. management

view/virtual inf.
- 13.1.3 SC-2 IVS-8, IVS-9

SDN controller view/

virtual inf.

Table 3.1: An excerpt of security properties
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issues is the increased complexity of compliance with laws and regulations [80]. The

cloud provider might have data centers spread over different continents and governed

by various court jurisdictions. Data and processing can be moved between the cloud

provider’s data centers without tenants’ awareness, and fall under conflicting privacy

protection laws.

• Redundancy and fault tolerance Cloud providers have to apply several measures to

achieve varying degrees of resiliency following the criticality of tenants’ applica-

tions. Duplicating facilities in various locations, and replicating storage services are

examples of the measures that could be undertaken. Considering additional redun-

dancy of network connectivity and information processing facilities has been men-

tioned in ISO 27002:2013 [73] as one of best practices.

• No abuse of resources Cloud services can be used by legitimate anonymous cus-

tomers as a basis to illegitimately lead criminal and suspicious activities. For exam-

ple, cloud services can be used to stage DDoS attacks [74].

• No resource exhaustion The ease with which virtual resources can be provisioned

in the cloud introduces the risk of resource exhaustion [82]. For example, creating

a huge amount of VMs within a short time frame drastically increases the odds of

misconfiguration, which opens up several security breaches [83].

3.3 Audit Ready Cloud Framework

Figure 3.5 illustrates a high-level architecture of our auditing framework. It has five main

components: data collection and processing engine, compliance validation engine, audit

report engine, dashboard, and audit repository database. The framework interacts mainly

with the cloud management system, the cloud infrastructure system (e.g., OpenStack), and
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elements in the data center infrastructure to collect various types of audit data. It also

interacts with the cloud tenant to obtain the tenant requirements and to provide the tenant

with the audit result. Tenant requirements encompass both general and tenant-specific

security policies, applicable standards, as well as audit queries. In the following, we only

focus on the major components.

Our data collection and processing engine is composed of two sub-engines: the collec-

tion engine and the processing engine. The collection engine is responsible for collecting

the required audit data in a batch mode, and it relies on the cloud management system to

obtain the required data. The role of the processing engine is to filter, format, aggregate,

and correlate this data. The required audit data may be distributed throughout the cloud and

in different formats. The processing engine must pre-process the data in order to provide

specific information needed to verify given properties. The last processing step is to gener-

ate the code for compliance validation and then store it in the audit repository database to

be used by the compliance validation engine. The generated code depends on the selected

back-end verification engine.

The compliance validation engine is responsible for performing the actual verification

of the audited properties and the detection of violations, if any. Triggered by an audit re-

quest or updated inputs, the compliance validation engine invokes our back-end verification

and validation engines. We use formal methods to capture formally the system model and

the audit properties, which facilitates automated reasoning and is generally more practical

and effective than manual inspection. If a security audit property fails, evidence can be

obtained from the output of the verification back-end. Once the outcome of the compliance

validation is ready, audit results and evidences are stored in the audit repository database

and made accessible to the audit reporting engine. Several potential formal verification en-

gines can serve our needs, and the actual choice may depend on the property being verified.
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Figure 3.5: A high-level architecture of our cloud auditing framework

3.4 Formal Verification

As a back-end verification mechanism, we propose to formalize audit data and properties

as Constraint Satisfaction Problems (CSP) and use a constraint solver, namely Sugar [84],

to validate the compliance. CSP allows formulation of many complex problems in terms of

variables defined over finite domains and constraints. Its generic goal is to find a vector of

values (a.k.a. assignment) that satisfies all constraints expressed over the variables. If all

constraints are satisfied, the solver returns SAT, otherwise, it returns UNSAT. In the case of

a SAT result, a solution to the problem is provided. The key advantage of using CSP comes

from the fact that it enables uniformly presenting the system’s setup and specifying the

properties in a clean formalism (e.g., First Order Logic (FOL) [85]), which allows to check

a wide variety of properties [86]. Moreover using CSP avoids the state space traversal,
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which makes our approach more scalable for large data sets.

3.4.1 Model Formalization

Depending on the properties to be checked, we encode the involved instances of the virtu-

alized infrastructure model as CSP variables with their domains definitions (over integer),

where instances are values within the corresponding domain. For example, Tenant is de-

fined as a finite domain ranging over integer such that (domain T ENANT 0 max tenant)

is a declaration of a domain of tenants, where the values are between 0 and max tenant.

Relations between classes and their instances are encoded as relation constraints and their

supports, respectively. For example, HasRunningVM is encoded as a relation, with a sup-

port as follows: (relation HasRunningVM 2 (supports(vm1, t1)(vm2, t2))). The support of

this relation will be fetched and pre-processed in the data processing step. The CSP code

mainly consists of four parts:

• Variable and domain declaration. We define different entities and their respective

domains. For example, t is a variable defined over the domain T ENANT , which

ranges over integers.

• Relation declaration. We define relations over variables and provide their support

from the audit data.

• Constraint declaration. We define the negation of each property in terms of predi-

cates over the involved relations to obtain a counter-example in case of a violation.

• Body. We combine different predicates based on the properties to verify using Boolean

operators.
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Relations in Properties Evaluate to True if

BelongsTo(r, t) The resource r is owned by tenant t

HasRunningVM(vm, t) The tenant t has a running virtual machine vm

DoesNotTrust(t1, t2) Tenant t2 is not trusted by tenant t1 which means that

t1’resources should not share the same hardware with t2’ in-

stances

IsLocatedAt(vm,cn) The instance vm is located at the compute node cn

IsAssignedPortVLAN

(p,v,t)

the port p is assigned to the VLAN v which is in turn as-

signed to tenant t

HasPortVLAN(vs, p,v) The port p is created at the virtual switch vs and assigned to

VLAN v

Table 3.2: First Order Logic predicates

3.4.2 Properties Formalization

Security properties would be expressed as predicates over relation constraints and other

predicates. We express the sample properties in FOL. Table 3.2 summarizes the predicates

required for expressing the properties. Those predicates correspond to CSP relation con-

straints used to describe the current configuration of the system. Note that predicates that

do not appear as relationships in Figure 3.1 are inferred by correlating other available rela-

tions.

No Common Ownership. We check that a tenant-specific virtual resource belongs to a

unique tenant.

∀r ∈ Resource,∀t1,t2 ∈ TENANT (1)

BelongsTo(r,t1)∧BelongsTo(r,t2) → (t1= t2)

No Co-residence. Based on the collected data, we check that the tenant’s instances are not

co-located in the same compute node with adversaries’ instances.
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∀t1,t2 ∈ TENANT,∀vm1,vm2 ∈ INSTANCE, (2)

∀cn1,cn2 ∈ COMPUTEN :

HasRunningVM(vm1,t1)∧HasRunningVM(vm2,t2)∧

DoesNotTrust(t1,t2)∧IsLocatedAt(vm1,cn1)∧

IsLocatedAt(vm2,cn2) → cn1 6= cn2

Topology Consistency. We check that mappings between virtual resources over different

layers are properly maintained and that the current view of the cloud infrastructure man-

agement system on the topology, matches the actual topology of the virtual layer. In the

following, we consider port consistency as a specific case of topology consistency. We

check that the set of virtual ports assigned to a given tenant’s VLAN by the provider corre-

spond exactly to the set of ports inferred from data collected from the actual infrastructure’s

configuration for the same tenant’s VLAN.

∀vs ∈ vSWITCH, ∀p ∈ Port ∀t ∈ TENANT ∀v ∈ VLAN (3)

HasPortVlan(vs,p,v) ⇔ IsAssignedPortVLAN(p,v,t)

Example 3.5. Listing 3.1 is the CSP code to verify the no common ownership, no co-

residence and port consistency properties for our running example. Variables along with

their respective domains are first declared. Based on the properties of interest, a set of

relations are defined and populated with their supporting tuples, where the support is gen-

erated from actual data in the cloud. Then, the properties are declared as predicates over
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these relations. Finally, the disjunction of the predicates is instantiated for verification.

As we are formalizing the negation of the properties, we are expecting the UNSAT result,

which means that none of the properties holds (i.e., no violation of the properties). We

present the verification outputs in Section 3.5.

Listing 3.1: Sugar source code for common ownership, co-residence and port consistency

property verification

1 / / D e c l a r a t i o n

2 ( domain TENANT 0 60000) ( domain RESOURCE 0 216000)

3 ( domain INSTANCE 0 100000) ( domain HOST 0 1000)

4 ( domain PORT 0 3 0 0 ; 000) ( domain VLAN 0 60000)

5 ( domain VSWITCH 0 1000)

6 ( i n t T1 TENANT) ( i n t T2 TENANT)

7 ( i n t R1 Reso u rce ) ( i n t R2 Reso u rce )

8 ( i n t VM1 INSTANCE) ( i n t VM2 INSTANCE)

9 ( i n t H1 HOST) ( i n t H2 HOST ) ( i n t V VLAN)

10 ( i n t T TENANT) ( i n t P PORT) ( i n t vs VSWITCH)

11 / / R e l a t i o n s D e c l a r a t i o n s and Au d i t d a t a a s t h e i r s u p p o r t

12 ( r e l a t i o n BelongsTo 2 ( s u p p o r t s (18037 1 0 ) (1 8 0 3 8 1 0 ) ( 18039 1 0 )

13 (18040 1 0 ) (1 8 0 3 8 1 1 ) (1 8 0 4 2 1 1 ) (1 8 0 4 3 1 1 ) (1 8 0 4 4 1 1 ) (1 8 0 4 5 1 1 )

14 (18046 1 2 ) (1 8 0 4 7 1 2 ) ) )

15 ( r e l a t i o n HasRunningVM 2 ( s u p p o r t s (6100 1 0 ) (6 1 0 1 1 0 ) (6 1 0 2 1 1 )

16 (6103 1 1 ) (6 1 0 4 1 1 ) (6 1 0 5 1 1 ) ) )

17 ( r e l a t i o n I s L o c a t e d A t 2 ( s u p p o r t s ( ( ( 6 0 8 9 1 1 0 0 0 ) (6 0 9 0 11000)

18 (6093 1 1 0 0 0 ) (6 1 0 1 1 1 1 0 0 ) (6 1 0 2 1 1 1 0 0 ) )

19 ( r e l a t i o n Do esNo tTru s t 2 ( s u p p o r t s (9 1 1 ) ( 9 1 3 ) ( 9 1 4 ) ) )

20 ( r e l a t i o n IsAssignedPortVLAN 3 ( s u p p o r t s (18028 6017 9 ) (1 8 0 2 9 6018 9 )

21 (18030 6019 1 0 ) (1 8 0 3 1 6019 1 0 ) (1 8 0 3 2 6020 1 0 ) ) )

22 ( r e l a t i o n HasPortVLAN 3 ( s u p p o r t s (511 18030 6 0 1 9 ) (5 1 1 18031 6019 1 0 )

23 (512 18032 6 0 2 0 ) (5 1 2 18033 6 0 2 1 ) ) )

24 / / S e c u r i t y p r o p e r t i e s e x p r e s s e d i n t e r m s o f p r e d i c a t e s o v e r r e l a t i o n s
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25 ( p r e d i c a t e ( CommonOwnership T1 R1 T2 R2 )

26 ( and ( BelongsTo T1 R1 ) ( BelongsTo T2 R2 ) (= R1 R2 ) ( n o t (= T1 T2 ) ) ) )

27 ( p r e d i c a t e ( c o R e s i d e n c e T1 T2 VM1 VM2 H1 H2 ) ( and ( Do esNo tTru s t T1 T2 )

28 ( HasRunningVM VM1 T1 ) ( HasRunningVM VM2 T2 ) ( I s L o c a t e d A t H1 VM1)

29 ( I s L o c a t e d A t H2 VM2) (=H1 H2 ) ) )

30 ( p r e d i c a t e ( p o r t C o n s i s t e n c y P V T)

31 ( o r ( and ( IsAssignedPoprtVLAN P V T )

32 ( n o t ( HasPortVLAN VS P V ) ) )

33 ( and ( HasPortVLAN VS P V) ( n o t ( IsAssignedPoprtVLAN P V T ) ) ) ) )

34 \\The Body

35 ( o r ( CommonOwnership T1 R1 T2 R2 ) ( c o R e s i d e n c e T1 T2 VM1 VM2 H1 H2 )

36 ( p o r t C o n s i s t e n c y P V T) )

3.5 Application to OpenStack

This section describes how we integrate our audit and compliance framework into Open-

Stack. First, we briefly present the OpenStack networking service (Neutron), the compute

service (Nova) and Open vSwitch [21], the most popular virtual switch implementation.

We then detail our auditing framework implementation and its integration in OpenStack

along with the challenges that we faced and overcame.

3.5.1 Background

OpenStack [16] is an open-source cloud infrastructure management platform that is being

used almost in half of private clouds and significant portions of the public clouds (see [1]

for detailed statistics). The major components of OpenStack to control large collections

of computing, storage and networking resources are respectively Nova, Swift and Neutron

along with Keystone. Following is the brief description of Nova and Neutron:
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Nova [16] This is the OpenStack project designed to provide massively scalable, on de-

mand, self service access to compute resources. It is considered as the main part of an

Infrastructure as a Service model.

Neutron [16] This OpenStack system provides tenants with capabilities to build rich net-

working topologies through the exposed API, relying on three object abstractions, namely,

networks, subnets and routers. When leveraged with the Modular Layer 2 plug-in (ML2),

Neutron enables supporting various layer 2 networking technologies. For our testbed we

consider Open vSwitch as a network access mechanism and we maintain two types of net-

work segments, namely, VLAN for communication inside of the same compute node, and

VXLAN for inter compute nodes communications.

Open vSwitch [21]. Open vSwitch is an open source software switch designed to be used

as a vSwitch in virtualized server environments. It forwards traffic between different virtual

machines (VMs) on the same physical host and also forwards traffic between VMs and the

physical network.

3.5.2 Integration to OpenStack

We focus mainly on three components in our implementation: the data collection engine,

the data processing engine, and the compliance validation engine. The data collection

engine involves several components of OpenStack e.g., Nova and Neutron for collecting

audit data from databases and log files, different policy files and configuration files from the

OpenStack ecosystem, and log files from various virtual networking components such as

Open vSwitch to fully capture the configuration. The data is then converted into a consistent

format and missing correlation is reconstructed. The results are used to generate the code

for the validation engine based on Sugar input language. The compliance validation engine

performs the verification of the properties by feeding the generated code to Sugar. Finally,

Sugar provides the results on whether the properties hold or not. Figure 3.6 illustrates the
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Figure 3.6: Our OpenStack-based auditing solution with the example of data collection,

formating, correlation building and Sugar source generation

steps of our auditing process. In the following, we describe our implementation details

along with the related challenges.

Data collection engine. We present hereafter different sources of data in OpenStack along

with the current support for auditing offered by OpenStack and the virtual networking

components. The main sources of audit data in OpenStack are logs, configuration files,

and databases. Table 3.3 shows some sample data sources. The involved sources for audit-

ing depend on the objective of the auditing task and the tackled properties. We use three

different sources to audit configuration correctness of virtualized infrastructures:

• OpenStack. We rely on a collection of OpenStack databases, hosted in a MySQL

server, that can be read using component-specific APIs such as Neutron APIs. For in-

stance, in Nova database, table Compute-node contains information about the hosting
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Relations Sources of Data

BelongsTo Table Instances in Nova database and Routers, Subnets and

Ports in Neutron database, Neutron logs

DoesnotTrust The tenant physical isolation requirement input

IsLocatedAt Tables Instances in Nova database

IsAssignedPortVLAN Networks in Nova database and Ports in Neutron database

HasPortVLAN Open vSwitch instances located at various compute nodes

HasRunningVM Table Instances in Nova database

Table 3.3: Sample data sources in OpenStack, Open vSwitch and tenants’ requirements

machines such as the hypervisor’s type and version, table Instance contains informa-

tion about the project (tenant) and the hosting machine, table Migration contains mi-

gration events’ related information such as the source-compute and the destination-

compute. The Neutron database includes various information such as security groups

and port mappings for different virtualization mechanisms.

• Open vSwitch. Flow tables and databases of Open vSwitch instances located in dif-

ferent compute nodes and in the controller node constitute another important source

of audit data for checking whether there exist any discrepancies between the actual

configuration and the OpenStack view.

• Tenant policies. We consider security policies expressed by the customers, such as

physical isolation requirements. As expressing tenants’ policies is out of the scope

of this work, we assume that they are parsable XML files.

Data processing engine. Our data processing engine, which is implemented in Python,

mainly retrieves necessary information from the collected data according to the targeted

properties, recovers correlation from various sources, eliminates redundancies, converts it

into appropriate formats, and finally generates the source code for Sugar.

• Firstly, for each property, our plug-in identifies the involved relations. The relations’

support is either fetched directly from the collected data such as the support of the
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relation BelongsTo, or recovered after correlation, as in the case of the relation IsAs-

signedPortVLAN.

• Secondly, our processing plug-in formats each group of data as an n-tuple, i.e., (re-

source, tenant),(port, vlan, tenant), etc.

• Finally, our plug-in uses the n-tuples to generate the portions of Sugar’s source code,

and append the code with the variable declarations, relationships and predicates for

each security property (as discussed in Section 3.4). Different scripts are needed to

generate Sugar source code for the verification of different properties.

Compliance Validation. The compliance validation engine is discussed in details in Sec-

tion 3.4. In the following example, we discuss how our auditing framework can detect the

violation of the no common ownership, no co-residence and port inconsistency security

properties caused by the attack scenarios of our running example.

Example 3.6. In this example, we describe how a violation of no common ownership, no

co-residence and port-consistency properties may be caught by auditing.

Firstly, our program collects data from different tables in the Nova and Neutron

databases, and logs from different Open vSwitch instances. Then, the processing engine

correlates and converts the collected data and represents it as tuples; for an example:

(18038 10) (6100 11000) (512 6020 18033) where Port 84: 18038, Alpha: 10, VM 01:

6100, Open vSwitch 56: 512, vPort 40: 18033 and VLAN 100: 6020. Additionally, the

processing engine interprets each property and generates the associated Sugar source code

(see Listing 3.1 for an excerpt of the code) using processed data and translated properties.

Finally, Sugar is used to verify the security properties.

We show for each property how the violation is detected:

• No common Ownership. The predicate CommonOwnership will evaluate to true if
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there exists a resource belonging to two different tenants. As Port 84 has been cre-

ated by Beta, BelongsTo(Port 84, Beta) evaluates to true based on collected data

from Neutron logs. Port 84 is defined on Alpha’s router, hence, BelongsTo(Port 84,

Alpha) evaluates to true based on collected data from Neutron database. Conse-

quently, the predicate CommonOwnership evaluates to true. In this case, the output

of sugar (SAT) is the solution of the problem, (r1 = 18038; r2 =18038; t1 =10;

t2=11), which is actually the proof that Port 84 violates the no common ownership

property.

• No co-residence. In our example (see Figure 3.3), the supports Has-

RunningVM((VM 02, Alpha)(VM 03, Beta)), IsLocatedAt((VM 02, Com-

pute Node 96)(VM 03,Compute Node 96) and DoesNotTrust(Alpha, Beta), where

VM 02:6101, VM 03:6102, and Compute Node 96:11100, make the predicate

evaluate to true meaning that the no co-residence property has been violated.

• Port-consistency. The predicate PortConsistency evaluates to true if there exists

a discrepancy between the OpenStack view of the virtualized infrastructure and

the actual configuration. The support HasPortVLAN(Open vSwitch 56, vPort 40,

VLAN 100) makes the predicate evaluate to true, as long as there is no tuple such that

IsAssignedPortVLAN (Port, VLAN 100, Alpha) where Port maps to vPort 40:18033.

Challenges. Checking the configuration correctness in virtualized environment requires

considering logs generated by virtualization technologies at various levels, and checking

that mappings are properly maintained over different layers. Unfortunately, OpenStack

does not maintain such overlay details.

At the OpenStack level, ports are directly mapped to VXLAN IDs, whereas at the Open-

vSwitch level, ports are mapped to VLAN tags and mappings between the VLAN tags and

VXLAN IDs are maintained. To overcome this limit, we devised a script that generates logs

44



from all the Open vSwitch instances. The script recovers mappings between VLAN tags

and the VXLAN IDs from the flow tables using the ovs-o f ctl command line tool. Then, it

recovers mappings between ports and VLAN tags from the Open-vSwitch database using

the ovs-vsctl command line utility.

Checking the correct configuration of overlay networks requires correlating informa-

tion collected both from Open vSwitch instances running on top of various compute nodes

and the controller node, and data recovered from OpenStack databases. To this end, we ex-

tended our data processing plug-in to deduce correlation between data. For example, we in-

fer the relation (port vlan tenant) from the available relations (vlan vxlan) recovered from

Open vSwitch and (port vxlan tenant) recovered from the Nova and Neutron databases. In

our settings, we consider a ratio of 30 ports per tenant, which leads to 300,000 entries in

the relation (port vxlan tenant) for 10,000 tenants. The number of entries is considerably

larger than the number of tenants, because a tenant may have several ports and virtual net-

works. As a consequence, with the increasing number of tenants, the size of this relation

grows and the complexity of the correlation step also increases proportionally. Note that

the correlation is required for several of our listed properties.

An auditing solution becomes less effective if all needed audit evidences are not col-

lected properly. Therefore, to be comprehensive in our data collection process, we firstly

check fields of all varieties of log files available in OpenStack, all configuration files and

all Nova and Neutron database tables. Through this process, we identify all possible types

of data with their sources.

