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ABSTRACT

In this paper, a novel approach for the task of speech re-
verberation suppression in non-stationary (changing) acous-
tic environments is proposed. The suggested approach
is based on the popular weighted prediction error (WPE)
method, yet, instead of considering fixed reverberation pre-
diction weights, our method takes into account the more
generic time-varying autoregressive (TV-AR) model which
allows dynamic estimation and updating for the predic-
tion weights over time. We use an initial estimate of the
prediction weights in order to optimally select the TV-AR
model order and also to calculate the TV-AR coefficients.
Next, by properly interpolating the calculated coefficients,
we obtain the ultimate estimate of reverberation prediction
weights. Performance evaluation of the proposed approach
is shown not only for fixed acoustic rooms but also for envi-
ronments where the source and/or sensors are moving. Our
experiments reveal further reverberation suppression as well
as higher quality in the enhanced speech samples in com-
parison with recent literature within the context of speech
dereverberation.

Index Terms— Dereverberation, speech enhancement,
time-varying autoregressive model, weighted prediction er-
ror.

1. INTRODUCTION

Speech signals captured within an acoustic environment by
distant microphones are subject to reflections from the sur-
rounding surfaces, e.g., walls, ceiling and objects within the
enclosure. This phenomenon, often referred to as reverbera-
tion, deteriorates the perceived quality/intelligibility of de-
sired speech signals, and can also degrade to a large ex-
tent the performance of speech processing systems includ-
ing hearing aids, hands-free teleconferencing, source sepa-
ration and automatic speech recognition [1–3]. Therefore,
efficient techniques for the suppression of reverberation in

real-world acoustic environments is highly required in such
applications.

Over the past two decades, there has been growing re-
search on the development of various single- and multi-
microphone (channel) reverberation suppression techniques.
These techniques, known in the literature as speech derever-
beration, can be broadly categorized into: blind system iden-
tification and inversion, multi-channel spatial processing,
speech spectral enhancement and the probabilistic model-
based approaches [2,4]. Blind system identification methods
aim at estimating the anechoic (clean) speech by processing
reverberant observations by inverse filters that can be either
calculated from available room impulse responses (RIRs) or
estimated from the reverberant speech [5, 6]. More recent
research in this direction, also termed as acoustic multi-
channel equalization techniques, has been reported in [7, 8].
Within the class of multi-channel spatial processing, most
conventional approaches exploit beamforming techniques
to coherently combine the dominant early speech arrivals,
as studied in [9, 10]. However, the dereverberation perfor-
mance of beamforming methods is limited in general, unless
a rather large number of microphones is used [2]. On the
other hand, spectral enhancement (SE) methods, i.e., those
based on applying a gain function on the corrupted speech1,
have also been employed for dereverberation [4]. The major
advantage of the SE methods over the aforementioned tech-
niques is their simplicity of implementation in the short-time
Fourier transform (STFT) domain and the low computational
complexity. More recent work in this direction can be found
e.g. in [11, 12].

Another important category of dereverberation methods
are the probabilistic model-based approaches leading to an
optimal estimation of the anechoic speech in the statistical
sense. In [13], probabilistic models of speech are incorpo-
rated into a variational Bayesian algorithm which estimates

1This category of methods was originally developed for the purpose of
noise reduction, but later modified to perform reverberation suppression too.
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the desired signal, the acoustic channels as well as the in-
volved parameters in an iterative manner. A somewhat dif-
ferent strategy is followed in [14] where the parameters of
all-pole models for both the desired speech and the rever-
berant components are iteratively determined by maximizing
the likelihood function of the model parameters. Within this
approach, a minimum mean-squared error (MMSE) estima-
tor is derived that yields the enhanced speech. In a similar
fashion, by using a time-varying statistical model for speech
and a multi-channel linear prediction (MCLP) model for re-
verberation, efficient dereverberation methods have been de-
rived in [15, 16]. Since the implementation of the aforemen-
tioned linear prediction-based methods in the time-domain
is computationally costly, in [17, 18], a short-time Fourier
transform (STFT) domain development of the MCLP-based
dereverberation method is proposed. This method, referred
to as the weighted prediction error (WPE) approach, is an it-
erative scheme that alternatively estimates the reverberation
prediction coefficients and the anechoic speech spectral vari-
ance by using batch processing of the entire speech utterance.

Recently, a few variations of the WPE dereverberation
method have been suggested and investigated in the relevant
literature. In [19], instead of using the traditional Gaussian
distribution for the desired speech, a Laplacian model is em-
ployed, which is known as a more accurate model. In [20],
it is suggested to employ a general parametric sparse prior
for the desired speech, which can be represented in a convex
form as a maximization over scaled complex Gaussian distri-
butions. Emphasizing the role of sparsity in speech derever-
beration, the latter method is able to provide mild improve-
ments over the conventional WPE method in most experi-
ments. More recently, the authors in [21] consider modeling
the temporal correlation across STFT coefficients, known as
the inter-frame correlation (IFC), and exploit it in the deriva-
tion of the reverberation prediction weights. Thanks to the
more realistic modeling used, the method is able to provide
superior performance w.r.t. the previous literature within the
tested scenarios. Finally, in [22], a constrained sparse ver-
sion of the multi-channel WPE is proposed, wherein, in order
to prevent overestimation of the undesired reverberant com-
ponent, a statistical model is used for the estimation of late
reverberation power spectral density (PSD). The consequent
constrained optimization problem is solved therein by taking
advantage of the alternating direction method of multipliers,
resulting in a new variant of the WPE method.

In spite of its inherent advantages such as appealing per-
formance, moderate complexity and not requiring prior in-
formation about the acoustic environment, the original WPE
method and its variants still suffer from a few shortcomings.
First, the corresponding reverberation prediction weights
within this method are theoretically fixed w.r.t. STFT time
frames. This lack of adaptation over time results in the pre-
diction weights not being able to track changes happening
in the acoustic environment while training the weights. In
this sense, the same prediction weights are applied to the
entire speech utterance and also the conventional method

cannot be properly used in time-varying environments. Fur-
thermore, this approach requires at least a few seconds of the
observed speech utterance to ensure accurate convergence of
the reverberation prediction coefficients, which may not be
realistic in more online applications. Moreover, even though
the WPE method is to some extent robust to background
noise, basically, there is no solution suggested for handling
the additive noise in the reverberant signal.

In this work, we employ a more accurate time-varying
autoregressive (TV-AR) model for the reverberant speech,
which takes into account the variability of the reverbera-
tion prediction weights within the training (batch) observa-
tions. Rather than considering the entire speech utterance,
shorter segments of speech are used to estimate initial pre-
diction weights using a modified version of the original WPE
method. Next, the preliminary prediction weights are in turn
exploited to form a TV-AR model for segments of speech.
The ultimate prediction weights at each STFT frame are then
estimated by properly interpolating across the TV-AR model
coefficients over time frames.

This paper is outlined as follows. A brief review of the
original WPE method along with the problem statement is
presented in Section 2. Section 3 introduces the TV-AR
model used withing the proposed reverberation prediction
method. The proposed algorithm based on the WPE method
is detailed in Section 4 while Section 5 is devoted to experi-
mental results. Section 6 concludes this paper.

