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Abstract

Providing runtime intelligence of a workflow in a hi. 1y dynamic cloud execution
environment is a challenging task due the con.. ~nously changing cloud resources.
Guaranteeing a certain level of workflow ‘yua = of Service (QoS) during the ex-
ecution will require continuous mon’ ~ring o detect any performance violation
due to resource shortage or even clou' se.vice interruption. Most of orches-
tration schemes are either configui. “ion, ur deployment dependent and they do
not cope with dynamically changing environment resources. In this paper, we
propose a workflow orchest ation, 1 ‘onitoring, and adaptation model that relies
on trust evaluation to dr ject «, S performance degradation and perform an au-
tomatic reconfiguratic ' to suar .ntee QoS of the workflow. The monitoring and
adaptation schemes are abic ' detect and repair different types of real time er-
rors and trigger a_tferen.. ~daptation actions including workflow reconfiguration,
migration, and resc irce scaling. We formalize the cloud resource orchestration
using state mac..” -e that efficiently captures different dynamic properties of the
cloud exer atio . environment. In addition, we use validation model checker to
validate our . d 1 in terms of reachability, liveness, and safety properties. Ex-
tensi' 2 exper mentation is performed using a health monitoring workflow we

have de -~~~ .d to handle dataset from Intelligent Monitoring in Intensive Care
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IIT (MIMICIII) and deployed over Docker swarm cluster. A set of sc nari s were
carefully chosen to evaluate workflow monitoring and the differen.. adap. tion
schemes we have implemented. The results prove that our aut .ma ed workflow
orchestration model is self-adapting, self-configuring, react efic’ ~ .ly to changes
and adapt accordingly while supporting high level of Wo s<tlow NoS.
Keywords: Cloud, QoS, Reconfiguration, Self-Adapt Sy: “em, S* ate machine,

Trust assessment, Workflow

1. Introduction

Workflow has been proven to be an approp..~te model that finds its appli-
cation in many domains, which features a . v ot tasks aggregated and executed
either in sequence or in parallel to fulfi'”" ~ narticular goal. Workflows executed
on a composed cloud services are disting. i hed by their ability to scale up or
down according to the fluctuating na .. ot job or task requirements. This is
achieved through orchestration f. . ..-~= "ties, which can result in adding more
storage space, auxiliary memory, addiu.onal servers, or reinstating correspond-
ing relevant virtual Machin s (V1's) in accordance to the sequence events that
might take place, such as u. 7e ir rease, or task failures. These orchestration
functionalities allow re .tin @ automated reconfigurations of the appropriate re-
sources. Nevertheles ., gu. “ant :eing the Quality of Service (QoS) of the workflow
to meet to user re ,u.. "ment level cannot be archived though orchestration only,
but also autom- .. ' monitoring and control of multi-cloud services is necessary.

According '~ [7, few research initiatives were proposed in the area of design-
ing autom- ¢ed =xecu.ion and monitoring complex workflow systems. Enabling
easy-to-usc ™ ster s that allow specification of QoS requirements levels and flex-
ible d' ploym~uts and resource allocation is highly required. This includes build-
ing m. dels th «t describe algorithms and structures to empower these systems.
' sing st te machine-based models to formulate the resource orchestration and
a. toreco figuration is recognized for its capability to represent the continuous

«. ' dvnamic nature of cloud resources. Maintaining the timely state of each
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entity, such as resources, quality requirements, and tasks perforr nce, allow
for easy tracking, efficient monitoring, and automated reconfigu. *ion .“ the
cloud resources and workflow deployment. Existing resource ¢ .che stration sys-
tems focus on resource configuration, deployment or control. ."~ ever, they do
not provide full automation to support self-configuration .ad self-healing where
failures and performance deficiencies are detected and resc 'ved av omatically to
maintain the required QoS [1].

Providing runtime intelligence in a sophisticatea orches ration system in-
volves high processing capabilities and adding more o. rhead on the cloud re-
sources to provide analysis of large amounts of re.’“ime monitoring data. Also,
some workflows are deployed on multiple clusters aw.' cloud providers. Federated
cloud resource orchestration involves connecu. *o multiple interacting cloud ser-

vices to perform a composed service. E. suu ‘chestration techniques depend

on procedural programming using ! v-leve scripting languages and heteroge-
neous Application Programming Inter. ces {APIs), which are highly provider-
configuration dependent [2]. This .. ~noses more time and effort burden on the
consumer. Hence, various research initiatives have proposed common interfaces
and APIs over multiple cle «ds, suc, as Apache Deltacloud [3], Apache Libcloud
[4], jclouds [5], OpenSta k [6]. “T> vever, dynamic orchestration using high-level
policies specified by e ‘mir .stra ors instead of consumers is highly compulsory.
The currently usec service omposition techniques, such as the Web Service
Business Process Exec.'*on Language (BPEL) and Business Process Model-
ing Notation (3PN N), do not support application resource requirements and
constraints, exce, <ion handling, and optimized resource scheduling, which are
essential “r a comnrehensive orchestration process [2]. Hence, trust enforce-
ment is highi, e bommended to support the intelligent orchestration framework
that ~ andles e quality requirement of Big Data.

Wh.. ~' ad resource requirements need to be enforced within a dynamic
C rchestra ion, a trust evaluation must also be supported. A trust model should

A~

cown. all the workflow phases and evaluate trust for each composed ser-

vi e, and then aggregate the overall workflow trust scores across multiple cloud
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providers. The model must carefully deal with all trust compone ts, < ach as
trust propagation, trust aggregation, decomposition, and trust su. "ing 1. fed-
erated cloud services. The trust score evaluation consists r. c pturing and
monitoring the workflow runtime environment data to prov.'= and maintain
required orchestration of QoS levels. Yet, the complexity .t orch-strating cloud
services for Big Data is emphasized by the growing nurn her of .loud services
in terms of quantity, quality, and diversity. Few res arch * ‘tiatives fulfill user
requirements in a realtime and context-aware manuet, espec’ally with the over-
whelming amount of data coming from various sourc = of high veracity and
variety.

Therefore, trust evaluation schemes and models “hould cope with the nature
of intelligent workflow orchestration and co.. nosition of cloud services, espe-
cially when dealing with scalable and a. apuw . smposition solutions that han-
dle large-scale, highly dynamic, and “verse Sig Data services. Supporting trust
enforcement on orchestration framewoi s . cates an additional challenge to as-
sess the contribution of the compo.. nt services towards the composite services.
This is because each service component might have different functionalities, sig-
nificance, and impact with’.a differc 1t compositions. Additionally, any proposed
model must consider ligl sweigi.. ™ onitoring mechanisms with minimal overhead
to not affect the overs | se' vice performance.

In this paper, v : propo. a workflow orchestration, monitoring, and adap-
tation model tha. relies ~n trust evaluation to detect QoS performance degra-
dation and pe’.orn an automatic reconfiguration to guarantee QoS properties
of the workflow. The monitoring and adaptation schemes are able to detect
and repai diff :rent types of real time errors and trigger different adaptation
actions incluw ne workflow reconfiguration, tasks migration, and resource scal-
ing. WNe forw alize the cloud resource orchestration using state machine that
efficienu. - ~= Jtures different dynamic properties of the cloud execution environ-
11ent anc support the monitoring activities of a workflow. We add two crucial
con., ~ onts into the basic orchestrator framework: QoS Trust Monitoring and

A toreconfiguration Manager.
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The main differentiation of our framework with respect to ot er « dsting

frameworks is summarized hereafter:

e We adopt a multidimensional trust evaluation that co abin .. workflow
performance-based trust evaluation and cloud resources pei. *mance-based
trust evaluation. This will lead to the selection of the mc¢ t appropriate

adaptation actions.

e The evaluation of our monitoring and adaptatio < .ieme s overhead demon-
strated that a minimum overhead both in tern.. of 1atency and communi-
cation is generated and considered low co. mared o other frameworks in

the literature.

e Automating monitoring and adaptation rocesses in our framework saves

time, shortens the process, and a.'ows .’ :ient control of resources as it

continuously retrieves the mos -'bda. d resource information.

2. Related Work

In this section, we discus w.o ~Xisting state of the art on service composition
and workflow orchestratio.. ‘ncludir g: 1) Trust in cloud service composition, 2)
QoS and Trust monitor.ng, and self-healing, 3) dynamic and autonomic work-

flow orchestration.

2.1. Trust in Clcid Se. “ice Composition and Orchestration

Trust evaluation. f a single service can be achieved through the propagation
of reputa’.on :valration conducted by users based on historical experience.
However. tru." e aluation for service composition becomes more sophisticated
becat se of ti.» complexity of evaluating the trust of each component service
separat.’ - T espite this complexity, trust evaluation supports intelligence, scal-
¢ oility, a. d adaptive composition solutions for large-scale, highly dynamic, and
orc.. ~* ation frameworks to guarantee the quality of service requirement. Au-

thors m [7], proposed a contribution-based distribution of reputation approach
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to propagate the reputation of a composed service to each compc ent service
according to the extent to which it contributes to the composed . “rvice. The
importance or the amount of contribution of each componen’ sei 7ice towards
the composed service is assigned based on its reputation.

Recently, the authors in [8] proposed a trust framewo < that inciudes an it-
erative adjustment heuristic (IAH) model to assess trust n comr osed services.
Service Trust evaluation in federated and interconne .ted ' 1d environments is
more sophisticated [9]. Customers and different clouw prov'ders need to trust
each other to be able to collaborate. Thus, it is essenu. ! to evaluate the trust-
worthiness of cloud and cloud federations [10'.

Trust in federated clouds was also addressed 1. “he Sky Computing project
[11], which is intended to enable several vii. -alized sites to increase resource
availability. The project studied the trv-t, v .7 sortability, and connectivity of
geographically-spread resources. Ber «tein + al. in [12] proposed a blueprint for
interconnection of cloud data centers werc they addressed issues about virtual
machine mobility, storage, network ddressing, security in terms of identity and
trust, and messaging. However. no trust management was provided in this work.

