
Accepted Manuscript

Trust enforcement through self-adapting cloud workflow orchestration

Hadeel T. El-Kassabi, M. Adel Serhani, Rachida Dssouli, Alramzana
N. Navaz

PII: S0167-739X(18)31352-9
DOI: https://doi.org/10.1016/j.future.2019.03.004
Reference: FUTURE 4828

To appear in: Future Generation Computer Systems

Received date : 1 June 2018
Revised date : 30 December 2018
Accepted date : 3 March 2019

Please cite this article as: H.T. El-Kassabi, M.A. Serhani, R. Dssouli et al., Trust enforcement
through self-adapting cloud workflow orchestration, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.03.004

Trust Enforcement Through Self-adapting Cloud
Workflow Orchestration

Hadeel T. El-Kassabia, M. Adel Serhanib,∗, Rachida Dssoulia, Alramzana N.
Navazb

aConcordia Institute for Information Systems Engineering, Concordia University, Montreal,
QC, H4B 1R6, Canada

bCollege of Information Technology, UAE University, P.O. Box 15551, Al Ain, UAE

Abstract

Providing runtime intelligence of a workflow in a highly dynamic cloud execution

environment is a challenging task due the continuously changing cloud resources.

Guaranteeing a certain level of workflow Quality of Service (QoS) during the ex-

ecution will require continuous monitoring to detect any performance violation

due to resource shortage or even cloud service interruption. Most of orches-

tration schemes are either configuration, or deployment dependent and they do

not cope with dynamically changing environment resources. In this paper, we

propose a workflow orchestration, monitoring, and adaptation model that relies

on trust evaluation to detect QoS performance degradation and perform an au-

tomatic reconfiguration to guarantee QoS of the workflow. The monitoring and

adaptation schemes are able to detect and repair different types of real time er-

rors and trigger different adaptation actions including workflow reconfiguration,

migration, and resource scaling. We formalize the cloud resource orchestration

using state machine that efficiently captures different dynamic properties of the

cloud execution environment. In addition, we use validation model checker to

validate our model in terms of reachability, liveness, and safety properties. Ex-

tensive experimentation is performed using a health monitoring workflow we

have developed to handle dataset from Intelligent Monitoring in Intensive Care

∗Corresponding author
Email address: serhanim@uaeu.ac.ae (M. Adel Serhani)

Preprint submitted to Journal of Future Generation Computer Systems December 31, 2018

III (MIMICIII) and deployed over Docker swarm cluster. A set of scenarios were

carefully chosen to evaluate workflow monitoring and the different adaptation

schemes we have implemented. The results prove that our automated workflow

orchestration model is self-adapting, self-configuring, react efficiently to changes

and adapt accordingly while supporting high level of Workflow QoS.

Keywords: Cloud, QoS, Reconfiguration, Self-Adapt System, State machine,

Trust assessment, Workflow

1. Introduction

Workflow has been proven to be an appropriate model that finds its appli-

cation in many domains, which features a set of tasks aggregated and executed

either in sequence or in parallel to fulfill a particular goal. Workflows executed

on a composed cloud services are distinguished by their ability to scale up or5

down according to the fluctuating nature of job or task requirements. This is

achieved through orchestration functionalities, which can result in adding more

storage space, auxiliary memory, additional servers, or reinstating correspond-

ing relevant virtual Machines (VMs) in accordance to the sequence events that

might take place, such as usage increase, or task failures. These orchestration10

functionalities allow realtime automated reconfigurations of the appropriate re-

sources. Nevertheless, guaranteeing the Quality of Service (QoS) of the workflow

to meet to user requirement level cannot be archived though orchestration only,

but also automated monitoring and control of multi-cloud services is necessary.

According to [1], few research initiatives were proposed in the area of design-15

ing automated execution and monitoring complex workflow systems. Enabling

easy-to-use systems that allow specification of QoS requirements levels and flex-

ible deployments and resource allocation is highly required. This includes build-

ing models that describe algorithms and structures to empower these systems.

Using state machine-based models to formulate the resource orchestration and20

autoreconfiguration is recognized for its capability to represent the continuous

and dynamic nature of cloud resources. Maintaining the timely state of each

2

entity, such as resources, quality requirements, and tasks performance, allow

for easy tracking, efficient monitoring, and automated reconfiguration of the

cloud resources and workflow deployment. Existing resource orchestration sys-25

tems focus on resource configuration, deployment or control. However, they do

not provide full automation to support self-configuration and self-healing where

failures and performance deficiencies are detected and resolved automatically to

maintain the required QoS [1].

Providing runtime intelligence in a sophisticated orchestration system in-30

volves high processing capabilities and adding more overhead on the cloud re-

sources to provide analysis of large amounts of realtime monitoring data. Also,

some workflows are deployed on multiple clusters and cloud providers. Federated

cloud resource orchestration involves connecting multiple interacting cloud ser-

vices to perform a composed service. Existing orchestration techniques depend35

on procedural programming using low-level scripting languages and heteroge-

neous Application Programming Interfaces (APIs), which are highly provider-

configuration dependent [2]. This imposes more time and effort burden on the

consumer. Hence, various research initiatives have proposed common interfaces

and APIs over multiple clouds, such as Apache Deltacloud [3], Apache Libcloud40

[4], jclouds [5], OpenStack [6]. However, dynamic orchestration using high-level

policies specified by administrators instead of consumers is highly compulsory.

The currently used service composition techniques, such as the Web Service

Business Process Execution Language (BPEL) and Business Process Model-

ing Notation (BPMN), do not support application resource requirements and45

constraints, exception handling, and optimized resource scheduling, which are

essential for a comprehensive orchestration process [2]. Hence, trust enforce-

ment is highly recommended to support the intelligent orchestration framework

that handles the quality requirement of Big Data.

While cloud resource requirements need to be enforced within a dynamic50

orchestration, a trust evaluation must also be supported. A trust model should

consider all the workflow phases and evaluate trust for each composed ser-

vice, and then aggregate the overall workflow trust scores across multiple cloud

3

providers. The model must carefully deal with all trust components, such as

trust propagation, trust aggregation, decomposition, and trust sharing in fed-55

erated cloud services. The trust score evaluation consists of capturing and

monitoring the workflow runtime environment data to provide and maintain

required orchestration of QoS levels. Yet, the complexity of orchestrating cloud

services for Big Data is emphasized by the growing number of cloud services

in terms of quantity, quality, and diversity. Few research initiatives fulfill user60

requirements in a realtime and context-aware manner, especially with the over-

whelming amount of data coming from various sources of high veracity and

variety.

Therefore, trust evaluation schemes and models should cope with the nature

of intelligent workflow orchestration and composition of cloud services, espe-65

cially when dealing with scalable and adaptive composition solutions that han-

dle large-scale, highly dynamic, and diverse Big Data services. Supporting trust

enforcement on orchestration frameworks creates an additional challenge to as-

sess the contribution of the component services towards the composite services.

This is because each service component might have different functionalities, sig-70

nificance, and impact within different compositions. Additionally, any proposed

model must consider lightweight monitoring mechanisms with minimal overhead

to not affect the overall service performance.

In this paper, we propose a workflow orchestration, monitoring, and adap-

tation model that relies on trust evaluation to detect QoS performance degra-75

dation and perform an automatic reconfiguration to guarantee QoS properties

of the workflow. The monitoring and adaptation schemes are able to detect

and repair different types of real time errors and trigger different adaptation

actions including workflow reconfiguration, tasks migration, and resource scal-

ing. We formalize the cloud resource orchestration using state machine that80

efficiently captures different dynamic properties of the cloud execution environ-

ment and support the monitoring activities of a workflow. We add two crucial

components into the basic orchestrator framework: QoS Trust Monitoring and

Autoreconfiguration Manager.

4

The main differentiation of our framework with respect to other existing85

frameworks is summarized hereafter:

• We adopt a multidimensional trust evaluation that combines: workflow

performance-based trust evaluation and cloud resources performance-based

trust evaluation. This will lead to the selection of the most appropriate

adaptation actions.90

• The evaluation of our monitoring and adaptation schemes overhead demon-

strated that a minimum overhead both in terms of latency and communi-

cation is generated and considered low compared to other frameworks in

the literature.

• Automating monitoring and adaptation processes in our framework saves95

time, shortens the process, and allows efficient control of resources as it

continuously retrieves the most updated resource information.

2. Related Work

In this section, we discuss the existing state of the art on service composition

and workflow orchestration including: 1) Trust in cloud service composition, 2)100

QoS and Trust monitoring, and self-healing, 3) dynamic and autonomic work-

flow orchestration.

2.1. Trust in Cloud Service Composition and Orchestration

Trust evaluation of a single service can be achieved through the propagation105

of reputation evaluation conducted by users based on historical experience.

However, trust evaluation for service composition becomes more sophisticated

because of the complexity of evaluating the trust of each component service

separately. Despite this complexity, trust evaluation supports intelligence, scal-

ability, and adaptive composition solutions for large-scale, highly dynamic, and110

orchestration frameworks to guarantee the quality of service requirement. Au-

thors in [7], proposed a contribution-based distribution of reputation approach

5

to propagate the reputation of a composed service to each component service

according to the extent to which it contributes to the composed service. The

importance or the amount of contribution of each component service towards115

the composed service is assigned based on its reputation.

Recently, the authors in [8] proposed a trust framework that includes an it-

erative adjustment heuristic (IAH) model to assess trust in composed services.

Service Trust evaluation in federated and interconnected cloud environments is

more sophisticated [9]. Customers and different cloud providers need to trust120

each other to be able to collaborate. Thus, it is essential to evaluate the trust-

worthiness of cloud and cloud federations [10].

Trust in federated clouds was also addressed in the Sky Computing project

[11], which is intended to enable several virtualized sites to increase resource

availability. The project studied the trust, VM portability, and connectivity of125

geographically-spread resources. Bernstein et al. in [12] proposed a blueprint for

interconnection of cloud data centers where they addressed issues about virtual

machine mobility, storage, network addressing, security in terms of identity and

trust, and messaging. However, no trust management was provided in this work.

Few existing cloud federation projects are based on brokering technologies for130

multi-cloud composed services. Hence, more research needs to be done towards a

standardized methodology for handling interoperability and standard interfaces

of interconnected clouds [13]. Trustworthiness evaluation models among differ-

ent cloud providers were proposed and focus on a fully distributed reputation-

based trust framework for federated cloud computing entities in cloud federa-135

tion. In this model, trust values are distributed at each cloud allowing them to

make service selection independently [10].

Usually orchestration methodologies provision describing resources of one

provider. Other orchestration techniques support cross-provider resources such

as Compute-Service in JCloud and are used for configuration and management140

of federated cloud [14].

Trust models are developed to support monitoring, adaptation, and predic-

tion of cloud workflow provision while guaranteeing the required workflow QoS.