2. WPE METHOD: A BRIEF REVIEW

Suppose that a speech signal emitted from a single source
is captured by M microphones placed in a reverberant en-
closure. Considering the STFT-domain representation, let’s
denote the clean speech signal by sn,k with time frame in-
dex n∈{1, . . . , N} and frequency bin index k∈{1, . . . ,K}
where N is the total number of frames and K is the number
of frequency bins. Using the linear prediction (LP) model,
the reverberant speech signal observed at the m-th micro-
phone, x(m)

n,k , can then be represented in the STFT-domain
[18]

x
(m)
n,k =

Lh-1∑

l=0

h
(m)∗
l,k sn−l,k + e

(m)
n,k (1)

where h(m)
l,k is an approximation of the acoustic transfer func-

tion (ATF) from the speech source to the m-th microphone,
Lh denotes the length of the ATF (in frames) and (.)∗ de-
notes complex conjugation. The additive term, e(m)

n,k , is the
sum of LP error and the additive noise, and is neglected for
simplicity as in [18]. Therefore, (1) can be written as

x
(m)
n,k = d

(m)
n,k +

Lh-1∑

l=D

h
(m)∗
l,k sn−l,k (2)

where d(m)
n,k =

∑D−1
l=0 h

(m)∗
l,k sn−l,k is the sum of anechoic

(direct-path) speech and early reflections at the m-th micro-
phone and D is the duration of the early reflections. Most
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dereverberation techniques including the WPE method tar-
get the estimation of the desired signal, say dn,k ≡ d

(1)
n,k,

or equivalently, the suppression of the late reverberant terms
represented by the summation in (2). Replacing the convolu-
tive model in (2) by an autoregressive (AR) model gives the
well-known MCLP form for the observation as follows

dn,k = x
(1)
n,k −

M∑

m=1

g
(m)H
k x

(m)
n,k , x

(1)
n,k −GH

k Xn,k (3)

with superscript H as the Hermitian transpose and the vec-
tors x

(m)
n,k and g

(m)
k defined as

g
(m)
k = [g

(m)
0,k , g

(m)
1,k , . . . , g

(m)
Lk−1,k]T

x
(m)
n,k = [x

(m)
n−D,k , x

(m)
n−D−1,k , . . . , x

(m)
n−D−(Lk−1),k]T

(4)
where g

(m)
k is the regression vector (reverberation prediction

weights) of order Lk for them-th channel and the superscript
T is matrix transpose. The right-hand side of (3) is obtained
by concatenating {x(m)

n,k } and {g(m)
k } over m to respectively

form Xn,k and Gk both of length LkM . Estimation of the
regression vector, Gk, and inserting it into (3) provides an
estimate of the desired speech. From a statistical viewpoint,
estimation of Gk can be performed by applying the maxi-
mum likelihood (ML) criterion at each frequency bin, k. In
this sense, the conventional WPE method assumes a circu-
larly symmetric complex Gaussian distribution for the de-
sired speech coefficients, dn,k, with (unknown) time-varying
spectral variance, σ2

dn,k
=E{|dn,k|2}, and zero mean [17,18].

Under the assumption that the desired speech STFT coeffi-
cients, dn,k, are independent across frames, the joint distri-
bution of the desired speech coefficients at frequency bin k,
i.e., dk, is given by

p(dk) =
N∏

n=1

p(dn,k) =
N∏

n=1

1

πσ2
dn,k

exp

(
−|dn,k|

2

σ2
dn,k

)
(5)

Here, by inserting dn,k from (3) into (5), the joint distri-
bution, p(dk), can be viewed as a function of the regres-
sion vector, Gk, and the desired speech spectral variances,
σ2

dk
= {σ2

d1,k
, σ2
d2,k

, · · · , σ2
dN,k
}. Denoting the set of all un-

known parameters Θk = {Gk, σ
2
dk
} and taking the negative

logarithm of p(dk) ≡ p(dk|Θk) in (5), the objective (likeli-
hood) function for Θk can be expressed as

J (Θk) = − log p(dk|Θk)

=
N∑

n=1


log πσ2

dn,k
+

∣∣∣x(1)
n,k −GH

k Xn,k

∣∣∣
2

σ2
dn,k


 (6)

where the constant terms have been discarded for ease of no-
tation. To obtain the ML estimate of the parameter set, Θk,
(6) has to be minimized w.r.t. Θk. Since the joint optimiza-
tion of (6) w.r.t. Gk and σ2

dk
is not mathematically tractable,

an alternative suboptimal solution is followed in [18]. In

this two-step procedure, (6) is optimized w.r.t. only one of
the two parameter subsets, Gk or σ2

dk
, at each step and the

two-step procedure is repeated iteratively until a convergence
criterion is satisfied or a maximum number of iterations is
reached. A summary of the explained conventional WPE
method is outlined below as Algorithm 1.

Even though the original WPE method described above
provides desirable performance in time-invariant reverberant
environments, it has not been basically designed to cope with
time-varying acoustic conditions, as will be investigated in
Section 5. In the following section, we begin by introducing
the time-varying prediction model, i.e. the TV-AR model,
for the reverberant speech, and will next employ this model
to derive the proposed reverberation prediction weights.

Algorithm 1: The conventional WPE method

• At each frequency bin k, consider the observations
x

(m)
n,k , for all n and m, and the set of hyperparameters
{D,Lk, ε}.

• Initialize σ2
dn,k

by σ2[1]
dn,k

=|x(1)
n,k|2.

• For, j=1, 2, · · · , J (with a fixed number of iterations,
J) , repeat the following:

A
[j]
k =

∑N
n=1 σ

−2[j]
dn,k

Xn,kX
H
n,k

a
[j]
k =

∑N
n=1 σ

−2[j]
dn,k

Xn,kx
(1)∗
n,k

G
[j]
k = A

−1[j]
k a

[j]
k

r
[j]
n,k = G

[j]H
k Xn,k

d
[j]
n,k = x

(1)
n,k − r

[j]
n,k

σ
2[j+1]
dn,k

= max{|d[j]
n,k|2, ε}

• G
[j]
k is the desired reverberation prediction weight vec-

tor after J iterations.

