Login | Register

Wideband High Gain Printed Quasi-Yagi Diffraction Gratings-Based Antenna for 5G Applications


Wideband High Gain Printed Quasi-Yagi Diffraction Gratings-Based Antenna for 5G Applications

Mujammami, Essa H. ORCID: https://orcid.org/0000-0001-8012-6022 and Sebak, Abdelrazik ORCID: https://orcid.org/0000-0003-1057-6735 (2019) Wideband High Gain Printed Quasi-Yagi Diffraction Gratings-Based Antenna for 5G Applications. IEEE Access . p. 1. ISSN 2169-3536

Text (application/pdf)
Mujammami-IEEE Access-2019.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2897092


A broadband high-gain printed Quasi-Yagi antenna with a perturbation-based planar dielectric lens is presented. The perturbation design parameters are based on the diffraction gratings theory for gain enhancement, radiation pattern improvement, and higher order modes suppression. The proposed antenna provides 94.5% aperture efficiency with a high gain of 15 dBi at 30 GHz, high radiation efficiency of ~90%, and (24–40) GHz ultra-wide matching (S11 < −10 dB) bandwidth. The measured cross-polarization is lower than −20 dB in both E - and H - planes. With these features in addition to being low-profile and lightweight, this antenna is suitable for various millimeter-wave applications.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Authors:Mujammami, Essa H. and Sebak, Abdelrazik
Journal or Publication:IEEE Access
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2897092
Keywords:5G antenna, high gain, lens, diffraction gratings, Quasi-Yagi
ID Code:985065
Deposited On:13 Mar 2019 20:13
Last Modified:13 Mar 2019 20:13


1. T. S. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, May 2013.

2. Y. Hsu, T. Huang, H. Lin, Y. Lin, "Dual-polarized quasi Yagi–Uda antennas with endfire radiation for millimeter-wave MIMO terminals", IEEE Trans. Antennas Propag., vol. 65, pp. 6282-6289, Dec. 2017.

3. D. Liu, W. Hong, T. S. Rappaport, C. Luxey, W. Hong, "What will 5G antennas and propagation be?", IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6205-6212, Dec. 2017.

4. C. Jacob, K. Sabith, S. Prabhakaran, N. Bhaskaran, "Planar printed Quasi-Yagi antenna—A study", Int. J. Adv. Res. Elect. Electron. Instrum. Eng., vol. 4, no. 7, pp. 1-5, Jul. 2015.

5. E. H. Mujammami, A. Sebak, "Design of a 30-GHz high gain Quasi-Yagi antenna", Proc. 32nd Gen. Assem. Sci. Symp. Int. Union Radio Sci. (URSI GASS), pp. 1-3, Aug. 2017.

6. B.-Y. Park, M.-H. Jeong, S.-O. Park, "A miniaturized microstrip-to-coplanar-strip transition loaded with artificial transmission lines and 2.4-GHz antenna application", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1486-1489, 2014.

7. A. Hosseini, F. De Flaviis, "A CPW-fed single-layer printed Quasi-Yagia antenna for 60 GHz wireless communication systems", Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), pp. 103-104, Jul. 2014.

8. H. K. Kan, R. B. Waterhouse, A. M. Abbosh, M. E. Bialkowski, "Simple broadband planar CPW-fed Quasi-Yagi antenna", IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 18-20, 2007.

9. P. Wang, C. Cui, "Small-size CPW-fed Quasi-Yagi antenna with round-ended bow-tie CPW-to-slotline transition", Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), pp. 1-3, Aug. 2016.

10. J. Wu, Z. Zhao, Z. Nie, Q.-H. Liu, "Bandwidth enhancement of a planar printed Quasi-Yagi antenna with size reduction", IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 463-467, Jan. 2014.

11. S. X. Ta, J. J. Han, H. Choo, I. Park, "A wideband double dipole Quasi-Yagi antenna using a microstrip-slotline transition feed", Proc. IEEE Int. Workshop Antenna Technol. (iWAT), pp. 84-87, Mar. 2012.

