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ABSTRACT 

Development of analytical methodology for measurement of oxylipins in brain 

tissue and plasma 

Alexander Napylov, M. Sc. 

Concordia University, 2019 

 

 Oxylipins are bioactive oxygenated products of long chain (18-22 carbons) polyunsaturated 

fatty acids. They play an important role in different physiological processes acting as local 

hormones, so they may be used as biomarkers of these processes. In addition, the pathways and 

exact biological functions of many members of this family are not clear and need further 

investigation. To enable such investigations, it is important to have reliable and accurate analytical 

methods for oxylipin measurements in biospecimens such as blood and tissue.  

 The analysis of oxylipins in biological matrices is challenging due to their low 

concentrations and the existence of many oxylipin isomers. So, the first objective of this thesis was 

to develop a sensitive LC-HRMS method for the quantitative analysis of oxylipins, that provides 

separation of isomers and works in a scan mode in order to enable comprehensive oxylipin profiling 

and further investigation of unknown oxylipins in real samples. To achieve this goal, different LC 

stationary phases were assessed to obtain maximum separation of oxylipin isomers and a C-18 

UHPLC column was determined as the best choice for this separation. Also, different mobile phase 

additives were assessed, and it was found that 0.02% (v/v) acetic acid in mobile phase gives 

maximum sensitivity by increasing ionization efficiency. After LC optimization, three pairs of 

oxylipins among 65-standard mixture were still unresolved chromatographically. MS/MS 

fragmentation of these oxylipins was developed to resolve these three pairs. Thus, the final LC-MS 

method allows for a measurement of 62 oxylipins and seven deuterated standards in 40 min and 

with LLOQ 0.1-0.8 ng/ml.  

 Another challenge for oxylipin analysis in plasma and brain is the complexity of the 

biological matrix that can affect the sensitivity and accurate quantitation of the method due to 

possible matrix effects. Thus, the second objective of this thesis was to develop and optimize 

sample preparation methodology to decrease a possible matrix effect and achieve the best limits of 

detection in biological matrices. Solid-phase extraction (SPE) was chosen for method development. 
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During development, the following parameters were optimized: SPE sorbent type, elution solvent 

composition, elution solvent volume and sample treatment before loading. Due to the low 

abundance of oxylipins in biological matrices sample preparation requires preconcentration step 

following the extraction. This step was found to be critical for method reproducibility and was 

systematically optimized to decrease possible losses of analytes during this step. The final 

developed and optimized sample preparation method in combination with LC-MS was then applied 

to plasma and brain tissue samples. The average recovery was 70-97% and the matrix effect was 

27-105%. High inter-individual variabilities and a wide range (0.26-681 ng/ml) of oxylipin 

concentrations in human plasma samples were found. Some high concentrations of oxylipins such 

as 408±35 ng/ml for 9-HETE were reported at first time. To accommodate this wide linear dynamic 

range, two injections were required, one with dilution for the accurate measurement of high 

abundance oxylipins and one with pre-concentration factor to enable the measurement of low 

abundance oxylipins.  In general, the developed method allowed to detect 38 oxylipins in pooled 

plasma and accurately quantitated 25 of them.  

 In rat brain tissue samples, the concentration range of oxylipins was narrower than in 

plasma 0.14-13.1 pg/mg of wet tissue and in general, 43 oxylipins were detected, among which 41 

were accurately quantitated. The main issue with post-mortem analysis of oxylipins in brain tissue 

is the possibility of post-mortem formation of oxylipins, which can result in a 50-500x increase in 

oxylipin concentrations. Also, in vitro methods for the analysis of oxylipins in brain tissue do not 

allow multiple measurements to be performed with the same experimental animal over a period of 

time. This poses a critical limitation during the investigation of biochemical pathways in response 

to particular stimulus. In vivo solid-phase microextraction (SPME) could help solve these 

problems. In vivo SPME was performed in moving awake rats (n=15) in collaboration with the 

Centre for Addiction and Mental Health (CAMH) and the resulting extracts were analysed by LC-