3. TV-AR MODEL

Early studies on time-varying linear predictive models for
speech began in [23] with the motivation that the human vo-
cal tract often varies over time. It was proved that the so-
called TV-AR model leads to increased accuracy in signal
representation due to the continuously changing behavior of
speech. More recent research in this direction was done e.g.
in [24] with making use of a TV autoregressive moving av-
erage (ARMA) model for the purpose of covariance estima-
tion. In [25], it was stated that such TV models are more
efficient, since the inclusion of time variations in the model
allows for analysis over longer data windows for speech pro-
cessing. The TV-AR model can be used to derive a more
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flexible MCLP representation for reverberant speech as the
following

dn,k = x
(1)
n,k −

M∑

m=1

g
(m)H
n,k x

(m)
n,k , x

(1)
n,k −GH

n,kXn,k (7)

where it is seen that the reverberation prediction weights,
Gn,k, are now a function of the STFT frame index, n, as
opposed to (3). This is also in accordance with (2) where the
ATF coefficients, hl,k, are time-varying in the general sense.
Considering the prediction weights, Gn,k, to be changing
with n, however, implies an infinite degree of freedom for
the problem and thus makes the estimation of Gn,k tedious.
In practice, the TV nature of the prediction weights is of-
ten modeled by choosing these coefficients as linear combi-
nations of some known functions of time, namely, the basis
functions [23,25]. With a model of this form, the LP weights,
Gn,k, can be expressed as a sum ofQ coefficient vectors, uq ,
weighted by the basis functions, fq(n), as follows

Gn =

Q−1∑

q=0

uqfq(n) (8)

It is seen that the frequency subscript k has been omitted for
ease of notation. A few choices have been used in the liter-
ature for the set of known basis functions, fq(n), modeling
the evolution of Gn with time. Popular candidates for speech
applications include Legendre and Fourier polynomials, dis-
crete prolate spheroidal functions, and even wavelets [25]. A
suitable choice of this function set will be discussed later in
Subsection 4.2. The prediction coefficients, uq , are in fact
the coefficients of interest, which are to be estimated in a
blind manner from the reverberant speech signal, as will be
discussed in Section 4. In the rest of the current section, we
explain our method of estimating the TV-AR model order,
Q, as this is a matter of importance in the performance and
accuracy of the proposed method.

3.1. Estimation of the Model Order

Order estimation for TV-AR models has been studied in a
few works before. Existing methods include fixed empiri-
cal choices, ML and Bayesian estimation approaches [26].
In [27], an approach for model order estimation has been
proposed for jointly Gaussian distributed data based on an
accurate estimate of the observation covariance matrix. In
here, due to the nature of the problem, we take a less restric-
tive ML-like approach as follows.

Suppose the entire reverberant speech utterance has been
divided into segments of known length, R (in STFT frames),
and the corresponding reverberation prediction weights have
been initially estimated using the conventional WPE method
at each segment2. Denoting the initial estimate of the pre-
diction weights at segment λ by G

(0)
λ , in a stochastic frame-

work, the joint distribution of the initial prediction weights
2Detailed explanation and reasoning of this strategy will be given in Sec-

tion 4.

can be represented as

p(G(0)) =
T∏

λ=1

p(G
(0)
λ ) =

T∏

λ=1

p

(
Q−1∑

q=0

uλ,qfq(λ)

)
(9)

where T = bN/Rc is the number of total segments with b.c
indicating the floor function, and we assumed independent
estimates of the prediction weights across segments. Note
that here, we considered the model of (8) at each speech
segment, λ, and thus replaced n by λ, resulting in G

(0)
λ ex-

pressed as a weighted sum of coefficient vectors {uλ,q} at
each segment. Assuming zero-mean Gaussian distribution
with independent identically distributed (i.i.d.) elements for
the vector set {uλ,q}, the following can be deduced

p(G
(0)
λ ) =

LM∏

`=1

p(G
(0)
λ`

) =

LM∏

`=1

1√
2πσ2

λ

e
−

∣∣∣∣G
(0)
λ`

∣∣∣∣
2

2σ2
λ

=
1

(2πσ2
λ)

LM
2

e
−
LM∑
`=1

∣∣∣∣G
(0)
λ`

∣∣∣∣
2

2σ2
λ (10)

where L≡Lk, G(0)
λ`

denotes the `-th element of G
(0)
λ and σ2

λ

is the variance of the latter. Given thatG(0)
λ`

=
∑Q−1
q=0 uλ,q,`fq(λ)

from (9) and denoting the variance of each uλ,q,` term by
σ2

1,λ, we have for σ2
λ

σ2
λ =

Q−1∑

q=0

σ2
1,λ |fq(λ)|2 = Q σ2

1,λ (11)

where the right-hand side follows due to having basis func-
tions with unit norm, e.g., complex Fourier coefficients.
Next, inserting (10) into (9) by considering (11) gives

p(G(0)) =
1√

(2π)
LMT

T∏
λ=1

(
Qσ2

1,λ

)LM
e
− 1

2

T∑
λ=1

‖G(0)
λ ‖22

Qσ2
1,λ

(12)
where ||.||2 denotes the 2-norm of a vector. The logarithm
of the expression in (12) given the unknown parameter Q
can be viewed as the likelihood function of Q. Doing simple
manipulations and discarding the constant terms, we get the
following

LL(Q, σ2
1,λ) , − log

(
p
(
G(0) | Q, σ2

1,λ

))

∝ LM
(
T logQ+

T∑

λ=1

log σ2
1,λ

)
+

1

Q

T∑

λ=1

wwwG
(0)
λ

www
2

2

σ2
1,λ

(13)

with ∝ denoting equality but with omitting constant terms.
Given an estimate of G

(0)
λ , it is seen that the log-likelihood

in the above is a function of both the model order Q and the
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dummy variables {σ2
1,λ}. Differentiating w.r.t. these vari-

ables and setting the result to zero gives the following set of
equations

σ̂2
1,λ =

wwwG
(0)
λ

www
2

2

LMQ
, λ = 1, 2, · · · , T

Q̂ =
1

LMT

T∑

λ=1

wwwG
(0)
λ

www
2

2

σ2
1,λ

(14)

The two equations in (14) can be solved alternatively in an
iterative manner by choosing an initial value for either of
{σ2

1,λ} or Q. The rounded value of Q̂ to the closest inte-
ger at the end of iterations will be the ultimate estimate for
the TV-AR model order.

4. PROPOSED ALGORITHM

In this section, we explain the proposed approach for the es-
timation of coefficients {uλ,q}, which leads to determination
of the reverberation prediction weights Gλ through the TV-
AR model as

∑Q−1
q=0 uλ,qfq(λ).

The functional expansion of (8) has been studied and ap-
plied to speech analysis previously in the literature and a few
major methods have been adopted to track the coefficient tra-
jectories, {uλ,q}, including the conventional least squares
(LS) estimation followed in [23] or the stochastic filtering
[28] and iterative methods [29]. In this work, due to the
efficiency of the existing classic WPE method3 in [18] and
the restriction imposed by the number of available training
observations within the online implementation, we instead
make use of the initial estimate of the prediction weights used
in the previous section, namely G

(0)
λ , as well as a proper in-

terpolation technique to determine the ultimate estimate for
Gλ.

Fig. 1 illustrates in order the steps of the proposed algo-
rithm for the estimation of reverberation prediction weights,
Gλ. Note that the entire algorithm is applied independently
to each frequency bin, k. As observed, first, the STFT frames
of the reverberant speech observation, {x(m)

n }, are divided
into segments of length R STFT frames. Next, we incorpo-
rate the total least squares (TLS) technique into the original
WPE method in order to provide an initial estimate for the
prediction weights, i.e. G

(0)
λ , at each segment λ. The latter

is exploited to estimate the TV-AR model order, i.e. Q̂, as
discussed in Section 3.1. Having G

(0)
λ and Q̂ at hand, we

next tend to estimate the Q̂ coefficient vectors of the TV-AR
model, {uλ,q}. To this end, we first consider {uλ,q} fixed
over each set of Q̂ segments, namely, the block Λ, and use the
Q̂ initially estimated prediction weights, G

(0)
λ , in the TV-AR

model to form a linear system of LMQ̂ equations/unknowns
w.r.t. {uΛ,q}, as shown in Fig. 1. Solving this linear system

3This method is in fact based on the conventional LS technique in order
to estimate the regression weights.