Few existing cloud fede' ation pr jects are based on brokering technologies for
multi-cloud composed se vices. "T¢ 1ce, more research needs to be done towards a
standardized methodc ogy .or I «ndling interoperability and standard interfaces
of interconnected ¢'ouds [1,, Trustworthiness evaluation models among differ-
ent cloud provide.ss wer. nroposed and focus on a fully distributed reputation-
based trust frs .new >rk for federated cloud computing entities in cloud federa-
tion. In this moJ (. trust values are distributed at each cloud allowing them to
make serv ce s tection independently [10].

Usually o. ~he tration methodologies provision describing resources of one
provi er. Oti »r orchestration techniques support cross-provider resources such
as Clom, “*~ Lervice in JCloud and are used for configuration and management
¢ federa =d cloud [14].

T, models are developed to support monitoring, adaptation, and predic-

ti a or cloud workflow provision while guaranteeing the required workflow QoS.
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However, some of the initiatives proposed in the literature which v ‘od t ust to
enhance workflow scheduling, orchestration, and management were . ~t fuw., uti-
lized to support automatic reconfiguration that guarantees we kh. w Qos. Our
proposed framework supports multidimensional trust evaluat.. ~ .hat considers
both the performance evaluation of the workflow and th- performance evalua-
tion of cloud resources in order to decide about the most a, nropri- ce adaptation

actions.

2.2. Monitoring Trust in Service Composition and " ~rkjiow Orchestration

Monitoring is defined as gathering and analyzing ~vents and performance logs
and is necessary for supporting the manage. =nt of unpredicted and undesired
behaviors [1]. It is typically adopted to _ u.. ~*ee the required QoS by the SLAs
and maintain stable performance by respon ing to quality degradation. Existing
cloud resource monitoring tools, such . s 17 ~gios, CloudFielder, and Splunk are
used by DevOps to describe SLA  recegaize glitches, and issue alarms when
violations occur [15] [16]. Other Big Data monitoring frameworks like Ganglia
[17], Apache Chukwa [18] Semat x [19], and SequencelQ [20] provision QoS
metrics information, such as 1< ou- ce utilization (cluster, CPU, and memory) in
addition to applicatior typr s (di-k, network, and CPU-bound) [21]. Alhamazani
et al. proposed a m (ti-clo. ! .pplication QoS monitoring framework capable of
monitoring subar plica. ~u distributed components, such as databases and web
servers [22]. Ot ie1 loud QoS monitoring frameworks were presented in [23] [24]
[25].

Most ¢ the monmitoring frameworks do not support the Big Data workflow
specific Qoo -equ rements, such as time sensitivity or task dependency. They
usual y mon. or the workflow as a black box without involving the details of
activit. = as * . Amazon CloudWatch used by Amazon Elastic Map Reduce [26].
¢ ach req “irements involve data flow behavior and subactivity process monitor-
ing Ar wities in these workflows implicate continuous variations that affect

ot . Jlependent activities and eventually affect the performance of the overall
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workflow. Present orchestration frameworks do not comprehensiv ‘ly ¢ ipport
intelligent monitoring and automatic reconfiguration to respond v. QoS iola-
tions. Such violations could occur in the context of a variety ¢ 1nj vts and per-
formance quality characteristics throughout all the activities 1. =" ved in the Big
Data workflows. Additionally, intelligent monitoring shov d iden*ify and handle
the performance violations based on data flow collected 'ogs. T ae authors in
[26] designed a high level orchestration framework acor» -ating requirement
and design specification Big Data workflows managen.cnt ov r a cloud environ-
ment. However, this work is missing key implementat.. © and validation of Big

Data workflow orchestration functionalities and v..> ch# ienges it involves.

2.8. Dynamic and Automatic Workflow G, hestration

Maintaining the QoS of such complev clou.” workflows is very important to end
users and applications. However, achi vin, this requirement necessitates guar-
anteeing the QoS during workflow ~ecu...n, which cannot be archived through-
out orchestration alone, but also through automated monitoring and control of
multi-cloud services and 1 sources  Automating such processes in a very dy-
namic environment will ~ave .’me shorten the processes, allow efficient control
of resources and get ~.ost updted resource information, analyse monitoring
and adaptation recc ds to , “= idict future resource shortage. In the following, we
identify and discr ss so. ~e of the relevant research work in guaranteeing QoS of
cloud workflow ¢hi ugh automatic orchestration.

Guaranteel.. -~ ne user required QoS of application execution is the key pur-
pose of cle ud r source orchestration. Existing platforms that support Big Data
orchestratio. suc1 as YARN [27], Mesos [28], and Amazon EMR [29], do not
hand’: failm recovery or automatic scaling to correspond to the application
changl. ~ rec .arements, such as the data flow changing volume, velocity or va-
1 ety [26, Some initiatives proposed automatic scaling of Big Data processing
fre. mewe k as in [30] for batch processing and in [31] for stream processing.

U’ ac. orchestration frameworks provide online or interactive dynamic recon-
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figuration [32] [33]. Web services frequently undergo dynamic ch: ~ges in the
environment such as overloaded resources. Hence, the authors in |1 pro, osed
a multi-dimensional model, named AgFlow, for component ‘crv.:es seiection
according to QoS requirements of price, availability, reliability, »".d reputation.
The model optimizes the composite service QoS require . by tle user and re-
vises the execution plan to adapt to the changes in the . source performance.
Another work was proposed in [35], were an SLA r .nege* ~tion mechanism is
developed to support and maintain QoS requiremenu. in ¢! ;ud based system.
The SLA violations are predicted based on collected n. nitoring information of
service status such as availability, performance an.' sca’ .bility.

We mean by self-healing as the capability of a . ~rkflow to recover its func-

tionality when a problem occurs during exec. “ion while guaranteeing the QoS

level requirements. Recent research app. »acu . dorse automatic self-optimization

workflow orchestration realized by ~mam. -~ resource reconfiguration to fulfill
Quality of Service (QoS) requirements '1]. An example of an autonomic cloud
orchestration engine is CometClouw. "36], which supports the integration of local
and public cloud services and the distribution and scheduling of these services
according to resource statr s and @ S requirements, including budget, deadline,
and workload. Authors in [3/, = oposed a self-healing Web Service Composi-
tion algorithm using ¢ QoS perf rmance-aware prediction technique. Moreover,
Schulte et al in [38! propose " uzzy BPM-aware technique that scales according
to VM Key Perfc.manc. Tudicators (KPIs).

Current res yurc - allocation techniques and existing frameworks do not sup-
port the dynan.. and heterogeneous nature of clouds and resource behaviors.
Therefore the aeed to provide autonomic cloud computing methodologies that
allow better . ~o' rce allocation based on user QoS requirements as well as fail-
ure r covery 'uring runtime is becoming inevitable. Researchers use various
kev Qo. —~ umeters for QoS-aware clouds, such as price, time, and response
{ me. M st optimization techniques rely on the evaluation of time and price
wh.. ~'aer important QoS attributes (e.g., data privacy) are not considered.

A-tnors in [39] pointed out some QoS parameters used in autonomic cloud com-




235

240

245

250

260

puting, including scalability, availability, reliability, security, cost, t me, .nergy,
SLA violation, and resource utilization. Other research approac. ~s foc. 3 on
user requirements, such as unit cost per resource, the processi' g s; eed 01 VMs,
SLA levels, geolocations, and device capabilities of endusers.

A middleware architecture was proposed by Ferretti e’ al. in 40| to dynam-
ically reconfigure cloud resources and services according o some¢ QoS require-
ments specified in the SLA. Monitoring is used to sup’ ort d- ~amic management,
load balancing, and reconfiguration of resources allocwuion f atures. Moreover,
a quality aware framework named Q-Cloud is sugges.. 1 in [41] were resource
allocation is performed at runtime. The key requ ~emr at is to guarantee QoS
among multiple workload applications. The fran. vork used QoS states were
to support different levels of application-spec.” ~ QoS assignments. The authors
in [42] proposed adding extra modules ‘o «, .. ce the auto-healing capability
of a common cloud service orchestrs ~r. H. wever, they did not provide system
state description nor detailed their autc hedling algorithms which are both very

important features of the proposeu “nlution.

3. Trust Formalization and Ex iuation

Using Trust-based (uali.y assessment enables aggregation of multiple and
various quality dimensic. * an . attributes into one trust score which facilitates
efficient and comp ¢ ~nsive quality assessment. Guaranteeing trust is achieved
through enforce” ~onitoring of workflow at different granularity levels including
for instance ’ sk ’:vel, service level and cloud resources level to achieve the

targeted Q 3.

3.1. Tr-~t Ev.™ tion of Cloud Workflow (Pre-deployment)

Ir ouds secuon, we explain the automatic evaluation of trust through a work-
1 »w that will be executed over a composition of cloud services. The selection

of cloud services is based on the trust scores automatically evaluated before

10
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execution and during execution if reallocation of cloud services or ‘eso’ rces is
needed. Trust should be based on a set of evaluation criteria wit.. weigLn. s as-
signed to each of these criteria and decided by the user. The fir ¢ c. 'terion is the
reputation of service components, which generally relies on the < :rs experience
[7] [43]. This is called objective reputation and is done us ag monitoring, either
by users or third parties [44]. Another form of trust b. zed rer utation relies
on the opinion of users about the service which is k» own - - subjective reputa-
tion. Both objective and subjective reputation can be combi-.ed to evaluate the
trust and is referred to as hybrid reputation scheme. 1. ‘st evaluation based on
advertised QoS of service providers and selfexper. nce .an also be used. Each
component service participates to the calculation o. “he overall trust of the com-
posite service based on their contribution tow “rds the composite service. Each
QoS attribute participates towards the « vera . = 1st evaluation with weights as-
signed by the user, this is commonly "mow1. as user preference based trust. The
contribution of each component servic. suculd be automatically assigned and
calculated. Next section, will deta.” how QoS attributes are used for workflow

trust evaluation.