6

However, some of the initiatives proposed in the literature which used trust to

enhance workflow scheduling, orchestration, and management were not fully uti-145

lized to support automatic reconfiguration that guarantees workflow QoS. Our

proposed framework supports multidimensional trust evaluation that considers

both the performance evaluation of the workflow and the performance evalua-

tion of cloud resources in order to decide about the most appropriate adaptation

actions.150

2.2. Monitoring Trust in Service Composition and Workflow Orchestration

Monitoring is defined as gathering and analyzing events and performance logs

and is necessary for supporting the management of unpredicted and undesired

behaviors [1]. It is typically adopted to guarantee the required QoS by the SLAs155

and maintain stable performance by responding to quality degradation. Existing

cloud resource monitoring tools, such as Nagios, CloudFielder, and Splunk are

used by DevOps to describe SLAs, recognize glitches, and issue alarms when

violations occur [15] [16]. Other Big Data monitoring frameworks like Ganglia

[17], Apache Chukwa [18], Sematex [19], and SequenceIQ [20] provision QoS160

metrics information, such as resource utilization (cluster, CPU, and memory) in

addition to application types (disk, network, and CPU-bound) [21]. Alhamazani

et al. proposed a multi-cloud application QoS monitoring framework capable of

monitoring subapplication distributed components, such as databases and web

servers [22]. Other cloud QoS monitoring frameworks were presented in [23] [24]165

[25].

Most of the monitoring frameworks do not support the Big Data workflow

specific QoS requirements, such as time sensitivity or task dependency. They

usually monitor the workflow as a black box without involving the details of

activities as in Amazon CloudWatch used by Amazon Elastic Map Reduce [26].170

Such requirements involve data flow behavior and subactivity process monitor-

ing. Activities in these workflows implicate continuous variations that affect

other dependent activities and eventually affect the performance of the overall

7

workflow. Present orchestration frameworks do not comprehensively support

intelligent monitoring and automatic reconfiguration to respond to QoS viola-175

tions. Such violations could occur in the context of a variety of inputs and per-

formance quality characteristics throughout all the activities involved in the Big

Data workflows. Additionally, intelligent monitoring should identify and handle

the performance violations based on data flow collected logs. The authors in

[26] designed a high level orchestration framework incorporating requirement180

and design specification Big Data workflows management over a cloud environ-

ment. However, this work is missing key implementation and validation of Big

Data workflow orchestration functionalities and the challenges it involves.

2.3. Dynamic and Automatic Workflow Orchestration

185

Maintaining the QoS of such complex cloud workflows is very important to end

users and applications. However, achieving this requirement necessitates guar-

anteeing the QoS during workflow execution, which cannot be archived through-

out orchestration alone, but also through automated monitoring and control of

multi-cloud services and resources. Automating such processes in a very dy-190

namic environment will save time, shorten the processes, allow efficient control

of resources and get most updated resource information, analyse monitoring

and adaptation records to predict future resource shortage. In the following, we

identify and discuss some of the relevant research work in guaranteeing QoS of

cloud workflow through automatic orchestration.195

Guaranteeing the user required QoS of application execution is the key pur-

pose of cloud resource orchestration. Existing platforms that support Big Data

orchestration, such as YARN [27], Mesos [28], and Amazon EMR [29], do not

handle failure recovery or automatic scaling to correspond to the application

changing requirements, such as the data flow changing volume, velocity or va-200

riety [26]. Some initiatives proposed automatic scaling of Big Data processing

framework as in [30] for batch processing and in [31] for stream processing.

Other orchestration frameworks provide online or interactive dynamic recon-

8

figuration [32] [33]. Web services frequently undergo dynamic changes in the

environment such as overloaded resources. Hence, the authors in [34] proposed205

a multi-dimensional model, named AgFlow, for component services selection

according to QoS requirements of price, availability, reliability, and reputation.

The model optimizes the composite service QoS required by the user and re-

vises the execution plan to adapt to the changes in the resource performance.

Another work was proposed in [35], were an SLA renegotiation mechanism is210

developed to support and maintain QoS requirements in cloud based system.

The SLA violations are predicted based on collected monitoring information of

service status such as availability, performance and scalability.

We mean by self-healing as the capability of a workflow to recover its func-

tionality when a problem occurs during execution while guaranteeing the QoS215

level requirements. Recent research approaches endorse automatic self-optimization

workflow orchestration realized by dynamic resource reconfiguration to fulfill

Quality of Service (QoS) requirements [1]. An example of an autonomic cloud

orchestration engine is CometCloud [36], which supports the integration of local

and public cloud services and the distribution and scheduling of these services220

according to resource status and QoS requirements, including budget, deadline,

and workload. Authors in [37] proposed a self-healing Web Service Composi-

tion algorithm using a QoS performance-aware prediction technique. Moreover,

Schulte et al in [38] propose Fuzzy BPM-aware technique that scales according

to VM Key Performance Indicators (KPIs).225

Current resource allocation techniques and existing frameworks do not sup-

port the dynamic and heterogeneous nature of clouds and resource behaviors.

Therefore, the need to provide autonomic cloud computing methodologies that

allow better resource allocation based on user QoS requirements as well as fail-

ure recovery during runtime is becoming inevitable. Researchers use various230

key QoS parameters for QoS-aware clouds, such as price, time, and response

time. Most optimization techniques rely on the evaluation of time and price

while other important QoS attributes (e.g., data privacy) are not considered.

Authors in [39] pointed out some QoS parameters used in autonomic cloud com-

9

puting, including scalability, availability, reliability, security, cost, time, energy,235

SLA violation, and resource utilization. Other research approaches focus on

user requirements, such as unit cost per resource, the processing speed of VMs,

SLA levels, geolocations, and device capabilities of endusers.

A middleware architecture was proposed by Ferretti et al. in [40] to dynam-

ically reconfigure cloud resources and services according to some QoS require-240

ments specified in the SLA. Monitoring is used to support dynamic management,

load balancing, and reconfiguration of resources allocation features. Moreover,

a quality aware framework named Q-Cloud is suggested in [41] were resource

allocation is performed at runtime. The key requirement is to guarantee QoS

among multiple workload applications. The framework used QoS states were245

to support different levels of application-specific QoS assignments. The authors

in [42] proposed adding extra modules to enhance the auto-healing capability

of a common cloud service orchestrator. However, they did not provide system

state description nor detailed their auto-healing algorithms which are both very

important features of the proposed solution.250

3. Trust Formalization and Evaluation

Using Trust-based quality assessment enables aggregation of multiple and

various quality dimensions and attributes into one trust score which facilitates

efficient and comprehensive quality assessment. Guaranteeing trust is achieved

through enforced monitoring of workflow at different granularity levels including255

for instance task level, service level and cloud resources level to achieve the

targeted QoS.

3.1. Trust Evaluation of Cloud Workflow (Pre-deployment)

In this section, we explain the automatic evaluation of trust through a work-260

flow that will be executed over a composition of cloud services. The selection

of cloud services is based on the trust scores automatically evaluated before

10

execution and during execution if reallocation of cloud services or resources is

needed. Trust should be based on a set of evaluation criteria with weights as-

signed to each of these criteria and decided by the user. The first criterion is the265

reputation of service components, which generally relies on the users experience

[7] [43]. This is called objective reputation and is done using monitoring, either

by users or third parties [44]. Another form of trust based reputation relies

on the opinion of users about the service which is known as subjective reputa-

tion. Both objective and subjective reputation can be combined to evaluate the270

trust and is referred to as hybrid reputation scheme. Trust evaluation based on

advertised QoS of service providers and selfexperience can also be used. Each

component service participates to the calculation of the overall trust of the com-

posite service based on their contribution towards the composite service. Each

QoS attribute participates towards the overall trust evaluation with weights as-275

signed by the user, this is commonly known as user preference based trust. The

contribution of each component service should be automatically assigned and

calculated. Next section, will detail how QoS attributes are used for workflow

trust evaluation.

3.1.1. QoS attributes for workflow Trust evaluation280

Various QoS properties have been used in the literature to evaluate the trust.

Among these attributes include for instance performance, including network

and Cloud services [45], privacy, scalability, and extensibility. Other key met-

rics suggested in [26] involve the following: 1) delay of event discovery and285

decision making, 2) throughput, response time and latency of results generation

in workflow, 3) distributed file read and write latency, 4) cloud resource utiliza-

tion and energyefficiency, and 5) quality of network such as stability, routing

delays, and bandwidth. In this context, the monitoring system is required to

be comprehensive to have a full picture of the problem. In other words, moni-290

toring application parameters measures the highlevel health of the system and

will help in detecting the most serious issues. Whereas, monitoring the resource

11

parameters allows finding and resolving the root cause of these issues. These

quality parameters are monitored through a collection of cloud resources, such

as CPU, memory, file system, and network usage statistics including utiliza-295

tion, saturation, availability, and errors. Also, monitoring is applied to some

application-specific quality parameters like throughput, success rate (number of

errors), and performance. Existing tools used for monitoring cloud resources like

processing, storage, and network include cAdvisor, Heapster, InfluxDB, Google

Cloud Monitoring, and many others [46].300

3.1.2. Reputation of service components based on their past experience

In our previous work, we evaluated the reputation of a single service, and repu-

tation of composed services can be achieved using multi-attribute optimization

techniques to measure and assess the reputation of every single service based305

on its contribution towards the overall trust of the composed service [47]. The

contribution ratio is determined by the user.

3.2. Trust Monitoring for Cloud Workflow Orchestration (Post-deployment)

After deployment, monitoring QoS of the workflow and all the allocated cloud310

resources will guarantee the satisfaction of customer requirements. Monitoring

the CPU utilization, for example, will indicate that the application is performing

as expected or experience delays when CPU is overloaded or might crash.

However, the complexity of monitoring Big Data workflows is characterized

by the number of different QoS metrics that evaluate different activities and315

resources of the workflow. Such QoS metrics could be throughput, delay, event

detection, response time, read/write latency, CPU utilization, energy efficiency,

network delays, and bandwidth. Hence, it is rather challenging to combine

all these different metrics into a holistic view across the workflow of different

activities, the Big Data framework, and the utilized cloud resources.320

12

Figure 1: Workflow orchestration framework.

4. Model Architecture

In this section, we describe the architecture we propose to monitor trust

and QoS of the workflow orchestration to guarantee self-reconfiguring workflow

upon the occurrence of abnormalities. Figure 1 depicts the main architecture

components.325

4.1. Architecture Components and Key Features

4.1.1. Cloud Workflow Composition

At this stage, the tasks composing the workflow are analyzed in terms of tasks

specific nature, dependency to other tasks, required processing resource, and

data usage. Big Data workflows are composed of various services some of which330

are dependent on another. In other words, changes in one service affect other

dependent services. These services handle workloads with high volume and

velocity data and have complex characteristics. Different application domains

13

exhibit different modeling requirements that involve specific domain expertise

to specify, understand and manage the entire pipeline of activities, data flow335

inter-dependencies, and the QoS properties and their levels and ranges. Once

the workflow is designed, it is mapped onto an existing orchestration framework

for deployment.