MS. Twenty (20) oxylipins were identified using authentic standards. In addition, 32 unknown 

peaks corresponding to expected oxylipin m/z were detected. Among these, 18 were unique to in 

vivo SPME while the rest were also detected in post-mortem SPE samples. Six (6) out of 32 

unknowns were subsequently identified as oxylipins. Further characterization and identification of 

other unknowns will be performed in future. To the best of our knowledge, this is the largest 

oxylipin panel ever detected in vivo from the brain tissue of living animals and provides an 

important new tool in neuroscience. 
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1 Introduction 

1.1 Eicosanoids 

The term “Eicosanoids” was introduced in 19791 to denote the family of biologically active 

oxygenated carbon-20 unsaturated fatty acids where arachidonic acid (AA) (Figure 1.1) occupied 

a central position as precursor.2 In contemporary terms the term “Eicosanoids” is a part of more 

wide term “Oxylipins” that encompasses bioactive oxygenated products of long chain (18-22 

carbons) polyunsaturated fatty acids.3 However, some authors claim that oxylipins are oxygenated 

fatty acids derivatives from plant tissues whereas corresponding series of metabolites in animals 

tissues belong to the eicosanoids.4,5 This thesis will focus on eicosanoids derived from arachidonic 

acid. 

 

Figure 1.1 Structure of arachidonic acid. Structure obtained from LIPID MAPS6. 

Eicosanoids are divided into four groups according to the AA oxidation pathway: 

Cyclooxygenase pathway (COX) - Prostanoids (Prostaglandins (PGs) and Thromboxanes (Txs)); 

Lipoxygenase pathway (LOX) - Leukotrienes (LTs), Hepoxilins (HXs), Lipoxins (LXs), 

Hydroxyeicosatetraenoic acids (HETEs), Dihydroxyeicosatetraenoic acids (DiHETEs); 

Cytochrome P450 (or Epoxygenase) pathway (CYP or EPOX) - Epoxyeicosatrienoic acids (EETs 

or EpETrEs), Hydroxyeicosatetraenoic acids (HETEs); Nonenzymatic pathway - Isoprostanes 

(IsoPs), Hydroxyeicosatetraenoic acids (HETEs). Each pathway is named by the enzyme that 

catalyses this step. Enzymatic pathways are known collectively as “arachidonate cascade” (Figure 

1.2).7,8 
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Figure 1.2 Major eicosanoid biosynthetic pathways. The metabolites of the major pathways are 

indicated in color: COX (purple), 5-LOX (orange), 15-LOX (green), 12-LOX (yellow), CYP 

epoxygenase (red), CYP v-hydroxylase (cyan), and nonenzymatic oxidation (gray). The products 

of arachidonic acid metabolism are illustrated, but similar products can be formed from other 

fatty acids (e.g., linoleic acid, eicosapentenoic acid, and docosahexaenoic acid). FLAP-five 

lipoxygenases activation protein. Reprinted from reference 8. 
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In general, each eicosanoid enzymatic pathway has three stages: 1) Activation of 

Phospholipase A2 (PLA2) which releases AA from membrane phospholipids; 2) Enzymatic 

oxidation of AA by one of the specific enzymes and formation of eicosanoids; 3) Exit of 

eicosanoids from the cell presumably via carrier-mediated transport and acting through G-protein-

coupled receptors close to the site of their synthesis. Eicosanoids have a short lifetime and after 

acting they are rapidly inactivated, e.g. half-life of PGH2 is around 5 minutes in aqueous solution 

and seconds in plasma; half-life of TxA2 in plasma is around 30 seconds.9 Inactivation of different 

eicosanoids can be performed by different pathways but in general it leads to a decrease of their 

biological activity and an increase in their water solubility (e.g. by further oxidation) to facilitate 

excretion in the urine.7,8 

1.1.1 Mobilization of AA 

Mobilization of AA is a common first step in all eicosanoid pathways. AA is stored at the 

sn-2 position on the glycerol backbone of membrane phospholipids and usually only small 

quantities of the free acid form of AA exist in the cells. To be used for biosynthesis of eicosanoids, 

AA is released from the cell membrane by a specific enzyme – phospholipase A2 (PLA2) (Figure 

1.3).10  

Figure 1.3 Specific reaction catalyzed by phospholipase A2 at the sn-2 position of the glycerol 

backbone is shown. X, any of a number of polar head groups; R1 and R2, fatty acid chain (alkyl 

or alkenyl groups). Reprinted with permission from reference 11, Copyright 2011, American 

Chemical Society. 