3.1.1. QoS attributes for wo. “Aow Trust evaluation

Various QoS proper ies L = seen used in the literature to evaluate the trust.
Among these att (bu. < include for instance performance, including network
and Cloud serv’'ce. [45], privacy, scalability, and extensibility. Other key met-
rics suggestea M 26] involve the following: 1) delay of event discovery and
decision 1 kin‘;, 2) taroughput, response time and latency of results generation
in workflow, ) di sributed file read and write latency, 4) cloud resource utiliza-
tion ¢ ad ene gyefficiency, and 5) quality of network such as stability, routing
delays, and F mdwidth. In this context, the monitoring system is required to
I 2 comy -ehensive to have a full picture of the problem. In other words, moni-
te ing ar plication parameters measures the highlevel health of the system and

w. - ~lp in detecting the most serious issues. Whereas, monitoring the resource

11
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parameters allows finding and resolving the root cause of these is wes. These
quality parameters are monitored through a collection of cloud re. -irces, such
as CPU, memory, file system, and network usage statistics *.iclu ling utiliza-
tion, saturation, availability, and errors. Also, monitoring 15 ~v plied to some
application-specific quality parameters like throughput, s» ccess rate (number of
errors), and performance. Existing tools used for monitori. = clouc resources like
processing, storage, and network include cAdvisor, F capst- - InfluxDB, Google

Cloud Monitoring, and many others [46].

3.1.2. Reputation of service components based . ~ their ' ast experience

In our previous work, we evaluated the rep.“ation of a single service, and repu-
tation of composed services can be ach’. 7 nsing multi-attribute optimization
techniques to measure and assess the rep ~.ation of every single service based
on its contribution towards the overa.’ ti. t of the composed service [47]. The

contribution ratio is determined . 7 v " ar.

3.2. Trust Monitoring for ("vu. Workflow Orchestration (Post-deployment)

After deployment, mor .tori g QoS of the workflow and all the allocated cloud
resources will guarar tee . ~e s ¢isfaction of customer requirements. Monitoring
the CPU utilizatic 1, "> example, will indicate that the application is performing
as expected or ¢ | arience delays when CPU is overloaded or might crash.
However, e ¢ mplexity of monitoring Big Data workflows is characterized
by the nur.ber of «.Terent QoS metrics that evaluate different activities and
resources « © t 1e w rkflow. Such QoS metrics could be throughput, delay, event
detect on, resvouse time, read/write latency, CPU utilization, energy efficiency,
netwo k delar 5, and bandwidth. Hence, it is rather challenging to combine
2’. these different metrics into a holistic view across the workflow of different

a *ivities the Big Data framework, and the utilized cloud resources.

12
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Figure 1: Woi. ~ow _ ~» stration framework.

4. Model Architecture

In this section, we c2scri. t! e architecture we propose to monitor trust
and QoS of the workfl .w o ches ration to guarantee self-reconfiguring workflow
upon the occurrenc . of ab. ~ malities. Figure 1 depicts the main architecture

components.

4.1. Architec. ‘re “,omponents and Key Features

4.1.1. Clo .d Workfiow Composition

At this stay the casks composing the workflow are analyzed in terms of tasks
specif ¢ natu =, dependency to other tasks, required processing resource, and
data u. ~ee. F.g Data workflows are composed of various services some of which
¢ e depu *dent on another. In other words, changes in one service affect other
de,ende .t services. These services handle workloads with high volume and

ve L. 'y data and have complex characteristics. Different application domains

13
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exhibit different modeling requirements that involve specific dome n ex pertise
to specify, understand and manage the entire pipeline of activiti. dat. flow
inter-dependencies, and the QoS properties and their levels & .d 1 nges. Once
the workflow is designed, it is mapped onto an existing orchesv. *t on framework

for deployment.

4.1.2. Cloud Workflow Deployment

Service level agreement is build and signed by invce =~ . clo .d providers prior
to workflow deployment. Big Data workflow is mapy. 1 to orchestration frame-
works that include Big Data programming APIs = ~d clov 1 resources. The selec-
tion of suitable deployment configuration is cha. ~mging due to the complexity
of the workflows and the abundance of se.. ~tion possibilities. Choosing opti-
mal workflow configuration is one of th- _ -~ chailenges that recently attracted
researchers. For example, stream process ' g requires an optimal combination
of various worker instances to minimi. > v. ~ latency of processing activities and
to optimize the cloud resources « 'u.ig..*" sion. Such resource configuration in-
cludes the location of the data center, node hardware configuration, pricing

plan, network latency, and Handw. 1th availability [26].

4.1.8. Trust-based QoS Moritoriig
Workflows monitorirg 1. equi ed to guarantee that the run-time QoS is satis-
fied and that the < ¢ 'oyed cloud resources are optimized. Monitoring basically
means collecting ~erformance status logs of all resources and running workflows.
The importar e of monitoring lies in detecting and handling problems, in ad-
dition to e apower.. ~ flexibility of deployment. For example, monitoring the
CPU util. atin ar d data transfer activity will help to determine if containers
are ov .1waded, .nderloaded, or operating as required [1].

W descril e hereafter the main module of our architecture. After deploy-
o cnu, the monitoring module is responsible for monitoring the QoS of the work-
toww. It i first configured to set the QoS attributes that are required by the user

~long with their thresholds and acceptable values or range of values. Also, the

14
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user will assign trust evaluation prefe. ~.. ~ (w:ight) for each quality metric. Our
monitoring system is responsible . =an, oring each application including each
composed service in the workflow app’‘cation. Moreover, it is responsible for
monitoring each data clustr. o1 ‘“e service provider. The monitoring consists
of three activities including monit ring the application, monitoring the cloud
resources, and the QoS log: analysis. Measurements are taken periodically at
different time intervsls a. ¢ thr trust score is evaluated as a continuous function
on the closed tim' . *erval [0, c], if we consider an arbitrary constant ¢ > 0.
This has been ¢ “ailed in section 4.2. Our monitoring system architecture is
detailed in Fi_ure ..

Monitorir g the a, blication: a monitoring agent is placed on the master node
of each ¢, ~tr.. T .iis agent will continuously check logs generated by the ap-
plicat’ ,n tasks. che logs contain different measurements collected on executed
tasks wch as hroughput, latency, and errors (I/O error) resulting for example
fr om invalid input or delay due to slow response from other dependencies. How-
e er, eac . task has its specific properties and metrics that should be tracked.

T~hle 1 depicts some key metrics for different application types. Each task in
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the workflow is instrumented to generate the required measurem: ~t s-ved in

the log files.

Table 1: Key metrics for many popular technologir

App Type Metric Description Me.ric Type
HTTP Number of connections requested, successful and act. e “tilization
and proxy Number of requests rhroughput
server. Calculated accepts — handled o Error

Count 4xx and 5xx codes V a Error

Time to process each request (s) Performance
Data Number of read requests N Throughput
storage Number of write requests Throughput
Application | Number of current connections Utilization

Number of available new connections Utilization

Data, index, and total extents stoi. = size Utilization

Virtual memory usage (MB) Utilization

Run time per schema performance

Numbers of statements with errm.ﬁ Error

Count of connections refusc = e to . ‘rver error Error

Count of connections refused (ie Lilax,connections limit Error
Processing Utilization of RAM (J° «. . = a4 the file system cache) Utilization
application Total number of queries Throughput
(search Total time spent on queries Performance
engine) Number of queri s currc *ly in progress Throughput

Number of qu¢ ~d thread in a thread pool Saturation

Number of r jectea . e’ ds a thread pool Error

Monitoring the ‘- ‘oud resvurces: this module is responsible for monitoring
the cloud resources orcuc tration and management. The main metrics to be
considered inc ude esource utilization such as CPU usage, node CPU capacity,
memory uss ge, no '~ memory capacity, file system usage, and disk I/0. In addi-
tion, the - wni orin , observes the performance of the container such as container
deploy» ats, e. - cution, and performance of required quality attributes.

QoS logs anlyzer: part of the monitoring module that is composed of a
set _I pruousses distributed among each node. These processes collaborate to
( fagnose wny problems, failures or abnormalities that occur in any application

or happen in one of the clusters and evaluate a trust score for each node and
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task running on each node.

The design of process distribution works as follows: the node -orke. pro-
cesses to monitor the node-specific quality metrics, the req .rec. metrics are
passed through the main monitoring module along with the.. = cepted values
and ranges. The diagnose worker processes the watch r. the streaming logs,
checks the metrics values, and detects any out of range « ~ failur : values. The
checked metrics values are interpreted, and a trust core ~d is generated for
each task and each node. These trust values are sen. to t} : master node pe-
riodically after a specified time interval. Moreover, up, m problem detection, a
worker process sends a notification message to the . aste node analyzer process.
The later analyses the notification messages comu. ~ from all worker processes
and identifies the cause of the problem then ‘~unds a general notification mes-

sage to the main monitoring and ana. ze: ., 1t which resides at the user’s

side. Sending only the trust scores ~d th. notifications upon failures reduces
the communication overhead so that th. mc.itoring activities will not affect the
performance of the applications an. “he nust clusters. The main monitoring and
analyzer agent is responsible for generating a trust score for each application

and cluster and sending t’.e comp led problem notifications to the automatic

reconfiguration module.

4.1.4. Cloud Workf »w a.*or atic Reconfiguration and Self-Adaptation

Automatic reconf gui. “ion is the mechanism of taking necessary actions when
the monitoring p. ‘cess reports performance degradations. These violations
might be wit.. *b . running workflows, the underlying frameworks or the re-
sources to ulov- automatic self-reconfiguration and maintain the required level
of QoS. Fo. " <am' le, if the monitoring process detects a dramatic performance
degra .ation, ‘hen the automatic reconfiguration module will trigger operations
such a. scale .p or migrate to preserve the required QoS. Other problems could
I 2 prod ced due to errors or unexpected system behavior that might require
re. *artir | the container/VM which requires self-adaptation. The responsibility

o . automatic reconfiguration module could be simple or sophisticated recon-
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figurations depending on the nature and the urgency of the occurr: 1 pr blem.