4.1.2. Cloud Workflow Deployment

Service level agreement is build and signed by involved cloud providers prior340

to workflow deployment. Big Data workflow is mapped to orchestration frame-

works that include Big Data programming APIs and cloud resources. The selec-

tion of suitable deployment configuration is challenging due to the complexity

of the workflows and the abundance of selection possibilities. Choosing opti-

mal workflow configuration is one of the open challenges that recently attracted345

researchers. For example, stream processing requires an optimal combination

of various worker instances to minimize the latency of processing activities and

to optimize the cloud resources configuration. Such resource configuration in-

cludes the location of the data center, node hardware configuration, pricing

plan, network latency, and bandwidth availability [26].350

4.1.3. Trust-based QoS Monitoring

Workflows monitoring is required to guarantee that the run-time QoS is satis-

fied and that the deployed cloud resources are optimized. Monitoring basically

means collecting performance status logs of all resources and running workflows.

The importance of monitoring lies in detecting and handling problems, in ad-355

dition to empowering flexibility of deployment. For example, monitoring the

CPU utilization and data transfer activity will help to determine if containers

are overloaded, underloaded, or operating as required [1].

We describe hereafter the main module of our architecture. After deploy-

ment, the monitoring module is responsible for monitoring the QoS of the work-360

flow. It is first configured to set the QoS attributes that are required by the user

along with their thresholds and acceptable values or range of values. Also, the

14

Figure 2: System architecture.

user will assign trust evaluation preference (weight) for each quality metric. Our

monitoring system is responsible of monitoring each application including each

composed service in the workflow application. Moreover, it is responsible for365

monitoring each data cluster of the service provider. The monitoring consists

of three activities including monitoring the application, monitoring the cloud

resources, and the QoS logs analysis. Measurements are taken periodically at

different time intervals and the trust score is evaluated as a continuous function

on the closed time interval [0, c], if we consider an arbitrary constant c > 0.370

This has been detailed in section 4.2. Our monitoring system architecture is

detailed in Figure 2.

Monitoring the application: a monitoring agent is placed on the master node

of each cluster. This agent will continuously check logs generated by the ap-

plication tasks. The logs contain different measurements collected on executed375

tasks such as throughput, latency, and errors (I/O error) resulting for example

from invalid input or delay due to slow response from other dependencies. How-

ever, each task has its specific properties and metrics that should be tracked.

Table 1 depicts some key metrics for different application types. Each task in

15

the workflow is instrumented to generate the required measurement saved in380

the log files.

Table 1: Key metrics for many popular technologies

App Type Metric Description Metric Type

HTTP Number of connections requested, successful and active Utilization

and proxy Number of requests Throughput

server. Calculated accepts – handled Error

Count 4xx and 5xx codes Error

Time to process each request (s) Performance

Data Number of read requests Throughput

storage Number of write requests Throughput

Application Number of current connections Utilization

Number of available new connections Utilization

Data, index, and total extents storage size Utilization

Virtual memory usage (MB) Utilization

Run time per schema performance

Numbers of statements with errors Error

Count of connections refused due to server error Error

Count of connections refused due to max connections limit Error

Processing Utilization of RAM (JVM heap and the file system cache) Utilization

application Total number of queries Throughput

(search Total time spent on queries Performance

engine) Number of queries currently in progress Throughput

Number of queued threads in a thread pool Saturation

Number of rejected threads a thread pool Error

Monitoring the cloud resources: this module is responsible for monitoring

the cloud resources orchestration and management. The main metrics to be

considered include resource utilization such as CPU usage, node CPU capacity,

memory usage, node memory capacity, file system usage, and disk I/O. In addi-385

tion, the monitoring observes the performance of the container such as container

deployments, execution, and performance of required quality attributes.

QoS logs analyzer: part of the monitoring module that is composed of a

set of processes distributed among each node. These processes collaborate to

diagnose any problems, failures or abnormalities that occur in any application390

or happen in one of the clusters and evaluate a trust score for each node and

16

task running on each node.

The design of process distribution works as follows: the node worker pro-

cesses to monitor the node-specific quality metrics, the required metrics are

passed through the main monitoring module along with their accepted values395

and ranges. The diagnose worker processes the watch of the streaming logs,

checks the metrics values, and detects any out of range or failure values. The

checked metrics values are interpreted, and a trust score, and is generated for

each task and each node. These trust values are sent to the master node pe-

riodically after a specified time interval. Moreover, upon problem detection, a400

worker process sends a notification message to the master node analyzer process.

The later analyses the notification messages coming from all worker processes

and identifies the cause of the problem then sends a general notification mes-

sage to the main monitoring and analyzer agent which resides at the user’s

side. Sending only the trust scores and the notifications upon failures reduces405

the communication overhead so that the monitoring activities will not affect the

performance of the applications and the host clusters. The main monitoring and

analyzer agent is responsible for generating a trust score for each application

and cluster and sending the compiled problem notifications to the automatic

reconfiguration module.410

4.1.4. Cloud Workflow Automatic Reconfiguration and Self-Adaptation

Automatic reconfiguration is the mechanism of taking necessary actions when

the monitoring process reports performance degradations. These violations

might be with the running workflows, the underlying frameworks or the re-

sources to allow automatic self-reconfiguration and maintain the required level415

of QoS. For example, if the monitoring process detects a dramatic performance

degradation, then the automatic reconfiguration module will trigger operations

such as scale up or migrate to preserve the required QoS. Other problems could

be produced due to errors or unexpected system behavior that might require

restarting the container/VM which requires self-adaptation. The responsibility420

of the automatic reconfiguration module could be simple or sophisticated recon-

17

figurations depending on the nature and the urgency of the occurred problem.

The complexity of dynamic and automatic reconfiguration of Big Data work-

flows arises because of its special characteristics are known by its multi-Vs.

Hence, the first challenging issue is to model the QoS and estimate the data425

flow behavior with respect to volume, velocity, and variety and assessing the

processing time and workflow I/O. Second, it is challenging to detect the cause

of QoS abnormalities in heterogeneous frameworks as it can be originated, for

instance, because of resource failure or congestion of network links. Another

challenge is to model the runtime QoS changes of the workflow and construct430

orchestration so that the target QoS is upheld across the different layers of the

orchestration framework.

Our automatic reconfiguration module detects the main cause of the problem

upon receiving all the error occurrences in all applications and clusters from

the primary monitoring module, then issues reconfiguration instructions to the435

corresponding application or cluster. For example, a delay in task completion

and high processing load of the allocated node may trigger an action like moving

a node with higher processing power or lower load depending on availability.

Another example, when detecting a performance degradation with a storage

task, we relocate the task to a node with higher storage capacity. In previous440

work we have developed a web-based application [48] for collecting Big Data

workflow QoS preferences from the user and generating a quality specification

profile, which is used for task and workflow quality-based trust assessment. It

also helps defining preferred threshold values and ranges to be used for quality

degradation decision making. For example, a service degradation or failure445

could be detected when it takes longer than the expected execution time before

completion or it generates an unexpected or invalid output. Moreover, we define

a service failure rate FR as FR = totalNumberOfFailures/t, where t > 0 is

a constant time period. Afterwards, the reconfiguration instructions are sent

back to the application or cluster to be reflected and deployed. The algorithms450

of each of the modules are detailed in the following section.

Automatic reconfiguration module: this module evaluates the status of

18

each workflow and generates reconfiguration decisions to improve the perfor-

mance of each workflow. This module receives and keeps the trust score for

each workflow, the trust score for each cloud provider, and the error messages455

or abnormality notifications. Accordingly, it compares the latest trust score

with the previous trust score, and if high, then nothing will be done. However,

if low, then reconfiguration decisions should be made. Also, upon receiving error

messages, reconfiguration decisions are made.

4.2. Automatic Cloud Workflow Trust Evaluation Model460

Typically, tasks run independently or are tied together in an ad hoc manner.

An orchestration environment, like Kubernetes, link these tasks together in a

loosely coupled fashion [46]. The workflow model fits well for our problem

requirements however, other models might also be explored. The following

detail our monitoring model and Table 2 describes the symbols used.465

Table 2: Symbols used.

P number of tasks in the workflow

m number of clusters allocated for a workflow

r number of nodes in a cluster

s number of containers allocated for a task

j number of QoS attributes requested by the user

n number of violation at time t

Let Monitor (WF , Q) denotes a Monitor request to the global monitor

GM to initiate workflow monitoring based on a given list of QoS attributes.

The Monitor request starts the collection of the deployed workflow QoS logs.

The workflow is modeled as a directed acyclic graph WF (T ,E) where T470

= {tk1, tk2, . . . , tkp} denote tasks to be monitored along with the deploy-

ment configuration which may include one or more clusters. The number of

tasks in the workflow is denoted by p. Each task contributes with a different

19

weight to the overall workflow. We denote the level of importance of a task

towards a workflow by il. This value is given by the data analyst who con-475

structed the workflow composition as IL = {il1, il2, . . . , ilp} , where p is

the number of tasks in the workflow. E = {(tki, tkj) | tki, tkj ∈ T } , is the

set of arcs representing a partial constraint relationship between tasks so that,

∀ (tki, tkj) ∈ WF (i 6= j), and tkj cannot start until tki completes. Let

Clusters = {cl1, cl2, . . . , clm} , where m is the number of clusters allocated480

for a workflow.

A Container is represented as C 〈 cn, tki, nj , clk〉, where:

• cn is a container id number, tki ε WF, a node hosting cn, nj ε Nodes ,

and clk ε Clusters is the cluster that owns the node nj .

• Each task tk is mapped to one or more node(s) in one or more cluster(s)485

and is represented as a tuple tk 〈 tn, {c1, c2, . . . , cs} , st, in, out〉, tn
is the task name/id, and the second parameter is the list of destination

containers allocated for that task. We assume that a task will run in

one container per node. Multiple containers will be destined to multiple

nodes. st is the state of the task (waiting, active, or completed) and in490

and out are the input and the output data set respectively.

• The node nk 〈 specs, lm〉 is a tuple which represents the specification

of the node, including cpu, memory, and a local monitor lm which is

responsible for calculating the trust score of the task and detect QoS

violations.495

• A Cluster clj ε Clusters is modeled as a list of nodes clj = {n0, n1, . . . , nr} ,
where n0 is the master node and ni is a worker node such that i ∈ [1, r].

Q = {q1, q2, . . . , qj} where j is the number of QoS attributes requested by

the user and the weights for each attribute are W = {w1, w2, . . . , wj}.
We also refer to a list of QoS violations as V List(∆t) = {v1, v2, . . . , vn}, at a500

time range/window ∆t. We model the violation by a tuple V 〈C, V type, value, t〉,

20

where here the violation occurred at time t, is associated to a container tuple,

the type of violation, and the value of violation (the abnormal value).

The Local Trust Score LTS is a score representing the level of satisfaction of

all requested QoS attributes in Q according to the respective weights W . The505

LTS is specific to each task running on a specific node. If the task is replicated

on multiple nodes, then the LTS is aggregated as the average of all LTSs for

that task among all containers.