 Segmentation into segments of length 

   Using the TLS-based WPE

       method to estimate   

               at segment 

   Solving the linear system below w.r.t. 

           for all                block consisting

                     of      segments:

    Interpolation of          by the 

     factor      to determine       

Using          to obtain the ultimate estimate of 

the reverberation prediction weights as:

   

Frame Observations

      Estimation of the         

TV-AR model order 

Fig. 1: Block diagram of the proposed algorithm for the es-
timation of reverberation prediction coefficients.

and then using a proper interpolation technique to interpo-
late over the solution, ûΛ,q , by a factor of Q̂ leads to the
suggested estimate for uλ,q , i.e. ûλ,q . The latter is in turn
exploited in the TV-AR model, as seen in the figure, to come
up with the ultimate estimate for the reverberation prediction
weights at each segment, i.e. Ĝλ. In the rest of this section,
we explain in detail the aforementioned steps of the proposed
algorithm in Fig. 1.

4.1. Estimation of the Initial Prediction Weights

The conventional WPE method [18] has been designed to
estimate the reverberation prediction weights using the entire
speech utterance as a batch. We here tend to employ this
method for long enough segments of speech4, indexed by λ,
yet, we use a more efficient and generic approach to estimate
the prediction weights at each segment of speech, namely,
the TLS method.

Recall that in the WPE method, the cost function in (6)
is minimized alternatively w.r.t. G and {σ2

dn
}. In this alter-

nation, suppose the minimization over G at each segment of

4A detailed analysis of this will be presented in Section 5.
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length R in the following form

min
G

R∑

n=1

(∣∣∣x(1)
n −GHXn

∣∣∣
2

/ σ2
dn

)

= min
G

∥∥∥x1 −XG∗
∥∥∥

2

2
(15)

where we have

x1 =

[
x

(1)
1

σd1
,
x

(1)
2

σd2
, . . . ,

x
(1)
R

σdR

]T

R×1

X =

[
X1

σd1
,
X2

σd2
, . . . ,

XR

σdR

]T

R×L

(16)

The prediction weights, GLM×1, given by (15) are in fact the

LS solution to the over-determined linear system XG∗ = x1

with R > LM . The latter can be obtained by using the

pseudo-inverse of matrix X, denoted by X
†
, as

Ĝ∗ = X
†
x1 =

(
X
H

X

)−1

X
H

x1 (17)

It can be easily shown that the estimate of G given by the
original WPE method is equivalent to the one given by (17)
at each speech segment. More precisely, due to the additive
noise present in the observation x1, the linear system can be

considered to be of the form XG∗ = x1 + x̃1 with x̃1 as an
unknown perturbation term. In this regard, the LS solution in
fact handles the aforementioned perturbation in the LS sense.
However, the same uncertainty issue applies to the observa-

tion matrix X due to it consisting of noisy observation vec-
tors. Hence, taking into account the more general problem

given by (X + X̃)G∗ = x1 + x̃1 with X̃ as the perturbation

of X, we arrive at the TLS solution for G. Next, according
to theorem (2.6) in [30], following the basic solution to the
TLS problem, we have

Ĝ∗ =
−1

VLM+1,LM+1
[V1,LM+1,V2,LM+1, · · · (18)

, VLM,LM+1]T

where Vj,LM+1, 1 ≤ j ≤ LM + 1 is the jth entry of
the (LM + 1)th column of the matrix V obtained from
the singular value decomposition (SVD) of the matrix

[X , x1]R×(LM+1), as following

[X , x1] = UΣVH (19)

The suggested solution for G in (18) is a more robust so-
lution for the reverberation prediction, where the presence

of noise in both observation arrays X and x1 has been
taken into account. Note that, similar to the original WPE
method detailed as Algorithm 1, the speech variance terms,
{σdi}Ri=1, in (16) are alternatively estimated along with the
reverberation prediction weights, Ĝ∗, in (18).

4.2. Determination of the Coefficient Vectors in the TV-
AR Model

In this section, we present our approach to determining the
TV-AR coefficient vectors, uλ,q , and thus the reverberation
prediction weights Gλ. In contrast with the state-of-the-art
methods which include the least mean squared error (LMSE)
estimators [23, 25], due to the limit on the number of avail-
able observations at each segment of speech, we take a dif-
ferent approach. In this sense, given each set, Λ, of Q̂ initial
estimates of the prediction weights, G

(0)
Λ,λ, we have the fol-

lowing

G
(0)
Λ,λ =

Q̂−1∑

q=0

uΛ,qfq(λ), λ = 0, 1, · · · , Q̂− 1 (20)

which, in fact, is a linear system of LMQ̂ equations and un-
knowns w.r.t. {uΛ,q}. It should be noted that we here con-
sidered fixed coefficient vectors, uΛ,q , at each speech block,
Λ, consisting of Q̂ segments. Arranging (20) in the matrix
form results in the following

GΛ = UΛ F (21)

where
GΛ = [G

(0)
Λ,0,G

(0)
Λ,1, · · · ,G

(0)

Λ,Q̂−1
]

UΛ = [uΛ,0,uΛ,1, · · · ,uΛ,Q̂−1]

F = [F0,F1, · · · ,FQ̂−1],

Fλ = [f0(λ), f1(λ), · · · , fQ̂−1(λ)]T

(22)

Solving (21) w.r.t. UΛ gives the following estimate for the
TV-AR coefficient vectors

ÛΛ = GΛ F
−1

(23)

It is seen that the burden in calculating the solution to ÛΛ

is dominated by computing the inversion of matrix of basis

functions, F. Herein, by choosing the set of basis functions
as discrete Fourier transform (DFT) bases, i.e., having

fq(λ) = e
− j2πλq

Q̂ , 0 ≤ λ, q ≤ Q̂− 1 (24)

we can take advantage of the fast Fourier transform (FFT)

algorithms in order to implement the matrix inversion, F
−1

,
in (23).