The complexity of dynamic and automatic reconfiguration of Bi, Nata . ork-
flows arises because of its special characteristics are known oy te multi-Vs.
Hence, the first challenging issue is to model the QoS and c. ‘i 1ate the data
flow behavior with respect to volume, velocity, and vari .ty anc assessing the
processing time and workflow 1/0. Second, it is challengi, ~ to de ect the cause
of QoS abnormalities in heterogeneous frameworks r s it ¢~ ~ be originated, for
instance, because of resource failure or congestion o. netwr /k links. Another
challenge is to model the runtime QoS changes of the ~orkflow and construct
orchestration so that the target QoS is upheld ac. -s t} : different layers of the
orchestration framework.

Our automatic reconfiguration module deuv. ~ts the main cause of the problem
upon receiving all the error occurrence * 1 .. pplications and clusters from
the primary monitoring module, the issuc. reconfiguration instructions to the
corresponding application or cluster. 1™ r ciample, a delay in task completion
and high processing load of the allo. ~ted node may trigger an action like moving
a node with higher processine power or lower load depending on availability.
Another example, when ( :tecting a performance degradation with a storage
task, we relocate the ta k to o ~c de with higher storage capacity. In previous
work we have develor »d 7 wel based application [48] for collecting Big Data
workflow QoS prefe ences 1. .n the user and generating a quality specification
profile, which is wsed 1.. task and workflow quality-based trust assessment. It
also helps defi» ing referred threshold values and ranges to be used for quality
degradation dec. on making. For example, a service degradation or failure
could be cctec’ ed when it takes longer than the expected execution time before
completion o, * ¢ :nerates an unexpected or invalid output. Moreover, we define
a ser ice faill e rate FR as FR = total NumberO f Failures/t, where t > 0 is
a conste * “"me period. Afterwards, the reconfiguration instructions are sent
I ack to v e application or cluster to be reflected and deployed. The algorithms
of ¢. - Ut the modules are detailed in the following section.

A itomatic reconfiguration module: this module evaluates the status of
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each workflow and generates reconfiguration decisions to improve the perfor-
mance of each workflow. This module receives and keeps the ti. -t sco. > for
each workflow, the trust score for each cloud provider, and t} : e1 ‘or messages
or abnormality notifications. Accordingly, it compares the . */ st trust score
with the previous trust score, and if high, then nothing v .1l be done. However,
if low, then reconfiguration decisions should be made. Alsc upon - 2ceiving error

messages, reconfiguration decisions are made.

4.2. Automatic Cloud Workflow Trust Fvaluation v. el

Typically, tasks run independently or are tied v. ~ether in an ad hoc manner.
An orchestration environment, like Kubernetes, .~k these tasks together in a
loosely coupled fashion [46]. The workflo,. model fits well for our problem
requirements however, other models i .. ~'en be explored. The following

detail our monitoring model and Ta%le 2 ¢ scribes the symbols used.

Table 2: . _mbols used.

P numbe of tas. 3 in the workflow

m number € clus ers allocated for a workflow

T n” mbe of nodes in a cluster

s nui. "zcontainers allocated for a task

7 ~umber of QoS attributes requested by the user
d number of violation at time ¢

Let Mon tor (WF, Q) denotes a Monitor request to the global monitor
GM to init. *e ~,orkflow monitoring based on a given list of QoS attributes.
The ! [onitor ~equest starts the collection of the deployed workflow QoS logs.
The we Ao, is modeled as a directed acyclic graph W F(T, E) where T

- {tk1, ko, ..., thkp} denote tasks to be monitored along with the deploy-
me. * -~ afiguration which may include one or more clusters. The number of

ta ks n the workflow is denoted by p. Each task contributes with a different
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weight to the overall workflow. We denote the level of importan = of a task
towards a workflow by il. This value is given by the data anaiy * whe con-
structed the workflow composition as IL = {ily, ila, ..., i’ p}, where p is
the number of tasks in the workflow. E = {(tk;, tk;)| tk;,, '» €T}, is the
set of arcs representing a partial constraint relationship ' ctweer tasks so that,
V (tk;, tk;) € WPF (i # j), and tk; cannot start unt.' tk; cc npletes. Let
Clusters = {cly, cla, ..., cly}, where m is the n» mber - clusters allocated
for a workflow.

A Container is represented as C ( cn, tk;, n;, cli), “here:

e cn is a container id number, tk; ¢ WF, « ~ode nosting cn, n; ¢ Nodes ,

and cly, € Clusters is the cluster tha. »wns tne node n;.

e Each task tk is mapped to one o1 o . de(s) in one or more cluster(s)
and is represented as a tuple " ( tn, {c1, ca, ..., cs}, st, in, out), tn
is the task name/id, and the sec ‘na parameter is the list of destination
containers allocated for tha. *ask. We assume that a task will run in
one container per node. Multiple containers will be destined to multiple
nodes. st is the stat: of the ask (waiting, active, or completed) and in

and out are the in ,ut and *' e output data set respectively.

e The node ny (s, s, ' n) is a tuple which represents the specification
of the node . cluding cpu, memory, and a local monitor Im which is
responsible for calculating the trust score of the task and detect QoS

violatio® s.

e A C ust rcl; e Clustersismodeled as alist of nodes cl; = {ng, n1, ..., n.},

where . is .he master node and n; is a worker node such that ¢ € [1, r].

Q= "qi, ¢2. ..., g;j} where j is the number of QoS attributes requested by
t! ¢ user and the weights for each attribute are W = {w1, wa, ..., w;}.
\ e also 1 Afer to a list of QoS violations as V List(At) = {v1, ve, ..., vy}, at a

“ime range/window At. We model the violation by a tuple V (C, Vtype, value, t),
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where here the violation occurred at time ¢, is associated to a con’ »ine tuple,
the type of violation, and the value of violation (the abnormal vai. .

The Local Trust Score LTS is a score representing the level .t s. tisfacvion of
all requested QoS attributes in @ according to the respective -« ghts W. The
LTS is specific to each task running on a specific node. I” che ta-k is replicated
on multiple nodes, then the LTS is aggregated as the av rage of all LT'S's for
that task among all containers.

In our model we evaluate the quality of a workflow Lased ¢.a multiple criteria
or quality attributes and different preferences of each . € these criteria. Multi-
Attribute Decision-Making (MADM) [49] is consic red . simple, clear, system-
atic, and logical technique, to help decision makiny Yy considering a number of
selection attributes and their priorities. They ~an help to choose the best alter-
native with the set of selection attribu.~s. - are also considered the most
common method used in real, decis’ ~-guic ‘'ng multi-attribute utility measure-
ments.

LTSfjk (tki, nj, clp, qp, Q, W, ‘s cawculated using a MADM algorithm while
Q and W are the required anality performance values collected from worker
node n; in cluster cly for *ask tk; t time ¢ (where t > 0), their weight, and its
contribution towards th = trusy ~ re respectively. The qp; are the normalized
task performance acc: «dir 5 to he QoS required value gp;gpge¢- This guaran-
tees that the trust s core wi. ' e evaluated based on its proximity of the value to
the required QoS value . ~ecified by the user and SLA which we describe as the
target value (i :., o jective value). Alternatively, the target value could be the

arithmetic mean. f the maximum and minimum values in an accepted quality

range qp- wrge /qpmin + qpmaz)/2'

qp; _ qpi/qptarget7 qptarget > qu (1)
qpta7'egt/qpi7 CIptm.get < qp;

" he calc lation is performed by a local monitor LM ; residing in each node as a
co. *inue 4s function on the closed time interval [0, c]. If we consider an arbitrary

co woont ¢ > 0, then the average local trust score LTngk is represented by the
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following formula:

1 Cc
LTS,k = - /0 LTS}, dt (2)

ALTS; is the aggregated LTS calculated at the master noc : ng . “*e arith-
metic mean of all trust scores collected from all worker nodes in . “ster ¢l for a
task tk; at time t as ALTS;x(t) = 1/rY.,_, LT S;jx(t), vhere 1 s the number
of worker nodes for one task tk; deployed in ¢lg. The ALY < °, sent from the
master node ng in each cluster ¢l to the global m mitr. G M. The following
two scores GT'S; and W FTS are calculated at e G as follows:

GTS; the global trust score, is the average of 11 trust sc »res for task tk; across
all clusters at time t. GT'S;(t) = >~ ALT [+ /n., .aere m is the number of
clusters, and t is the time at which the trus* -~ .. _re collected. The workflow
trust score at time t is the weighted sum of a.. <FT'S; for all composed tasks
according to their importance level il; tc 7ar ds the workflow W F'.

WFTS(t) = Y7 |, GTS;(t) x il;, ~.-vep s the number tasks in a workflow.
A Report is a message that con*~ins: 1 a workflow trust score, 2) list of trust
scores of all composed tasks and 3) . list of QoS violations periodically sent
from GM to the Reconfi- ... . We model the Report as a tuple:

Report (WFTS (t), {G7 <+ (t), (' TSy(t) ... GTS,, ()}, {v1, va, ..., v} ).
The Handle (Report) s the proess called by the Global Monitor GM to the
ReconfigMgr when  JoS violation is detected during runtime or periodi-
cally as explained = rlier.

The Recon figM gr processes the Report and reaches an automatic reconfig-

uration decisi n. T ae decision function D At time = t, is modeled as follows:

1, ifV!=null
D WFT. ,V8Listy) =4 —1, if V =null && WFTS, < WFTS;_, (3)

0, otherwise

A Decis.on (NewConfigList { (tk;,c;, configFile)}) message is sent about

.~ workflow to the concerned party to change the configuration.
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The NewConfigList includes a list of suggested configurat ws ‘or one
or more tasks in the workflow. Each tuple in NewConfigLtist ~ntan. the
task tk;, destination container c;, configuration file con fig .‘it« . which is a
script containing the new configuration suggested by the Rec. ~ ,igM gr usu-
ally specified in yaml format, which is a simple commec .ly-use language for

N

application configurations that is compatible with many other "inguages and
frameworks [50]. It is enhanced for data serializati m, ¢~ fguration settings,
log files, and messaging, which fits our framework requiremr nts. The destina-
tion of this message is the master node of each clusi. * hosting the container

specified in the NewConfigList.