12. H.-D. Lu, L.-M. Si, Y. Liu, "Compact planar microstrip-fed Quasi-Yagi antenna", Electron. Lett., vol. 48, no. 3, pp. 140-141, Feb. 2012.

13. Y. Lo, S. Wu, N. Liu, J. Tarng, "A compact planar 60-GHz CPW-fed pattern reconfigurable Quasi-Yagi antenna", Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), pp. 1-3, 2018.

14. J. Tao, Q. Feng, T. Liu, "Dual-wideband magnetoelectric dipole antenna with director loaded", IEEE Antennas Wireless Propag. Lett., vol. 17, no. 10, pp. 1885-1889, Oct. 2018.

15. H. Wang, S.-F. Liu, W.-T. Li, X.-W. Shi, "Design of a wideband planar microstrip-fed Quasi-Yagi antenna", Prog. Electromagn. Res. Lett., vol. 46, pp. 19-24, Apr. 2014, [online] Available: http://www.jpier.org/PIERL/pier.php?volume=46.

16. M.-C. Tang, T. Shi, R. W. Ziolkowski, "Flexible efficient Quasi-Yagi printed uniplanar antenna", IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 5343-5350, Dec. 2015.

17. R. A. Alhalabi, G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems", IEEE Trans. Antennas Propag., vol. 57, no. 11, pp. 3672-3676, Nov. 2009.

18. L. Lu, K. Ma, F. Meng, K. S. Yeo, "Design of a 60-GHz Quasi-Yagi antenna with novel ladder-like directors for gain and bandwidth enhancements", IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 682-685, 2016.

19. L. Xue, V. Fusco, "Patch fed planar dielectric slab extended hemi-elliptical lens antenna", IEEE Trans. Antennas Propag., vol. 56, no. 3, pp. 661-666, Mar. 2008.

20. L. Xue, V. Fusco, "Patch-fed planar dielectric slab waveguide Luneburg lens", Microw. Antennas Propag., vol. 2, no. 2, pp. 109-114, Mar. 2008.

21. P. Yadav, S. Mukherjee, A. Biswas, "Design of planar substrate integrated waveguide (SIW) phase shifter using air holes", IEEE Applied Electromagnetics Conference (AEMC), pp. 1-2, Dec. 2015.

22. Y. He, Z. Gao, D. Jia, W. Zhang, B. Du, Z. N. Chen, "Dielectric metamaterial-based impedance-matched elements for broadband reflectarray", IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7019-7028, Dec. 2017.

23. Y. Cai, Y. Zhang, Z. Qian, W. Cao, L. Wang, "Design of compact air-vias-perforated SIW horn antenna with partially detached broad walls", IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2100-2107, Jun. 2016.

24. Y. Li, K.-M. Luk, "Wideband perforated dense dielectric patch antenna array for millimeter-wave applications", IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3780-3786, Aug. 2015.

25. C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, NJ, USA:Wiley, 2005.

26. J. Huang, A. C. Densmore, "Microstrip Yagi array antenna for mobile satellite vehicle application", IEEE Trans. Antennas Propag., vol. 39, no. 7, pp. 1024-1030, Jul. 1991.

27. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, Hoboken, NJ, USA:Wiley, 2013.

28. D. M. Pozar, Microwave Engineering, Hoboken, NJ, USA:Wiley, 2011.

29. R. Elliott, "On the theory of corrugated plane surfaces", Antennas Propag. Trans. IRE Prof. Group on, vol. 2, no. 2, pp. 71-81, Apr. 1954.

30. C. Palmer, E. Loewen, Diffraction Grating Handbook, Rochester, NY, USA:Newport, 2014.

31. E. G. Loewen, E. Popov, Diffraction Gratings and Applications, New York, NY, USA:Marcel Dekker, 1997.

32. E. Popov, Gratings: Theory and Numeric Applications, Marseille Cedex, France:Institut Fresnel, Univ. d’Aix-Marseille, CNRS Faculté Saint Jérôme, 2012.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top