Having at hand ÛΛ, or equivalently, the coefficient vec-
tors ûΛ,q at each block, Λ, in the next step, we aim at interpo-
lating ûΛ,q by the factor of Q̂ in order to obtain ûλ,q , namely,
the coefficient vectors at each segment λ. For this purpose,
since there exists sparsity in the number of coefficients ûΛ,q

compared to ûλ,q , we choose to exploit some sparse poly-
nomial interpolation technique. This setting allows us to use
high order interpolating polynomials when having a smaller
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number of available interpolation nodes than the polyno-
mial’s order [31]. In essence, the polynomial interpolation
problem of interest consists of fitting a sparse polynomial,
i.e. one with many zero coefficients, to the given inter-
polation nodes and obtain the non-zero coefficients of the
underlying polynomial. More elaborately, denoting the in-
terpolating polynomial by F(χ) =

∑D
j=0 ωjχ

j , the problem
of interest can be expressed as determining the coefficients
{ωj}Dj=0 through fitting the polynomial to the interpolated

values, ûΛ,q , at the interpolation nodes, χ = 1 + ηQ̂ with
η ∈ Z. Doing so results in the following equation set

Ψq,` = Φ Ωq,` (25)

where we have defined Ψq,` , [û1,q,`, û2,q,`, · · · , ûN ,q,`]T
with ûΛ,q,` as the `th element of ûΛ,q for 1 ≤ ` ≤ LM and

1 ≤ Λ ≤ N with N =
⌊
T/Q̂

⌋
denoting the number of total

speech blocks. Furthermore, ΦN×(D+1) is the interpolation
matrix with its Λth row being

ϕΛ = [1, αΛ, α
2
Λ, · · · , αDΛ ], 1 ≤ Λ ≤ N (26)

with αΛ = 1 + (Λ − 1)Q̂ as the interpolation nodes, and
Ωq,` = [ω0,q,`, ω1,q,`, · · · , ωD,q,`]T with ωj,q,` denoting
the jth coefficient of the interpolating polynomial of interest
for 0 ≤ q ≤ Q̂− 1 and 1 ≤ ` ≤ LM .

In solving (25) for Ωq,`, it should be noted that due to the
limit on the number of blocks, N , and the requirement for
having a high enough polynomial order, D, (25) often turns
to an underdetermined set of equations with N < D + 1,
and therefore, cannot be solved directly. With this in mind,
we here make use of the compressive sensing theory [32]
which presents a theoretical framework for investigating the
sparse interpolation problem, assuming that the interpolating
polynomial, F(χ), is S-sparse, meaning that there are only
S non-zero entires in Ωq,` with S < D + 1. To this end, as
discussed in the relevant literature [33, 34], one can use the
`1-minimization approach to find the sparse solution to (25)
with various settings for Φ, as the following

Ω̂q,` = argmin
Ωq,`

‖Ωq,`‖`1 subject to Ψq,` = Φ Ωq,` (27)

where ‖.‖`1 denotes the `1-norm. Solving the above gives the
coefficients of the interpolating polynomial, Fq,`(χ), which
can be evaluated at χ ∈ N to calculate the TV-AR coef-
ficients, ûλ,q . Based on this estimate of uλ,q , as our ap-
proach suggests in Fig. 1, we resort to the TV-AR model,
Ĝλ =

∑Q−1
q=0 ûλ,qfq(λ), in order to obtain the ultimate es-

timate of the reverberation prediction weights at each speech
segment, Ĝλ. Parameter settings for the interpolation tech-
nique, e.g. the sparsity level S, along with other parameter
choices will be discussed in Section 5.

5. EXPERIMENTAL RESULTS

In this section, we investigate the dereverberation perfor-
mance of the proposed approach in comparison with the

original WPE method and a few recent variations of this
method from the literature. Our evaluations are performed in
both time-invariant and time-varying environments.

5.1. Implementation Details

For the evaluation of the reverberation suppression methods
under study, we exploit anechoic (clean) speech utterances
including 20 male and 20 female speakers from the TIMIT
database [35] with the entire length of 20 sec. Here, the
anechoic speech utterances are convolved with either the
synthesized or measured RIRs, and next, noise samples are
added to them. In our simulations, the sampling frequency,
fs, is set to 16 kHz and a 20 msec Hamming window with an
overlap of 75% is used for the STFT analysis-synthesis. To
implement our approach, as per Fig. 1, we consider dividing
the entire speech utterance into segments of length R=40
STFT frames, and the estimation of the TV-AR model or-
der, Q, discussed in Section 3.1 resulted in values typically
in the range of [5,15] for the values scenarios under test.
It should be noted that there exists a trade-off in choosing
the length of segments, R, since too short segments may
cause erroneous/unstable prediction weights, G

(0)
λ , whereas

a long segment length requires long speech utterances as
the input and also slows down the rate of the adaptation
of the prediction weights to a changing environment. To
achieve the best performance with all the methods, the
following parameter setting is used as per Algorithm 1:
{D,L, ε, J}={3, 15, 10−3, 5}. Further, as with the proposed
approach in Section 4, the order of the interpolating poly-
nomial, D, and the sparsity level, S, are respectively set
to 15 and 5. The latter choice of the parameters revealed
the best performance, considering the number of speech
blocks, N , which in turn depends on the length of the entire
speech utterance under test. Further, unless otherwise stated,
the number of microphones is taken as M=2. The results
obtained by using a larger number of microphones led to
similar conclusions. We use both synthetic and recorded
(real-world) RIRs to generate reverberant noisy microphone
array signals. The setup of the regarding scenarios will be
explained in detail in subsections 5.2 and 5.3.

For the evaluation of the reverberation suppression of
the methods under test, we use a few of the most frequent
performance metrics recommended by REVERB Chal-
lenge [36], including the perceptual evaluation of speech
quality (PESQ), the cepstrum distance (CD), the frequency-
weighted segmental SNR (FW-SNR) and the signal-to-
reverberation modulation energy ratio (SRMR). The PESQ
score is one of the most frequently used performance met-
rics in the speech enhancement literature and is the one
recommended by ITU-T standards for speech quality assess-
ment [37]. It often ranges between 1 and 4.5 with the higher
values the better speech quality. The CD can be calculated as
the log-spectral distance between the linear prediction coef-
ficients (LPC) for the spectrum of the reverberant/enhanced
and clean speech signals [38]. It is often limited in the
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range of [0,10], with a smaller value showing less deviation
from the clean speech. The FW-SNR is calculated based
on a critical band analysis with the mel-frequency filter
bank with the clean speech amplitude as the corresponding
weights [38]. The FW-SNR generally takes a value in the
range of [-10,35] dB with the higher the better speech qual-
ity. The SRMR, which has been exclusively devised for the
assessment of dereverberation, is a non-intrusive measure5

and is based on an auditory-inspired filter bank analysis
of the critical band temporal envelopes of speech [39]. A
higher SRMR associates to a higher energy in the anechoic
speech component relative to that of the reverberant-only
component.

To evaluate the reverberation suppression performance
of the proposed approach in Section 4, we compare it to the
original WPE method [18], two more recent developments
of this method based on the complex generalized Gaussian
(CGG) family of distributions for the desired speech [20] and
the Laplacian distribution for the desired speech [19], the
adaptive sparse WPE method in [22], and finally, the WPE
method using the inter-frame correlation (IFC), namely, the
IFC-based WPE [21]. The CGG-based method basically
makes use of the same solution as the original WPE method
for the regression vector, Gk, but with a different estimator
of the speech spectral variance within the iterative procedure
discussed in Section 2. The Laplacian-based method does
not lead to a closed-form solution for Gk and has to be
implemented through numerical optimization, e.g. by using
the CVX optimization toolbox [40]. The latter is also used
to handle the `1-minimization problem encountered in our
approach, as in (27). The adaptive sparse WPE method uses
a statistical model for the estimation of the reverberation
spectral variance instead of alternatively estimating it like
Algorithm 1 and tends to solve the problem by using the al-
ternating direction method of multipliers. We employed the
steps presented as Algorithm 3 in Section IV of [22]. Finally,
the IFC-based WPE takes into account the inherent temporal
correlations across STFT frames in developing a closed-
form solution for Gk, and in fact, extends the conventional
solution to a more robust one.