In our model we evaluate the quality of a workflow based on multiple criteria

or quality attributes and different preferences of each of these criteria. Multi-510

Attribute Decision-Making (MADM) [49] is considered a simple, clear, system-

atic, and logical technique, to help decision making by considering a number of

selection attributes and their priorities. They can help to choose the best alter-

native with the set of selection attributes. They are also considered the most

common method used in real, decision-guiding multi-attribute utility measure-515

ments.

LTSt
ijk 〈 tki, nj , clk, qp, Q, W 〉 , is calculated using a MADM algorithm while

Q and W are the required quality performance values collected from worker

node nj in cluster clk for task tki at time t (where t > 0), their weight, and its

contribution towards the trust score respectively. The qp
′
i are the normalized

task performance according to the QoS required value qptarget. This guaran-

tees that the trust score will be evaluated based on its proximity of the value to

the required QoS value specified by the user and SLA which we describe as the

target value (i.e., objective value). Alternatively, the target value could be the

arithmetic mean of the maximum and minimum values in an accepted quality

range qptarget = (qpmin + qpmax)/2.

qp
′
i =





qpi/qptarget, qptarget > qpi

qptaregt/qpi, qptarget < qpi

(1)

The calculation is performed by a local monitor LM j residing in each node as a

continuous function on the closed time interval [0, c]. If we consider an arbitrary

constant c > 0, then the average local trust score LTSt
ijk is represented by the

21

following formula:

LTSijk =
1

c

∫ c

0

LTSt
ijk dt (2)

ALTSik is the aggregated LTS calculated at the master node n0 as the arith-

metic mean of all trust scores collected from all worker nodes in cluster clk for a

task tki at time t as ALTSik(t) = 1/r
∑r

i=1 LTSijk(t), where r is the number

of worker nodes for one task tki deployed in clk. The ALTSik is sent from the520

master node n0 in each cluster clk to the global monitor GM . The following

two scores GTSi and WFTS are calculated at the GM as follows:

GTSi the global trust score, is the average of all trust scores for task tki across

all clusters at time t. GTSi(t) =
∑m

k=1ALTSik/m, where m is the number of

clusters, and t is the time at which the trust scores were collected. The workflow525

trust score at time t is the weighted sum of all GTSi for all composed tasks

according to their importance level ili towards the workflow WF .

WFTS(t) =
∑p

i=1GTSi(t)× ili, where p is the number tasks in a workflow.

A Report is a message that contains: 1) a workflow trust score, 2) list of trust

scores of all composed tasks and 3) a list of QoS violations periodically sent530

from GM to the ReconfigMgr. We model the Report as a tuple:

Report 〈WFTS (t) , {GTS1 (t) , GTS2 (t) . . . GTSm (t)} , {v1, v2, . . . , vn} 〉 .
The Handle (Report) is the process called by the Global Monitor GM to the

ReconfigMgr when a QoS violation is detected during runtime or periodi-

cally as explained earlier.535

The ReconfigMgr processes the Report and reaches an automatic reconfig-

uration decision. The decision function D At time = t, is modeled as follows:

D(WFTSt, V Listt) =





1, if V ! = null

−1, if V = null && WFTSt < WFTSt−1

0, otherwise

(3)

A Decision (NewConfigList { 〈tki, cj , configF ile〉}) message is sent about

each workflow to the concerned party to change the configuration.

22

The NewConfigList includes a list of suggested configurations for one540

or more tasks in the workflow. Each tuple in NewConfigList contains the

task tki, destination container cj , configuration file configF ile, which is a

script containing the new configuration suggested by the ReconfigMgr usu-

ally specified in yaml format, which is a simple commonly-used language for

application configurations that is compatible with many other languages and545

frameworks [50]. It is enhanced for data serialization, configuration settings,

log files, and messaging, which fits our framework requirements. The destina-

tion of this message is the master node of each cluster hosting the container

specified in the NewConfigList.

4.3. Automatic Cloud Workflow Trust Evaluation Algorithms550

In this section, we propose automatic workflow trust evaluation algorithms dur-

ing the pre-deployment, post-deployment, and self-adaptation in case of QoS

requirements violation. The system architecture of our model is shown in Fig-

ure 2 as previously detailed in section 4.1.3.

4.3.1. Pre-deployment Workflow Trust Evaluation555

The services are composed of an optimal set based on trust scores according to

QoS constraints. The trust scores of each service are generated based on histor-

ical QoS logs. Then, we compute the QoS aggregation value of each workflow

path and select the best path that meets the QoS requirements. We use the

MADM algorithm for trust evaluation of each task. Accordingly, the workflow560

tasks are mapped to a specific resource that responds to its QoS requirement.

Mapping the services to the resources can be achieved using similarity matching

as an initial deployment. For example, if the task needs storage, we match it to

a resource with high capacity storage resource, and if it requires high processing,

we match it to a high processing power server.565

4.3.2. Post-deployment Trust Monitoring

Trust monitoring consists of measuring trust values that support the two modes

of monitoring operations of periodic or continuous monitoring. The continuous

23

operation mode requires running the monitoring process as a daemon that logs

the status of the monitored tasks and system. The trust scores are evaluated by570

our monitor module which is comprised of two submodules: the local monitor

(at master node, or worker node) and global monitor. The following describes

the key activities supported by both local and global monitor for the sake of

monitoring:

At the local monitor:575

1. Collect the performance values according to QoS required list for a task

2. Evaluate a trust score for a task

3. Produce the output of a trust score for a task at node i

At the local monitor in master node:

1. Collect trust scores from all local monitors in other nodes for a task.580

2. Calculate the average trust scores to get ATS for a task at cluster k.

3. Output is the ATS for a task at cluster k

At the global monitor:

1. Collect ATS aggregated trust scores from all clusters for a task

2. Calculate the average trust scores to get GTS for a task among all clusters585

and calculates the WFTS for all tasks in a WF according to the task

importance (weight) towards WF.

Algorithm 1 depicts this trust score calculation algorithm.

4.3.3. Automatic Reconfiguration of Workflow Orchestration

Algorithm 2 depicts the automatic workflow orchestration reconfiguration algo-590

rithm. This algorithm analyzes each task violation by checking the root cause

of the violation. For example, it checks if a resource limitation is the cause of

the violation such as an overloaded node, then a message is triggered to add

a new node to the cluster. However, if the cluster cannot be extended, then

a migration message is issued, and the task is allocated to a new cluster (see595

24

Algorithm 1 Trust score calculation algorithm
1: Input:

Tasks //List of Tasks,

QoSList //List of QoS attributes,

weights //Weights of each QoS attribute

2: Output: LTSList //Local Trust Score updated for each Task

3: procedure EvaluateLocalTrustAtWorkerNode(Tasks, QoSList, weights)

4: for t← 1, c do

5: scoresListt ← empty

6: for all tk ∈ Tasks do

7: score← 0

8: for all q ∈ QoSList do

9: score← score + measuredQV alq × weightsq

10: end for

11: scoresListt[tk]← score

12: end for

13: end for

14: for all tk ∈ Tasks do

15: LTSList[tk]← 1
c

∫ c
0
scoresListt[tk] dt

16: end for

17: return LTSList

18: end procedure

19: Output: ALTSList //Aggregated Trust Score (across nodes) for each Task

20: procedure EvaluateAgregatedLocalTrustAtMasterNode

21: for all nodes ∈ Cluster do

22: getLTSListnode

23: for all tk ∈ LTSListnode do

24: ALTSList[tk]← ALTSList[tk] + LTSListnode[tk]

25: end for

26: end for

27: for all tk ∈ Tasks do

28: ALTSList[tk]← ALTS[tk]/nNodes

29: end for

30: return ALTSList

31: end procedure

32: Output: GTSList //Global Trust Score (across clusters) for each Task

33: procedure EvaluateGlobalTrustAtGlobalMonitor

34: for all cluster ∈ Clusters do

35: ALTSListcluster

36: for all tk ∈ ALTSListcluster do

37: GTSList[tk]← GTSList[tk] + ALTSListcluster[tk]

38: end for

39: end for

40: for all tk ∈ Tasks do

41: ALTSList[tk]← ALTS[tk]/nClusters

42: end for

43: return GTSList

44: end procedure
25

Algorithm 2 Automatic reconfiguration of workflow orchestration algorithm

1: Input:

taskV iolations // QoS task violation List,

sysV iolations // QoS system violation List,

GTSTable // GTS for each task in WF

2: Output: NewConfig

3: procedure AutoReconfigAlgorithm(taskV iolations, sysV iolations,

GTSTable)

4: for all tk ∈ taskV iolations do

5: sv ← findNode(sysV iolations)

6: if (sv 6= Ø)

7: svType← violationType(sv)

8: if(svType = “sysOverload′′)

9: newConfig[tk]← addNode(getCluster(sv))

10: else if(svType = “sysOverloadNoExtend′′)

11: newConfig[tk]← migrate(tk)

12: endif

13: else //problem in task

14: newConfig[tk]← scaleUp(tk)

15: endif

16: end for

17: for all tk ∈ GTSTable do

18: avgT ← avg(historyTrust[tk])

19: if(trust(tk) ≤ avgT)

20: newConfig[tk]← findNewDeployment(tk)

21: else //problem in task

22: newConfig[tk]← Ø

23: update(historyTrust[tk], trust(tk))

24: endif

25: end for

26: return newConfig

27: end procedure

26

Table 3). The algorithm also analyzes the new trust scores for all the tasks in

the workflow, and if it detects trust score degradation, then it generates a new

configuration decision.

We have implemented the two algorithms, Algorithm 1 for trust evaluation, and

Algorithm 2 that is responsible for adaptation and reconfiguration actions upon600

QoS degradation based on trust evaluated by Algorithm 1.

Table 3: Workflow monitoring messages.

Message Source Destination Parameters Description

getLTSMsgt Master

node

Worker

node

Q,W, list{taskid} The master node sends this message

to all worker nodes in the cluster to

collect the task trust values according

to the required quality attributes and

their weights passed in the message

parameters.

replyLTSMsgt Worker

node

Master

node

List {<taskid, LTS>},
List{sysViolations}

This message contains a list of all task

trust scores from each worker node

to the master node as a response to

getLTSMsgt message. This message

also contains a list of system viola-

tions, such as CPU overload.

sendALTSMsgt Master

node

GM List {<taskid, ALTS>},
List {<node,

sysViolations>}

This message contains the list of ag-

gregated trust scores for each task

running on this cluster. Also, it con-

tains a list of system violations for

each problematic node.

sendFTSMsg GM AR WF,

list {<taskid, GTS>},
list{sysViolations},
list{taskViolations}

This message is sent from the GM to

AR for each WF and contains the list

of tasks composed in the WF along

with their GTS. Also, it contains the

list of system violations and list of

task violations.

autoReconfig AR taskid,

node, clus-

ter

Reconfig File This message contains all reconfigura-

tion commands issued by the AR and

regarding each task ids in a certain

node and certain cluster.