3.6 Experiments

In this section, we discuss the performance of our auditing solution by measuring the exe-

cution time, memory, and CPU consumption.
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3.6.1 Experimental Setting

We deployed OpenStack with one controller node and three compute nodes, each having

Intel i7 dual core CPU and 2GB memory running Ubuntu 14.04 server. Our OpenStack

version is DevStack Juno (2014.2.2.dev3). We set up a testbed environment constituted

of 10 tenants, 150 VMs and 17 routers. To stress the verification engine and assess the

scalability of our approach, we furthermore simulated an environment with 10,000 tenants,

100,000 VMs, 40,000 subnets, 20,000 routers and 300,000 ports with a ratio of 10 VMs, 4

subnets, 2 routers and 30 ports per tenant. For the compliance verification, we use the V&V

tool, Sugar V2.2.1 [84]. We conduct the experiments for 20 different audit trail datasets in

total.

All data processing and V&V experiments are conducted on a PC with 3.40 GHz Intel

Core i7 quad core CPU and 16 GB memory and we repeat each experiment 1,000 times.

3.6.2 Results

The first set of our experiment (see Figure 3.7) demonstrates the time efficiency of our au-

diting solution. Figure 3.7(a) illustrates the time in milliseconds required for data process-

ing and compliance verification steps for port consistency, no co-residence and no common-

ownership properties. For each of the properties, we vary the most significant parameter

(e.g., the number of ports, VMs and subnets for port consistency, no co-residence and no

common ownership properties respectively) to assess the scalability of our auditing solu-

tion. Figure 3.7(b) (left) shows the size of the collected data in KB for auditing by varying

the number of tenants. The collected data size reaches around 17MB for our largest dataset.

We also estimate the time for collecting data as approximately 8 minutes for a fairly large

cloud setup (10,000 tenants, 100,000 VMs, 300,000 ports, etc.). Note that data collection

time heavily depends on the deployment options and the setup complexity. Moreover, the
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Figure 3.7: Execution time for each auditing step, total size of the collected audit data and

total time for different properties using our auditing solution
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initial data collection step is performed only once for the auditing process (later on incre-

mental collection will be performed at regular intervals), so the time may be considered

reasonable. Figure 3.7(b) (right) shows the total execution time required for each property

individually and in total. Auditing no common ownership property requires the longest

time, because of the highest number of predicates used in the verification step; however, it

finishes in less than 4 seconds. In total, the auditing of three properties completes within

8 seconds for the largest dataset, when properties are audited sequentially. However, since

there is no interdependency between verifying different security properties, we can easily

run parallel verification executions. The parallel execution of the verification step for dif-

ferent properties reduces the execution time to 4 seconds, the maximum verification time

required among three security properties. Additionally, we can infer that the execution time

is not a linear function of the number of security properties to be verified. Indeed, auditing

more security properties would not lead to a significant increase in the execution time.

The objective of our second experiment (Figures 3.8(a)(left) and 3.8(b)(right)) is to

measure the CPU usage (in %). In Figure 3.8(a)(left), we measure the peak CPU usage

consumed by data processing and verification steps while auditing the no common owner-

ship property. We notice that the average CPU usage is around 35% for the verification,

whereas it is fairly negligible for the data processing step. According to Figure 3.8(b)(left),

the CPU usage grows almost linearly with the number of tenants. However, the speed of in-

crease varies depending on the property. It reaches a peak of over 70% for the no common

ownership property for 10,000 tenants. This is due to the huge amount of tenant-specific

resources (e.g., for 10,000 tenants the number of involved resources may reach 216,000).

Our final experiment (Figures 3.8(a)(right) and 3.8(b)(left)) demonstrates the memory

usage of our auditing solution. Figure 3.8(a)(right) shows that data processing step has a

minor memory usage (with a peak of 0.05%), whereas the highest memory usage observed

for the verification step for our largest setup is less than 0.19% of 16GB memory. Figure
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3.8(b) (right) shows that port consistency property has the lowest memory usage with a

percentage of 0.2% whereas no common ownership has the highest memory usage, which

is less than 0.6% for 10,000 tenants. Our observation from this experiment is that memory

usage is related to the number of relations, variables and constraints involved to verify each

property.

Discussion. In our experiments, we audited several security properties, e.g., no common

ownership and port consistency, for up to 10,000 tenants with a large set of various re-

sources (300,000 ports, 100,000 VMs, 40,000 subnets) in less than 8 seconds. The audit-

ing activity occurs upon request from the auditor (or in regular intervals when the auditor

sets regular audits). Therefore, we consider the costs of our approach to be reasonable even

for large data centers. Although we report results for a limited set of security properties

related to virtualized cloud infrastructure, promising results show the potentiality of the

use of formal methods for auditing. Particularly, we show that the time required for our

auditing solution grows very slowly with the number of security properties. As seen in Fig-

ure 3.7(a), we anticipate that auditing a large list of security properties in practice would

still be realistic. The cost generally increases almost linearly with the number of tenants.

Note that, we conduct our experiments in a single PC; if the security properties can be

verified through concurrent and independent Sugar executions, we can easily parallelize

this task by running several instances of Sugar on different VMs in the cloud environment.

Thus the parallelization in the cloud allows to reduce the overall verification time to the

maximum time for any individual security property.
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3.7 Summary

In this work, we elaborated a generic model for virtualized infrastructures in the cloud.

We identified a set of relevant structural security properties to audit and mapped them to

different standards. Then, we presented a formal approach for auditing cloud virtualized

infrastructures from the structural point of view. Particularly, we showed that our approach

is able to detect topology inconsistencies that may occur between multiple control layers

in the cloud. Our evaluation results show that formal methods can be successfully applied

for large data centers with a reasonable overhead.
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Chapter 4

ISOTOP: Auditing Virtual Networks

Isolation Across Cloud Layers in

OpenStack

4.1 Introduction

Despite the abundant benefits of the cloud, security and privacy concerns are still holding

back its widespread adoption [87]. Particularly, multi-tenancy in cloud environments, sup-

ported by virtualization, allows optimal and cost-effective resource sharing among tenants

that do not necessarily trust each other. Furthermore, the highly dynamic, elastic, and self-

service nature of the cloud, introduces additional operational complexity that may prepare

the floor for misconfigurations and vulnerabilities, leading to violations of baseline secu-

rity and non-compliance with security standards (e.g., ISO 27002/27017 [73, 8] and CCM

3.0.1 [7]). Particularly, network isolation failures are among the foremost security concerns

in the cloud [17, 18]. For instance, virtual machines (VMs) belonging to different corpo-

rations and trust levels may share the same set of resources, which opens up opportunities
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for inter-tenant isolation breaches [66]. Consequently, cloud tenants may raise questions

like: “How to make sure that all my virtual resources and private networks are properly iso-

lated from other tenants’ networks, especially my competitors? Are my vertical Network

Segments (e.g., for finance, human resources, etc.) properly segregated from each other?”.

Security auditing aims at verifying that the implemented mechanisms are actually pro-

viding the expected security features. However, auditing security without suitable auto-

mated tools could be practically infeasible due to the design complexity and the sheer size

of the cloud as motivated in the following example.

VM_11 VM_12

Virtual Switch

VLAN_100

VM_13 VM_22VM_21

VLAN_101 VLAN _201VLAN_200

Physical Server_1 Physical Server_2

VM_Adb VM_AwebVM_Aapp VM_Bapp2VM_Bapp1

vNet_A vNet_B

Tenant_Alpha Tenant_Beta Ownership

Connection

vNet_A

vNet_B

Virtual link

´ 

Infrastructure 

Management Layer

Virtual Switch

Implementation 

Layer

Mapping 

Attack scenario

Figure 4.1: A two-layer view of a multi-tenant cloud virtualized infrastructure: The infras-

tructure management layer and the implementation layer

Motivating Example. Figure 4.1 illustrates a simplified view of an OpenStack [16]

configuration example for virtualized multi-tenant cloud environments. Following a lay-

ered architecture [88], the cloud stack includes an infrastructure management layer re-

sponsible of provisioning, interconnecting, and decommissioning a set of virtual resources

belonging to different tenants, at the implementation layer, across distributed physical re-

sources. For instance, at the infrastructure management layer, virtual machines VM Adb
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and VM Bapp1, are defined in separate Virtual Networks, vNet A and vNet B belong-

ing to Tenant Alpha and Tenant Beta, respectively. At the implementation layer,

these VMs are instantiated on Physical Server 1 as VM 11 and VM 21 and are inter-

connected to form those virtual networks. As the latter networks share the same physical

substrate, network isolation mechanisms are defined at the management layer and config-

ured at the implementation layer through network virtualization mechanisms to ensure their

logical segregation. For instance, Virtual Local Area Network (VLAN) is used to isolate

different virtual networks at the host level (more details are provided in Section 4.2.1). To

audit isolation as defined in applicable standards, there exist several challenges.

• The gap between the high-level description of the requirements in the standards and

the actual security properties hinders auditing automation. For instance, the require-

ment on segregation in networks in ISO 27017 [8] recommends “separation of multi-

tenant cloud service customer environments”. Stated as such, these requirements do

not detail exactly what data to be checked or how it should be verified.

• The layered nature of the cloud stack and the dependencies between layers make

existing approaches that separately verify each single layer ineffective. Those lay-

ers maintain different but complementary views of the virtual infrastructure and

current isolation mechanisms configurations. For instance, assume Tenant Beta

compromises the hypervisor on Physical Server 1 (e.g., by exploiting some

vulnerabilities [78]) and succeeds to directly modify VLAN 200 associated with

VM 21 to become VLAN 100 that is currently associated with VM 11 and VM 12 on

Physical Server 1. This leads to a topology isolation breach as both VMs will

become part of the same Layer 2 virtual network defined for vNet A, opening the

door for further attacks [89]. The verification of the management layer view cannot

detect such a breach as VLAN tags are managed locally at the implementation layer.

Additionally, verifying the implementation layer only without mapping the virtual
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resources to their owners (maintained only at the management layer), would not al-

low a per-tenant identification of the breached resource. For example, the association

between VM Bapp1, vNet B and their owner (Tenant Beta) in the management

layer view should be consistently mapped into the association between VM 21 in

Physical Server 1 with VLAN 200 at the implementation level. This should

be done for all tenants. Considering the implementation layer after the attack in Fig-

ure 4.1, VM 11, VM 12 and VM 21 in Physical Server 1 can be identified to

be on the same VLAN, namely, VLAN 100. However, without considering that the

corresponding VMs at the management layer are in different virtual networks and

belong to different tenants, the breach cannot be properly detected.

• Correctly identifying the relevant data and their sources in the cloud for each secu-

rity requirement increases the complexity of auditing. This can be amplified with the

diversity and plurality of data sources located at different cloud stack layers. Fur-

thermore, the data should not be collected only from different layers but also from

different physical servers. In addition, their underlying semantics and relationships

should be properly understood to be able to process it. The relation of this data and

its semantics to the verified property constitutes a real challenge in automating cloud

auditing.

In summary, taking into account the complexity factor and multi-layered nature of the

cloud, the majority of existing approaches (e.g., [41, 37]) are not designed to handle cross-

layer consistent isolation verification. Thus, in this work, we propose an automated cross-

layer approach that tackles the above issues for auditing isolation requirements between

virtual networks in a multi-tenant cloud. We focus on isolation at Layer 2 Virtual Networks

and Overlay Networks, namely topology isolation, which is the basic building block for

networks communication and segregation for upper network layers. To the best of our

knowledge, this is the first effort on auditing cloud infrastructure isolation at layer 2 virtual
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networks and overlay taking into account cross-layer consistency in the cloud stack. The

following summarizes our main contributions:

• To fill the gap between standards and isolation verification, we devise a set of con-

crete security properties based on the literature and common knowledge on layer 2

virtual networks isolation and relate them to relevant requirements in security stan-

dards.

• To identify the relevant data for auditing network isolation and capture its underlying

semantics across multiple layers, we elaborate a model capturing the cloud-stack lay-

ers and the verified network layers along with their inter-dependencies and isolation

mechanisms. To the best of our knowledge, we are the first to propose such a model.

• We propose an off-line verification approach that spans the OpenStack implemen-

tation and management layers, which allows to evaluate the consistency of layer 2

virtual network isolation. We rely on the model defined above as input to our ap-

proach and a Constraint Satisfaction Problem (CSP) solver, namely, Sugar [84], as a

back-end verification tool.

• We report real-life experience and challenges faced when integrating our auditing

and compliance validation solution into OpenStack. We further conduct experiments

to demonstrate the applicability of our approach.

4.2 Models

In this section, we provide a background on the network isolation mechanisms considered

in this work, and we present the threat model followed by our model that captures tenants’

virtual networks at the infrastructure management and implementation layers.
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4.2.1 Preliminaries

In this work, we focus on layer 2 virtual networks deployed in cloud environments man-

aged by OpenStack. We furthermore consider Open vSwitch (OVS)1 for providing layer 2

network function to guest VMs at the host level [90].

In large scale OpenStack-based cloud infrastructures, layer 2 virtual networks are im-

plemented on the same server using Virtual LANs (VLAN), and across the physical net-

work through Virtual Extended LAN (VXLAN) as an overlay technology. The VXLAN

technology is used to overcome the scale limitation of VLANs, which only allows for a

maximum of 4,096 tags [18]. More specifically, on each physical server, disjoint VLAN

tags are assigned to ports connecting VMs that are part of different isolated virtual net-

works. Furthermore, a unique VXLAN identifier is assigned per isolated virtual network

in order to extend layer 2 virtual networks between different physical servers, thus forming

an overlay network. When the traffic leaves a VM (or a physical server), the appropriate

VLAN tag (or VXLAN identifier) is inserted into the traffic by configurable OVS forward-

ing rules to maintain proper layer 2 traffic isolation. The mapping between VLAN tags and

VXLAN identifiers performed by the OVS rules ensures that the traffic is smoothly steered

between sources and destinations deployed over different physical servers.

Example 4.1. Figure 4.2 illustrates a more detailed view of layer 2 virtual networks imple-

mentation for the configuration showed in Figure 4.1. According to the latter figure, VM 11,

VM 12 and VM 13 belong to Tenant Alpha and are connected to vNet A. VLAN 100

is defined at Physical Server 1 to enable isolated layer 2 communication between

VM 11 and VM 12, whereas VLAN 200 is defined to isolate VM 21 at the same physical

server since the latter VM is connected to another virtual network (vNet B). Similarly,

at Physical Server 2, different VLAN tags, namely, VLAN 101 and VLAN 201, are

1Open vSwitch OVS is one of the mostly used OpenFlow-enabled Virtual Switches in more than 30%

deployments, and is compatible with most hypervisors including Xen, KVM and VMware.
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defined to isolate VM 13 and VM 22 respectively since they are connected to different net-

works. Since VM 11, VM 12 and VM 13 are all connected to the same virtual network (see

Figure 4.1) but deployed over two different physical servers, VXLAN is used as an overlay

protocol to logically connect VMs across physical servers while ensuring isolation. To this

end, two distinct VXLAN identifiers, namely, VXLAN 0×100 and VXLAN 0×200, are

associated to vNet A and vNet B, respectively. Then, to achieve end to end isolation,

VXLAN 0×100 is attached to VLAN 100 on Physical Server 1 and to VLAN 101

on Physical Server 2, while VXLAN 0×200 is attached to VLAN 200 on Physical

Server 1 and to VLAN 201 on Physical Server 2. This would allow to isolate the

virtual networks both at the host level (through different VLAN tags) and at the physical

network level (through different VXLAN identifiers).

VM_11 VM_12

port11 port12

VLAN_100

VM_13 VM_22VM_21

port21 port13 port22

VLAN_101 VLAN _201VLAN_200

Physical Server_1 Physical Server_2

OVS_1 OVS_2

Overlay 

Layer 2 Virtual 

Networks

VXLAN_0x100 VXLAN_0x100VXLAN_0x200 VXLAN_0x200

Physical Eth Physical Eth

Cloud Physical network
VXLAN_0x100

VXLAN_0x200

vNet_A layer 2 

virtual network

vNet_B layer 2 

virtual network

Figure 4.2: A detailed view of the implementation layer of Figure 4.1

4.2.2 Threat Model

We assume that the cloud infrastructure management system has implementation flaws and

vulnerabilities, which can be potentially exploited by malicious entities leading to tenants’

virtual infrastructures isolation failures. For instance, a reported vulnerability in OpenStack

Neutron OSSA-2014-008 [91] allows a tenant to create a virtual port on another tenant’s
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virtual router without checking his identity. Exploiting such vulnerabilities leads to seri-

ous isolation breaches opening doors to more harmful attacks such as network sniffing. As

another example, a malicious tenant can take advantage from the known cloud data cen-

ters configuration strategies to locate his victim inside the cloud [66]. In addition, he can

compromise some host hypervisors to deliberately change network configurations at the

implementation layer.

Our auditing approach focuses on verifying security compliance of OpenStack-managed

cloud infrastructures with respect to predefined security properties related to virtual infras-

tructure isolation defined in relevant security standards or tenant specific requirements.

Thus, our solution is not designed to replace intrusion detection systems or vulnerabil-

ity analysis tools (e.g., vulnerability scanners). However, by verifying security properties,

our solution may detect the effects and consequences of certain vulnerabilities exploit or

threats on the configuration of the cloud under the following conditions: a) the vulnera-

bility exploit or threat violates at least one of the security properties being audited, b) the

violations generate logged events and configuration data, c) the corresponding traces of

those violations in logs and configuration data are intact and not erased or tampered with,

as the correctness of our audit results depends on the correct input data extracted from logs,

databases, and devices.

The out of scope threats include attacks that do not violate the specified security prop-

erties, attacks not captured in the logs or databases, and attacks through which the attackers

may remove or tamper with logged events. Existing techniques on trusted auditing may be

applied to establish a chain of trust from TPM chips to auditing components, e.g., [71]).

We focus on layer 2 virtual network, and our work is complementary to existing solu-

tions at other network layers (e.g., TenantGuard [92]). We assume the verification results

do not disclose sensitive information about other tenants and regard potential privacy issues

as a future work.
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Finally, we focus on auditing structural properties such as the assignment of instances

to physical hosts, the proper configuration of virtualization mechanisms, and consistency

of the configurations in different layers of the cloud. Those properties mainly involve

static configuration information that are already stored by the cloud system at the cloud

management layer and the implementation layer. The verification of operational properties,

which are related to the network forwarding functionality, are out of the scope of this work.

4.2.3 Virtualized Cloud Infrastructure Model

In this section, we present the two-layered model that we derive to capture information

related to isolated virtual networks at both the infrastructure management and the imple-

mentation layers. This model was derived based on common knowledge and studied liter-

ature on implementation and management of isolated virtual networks [93]. For instance,

to elaborate and validate the infrastructure management layer model, we analyzed the ab-

stractions exposed by the most popular cloud platforms providing tenants the capability to

build virtual private networks (e.g., AWS EC2- Virtual Private Cloud (VPC) [11], Google

Cloud Platform (GCP) [12], Microsoft Azure [13], VMware virtual Cloud Director (vCD)

[94] and OpenStack [16]). More details will be provided in Table 4.7 (Section 4.6). For the

implementation model, we relied on performing extensive tests on OpenStack compute and

network nodes, then we supported our understanding by exploring the literature [95, 18].

Finally, we validated our two-layer model with subject matter experts.

The model allows capturing the data to be audited at each layer, its underlying semantics

and relation with isolation requirements. It also defines cross-layer mappings of data in

different layers to capture consistency requirements.

Infrastructure Management Model. The upper model in Figure 4.3 captures the view

from the cloud infrastructure management system perspective. This layer manages virtual

resources such VMs, routers, and virtual networks (represented as entities) as well as their
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Figure 4.3: Two-layered model for isolated multi-tenant virtualized infrastructures in the

cloud: Generic model for the infrastructure management layer (upper model) mapped into

an implementation-specific model of the infrastructure layer (lower model)
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ownership relation (represented as relationships) with respect to tenants. Once connected

together, these resources form the tenants’ virtual infrastructures. Some entities, for in-

stance Tenant, are only maintained at the management layer and have no counterpart at

the lower layer. Other entities exist across layers (e.g., VMs and ports), however, one-to-

one mappings should be maintained. These mappings allow inferring missing relationships

between layers and help checking consistency between the cloud stack layers. Isolation be-

tween different virtual networks at this layer is defined using a segmentation mechanism,

modeled as entity Segment. A segment should be unique for all elements of the same

virtual infrastructure.

Example 4.2. Ownership is modeled using the BelongsTo relationship in Figure 4.3

between Tenant and vResource. The related cardinality constraint (M:1), ex-

presses that, following the directed edge, a given vResource can only belong to

a single (i.e., 1) Tenant, but, a Tenant can own multiple (i.e., M) virtual re-

sources. The isAssignedSeg relationship and its cardinality constraint (1:1) re-

lating Segment to vNet allows having a unique segment per network. Relationships

isConnectToVnet and HasRunningVM are of special interest to us and thus they are

depicted in the model even though they can be inferred from other relationships.

Implementation Model. The lower model in Figure 4.3 captures a typical OpenStack im-

plementation of the infrastructure management view using well-known layer 2 isolation

technologies, VXLAN and VLAN. The model can capture other layer 2 isolation mecha-

nisms such as Generic Routing Encapsulation (GRE) by replacing the entity VXLAN with

entity GRE. Some entities and relationships in this model represent the implementation of

their counterparts at the management model. For instance, VXLAN combined with VLAN

are implementation of entity Segment. Other entities such as virtual networking devices

Open vSwitch (OVS) and Virtual Tunneling End Point (VTEP) are specific to the imple-

mentation layer as they do not exist at the infrastructure management model. They play
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the vital role in connecting VM instances to their hosting machines and to their virtual net-

works across different servers. Indeed, VTEPs are overlay-aware interfaces responsible for

the encapsulation of packets with the right tunnel header depending on the destination VM

and its current hosting server.