At the end of this subsection, it should be noted that, for
all the experiments discussed in the following subsections,
having performed the reverberation suppression by differ-
ent methods, we average the resulting performance measures
over various speech files in order to deduce more reliable and
consistent results.

5.2. Experiments with Synthetic RIRs

In order to analyze the performance of all methods under
controllable levels of reverberation, the image source method
(ISM) [41] is used to simulate different RIRs, as illustrated
in Fig. 2. As seen, in this scenario with fixed geometry, a
source of anechoic speech and a source of noise extracted

5A non-intrusive measure is one requiring only the distorted/enhanced
speech for its calculation.

Anechoic source

4m

1.2 m

1.5m

Room height = 3m

2m

5m

Microphone array

 𝑇60𝑑𝐵  

1.5m
Noise

 = 100-1000 msec

10cm

Fig. 2: Illustration of the devised experiment for the genera-
tion of time-invariant RIRs with the ISM method.

from Noisex-92 database [42] have been placed in an acous-
tic room with the indicated dimensions. The RIRs from the
speech and noise sources to the microphone array have been
synthesized to achieve a 60 dB reverberation time in the
range of 100 msec< T60dB <1000 msec. The RIRs are then
convolved with the corresponding anechoic speech files from
TIMIT and noise files from Noisex-92 to generate reverber-
ant microphone array signals. In this sense, a few different
types of noise from Noisex-92 database were exploited to
conduct the experiments, yet, results for the most challeng-
ing noise type, i.e., the babble noise, are reported here. We
used the same noise file for different speech utterances or
RIRs in the experiments. We consider a global reverber-
ant signal-to-noise ratio (RSNR) of 15 dB for the scenario
of Fig. 2, whereas different RSNR values for the scenarios
with recorded RIRs. To properly add noise to the reverber-
ant signals, we use the function v_addnoise from a speech
processing toolbox, VOICEBOX [43], which calculates the
speech signal level according to the ITU-T recommendation
P.56 [44].

Furthermore, to investigate the performance of the con-
sidered dereverberation methods in time-varying environ-
ments, we set up the scenario in Fig. 3 with the ISM method
to generate time-varying RIRs. As viewed, a talker is moving
from the initial point at t=0 to the end point at t=20 seconds
along the shown straight line, resulting in a time-varying
RIR for the source-to-microphone channel. Herein, we ap-
proximate this continuous trajectory by 20 discrete points
and determine the corresponding RIR at each point by using
the ISM method. Next, a 20 sec anechoic speech utterance



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Trajectory of the 

moving speech source
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 𝑇60𝑑𝐵   = 100-1000 msec

Microphone array10cm

Room height = 3m

Fig. 3: Illustration of the devised experiment for the genera-
tion of time-varying RIRs with the ISM method.

is segmented into 20 segments and the resulting segments
are filtered by the generated RIRs at the discrete points. The
entire reverberant speech is then generated by concatenating
the 20 individual segments into one. Please note that, in
order to avoid unnatural changes happening in between the
processed speech segments, we used a 50% overlap when
segmenting and concatenating the entire speech file.

We first assess the performance of the suggested method
for the estimation of the TV-AR model order,Q, explained in
subsection 3.1. In this respect, the improvement in the afore-
mentioned objective performance measures are obtained for
the scenario of Fig. 2 when our approach is used with differ-
ent values ofQ as well as the estimated one. The correspond-
ing results are shown in Fig. 4 for the PESQ metric versus
T60dB . For better visualization, only the resulting improve-
ments w.r.t. the unprocessed speech (denoted by ∆ PESQ)
are illustrated. Whereas the estimated value for Q is 8 in this
scenario, we also evaluated the performance for several other
choices of Q. It can be seen that our log-likelihood method
based on the estimation of the initial weights, G

(0)
λ , due to its

capability to adapt the value of Q̂ to the reverberant speech
signal, is able to provide significantly better performance, as
compared to the other choices of Q. Whereas the value of
Q̂ is consistent for the synthetic RIRs when using the ISM
method with the same room geometry for both time-invariant
and time-varying cases, different values of Q̂ are obtained
when testing our approach under different room geometries
or with different recorded (real-world) RIRs. The same result
holds true when using other objective performance measures
than PESQ.
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Fig. 4: Performance of the proposed approach with different
values for the TV-AR model order, Q, in terms of the PESQ
metric.
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Fig. 5: Performance of the proposed approach with differ-
ent values for the segment length, R, in terms of the PESQ
metric.

Next, to determine the role of choosing the segment
length, R, on the performance of the proposed method, we
evaluate ∆ PESQ scores using different choices of R for the
time-varying scenario of Fig. 3. As seen in the results shown
in Fig. 5, the chosen value of R=40 STFT frames results in
the best possible performance. In fact, there exists a com-
promise in choosing the segment length, R. In this sense, a
too short segment length results in unacceptably erroneous
prediction weights, G

(0)
λ , while a largerR reduces the rate of

adaptation of the estimated G
(0)
λ to a changing RIR. It should

be noted that the visible difference in the performance with
changing R seen in Fig. 5 only appears in the experiments
with time-varying RIRs and the aforementioned difference is
negligible in time-invariant RIRs. Using other performance
measures led to the same conclusion.

To investigate the performance of the considered derever-
beration methods with T60dB , we illustrate the four objective
performance measures obtained by using different methods
in Fig. 6 under the scenario of Fig. 2. As seen, the proposed
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Fig. 6: Performance metrics obtained by using different WPE-based methods using the time-invariant scenario in Fig. 2.
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Fig. 7: Performance metrics obtained by using different WPE-based methods using the time-varying scenario in Fig. 3.

method in this work achieves considerably better scores than
the previous versions of the WPE method over the entire
range of T60dB . The main reason for such performance ad-
vantage in the time-invariant case is the use of appropriate
interpolation across the TV-AR coefficient vectors at each
block, i.e. {uΛ,q}, to obtain the ultimate estimate of the re-
verberation prediction weights, Gλ. Note that, within other
WPE-based methods, only some averaging-like smoothing
is performed to obtain the regression vector, Gλ, and thus,
increasing the length of the input training (batch) speech
does not necessarily improve the precision of the prediction
weights for long utterances. While we observed no consid-
erable improvements with training utterances longer than
10 sec for the previous WPE-based methods, our approach

was able to highly outperform the state-of-the-art methods
for such reverberant speech samples. Furthermore, it is ob-
served that this advantage is more visible for the moderate
values of T60dB ranging in the middle of the interval. This
is due to the fact that, whereas the improvement in dere-
verberation is not pronounced for very small amounts of
reverberation, for very heavily reverberant environments, the
WPE method is able to provide slight improvements. Still,
there exists considerable benefit with using the proposed ap-
proach in Section 4 as compared to the other methods. It was
found in our experiments that the relative performance of
the considered methods w.r.t. the four performance metrics
from [36] is consistent.