27

5. Cloud Workflow Monitoring Model

5.1. Characterizing System Elements and State Description

In this section, we model the parameters characterizing the state of each system

component, such as cloud resources including nodes, containers with their speci-605

fications, and workflow, its composed tasks, events, and messages. For workflow

components, we base our trust evaluation on the composed tasks. Each task

trust is evaluated based on multi-dimensional trust specification. We evaluate

a workflow quality base on two dimensions of the quality; the data quality and

the service quality (i.e. the quality of the process handling this data). We610

adopt some of the well-reputed data quality dimensions accepted in the litera-

ture Quality dimension for data that are Timeliness, Accuracy, Completeness,

and Consistency. Moreover, we use some of the common processing quality di-

mensions discussed in the literature such as Capacity, Performance, Response

time, Latency, Throughput, Accuracy, Availability, Robustness, and Scalability.615

Moreover, we need to model the workflow and its constraints so that the moni-

toring system actions take into consideration the workflow status including task

choreography, dataflow, recovery, and task dependencies. For example, if we

have two tasks, T1 and T2. We call T2 dependent on T1 when T2 is invoked

after the T1 response is received or completed.620

We also consider the data flow where the task input and output states are

tracked. For each task T1, we retain information about the parameters, the

data type and format of parameters, and the time expiry and validity of param-

eters. Additionally, recovery actions should be triggered when an error or delay

receiving a response occurs such as T1 terminate, T1 reconfiguration (assign to625

the different cluster), or Ignore error.

5.1.1. Tasks

As described above, a task is modeled as a tuple tk 〈 tn, {c1, c2, . . . , cs} , st, in, out〉
and task dependency is modeled in E = {(tki, tkj) | tki, tkj ∈ T }. In this sec-

tion, we detail the state, input, and output. Figure 3 shows the states of each630

28

Figure 3: Task state machine automata.

task and the related transitions. The state st of a task can be idle, running,

and completed. Idle state is the state of the task before it starts running, a task

is in running state when the previous task is completed, and the input is ready.

However, a task is completed when the output set is ready.

5.1.2. Events635

The event is usually a violation that occurs in a node or to a specific task such as

CPU overload, disk full, increasing task errors, and task overload. We construct

an event as a message sent to the master node with the format:

sendNodeViolationMsg (source: (node, cloud), dest: master, <Type, value,

category>, t).640

Accordingly, the master node compiles a list of all received messages to be sent

to the General Monitor with the format:

sendClusterViolationMsg (source: (cloud), dest: GM, list {<Type, value, category>},
t)

5.1.3. Monitoring Messages Specification645

All the messages used in our workflow monitoring system and their details in-

cluding source, destination, parameters and description are shown in Table 3.

5.2. Cloud Workflow Monitoring and Adaptation State Machine

We used state machines to formalize our monitoring system in order to validate

our system to confirm that it does what is required and satisfy its objectives.650

In addition, representing the system with state machines enables formal verifi-

cation to confirm if we are building the software right and that it conforms to

29

Figure 4: Workflow monitoring and adaptation state machine.

its specifications. We used mode checker for formal verification of our monitor-

ing system to prove the correctness of our software with respect to a certain

formal specification or property, using formal methods. Figure 4 depicts the655

state machine automata of our monitoring and reconfiguration framework. The

following sections describe in detail this system state machine.

5.2.1. Workflow Monitoring

As mentioned above, monitoring consists of collecting the logs and QoS infor-

mation regarding all the entities of interest, such as tasks and resources. It is660

also responsible for updating the trust scores of each task using the collected

logs analysis results. Upon violation detection, a violation message is sent to

the reconfiguration manager. During monitoring, the states of each entity are

updated and kept in the system for further use during the reconfiguration state.

30

5.2.2. Workflow Reconfiguration665

Upon a reconfiguration decision, the AR module decides what new configuration

is suitable for the situation. The following is the description of the possible

changes and the implication of each change regarding the state of the WF, task,

and resources. The AR module first checks the state of the task, according

to the task type (if the task allows scaling during the running state).The task670

status (e.g. completion time) is estimated based on the type of the task. For

example, some tasks’ status is estimated based on the percentage of output

completion, other types of tasks’ status are estimated based on calculation of

execution time, which is based on the input size and allocated resources. If

the task type is scalable, then scale up or down (by applying the change in the675

configuration file and deploy) and update the state of the task accordingly.

Scale up: run additional replications of the task on more nodes to handle the

heavier traffic input, then update the state with the new number of replicas.

Scale down: when unused replicas are detected, then the replicas are deleted,

then update the state with the new number of replicas.680

Reconfigure: change the deployment configuration for the task by changing

the node or cluster assignment according to considerations such as task type,

task state, and task dependency. The task type can be scalable or non-scalable,

and the task state can be waiting, running or complete, and the task dependency

can be dependent on other tasks or other tasks dependent on this task.685

Usually, the type of reconfiguration decision is taken following a QoS viola-

tion. For example, a migration decision is only taken depending on the severity

level of the violation and the state of the task. If there is an issue within the

cluster (e.g., CPU overloaded) and the processing performance is degrading over

time, then the decision is to migrate the task to another cluster having the best690

QoS trust score recently measured. In order to satisfy the self-adaptation fea-

ture during reconfiguration, specifically the migration decision, the state of the

task plays a significant role. In other words, migration should consider the task

and its dependent tasks including all the dependent task list. for simplicity, we

31

do not need to migrate the predecessor tasks. Moreover, all the dependency695

input data should also migrate.

In case the cluster performance is degraded with a rate higher than a certain

threshold, migrating the whole workflow is considered. If the task state is ‘wait-

ing,’ then the migration is straightforward, and the task along with its input

dataset is migrated to the new destination (e.g., node). However, if the task700

state is ‘completed,’ then migration is performed for the remaining dependent

tasks in the workflow along with their input dataset. Nevertheless, when the

task state is ‘running,’, many issues should be handled so the workflow required

QoS is not affected. On the one hand, if the violation type is causing a service

interruption, then we restart the task from the beginning at the new destina-705

tion by resetting its state to ‘waiting.’ On the other hand, deciding whether

to move the task immediately or wait until it completes depends on the task

completion status. The task completion status can be measured by calculating

the percentage of generated output data against the expected output data. If

the percentage of completion of a task is higher than a certain threshold, then710

we wait until the task is ‘completed’ and migrate the remaining dependent tasks

in the workflow. Otherwise, the task is considered at the beginning stage, and

it is reset to ‘waiting’ state, then migrated to the new destination.

5.3. Quality Metrics

The following in Table 4 are the common metrics and thresholds used to help in715

adaptation decision making and reconfiguration actions. Such threshold values

are based on the application domain, workflow type, and user requirements.

These values are reevaluated for every workflow according to its application

domain and nature.

The priority of each of the above metrics varies according to the task QoS720

requirements. We define two classes of priority, highPriority and lowPriority.

Furthermore, we define two violation alert types, severe and moderate as:

severeV iolationAlert(x)←
(lowPriority(x) ∧ EX lowPriority(x)) ∨ highPriority(x)

32

moderateV iolationAlert(x)← lowPriority(x) ∧ ¬ highV iolationAlert (x)725

The reconfiguration decision is issued when a violation alert is received and

includes either a high or low violation:

reconfig(x)← highV iolationAlert(x) ∨ lowV iolationAlert(x)

Table 4: Quality violations.

Quality Violation Threshold

abnormalCPUUtilization (x) 80%

abnormalHighMemUtilization (x) 80%

abnormalLowMemUtilization (x) 15%

abnormalNetworkAvailability (x) 10%

abnormalDiskAvail(x) 80%

5.4. Validation-based Model Checker

The following describes our monitoring system where an administrator con-730

figures and initiates the monitoring process after workflow deployment. Once

the system initializes the monitoring process, the QoS logs are generated, and

the following actions are sequentially triggered when task abnormality is de-

tected: Analyze QoS Info, Store QoS Logs, Detect Task problem, Reconfigure

Task, Change Deployment, and Generate Report. Figure 4 detailed in section735

5.2, describes the finite state machine of the workflow monitoring and adapta-

tion system where a unique name identifies each state and connected to other

states through applicable transactions. The transactions are labeled with names

corresponding to the actions.

According to the type of detected problem, the system takes an appropriate740

action to maintain the required workflow QoS level. In the case of detecting an

issue with task execution, such as low task response time is encountered then a

scale up state is initiated where more containers are allocated for that task.

33

To formalize our monitoring system, we assume that our system is composed of

a set745

M = {1, 2, . . . , n} , of n services interacting together. Each service i ε M is

defined by:

1. A set of LSi finite local states as shown in Figure 4 where start monitoring,

analyze QoS info, store QoS info, and detect task problem are some of the

system local states.750

2. A set of LAi of finite local actions as shown in Figure 4, for instance,

send generate logs, send task qos results, and send generate report are some

of the system local actions.

3. A local protocol Pri : LSi → 2LAi is a function that describes the set

of allowable actions at a given local state. For example, the following is one755

protocol depicted from Figure 4. Prn (analyzeQoSInfo) ={send cluster qos results,

send task qos results}.

At a given time, the configuration of all services in the system is characterized

as a global state S of n elements represented as gs = {e1, e2, . . . , en}, where

each element ei ε LSi denotes a local state of the service i. Hence, the set760

of all global states GS = {LS1 X LS2 X . . .X LSn} is the Cartesian product

of all the local states of n services. The global transition function is defined

as T GS X LA → GS, here LA = {LA1 X LA2 X . . .X LAn}. The local

transition function is defined as Ti LSi X LAi → LSi.

Definition (Model) Our model is represented as a non-deterministic Buchi765

automaton as a quintuple MDL = (G, TR, I, F, v) where:

1. G ⊆ LS1 X LS2 X . . .X LSn is a finite set of global states of the system.

2. TR ⊆ G X G is a transition relation defined by (g, g) ε TR if there exists

a joint action (a1, a2, . . . , an) ε LA such that TR (g, a1, . . . , an) = g′.

ai is called a joint action and is defined as a tuple of actions.770

3. I ⊆ G is a set of initial global states of the system.

4. F ⊆ G is a set of final global states of the system.

34

5. V : AP → 2G is the valuation function where AP is a finite set of atomic

propositions.

Then MDL, is a Deterministic Buchi Automaton (DBA) if and only if ∀ q ∈775

GS and a ∈ i it holds that |TR (q, a)| = 1.

Having this formal representation of the system, allows easy implementation

using the symbolic model checker, MCMAS [51]. The MCMAS tool is used for

automatic verification of the correctness of the system expressed in Computation

Tree Logic (CTL) against the reachability, liveness and safety properties [52].780

It helps in checking and confirming that our model meets its specification and

expectations exhaustively and automatically.