Example 4.3. At the lower model in Figure 4.3, the ternary relationshipisAssignedVLAN

with cardinality (M:M:1) means that each single port in a given OVS can be assigned

at most one VLAN but multiple ports can be assigned the same VLAN. To capture

isolation at overlay networks spanning over different servers, the ternary relationship

isMappedtoVXLAN states that each VLAN in each OVS is mapped to a unique VXLAN.

The unicity between a specific port and a VLAN in an OVS as well as the unicity of the

mapping of a VLAN to a VXLAN in a given OVS, are inherited from the unicity of the

mapping of a segment to a virtual network. The two ternary relationships hasMapping

and isAssociatedWith are used to model VTEPs information existing over different

physical servers. Several relations have similar semantics in both models, however, we

use different names for clarity. For instance, VMRunningOn at the implementation layer

corresponds to isRunningOn at the management layer.

Entities and relationships defined in these models will be used in our approach to au-

tomate the verification of isolation between tenants’ virtual infrastructures. They will be

essentially used to express system data and the relations among them in the form of in-

stances of these models. Also, they will be used to express properties related to isolation

as will be presented in next section.

4.3 Methodology

In this section, we detail our approach for auditing compliance of virtual layer 2 networks

with respect to a multi-tenant cloud.
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4.3.1 Overview

Figure 4.4 presents an overview of our approach. Our main idea is to use the derived

two-layered model (Section 4.2) to capture the implementation of the multi-tenant virtual

infrastructure along with its specification. We then verify the implementation against its

specification to detect violation of the properties.

Infrastructure Management and 

Implementation models

Isolation and 

Consistency rules

Translator

Instances of Models

(Implementation)

Properties in First Order Logic 

(Specification)
CSP

 Code

CSP 

Solver

Verification

Results
Infrastructure Implementation

(Switches, physical servers,...)

Cloud Infrastructure 

Management System

(e.g., OpenStack)

Figure 4.4: An overview of our verification approach

To be able to automatically process the model as the specification support for the virtual

infrastructure, we first express it in First Order Logic (FOL) [85]. We encode entities

and relationships in both models into a set of FOL expressions, namely, variables and

relations. We also express isolation and consistency rules as FOL predicates based on the

FOL expressions derived from the model. This process is performed offline and only once.

To obtain the implementation of the system, we collect real data from different layers

(cloud management and cloud infrastructure) and use the model entities and relationships

definitions to build an instance of the model representing the current state of the system.

As we aim at detecting violations, we represent relationships between real data as instances

of FOL n-ary relations without restricting instances to meet cardinality constraints. This

will be detailed later on in this section. As a back-end verification mechanism, we rely

on the off-the-shelf CSP solver Sugar. The latter allows formulation of many complex

problems in terms of variables defined over finite domains and constraints. Its generic

goal is to find a vector of values (a.k.a. assignment) that satisfies all constraints expressed
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over the variables. If all constraints are satisfied, the solver returns SAT, otherwise, it

returns UNSAT. In the case of a SAT result, a solution to the problem, which is a specific

assignment of values to the variables that satisfies the constraints, is provided. One of

the key advantages of using constraint solving is to enable uniformly specifying systems

data and properties in a clean formalism and covering a wide range of properties [86].

Furthermore, the latter allows to identify the data violating the verified properties as it will

be explained in Section 4.3.3.

4.3.2 Cloud Auditing Properties

Among the goals of this work is to establish a bridge between high-level security standards

and low-level implementation as well as to enable verification automation. Therefore, this

section describes a set of concrete security properties related to layer 2 virtual network and

overlay network isolation in a multi-tenant environment. In this work, we focus on the

verification of structural properties gathered from the literature and the subject matter. To

have a more concrete example of layer 2 virtual network isolation mechanisms, we refer to

VLAN and VXLAN as examples of well-established technologies.

Table 4.1 presents an excerpt of the security properties mapped to relevant domains

and control classes in security standards, namely, CCM [7] (Infrastructure and virtualiza-

tion security segmentation domain), ISO27017 [8] (Segregation in networks section) and

NIST800 [81] (System and communications protection, System and information integrity

security controls). Those properties either check topology isolation based on individual

cloud layers (i.e., infrastructure management level or implementation level), or they check

topology consistency based on information gathered from both layers at the same time. In

the following, we discuss examples illustrating how those properties are related to isolation

and consistency, and how they can be violated.

Topology Isolation. This property ensures that virtualization mechanisms are properly
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configured and provide adequate logical isolation between virtual networks. By using iso-

lated virtual topologies, traffic belonging to different virtual networks would travel on log-

ically separated paths, thus ensuring traffic isolation. The following example illustrates a

topology isolation violation using an instance of our model presented in Section 4.2.
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Figure 4.5: Subsets of data and its relations at the could infrastructure implementation and

management layers showing isolation violation. At the implementation level, VM 21 is

connected on Port 21, that is assigned VLAN 100 as a consequence of the attack. Since

VLAN 100 is mapped to VXLAN 0×100, which is mapped to seg 256 at the infras-

tructure management layer and the latter segment is assigned to vNet A of Tenant Alpha,

VM 21 belonging to Tenant Beta is now on the same network segment as VMs in vNet A

Example 4.4. Figure 4.5 captures a subset of the data, at different layers, that is rel-

evant to virtual networks vNet A and vNet B corresponding to the deployment illus-

trated in Figure 4.1 and Figure 4.2. The upper part of the figure shows a subset of

the data managed by the infrastructure management layer and on the lower part, the

subset of data managed by the implementation layer. Nodes represent data instances,
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while the directed arrows represent relations between these data instances. For exam-

ple, at the infrastructure management layer, the relationship IsConnectedTovNet

relates three instances of data VM Adb, vNet A, and vPort 11, and means that VM Adb

is connected to vNet A on virtual port vPort 11. A cross-layer mapping, shown as

small dotted undirected arrows, between some of the data instances at different layers

is used to relate management-defined data to its implementation counterpart. For in-

stance, VM Adb and vPort 11 have each a one-to-one cross-layer mapping to VM 11

and Port 11, respectively, while no data entity at the implementation layer could be di-

rectly mapped to vNet A at the management layer. The latter can be indirectly mapped

to VXLAN 0x100 at the implementation layer via the segment seg 256. More precisely,

vNet A is implemented using VXLAN 0x100 and a set of corresponding VLANs, namely,

VLAN 100 and VLAN 101 (via IsMappedToVXLANonOVS), which are assigned to

Port 11, Port 13, and Port 21 (via IsAssignedVLAN).

This instance of the layered-model allows capturing topology isolation breaches and

identifying which networks, VMs, and tenants are in this situation. Indeed VM 21 is found

to be on the same virtual layer 2 segment as VM 11 and VM 13. There are two types of

isolation breaches and they are illustrated as follows:

• Intra-server topology isolation breach. At the implementation layer, VM 21 is con-

nected on port Port 21 (via relationship IsConnectedonPort), which is as-

signed VLAN 100 (via relationshipIsAssignedVLAN) in the open vSwitch OVS 1.

Additionally, since Port 11 connecting VM 11 is also assigned VLAN 100 on the

same switch, both VM 11 and VM 21 connected via these ports are located on the

same virtual network segment VLAN 100 (which corresponds to vNet A at the in-

frastructure management level) leading to an isolation breach. Since both VMs are

in the same server, namely, Server 1, it is said to be an intra-server topology iso-

lation at virtual layer 2. Noteworthy, without the correct mapping between VM 11
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and VM 21 at the implementation layer to their respective counterparts VM Adb and

VM Bapp1 as well as the ownership information (i.e., these VMs belong to different

tenants and are connected on different virtual networks) at the management layer,

we cannot conclude on the existence of this breach by only considering data from the

implementation layer.

• Inter-server topology isolation breach. At the implementation layer, VLAN 100 that

is assigned to ports Port 21 and Port 11 is mapped to VXLAN 0x100 via re-

lationship IsMAppedToVXLANonOVS (which corresponds again to vNet A at the

infrastructure management level). However, this VXLAN identifier is also related to

another VLAN tag, namely, VLAN 101, which is assigned to port Port 13 con-

necting VM 13 on Server 2. This is an inter-server topology isolation breach,

since VM 13 and VM 21 are running on different servers (Physical Server 2

and Physical Server 1).

Topology Consistency. Topology consistency consists of checking whether the topology

view in the cloud infrastructure management system, consistently matches the actual im-

plemented topology, and the other way around, while considering different tenants’ bound-

aries.

Example 4.5. (Port consistency) Assume that a malicious insider deliberately created a

port Port 40 directly on OVS 1 without passing by the cloud infrastructure management

system and tagged it with VLAN 100, which is already assigned to Tenant Alpha. This

allows the malicious insider to sniff tenant’s Alpha traffic on VLAN 100 via Port 40,

which clearly leads to the violation of network isolation property.
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Category
Standard Property Level

C
C

M

IS
O

2
7

0
1

7

N
IS

T
8

0
0

Name Description Mgmt. Impl.

Topology

isolation
• • •

Mappings unicity

Virtual Networks-

Segments (P1)

Virtual networks and segments should be

mapped one-to-one

×

Mappings unicity

Ports-Segments (P2)
vPorts should be mapped to unique segments ×

Correct association

Ports-Virtual

Networks (P3)

VMs should be attached to the virtual net-

works they are connected to through the right

vPorts

×

Mapping unicity

Ports-VLANs (P4)
Ports should be mapped to unique VLANs ×

Mapping unicity

VLANs-VXLANs (P5)
VLANs and VXLANs should be mapped

one-to-one on a given server

×

Overlay tunnels isolation (P6) In each VTEP end, VMs are associated to

their physical location and to the VXLAN as-

signed to the networks they are attached to

×

Topology

consistency

• • • VM location consistency (P7) Consistency between VMs’ locations at the

implementation level and at the management

level

× ×

Ports consistency (P8) Consistency between vPorts in the implemen-

tation level and their counterparts in the man-

agement level

× ×

Virtual links consistency (P9) VMs should be connected to the VLANs and

VXLANs in the implementation level that

correspond to the virtual networks they are at-

tached to at the management level

× ×

Table 4.1: Excerpt of security properties
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4.3.3 Verification Approach

In order to systematically verify isolation and consistency properties over the model, we

need to transform the model and its instances as well as the requirements into FOL expres-

sions that can be automatically processed. In the following, we present how we express the

model, the data, and the properties in FOL.

Model and Data Representation

Entities in the model are encoded into FOL variables where their domains would encom-

pass all instances defined by the system data. Each n-ary relationship is encoded into a

FOL n-ary relation over the related variables, where the instance of a given relation is the

set of tuples corresponding entities-instances as defined by the relationship.

For instance, in the model instance of Figure 4.5, the relationship

IsMappedToVXLANOnOVS is translated into the following FOL relation instances

capturing the actual implementation setup showing the mapping of a VLAN into a

VXLAN on a given OVS instance.

• IsMapedToVXLANOnOVS(OVS 2, VLAN 101, VXLAN 0×100)

• IsMapedToVXLANOnOVS(OVS 1, VLAN 100, VXLAN 0×100)

Table 4.2 shows the main FOL relations defined in our model. These relations are

required for expressing properties, which are formed as predicates as it will be presented

next.

Properties Expressions

Security properties presented in Table 4.1 can be expressed as FOL predicates over FOL

relations defined in Table 4.2.
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Relations Def.

at

Evaluate to True if

IsRunningOn(vm,cn) Mgmt. The instance vm is located at the compute

node cn

IsMappedToSeg(vp,seg) Mgmt. The virtual port vp is mapped to the segment

seg

IsAssignedSeg(vNet,seg) Mgmt. The virtual network vNet is assigned the seg-

ment seg

IsConnectedTovNet(vm,
vNet,vp)

Mgmt. vm is connect to vNet on the virtual portvp

HasPort(sw, p) Impl. The virtual switch sw has a portp

IsAssignedVLAN(sw, p,vlan) Impl. The portp on switch sw is assigned the VLAN

vlan

IsMappedToVXLANOnOVS

(sw,vlan,vxlan)
Impl. vlan is mapped to vxlan on the virtual switch

sw

SwRunningOn(sw,s) Impl. The switch sw is running on the server s

V MRunningOn(vm,s) Impl. The VM vm is running on the server s

IsConnectedOnPort(vm,sw, p) Impl. The VM vm is connected on port p belonging

to the switch sw

HasMapping(ovs,vm,vxlan) Impl. The VM vm is associated to vxlan on a remote

switch ovs

IsAssociatedWith(ovs,vm,
vtep)

Impl. The VM vm is associated to the remote VTEP

vtep on ovs

IsRelatedTo(vtep,s) Impl. the VTEP vtep is defined on the server s

Table 4.2: Model relations encoded in FOL
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Properties FOL Expressions

Mappings

unicity Virtual

Networks and

Segments (P1)

∀vNet1,vNet2 ∈ vNET,∀seg1,seg2 ∈ Segment : [IsAssignedSeg(vNet1,seg1)∧
IsAssignedSeg(vNet2,seg2)∧¬(vNet1= vNet2)→¬(seg1 = seg2)]∧

[IsAssignedSeg(vNet1,seg1)∧ IsAssignedSeg(vNet2,seg2)∧
¬(seg1 = seg2)→¬(vNet1 = vNet2)]

Mappings

unicity Ports-

Segments (P2)

∀seg1,seg2 ∈ Segment,∀vp ∈ vPORT : IsMappedToSeg(vp,seg1)∧
IsMappedToSeg(vp,seg2)→ (seg1 = seg2)

Correct as-

sociation

Ports-Virtual

Networks (P3)

∀vm ∈VM,∀vNet ∈ vNET,∀seg1,seg2 ∈ Segment,∀vp ∈ vPort :

IsConnectedTovNet(vm,vNet,vp)∧ IsAssignedSeg(vNet,seg1)
∧IsMappedToSeg(vp,seg2)→ (seg1 = seg2)

Table 4.3: Isolation properties at the infrastructure management level in FOL

7
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Properties FOL Expressions

Mapping

unicity Ports-

VLANs (P4)

∀sw ∈ OV S,∀p ∈ Port,∀vlan1,vlan2 ∈VLAN : HasPort(sw, p)∧
IsAssignedVLAN(sw, p,vlan1)∧ IsAssignedVLAN(sw, p,vlan2)→

(vlan1 = vlan2)

Mapping unic-

ity VLANs-

VXLANs (P5)

∀vxlan1,vxlan2 ∈VXLAN,∀vlan ∈VLAN,∀sw ∈ OV S,
∀p ∈ PORT : (IsAssignedVLAN(sw, p,vlan)∧ IsMappedToVXLANOnOVS(sw,vlan,vxlan1)

∧IsMappedToVXLANOnOV S(sw,vlan,vxlan2)→ (vxlan1 = vxlan2)

Overlay tun-

nels isolation

(P6)

∀vm ∈V M,∀sw1,sw2 ∈ OV S,∀p ∈ PORT,∀vxlan1,vxlan2 ∈VXLAN,∀s1,s2 ∈ Server,
∀vtep ∈ RemoteVT EP,∀vlan ∈VLAN : HasPort(sw1, p)∧SWRunningOn(sw1,s1)∧

IsConnectedOnPort(vm,sw1, p)∧ IsAssignedVLAN(sw1, p,vlan)∧
IsMappedToVXLANOnOVS(sw1,vlan,vxlan1)∧ IsAssociatedWith(sw2,vm,vtep)

∧HasMapping(sw2,vm,vxlan2)∧ IsRelatedTo(vtep,s2)→ (s1 = s2)∧ (vxlan1 = vxlan2)

Table 4.4: Isolation properties at the implementation level in FOL
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Properties FOL Expressions

VM location

consistency

(P7)

∀vm1 ∈VM,∀cn ∈COMPUTEN : IsRunningOn((vm1,cn)→
∃vm2 ∈ iV M,∃s ∈ SERVER : V MRunningOn(vm2,s)∧ (vm1 = vm2)∧ (cn = s)

Ports consis-

tency (P8)

∀vNet ∈ vNET,∀seg ∈ Segment,∀vp ∈ vPORT : IsAssignedSeg(vNet,seg)
∧IsMappedToSeg(vp,seg)→

[∃sw ∈ OVS,∃vxlan ∈VXLAN,∃vlan ∈VLAN,∃p ∈ PORT : IsAssignedVLAN(sw, p,vlan)
∧IsMappedToVXLANOnOV S(sw,vlan,vxlan)∧ (seg = vxlan)∧ (vp = p)]

Virtual links

consistency

(P9)

∀vm1 ∈ iVM,∀vxlan ∈V XLAN,∀sw ∈ OVS,∀vlan ∈VLAN,∀p ∈ PORT :

IsConnectedOnPort(vm1,sw, p)∧
IsAssignedVLAN(sw, p,vlan)∧ IsMappedToVXLANOnOV S(sw,vlan,vxlan)→

[∃vm2 ∈ vV M,∃vNet ∈ vNET,∃seg ∈ Segment,∃vp ∈ vPORT :

IsConnectedTovNet(vm2,vNet,vp)∧ (vm1= vm2)∧
IsAssignedSeg(vNet,seg)∧ (seg= vxlan)]

Table 4.5: Topology consistency properties in FOL

7
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Table 4.3 shows FOL predicates for the isolation properties at the infrastructure man-

agement model. Table 4.4 presents FOL predicates for the isolation properties at the imple-

mentation model. Table 4.5 summarizes the expressions of consistency-related properties.

Isolation Verification

As discussed before (Section 4.3.3), model instances are built based on the collected data

and they are encoded as tuples of data representing relations’ instances. On another hand,

properties are encoded as predicates to specify the conditions that these relations’ instances

should meet.

To verify the security properties, we use both properties’ predicates and relations’ in-

stances to formulate the CSP constraints to be fed into the CSP solver. Since CSP solvers

provide solutions only in case the constraint is satisfied (SAT), we define constraints using

the negative form of the FOL predicates presented in Tables 4.3, 4.4 and 4.5. Hence, the

solution provided by the CSP solver gives the relations’ instances for which the negative

form of the property is satisfied, meaning that a violation has occurred.

To better explain how the CSP solver allows to obtain the violation evidence, we provide

hereafter an example of the verification of the inter-server isolation property provided in

Example 4.4.

Example 4.6. We assume that VM location consistency and port consistency properties

were verified to be met by the configuration. From the infrastructure management level, we

recover the virtual networks connecting each VM and their corresponding segment. This is

captured through the following relation instances:

• IsConnectedTovNet((VM Bapp1, vNet B, vPort 21), (VM Adb,

vNet A, vPort 11), (VM Aweb, vNet A, vPort 13))

• IsAssignedSeg((vNet B, seg 512),(vNet A, seg 256)))
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From the implementation level, we recover the OVS and the ports connecting VMs in

addition to their assigned VLAN tags and VXLAN identifiers captured through the following

relation instances:

• IsConnectedOnPort((VM 21, OVS 1, Port 21),(VM 11, OVS 1,

Port 11), (VM 13, OVS 2, Port 13))

• IsAssignedVLAN((OVS 1, Port 21, vlan 100),(OVS 1, Port 11,

vlan 100), (OVS 2, Port 13, vlan 101))

• IsMappedToVXLANOnOVS((OVS 1, vlan 100, vxlan 0×100),(OVS 2,

vlan 101, vxlan 0×100))

We would like to verify that the VXLAN identifier assigned to a virtual network at the

implementation level is equal to the segment assigned to this same network at the infras-

tructure management level (after conversion to decimal), which is expressed by virtual link

consistency property (P9). To find whether there exist relations’ tuples that falsify this

property (¬P9), we first formulate the CSP instance using the negative form of the corre-

sponding predicate, which corresponds to the following predicate:

¬P11= ∃vm1 ∈ iVM,∃vxlan ∈ VXLAN,∃sw ∈ OVS,∃vlan ∈ VLAN,∃p ∈ PORT, (4)

∀vm2 ∈ vVM,∀vNet ∈ vNET,∀seg ∈ Segment,∀vp ∈ vPORT :

IsConnectedOnPort(vm1,sw,p)∧IsAssignedVLAN(sw,p,vlan)∧

IsMappedToVXLANOnOVS(sw,vlan,vxlan)∧

¬IsConnectedTovNet(vm2,vNet,vp)∨¬(vm1 = vm2)∨

¬IsAssignedSeg(vNet,seg)∨¬(seg = vxlan)

By verifying predicate 4 over all the aforementioned relations’ instances, the solver
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finds an assignment such that the above predicate becomes true, which means that the

property P9 is violated. The predicate instance that caused the violation can be written as

follows:

IsConnectedOnPort(VM 21,OVS 1,Port 21)∧ (5)

IsAssignedVLAN(OVS 1,Port 21,vlan 100)∧

IsMappedToVXLANOnOVS(OVS 1,vlan 100,vxlan 0×100)∧

¬IsConnectedTovNet(VM Bapp1,vNet B,vPort 21)∨¬(VM 21= VM Bapp1)∨

¬IsAssignedSeg(vNet B,seg 512)∨¬(seg 512= vxlan 0×100)

Since seg is equal to 512 and the decimal value of VXLAN0 ×100, namely, vxlan,

is 256, then the equality seg=vxlanwill be evaluated to false and ¬(seg=vxlan)will

be evaluated to true, which makes the assignment in predicate 5 satisfying the constraint.