We further perform the experiment shown in Fig. 3 to
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Fig. 8: Error analysis of the prediction weights for different
methods w.r.t. the asymptotic weights, (a): Normalized error
by (28), (b): Bias given by Jackknife resampling method.

assess the performance of the methods under study in a
time-varying RIR. The corresponding results are illustrated
in Fig. 7. As viewed, even though the average gain in the
performance metrics is smaller in comparison with the time-
invariant case, a trend similar to that in Fig. 6 holds true
herein with the proposed approach being superior to the
other methods in almost all T60dB’s. Regarding the superi-
ority of the suggested approach, the same reasoning as that
in case of a time-invariant RIR, i.e., the use of proper inter-
polation along coefficient vectors, applies here. In addition,
contrary to the state-of-the-art methods, our approach uses
a TV-AR model for the reverberant speech, which causes
the estimated prediction weights, Gλ, to be adapted to a
changing environment.

Next, to investigate how close the reverberation predic-
tion weights, G, are w.r.t. an asymptotically optimal set of
prediction weights, namely Gopt, we devise an experiment
for the error analysis of G w.r.t. the latter. To this end, we
calculate the normalized `2-norm of the error between G and
Gopt as well as the existing bias between them for the case of
time-invariant RIRs. The former error measure is defined as

∆(Gopt,G) = E
k

{ ||Gopt −G||22
||Gopt||22

}
(28)

with Gopt as the asymptotically optimal prediction weights
and E

k
{.} denoting the expectation (average) over the fre-

quency bins, k. Further, we compute the statistical bias
between G and Gopt by using the Jackknife resampling
method [45] implemented by the ’Jackknife’ function of
Matlab, wherein we use the error G−Gopt as the input vec-
tor and take the mean of the output magnitudes. Within this
experiment, we choose a long reverberant speech utterance
(of the length 30 sec) and use the original WPE method on
the entire speech sample to obtain Gopt. Yet, to compute
the prediction weights, G, for the methods under study, we
consider only 4 sec segments from the entire utterance. By
this way, since Gopt can act as an asymptotically optimal
set of prediction weights for a time-invariant RIR, the afore-
mentioned error measures between G and Gopt show how
fast the prediction weights can adapt to the reverberant envi-
ronment and the anechoic speech source. The corresponding
two error measures are indicated in Fig. 8 versus T60dB . As
observed, the proposed approach clearly attains smaller error
measures especially for high values of T60dB . This advan-
tage is even more visible in terms of the discussed measure
of bias. It can be concluded that our interpolation-based
method is able to provide a more robust behavior in online
scenarios where only short speech utterances are available to
process.

In order to investigate the advantage of the proposed ap-
proach in different conditions, we change the two important
parameters, i.e., the source-to-microphone distance and the
number of microphones, within the receiver array and mea-
sure the resulting performance metrics. The obtained results
for the scenario of Fig. 2 are presented in Fig. 9 and Fig. 10,
respectively. In these figures, the values indicated by ’ref’
refer to the reverberant (unprocessed) speech. In addition to
the superiority of the proposed method clearly seen in these
figures, it can be observed that there exists considerable per-
formance improvement with increasing the number of micro-
phones, especially from one to two.

Next, to measure the performance gain obtained by us-
ing the individual subsystems of the proposed algorithm, we
devise two other experiments with different values of T60dB .
In the former, we employ the original WPE method to obtain
the initial estimate of reverberation prediction weights, G

(0)
λ ,

and compare the performance to that where the TLS-based
WPE is used for initialization. The corresponding PESQ re-
sults have been averaged over T60dB and shown in Tables
1 and 2, respectively for the experiments depicted in Fig. 2
and Fig. 3. Therein, Algorithm (A) refers to the proposed
approach with initialization using the TLS-based WPE dis-
cussed in Section 4.1 and Algorithm (B) refers to that with
initialization using original WPE. It is seen that, while both
methods achieve very close scores in high RSNR values such
as 20 dB, for lower RSNR values, using method (A) leads
to considerable improvement w.r.t. method (B). This shows
that the TLS-based method used for initialization is benefi-
cial mostly in making the proposed approach robust w.r.t. the
background noise in the input speech signal, preventing fur-
ther performance degradation in presence of noise.

In the latter experiment, we evaluate the pure improve-
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Fig. 9: Performance metrics obtained by using different WPE-based methods for several source-to-microphone distances.
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Fig. 10: Performance metrics obtained by using different WPE-based methods for different number of microphones, M .

Table 1: PESQ scores for Algorithm (A) and Algorithm (B),
averaged over T60dB ∈ [100, 1000] msec in case of time-
invariant RIRs.

RSNR 5 dB 10 dB 15 dB 20 dB

Unprocessed 2.02 2.12 2.33 2.49
Method (A) 2.16 2.37 2.70 2.93
Method (B) 2.09 2.33 2.67 2.93

ment given only by making use of the TLS solution for re-
verberation prediction weights in (18), as compared to the LS
solution employed in the original WPE discussed in Section

Table 2: PESQ scores for Algorithm (A) and Algorithm (B),
averaged over T60dB ∈ [100, 1000] msec in case of time-
varying RIRs.

RSNR 5 dB 10 dB 15 dB 20 dB

Unprocessed 1.98 2.08 2.29 2.45
Method (A) 2.09 2.31 2.59 2.81
Method (B) 2.04 2.28 2.57 2.81

2. For doing so, we use the Algorithm 1 but with the pre-
diction weights obtained by (18) and call this approach the
TLS-based WPE. We then compare the results with the orig-
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Table 3: PESQ scores for different WPE-based methods
averaged over T60dB ∈ [100, 1000] msec in case of time-
invariant RIRs.

RSNR 5 dB 10 dB 15 dB 20 dB

Unprocessed 2.02 2.12 2.33 2.49
Original WPE 2.08 2.26 2.52 2.73

TLS-based WPE 2.24 2.40 2.65 2.83
Proposed WPE 2.29 2.44 2.69 2.87

Table 4: PESQ scores for different WPE-based methods
averaged over T60dB ∈ [100, 1000] msec in case of time-
varying RIRs.

RSNR 5 dB 10 dB 15 dB 20 dB

Unprocessed 1.98 2.08 2.29 2.45
Original WPE 2.02 2.16 2.41 2.65

TLS-based WPE 2.10 2.23 2.47 2.69
Proposed WPE 2.18 2.32 2.58 2.80

inal WPE and the proposed WPE in Section 4, as presented
in Tables 3 and 4. By careful inspection of the PESQ scores,
it is inferred that there exists a consistent improvement ob-
tained by exploiting the TLS technique over the LS tech-
nique employed by the original WPE method, especially in
the lower RSNR values, indicating that the TLS approach is
more advantageous in noisier conditions. Further, the incre-
ment in the resulting PESQ values obtained by the proposed
approach in Section 4 w.r.t. those obtained by the TLS-based
WPE, as observed in Tables 3 and 4, shows the pure perfor-
mance advantage provided by the TV-AR model as well as
the interpolation method discussed in Section 4.2, especially
when dealing with time-varying environments.