4.3. Automatic Cloud Workflow Trust Fuv. “anon Algorithms

In this section, we propose automatic w *9ow trust evaluation algorithms dur-
ing the pre-deployment, post-deplovment, and self-adaptation in case of QoS
requirements violation. The system a. .. ~cture of our model is shown in Fig-

ure 2 as previously detailed in se. i * 3.

4.3.1. Pre-deployment Work .. - Trust Fvaluation

The services are composec. ~f an oy ;imal set based on trust scores according to
QoS constraints. The t- ast ~cores of each service are generated based on histor-
ical QoS logs. Then w omr «te the QoS aggregation value of each workflow
path and select tl . best path that meets the QoS requirements. We use the
MADM algorithm for tru.c evaluation of each task. Accordingly, the workflow
tasks are mar ved - 0 a specific resource that responds to its QoS requirement.
Mapping t} : servic - to the resources can be achieved using similarity matching
as an init ~1 d ploy nent. For example, if the task needs storage, we match it to
aresor oc with . .gh capacity storage resource, and if it requires high processing,

we m tch it t¢ a high processing power server.

..83.2. F. st-deployment Trust Monitoring
Tru. * = onitoring consists of measuring trust values that support the two modes

of monitoring operations of periodic or continuous monitoring. The continuous
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operation mode requires running the monitoring process as a daem n t} at logs
the status of the monitored tasks and system. The trust scores are . =lua.. d by
our monitor module which is comprised of two submodules: * .1e 1)cal monitor
(at master node, or worker node) and global monitor. The 1.'~ sing describes
the key activities supported by both local and global m ,nitor ‘or che sake of
monitoring:

At the local monitor:

1. Collect the performance values according to J»S rc ,.ared list for a task
2. Evaluate a trust score for a task

3. Produce the output of a trust score for a .~sk at node %

At the local monitor in master node:

1. Collect trust scores from all local n. r .tors in other nodes for a task.
2. Calculate the average trust sco.>s "~ get ATS for a task at cluster k.

3. Output is the ATS for a t. ~ " ~h “ter k

At the global monitor:

1. Collect ATS aggrega. 1 trus’ scores from all clusters for a task
2. Calculate the ave age .rust scores to get GT'S for a task among all clusters
and calculates the VF7S for all tasks in a WF according to the task

importance ‘w. vht) towards WF.

Algorithm ~ de icts this trust score calculation algorithm.

4.8.8. Aut matic Reconfiguration of Workflow Orchestration

Algorithm . .epic s the automatic workflow orchestration reconfiguration algo-
rithm This Igorithm analyzes each task violation by checking the root cause
of the -iolati- n. For example, it checks if a resource limitation is the cause of
t1e viol. “ion such as an overloaded node, then a message is triggered to add
a cew n de to the cluster. However, if the cluster cannot be extended, then

a __ation message is issued, and the task is allocated to a new cluster (see
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Algorithm 1 Trust score calculation algorithm

1: Input:
Tasks //List of Tasks,
QoSList //List of QoS attributes,
weights //Weights of each QoS attribute
2: Output: LT SList //Local Trust Score updated for each Task
3: procedure EVALUATELOCALTRUSTATWORKERNODE(T asks, QoSList weights)
4 for t + 1,c do
5: scoresListy + empty
6: for all tk € Tasks do
7 score < 0
8 for all ¢ € QoSList do
9

score < score + measuredQVal, X weightsq

10: end for
11: scoresList,[tk] « score
12: end for

13: end for

14: for all tk € Tasks do

15: LTS List[tk] < L [ scoresList,[tk]
16: end for

17: return LT SList

18: end procedure

19: Output: ALTSList //Aggregated - 5. O =< ‘across nodes) for each Task
20: procedure EVALUATEAGREGATEDLOCALTRe "ATMASTERNODE

21: for all nodes € Cluster do

22: get LT SListnode

23: for all tk € LTSLis., . do

24: ALTSList[tk] < - ALT "“¢ (tk] + LT SListpode[tk]

25: end for

26: end for

27: for all tk € Tas s do

28: ALTSList" k| . ALTS[tk]/nNodes

29: end for

30: return AL" SLi

31: end proced. -

32: Output: +sT'SLis. '/Global Trust Score (across clusters) for each Task

33: proced' re E' ALUATEGLOBALTRUSTATGLOBALMONITOR

34: for a.. - uster & Clusters do

35: ALTSL. cluster

36: for a. th € ALTSListciyster do

37 G’ SList[tk] < GTSList[tk] + ALTS Listeiuster[tk]
38 end for

o enc for

4o for all tk € T'asks do

41: ALTSList[tk] < ALTS[tk]/nClusters

42 end for
IS return GT'SList

44: end procedure




Algorithm 2 Automatic reconfiguration of workflow orchestrati = alg-p ‘thm

1: Input:
taskViolations // QoS task violation List,
sysViolations // QoS system violation List,
GTSTable // GTS for each task in WF

2: Output: NewConfig

3: procedure AUTORECONFIGALGORITHM(taskVi atio” sysViolations,
GTSTable )

4: for all tk € taskViolations do

5: sv + findNode(sysViolations)

6: if (sv # Q)

7: svType < violationType(sv)

8: if (svType = “sysOverload”)

9: newCon fig[tk] < addNode(y *C custer(sv))
10: else if(svType = “sysOve . ~IN< Tatend”)
11: newConfig[tk] < miarate(r.")

12: endif

13: else //problem in tasl-

14: newCon fig[tk] — scalet o(tk)
15: endif

16: end for
17: for all tk € G 'STa. > ¢ o

18: avgT <« wy “istoryTrust(tk])

19: if(trv . k) < avgT)

20: n 0Cc 1figltk] < findNewDeployment(tk)
21: e’ se //pro. 'em in task

22: n wCe . fig[tk] < O

23: upe  e(historyTrust[tk], trust(tk))

24: ena f

25 e.. ur

<5 re urn newConfig

27: = yrocedure
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Table 3). The algorithm also analyzes the new trust scores for all he t ks in

the workflow, and if it detects trust score degradation, then it gen. -ates . new

configuration decision.

We have implemented the two algorithms, Algorithm 1 for tru. < aluation, and

Algorithm 2 that is responsible for adaptation and reconfi Juraticn actions upon

QoS degradation based on trust evaluated by Algorithm

Table 3: Workflow monitoring mes: "o- .

Message Source Destination | Parameter -

Description

getLTSMsg, Master Worker Q, W, lis’ “tasku.

node node

The master node sends this message
to all worker nodes in the cluster to
collect the task trust values according
to the required quality attributes and
their weights passed in the message

parameters.

replyLTSMsg, Worker Master Tist {« taskid, LTS>},

node node L sty =Violations}

This message contains a list of all task
trust scores from each worker node
to the master node as a response to
getLTSMsg; message. This message
also contains a list of system viola-

tions, such as CPU overload.

sendALTSMsg, | Master cuv List {<taskid, ALTS>},
node Lust {<node,
sys Violations>}

This message contains the list of ag-
gregated trust scores for each task
running on this cluster. Also, it con-
tains a list of system violations for

each problematic node.

sendFTSMsg G’ AR WEF,

list {<taskid, GTS>},
list{sys Violations},
list{task Violations}

This message is sent from the GM to
AR for each WF and contains the list
of tasks composed in the WF along
with their GTS. Also, it contains the
list of system violations and list of

task violations.

autoRecor, ‘ AF taskid, Reconfig File
‘ node, clus-

ter

This message contains all reconfigura-
tion commands issued by the AR and
regarding each task ids in a certain

node and certain cluster.
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5. Cloud Workflow Monitoring Model

5.1. Characterizing System Elements and State Description

In this section, we model the parameters characterizing the s* ‘te ¢ - eacu system
component, such as cloud resources including nodes, contai- _ s wit.. their speci-
fications, and workflow, its composed tasks, events, and n essages. For workflow
components, we base our trust evaluation on the co . osea vasks. Each task
trust is evaluated based on multi-dimensional trust - _ifica ion. We evaluate
a workflow quality base on two dimensions of the qu. 'ity; the data quality and
the service quality (i.e. the quality of the pi.-ess ha dling this data). We
adopt some of the well-reputed data quality di.. msions accepted in the litera-
ture Quality dimension for data that are . meliness, Accuracy, Completeness,
and Consistency. Moreover, we use sor ~f the common processing quality di-
mensions discussed in the literature such ~; Capacity, Performance, Response
time, Latency, Throughput, Accuracy, A, ‘lapility, Robustness, and Scalability.
Moreover, we need to model the -...7~» and its constraints so that the moni-
toring system actions take into consider.tion the workflow status including task
choreography, dataflow, re overy, and task dependencies. For example, if we
have two tasks, 71 and T%. Ve c7.l T2 dependent on T1 when T2 is invoked
after the T'1 response s res cived or completed.

We also consider the « ~ta dow where the task input and output states are
tracked. For eac! tw.'~ T1, we retain information about the parameters, the
data type and f ... at of parameters, and the time expiry and validity of param-
eters. Additic. ~ll-, recovery actions should be triggered when an error or delay
receiving e cesponse vecurs such as T1 terminate, T1 reconfiguration (assign to

the differe..” lust r), or Ignore error.

5.1.1. Tasks

A described above, a task is modeled as a tuple tk { tn, {c1, c2, ..., ¢s}, st, in, out)

ad task lependency is modeled in E = {(tk;, tk;)| tk;, tk; € T'}. In this sec-

+ion, we detail the state, input, and output. Figure 3 shows the states of each
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State(th,) = Complete
“omplete

.Create State(tk.,) = Complete Output Ready // J

Figure 3: Task state machine automata.

task and the related transitions. The state st of a ‘as’. car be idle, running,
and completed. Idle state is the state of the task bei. "= it siarts running, a task
is in running state when the previous task is co. *nleted, wnd the input is ready.

However, a task is completed when the output . * is ready.

5.1.2. Fvents

The event is usually a violation that occu. < i a node or to a specific task such as
CPU overload, disk full, increasing te «. ~rro. °, and task overload. We construct
an event as a message sent to th» maste node with the format:

sendNode ViolationMsg (source: (no.> cloud), dest: master, <Type, value,
category>, t).