This set of tuples provides the evidence about what values breached the security property

P9. Note that as VM consistency and port consistency properties were assumed to be

verified, the equality between VM Bapp1 and VM 21 holds (based on their identifiers that

could be their MAC addresses for instance).

In the following section, we present our auditing solution integrated into OpenStack

and show details on how we use the CSP solver Sugar as a back-end verification engine.

4.4 Implementation

In this section, we first provide a high-level architecture of our system. We then briefly

review the most relevant OpenStack services and OVS. Finally, we detail our implemen-

tation and its integration into OpenStack and Congress [38], an open-source framework
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implementing policy as a service for OpenStack.

4.4.1 Architecture

Figure 4.6 illustrates a high-level architecture of our auditing system. It has three main

components: data collection and processing module, compliance verification module and

the dashboard and reporting module. Our solution interacts mainly with the cloud infras-

tructure management system (e.g., OpenStack) and elements in the data center infrastruc-

ture to collect various types of audit data. It also interacts with the cloud tenant to obtain

the tenant requirements and to provide the tenant with the audit results. The properties ex-

tractor intercepts tenants’ requirements (expressed as high level properties) and identifies

the corresponding low level and concrete properties that can be directly checked on the

collected and processed data. As expressing and processing tenants’ policies is out of the

scope of this work, we assume that they are parsable XML files.
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Figure 4.6: A high-level architecture of our cloud auditing solution

The data collection and processing module is composed of the collection engine and

the processing engine. The collection engine is responsible for collecting the required

audit data in a batch mode. The role of the processing engine is to filter, format, aggregate,
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and correlate this data. The required audit data may be distributed throughout the cloud

and in different formats. The processing engine pre-processes the data in order to provide

specific information needed to verify given properties. Furthermore, the processing engine

recovers the formalized form of the concrete properties that need to be audited. The last

processing step is to generate the code for compliance verification using both the processed

data and the formalized properties. The generated code depends on the selected back-end

verification engine.

The compliance verification module is responsible for performing the actual verification

of the audited properties and the detection of violations, if any. Triggered by an audit

request, the compliance verification module invokes the back-end verification engine. In

case of violation, the verification engine provides details on the breach, which are then

intercepted and interpreted by the result processing engine.

If a security audit property fails, evidence can be obtained from the output of the veri-

fication back-end. Once the outcome of the compliance verification is ready, audit results

and evidences are stored in the audit repository database and made accessible to the audit

reporting engine. Several potential formal verification engines can serve our needs, and the

actual choice may depend on the property being verified.

4.4.2 Background

As we are interested in auditing the infrastructure virtualization and network segregation,

we first investigated OpenStack documentation to learn which services are involved in the

creation and maintenance of the virtual infrastructure and networking. We found that Nova

and Neutron services in OpenStack are responsible for managing networking at the man-

agement layer. We also investigated the implementation-level, and found that OVS in-

stances running in different compute nodes are the main components that implement the

virtual infrastructure. Following is a brief description of Nova, Neutron and OVS:
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Nova [16] This is the OpenStack project designed to provide massively scalable, on de-

mand, self-service access to compute resources. It is considered as the main part of an IaaS

model.

Neutron [16] This OpenStack project provides tenants with capabilities to build network-

ing topologies through the exposed API, relying on three object abstractions, namely, net-

works, subnets and routers. When leveraged with the Modular Layer 2 plug-in (ML2),

Neutron enables supporting various layer 2 networking technologies. In many existing

deployments, OVS is used with OpenStack to manage the network connectivity between

tenants’ VMs.

In our settings, an OVS defines two interconnected bridges, the integration bridge

(br-int) and the tunneling bridge (br-tun). VMs are connected via a virtual interface

(tap device)2 to br-int. The latter acts as a normal layer 2 learning switch. It connects

VMs attached to a given network to ports tagged with the corresponding VLAN, which

ensures traffic segregation inside the same compute node.

Each tenant’s network is assigned a unique VXLAN identifier over the whole infrastruc-

ture. The br-tun is endowed with OpenFlow rules [96] that map each internal VLAN-tag

to the corresponding VXLAN identifier and vice versa. For egress traffic, the OpenFlow

rules strip the VLAN-tag and set the corresponding VXLAN identifier in order to transmit

packets over the physical network. Conversely, for ingress traffic, OpenFlow rules strip the

VXLAN identifier from the received traffic and set the corresponding VLAN-tag.

4.4.3 Integration Into OpenStack

We mainly focus on four components in our implementation: the data collection engine, the

data processing engine, the compliance verification engine and the dashboard and reporting

2This direct connection is an abstraction of a chain of one-to-one connections from the virtual interface

to the br-int. In fact, the tap device is connected to the Linux bridge qbr, which is in turn connected to the

br-int.
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engine. In the following, we describe our implementation details.

Data collection engine. The data collection engine involves several components of Open-

Stack, e.g., Nova and Neutron for collecting audit data from databases and log files, differ-

ent policy files and configuration files from the OpenStack ecosystem, and configurations

from various virtual networking components such as OVS instances in all physical servers

to fully capture the configuration and virtual networks state. We present hereafter different

sources of data along with the current support for auditing offered by OpenStack and the

virtual networking components. Table 4.6 shows some sample data sources. We use dif-

ferent sources including OpenFlow tables extracted from OVS instances in every compute

node, and Nova and Neutron databases:

• OpenStack. We rely on a collection of OpenStack databases, that can be read us-

ing component-specific APIs. For instance, in Nova database, table Instance con-

tains information about the project (tenant) and the hosting machine, table Migration

contains migration events’ related information such as the source-compute and the

destination-compute. The Neutron database includes various information such as

port mappings for different virtualization mechanisms.

• OVS. OpenFlow tables and internal OVS databases in different compute nodes con-

stitute another important source of audit data for checking whether there exists any

discrepancy between the actual distributed configuration at the implementation layer

and the OpenStack view.

For the sake of comprehensiveness in the data collection process, we firstly check fields

of a variety of log files available in OpenStack, different configuration files and all Nova

and Neutron database tables. We also debug configurations of all OVS instances distributed

over the compute nodes using various OVS’s utilities. Mainly, we recovered ports’ con-

figurations (e.g., ports and their corresponding VLAN tags) from the integration bridges
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Relations Sources of Data

IsRunningOn Table Instances in Nova database

IsAssignedSeg Table ml2 network segments in Neutron database

IsMappedToSeg Table neworkconnections in Neutron database

IsConnectedTovNet Table Instances in Nova database

HasPort OVS instances located at various compute nodes,

br int configuration

IsAssignedVLAN OVS instances located at various compute nodes,

br int configuration

IsMappedToVXLANOnOVS OVS instances located at various compute nodes,

br tun OpenFlow tables

V MRunningOn OVS instances located at various compute nodes,

br int configuration

SWRunningOn The infrastructure deployment

IsConnectedOnPort OVS instances located at various compute nodes,

br int configuration

HasMapping OVS instances located at various compute nodes

IsAssociatedWith OVS instances located at various compute nodes

IsRelatedTo OVS instances located at various compute nodes

Table 4.6: Sample data sources in OpenStack and Open vSwitch

using the utility ovs-vsctl show, and we extracted VLAN-VXLAN mappings form

the tunneling bridges’ OpenFlow tables using ovs-ofctl dump-flows. The tunnel-

ing bridge maintains a chain of OpenFlow tables for handling ingress and egress traffic. In

order to recover the appropriate data, we identify the pertinent tables where to collect the

VLAN-VXLAN mappings from. Through this process, we identify all possible types of

data, their sources and their relevance to the audited properties.

Data processing engine. The data processing engine, which is implemented in Python and

Bash scripts, mainly retrieves necessary information from the collected data according to

the targeted properties, recovers correlation from various sources, eliminates redundancies,

converts it into appropriate formats, and finally generates the source code for Sugar.

• Firstly, based on the properties, our plug-in identifies the involved relations. The

relations’ instances are either fetched directly from the collected data such as the
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support of the relation BelongsTo, or recovered after correlation, as in the case of

the relation IsConnectedTovNet.

• Secondly, our processing plug-in formats each group of data as an n-tuple, i.e.,

(resource, tenant), (ovs, port, vlan), etc.

• Finally, our plug-in uses the n-tuples to generate the portions of Sugar’s source code,

and append the code with the variable declarations, relationships and predicates for

each security property.

Checking consistent topology isolation in virtualized environments requires consider-

ing configurations generated by virtualization technologies at various levels, and checking

that mappings are properly maintained over different layers. OpenStack maintains tenants’

provisioned resources but does not maintain overlay details of the actual implementation.

Conversely, current virtualization technologies do not allow mapping VMs, networks and

traffic details to their owners. Therefore, we map virtual topology details at the implemen-

tation level to the corresponding tenant’s network to check whether isolation is achieved

at this level. Here are examples of mappings to provide per-tenant evidences for resources

and layer 2 virtual network isolation. Figure 4.7 relates relations of property P9 along with

some of their data support to their respective data sources.

• At the OpenStack level, tenants’ VMs are connected to networks through subnets

and virtual ports. Therefore, we correlate data collected from Insatances Nova table

to recover a direct connection between VMs and their connecting networks at the

centralized view through the relation IsConnectTovNet. We also keep track of

their owners.

• At the virtualization layer, networks are identified only through their VXLAN identi-

fiers. We map each network’s segment identifier recovered from OpenStack (Neutron
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Database) to the VXLAN identifier collected from OVS instances (br tun Open-

Flow tables) to be able to map each established flow to the corresponding networks

and tenants. Furthermore, for each physical server, we assign VMs to the ports that

they are connected to through the relation IsConnectOnPort, and we assign ports

to their respective VLAN-tags through the relation IsAssignedVLAN from the

configurations details recovered from br-int configuration in OVS.

• At the OpenStack level, ports are directly mapped to segment identifiers, whereas at

the OVS level, ports are mapped to VLAN-tags and mappings between the VLAN-

tags and VXLAN identifiers are maintained in OpenFlow tables distributed over

multiple OVS instances. To overcome this limit, we devised a script that recovers

mappings between VLAN-tags and the VXLAN identifiers from the flow tables in

br-tun using the ovs-ofctl command line tool. Then, it recovers mappings be-

tween ports and VLAN-tags from the Open-vSwitch database using the ovs-vsctl

command line utility.

Neutron
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Nova

Database

VM_21

Br_int

Nova ServiceNeutron Service

IsConnectedTovNet(VM_Bapp1,

vNet_B, vp_21)
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Figure 4.7: Mapping of relations involved in property P9 to their data sources

Depending on the properties to be checked, our data processing engine encodes the
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involved instances of the virtualized infrastructure model as CSP variables with their do-

mains definitions, where instances are values within the corresponding domain. The CSP

code mainly consists of four parts:

• Variable and domain declaration. We define different entities and their respective

domains. For example, TENANT is defined as a finite domain ranging over integer

such that (domain TENANT 0 max tenant is a declaration of a domain of tenants,

where the values are between 0 and max tenant.

• Relation declaration. We define relations over variables and provide their sup-

ports (instances) from the audit data. Relations between entities and their instances

are encoded as relation constraints and their supports, respectively. For example,

HasRunningVM is encoded as a relation, with a support as follows:(relation

HasRunningVM 2 (supports (vm1,t1) (vm2,t2))), where the sup-

port of this relation (e.g., (vm1, t1)) will be fetched and pre-processed in the data

processing step.

• Constraint declaration. We define the negation of each property in terms of predi-

cates over the involved relations to obtain a counter-example in case of a violation.

• Body. We combine different predicates based on the properties to verify using

Boolean operators.

Compliance Verification. The compliance verification engine performs the verification of

the properties by feeding the generated code to Sugar. Finally, Sugar provides the results

on whether the properties hold or not. It also provides evidence in case of non-compliance.

Example 4.7. In this example, we discuss how our auditing framework can detect the vio-

lation of the virtual links inconsistency caused by the inter-compute node isolation breach

described in Example 4.4.

85



Firstly, our program collects data from different sources. Then, the processing en-

gine correlates and converts the collected data and represents it as tuples; for an exam-

ple: (18045 6100 21) (6100 512) reflect the current configuration at the infras-

tructure management level, and (18045 1 21) (1 21 100) (1 100 256) cor-

respond to a given network’s configuration at the implementation level, where VM Bapp1:

18045, VM 21: 18045, vNet B: 6100, seg 512: 512, vPort 21: 21,

OVS 1: 1, Port 21: 21, VLAN 100: 100, vxlan 1×100: 256. Addition-

ally, the processing engine interprets each property and generates the associated Sugar

source code (see Listing 4.1 for an excerpt of the code) using processed data and trans-

lated properties. Finally, Sugar is used to verify the security properties.

The predicate P9 for verifying virtual link consistency evaluates to true if there exists

a discrepancy between the network VM Bapp1 is connected to according to the infras-

tructure management view, and the layer 2 virtual network VM Bapp1 is effectively con-

nected to at the implementation level. In our case, the predicate evaluates to true since

vxlan0×100 6=seg 512 (as detailed in Example 4.6), meaning that VM Bapp1 is con-

nected on the wrong layer 2 virtual network.

Listing 4.1: Sugar Source Code

1 / / D e c l a r a t i o n

2 ( domain iVM 0 1 0 0 0 0 0 ) ( domain OVS 0 4 0 0 ) ( domain PORT 0 100000)

3 ( domain VLAN 0 10000) ( domain VXLAN 0 1 0 0 0 0 ) ( doamin vVM 0 100000)

4 ( domain VNET 0 10000) ( domain SEGMENT 0 1 0 0 0 0 ) ( domain VPORT 0 100000)

5 ( i n t vm1 iVM) ( i n t vm2 vVM) ( i n t sw OVS) ( i n t p PORT ) ( i n t v l a n VLAN)

6 ( i n t v x l a n VXLAN) ( i n t v n e t VNET) ( i n t seg SEGMENT) ( i n t vp VPORT)

7 / / R e l a t i o n s d e c l a r a t i o n s and a u d i t d a t a a s t h e i r s u p p o r t from t h e

8 i n f r a s t r u c t u r e manangement l e v e l

9 ( r e l a t i o n I sCo n n ec ted To v Ne t 3 ( s u p p o r t s (18045 6100 2 1 )

10 (18037 6150 7 8 9 5 ) (1 8 0 3 8 6120 2566) ( 18039 6230 554)

11 (18040 6230 4 7 7 1 ) ) )
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12 ( r e l a t i o n I s A s s i g n e d S e g 2 ( s u p p o r t s (6150 3 5 6 ) (6 1 2 0 4 8 5 ) (6 2 3 0 265)

13 (6100 5 1 2 ) (6 2 8 5 5 8 4 ) (6 2 8 4 2 5 7 ) ) )

14 / / R e l a t i o n s d e c l a r a t i o n s and a u d i t d a t a a s t h e i r s u p p o r t from t h e

15 i m p l e m e n t a t i o n l e v e l

16 ( r e l a t i o n I s C o n n e c t e d O n P o r t 3 ( s u p p o r t s ( ( ( 1 8 0 4 5 1 2 1 ) (1 8 0 3 7 96 2 3 )

17 (18046 65 3 2 ) (1 8 0 4 0 68 8 5 6 9 ) (1 8 0 4 7 7 8 9 5 4 ) )

18 ( r e l a t i o n IsAssignedVLAN 3 ( s u p p o r t s (9 2 13 4 1 ) ( 9 2 14 4 2 ) ( 8 5 38 1 1 ) ) )

19 ( r e l a t i o n IsMAppedToVXLANOnOVS 3 ( s u p p o r t s (1 100 2 5 6 ) ( 9 2 6018 9 )

20 (9 2 6019 1 0 ) ) )

21 / / S e c u r i t y p r o p e r t i e s e x p r e s s e d i n t e r m s o f p r e d i c a t e s o v e r r e l a t i o n

22 c o n s t r a i n t s

23 ( p r e d i c a t e ( P vm1 vm2 v n e t seg v x l a n sw p vp )

24 ( and ( I s C o n n e c t e d O n P o r t vm1 sw p ) ( IsAssignedVLAN sw p v l a n )

25 ( IsMappedToVXLANOnOVS sw v l a n v x l a n ) ( I sCo n n ec ted To v Ne t vm2 v n e t vp )

26 ( I s A s s i g n e d S e g v n e t seg ) ( eq vm1 vm2 ) ( n o t ( eq seg v x l a n ) ) ) )

27 / / The body

28 ( P vm1 vm2 v n e t seg v x l a n sw p vp )

Understanding Violations Through Evidences. As explained in Section 4.3.3, we define

constraints using the negative form of properties’ predicates. Thus, if a solution satisfying

the constraint is provided by the CSP solver, then the latter solution is a set of variable

values that make the negation of the predicates evaluate to true. Those values indicate the

relation instances (system data) that are at the origin of the violation, however, they might

be unintelligible to the end users. Therefore, we replace the variables’ numerical values by

their high-level identifiers, which would help admins identify the root cause of the violation

and fix it eventually.

Example 4.8. From Example 4.7, the CSP solver concludes that the negative form of the

property is satisfied, which indicates the existence of a violation. Furthermore, the CSP

solver outputs the following variable values as an evidence: vm1=18045, vm2=18045,

vnet=6100, seg=512, vxlan=100, sw=1, p=21, vp=21. To make the evidence
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easier to interpret, we replace the value 6100 of the variable vnet by vNet B, the value

18045 of the variable vm2 by VM Bapp1 and the value 21 of the variable vp by vp 21.

Using this information, the admin will conclude that VM Bapp1 is connected to another

Tenant Alpha’s layer 2 virtual network at the implementation level identified through

VXLAN 0×100.

Dashboard and Reporting Engine. We further implement the web interface (i.e., dash-

board) in PHP to place verification requests and display verification reports. In the dash-

board, tenant admins are initially allowed to select different standards (e.g., ISO 27017,

CCM V3.0.1, NIST 800-53, etc.). Afterwards, security properties under the selected stan-

dards can be chosen. Once the verification request is placed, the summarized verification

results are shown in the verification report page. The details of any violation with a list of

evidences are also provided.

4.4.4 Integration Into OpenStack Congress

To demonstrate the service agnostic nature of our framework, we further integrate our sys-

tem with the OpenStack Congress service [38]. Congress implements policy as a service

in OpenStack in order to provide governance and compliance for dynamic infrastructures.

Congress can integrate third party verification tools using a data source driver mechanism

[38]. Using Congress policy language that is based on Datalog, we define several tenant

specific security policies. Then, we use our processed data to detect those security proper-

ties for multiple tenants. The outputs of the data processing engine is provided as input for

Congress to be asserted by the policy engine. This allows integrating compliance status for

some policies whose verification is not yet supported by Congress.
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4.5 Experiments

In this section, we evaluate the scalability of our approach by measuring the response time

of the verification task as well as the CPU and memory consumption for different cloud

sizes and in different scenarios (a breach violating some properties or no breach).

4.5.1 Experimental Setting

We set up a real environment including 5 tenants, 10 virtual networks each having 2 sub-

nets, 10 routers and 100 VMs. We utilize OpenStack Mitaka with one controller and three

compute nodes running Ubuntu 14.04 LTS. The controller is empowered with two Intel

Xeon E3-1271 CPU and 4GB of memory. Each compute node benefits from one CPU and

2GB of memory. To further stress the verification engine and assess the scalability of our

solution, we generated a simulated environment including up to 6k virtual networks and

60K VMs with the ratio of 10 VMs per virtual network. As a back-end verification tool,

we use the CSP solver Sugar V2.2.1 [84]. All the verification experiments are run on an

Amazon EC2 C4.Large Ubuntu 16.04 machine (2 vCPU and 3.75GB of memory).

4.5.2 Results

We consider for the experiments three properties from table 4.1, where each is selected

from one of the three categories defined therein:

• Mapping unicity virtual networks-segments (P1), which is a topology isolation prop-

erty checked at the infrastructure management level.

• Mapping unicity VLANs-VXLANs (P5), which is a topology isolation property checked

at the implementation level.
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• Virtual links consistency (P9), which checks that a VM is connected to the right

VXLAN at the implementation level.

In the first set of experiments, we design two configuration scenarios to study different

response times in two possible cases: presence of violations and absence of violations. This

is because the verification of these two scenarios is expected to have different response

times due to the time required to find the evidence of the violation.

In the first scenario, we implement in our environment a configuration of the virtual

infrastructure where none of the studied properties are violated. In the second scenario, we

implement the topology isolation attack described in Example 4.4. For the latter scenario,

as generally, a fast yes or no answer on the compliance status of the system is required

by the auditor, we only consider the response time to report evidence for the first breach.

Note that we do not report the average response time to find all compliance breaches as this

depends on the number of breaches, their percentage to the total input size and their distri-

bution in the audit information. Meanwhile, as the real life scenarios can dramatically vary

from one environment to another, we cannot use any average number, percentage or distri-

bution of compliance breaches applying to all possible use cases. Therefore, we present in

Figure 4.8, the verification time for no security breach detected (left side chart) and the ver-

ification time to report non-compliance and provide evidence for the first security breach

(right side chart) for different datasets varying from 5K up to 60K VMs. Note that, we

implement the attack scenario of topology isolation described in Example 4.4 by randomly

modifying some VLAN ports and VLAN to VXLAN mappings.

As indicated in the left chart of Figure 4.8, the time required for verifying P1 and P5,

where there is no breach, is 0.6s and 4.5s, respectively, for the largest dataset of 60K VMs.