5.3. Experiments with Recorded RIRs

To perform experiments in real-world time-invariant environ-
ments, the anechoic speech is convolved with measured RIRs
from the SimData of the REVERB Challenge [46]. Therein,
an 8-channel circular microphone array with a diameter of
20 cm was placed in three rectangular rooms (labeled as 1-
3) to measure the RIRs6. Room 1 is 3.7 m×5.5 m with
T60dB of 250 msec, room 2 is 4.8 m×6.2 m with T60dB

of 680 msec and room 3 is 6.6 m×6.1 m with T60dB of
730 msec. The height of all rooms is 2.5 m and the micro-
phone array and speakers were placed 1.1 m high. In all sce-
narios with recorded RIRs in time-invariant environments,
the reported results are the average among the three different
rooms.

Furthermore, to demonstrate the advantage of the pro-
posed approach in real world time-varying environments, we
use the RevDyn database of recorded reverberant speech files

6Note that only two of the available 8 channels are used herein given
M = 2.

[47]. Therein, the recordings were performed in a room with
dimensions of 6 m×5.9 m×2.3 m and a T60dB of 750 msec.
There are 4 English speakers, namely, 2 females and 2 males,
with each speaker performing 4 different experiments. The
first 2 experiments involve speaking in different locations in
the room and walking naturally between them. The next 2 ex-
periments consist of only slight movements, e.g., head turn-
ing, sitting down and standing up. Each of the 4 experiments
consist of three different scenarios, wherein each scenario is
1 min long (net speaking time is about 45 sec in each sce-
nario). Therefore, the total number of recordings is 4 × 12 =
48 (1 min. each), with 9 channels (channel 9 is the reference
microphone). The speaker-to-microphone distance varies be-
tween 2 m and 3.8 m and 8 omni-directional AKG-CK32
microphones are used to perform the recordings. Herein, we
consider the 45 sec net speaking time of the recorded speech
at each experiment and the presented values for the metrics
are actually the average over the different scenarios. To take
into account the effect of the background noise, we also add
babble noise to the recorded reverberant signals at an RSNR
in the range of [5,20] dB.

In Fig. 11, the improvement in terms of the four met-
rics are demonstrated for the case of time-invariant recorded
RIRs. Babble noise utterances with the same features as
those explained in Section 5.2 are added to the reverberant
speech files. As viewed, in the middle to high RSNR values,
our method is able to provide superior performance w.r.t. the
less recent methods. The reason for decaying the improve-
ment seen by all the WPE-based dereverberation methods for
lower RSNRs is that, in essence, these methods have been
designed to only cope with noiseless reverberant speech sig-
nals, and therefore, their performance degrades in adverse
noisy conditions. Even though the same phenomenon hap-
pens to some extent with our approach, the benefit provided
by the proposed approach is still relatively high in such
RSNRs. The significant reason for this is the use of TLS so-
lution for the prediction weights, G, as in (18), which makes
the solution robust w.r.t. the additive background noise by
considering perturbations for the prediction weights. In a
similar fashion to the above, Fig. 12 shows the averaged
performance metrics obtained by using the dereverberation
methods but for the time-varying recorded RIRs. It is ob-
served that, in spite of smaller improvements compared to
the time-invariant scenario of Fig. 11, the proposed approach
clearly outperforms the less recent methods, particularly at
higher RSNR values.

Next, using the same setting as that in Fig. 8, we analyze
the two measures of error between the prediction weights
by different methods and the asymptotically optimal one. In
Fig. 13, the normalized `2-norm of the error and the statis-
tical bias obtained by Jackknife method are shown for the
case of time-invariant recorded RIRs. As viewed, especially
at high RSNR values where the reverberation is dominant to
the background noise, the proposed method results in smaller
error measures and is therefore closer to the namely optimal
prediction weights.
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Fig. 11: Performance metrics obtained by using different WPE-based methods using the recorded time-invariant RIRs.
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Fig. 12: Performance metrics obtained by using different WPE-based methods using the recorded time-varying RIRs.

Finally, in order to investigate the computational costs
involved in the implementation of each dereverberation
method, we evaluate the computational efficiency of dif-
ferent methods in terms of the real-time factor (RTF), as
in [18]. The RTF can be defined as the ratio of the process-
ing time required for the dereverberation to the time duration
of the observed speech. The dereverberation methods were
all implemented with MATLAB, and their processing time
was measured on a Windows computer with an Intel(R)
Core(TM) i5-2320 CPU @ 3.00GHz 3.30GHz with 8.00 GB
of RAM. The resultant RTFs averaged over all test utterances
with different values of T60dB have been shown in Fig. 14.
As observed, while the RTF for the original WPE in [18] and
that for the CGG-based WPE in [20] are almost equal, the

RTF for the Laplacian-based WPE in [19] is much higher7.
Correspondingly, it is viewed that the computational bur-
den of the three other methods, namely, the adaptive sparse
WPE [22], the IFC-based WPE [21] as well as the pro-
posed WPE in Section 4 are all in the same range with some
increase w.r.t. the former two methods. Regarding the pro-
posed approach, taking advantage of the FFT in solving the
linear system in (23), it was found that most of the compu-
tational effort lies in the TLS-based WPE used to obtain the
initial prediction weights as well as the interpolation scheme
used to obtain the TV-AR model coefficients.

7The main reason for this is the lack of any closed-form solution for the
Laplacian-based WPE and the numerical calculation of its corresponding
reverberation prediction weights.
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6. CONCLUDING REMARKS

We presented a novel approach for blind speech dereverbera-
tion in noisy and time-varying environments with no knowl-
edge of the room acoustics or the speech source. We based
our approach on the conventional WPE method, yet, since
the traditional time-invariant AR model is not realistic in
practice, we employed a TV-AR model in order to deal with
the variable nature of the speech source as well as the room

acoustics. By using the TLS technique to obtain the reverber-
ation prediction weights, G, properly updating G over time
frames and interpolating the resulting G, our multi-folded
approach is able to provide superior dereverberation as well
as a more robust performance w.r.t. the background noise,
particularly under challenging time-varying conditions. The
comprehensive performance evaluation presented in both
time-invariant and time-varying experiments confirms the
advantage of the proposed approach.

Considering the future work within this field, the follow-
ing directions are of interest:

• Investigation of various TV-AR models (along with
methods to estimate their parameters) and integration
of them into the WPE method.

• Study of suitable basis functions (other than the DFT
used in this work) to form the TV-AR model as in (20)

• Making use of piece-wise AR models (in contrast with
TV-AR models) with less complexity in order to han-
dle slowly/moderately changing time-variant RIRs8

• Integration of machine learning techniques into the
WPE method so that the training (batch) utterances
can be different from the testing speech samples.

• Working towards the combination of an initial STFT-
domain noise reduction technique with the WPE
method to perform joint dereverberation and noise
suppression.
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