Definition (Syntax). The CTL syntax is represented using the following

grammar rules:

Φ ::= p | ¬ Φ | Φ ∨ Φ | EX Φ | EG Φ | E (Φ U Φ) where the atomic785

proposition p ε AP; E is the existential quantifier on paths, and X, G, and U are

path modal connective standing for “next”, “globally”, and “until”, respectively.

The Boolean connectives ¬ and ∨ are defined and read as “not”, and “or”

respectively.

Temporal properties:790

The correctness of our system model can be checked using CTL by demonstrat-

ing the following significant properties:

1. Reachability property: given a certain state, is there a computation

sequences to reach that state from the initial state? The used reachability

properties are defined as:

Φ1 = EFDetect App Abnormality (4)

Φ2 = EFChange Deployment (5)

Φ3 = EFSave QoS Logs (6)

35

The formulas φ1, φ2, and φ3 check whether or not there exists a path to

reach the Detect App Abnormality state, Change Deployment state, and

Save QoS Logs state respectively.

Φ4 = E(¬Analyze QoS U (Analyze QoS ∧ EF (Collect QoS)) (7)

The formula φ4 represents that there exists a path where the Analyze QoS

process will not start analyzing QoS data until the QoS data is collected.

2. Liveness property: this property reflects that “something good will

eventually happen.” For example, in all paths globally if the System Ana-

lyze QoS detects an abnormality, then there is a path in its future through

which the system will deploy the change for automatic reconfiguration

thereby enhancing the quality of the orchestration.

Φ5 = AG(Detect App Abnormality → EF Change Deployment) (8)

3. Safety property: this property ensures that “something bad never hap-

pens.” An example of a bad situation is when the user enters correctly

the required information to configure the system, but the latter never

initializes the monitoring cycle.

Φ6 = AG ¬ (Config Monitoring (Correct Info) ∧
EF ¬App Start Monitoring)

(9)

6. Experiments and Evaluation795

In addition, to the above monitoring system validation using model checker, we

describe in this section the experimental evaluation we conducted to assess our

workflow monitoring model. Therefore, we first evaluate the system overhead

then we evaluate three adaptions schemes we propose to dynamically reconfig-

ure the workflow during its execution to respond to any cloud services perfor-800

mance degradation. We first, describe the environment set-up we configured

and the key modules implemented to support monitoring and adaptation. We

then depict the workflow we developed for evaluation purposes and the dataset

36

Figure 5: System implementation architecture.

we chose to execute our workflow. A set of scenarios were carefully chosen to

evaluate workflow monitoring and the different adaptation schemes we imple-805

mented. Finally, we report and discuss the results we have obtained from the

experimentations.

6.1. Environment Setup

Figure 5 describes the environment we established to execute, monitor, and

dynamically adapt our workflow to respond to different performance degrada-810

tion situations. In the following, we briefly describe each component of our

experimentation configuration:

Docker Swam Cluster. The Docker swarm cluster consisted of one master

node and four worker nodes. We used Oracle Virtual Box driver to create the

Docker nodes. These Swarm nodes can run any operating system and be man-815

aged on any cloud infrastructure. The workflow shown in Figure 6 is deployed

on the Swarm cluster, and a Master node performs the orchestration and clus-

ter management required to maintain the desired state of the swarm. Worker

nodes receive and execute tasks dispatched from the manager/master node. To

37

deploy an application to a swarm, a service definition is submitted to a man-820

ager node, and the manager node dispatches units of work, called tasks, to the

worker nodes [53].

Swarmprom Cluster monitoring tool. This is a monitoring starter toolkit

for Docker swarm services [54] equipped with Prometheus, Grafana, cAdvisor,

Node Exporter, Alert Manager, and Unsee. These tools serve in providing con-825

tinuous system performance measurements that are collected and analyzed by

our monitoring system. Swarmprom Grafana [55] is configured with two dash-

boards and Prometheus [56] as the default data source. Monitoring parameters

include CPU, memory, storage, and nodes, and Prometheus rules were used to

monitor these parameters. Alert manager uses Slack, which is a cloud-based830

team collaboration tools and services. It brings team’s communication together

where conversations are organized and made accessible [57]. The Swarmprom

Alert Manager can direct alerts through the Slack webhook APIs that is posted

to the specific channels and alerts the concerned Managers and Service personnel

who are on the move.835

Adaptation Decision Module: This implements different reconfiguration

decisions and is developed in the Perl language. An agent runs as a background

process, which constantly monitors the CPU and memory status of the Docker

services. Based on rules, the adaptation decision module inspects the Docker

services and performs the necessary automatic reconfiguration of nodes in the840

cluster, such as scale up or scale down the services.

Visualization Module. This implements a dashboard to visualize in real-time

monitoring information, including resource usage of both Swarm nodes and the

services running on these nodes. It also integrates some visualization features,

such as Zoom-in and out, and filtering. Graffana is an open source monitoring845

dashboard implemented with Docker.

6.2. Workflow and Dataset Description

In this section, we describe the dataset we used in our workflow as well as the

workflow implementation and its composing tasks.

38

Figure 6: Health monitoring workflow description.

6.2.1. Dataset850

The dataset we used to implement our workflow was retrieved from the Multi-

parameter Intelligent Monitoring in Intensive Care III (MIMICIII) database

[58]. The dataset incorporates sixty thousand admissions of patients who stayed

in critical care units Medical Center between 2001 and 2012. The database is

available via PhysioNet, a web-based data resource that contains various physi-855

ological records. The available clinical information includes patient demograph-

ics, vital sign measurements, hospital admissions, laboratory tests, medications,

fluid intake records, and out-of-hospital mortality. We chose this dataset as it

conforms with the characteristics of Big Data as it depicts high volume, and

velocity, and veracity (diverse). Therefore, it can be considered as a very rep-860

resentative dataset that feeds the different tasks and processes of the workflow.

6.2.2. Workflow Description

Figure 6 describes a health monitoring workflow we developed using the MIMICIII

dataset to evaluate different aspects of an automatic reconfiguration workflow

39

Figure 7: Monitoring time line.

scheme we proposed in this section. The workflow is deployed on the Swarm865

cluster with PostgreSQL installed and the MIMIC database tables loaded au-

tomatically [59] to perform the service tasks as outlined in the workflow. It

consists of a set of tasks some of which are sequential and others parallel. The

sequential tasks include retrieving data from the MIMIC database and con-

ducting data processing, while the parallel tasks include training and prediction870

tasks.

6.3. System Overhead Measurement

6.3.1. Latency Overhead

In this section we describe the latency of our framework from data collection to

making a decision. For example, in the following scenario described in Figure875

7.

T1 is the violation detection time (e.g. cpu utilization overload) T2 is the

reconfiguration action start (add node) T3 is the reconfiguration action complete

(node is ready) We calculate Latency = T3 − T1. Adding a new node is

immediate it takes few milliseconds. The mean latency is measured to 4 ms.880

6.3.2. Communication Overhead

We estimate the communication overhead by measuring the size of the ex-

changed messages in the monitoring and the adaptation modules in bytes as

follows:

Size(getLTSMsg) = 1 + number of quality attributes + number of tasks

(10)

40

Figure 8: Communication overhead.

Size(replyLTSMsg) = (size(LTS)× number of tasks) + number of violations

(11)

, where size (LTS) is 2 bytes.

size(AllRepMsg) = Size(replyLTSMsg) × number of nodes (12)

Figure 8 depicts that the communication overhead is proportional to both the

number of nodes in the cluster and the number of selected quality attributes

used for trust measurement. With 100 nodes, 50 quality attributes, and 100885

tasks in a workflow, the calculated overall communication overhead was nearly

negligible (25 Kbytes). This proves that our monitoring and reconfiguration

framework is lightweight as it does not incur a heavy load on the workflow nor

the cloud resources handling it.

From our experiment results we can conclude that our framework is effectively890

responding to dynamic cloud environment changes when compared to non adap-

tation scenarios. In our decision making we take into consideration two sources

41

of information: past experience which is used for prediction of resource status

and the current monitoring information.

6.4. Cloud Workflow Adaptation Strategies895

We use the same workflow with different data sizes and processing complexity.

Our baseline for comparison is workflow without adaptation or reconfiguration,

measuring throughput, response time, CPU utilization, memory utilization, and

execution time.

6.4.1. Scale-up (Client Gain)900

In this scenario, we overload some nodes with extra processing tasks to affect the

QoS of our workflow under investigation. We check the effect of our proposed

framework including the monitoring and the automatic reconfigure modules on

the QoS performance of the workflow. First the monitoring module will detect

that the currently running tasks have lower performance due to overloading905

of assigned nodes. Then, it forwards a message to the AR modules which in

turn will issue a scale-up command message to the specific task at the assigned

cluster (node). Scale-up will add more nodes to process the task, which will

result in improving task performance.

6.4.2. Scale-down (Provider Gain)910

Scaling down is performed when resources are not utilized in an optimized man-

ner. This is done when the monitoring module detects low utilized nodes’ CPU,

which requires deletion of under loaded nodes from the cluster. In this scenario,

we add an unnecessary number of nodes in the cluster handling the task and

check the performance of the cluster before and after the scale-down.915

6.4.3. Migration (Client and Provider Gain)

Workflow migration is usually needed if the cluster is overloaded with no extra

resources available to be added to the cluster. In this scenario, we overload

all the nodes of a cluster until they become slow in processing workflows as

required, this will necessitate a migration of the workflow to a new data cluster.920

42

We observe the performance of the workflow and the cluster before and after

the migration is performed.

6.5. Results and Discussion

In our experiments, we run the aforementioned workflow several times through

which we use different dataset sizes and processing resource capacity. We apply925

our adaptation strategies to the workflow execution and compare the perfor-

mance against a baseline scenario with no adaptation scheme, such as CPU

utilization, memory usage, and trust scores. We run our monitoring system

throughout the workflow execution. In our experiments we have collected and

inspected data samples from a set of samples, that constitute a representative930

selection from all data measurements. We took random sample from a popula-

tion to compute the mean and to find the approximation of mean of a sample.

Additionally, we built confidence interval to see how well the mean estimates

the underlying population which give the range of values within which there is a

specified probability that the value of a parameter lies in it. In our experiments935

we choose to use 95% confidence interval. Here every point on the graph is

an average of 10 measurements taken in 30 seconds duration. For example, for

memory usage in scenario 2, most of the taken values within the 95% confidence

intervals were overlapping, which verifies that our experimentation was rightly

done. We used 10 measurements for each point on the graphs representing all940

our experiments. Additionally, in all our experiments, every point on the graph

is an average of the measurements taken in 30 seconds duration. We considered

the following default simulation parameters:

• Node: Each node in our cluster has an Intel CoreTM i7-3770K CPU @

3.40GHz with Turbo Boast, 32GB of DDR3 RAM, 1TB hard drive, and945

64-bit operating system

• Number of Clusters: 1 - 3

• Number of nodes within each cluster: 1 - 6

43

Figure 9: CPU utilization shares.