The verification time for those properties increases linearly and smoothly when the size of

the cloud infrastructure increases and there is no breach. However, the verification time

for property P9 is 102s for 30k VMs and 581s for 60k VMs. The difference in response
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Figure 4.8: Verification time as a function of the number of VMs for properties P1, P5, and

P9: (left side) time to report no breach of compliance, and (right side) time to find the first

breach and build evidence of non-compliance

time for P9 is justified as the latter is more complex than other properties and involves

more relations and thus larger input data. Later in this section, we will show how one can

decrease the response time for the verification of P9 to get more acceptable boundaries.

According to Figure 4.8 (right side chart), the time required to find the first breach and

build the supporting evidence for each one of the three properties remains under 5s for the

largest dataset, which is two orders of magnitude smaller than the time required to assert

compliance for the entire system. The time required to find the first breach, depends on

several factors such as the predicates affected by the breach and the location of the breach

in the input file. However, the latter response time is always shorter than the time required

for asserting the compliance of the system.

The left side chart of Figure 4.9 reports CPU consumption percentage as a function of

the datasets’ size, up to 60k VMs. For the largest dataset, the peak CPU usage reaches

50% for P9 and does not exceed 25% for P1. Also, the highest memory usage observed

does not exceed 8% for P9 verification (see the right chart of Figure 4.9), and 3.3% for the

largest dataset for P5. It is worthy to note that these amounts of CPU/memory usage are

not monopolized during the whole verification time and they represent the peek usage. We
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Figure 4.9: CPU (left side) and memory (right side) usage to verify no-compliance breach

for properties P1, P5 and P9

therefore remark the low cost on CPU and memory for our approach.

In our second set of experiments, since Sugar supports several SAT solvers, we run

Sugar with different SAT solvers to investigate which option provides a better response

time, particularly for property P9. According to Figure 4.10, Treengling solver provides

the longest response time with 900s for a 30k VMs dataset, whereas Minisat provides

the best response time with 102s. All previously reported verification results in the other

experiments were obtained using Minisat.

In our third set of experiments, we investigate the parameters that affect the re-

sponse time, particularly in the case of complex security properties such as P9. To this

end, we consistently split the data supports for the relations IsConnectedToVnet

and IsAssignedSeg of P9 over multiple CSP files (up to 16 files), and re-

peated the supports for the relations IsConnectedOnPort, IsAssignedVLAN and

IsMappedToVXLANOnOVS to maintain data interdependency.

Figure 4.11 reports the response times for the parallel verification of different CSP sub-

instances of P9 using multiple processing nodes for the largest dataset (60K VMs). By

splitting the data support into two CSP files, the verification time already decreases from

92



5k 10k 20k 30k

# of VMs

0

200

400

600

800

1000

T
im

e
 (

s
)

5k 10k 20k 30k

# of VMs

0

50

100

150

200

T
im

e
 (

s
)

Minisat Riss Plingeling Lingeling Treengling

Figure 4.10: Verification time using different SAT solvers for P9 as a function of the num-

ber of VMs: (left side) time to report no breach of compliance, and (right side) time to find

the first breach and build evidence of non-compliance

581s to 168s (i.e., a factor of improvement of 71%), whereas it decreases up to 4.6s when

splitting the data over 16 CSP sub-instance files.

Based on this last experiment, we can conclude that splitting the input data for the same

property to be verified using parallel instances of CSP solvers can improve the response

time. However, this should be performed while considering the dependency between dif-

ferent relations and their supports in the predicate to be solved.

Based on those results, we conclude that our solution provides acceptable response

time for auditing security isolation in the cloud, particularly, in the case of off-line auditing.

While the verification of simple properties is scalable for large cloud virtual infrastructures,

response time for complex properties involving large input data can induce more delays

that can be still acceptable for auditing after the fact. However, response time for those

properties can be considerably improved by splitting their CSP instance into sub-instances

involving smaller amounts of data to be checked in parallel. Note that our analysis holds

for the specific scenario where security properties are expressed as constraints defined as

logical operations over relations, which is only a subset of possible constraints that can be

offered by the CSP solver Sugar (the complete set of constraints supported by Sugar can
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Figure 4.11: Verification time as function of the number of processing nodes for P9 for a

dataset of 60k VMs, where each processing node verifies a separate CSP sub-instance of

P9

be found in [97]). Expressing new security properties with other kinds of constraints may

require performance to be reassessed through new experiments.

4.6 Discussion

The experimental results presented in the previous section show that CSP solvers can be

used for off-line auditing verification with acceptable response time and scalability in case

of moderate size of data. Our results also show that for properties handling larger datasets,

we need to decompose the verification of the properties over smaller chunks of data to

improve the response time. Additionally, we explore a parallel processing approach to

improve the response time for very large datasets. Note that the response time can be

further improved to achieve on-line auditing by improving the performance of the CSP-

solving phase [98], which is an interesting future direction.
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Model

Entities
OpenStack AWS-EC2-VPC GCP Microsoft Azure VMware vCD

VM Instance EC2 instance VM instance Azure VM VM

vNet Network Virtual private

cloud

Auto mode vpc

Custom mode vpc
Virtual Network Network

vSubnet Subnet Subnet Subnet Subnet Subnet

vRouter Router Routing tables Routes
BGP and user-defined

routes

Distributed logical

routers

vPort Port - - NIC Port/port-group

Segment Network

ID

VPC ID VPC ID Virtual network ID Network ID

Table 4.7: Mapping virtual infrastructure model entities into different cloud platforms

9
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The abstract views offered by different cloud platforms to tenants are quite similar to

what we propose at the cloud infrastructure management view of our model. For instance,

both Amazon AWS EC2-VPC (Virtual Private Cloud) [11], Google Cloud Platform (GCP)

[12], Microsoft Azure [13] and VMware virtual Cloud Director (vCD) [94] provide tenants

with the capability to create virtual network components as software abstractions, enabling

to provision virtual networks. Therefore, our model can capture the main virtual compo-

nents that are common to most of the IaaS management systems with minor changes. Table

4.7 maps the entities of our infrastructure management view model to their counterparts in

the cloud platforms cited above.

Eucalyptus [99] is an open source IaaS management system. The Eucalyptus virtual

private cloud (VPC) is implemented with MidoNet [100], an open-source network virtual-

ization platform. In the same fashion as OpenStack Neutron, Eucalyptus MidoNet supports

virtualization mechanisms such as VLAN and VXLAN to implement large scale layer 2 vir-

tual networks spanning over the cloud infrastructure. Therefore, our implementation layer

model can be applied to Eucalyptus implementations with minor changes.

However, implementation details may significantly vary between different platforms.

Furthermore, cloud providers typically do not disclose their implementation details to their

customers. Therefore, the implementation layer of our model along with the extracted

properties might need to be revised according to the implementation details of each cloud

deployment if those are provided. However, this needs to be done only once before initial-

izing the compliance auditing process.

Our current solution is designed for the specific OpenStack virtual layer 2 implemen-

tation mainly relying on VLAN and VXLAN as well-established network virtualization

technologies, and OVS as a widely used virtual switch implementation. However, as we

use high-level abstractions to represent virtual layer 2 connectivity and tunneling technolo-

gies, we believe that our approach remains applicable in case of other overlay technologies
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such as GRE. In small to medium clouds, where VLAN tags are sufficient to implement

all layer 2 virtual networks on top of the physical network, our implementation model is

simplified and the security properties related to the mapping between VLAN and VXLAN

can be skipped.

Among the main advantages of using a CSP solver for the verification is that it allows

to integrate new audit properties with a minor effort. In our case, including a new property

consists of expressing it in FOL and identifying the audit data it should be checked against.

These properties can be modified at any stage of the cloud life cycle and their verification

or not can be decided depending on the cloud deployment offering (e.g., public or private

cloud).

In this work, we extracted a set of security properties from specific domains in rel-

evant cloud security standards that are mainly related to infrastructure virtualization and

tenants’ networks isolation (e.g., Infrastructure Virtualization Systems domain from CCM,

and Segregation in Networks section from ISO27017). Thus, our list of implemented se-

curity properties is not meant to exhaustively cover the entire security standards. Covering

other security control classes for the standards requires extracting new sets of security prop-

erties to be modeled and formalized. However, as we handle general concepts for modeling

different virtual resources, we believe that our approach can be generalized to other security

properties to support the entire security standards.

Finally, through this work, we show the applicability and the benefit of our formal

approach in verifying security properties while providing evidences to assist admins find-

ing the root causes of violations. As discussed in this section, we believe our high-level

abstractions-based model can be easily mapped to different cloud platforms. However,

the model needs to be adapted to support those different cloud platforms’ implementation

details, and augmented to support new security properties.

97



4.7 Summary

Auditing compliance of the cloud with respect to security standards faces several chal-

lenges. In this work, we proposed an automated off-line auditing approach while focusing

on verifying network isolation between tenants’ virtual networks in OpenStack-managed

cloud at layer 2 and overlay. As shown in this work, the layered nature of the cloud stack

and the dependencies between layers make existing approaches that separately verify each

single layer ineffective. To this end, we devised a model that captures for each cloud-stack

layer, namely the infrastructure management and the implementation layers, the virtual

network entities along with their inter-dependencies and their isolation mechanisms. The

model helped in identifying the relevant data for auditing network isolation and capturing

its underlying semantics across multiple layers. Furthermore, we devised a set of concrete

security properties related to consistent network isolation on virtual layer 2 and overlay net-

works to fill the gap between the standards and the low level data. To provide a reliable and

evidence-based auditing, we encoded properties and data as a set of constraints satisfac-

tion problems and used an off-the-shelf CSP solver to identify compliance breaches. Our

approach furthermore pinpoints the roots of breaches enabling remediation. Additionally,

we reported real-life experience and challenges faced when trying to integrate auditing and

compliance verification into OpenStack. We further conducted experiments to demonstrate

the applicability of our approach. Our evaluation results show that formal methods can be

successfully applied for large data centers with a reasonable overhead.
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Chapter 5

QuantiC: Distance Metrics for

Evaluating Multi-Tenancy Threats in

Public Cloud

5.1 Introduction

Multi-tenancy of the cloud is a double edged sword. On one side, the economic gain

fulfilled through resource sharing constitutes one of the most appealing cloud advantages

that attract prospective customers. On the other side, the security challenges driven by

multi-tenancy and the associated risks [101] constitute some of the main concerns that are

holding back the migration of critical applications to cloud.

In fact, the proximity with the victim can be exploited by malicious cloud users to

mount several attacks. In Table 5.1, we roughly classify those attacks into two categories

according to the required proximity (the list of attacks is not meant to be exhaustive; other,

including future or unknown, attacks may also fit into those categories). When an attacker

shares the same host with the targeted victim, (s)he can launch type I attacks (e.g., side
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channel attacks[15]), whereas type II attacks (e.g., power attack [102]) can be mounted

when resources are shared with the victim at higher levels of the cloud infrastructure, (e.g.,

rack-level). Successful attacks may affect security properties of both victim’s virtual ma-

chines (VMs) and their generated network flows at various levels of the hierarchy. As an

example, recent works have demonstrated the feasibility of real-life attacks conducted in

commercial clouds including Amazon EC2, aiming at forcing malicious VMs to be placed

within a specific zone, which could be a host, a rack or a larger scale area inside the cloud

data center [28, 29].

Today’s cloud service providers (CSPs) are well aware of such multi-tenancy-related

threats, and they are often under obligation to protect their tenants against such threats,

either as part of the service level agreements or to demonstrate compliance with security

standards (e.g., CCM 3.0.1 [7]). Nonetheless, addressing multi-tenancy threats remains a

challenging issue. First of all, completely avoiding multi-tenancy is certainly impractical

since it reduces the financial benefit, which is an important factor to cloud adoption. Alter-

natively, enabling resource sharing naturally implies a degree of exposure to multi-tenancy

threats. A mid-way solution for the CSP would be to balance between the security impli-

cations and the economic benefits of resource sharing. In this respect, evaluating multi-

tenancy threats based on the proximity between tenants sharing the same cloud constitutes

a valuable means towards reaching an optimum trade-off between tolerated risks and costs

according to negotiated contracts.

Particularly, existing approaches (e.g., [63, 103]) propose metrics to evaluate the overall

cloud security risk based on vulnerabilities in cloud deployments (a detailed review of the

related work is given in Section 2.3.2). Nonetheless, none of them provides the potential

impact at tenant-level according to the degree of resource sharing. Furthermore, those

works focus only on the multi-tenancy threat related to type I attacks, while evaluating the

threat of type II multi-tenancy attacks has not been tackled yet.
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Multi-Tenancy

Attacks

Cloud Inf. Levels Targeted Resources Targeted Sec. Prop.

Host only Different Levels Compute Network C I A

Type I

Side channel attacks [15] • • •
Host-based DoS attack [104] • • • •

SDN-based freeloading attack [105] • • • •

Type II

Power attacks [102] • • • •
Bandwidth attack [106] • • •
Resource abuse [107] • • •

Table 5.1: Multi-tenancy attacks, their scopes, targeted resources and the affected security properties, namely, confidentiality (C),

integrity (I) and availability (A)

1
0
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To the best of our knowledge, this is the first work that proposes multi-level metrics to

quantify the distance between tenants’ virtual infrastructures in an SDN-based cloud, as a

means to evaluate the multi-tenancy threats related to both type I and type II attacks and

assess the corresponding risk per tenant. Specifically, the main contributions of this work

are as follows.

• We devise a multi-level model capturing tenants’ virtual infrastructures deployment

inside SDN-based cloud.

• We propose novel metrics, namely, physical, compute and network distances, to

quantify the multi-tenancy threat in an SDN-based cloud.

• We present three case studies based on both a real cloud and fictitious clouds. The

first and second case studies show how our metrics correlate with the two types of

multi-tenancy attacks. In the third case study, we implement our metrics in Open-

Stack and show how they can be used to define the CSP’s compliance with tenants’

distance requirements.

5.2 Models

In the following, we discuss our threat model, and present the running example and the

cloud infrastructure model.

5.2.1 Threat Model

In this study, we assume that tenants do not have any prior knowledge on the identities of

other tenants hosted inside the same cloud. Our in-scope attacks include any multi-tenancy

attacks that require an adversary to share resources with the victim tenant at multiple levels

of the cloud data center. Any attacks involving administrator privileges are out of scope.
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Figure 5.1: An example demonstrating the physical distance between tenants’ virtual in-

frastructures, where VM A1,.., VM A5 belong to tenant tA and VM B1,.., VM B5 belong to

tenant tB

Consequently, we assume the information collected from the cloud infrastructure manage-

ment system to calculate our metrics are trusted.

Our metrics are meant for evaluating the multi-tenancy threats against the in-scope

attacks, and they are not designed to detect such attacks, identify the malicious tenant, or

pinpoint the vulnerabilities. In fact, our metrics can be applied without any prior knowledge

of the attacker’s identity (unlike [61]). Thus, our metrics are complementary to other attack-

specific security solutions, e.g., attack detection and vulnerability analysis.

5.2.2 Running Example

In Figure 5.1, tenant tA shares the same data center with many other tenants (to better

illustrate the case, we consider an exemplary tenant tB). Assume the CSP wants to evaluate

the impact of potential type I and type II multi-tenancy attacks depicted in Table 5.1 against

tA. Based on the deployment in Figure 5.1, the CSP can make the following observations:
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• None of tA’s VMs are co-located with tB at the host-level, therefore, it is unlikely for

tB to perform type I attacks (e.g., side channel attacks [15]) against tA’s VMs, or to

abuse their network flows (e.g., freeloading attack [105]).

• Although launching type I attacks is out of tB’s reach, a closer look reveals that tA

is still under the risk of type II attacks that take advantage of the shared infrastruc-

ture at higher levels without requiring host-level co-residency. For example, tB can

perform power attack [102] at Rack11 using VM B1 and VM B2 to disturb services

running at VM A1 and VM A2 located at the same rack. This attack also disturbs the

communication of VM A1 and VM A2 with VM A3, VM A4 and VM A5 located at

Rack22.

• Furthermore, VM A3, VM A4 and VM A5, that are located in a different rack and pod

than tB, are less exposed to type II attacks since their physical distance with respect

to tB is larger than the physical distance of VM A1 and VM A2 with respect to the

same tenant (Phy D2 > Phy D1).

The above observations intuitively show the correlation between measuring distances

between tenants’ virtual infrastructures and evaluating the degree of exposure to multi-

tenancy threats at different levels of the shared cloud infrastructure.

5.2.3 Multi-Level Cloud Infrastructure Model

To measure the distance between tenants, we derive an entity-relationship model that cap-

tures tenants’ virtual infrastructure elements, the cloud infrastructure elements and their

relationships. Figure 5.2 illustrates such a model. The cloud physical infrastructure in-

cludes servers and switches that are hierarchically structured in different management

zones shown as aggregated nodes (e.g., several hosts can be aggregated into a rack zone).
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Figure 5.2: Multi-level cloud infrastructure model capturing tenants’ virtual infrastructures,

the physical infrastructure and their mapping. Note that the presented three-tiered network

hierarchy is shared by most cloud data center topologies [108]

A Tenant’s virtual infrastructure consists of a set of VMs and their connecting virtual net-

works (vNet). Tenants’ VMs are located at compute services running inside hosts. VMs are

connected to vNets that are typically implemented using flowspaces constituted of a set of

OpenFlow rules [96] segregated with flow tags1. These rules are configured in some phys-

ical and virtual switches in different levels of the hierarchy to enable the communication

between VMs. We use FSvNet to denote the cloud-wide flowspace of vNet, FS i
vNet to denote

the flowspace of vNet at Level i, and FS
swi j

vNet to denote a flowspace in a given switch swi j at

Level i.

On the right side of Figure 5.2, we define four physical levels (Level 0 to Level 3)

where tenants’ virtual infrastructures (depicted on the left side of Figure 5.2) might be

located. As detailed later in Section 5.3, we use those levels to define our distance metrics.

In the following, we provide the formal definition for the multi-level cloud infrastructure

model.

Definition 1 (Multi-Level Cloud Infrastructure Model). We define the cloud infrastructure

1A flow tag is a special match field in OpenFlow rules that enables to segregate flow rules belonging to

different virtual networks

105



model as an array
−−→
CIn f of dimension four, where CIn f [i].zone and CIn f [i].switch are

respectively the sets of zones and switches at Level i (0 ≤ i ≤ 3).

Example 5.1. Figure 5.3 illustrates an instance of the aforementioned multi-level cloud

infrastructure model (Figure 5.2) capturing the example of Figure 5.1. In Figure 5.3, an

Figure 5.3: An instance of the multi-level cloud infrastructure model capturing a subset of

the deployment of Figure 5.1

excerpt of the OpenFlow table in Edg11 shows the co-residency of the flow rules belong-

ing to vNet A (i.e., r1 and r2) and vNet B (i.e., r3). Specifically, VM A1 and VM A2 of

tA located at Rack11 communicate with VM A3, VM A4 and VM A5 (not shown for space

limitation) located at Rack22 through vNet A. Similarly, VM B1 located at Rack11 commu-

nicates with VM B5 located at Rack12 through vNet B. Those communications are made

possible through flowspaces installed inside Edg11, Agg11 and other switches in the topol-

ogy depending on the location of the communicating VMs. Since VM A1 and VM A2 of tA

co-reside with VM B1 at Rack11, the flowspaces governing their flows will inevitably share

Edg11 at the rack-level and possibly Agg11 at the pod-level.
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5.3 Multi-Tenancy Distance Metrics

We first define the multi-level physical distance between a pair of tenants to capture their

symmetric distance based on the level of physical resource sharing, then we refine this

distance along the compute and network dimensions to quantify their asymmetric distances

based on their virtual infrastructures’ deployment.

5.3.1 Physical Distance

The physical distance captures the symmetric relationship between a pair of tenants in

terms of the levels of shared resources. We define this distance between two tenants’ virtual

infrastructures (VMs and their flowspaces) as a four-dimensional vector Dφ , where Di
φ = 0

(resp. Di
φ = 1) means Level i is (not) shared. We provide an illustrative example followed

by the formal definition.

Example 5.2. In Figure 5.3, VMs of tenant tA do not co-locate in the same hosts at Level 0

with the VMs of tenant tB, their physical distance at Level 0 is therefore D0
φ = 1. However,

VM A1 and VM A2 share Rack11 at Level 1 with VM B1 and VM B2, and since manage-

ment zones are nested, it follows that all the upper levels of the cloud infrastructure are

also shared. Additionally, the flowspaces associated with vNet A and vNet B share Edg11

at Level 1 and Agg11 at Level 2. Thus, the physical distance between the two tenants can

be quantified using the vector (1,0,0,0).

Let t and t ′ be two tenants hosted at the cloud data center. The virtual infrastructure

belonging to tenant t (resp. tenant t ′) is composed of a set of VMs, V Ms (resp. VM′
s)

connected to vNet (resp. vNet’), where FSi
vNet (resp. FSi

vNet’) is the associated flowspace at

a given Level i (0 ≤ i ≤ 3). We define the set of shared zones between t and t ′ at Level i

to be the set of zones that are simultaneously accommodating at least one VM belonging

to tenant t and one VM belonging to tenant t ′. We denote it szi {V Ms,VM′
s}. We similarly
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define the set of shared switches between t and t ′ at Leveli to be the set of switches on

which is installed at least one OpenFlow rule r from each of t and t ′ flowspsaces. We

denote it ssi

{

FS i
vNet,FS i

vNet’

}

. We define the symmetric physical distance between the pair

of tenants {t, t ′} as follows:

Definition 2 (Physical Distance). Let szi{V Ms,VM′
s} and ssi

{

FS i
vNet,FS i

vNet’

}

respectively

the sets of shared zones and switches between t and t ′ at Level i. Then, their physical

distance is given by the four dimensional vector Dφ {t, t ′}, where the values of its elements

Di
φ are computed as follows:

Di
φ

{

t, t ′
}

=















1 if szi {VMs,VM′
s}= /0 and ssi

{

FSi
vNet,FSi

vNet’

}

= /0

0 Otherwise

5.3.2 Compute Distance

The compute distance is an asymmetric distance that captures the degree of exposure of a

tenant t’s VMs to another tenant t ′.