Accordingly, the master n. 1e comy les a list of all received messages to be sent

to the General Monitor with the _ormat:

sendCluster Violationi. - sour e: (cloud), dest: GM, list {< Type, value, category>},

t)

5.1.8. Monito .ng lessages Specification
All the mes<ages *sed in our workflow monitoring system and their details in-

cluding sc arce destination, parameters and description are shown in Table 3.

5.2. (loud Vorkflow Monitoring and Adaptation State Machine

We use ' stat . machines to formalize our monitoring system in order to validate
car syst. m to confirm that it does what is required and satisfy its objectives.
In Adi*"on, representing the system with state machines enables formal verifi-

cd 1. to confirm if we are building the software right and that it conforms to
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Figure 4: Workflow monito. .._ and . laptation state machine.
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its specifications. We used mode ci. ~ker 1or formal verification of our monitor-
ing system to prove the correctness of our software with respect to a certain
es formal specification or pre perty, v ing formal methods. Figure 4 depicts the
state machine automata of owm  ~<.aitoring and reconfiguration framework. The

following sections des -ibe m d- cail this system state machine.

5.2.1. Workflow " fo1. *oring

As mentioned - oo 2, monitoring consists of collecting the logs and QoS infor-
e0 Mmation regara. o ull the entities of interest, such as tasks and resources. It is

also respo sibl’ for updating the trust scores of each task using the collected

logs analys.. cesu’ss. Upon violation detection, a violation message is sent to

the re configu "ation manager. During monitoring, the states of each entity are

updatc 1 and ".ept in the system for further use during the reconfiguration state.

30




665

670

675

680

690

5.2.2. Workflow Reconfiguration
Upon a reconfiguration decision, the AR module decides what new ¢. ~figu...tion
is suitable for the situation. The following is the descriptio . ot the possible
changes and the implication of each change regarding the state  che WF), task,
and resources. The AR module first checks the state . the task, according
to the task type (if the task allows scaling during the ru. ning ¢’ ate).The task
status (e.g. completion time) is estimated based or the *, e of the task. For
example, some tasks’ status is estimated based on e pe centage of output
completion, other types of tasks’ status are estimatea Mased on calculation of
execution time, which is based on the input size ~nd allocated resources. If
the task type is scalable, then scale up or down (b. ~pplying the change in the
configuration file and deploy) and update the +ate of the task accordingly.
Scale up: run additional replications ¢ the v..x on more nodes to handle the
heavier traffic input, then update t& <state vith the new number of replicas.
Scale down: when unused replicas are devected, then the replicas are deleted,
then update the state with the new ~umber of replicas.
Reconfigure: change the denloyment configuration for the task by changing
the node or cluster assign aent according to considerations such as task type,
task state, and task dep ndenc, " he task type can be scalable or non-scalable,
and the task state can e v .itin ,, running or complete, and the task dependency
can be dependent ¢ 1 other .. sks or other tasks dependent on this task.
Usually, the type ot . ~onfiguration decision is taken following a QoS viola-
tion. For exan ple, . migration decision is only taken depending on the severity
level of the viola on and the state of the task. If there is an issue within the
cluster (e ,., C"*U cverloaded) and the processing performance is degrading over
time, then the e ision is to migrate the task to another cluster having the best
QoS rust scc e recently measured. In order to satisfy the self-adaptation fea-
ture du,. =~ econfiguration, specifically the migration decision, the state of the
1ask play a significant role. In other words, migration should consider the task

ana ' uependent tasks including all the dependent task list. for simplicity, we
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do not need to migrate the predecessor tasks. Moreover, all the ‘epe .dency
input data should also migrate.

In case the cluster performance is degraded with a rate hig}l :r v 1an a certain
threshold, migrating the whole workflow is considered. If the v. "V state is ‘wait-
ing,” then the migration is straightforward, and the tas! along with its input
dataset is migrated to the new destination (e.g., node). Howev r, if the task
state is ‘completed,’” then migration is performed fo- the - maining dependent
tasks in the workflow along with their input datasev. Neve theless, when the
task state is ‘running,’, many issues should be handlea . » the workflow required
QoS is not affected. On the one hand, if the viola 'on t, pe is causing a service
interruption, then we restart the task from the bc “nning at the new destina-
tion by resetting its state to ‘waiting.” On .-e other hand, deciding whether
to move the task immediately or wait ‘nuu .. ompletes depends on the task
completion status. The task comple "~ stc “us can be measured by calculating
the percentage of generated output da a against the expected output data. If
the percentage of completion of a . <k 1s nigher than a certain threshold, then
we wait until the task is ‘comnleted’” and migrate the remaining dependent tasks
in the workflow. Otherwis , the ta k is considered at the beginning stage, and

it is reset to ‘waiting’ st «te, tu.~ nigrated to the new destination.

5.8. Quality Metric:
The following in T ab.. 1 are the common metrics and thresholds used to help in
adaptation dec’ .. making and reconfiguration actions. Such threshold values
are based on he application domain, workflow type, and user requirements.
These valr os a~e recvaluated for every workflow according to its application
domain an’ - atur ..

T ¢ prior‘ty of each of the above metrics varies according to the task QoS
requir. ments We define two classes of priority, high Priority and low Priority.

F arther: ~ore, we define two violation alert types, severe and moderate as:

sev. " olationAlert(x) +

(I wrriority(x) N EX lowPriority(z)) V highPriority(z)
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moderateViolationAlert(x) < lowPriority(x) A — highViolatior Aler. (x)

The reconfiguration decision is issued when a violation alert i rec. ed and

includes either a high or low violation:

reconfig(x) < highViolationAlert(z) V lowViolationA cri(x)

Table 4: Quality violations.

Quality Violation | Lhreshold
abnormalC PUUtilization (z) 80%
abnormal HighMemU'tilization (x) 80%
abnormal LowMemUtilization (z) 15%
abnormal N etwork Availability () 10%
abnormal Disk Avail (z) 80%

5.4. Validation-based Model Checke.

The following describes our _. nitoring system where an administrator con-
figures and initiates the r. ~mitorin process after workflow deployment. Once
the system initializes t! ¢ monite g process, the QoS logs are generated, and
the following actions « = sequ ntially triggered when task abnormality is de-
tected: Analyze @ S Info, Store QoS Logs, Detect Task problem, Reconfigure
Task, Change Devloymer.., and Generate Report. Figure 4 detailed in section
5.2, describes .he f aite state machine of the workflow monitoring and adapta-
tion systemr wherce ~ unique name identifies each state and connected to other
states thr wugl app’.cable transactions. The transactions are labeled with names
corresr _ding . the actions.

A cording ;o0 the type of detected problem, the system takes an appropriate
ar’..a to waintain the required workflow QoS level. In the case of detecting an
i sue wit) task execution, such as low task response time is encountered then a

scale up state is initiated where more containers are allocated for that task.
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To formalize our monitoring system, we assume that our system is ~myp ssed of
a set
M = {1,2, ..., n}, of n services interacting together. Eacl ser 7ice i ¢ M is

defined by:

1. A set of LS; finite local states as shown in Figure 4 v aere sta t_monitoring,
analyze_QoS_info, store_QoS_info, and detect_task nro.’ ~ are some of the
system local states.

2. A set of LA; of finite local actions as show.. in 1. are 4, for instance,
send_generate_logs, send_task_qos_results, . ~d send_ enerate_report are some
of the system local actions.

3. A local protocol Pr; : LS; — 2LA .§ a tunction that describes the set

of allowable actions at a given loca' ~tate. ko example, the following is one

protocol depicted from Figure 4. Pr, (inalyzeQoSInfo) ={send_cluster_qos_results,

send_task_qos_results}.

At a given time, the configuration . © all services in the system is characterized
as a global state S of n elements represented as gs = {e1,ea, ..., e,}, where
each element e; ¢ LS; de otes a .\cal state of the service i. Hence, the set
of all global states GS - : {L5, XY LSy X ...X LS.} is the Cartesian product
of all the local states ~f 7 serv.ces. The global transition function is defined
as T GS X LA - GS, ue e LA = {LA; X LAy X ... X LA,}. The local
transition functica is av”ned as T; LS; X LA; — LS;.

Definition (I:od 1) Our model is represented as a non-deterministic Buchi

automaton as o mintuple MDL = (G, TR, I, F, v ) where:

1. G & I ,1XLSyX ...X LS, is a finite set of global states of the system.
2. 7 1 C G a Gis a transition relation defined by (g, ¢g) € TR if there exists
joint ¢ ction (a1, agz, ...,a,) € LA such that TR (g, a1, ..., an) =¢'.
a; s called a joint action and is defined as a tuple of actions.
3. I C G is a set of initial global states of the system.

B C (@ is a set of final global states of the system.
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5. V: AP — 2€ is the valuation function where AP is a finite £ + of itomic

propositions.

Then MDL, is a Deterministic Buchi Automaton (DBA) if .nd -y fV g €
GS and a €4 it holds that |TR (g, a)| = 1.
Having this formal representation of the system, allow: easy i1 plementation
using the symbolic model checker, MCMAS [51]. The MCwnI*< o0l is used for
automatic verification of the correctness of the systen exr .ess' d in Computation
Tree Logic (CTL) against the reachability, livenes. and = .ety properties [52].
It helps in checking and confirming that our r ~del mee s its specification and
expectations exhaustively and automatically.
Definition (Syntax). The CTL synta .. .cpiesented using the following
grammar rules:

Ou=p|-D|DdV P|EXDP|LFP|E (PU P) where the atomic
proposition p € AP; E is the existentic '  “am fier on paths, and X, G, and U are

9

path modal connective standing f - “nexy”, “globally”, and “until”, respectively.
The Boolean connectives — and V a. > defined and read as “not”, and “or”
respectively.

Temporal properties:

The correctness of our ‘ yste n model can be checked using CTL by demonstrat-

ing the following signihe t prperties:

1. Reachabil’sy p. ~verty: given a certain state, is there a computation
sequence’ to 2ach that state from the initial state? The used reachability

propertie. ~ e defined as:

®1 = EF Detect_App_Abnormality (4)
&2 = EFChange_Deployment (5)
®3 = EFSave_-QoS_Logs (6)
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The formulas ¢1, ¢2, and ¢3 check whether or not there exis < a - ath to
reach the Detect_App_Abnormality state, Change_Deployme,." state, and
Save_QoS_Logs state respectively.