Scenario 1: In this scenario, we evaluate the CPU utilization of a workflow

among the nodes in the cluster. Figure 9 shows that CPU utilization increases950

as the workflow services are executed. However, the CPU utilization reaches

significantly high values when the number of services increases. Thus, our mon-

itoring system detects this issue and alerts the reconfiguration system which

decides to add a new node and, accordingly, the load on the existing nodes is

relaxed.955

Scenario 2: In this scenario, we evaluate the workflow memory usage for one

of the nodes in the cluster. After adding a new node to the cluster resulting

from an adaptation decision, the overall memory usage is significantly lower

when compared to the usage in the case of no adaptation applied despite the

increase in the size of the dataset as depicted in Figure 10.960

Scenario 3: In this scenario, we monitor the CPU utilization and the memory

usage of each task in the workflow. Whenever the CPU and memory perfor-

mance is degraded, the reconfiguration system suggests adding resources to the

cluster such as a new node in order to enhance the overall performance. Figure

11 shows some examples of tasks’ memory usage and CPU utilization before965

and after adding a new node during which the dataset size increase overtime.

44

Figure 10: Node memory usage.

Figure 11: Service CPU utilization and memory usage.

45

Figure 12: Service trust (1-step and 2-step adaptation).

The figure clearly shows the enhanced performance after adding an extra node.

Scenario 4: In this scenario, we compute different service trust scores for pro-

cessing and database services. Figure 12 shows examples of service trust scores

evaluated over time during which the dataset size is increased. The trust score970

decreases as the data size increases till a threshold is reached and a new node

is added to the cluster. The two upper figures of Figure 12 shows one step

adaptation, and the lower two figures depict two-step adaptation. The more

the data increases, the more nodes are required to process this data, and the

trust scores increase after adaptation (i.e., adding extra nodes).975

Scenario 5: In this scenario, we use scaled-down adaptation were we delete

selected under loaded nodes when the CPU or memory utilization degrades.

Figure 13 shows an example of a service resource utilization versus the number

of nodes. We start at six nodes, at which we detect a low memory usage and

CPU utilization per service. The system decides to delete two nodes which980

increases the utilization to an accepted level of about 25%. The figure also

46

Figure 13: Scale down resources due to low utilization.

shows low Trust scores for some services and the overall workflow when we use

an unnecessarily large number of nodes. The trust score increases when the

utilization improves after adaptation (i.e., node deletion).

Scenario 6: In this scenario, we reduce the data size to reach low resources985

utilization. The monitoring system detects the low utilization quality violation

and issues a node deletion adaptation decision. Figure 14 shows that after a

reduction of data size, memory usage and CPU utilization degrade and eventu-

ally the trust score decreases. After deleting the node, the trust increases again

as the resource utilization improves.990

Scenario 7: In this scenario, we perform a two-stage up-scale by adding a

node at each stage. In the first stage, we use smaller dataset sizes, and we

incremented it gradually. When the task CPU utilization and memory usage

increase above a threshold, a new node is added to the cluster. In the second

stage, we further gradually increase the dataset size until the monitored QoS995

attributes increase beyond the required threshold, and then another node is

47

Figure 14: Scale down resources due to data size reduction.

Figure 15: Two-stage resource upscale (node addition).

48

Figure 16: Total execution time.

added. The results show an improvement of the performance after adding a

node as shown in Figure 15. For some of the monitored services, the second

stage adaptation does not reduce the CPU utilization but maintains a good

performance level to compensate for the dataset size increase and prevents the1000

service performance degradation. The figure also shows that our adaptation

mechanism displays better QoS performance levels in comparison to the baseline

of no adaptation service performance.

Scenario 8: In this scenario, we perform multi-fold adaptation to optimize the

total workflow execution time and CPU utilization. We monitor the aforemen-1005

tioned quality attributes and perform multiple node additions and adaptation

actions until we reach the required quality level. Figure 16 shows a high CPU

utilization level which triggers an adaptation action of adding a new node. How-

ever, the second monitoring cycle detected a quality violation and thus more

nodes are added until we reach an adequate CPU Utilization. Adding nodes1010

revealed an improvement of the total execution time as shown in Figure 16.

Scenario 9: In this scenario, we evaluate the migration adaptation decision.

The currently used cloud cluster has limited resources and shows no possibility

of further resource addition. Upon a quality degradation detection, in this case,

49

Figure 17: Total execution time and CPU utilization after migration.

CPU utilization, the reconfiguration manager reacts with a decision to migrate1015

the workflow to another selected cluster offering more resources that can fulfill

the requirements of the workflow under investigation. For simplicity we decided

to migrate the full workflow to another cloud since at a certain data size (6000

rows), the monitoring module detects an unaccepted degradation of performance

while there are no more cloud resources to accommodate the increase in data1020

size, the workflow along with its dataset is moved to another cloud. The results

show an average of 11.5% improvement of the total workflow execution time

and a significant enhancement of CPU utilization after migration for different

sizes of the dataset as shown in Figure 17.

6.6. Overall Discussion1025

In this section, we discuss and evaluate our experimental results, which validated

our monitoring and reconfiguration model by adopting the following strategies:

1) overload the system and monitor the workflow and cloud resources, and 2)

50

underload the system and monitor the workflow and cloud resources. After that

we test the reaction of the system and its effect on quality. Our objective is to1030

keep the quality performance within the user’s required ranges and the accepted

trust scores.

Results show that our monitoring system detects the violation triggered

when the quality attribute performance goes out the accepted or required range.

This is reported to the automatic reconfiguration system which in turn issues1035

the appropriate action to keep the required quality level.

In scenarios 1 through 4, we overload the system, monitored the CPU uti-

lization, memory usage, and trust scores, and detected the quality violation.

In all scenarios, the possible reconfiguration actions, such as adding new nodes

at different stages, confirmed the improvement of the overall performance. In1040

scenarios 5 through 6, we underload the system to detect lower resource utiliza-

tion; then the reconfiguration manager would deallocate nodes as expected and

accordingly improve the resource utilization.

We also tested the workflow migration and its effect on total time execution,

and the results showed a significant improvement.1045

In terms of scalability of cloud resources, our experimenta-tion setup in-

cluded 6 nodes which we judged sufficient to evaluate our proposed adapta-

tion strategies. However, this setup can scale with more resources and nodes

whenever the workflow complexity increases, and its processing and analytics

requirements are crucial.1050

7. Conclusion

Provision of Cloud workflows QoS during execution necessitates monitoring and

adaptation. The complexity of this process arises because of the dynamic na-

ture of cloud resources and services, the variety of resources provisioning, and

the variation of the workflow contexts and requirements. In this section, we1055

proposed a trust-based model to support monitoring and adaptation of cloud

workflows to guarantee a required level of QoS. This model handled the dy-

51

namic nature of cloud resources and services and coped with the complexity of

workflow monitoring and adaptation. The proposed model supported workflow

self-reconfiguration and self-adaption. Workflow reconfiguration is triggered to1060

respond to performance violation detection after real-time monitoring of cloud

resources. To capture different dynamic properties of the workflow and the cloud

execution environment, we formalized the cloud resource orchestration using a

state machine and we validated it using model checker.

We conducted a series of experiments to evaluate our workflow monitoring,1065

and adaptation using various monitoring and adaptation scenarios executed over

a cloud cluster. The workflow is implemented and deployed over a Docker clus-

ter. It fulfills a set of health monitoring processes and datasets where resource

shortage is contingent to workflow performance degradation. The results we

obtained from these experiments proved that our automated workflow orches-1070

tration model is self-adapting, self-configuring and reacts efficiently to various

cloud environment changes and adapt accordingly while supporting a high level

of workflow QoS.

As future work, we will use the prediction of resource shortage to guarantee

QoS prior to violation. This will strengthen our model to benefit from both real1075

monitoring and prediction to proactively react efficiently to performance degra-

dations and resource shortage. We are also currently extending our model while

considering more applications to be tested using our framework and provide

more performance evaluation scenarios.

References1080

[1] D. Weerasiri, Configuration and orchestration techniques for federated

cloud resources, Ph.D. thesis, The University of New South Wales (2016).

[2] A. L. Lemos, F. Daniel, B. Benatallah, Web service composition: a survey

of techniques and tools, ACM Computing Surveys (CSUR) 48 (3) (2016)

33.1085

[3] deltacloud, http://deltacloud.apache.org, accessed: 2018-05-01.

52

[4] Apache libcloud, http://libcloud.apache.org, accessed: 2018-05-01.

[5] jclouds, http://www.jclouds.org, accessed: 2018-05-01.

[6] openstack, http://www.openstack.org, accessed: 2018-05-01.

[7] B. Yu, M. P. Singh, An evidential model of distributed reputation man-1090

agement, in: Proceedings of the first international joint conference on Au-

tonomous Agents and Multiagent Systems: Part 1, ACM, 2002, pp. 294–

301.

[8] X. Li, W. Hu, T. Ding, R. Ruiz, Trust constrained workflow scheduling in

cloud computing, in: Systems, Man, and Cybernetics (SMC), 2017 IEEE1095

International Conference on, IEEE, 2017, pp. 164–169.

[9] D. Bernstein, D. Vij, Intercloud security considerations, in: Cloud Comput-

ing Technology and Science (CloudCom), 2010 IEEE Second International

Conference on, IEEE, 2010, pp. 537–544.

[10] J. Abawajy, Determining service trustworthiness in intercloud computing1100

environments, in: Pervasive Systems, Algorithms, and Networks (ISPAN),

2009 10th International Symposium on, IEEE, 2009, pp. 784–788.

[11] K. Keahey, M. Tsugawa, A. Matsunaga, J. Fortes, Sky computing, IEEE

Internet Computing 13 (5) (2009) 43–51.

[12] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, M. Morrow, Blueprint1105

for the intercloud–protocols and formats for cloud computing. internet and

web applications and services, 2009. iciw’09, in: Fourth International Con-

ference, 2009, pp. 1–3.

[13] A. N. Toosi, R. N. Calheiros, R. Buyya, Interconnected cloud computing

environments: Challenges, taxonomy, and survey, ACM Computing Sur-1110

veys (CSUR) 47 (1) (2014) 7.

53

[14] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, R. Ranjan, A tax-

onomy and survey of cloud resource orchestration techniques, ACM Com-

puting Surveys (CSUR) 50 (2) (2017) 26.

[15] W. Barth, Nagios: System and network monitoring, No Starch Press, 2008.1115

[16] P. Zadrozny, R. Kodali, Big Data Analytics Using Splunk: Deriving Oper-

ational Intelligence from Social Media, Machine Data, Existing Data Ware-

houses, and Other Real-Time Streaming Sources, Apress, 2013.

[17] Ganglia monitoring system, http://ganglia.sourceforge.net/, ac-

cessed: 2018-04-01.1120

[18] Apache chukwa, http://chukwa.apache.org/, accessed: 2018-04-01.

[19] Sematext, https://sematext.com/, accessed: 2018-04-01.