Example 5.3. From Example 5.2 we have Dφ {tA, tB}= (1,0,0,0). VM A1 and VM A2 of

tA share Rack11 with tB’s VMs, while VM A3, VM A4 and VM A5 share the cloud infras-

tructure with tB at Level 3 only, which corresponds to the data center. Consequently, the

compute distance for tA with respect to tB at Level 1 and Level 2 is the fraction of VMs

that do not share the same racks and pods, which is 3/5. Hence, the multi-level compute

distance for tenant tA with respect to tB is (1,3/5,3/5,0).

More formally, we define the average compute distance of tenant t with respect to tenant

t ′ according to the number of shared zones as follows (V Mz
s is the set of VMs located at

zone z):
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Di
ς (VMs,VM′

s) =















Di
φ {t, t ′} if szi {VMs,VM′

s}= /0

∑z∈CIn f [i].zone\szi{V Ms,V M′
s}

|V Mz
s∩V Ms|

|V Ms|×|szi{V Ms,V M′
s}|

Otherwise

We consider the average distance because the more the shared zones the higher the risk

related to multi-tenancy attacks would be, as will be discussed in Section 5.4.1. Note that

when all tenants’ VMs are deployed inside the same data center, D3
ς is always equal to zero.

flowspaces

5.3.3 Network Distance

By analogy to the compute distance, the network distance is also an asymmetric distance

that captures the degree of exposure of a specific tenant’s network resources with respect

to another tenant.

Example 5.4. The OpenFlow rules depicted in Figure 5.3 have six match fields, source/des-

tination MAC, source/destination IP and source/destination port, in addition to the flow-

tag. The bit sequence composing those match fields can be either a wildcard or an exact-

match, i.e., fixed to zero or to one, where rules with more wildcarded bits define larger

flows. Since sharing more flows with other tenants increases the risk of network isola-

tion breaches (e.g., freeloading attacks [105]) and unavailability (e.g., bandwidth attack

[106]), we quantify the network distance of vNet A with respect to vNet B based on the size

of flowspaces that are not sharing the same switches. As illustrated in Figure 5.3, a case of

co-residency for the flowspaces of vNet A and vNet B is reported at Level 1 in Edg11. In

the latter switch, both flow rules r1 and r2 have all the match fields as exact match, mean-

ing that each rule handles a flow composed of one packet only. Since not all flowspaces

can be shown for space limitation, we assume that the flow size of vNet A at Edg11 is equal
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to 10, and that its total flow size at Level 1 is 16. Then, the network distance at this level

is D1
η = (16− 10)/16. Additionally, if we assume that all vNet A flowspaces are shared

with vNet B at both Level 2 and Level 3, then the network distance vector for vNet A with

respect to vNet B would be equal to (1,6/16,0,0).

Let ω be the length in terms of bits of an OpenFlow rule match sequence. Similarly

to [32], we abstract away from the meaning associated with each OpenFlow rule’s header

match field, and consider a match sequence to be a sequence of bits defined over {0,1,∗}ω
,

where * is the wildcard symbol. Let ψ be the number of exact match bits of an OpenFlow

rule r, where ψ ≤ ω , and let sizeof( ) be a function that measures the flow size of the

OpenFlow rules. The flow size of r is equal to sizeof(r) = 2ω−ψ . Particularly, the flow

size defined by a rule where all bits in the match sequence are exact match, is equal to

sizeof(r) = 20 = 1 (as ψ = ω). The size of all flowspaces for a given virtual network at

a specific level can be computed by aggregating the size of all OpenFlow rules associated

with it (for simplicity, we assume that OpenFlow rules do not overlap). This is given by

size(FSi
vNet) = ∑r∈FSi

vNet
sizeo f (r). We define the average network distance between the

flowspaces of vNet and vNet’ at a given Level i as:

Di
η(FSi

vNet,FSi
vNet’) =















1 if ssi

{

FS i
vNet,FS i

vNet’

}

= /0

size(
⋃

s∈CIn f [i].switch\ssi{FS i
vNet

,FS i
vNet’}

FSs
vNet)

size(FSi
vNet(t))×|ssi{FS i

vNet,FS i
vNet’}|

otherwise

5.4 Case Studies

In this section, we illustrate through case studies the applicability of our distances with

both fictitious and real clouds. We also present a quantitative auditing approach based on
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our metrics.

5.4.1 Case Study 1 (Correlation with Multi-Tenancy Attacks)

We consider the fictitious cloud data center illustrated in Figure 5.4, which is constituted

of four pods, eight racks (two racks per pod) and 96 physical servers (12 servers per rack).

This data center is shared by several tenants. For illustrative purposes, we consider four

tenants, namely, tA, tB, tC and tD.

In the following, we show how our physical distance correlates with type I and type

II multi-tenancy attacks (see Table 5.1). The rows of matrix Dφ (tA) hereafter report the

physical distance of tA with respect to tenants, tB (first row), tC (second row) and tD (third

row) based on the deployment of Figure 5.4, where each column represents a physical level

of the cloud infrastructure.

Dφ (tA) =













0 0 0 0

1 0 0 0

1 1 1 0













The following shows how larger physical distances reduce the multi-tenancy threats.

Assume tB, tC and tD are malicious and want to take advantage of the multi-tenancy situa-

tion to launch type I or type II attacks (see Table 5.1) against tA. Based on Table 5.1, we can

discuss the required distance and potential impact for each category of attacks as follows.

• Type I attacks require co-residency with the targeted victim at the same host (e.g.,

side channel attacks [15]). As D0
φ {tA, tB} = 0, the only potential risk of this type of

attacks is limited to tenant tB.

• Type II attacks do not necessarily require co-residency at the host-level to succeed.

However, the following reasoning shows that the larger the physical distance is, the
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Figure 5.4: An illustrative case study of a cloud data center topology. Physical servers are

named PS xyz, where x is the index of the pod, y is the index of the rack, and z is the index

of the physical server
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less the risk related to those attacks would be. We consider power attack [102] as an

example and similar reasoning can be applied to other type II attacks (e.g., bandwidth

attacks [106]).

The power attack exploits the power over-subscription vulnerability, which consists

of overloading a power supply with more workloads than it supports with the as-

sumption that workloads will never reach their peak simultaneously. If the attacker

succeeds to place many VMs inside a zone (server, rack or a larger zone) alimented

with the same power facility, then he can generate simultaneous power spikes, which

would lead to power outage when the power consumption exceeds the power ca-

pacity for that specific zone. However, the larger the zone attacker is targeting, the

more controlled VMs need to be deployed to increase the power consumption, since

smaller zones converge faster to their peak power2. Based on that and considering

Dφ (tA), we can infer the following:

– If tB or tC launch their attack against Rack11, this would be enough for them to

cause damage to all the resources of tA (VMs and their flows) that are located

at this rack zone, since both tenants share the same rack as the victim.

– However, it is more difficult for tD to affect tA resources since this would require

him to launch this attack at the data center scale (as no racks or pods are shared),

which would require much more effort than for tB or tC.

To show the correlation between the physical distance and the effort required to launch

power attack, we simulated the cloud architecture described in [110], with a number of

tenants’ workloads following an exponential distribution [107]. Power is defined per units,

where each unit power supports one VM. We assume each host has the capability to accom-

modate eight VMs, and the power consumption at higher levels is obtained by summing up

2It has been reported in [109] that racks reach 96% of their peak power, while pods and data centers do

not exceed respectively 86% and 72% of their peak power
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the power consumption of aggregated lower levels. Figure 5.5 reports the effort required

by an attacker at each level of the cloud infrastructure in terms of the number of deployed

VMs and their consumed power.

We observe that launching power attack at Level 0 requires the lowest effort, while

launching the attack at the data center scale requires consuming four orders of magnitude

more energy, which is achieved by deploying more VMs. From this analysis, we can

conclude that larger physical distances reduce the multi-tenancy risk for power attack. In

the next case study, we show with real cloud data, the need for refined distance metrics to

capture the impact of potential multi-tenancy attacks.

5.4.2 Case Study 2 (Real Cloud Data Center)

This case study is based on a real community cloud hosted at a major telecommunication

company. We collect data from part of this cloud composed of 22 hosts organized into two

racks as depicted in Figure 5.6. We perform our study on a dataset composed of 372 VMs

belonging to 37 tenants. The focus of this case study is to show the complex co-residency

relationships between tenants in real world cloud, and therefore, the need for metrics to

measure distances between tenants’ resources. For illustration, we randomly choose three

tenants, t1, t2 and t3. Note that the dimension of our distances is equal to three for this

hierarchy, since the latter is only composed of hosts, access and aggregate layers.

Table 5.2 reports the number of VMs of tenants t1, t2 and t3 inside each physical host of

the considered part of the cloud data center. One can notice that tenants’ VMs are scattered

over multiple physical nodes in both racks. Specifically, t1 has VMs co-residing with both

t2 and t3’s VMs in many different locations. Consequently, the flowspace of t1’s virtual

network co-resides with the flowspaces of t2 and t3 virtual networks at different physical

switches, in addition to the virtual switches running at the physical servers. Due to lack

of space, we only discuss the compute distance. The matrix Dς (t1) reports the compute
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distance of t1 with respect to t2 (first row) and t3 (second row) based on the deployment in

Table 5.2.

Dς (t1) =







0.005 0.5 0

0.049 0.5 0







We can infer the following from the compute distances:

• Both t2 and t3 can perform type I attacks against t1 since both are co-residing with the

victim at some physical hosts (Level 0). However, t1 has more VMs sharing the same

hosts as t2, and hence has smaller distance with respect to t2 than t3 (0.005 < 0.049).

Therefore, the impact of t2 attack on t1 VMs will be higher than the impact of t3 attack.

Note that similar reasoning can be applied on the network distances.

• Both t2 and t3 can perform type II attacks either at the rack-level or at the pod-level

as they have many VMs deployed over Rack1 and Rack2. Since the distance of t1 with

respect to t2 is equal to his distance with respect to t3 both at the rack-level (D1
ς = 0.5)

and at the pod-level (D2
ς = 0), attacks from the two tenants will have similar impact on

t1.

We further evaluate through simulations how the compute distance changes while in-

creasing the cloud data center’s workload and size. As illustrated in Figure 5.7, our compute

distance at Level 0 captures the expected increase in the degree of resource sharing while

increasing the total number of data center’s VMs (see Figure 5.7(a)), and the decrease in

resource sharing while increasing the data center’s size (see Figure 5.7(b)), which shows

the effectiveness of our metric.

115



42000

42500

7600

7800

Po
we

r

340

360

0,0,0,0 1,0,0,0 1,1,0,0 1,1,1,0
Metric

5

10

(a)

0,0,0,0 1,0,0,0 1,1,0,0 1,1,1,0
Metric

0

10000

20000

30000

40000

Po
we

r

(b)

Figure 5.5: (a) Attacker’s requirements, and (b) average attacker’s requirement in terms of

power consumption to disrupt services of a victim at different levels of the cloud infras-

tructure. The X axis corresponds to possible physical distance metric values
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Figure 5.6: Part of a real cloud data center topology constituted of 22 physical servers

organized into two racks hosting 372 VMs belonging to 37 tenants
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Figure 5.7: Compute distance at Level 0 (a) while increasing the number of data center’s

VMs, and (b) while increasing the number of data center’s hosts
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Racks Rack1 Rack2

Hosts S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

t1 0 1 0 0 0 4 6 4 4 8 9 4 10 4 6 16 1 4 8 7 2 0

t2 4 0 0 2 0 4 6 12 8 5 4 2 3 6 6 6 1 10 2 0 0 1

t3 0 0 0 0 0 0 2 1 1 1 1 0 5 0 1 0 0 0 0 2 0 0

Table 5.2: Number of VMs of tenants t1, t2 and t3 insider each physical host in the considered part of the cloud data center



5.4.3 Case Study 3 (Quantitative Auditing)

In this case study, we show how our metrics can be used to quantitatively audit the com-

pliance of deployed virtual infrastructures against tenants’ requirements in terms of the

distance. As a continuity of the case study in Section 5.4.1, we assume that tenant tA’s

security team is aware of the multi-tenancy attacks and specifies accordingly a compute

distance requirement for his own VMs against other tenants as Dς (tA) = (1,1,0.5,0).

To evaluate the compliance deviation, the CSP first measures the distances for the cur-

rent cloud deployment, then he checks the measured distances against the required one to

evaluate the deviations. In the following, matrices Mς(tA) and △Dς(tA) respectively report

measured distances and deviations for tA with respect to tenants tB, tC and tD (represented

respectively by the first, second and third row in matrices) based on the cloud configuration

in Figure 5.4 and the required compute distance Dς(tA). The obtained deviation matrix

reports how much the current cloud implementation has deviated from the required spec-

ification, where higher values correspond to more deviations and consequently reduced

distances.

Mς(tA) =













0.625 0 0 0

0 0 0 0

0 0 0 0













△Dς(tA) =













0.375 0 0 0

0 0 0 0

0 0 0 0













We integrated the described auditing approach into OpenStack [111], one of the most

commonly used infrastructure management platforms. Algorithm 1 describes the compli-

ance deviation evaluation procedures based on the required distances. First, the procedure

Per Tenant Implemented Distance measures the implemented distances based on data col-

lected mainly from Nova3 database for the compute distances, and on the OpenDaylight4

3OpenStack Nova [111] is a project designed to provide on-demand access to compute resources
4OpenDayLight is an open source SDN controller
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[68] database for the network distances. Then, the procedure Per Tenant Deviation evalu-

ates the deviation with respect to different tenants accommodated by the same data center.

Finally, a matrix is generated to report deviations at different cloud levels. Note that if ten-

ant tA has multiple outsourced virtual infrastructures, he can specify distance-based policies

with multiple rules according to the sensitivity-level of different workloads.

Algorithm 1 Compliance Deviation Evaluation

procedure GLOBAL DEVIATION( D(t))
for each tenant t ′ belonging to the data center do

M(t, t ′)=Per Tenant Implemented Distance(t, t ′)

△D(t, t ′)=Per Tenant Deviation(D(t), M(t, t ′))

Return(△D(t))

procedure PER TENANT DEVIATION(D(t), M(t, t ′))
for i = 0 to 3 do

△D [i] = 0

if M [0]< D [0] then

△D [0] = D [0]−M [0]

Return (△D(t, t ′))

To evaluate our quantified auditing approach, we simulate the K-ary tree data center

topology [112] with 40 core switches, and deploy the virtual infrastructures of 20 tenants.

We assign tenants’ VMs to servers in a round robin fashion and build their connections in

switches at different levels.
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Figure 5.8: Changes in the deviation vectors (a) while varying the number of rules, and (b)

while varying the number of VMs per rule
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In Figure 5.8(a), we fix the number of VMs per rule to 20 and vary the number of rules,

whereas in Figure 5.8(b), we fix the number of rules to eight and vary the number of VMs

per rule. In both figures, we can notice that the most significant deviations (delta distances)

are recorded for Level 0 (up to 0.45), which correspond to the host-level. This is due to

the higher security threats related to host-level co-residency (type I attacks), leading tA to

set higher distances at Level 0 compared to other levels. Therefore, deviations from those

distance requirements drastically decimate the overall security with respect to the distance.

As for Level 1 and beyond, the deviation average does not exceed 0.1. This stems from the

less significant security threats at higher levels leading tA to relax the requested distances to

reduce costs. Note that our approach is flexible to accommodate different tenants’ security

needs as they could specify their distances at deployment time.

5.4.4 Discussions

Based on the presented case studies, we can conclude that the physical distance correlates

with the degree of difficulty for multi-tenancy attacks, while the compute and network

distances provide the potential impact of those attacks according to the degree of resource

sharing at each level. Therefore, our distance metrics can be applied for evaluating the

preliminary tenant pair-wise multi-tenancy risk incurred by a given cloud deployment. To

this end, the CSP first defines a diagonal probability matrix P, where each element pii

corresponds to the likelihood of different types of multi-tenancy attacks at Level i. Those

probabilities can be defined using existing approaches as presented in [63]. Then, the

multi-tenancy risk for a given tenant t with respect to another tenant t ′ will be given by

the weighted norm of tenant t’s distance with respect to tenant t ′. This can be expressed

as Risk(t, t ′) = ||D(t, t ′)||P =
√

D(t, t ′)⊤×P×D(t, t ′). Since potential attackers’ identity

is not known a priory, the overall multi-tenancy risk for a tenant t can be defined as the

average of tenant pair-wise risks given by Risk(t) =
∑t′∈T\{t} Risk(t,t ′)

|T |−1
, where T is the set of
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tenants of the cloud data center. Note that the multi-tenancy risk can be defined at both

compute and network levels.

Due to the dynamic nature of the cloud, calculated metric values might be quickly in-

validated by various management operations such as VM migration. By integrating our

metrics into the cloud infrastructure management platform (e.g., OpenStack [111]), the

CSP can monitor those operations and evaluate our distance metrics at runtime to continu-

ously control the co-residency threats. Additionally, in the current version of our metrics,

we assume that all VMs are equally sensitive, which might not be the case for some ap-

plications (e.g., three-tier applications). We leave the study of those directions as part of

future work.

5.5 Summary

In this work, we proposed the physical, compute and network distance metrics to quantify

proximity between tenants inside cloud deployments. We showed through different case

studies and through integration into OpenStack the effectiveness and applicability of those

metrics to evaluate multi-tenancy threats. We believe our suite of metrics can be extended

to evaluate other threats in cloud. Therefore, it should be considered as a first step toward

a more general tool-set for threat evaluation in cloud environments.
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Chapter 6

ProxiMet: Security Metrics for

Evaluating and Mitigating Co-residency

Threats in Public Cloud

6.1 Introduction

Multi-tenancy allows a cloud service provider (CSP) to serve multiple customers using

the same physical resources to achieve the desired cost effectiveness. On the other hand,

multi-tenancy is also a double-edged sword as it significantly expands the attack surface of

cloud tenants by exposing their most valuable or sensitive assets to other tenants sharing

the same physical resources. Existing works have demonstrated real-life attacks for forcing

attackers’ virtual machines (VMs) to co-reside with targeted VMs, either inside the same

host or at higher proximity levels (e.g., the same rack [28]), in commercial public clouds

including Amazon EC2 (even after the network management has been hardened through

Virtual Private Networks), Google GCE, and Microsoft Azure [28, 29, 113]. Once the
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malicious tenant achieves co-residency with the victim, he/she can launch various cross-

tenant attacks, such as side-channel attacks [66, 24, 104], host-based DoS attacks [104],

resource freeing attacks [114], and power attack [102].

Today’s cloud providers are well aware of such co-residency-related threats, and they

are often under obligation to protect their tenants against such threats through isola-

tion [115, 116], either as part of the service level agreements (SLAs) or to demonstrate

compliance with security standards (e.g., ISO 27002/27017 [73, 8] and CCM 3.0.1 [7]).

Nonetheless, addressing co-residency threats remains a challenging issue in that com-

pletely avoiding multi-tenancy is impractical since it defeats the cost-effectiveness purpose

of cloud computing. Instead, cloud providers must balance security with cost effectiveness

through resource sharing as a partial remediation. However, to achieve an optimal trade-

off among those factors, a prerequisite is to be able to evaluate the co-residency threats

of clouds, i.e., to answer the question: To which extent a tenants’ virtual infrastructure

deployment is exposed to potential co-residency threats?

As demonstrated in Table 6.1, many existing works can provide a partial answer to the

above question. However, we can also see those works largely focus on detecting specific

co-residency attacks through monitoring certain metrics about resource usage. While the

proposed metrics are effective for detecting such attacks at run-time, applying them to eval-

uate and mitigate the co-residency threats of clouds as a preventive solution has two major

limitations. First, since the metrics are designed to detect attacks as they happen, the cloud

provider cannot apply the metrics proactively to evaluate or mitigate such threats before

they actually happen. Second, as can be seen in the table, those metrics are very specific

for each attack, and consequently, the cloud provider must deal with a larger number of

such metrics, if he/she wants to cover most of the known attacks; even if the cloud provider

is willing to do so, it still may not work for future, unknown attacks which might involve

other metrics than these, or those attacks that are stealthy in nature [117]. There also exist
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some generic security metrics [61, 62] which can cover multiple attacks, but those mostly

rely on the fact that the attacker is known (a detailed review of the related work will be

given in Section 2.3.2).

In this work, we present ProxiMet, a suite of novel security metrics to quantify the

proximity between cloud tenants’ virtual infrastructures. Our key observation is that, as

demonstrated in Table 6.1, although specific co-residency attacks may involve very dif-

ferent resources and thus require different metrics of resource usage for detection (e.g.,

CPU usage for a side channel attack and power consumption for a power attack), they

all share similar prerequisites in terms of co-residency, i.e., attackers must first gain suffi-

cient co-residency with a victim. Based on this observation, we first extract such common

co-residency prerequisites from co-residency attacks along two dimensions, namely, the

co-residency extent, and the co-residency intensity, which captures two different aspects of

co-residency threats. Second, we define metrics to evaluate those co-residency dimensions

based on the proximity between tenants’ virtual infrastructures according to their cloud

deployment. Third, we show the usefulness of our metrics through a case study based on

data collected from a real cloud. We further assess the effectiveness of our security met-

rics through simulations using CloudSim based on two well-known cloud VM-placement

policies [61]. The main contributions of this work are as follows:

• We examine various co-residency attacks and extract their common co-residency pre-

requisites in order to define our proximity metrics.