 
PLA2 is a superfamily of enzymes that contains at least 16 groups that play important roles 

in different biological processes. They can be divided into six types: cytosolic PLA2 (cPLA2), 

secreted PLA2 (sPLA2), calcium-independent PLA2, platelet-activating factor acetylhydrolase, 

lysosomal PLA2, and adipose-specific PLA2.
10,11 The most relevant in AA release are Ca2+-

dependent cPLA2α (Group IVA)11 and sPLA2s (Group IIA and V).12 Group IVA cPLA2α, Group IIA 

and Group V sPLA2s have common structures that contains highly conserved Ca2+ binding sites 

and a catalytic site.10 As the secreted enzyme, sPLA2s, acts on membrane lipids extracellularly, its 
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levels are regulated transcriptionally in response to cell activation. cPLA2α hydrolyzes lipids on 

intracellular bilayer membranes including membranes of cellular organelles. It can usually be 

found in resting cells and is directly involved in the immediate AA release.7,11 Activation of 

phospholipases A2 starts from the interaction of various stimuli (e.g. Interleukin-1 beta (IL-1β), 

thrombin) with their receptors on the cell surface that leads to an increase of concentration of 

cytosolic Ca2+ in the cell.7 Ca2+ interacts with the Ca2+ binding site of the Group IVA cPLA2α that 

leads to its translocation to intracellular membranes.13 Also, it was shown that Group IVA cPLA2α 

can be activated in a Ca2+ independent manner by binding to the phosphatidylinositol-4,5-

bisphosphate (PIP2) and ceramide 1-phosphate (C1P) as well as by phosphorylation and membrane 

interactions. Groups of sPLA2s also showed high dependence of activity from Ca2+ 

concentration.10,11 

1.1.2 Cyclooxygenase pathway (COX) 

Prostanoids are a group of eicosanoids that consist of prostaglandins (PGs) and 

Thromboxanes (Txs) and are formed by action of COXs (Figure 1.4). PGs are hydroxylated, 

unsaturated carboxylic acids that contain a cyclopentane ring, a hydroxyl group at C-15 and a trans 

double bond between C-14 and C-13. These eicosanoids are probably the best studied group of all 

arachidonic acid metabolites.7,14 The letter that follows after the PG abbreviation (e.g. PG-X) is 

determined by the nature and position of oxygen-containing substituents in the cyclopentane ring 

that emanate from C-8 and C-12 (each letter reflects a certain set of substituents and there is no any 

logical dependence between letter and substituents). The numerical subscript shows the number of 

carbon-carbon double bonds in the side chains and the Greek subscripts show orientation of 

hydroxyl group in the cyclopentane ring. For example, prostaglandin F2α (PGF2α) has hydroxyl 

groups at C-8 and C-12 carbons orientated to the same side of the cyclopentane ring and two double 

bonds between C-5/C-6 and C-13/ C-14. Txs have a similar structure but instead of a cyclopentane 

ring, they have a six-member oxane ring. For Txs letters after abbreviation are used to distinguish 

between different Tx’s derivatives and the numerical subscript shows number of carbon-carbon 

double bonds in the side chains.7 

In prostanoids formation, released AA is metabolized to prostaglandin H2 (PGH2) – 

common initial compound of all prostanoids by COX 1 or 2 (also known as Prostaglandin H 

synthase).7 COXs are products of two distinct genes but they typically report a 60% sequence 

identity. They both are homodimers with subunit molecular masses of about 72 kilodaltons (kDa). 
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COXs molecules contain two distinct but complementary active sites: cyclooxygenase (COX) and 

peroxidase (POX) sites.15 

 

Figure 1.4 Pathways for prostaglandin synthesis and function. Shown are the structures and 

biosynthetic relationships among the most common prostanoids formed from arachidonic acid 

(AA). Following stimulation (i), a cascade of reactions is initiated by an increase in Ca2+  levels. 