[20] Sequenceiq, http://sequenceiq.com/, accessed: 2018-04-01.

[21] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. U.

Khan, A. Guabtni, V. Bhatnagar, An overview of the commercial cloud1125

monitoring tools: research dimensions, design issues, and state-of-the-art,

Computing 97 (4) (2015) 357–377.

[22] K. Alhamazani, R. Ranjan, P. P. Jayaraman, K. Mitra, F. Rabhi, D. Geor-

gakopoulos, L. Wang, Cross-layer multi-cloud real-time application qos

monitoring and benchmarking as-a-service framework, IEEE Transactions1130

on Cloud Computing.

[23] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L. M.

Vaquero, K. Nagin, B. Rochwerger, Monitoring service clouds in the future

internet., in: Future Internet Assembly, Valencia, Spain, 2010, pp. 115–126.

[24] L. Romano, D. De Mari, Z. Jerzak, C. Fetzer, A novel approach to qos1135

monitoring in the cloud, in: Data Compression, Communications and Pro-

cessing (CCP), 2011 First International Conference on, IEEE, 2011, pp.

45–51.

54

[25] S. A. De Chaves, R. B. Uriarte, C. B. Westphall, Toward an architecture for

monitoring private clouds, IEEE Communications Magazine 49 (12) (2011)1140

130–137.

[26] R. Ranjan, S. Garg, A. R. Khoskbar, E. Solaiman, P. James, D. Geor-

gakopoulos, Orchestrating bigdata analysis workflows, IEEE Cloud Com-

puting 4 (3) (2017) 20–28.

[27] Yarn, https://yarnpkg.com/en/, accessed: 2018-04-01.1145

[28] Apache mesos, http://mesos.apache.org/, accessed: 2018-04-01.

[29] Amazon emr, https://aws.amazon.com/emr/, accessed: 2018-04-01.

[30] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin,

Hadoopdb: an architectural hybrid of mapreduce and dbms technologies

for analytical workloads, Proceedings of the VLDB Endowment 2 (1) (2009)1150

922–933.

[31] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Inte-

grating scale out and fault tolerance in stream processing using operator

state management, in: Proceedings of the 2013 ACM SIGMOD interna-

tional conference on Management of data, ACM, 2013, pp. 725–736.1155

[32] A. Castiglione, M. Gribaudo, M. Iacono, F. Palmieri, Exploiting mean field

analysis to model performances of big data architectures, Future Genera-

tion Computer Systems 37 (2014) 203–211.

[33] D. Bruneo, F. Longo, R. Ghosh, M. Scarpa, A. Puliafito, K. S. Trivedi,

Analytical modeling of reactive autonomic management techniques in iaas1160

clouds, in: Cloud Computing (CLOUD), 2015 IEEE 8th International Con-

ference on, IEEE, 2015, pp. 797–804.

[34] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, H. Chang,

Qos-aware middleware for web services composition, IEEE Transactions on

software engineering 30 (5) (2004) 311–327.1165

55

[35] A. F. M. Hani, I. V. Paputungan, M. F. Hassan, Renegotiation in service

level agreement management for a cloud-based system, ACM Computing

Surveys (CSUR) 47 (3) (2015) 51.

[36] H. Kim, M. Parashar, Cometcloud: An autonomic cloud engine, Cloud

Computing: Principles and Paradigms (2011) 275–297.1170

[37] A. Nasridinov, J.-Y. Byun, Y.-H. Park, A qos-aware performance prediction

for self-healing web service composition, in: Cloud and Green Computing

(CGC), 2012 Second International Conference on, IEEE, 2012, pp. 799–803.

[38] S. Schulte, C. Janiesch, S. Venugopal, I. Weber, P. Hoenisch, Elastic busi-

ness process management: State of the art and open challenges for bpm in1175

the cloud, Future Generation Computer Systems 46 (2015) 36–50.

[39] S. Singh, I. Chana, Qos-aware autonomic resource management in cloud

computing: a systematic review, ACM Computing Surveys (CSUR) 48 (3)

(2016) 42.

[40] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, E. Turrini, Qos-aware1180

clouds, in: Cloud Computing (CLOUD), 2010 IEEE 3rd International Con-

ference on, IEEE, 2010, pp. 321–328.

[41] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance

interference effects for qos-aware clouds, in: Proceedings of the 5th Euro-

pean conference on Computer systems, ACM, 2010, pp. 237–250.1185

[42] X. Li, K. Li, X. Pang, Y. Wang, An orchestration based cloud auto-healing

service framework, in: Edge Computing (EDGE), 2017 IEEE International

Conference on, IEEE, 2017, pp. 190–193.

[43] S. Nepal, Z. Malik, A. Bouguettaya, Reputation propagation in composite

services, in: Web Services, 2009. ICWS 2009. IEEE International Confer-1190

ence on, IEEE, 2009, pp. 295–302.

56

[44] L. Qu, Y. Wang, M. A. Orgun, L. Liu, H. Liu, A. Bouguettaya, Cccloud:

Context-aware and credible cloud service selection based on subjective as-

sessment and objective assessment, IEEE Transactions on Services Com-

puting 8 (3) (2015) 369–383.1195

[45] J. Huang, G. Liu, Q. Duan, Y. Yan, Qos-aware service composition for con-

verged network-cloud service provisioning, in: Services Computing (SCC),

2014 IEEE International Conference on, IEEE, 2014, pp. 67–74.

[46] Tools for monitoring compute, storage, and network resources,

https://kubernetes.io/docs/tasks/debug-application-cluster/1200

resource-usage-monitoring/, accessed: 2018-05-01.

[47] H. T. E. Kassabi, M. A. Serhani, R. Dssouli, B. Benatallah, A multi-

dimensional trust model for processing big data over competing clouds,

IEEE Access 6 (2018) 39989–40007. doi:10.1109/ACCESS.2018.2856623.

[48] M. A. Serhani, H. A. Kassabi, I. Taleb, Towards an Efficient Federated1205

Cloud Service Selection to Support Workflow Big Data Requirements, Ad-

vances in Science, Technology and Engineering Systems Journal 3 (5) (2018)

235–247. doi:10.25046/aj030529.

[49] A. Adriyendi, Multi-attribute decision making using simple additive weight-

ing and weighted product in food choice, International Journal of Informa-1210

tion Engineering and Electronic Business 6 (2015) 8–14.

[50] Yet another markup language (yaml) 1.0, http://yaml.org/spec/

history/2001-12-10.html, accessed: 2018-05-01 (2001).

[51] A. Lomuscio, H. Qu, F. Raimondi, Mcmas: A model checker for the ver-

ification of multi-agent systems, in: International conference on computer1215

aided verification, Springer, 2009, pp. 682–688.

[52] E. M. Clarke, O. Grumberg, D. Peled, Model checking, MIT press, 1999.

57

[53] Swarm mode key concepts, docker doc, https://docs.docker.com/

engine/swarm/key-concepts/, accessed: 2018-05-01 (2017).

[54] S. Prodan, Docker swarm instrumentation with1220

prometheus, https://stefanprodan.com/2017/

docker-swarm-instrumentation-with-prometheus/, accessed: 2018-05-

01.

[55] Grafana - the open platform for analytics and monitoring, https://

grafana.com/, accessed: 2018-05-01 (2017).1225

[56] Prometheus - monitoring system & time series database, https://

prometheus.io/, accessed: 2018-05-01 (2017).

[57] Slack features, https://slack.com/features, accessed: 2018-05-01

(2017).

[58] The mimic-iii clinical database, https://www.physionet.org/1230

physiobank/database/mimic3cdb/, accessed: 2018-05-01 (2017).

[59] Mit-lcp/mimic-code, https://github.com/MIT-LCP/mimic-code/tree/

master/buildmimic/docker, accessed: 2018-05-01 (2017).

58

Author’s Biographies

HADEEL T. ELKASSABI received the Bachelor of Science degree in Computer Science from The
American University in Cairo in 1996. She received the M.S degrees in Computer Science from Carleton
University, Ottawa in 2003. She is a candidate Ph. D. Student at the Concordia Institute for Information
Systems Engineering (CIISE), Concordia University. Her current interest areas are “Big Data”, “Cloud
Computing”, “Trust Modeling” and “Data Quality”.

DR. M. ADEL SERHANI is currently an Associate Professor, College of Information Technology, U.A.E
University, Al Ain, and U.A.E. He is also an Adjunct faculty in CIISE, Concordia University, Canada. He
holds a Ph.D. in Computer Engineering from Concordia University in 2006, and MSc. in Software
Engineering from University of Montreal, Canada in 2002. His research interests include: Cloud for data
intensive e-health applications, and services; SLA enforcement in Cloud Data centers, and Big data value
chain, Cloud federation and monitoring, Non-invasive Smart health monitoring; management of
communities of Web services; and Web services applications and security. He has a large experience earned
throughout his involvement and management of different R&D projects. He served on several organizing
and Technical Program Committees and he was the program Co-chair of the IEEE conference on
Innovations in Information Technology (IIT´13), Chair of IEEE Workshop on Web service (IWCMC´13),
Chair of IEEE workshop on Web, Mobile, and Cloud Services (IWCMC´12), and Co-chair of International
Workshop on Wireless Sensor Networks and their Applications (NDT´12). He has published around 90
refereed publications including conferences, journals, a book, and book chapters.

DR. RACHIDA DSSOULI is a full professor and Director of Concordia Institute for Information Systems
Engineering, Faculty of Engineering and Computer Science, Concordia University. Dr. Dssouli received a
Master (1978), Diplome d'études Approfondies (1979), Doctorat de 3eme Cycle in Networking (1981) from
Université Paul Sabatier, Toulouse, France. She earned her PhD degree in Computer Science (1987) from
Université de Montréal, Canada. Her research interests are in Communication Software Engineering a sub
discipline of Software Engineering. Her contributions are in Testing based on Formal Methods,
Requirements Engineering, Systems Engineering, Telecommunication Service Engineering and Quality of
Service. She published more than 200 papers in journals and referred conferences in her area of research.
She supervised/ co-supervised more than 50 graduate students among them 20 PhD students. Dr. Dssouli
is the founding Director of Concordia Institute for Information and Systems Engineering (CIISE) June
2002. The Institute hosts now more than 550 graduate students and 20 faculty members, 4 master programs,
and a PhD program.

ALRAMZANA NUJUM NAVAZ received the IT Engineering Graduate degree from the Cochin
University of Science & Technology, India, and the MSc in IT management in 2017 from College of IT,
UAE University. She has been working as a Research Assistant in UAE University, College of IT, since
2012. She has more than 15 years’ experience in development with the latest technologies including Web
services and Mobile development. Her research interests include eHealth, Big data, data mining, and mobile
computing.

Author’s photos

HADEEL T. ELKASSABI

DR. M. ADEL SERHANI

DR. RACHIDA DSSOULI

ALRAMZANA NUJUM NAVAZ

	Trust enforcement through self-adapting cloud workflow orchestration