• We show through a real cloud-based case study the effectiveness of our metrics and

how they enable the control and mitigation of the co-residency threat level through

cloud management operations.

• We further conduct extensive simulations to show the relationship between our met-

rics and co-residency attack types.
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Attacks
Attack-Specific Metrics

IO

intensity

[25]

Bit-rate/

Error rate

distribution [118]

Number of

instructions

per second [104]

CPU

overhead

[119]

CPU

time

[114]

Throughput

[19]

Power

consumption

[102]

Available

bandwidth

[106]

Last-level cache [15] •

Hammer attack [24] •

L2 cache exploration [118] •

Whispers [120] •

Host-based DoS attack [104] •

CPU consumption attack [119] •

Resource-freeing attack [114] •

Power attack [102] • • •

CIDoS attack [121] •

Bandwidth saturation [106] •

Table 6.1: An excerpt of metrics used in detecting several co-residency-based attacks. The symbol • means the metric can be used

in the detection of the attack

1
2
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6.2 Preliminaries

This section gives our cloud infrastructure model, threat model, and running example.

6.2.1 Multi-Level Cloud Infrastructure Model

In the following, we model cloud tenants’ virtual infrastructures and their deployment in-

side the physical infrastructure. A virtual infrastructure consists of virtual resources in-

cluding VMs (deployed in physical hosts) and virtual networks (deployed in infrastructure

switches). The assignment of VMs to physical hosts is usually decided based on specific

placement policies. Figure 6.1 illustrates an entity-relationship diagram that captures our

model, where nodes represent physical and virtual resources and arrows depict their re-

lationships (e.g., mapping or association). The cloud physical infrastructure consists of

nested management zones shown as aggregated nodes (e.g., several hosts can be aggre-

gated into a rack zone, and multiple rack zones can be aggregated into a pod zone). We

use the terms single-node zone and multi-node zone, to refer to zones at the host level

(servers), and zones at higher levels of the hierarchy, respectively. Our model captures

the tree-based hierarchical network topologies (e.g., basic-tree, fat-tree and clos networks)

[122], currently in-use in several data centers’ designs [112], [123], and our model can be

adapted to other topologies [122].

6.2.2 Threat Model

As in [29], we assume a malicious tenant has the same privilege of a regular tenant to ac-

cess the interface for launching and terminating his/her own VMs. As in [29, 28], we also

assume a malicious tenant can infer the VM-placement policy used in the cloud and con-

sequently craft special launch strategies to increase his/her chances of co-residency with

the victim. Our in-scope attacks include any cross-tenant attacks that require an adversary
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Figure 6.1: A multi-level model capturing tenants’ virtual infrastructures, the cloud physi-

cal resources, and their relationships

to co-reside certain resources with the resources of a victim tenant. Any attacks that in-

volve administrator privileges or target the cloud infrastructure or provider are out of the

scope. Consequently, we assume the information collected from the cloud infrastructure

management system to calculate our metrics are trusted.

Our metrics are meant for evaluating the general security posture of clouds against the

in-scope attacks, and they are not designed to detect such attacks, identify the malicious

tenant, or pinpoint the vulnerabilities. In fact, our metrics are to be applied before the

attacks actually happen (unlike [25]), and without any prior knowledge of the attacker’s

identity (unlike [61]). Thus, our metrics are complementary to other attack-specific security

solutions, e.g., attack detection and vulnerability analysis.

6.2.3 Running Example

To build intuitions, we discuss our running example shown in Figure 6.2. In this cloud

deployment, we assume Tenant A has a three tier application composed of two database

servers (DB A in hosts 1 and 2), five application servers (App A in host 3), and three web

servers (WB A in host 4). The right-side table of Figure 6.2 shows the total number of VMs

belonging to all four tenants (including Tenant A) in each host.
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Figure 6.2: An example showing the deployment of the virtual infrastructures of tenants A,

B, C and D inside the data center

Assume the cloud provider would like to evaluate the level of co-residency threats of

Tenant A’s virtual infrastructure, without knowing which of the three tenants (Tenant B,

Tenant C, and Tenant D) would be malicious, and which attacks (as shown in Table 6.1)

would be used. At the same time, the co-residency status shown in the figure would cer-

tainly determine (as a necessary but not sufficient condition) whether any such attack may

succeed. For example, Tenant C cannot launch any side-channel attack on the database

servers of Tenant A (since Tenant C is not co-residing with Tenant A on hosts 1 and 2),

whereas he/she can potentially stage server-level or rack-level power attacks [102] or host-

based DoS attacks [104] against the web and application servers, since he/she has a large

number of VMs co-residing with Tenant A on hosts 3 and 4. Clearly, it is not straightfor-

ward to design security metrics that can effectively evaluate the co-residency threat levels

according to all possible attack scenarios, which we will pursue in the remainder of this

chapter.
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6.3 Methodology

In this section, we first extract some common aspects of co-residency attacks then we define

our proximity metrics.

6.3.1 Extracting Common Aspects of Co-Residency Attacks

The co-residency attacks shown in Table 6.1 may look very different at first glance as they

employ different techniques and have different objectives. However, those attacks have in

common one prerequisite, i.e., the malicious tenant must first co-reside with the victim.

Therefore, we start by examining how such a prerequisite applies to each attack in more

details. In Table 6.2, we classify the attacks into two categories (the list of attacks is not

meant to be exhaustive; other, including future or unknown, attacks may also fit into those

categories), and we discuss their co-residency prerequisite as follows.

Type I Attacks. In Table 6.2, the first seven attacks are very different in nature, however,

they have commonalities with respect to co-residency prerequisites. For instance, last-level

cache attack, hammer attack and L2 cache exploration attack are all side/covert channel

attacks whose objective is either to steal sensitive information from the victim’s resources to

breach confidentiality, or to establish illicit communication paths exploiting co-residency.

Host-based DoS attacks attempt to compromise victim’s hosts availability by deploying

well-tuned controlled VMs over those hosts, while resource freeing attack objective is to

use shared hosts’ resources on the victim’s expense. Another example of type I attacks is

the hyperjacking attack, where a single malicious VM constitutes the only prerequisite to

exploit the hypervisor (e.g. CVE-2015-3456 [124]) and take control over co-hosted VMs.

The common aspect of all those attacks is to place at least one malicious VM inside the

same host with the victim’s VMs. Through those attacks, the adversary may target either a

fraction of the victim’s resources (e.g., database or storage servers), or all of them, which
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Attack type Attack

Common aspects

Extent Intensity

Fractional Complete At least one As many as possible

Type I

Last-level cache [15] X X X

Hammer attack [24] X X X

L2 cache exploration [118] X X X

Whispers [120] X X X

Host-based DoS attack [104] X X X

CPU consumption attack [119] X X X

Resource freeing attack [114] X X X

Type II

Power attack [102] X X

CIDoS attack [121] X X

Bandwidth saturation attack [106] X X

Table 6.2: Co-residency attacks and their common aspects of co-residency prerequisite

1
3
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is referred to as complete coverage [125, 66].

Example 6.1 (CPU consumption attack [119]). CPU consumption attack is a co-residency-

based attack that exploits hypervisors’ vulnerabilities. Under this attack, one malicious VM

can increase the CPU cycles usage on a host from the legitimate limit (40%) up to 85%. An

attacker whose objective is to disturb the right functioning of a specific victim’s application

and increase her expenses (since customers are charged based on the amount of time their

VMs are running) will place at least one VM in each host accommodating the victim’s

resources in order to maximize the overall victim’s charged costs. Therefore, a necessary

condition for this attack to succeed is to co-reside with the largest number of victim’s VMs.

It follows that its percentage of success is determined by the degree of coverage attacker

achieves with respect to his victim’s resources. We refer to this coverage-level as extent

since it defines the degree of damage that could be caused to the victim assuming that all

her resources are equally important.

Type II Attacks. This category includes attacks exploiting vulnerabilities in the cloud man-

agement strategies (e.g., resource over-subscription [126, 102]). Examples are power attack

[102] and bandwidth saturation attack [106]. These attacks aim at affecting the availability

of a given zone of the cloud infrastructure, which could be at the host-level, rack-level or

higher levels in the cloud hierarchy (as described in Section 6.2). To succeed and maximize

the effect, those attacks require as many malicious resources as possible to be placed inside

the targeted zone. Furthermore, they typically target a fraction of their victim’s resources

located at a specific zone since larger targets, e.g., the data center, are significantly more

difficult to compromise.

Example 6.2 (Power attack [102]). Power attack exploits the power over-subscription vul-

nerability, which consists of overloading a power supply with more workloads than it sup-

ports with the assumption that workloads will never reach their peak simultaneously. If the
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attacker succeeds to place many VMs inside a zone alimented with the same power facil-

ity, then he can generate simultaneous power spikes, which would lead to power outage

when the power consumption exceeds the power capacity for that specific zone. It has been

shown in [102] that one malicious VM can increase the power consumption of the hosting

machine with up to 95 watt while a benign VM causes a power increase of 45 watt only.

Obviously, the more the number of controlled VMs attacker could place in the targeted

zone, the higher the risk related to those attacks would be. The number of VMs needed will

be depending though on the power supply capacity. Indeed, the larger the rated capacity of

a zone’s circuit breaker, the more VMs the attacker needs to place in it to cause its outage.

Additionally, the larger the zone attacker is targeting, the more controlled VMs need to be

deployed to increase the power consumption, since smaller zones converge faster to their

peak power1.

As demonstrated through above discussions, those seemingly different attacks indeed

share the common prerequisite of co-residency, and such prerequisite may be characterized

along two diagonal dimensions as follows.

• Co-residency Extent. This aspect of the co-residency prerequisite reflects the level

of coverage the attacker wants to achieve with respect to the victim’s resources. In

Table 6.2, the extent columns show whether each attack may target a fraction (e.g.,

type II attacks) of the victim’s resources or all of them (e.g., type I attacks).

• Co-residency Intensity. This aspect of the co-residency prerequisite reflects the amount

of malicious resources the attacker needs to place at a given zone for the attack to

succeed. In Table 6.2, the intensity columns show whether each attack may require

at least one (type I attacks), or as many as possible (type II attacks) malicious VMs

to co-reside with the victim.

1It has been reported in [109] that racks reach 96% of their peak power, while pods and data centers do

not exceed respectively 86% and 72% of their peak power.
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6.3.2 Proximity Metrics

To quantify the common aspects of co-residency prerequisites depicted in Table 6.2 and

discussed in Section 6.3.1, we define two metrics, namely, the co-residency extent, and

the co-residency intensity. The first metric is designed to capture the extent aspect, and

the last metric captures the intensity aspect of co-residency prerequisites. In addition, we

propose a generic metric, namely, the multi-tenancy attack surface, which does not directly

map to those common aspects, but evaluates the co-residency threat from a more general

perspective as will be discussed later in this section.

For notations, let t and z be a tenant and a zone in the cloud data center DC, where z

could be either a single-node zone (i.e., a host) or a multi-node zone (a rack, a pod, or the

data center as a whole). Let Rt be the set of resources belonging to a tenant t. We denote by

zt the set of zones in which tenant t has at least one resource deployed. We use the notation

|Rt| for the number of resources of tenant t. Table 6.3 summarizes our notations along with

their description.

Co-residency Extent. This metric evaluates the extent aspect of co-residency attacks. To

this end, we first calculate the resource distribution to capture how many resources of a

given tenant t (the victim) are sharing zones with another tenant t ′, the potential attacker,

by summing up t’s resource distribution values over all the zones z that are shared between

t and t ′ (z ∈ zt ∩ zt ′). This can be expressed as pairwise-extent(t, t ′) = ∑z∈zt∩zt′
RD(t,z).

Based on this, we define the co-residency extent, as the highest level of pairwise ex-

tent with respect to all the tenants having at least one zone shared with tenant t. This is

expressed as follows:

Co-residency-extent(t) = maxt ′∈T\{t}pairwise-extent(t, t ′)

This metric reports the upper bound threat-level related to type I co-residency attacks
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Var. Description

T The set of tenants inside the data center DC

Z The set of zones inside the data center DC

Tz The set of tenants having at least one of their virtual re-

sources in z

Rt The set of virtual resources belonging to tenant t

Rt,z The set of virtual resources of tenant t in zone z

Rz The set of all virtual resources in zone z

ZC(t) Zone coverage is the number of zones accommodating ten-

ant t’s resources. We denote ZC(t) = |zt|. Depending on

the zone type, we call ZChost(t), ZCRack(t) and ZCpod(t) the

host-level coverage, rack-level coverage, and pod-level cov-

erage, respectively.

RD(t,z) Resource distribution is the ratio of resources belonging to t

located at z. We denote it RD(t,z) =
|Rt,z|
|Rt |

RA(t,z) Resource abundance is the fraction of resources belonging

to t in z over all resources in that zone (regardless of tenants

they belong to). More formally RA(t,z) =
|Rt,z|
|Rz|

ZS(t,z) Zone sharing is the ratio of tenants effectively co-residing

with t in z (excluding t itself). More formally, ZS(t,z) =
|Tzt |−1

|T |−1

Table 6.3: Summary of the notation used in Proximet

according to the current cloud deployment.

Example 6.3. We evaluate the co-residency extent for Tenant A according to the deploy-

ment depicted in Figure 6.2. Table 6.4 reports the pairwise extent for Tenant A with respect

to other tenants. From this table, we can conclude that the co-residency extent for Ten-

ant A is equal to 1. We can see that the co-residency extent coincides with Tenant D, who

shares all the hosts with Tenant A. Hence, the metric provides an upper bound to the threat

of a co-residency attack whose prerequisite is to maximize the co-residency extent (e.g.,

Hammer attack [24]).

Co-residency Intensity. We define this metric to evaluate the intensity aspect of type II co-

residency attack. For a given tenant t, which is the victim, and a given tenant t ′, the potential

attacker, we first measure the resource abundance of t ′ at each zone z that is shared with

136



Host1 Host2 Host3 Host4 Per-tenant coverage

Tenant B 0.1 0.1 0 0 0.2

Tenant C 0 0 0.5 0.3 0.8

Tenant D 0.1 0.1 0.5 0.3 1

Table 6.4: Host-level pairwise extent with respect to Tenant A

Host1 Host2 Host3 Host4 Per-tenant intensity

Tenant B 0.33 0.2 0 0 0.13

Tenant C 0 0 0.68 0.83 0.37

Tenant D 0.33 0.6 0.09 0.04 0.26

Table 6.5: Host-level pairwise intensity with respect to Tenant A

t, we sum up the resource abundance values over all shared zones (z ∈ zt ∩ zt ′), then, we

normalize the obtained value by the zone coverage of tenant t, the potential victim. This is

expressed formally as pairwise-intensity(t, t ′) =
∑z∈zt∩z

t′
RA(t ′,z)

ZC(t) .

Similarly to the previously defined metric, as we are evaluating potential threats, we

define the co-residency intensity, which provides an upper bound to the threat of type II

co-residency attacks with maximum attacker’s resources intensity as a prerequisite, to be

the highest level of resource intensity with respect to all the tenants having at least one zone

shared with tenant t. Thus, the co-residency-intensity is expressed as follows:

Co-residency-intensity(t) = maxt ′∈T\{t}pairwise-intensity(t, t ′)

Example 6.4. In this example, we evaluate the co-residency intensity for Tenant A ac-

cording to the deployment of Figure 6.2. In Table 6.5, column six reports the pairwise

intensity. We can see that the co-residency intensity for Tenant A is equal to 0.37, which

corresponds to Tenant C who has the largest host-level VM abundance at Host3 and Host4

inside Rack12. This depicts the worst case scenario when there exists an adversary trying

to launch a power attack [102] or a bandwidth saturation attack [106].

Multi-Tenancy Attack Surface. This metric is designed to provide an insight about
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Host1 Host2 Host3 Host4
Resource-distribution 0.1 0.1 0.5 0.3

Host-sharing 0.1 0.1 0.1 0.1

Per-Host resource attack surface 0.01 0.01 0.05 0.03

Table 6.6: Per-host attack surface with respect to VMs of Tenant A

the overall security posture of a virtual infrastructure’s deployment with respect to co-

residency without necessarily correlating with one of the common aspects to co-residency

attacks. We consider that each tenant t’s resource is a potential entry point to compromise

the tenant’s virtual infrastructure, and each tenant t ′ sharing the same zone is a potential

attacker. Hence, we define the multi-tenancy attack surface to measure the attackabil-

ity against tenant t’s resources at a given zone z by combining his resource distribution

value at that zone, with his zone sharing value inside the same zone, which is expressed as

Per-zone-attack-surface(t,z) = RD(t,z)×ZS(t,z).

To obtain the attack surface related to all of tenant t’s deployed virtual resources, we

sum up the per-zone attack surface for tenant t over all the zones where the latter exists

(z ∈ |zt|). This can be expressed as:

Attack-Surface(t) = ∑
z∈|zt |

Per-zone-attack-surface(t,z)

Example 6.5. According to the deployment of Figure 6.2, and assuming that T = 20, we

calculate the per-host attack surface for Tenant A. To this end, we first calculate the per-

host resource distribution for Tenant A’s VMs, and it’s host sharing (reported in rows two

and three of Table 6.6, respectively). Then, we evaluate the per-host VM attack surface

as reported in row four of Table 6.6. Finally, the overall multi-tenancy attack surface is

obtained by summing up the per-host attack surface values, which is equal to 0.1 (not

shown in the table).
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Figure 6.3: Subset of a real cloud data center: (right) distribution of tenants’ VMs on a

subset of physical hosts and racks, and (left) zoom on the VMs deployment of two tenants

(T 1 and T 34) inside the physical hosts

6.4 Case Study (Real Cloud Data Center)

The objective of this case study is to show the applicability of our metrics and how they

can be used to mitigate the co-residency threats in real world cloud deployments.

This case study is based on a real community cloud hosted at a major telecommunica-

tion company. For privacy and security concerns, we collect and anonymize data from part

of this cloud composed of 22 physical machines organized into two racks as depicted on

the right side of Figure 6.3.

We perform our study on four different datasets (as subsets of the aforementioned cloud

data), where each dataset captures VMs deployment in the considered portion of the cloud

during one day. Table 6.7 reports the total number of tenants and VMs, and the average

number of tenants and VMs per host. Additionally, Figure 6.4 reports the distribution of

the number of tenants with respect to the number of VMs they own in different datasets.
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Dataset DS1 DS2 DS3 DS4

# Tenants 33 31 32 21

# VMs 212 301 372 290

Average # Tenants per host 6.45 7.27 7.63 4.77

Average # VMs per host 9.63 13.68 16.9 13.18

Table 6.7: Total number of tenants (with at least one running VM) and VMs, and the

average number of tenants and VMs per host for each dataset

6.4.1 Evaluation of our Metrics on a Real Cloud

In this section, we demonstrate the applicability of our metrics on a real cloud. Table 6.8

summarizes the average values of the co-residency extent and the co-residency intensity

in the studied datasets. The highest average of both metrics is recorded for dataset DS3,

which has the largest total number of VMs and the largest average of VMs per host. More

specifically, Figure 6.5 depicts the distribution of our metrics’ values for different tenants

computed in the four datasets described in Table 6.7. We can see that overall, the co-

residency extent metric tends to have higher values for most of the tenants in all datasets,

whereas the co-residency intensity tends to take relatively smaller values except for few

cases where it could reach large values.

It can be noted that the large values of the co-residency extent metric in all datasets are

mainly due to several factors such as the relatively small number of VMs owned by most

of the tenants, and the small number of hosts. For instance, as most of the tenants have a

number of VMs varying between 1 and 10 VMs (as illustrated in Figure 6.4), hosted in a

relatively small number of hosts, the chance of co-residency increases, which results in a

relatively high co-residency extent for most of these tenants. The lower values of the co-

residency intensity metric can provide insights about the employed VM placement policy

(e.g., least policy), which tends to spread the VMs over multiple hosts for resiliency and

load balancing purposes. Although those results provide some hints about the relationship

between the number of VMs per tenant, the size of the data center, the VM placement

policy, and the metrics’ values, we delay drawing conclusions until studying the general
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Figure 6.4: Distribution of the number tenants with respect to the number of VMs they

own for (a) DS1, (b) DS2, (c) DS3, and (d) DS4. The distribution includes tenants with no

running VMs

pattern in the simulation section.

To show the advantage of defining the co-residency extent per tenant as the maxi-

mum among the recorded pairwise co-residency extent values, we analyze the distribu-

tions of pairwise co-residency extent for all tenants in DS3, the dataset with the highest

co-residency extent average (note that similar reasoning can be applied to co-residency in-

tensity). Figure 6.6 characterizes the distributions of the pairwise co-residency extent for

different tenants using box-plots2. Therein, each box-plot reports five values, namely, the

2A box-plot is a rapid visual description of a dataset, which graphically depicts the concentration and

spread of numerical data based on quartiles
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Figure 6.5: Co-residency extent and co-residency intensity in different datasets

minimum value, the first quartile, the median, the third quartiles and the maximum value,

for the distribution of pairwise co-residency extent of one tenant in the dataset. We addi-

tionally report the average (mean) for each box-plot. For convenience sake, we order the

box-plots based on their means and assign a numerical identifier to each one of them. Based

on the information provided in Figure 6.6, we can make the following interpretations:

• The five values of box-plots from 24 up to 31 are assimilated to the mean point, which

is the maximum value (co-residency extent), and is equal to one. This means that all

the pairwise co-residency extent values for the corresponding tenants are equal to

one. This high metric value is mainly due to the very small number of VMs owned
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Datasets DS1 D2 DS3 DS4

Average co-residency extent 0.882 0,966 0.992 0.982

Average co-residency intensity 0.217 0.281 0.373 0.285

Table 6.8: Average of co-residency extent and co-residency intensity for different datasets

by the corresponding tenants. Indeed, each one of those tenants has at most one VM,

therefore, one co-residency with another tenant will position the metric’s value to

one.