®4 = E(—Analyze_QoS U (Analyze QoS N EF!' ollec. QoS)) (7)

The formula ¢4 represents that there exists a path w. =re th  Analyze_QoS

process will not start analyzing QoS data unti’ the 7. data is collected.

. Liveness property: this property reflect~ that “c.mething good will

eventually happen.” For example, in all paths glou lly if the System Ana-
lyze QoS detects an abnormality, then t’ ~re 15 > = .th in its future through
which the system will deploy the chanoe f~. jutomatic reconfiguration

thereby enhancing the quality of the orc.. >stration.

5 = AG(Detect_App-Abnermai.' | — EF Change_Deployment) (8)

. Safety property: this prenerty ¢ 'sures that “something bad never hap-

pens.” An example of a bad s. mation is when the user enters correctly
the required informati .. “o configure the system, but the latter never

initializes the monit. -ing cyc 3.

®6 = AC - (Config-Monitoring (Correct_Info) A (9)

b7 = app_Start_Monitoring)

6. Experimen*- and Evaluation

In addition, to .. above monitoring system validation using model checker, we
describe i' thi- section the experimental evaluation we conducted to assess our
workflow mo. *to'.ng model. Therefore, we first evaluate the system overhead
then ve evalu vte three adaptions schemes we propose to dynamically reconfig-
ure the v jow during its execution to respond to any cloud services perfor-
1wance a gradation. We first, describe the environment set-up we configured
anw *P- gey modules implemented to support monitoring and adaptation. We

th n uepict the workflow we developed for evaluation purposes and the dataset
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Figure 5: System impl .. '~*ion architecture.

we chose to execute our workflow. 4 s “ ot scenarios were carefully chosen to
evaluate workflow monitoring a» * *he o ferent adaptation schemes we imple-
mented. Finally, we report and discu.. the results we have obtained from the

experimentations.

6.1. Environment Setur

Figure 5 describes the ~ viro- ment we established to execute, monitor, and
dynamically adapt ~nur workitlow to respond to different performance degrada-
tion situations. Tn the 1cilowing, we briefly describe each component of our
experimentati m cc afiguration:

Docker Sy am " ister. The Docker swarm cluster consisted of one master
node ancd fouw wor .er nodes. We used Oracle Virtual Box driver to create the
Docker ..odes. .aese Swarm nodes can run any operating system and be man-
aged m any ¢ oud infrastructure. The workflow shown in Figure 6 is deployed
0 wue Swarm cluster, and a Master node performs the orchestration and clus-
t r mana jement required to maintain the desired state of the swarm. Worker

nodes receive and execute tasks dispatched from the manager/master node. To
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deploy an application to a swarm, a service definition is submitte to . man-
ager node, and the manager node dispatches units of work, callea .~sks, . the
worker nodes [53].

Swarmprom Cluster monitoring tool. This is a monitor.. ~ tarter toolkit
for Docker swarm services [54] equipped with Promether 5, Gra‘ana, cAdvisor,
Node Exporter, Alert Manager, and Unsee. These tools s. "ve in - roviding con-
tinuous system performance measurements that are coller’ ~1 and analyzed by
our monitoring system. Swarmprom Grafana [55] is configu ed with two dash-
boards and Prometheus [56] as the default data source. Monitoring parameters
include CPU, memory, storage, and nodes, and r . et eus rules were used to
monitor these parameters. Alert manager uses >. -k, which is a cloud-based
team collaboration tools and services. It bring - team’s communication together
where conversations are organized and mau. . zessible [57]. The Swarmprom
Alert Manager can direct alerts thrc ~h the Slack webhook APIs that is posted
to the specific channels and alerts the cc cer.ied Managers and Service personnel
who are on the move.

Adaptation Decision Module: This implements different reconfiguration
decisions and is developed n the P\ vl language. An agent runs as a background
process, which constant’ ; mon. ~ 5 the CPU and memory status of the Docker
services. Based on ruv es, “ne 2 iaptation decision module inspects the Docker
services and perfor as the 1.. essary automatic reconfiguration of nodes in the
cluster, such as scale up ~r scale down the services.

Visualizatior Mc dule. This implements a dashboard to visualize in real-time
monitoring info.. ation, including resource usage of both Swarm nodes and the
services 17 anir 2 on these nodes. It also integrates some visualization features,
such as Zooun. ‘n .nd out, and filtering. Graffana is an open source monitoring

dasht oard im lemented with Docker.

€ 2. Weckflow and Dataset Description

In "his < ction, we describe the dataset we used in our workflow as well as the

W .n..ow implementation and its composing tasks.
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Figure 6: Health mon. o. ~a w. ckflow description.

6.2.1. Dataset

The dataset we used to impl- ~nt our workflow was retrieved from the Multi-
parameter Intelligent Mo 'toring 1 Intensive Care III (MIMICIII) database
[58]. The dataset incory orates si.. y thousand admissions of patients who stayed
in critical care units .."~d":al € enter between 2001 and 2012. The database is
available via Physi Net, a weo-based data resource that contains various physi-
ological records. '[he ava. xble clinical information includes patient demograph-
ics, vital sign - 1eas' rements, hospital admissions, laboratory tests, medications,
fluid intake recor..  and out-of-hospital mortality. We chose this dataset as it
conforms witl the characteristics of Big Data as it depicts high volume, and
velocit ~nd v. - ity (diverse). Therefore, it can be considered as a very rep-

resen ative da aset that feeds the different tasks and processes of the workflow.

(.2.2. Workflow Description
Fiy -~ ¢ describes a health monitoring workflow we developed using the MIMICIII

de Lasct to evaluate different aspects of an automatic reconfiguration workflow
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Figure 7: Monitoring time line.

scheme we proposed in this section. The workflow s d- pi6_ed on the Swarm
cluster with PostgreSQL installed and the MIMIC' datah=-: tables loaded au-
tomatically [59] to perform the service tasks as outlini 1 in the workflow. It
consists of a set of tasks some of which are st ent.. ' .nd others parallel. The
sequential tasks include retrieving data fr~— * {IMIC database and con-
ducting data processing, while the parallel tasks ‘nclude training and prediction

tasks.

6.3. System QOverhead Measurement

6.3.1. Latency Owverhead

In this section we describe th~ '~tency of our framework from data collection to
making a decision. For ex 'mple, i the following scenario described in Figure
7.

T1 is the violation a."ec ion ime (e.g. cpu utilization overload) T2 is the
reconfiguration act’ w start («dd node) T3 is the reconfiguration action complete
(node is ready) We calc 'ate Latency = T3 — T1. Adding a new node is

immediate it t «kes ew milliseconds. The mean latency is measured to 4 ms.

6.3.2. Co vmu .ication Overhead
We estimate *he communication overhead by measuring the size of the ex-
chang >d mes. vges in the monitoring and the adaptation modules in bytes as

follows.

Cize(gel LTSMsg) = 14 number of quality attributes + number of tasks
(10)
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Size(replyLTSMsg) = (size(LTS, - number of tasks) + number of violations

(11)
, where size (LTS) is 2 by’ »s.

size(AllRepM  g) = Siz :(replyLTSMsg) x number of nodes (12)

Figure 8 depicts Jhat 1..° communication overhead is proportional to both the
number of noc s iy the cluster and the number of selected quality attributes
used for trust 1. asurement. With 100 nodes, 50 quality attributes, and 100
tasks in 8 wor! dow the calculated overall communication overhead was nearly
negligible (2. ¥} ytes). This proves that our monitoring and reconfiguration
frame work is ‘ghtweight as it does not incur a heavy load on the workflow nor
the clou ' =~ Jurces handling it.

I rom ou. experiment results we can conclude that our framework is effectively
res, ~~.ng to dynamic cloud environment changes when compared to non adap-

te .1ou scenarios. In our decision making we take into consideration two sources
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of information: past experience which is used for prediction of res "rce status

and the current monitoring information.

6.4. Cloud Workflow Adaptation Strategies

We use the same workflow with different data sizes and y ocessing complexity.
Our baseline for comparison is workflow without adaptat n or re onfiguration,
measuring throughput, response time, CPU utilizatio ., nemory utilization, and

execution time.

6.4.1. Scale-up (Client Gain)

In this scenario, we overload some nodes with ex. *a processing tasks to affect the
QoS of our workflow under investigation. ve cneck the effect of our proposed
framework including the monitoring an- the autu.natic reconfigure modules on
the QoS performance of the workflow. Fi. +* the monitoring module will detect
that the currently running tasks ha.= I~we. performance due to overloading
of assigned nodes. Then, it for- .. '~ = .1essage to the AR modules which in
turn will issue a scale-up command me. sage to the specific task at the assigned
cluster (node). Scale-up w'.i au’ more nodes to process the task, which will

result in improving task pe. ~rmar :e.

6.4.2. Scale-down (Pi. i r G .in)

Scaling down is pe’ ~rmed when resources are not utilized in an optimized man-
ner. This is done when tun. monitoring module detects low utilized nodes’ CPU,
which requires dele ion of under loaded nodes from the cluster. In this scenario,
we add an .nnece. “ary number of nodes in the cluster handling the task and

check the nerf,ormes ace of the cluster before and after the scale-down.

6.4.8 Migra. on (Client and Provider Gain)

Workfle - =7 ration is usually needed if the cluster is overloaded with no extra
1sources available to be added to the cluster. In this scenario, we overload
all "~ Lodes of a cluster until they become slow in processing workflows as

re juired, this will necessitate a migration of the workflow to a new data cluster.

42




925

930

935

940

945

We observe the performance of the workflow and the cluster befc ~ ar 1 after

the migration is performed.