• Box-plots from 18 up to 23 correspond to tenants owning two VMs, meaning that the

pairwise co-residency extent can take two values only, the minimum value is 0.5 for

a tenant co-located with one VM only out of the two, and the maximum value is one

for a tenant co-residing with the two VMs. We can infer from the average of those

box-plots, which varies between 0.65 and 0.75, that the smallest co-residency extent

value is more frequent than the largest one. Therefore, choosing the co-residency

extent metric to be equal to the largest pairwise co-residency extent, instead of the

average, makes our metric more accurate in capturing the upper bound co-residency

threat level.

• Box-plots from one up to 17 correspond to tenants whose average number of VMs

is 20.4, which is more reasonable compared to the two previous cases. For those

tenants, the average of pairwise co-residency extent varies between 0.285 and 0.666.

However, we can see also that in all box-plots, most of the observed pairwise co-

residency extent values are concentrated on the lower whisker and on the interquartile

range (between the first and the third percentiles), whereas large metric values are

less observed, which is reflected by large upper whiskers. For instance, in box-plot

three, 75% of the observed pairwise co-residency extent values are below 0.481,

whereas large metric values are rare. This again shows the benefit of considering the

maximum pairwise co-residency extent as the metric value for evaluating the worst
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case scenarios of co-residency.

• A malicious tenant a, trying to achieve type I attacks (e.g., side channel attacks)

against his victim v, will obviously launch an abnormally large number of VMs or

tune a VM launching strategy (as will be detailed in Section 6.5) in order to maximize

his coverage of the victim’s VMs. This will considerably increase the pairwise co-

residency extent with respect to the victim such that any other normal tenant t sharing

the cloud will have a lower pairwise co-residency extent with respect to the victim.

This can be expressed as ∀t ∈ T \ {a} : pairwise-extent(v, t)< pairwise-extent(v,a).

Therefore, choosing the co-residency extent metric to be equal to the highest among

the pairwise co-residency extent values constitutes the best option to capture this ab-

normal increase, since any other aggregated values (e.g., mean, median, percentiles)

will loose the accuracy because of the large number of tenants sharing the cloud as

can be seen in Figure 6.6.

Clearly, the co-residency extent metric reveals critical information according to the

upper bound co-residency threats related to type I attacks. The relationship between our

metrics and the attack types will be further elaborated in Section 6.5. Although the above

discussion emphasizes the applicability and the effectiveness of our metrics, it is worth

noting that as we test our metrics on the data collected only from a small portion of the

cloud data center, the metric values we report do not reflect any fact about the co-residency

threat levels of the whole data center.

6.4.2 Mitigation through Migration

As discussed in Section 6.3, large values of co-residency extent and/or intensity reveal an

increased threat of co-residency attacks. To reduce this threat, the CSP can monitor the

metrics’ values and take some mitigation actions whenever the values exceed a specific

threshold.
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Figure 6.6: Characterizing the distributions of pairwise co-residency extent values for dif-

ferent tenants in DS3

Assume the CSP defines the co-residency extent threshold for his tenants as the average

of their pairwise co-residency extent plus a value ε = 0.1. For instance, as depicted in

Figure 6.7, the average pairwise co-residency extent of tenant T1 in dataset DS3 is equal to

0.35 (before migration), therefore, the co-residency extent threshold for this tenant should

be equal to T SH(T1) = 0.45. We recall that the co-residency between T 1 and T 34 is

illustrated in the left side of Figure 6.3. Therein, one can see that T 34 has the maximum

value of the pairwise co-residency extent with respect to T 1 (pairwise-extent(T1,T 34) =

Co-residency-extent(T1) = 1).

Obviously, this configuration does not comply with the threshold set by the CSP. Ad-

ditionally, if tenant T34 is an attacker targeting the full coverage of tenant T1’s VMs, then

the deployment illustrated in the figure will cause the largest scale damage to tenant T1.

To bring the cloud deployment to a compliant state, and hence reduce the co-residency
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threat, the CSP needs to perform a set of migration events. To do so, the VMs to be mi-

grated and the number of source hosts need to be carefully selected in order to minimize

the cost related to migration. At the same time, these migrations need to quickly decrease

the co-residency extent to prevent large scale damage to the victim and minimize the non-

compliance time period.

Algorithm 2 shows an example of heuristics that can be used. First, for each tenant

t ′ having pairwise co-residency extent with respect to t exceeding the threshold T SH, we

identify the set of shared hosts, SourceHosts, and classify them into an increasing order

based on the number of VMs of tenant t ′ in each host. Then, we choose the first host in the

list as the source host (src) of the migration event. Finally, we migrate the VMs of tenant

t ′ inside src to a set of candidate hosts that do not accommodate any of tenant t VMs. The

choice of the exact destination host will be depending on the adopted VM placement policy.

Algorithm 2 Threshold-based Migration

procedure MIGRATION(t,ε)

T SH=Average-pairwise-extent(t)+ε
ExtentArray=Pairwise Extent(t)

ClassifyInDecreasingOrder(ExtentArray)

Max Extent=GetFirst(ExtentArray)

while Max Extent> T SH do

Select-tenant t ′ such that Pairwise-extent(t, t ′)=Max Extent

SourceHosts=zt ∩ zt ′

ClassifyInIncreasingOrder(SourceHosts,|Rt ′,z|) // Classify SourceHosts based on

|Rt ′,z|
src=GetFirstZone(SourceHosts)

candidate-destinations=Z \ zt

MigrateVMs(R t ′,src, candidate-destinations)

Evaluate-Extent(t,t ′)

ClassifyInDecreasingOrder(ExtentArray)

Max Extent=GetFirst(ExtentArray)

Figure 6.7 reports the pairwise co-residency extent of tenant T1 with respect to other

tenants before and after the migration operations. We can see from this figure that the co-

residency extent for T1 decreased from 1 down to 0.444, which is slightly larger than the
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Figure 6.7: Changes in pairwise co-residency extent values for tenant T1 in dataset DS3

before and after migration events

average pairwise co-residency extent before migration (0.35) but lower than the threshold

(0.45). This scenario shows the usefulness of our metrics for mitigating the risk related co-

residency threats in cloud deployments. It is worth noting that the thresholds for metrics’

values can be specified by the CSP based on several factors (e.g., the average pairwise co-

residency extent per tenant, the size of the data center, the overall number of VMs). We

leave the study of systematic approaches for defining appropriate thresholds, and the design

of heuristics providing better optimization for different objectives as part of future work.

6.5 Simulation

In this section, we evaluate our proximity metrics by comparing their results with the per-

centage of successful simulated attacks under two well-known VM-placement algorithms

implemented in CloudSim [127], a widely used cloud environment simulator.
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6.5.1 Simulation Environment

First, we evaluate our metrics in a small data center (300 hosts) with two sets of configura-

tions for the hosts. For the first configuration with low frequency usage hosts, we specify

the capacity of hosts as 4GB RAM, 1,000 GB storage space and 10,000 MB/s bandwidth.

For the second configuration with high frequency usage hosts, we set the capacity of hosts

to 40 GM RAM, 10,000 GB storage space and 10,000 MB/s bandwidth. In both configu-

rations, we consider VMs’ resource requirements as 512 MB RAM, 10 GB storage space,

and 1,000 MB/s bandwidth, which is also the default configuration for VMs in CloudSim.

The data center can accommodate 500 VMs in the first configuration, whereas it can host

up to 5,000 VMs in the second configuration. The purpose of designing two different ca-

pacity configurations is to study the variations of our metrics in data centers with different

characteristics. We also increase the number of hosts up to 3,000 to study the impact of

larger clouds on the metrics’ values.

Background workload. Recent studies demonstrated that VMs’ requests for arrival and

departure follow the power law distribution [128]. As the latter is not provided by default

in CloudSim, we have implemented it to generate realistic workload requests based on

statistics in [128].

Placement Algorithms. In the latest version of CloudSim (version 4.4), the libraries for

placement algorithms of containers have been added, however, those for VMs are still

missing. Thus, we implemented the two placement algorithms, namely, most-VM and

least-VM policies, that are widely used in the literature [62] and in open source cloud

platforms, such as OpenStack [111]. The most-VM placement policy is based on workload

stacking to reduce resource consumption, while the least-VM policy is based on workload

balancing.

Attacker Launch Strategies. Similarly to other works (e.g., [62, 29]), we assume that
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attackers could gather the knowledge about placement algorithms and adjust their VM-

launch strategies accordingly to increase their chance of co-residency. For this purpose,

we have implemented the launch strategies described in [62]. Note that our metrics are

evaluated based on the deployments only (without having any knowledge about attackers)

and are independent of attackers’ launch strategies.

Parameter settings. In each simulation, we generate 5 hours of workload, which cor-

responds to around 12,000 VMs’ requests. An attacker with a launch strategy, As, starts

VM(As,C) VMs within one log configuration, C. The metrics’ values in all figures are the

average for at least 500 iterations.

6.5.2 Effectiveness of Proximity Metrics

In the first set of simulations, we compare co-residency extent with the percentage of suc-

cessful type I attacks (see Table 6.2). In this type of attacks (e.g., Hammer attack, CPU

consumption attack), the attacker’s objective is to co-reside with the maximum number of

victim’s VMs. In our simulation, we have chosen one malicious user, with a specific VM

launch strategy tuned based on the placement policy, as attacker, and we defined the per-

centage of successful attacks as the fraction of victim’s VMs covered by the attacker. Note

that our metrics are calculated only based on the deployment status of the cloud environ-

ment, which means that no prior knowledge of the attacker is required in our calculations.

Figure 6.8 and Figure 6.9 show the evolution of our metrics and the percentage of success-

ful type I attacks under our two sets of host configurations.

Results and Implications for Co-residency Extent in Most-VM Placement Policy. Fig-

ure 6.8 reports the co-residency extent metric compared to the percentage of successful

attacks under the most VM placement policy, both for a data center with low frequency

usage hosts (in Figure 6.8a) and for a data center with high frequency usage hosts (in Fig-

ure 6.8b). Based on those figures, we can make the following observations. First, the
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Figure 6.8: Comparing co-residency extent with the percentage of successful type I attacks

under most-VM placement policy, in the two sets of configurations (a) low frequency usage

hosts, and (b) high frequency usage hosts
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Figure 6.9: Comparing co-residency extent with the percentage of successful type I attacks

under least-VM placement policy, in the two sets of configurations (a) low frequency usage

hosts, and (b) high frequency usage hosts

151



metric reaches higher values in the data center with the second configuration (as shown

in Figure 6.8b). This is mainly due to the nature of the placement policy which tends to

stack VMs together, and to the large number of VMs each host is able to accommodate.

Second, under both host configurations, attacker could achieve higher co-residency with

targeted victims with a tuned launch strategy. Third, co-residency extent provides the secu-

rity evaluation base-line for a data center. When the number of attacker’s launched VMs is

low (VM(As,C)< 5 in Figure 6.8a, and VM(As,C)< 30 in Figure 6.8b), the metric’s values

exhibit a plateau trend, which represents the normal co-residency threat level in the data

center, as the attacker could not achieve enough co-residency with the victim. Considering

such configuration, our metric can be used by the CSP to profile his data center under nor-

mal tenants’ behavior, and to provide end users with more transparency according to the

standard co-residency threat level. Fourth, when the number of attacker’s launched VMs

goes beyond 5 in the first configuration (shown in Figure 6.8a), and beyond 30 in the sec-

ond configuration (shown in Figure 6.8b), the co-residency extent follows the percentage

of successful attacks as the attacker start achieving a higher degree of co-residency with

respect to the victim compared to other tenants in the data center. Note that the average

number of VMs per tenant for the first configuration is 10, while it is equal to 49 in the

second configuration.

Based on this, we can conclude that our metric can be used both to profile the normal

co-residency threat level for a given data center, and to capture the abnormal increase in the

degree of co-residencies, which might be due to attackers’ malicious behavior in launching

their VMs.

Results and Implications for Co-residency Extent in Least-VM Placement Policy. Fig-

ure 6.9 reports the co-residency extent metric compared to the percentage of successful

attacks under the least VM placement policy, both for a data center with low frequency us-

age hosts (Figure 6.9a) and for a data center with high frequency usage hosts ( Figure 6.9b).

152



From this figure, we observe that the attacker has a much lower chance to manipulate the

least VM placement policy to achieve higher co-residency with the victim, compared to

the most VM placement policy in Figure 6.8. Furthermore, in the configuration with low

frequent used hosts (Figure 6.9a), attacker could achieve higher co-residency by increasing

the number of VMs. However, under the second configuration in Figure 6.9b, achieving

enough co-residency becomes a more challenging task for the attacker. In both cases, our

metric captures the worst-case scenario inside the data center, which indicates the highest

co-residency threat level. Additionally, by observing the simulation results from Figure 6.8

(most VM placement policy) and Figure 6.9 (least VM placement policy), we can conclude

that our metric could serve as a reasonable means to evaluate the co-residency threat level

related to different VM placement policies.

The objective of the second set of simulations is to study the correlation between the

co-residency intensity and the percentage of success for type II attacks under the most

and least VM placement policies. Since type II attacks (e.g., power attack and bandwidth

saturation attack) mostly rely on placing a large number of attacker’s VMs inside the same

hosts with the victim, we defined the percentage of success as the percentage of attacker’s

resources co-residing with victim’s VMs.

Results and Implications for Co-residency Intensity. Figure 6.10 (resp. Figure 6.11)

reports the co-residency intensity values and the percentage of successful attacks under

the most (resp. least) VM placement policy, both for a data center with low frequency

usage hosts, and for a data center with high frequency usage hosts. We can observer that,

overall, the general trend of co-residency intensity increases at a slower pace than the co-

residency extent under the same configurations. This is because intensity relies on the total

number of attacker’s VMs that achieved co-residency with the victim within the same hosts,

which makes the attacks more difficult to achieve. Similarly to the co-residency extent, the

metric reaches higher values under the most VM placement policy and for the data center
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Figure 6.10: Comparing co-residency intensity with the percentage of successful type II at-

tacks under most-VM placement policy, in the two sets of configurations (a) low frequency

usage hosts (b) high frequency usage hosts
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Figure 6.11: Comparing co-residency intensity with the percentage of successful type II

attacks under least-VM placement policy, in the two sets of configurations(a) low frequency

usage hosts (b) High frequency usage hosts
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configuration with high frequency usage hosts, as illustrated in Figure 6.10b.

The third set of simulation compares the multi-tenancy attack surface, which indicates

the overall co-residency threat level and does not correlate with any type of attacks, with

the two metrics evaluated in previous simulation-sets, under the two VM-placement poli-

cies, while varying the number of victim’s VMs. In Figure 6.12a, we omit the result of

co-residency intensity metric since it stays plateau with the increase of the victim’s VMs

under the most-VM placement policy. In Figure 6.12b, the co-residency extent and the

co-residency intensity correspond to the left y-axis , while the multi-tenancy attack surface

(MAS) corresponds to the right y-axis. In this set of simulations, the number of victim’s

VMs increases up to 100, while the number of attacker’s VMs is fixed to 50.

Results and Implications. In Figure 6.12, we can observe that the trend for the multi-

tenancy attack surface is similar to other metrics. A mixed trend for both metrics could

be observed in both Figure 6.12a and Figure 6.12b. Since the co-residency intensity stays

plateau in Figure 6.12a, the multi-tenancy attack surface follows the co-residency extent at

the beginning then stays plateau after a certain number of victim’s VMs. In Figure 6.12b,

the multi-tenancy attack surface is closer to the co-residency extent when the number of

victim’s VMs remains small, while the trend gets closer to the maximum attacker’s intensity

with the increased number of victim’s VMs. This is mainly because when the number

of victim’s VMs increases, the increase of co-residency extent is faster than co-residency

intensity. Later on, when the co-residency extent changes at a slower pace, the multi-

tenancy attack surface captures better the change in co-residency intensity.

Figure 6.13a shows the change of metrics with the increased number of attacker’s VMs

under different log configurations, VM(As,C). Here again, we can see that the multi-tenancy

attack surface metric maintains strong ability to capture the change of both metrics.

Figure 6.13b reports the variation of our metrics’ values for data centers with different

sizes. Therein, we increase the number of hosts from 300 up to 3,000. The number of
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Figure 6.12: Comparing the multi-tenancy attack surface metric with co-residency extent

and co-residency intensity while increasing the number of victim’s VMs for (a) most-VM,

and (b) least-VM placement policy
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Figure 6.13: Comparing the multi-tenancy attack surface with co-residency extent and co-

residency intensity while (a) increasing the number of attacker’s VMs, and (b) varying the

number of hosts in the data center
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victim’s and attacker’s VMs are set to 100, and the number of legitimate tenants and VMs

for the data center changes proportionally to the size of the data center.

Summary of Results. All the metrics demonstrate that the co-residency threat level of

a particular tenant decreases with the increasing size of the data center, as our metrics all

decrease. We conclude that larger data centers minimize the likelihood of co-residency

attacks since attackers have lower chance to co-reside with the victim’s resources. The

multi-tenancy attack surface metric captures the change of both metrics in this simulation.

However, it correlates better with the co-residency extent for small data centers.

6.6 Summary

In this work, we proposed ProxiMet, a suite of security metrics to evaluate the proximity

between tenants’ resources. The main benefit of our approach was to evaluate and mitigate

the cloud co-residency threats. To this end, we first extracted a set of common co-residency

aspects from the most known co-residency attacks in the cloud along two dimensions, i.e.,

the extent and the intensity. Then, we designed a set of metrics to evaluate the proximity

between tenants’ resources along the extracted aspects, as a means to evaluate and miti-

gate the co-residency threats. To show the effectiveness and usefulness of our metrics, we

conducted a case study based on a real cloud, and performed extensive simulations using

CloudSim based on well-known cloud placement policies.
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Chapter 7

Conclusion

The security implications emanating from virtualization technologies on one side, and the

multi-tenancy model on the other side, constitute the main factors that are still holding

back prospective cloud customers. Bringing more visibility and transparency to the cloud

infrastructure deployments is an important step to overcome this setback. Security compli-

ance auditing and threat evaluation constitute valuable solutions in this respect. However,

existing solutions for auditing virtual infrastructures isolation do not consider the complex

interdependencies between the cloud stack layers (e.g., the infrastructure management and

the implementation layers), which may result in subtle isolation breaches going unnoticed.

Furthermore, systematic ways and effective metrics for evaluating cloud threats from ten-

ants’ perspective are largely missing in the literature.

This thesis tackled the aforementioned limitations by proposing solutions for cloud se-

curity compliance auditing and threat evaluation. First, we proposed an automated audit

framework based on formal methods for verifying the cloud infrastructure configuration

correctness from the structural point of view. Then, we applied the proposed framework

for verifying cross-layer virtual network isolation, one of the most important security prop-

erties to cloud customers. Furthermore, we integrated our auditing system into OpenStack,

and presented our experimental results on assessing several properties related to virtual
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network isolation.

In the context of threat evaluation, based on our analysis for multiple cross-tenant at-

tacks, we proposed suites of security metrics to quantify the proximity between tenants’

virtual resources inside the cloud. The cloud provider may apply those metrics to evaluate

and mitigate multi-tenancy threats in cloud deployments. To demonstrate the effectiveness

of our metrics and show their usefulness, we conducted case studies based on both real and

synthetic cloud data. We further performed extensive simulations on CloudSim. Our re-

sults show that our metrics effectively capture the threat-level related to the multi-tenancy

situation in the cloud, which paves the way for the design of effective mitigation solutions

to reduce the side-effect of cloud resource sharing.

As a future direction, we intend to leverage our auditing framework for continuous

compliance checking. This will be achieved by monitoring various events, and triggering

the verification process whenever a security property is affected by the changes. We also in-

tend to extend our solution to Network Function Virtualization (NFV) environments, where

physical security appliances are replaced by their virtual counterparts, which provides the

cloud with even more flexibility, allowing the dynamic definition and implementation of

complex policies. This makes security breaches easier to happen and emphasizes the need

for security compliance verification.

As for threat-level evaluation, we intend to study multi-tenancy attacks taking advan-

tage from shared storage and propose a storage distance accordingly. We also plan to

propose cloud management strategies to enforce distances as a means to control the multi-

tenancy risk. Another future direction consists of investigating the usability of our metrics

for the runtime-detection of different types of co-residency attacks through monitoring.

This would enable to capture attacks in their early stages to avoid large scale damage. An-

other interesting direction consists of devising new mechanisms to empower tenants with

the capabilities to verify by themselves the risk related to the actual cloud deployment of
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their virtual infrastructures without breaching other tenants’ privacy. Finally, the approach

we propose for deriving security metrics from potential attacks could be extended for the

design of a universal framework that can be used not only for evaluating the security pos-

ture of tenants’ virtual infrastructures inside cloud/NFV environments, but also to predict

attacks when combined with learning mechanisms and monitoring techniques.
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[52] Sören Bleikertz, Carsten Vogel, Thomas Groß, and Sebastian Mödersheim. Proac-
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