6.5. Results and Discussion

In our experiments, we run the aforementioned workflow - cveral tin.es through
which we use different dataset sizes and processing resour ‘e capac ty. We apply
our adaptation strategies to the workflow executior and compare the perfor-
mance against a baseline scenario with no adaptat. . sche ne, such as CPU
utilization, memory usage, and trust scores. We ru. our monitoring system
throughout the workflow execution. In our expe. ments we have collected and

+

inspected data samples from a set of samples, ti.* constitute a representative
selection from all data measurements. We 1. ~k random sample from a popula-
tion to compute the mean and to find . ., ~=oximation of mean of a sample.
Additionally, we built confidence in*erval o see how well the mean estimates
the underlying population which give 1e 1. nge of values within which there is a
specified probability that the valu. o1 a p.rameter lies in it. In our experiments
we choose to use 95% confidence interval. Here every point on the graph is
an average of 10 measuren :nts ta. »n in 30 seconds duration. For example, for
memory usage in scenari~ 2, 1. st f the taken values within the 95% confidence
intervals were overlap  ing, which verifies that our experimentation was rightly
done. We used 10 r .easuic ~ ats for each point on the graphs representing all
our experiments. Ada. ‘onally, in all our experiments, every point on the graph

is an average o’ che measurements taken in 30 seconds duration. We considered

the following a. “ 4t simulation parameters:

e No. ~ Tach iode in our cluster has an Intel CoreTM i7-3770K CPU @
? «wGHz v..th Turbo Boast, 32GB of DDR3 RAM, 1TB hard drive, and

34-bit o erating system
e Nu nber of Clusters: 1 -3

e vumber of nodes within each cluster: 1 - 6
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Figure 9: CPU utiliza.. = shares.

Scenario 1:In this scenario, we evalua. - che CPU utilization of a workflow
among the nodes in the cluster. Figu.~ » ~hows that CPU utilization increases
as the workflow services are exc .. *owever, the CPU utilization reaches
significantly high values when the numur of services increases. Thus, our mon-
itoring system detects this 1ssue und alerts the reconfiguration system which
decides to add a new node « 4, a cordingly, the load on the existing nodes is
relaxed.

Scenario 2: In this scew. “io we evaluate the workflow memory usage for one
of the nodes in t' e  *ster. After adding a new node to the cluster resulting
from an adapts ... » decision, the overall memory usage is significantly lower
when compai. ' t# the usage in the case of no adaptation applied despite the

increase ir che ~ize o. the dataset as depicted in Figure 10.

Scenario ' (n t! 18 scenario, we monitor the CPU utilization and the memory

usage of eac! task in the workflow. Whenever the CPU and memory perfor-
mance ‘s degr «ded, the reconfiguration system suggests adding resources to the
¢ aster £ ch as a new node in order to enhance the overall performance. Figure
1. shows some examples of tasks’ memory usage and CPU utilization before

w.. ~fter adding a new node during which the dataset size increase overtime.
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Figure 12: Service trust (1-s =p and 2-step adaptation).

The figure clearly shows the enhanced performance after adding an extra node.
Scenario 4: In this scens 10, we ¢ mpute different service trust scores for pro-
cessing and database se’ vices. " are 12 shows examples of service trust scores
evaluated over time d rinc whi h the dataset size is increased. The trust score
decreases as the de a size 1. reases till a threshold is reached and a new node
is added to the ciusteir. The two upper figures of Figure 12 shows one step
adaptation, ar 1« tt » lower two figures depict two-step adaptation. The more
the data increas. the more nodes are required to process this data, and the
trust scor s in‘ rease after adaptation (i.e., adding extra nodes).

Scenario_b. ™ nis scenario, we use scaled-down adaptation were we delete
select °«d unde loaded nodes when the CPU or memory utilization degrades.
Fignre .7 <+ ,ws an example of a service resource utilization versus the number
t nodes. We start at six nodes, at which we detect a low memory usage and
Cr 7 -'uization per service. The system decides to delete two nodes which

in reases the utilization to an accepted level of about 25%. The figure also
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Figure 13: Scale down re ou -es cue to low utilization.

shows low Trust scores for some serv.-=s and the overall workflow when we use
an unnecessarily large numb _ ~f nodes. The trust score increases when the
utilization improves after Japtatic 1 (i.e., node deletion).

Scenario 6: In this sc nario, w reduce the data size to reach low resources
utilization. The moniu. “ir 2 sy .em detects the low utilization quality violation
and issues a node ‘eletion adaptation decision. Figure 14 shows that after a
reduction of data size, mc aory usage and CPU utilization degrade and eventu-
ally the trust - core lecreases. After deleting the node, the trust increases again
as the resor .ce uv.’*zation improves.

Scenari: 7: n tlis scenario, we perform a two-stage up-scale by adding a
node 2’ ach > ge. In the first stage, we use smaller dataset sizes, and we
increi ented 1 gradually. When the task CPU utilization and memory usage
in-__ase auvuve a threshold, a new node is added to the cluster. In the second
< ‘age, we further gradually increase the dataset size until the monitored QoS

attrivuves increase beyond the required threshold, and then another node is
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added. The results show an improvemen of the performance after adding a
node as shown in Figure 15. For son = ¢ the monitored services, the second
stage adaptation does not reduc. tne T °U utilization but maintains a good
performance level to compensate for the dataset size increase and prevents the
service performance degra ation. The figure also shows that our adaptation
mechanism displays bett~r Qu." ne .ormance levels in comparison to the baseline
of no adaptation servi e pr forrrance.

Scenario 8:In thi- scena. ~ we perform multi-fold adaptation to optimize the
total workflow ex cuti. ~ time and CPU utilization. We monitor the aforemen-
tioned quality .ct1 Hbutes and perform multiple node additions and adaptation
actions until w. * ach the required quality level. Figure 16 shows a high CPU
utilization .eve’ which triggers an adaptation action of adding a new node. How-
ever, the sc. md aonitoring cycle detected a quality violation and thus more
nodes are ac 'ed until we reach an adequate CPU Utilization. Adding nodes
reveale ' an * aprovement of the total execution time as shown in Figure 16.
/ cenar.  9: In this scenario, we evaluate the migration adaptation decision.
T. > cur ontly used cloud cluster has limited resources and shows no possibility

01 w..ner resource addition. Upon a quality degradation detection, in this case,
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Figure 17: Total execution time a. 1 C. U utilization after migration.

CPU utilization, the reconfiguration manager reacts with a decision to migrate
the workflow to another se’ :cted ' ster offering more resources that can fulfill
the requirements of the work. ~w v ider investigation. For simplicity we decided
to migrate the full wor <flov to =nother cloud since at a certain data size (6000
rows), the monitorir ; mou 'a etects an unaccepted degradation of performance
while there are n mc ~ cloud resources to accommodate the increase in data
size, the workfl w . long with its dataset is moved to another cloud. The results
show an avera,~ 1 11.5% improvement of the total workflow execution time
and a sigr dca’ t enhancement of CPU utilization after migration for different

sizes of the ' tasr, as shown in Figure 17.

6.6. (werall 1 iscussion

I . this s~ction, we discuss and evaluate our experimental results, which validated
o r mon’ oring and reconfiguration model by adopting the following strategies:

~verload the system and monitor the workflow and cloud resources, and 2)
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underload the system and monitor the workflow and cloud resources Aft :r that
we test the reaction of the system and its effect on quality. Our o. ‘octive is to
keep the quality performance within the user’s required ranges na She accepted
trust scores.

Results show that our monitoring system detects t'e viol~tion triggered
when the quality attribute performance goes out the accer =d or r quired range.
This is reported to the automatic reconfiguration s+ stem -hich in turn issues
the appropriate action to keep the required qualitv level.

In scenarios 1 through 4, we overload the system, . onitored the CPU uti-
lization, memory usage, and trust scores, and a. ~cte . the quality violation.
In all scenarios, the possible reconfiguration action. such as adding new nodes
at different stages, confirmed the improveme. * of the overall performance. In
scenarios 5 through 6, we underload the ys.. .. ‘0o detect lower resource utiliza-
tion; then the reconfiguration mana; '~ wou 1 deallocate nodes as expected and
accordingly improve the resource utiliz. tio...

We also tested the workflow mig ~tion and its effect on total time execution,
and the results showed a significant improvement.

In terms of scalability of cloud resources, our experimenta-tion setup in-
cluded 6 nodes which v e juag - sufficient to evaluate our proposed adapta-
tion strategies. Howe -er,  his - etup can scale with more resources and nodes
whenever the work’.ow cown., .exity increases, and its processing and analytics

requirements are crucia.

7. Conclusion

Provision * € ioud workflows QoS during execution necessitates monitoring and
adapt: vion. The complexity of this process arises because of the dynamic na-
ture ¢ cloud esources and services, the variety of resources provisioning, and
t' ¢ variation of the workflow contexts and requirements. In this section, we
L oposed a trust-based model to support monitoring and adaptation of cloud

~rkflows to guarantee a required level of QoS. This model handled the dy-
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namic nature of cloud resources and services and coped with the c¢- mpl xity of
workflow monitoring and adaptation. The proposed model suppoi. 1 wo.’ flow
self-reconfiguration and self-adaption. Workflow reconfigurati- a 1= triggered to
respond to performance violation detection after real-time mc #* sring of cloud
resources. To capture different dynamic properties of the v orkflov” and the cloud
execution environment, we formalized the cloud resource ~rchest ation using a
state machine and we validated it using model check :r.

We conducted a series of experiments to evaluate var we kflow monitoring,
and adaptation using various monitoring and adaptatio.. scenarios executed over
a cloud cluster. The workflow is implemented anu 'epls yed over a Docker clus-
ter. It fulfills a set of health monitoring processes . nd datasets where resource
shortage is contingent to workflow performa. ~e degradation. The results we
obtained from these experiments prove.' tue . 1 automated workflow orches-
tration model is self-adapting, self-r ~figu, ng and reacts efficiently to various
cloud environment changes and adapt «~co. lingly while supporting a high level
of workflow QoS.

As future work, we will use the prediction of resource shortage to guarantee
QoS prior to violation. Th's will st. 2ngthen our model to benefit from both real
monitoring and predictic a to p. > tively react efficiently to performance degra-
dations and resource s ‘ort ge. " Ve are also currently extending our model while
considering more 2 splicati. > to be tested using our framework and provide

more performance evalu *ion scenarios.
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