(ii) cPLA2 (cytosolic phospholipase A2) and/or sPLA2, (non-pancreatic secretory phospholipase 

A2) cleave phoshopholipids to generate AA. (iii) AA is subsequently converted by the COX 

(cyclooxygenase) and POX (peroxidase) activities of PGHS-1 or PGHS-2 (PG endoperoxide H 

synthase-1 or -2) to form PGH2. Subsequently, (iv) prostaglandins (PGs) are synthesized from 

PGH2 in a cell-specific manner and then (v) exit cells and act via G-protein coupled receptors 

specific for particular prostanoid products. The dashed outline represents the cell membrane. 

The ‘2-series’ PGs are formed from AA, whereas a homologous set of ‘3-series’ PG products 

can be formed from EPA (eicosapentaenoic acid). Reprinted from reference 16, copyright 2008, 

with permission from Elsevier. 
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The COX site catalyzes formation of prostaglandin G2 (PGG2) incorporating two molecules 

of O2 at the 11- and 15- carbon of AA. PGG2 contains a five-member ring with an endoperoxide 

bridge across C-9 and C-11 and peroxide at C-15. The peroxide is reduced by the POX site of 

COXs or any other cellular peroxidase leading to a formation of PGH2.
 Molecules of COX require 

interaction with hydrogen peroxide to maintain activity and undergo a suicide inactivation. They 

also have allosteric regulation by fatty acids including common fatty acids that are not used as 

substrate for COXs. COX-1 and COX-2 gene expression is regulated in different ways. COX-1 is 

expressed constitutively by most cell types to maintain regular cell processes and for immediate 

responses to circulating hormones. In contrast, COX-2 is absent in the cell and appears only in 

response to cytokines, tumor promoters or growth factors. Formation of biologically active 

prostanoids from PGH2 is a cell specific process and is determined and performed by appropriate 

enzymes: prostaglandin synthases and thromboxane A synthase on the cytosolic surface of the 

endoplasmic reticulum (ER). Formation of most of prostanoids is performed by isomerisation of 

PGH2 without changes in oxidation state.  The only exception is the formation of PGF2α, where 

aldoketoreductase 1B1 with HADPH induce reduction of two electrons of PGH2.
15,16 

Prostaglandin D2 (PGD2) is synthesized from PGH2 by two distinct PGD synthases (PGDS) 

that catalyze isomerization of 9,11-edoperoxide group of PGH2 to 9-hydroxy and 11-keto group. 

Hematopoetic PGDS (H-PGDS) is localized in mast cells, T helper 2 (Th2) cells and microglia. 

Lipocaline-type PGDS (L-PGDS) is localized in the brain (leptomeninges, choroid plexus, and 

oligodendrocytes), male genital organs and cardiovascular tissues. The main difference between 

them is the requirement of glutathione: H-PGDS uses it for catalysis while L-PGDS does not use 

it. PGD2 binds to two known receptors: Gs-coupled DP receptor (DP1) and Gi-coupled DP receptor 

(DP2 or CRTH2).15 Interaction of PGD2 with DP1 increases the level of cAMP in cells via 

activation of adenylate cyclase. DP1 receptor is produced by vascular and bronchial smooth muscle 

cells that mediates vasodilation and brochodilation, also it was found on platelets and participates 

in inhibition of platelets aggregation. Thereby PGD2 plays an important role in allergic 

inflammation promoted by mast cells. However, the interaction of PGD2 with DP1 can cause anti-

inflammatory effects. On the surface of airway dendritic cells (DCs) and Langerhans cells (LCs) 

this interaction inhibits their migration thereby limiting T-cell activation. Also, this interaction on 

DCs inhibits their maturation. Thus, interaction PGD2 with DP1 on DCs is an important way for 

T-cell regulation and airway inflammation control. In the brain, PGD2 via interaction with DP1 
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regulates sleep, temperature and nociception. In sleep regulation, PGD2 acts on DP1 on 

leptomemingeal cells of the basal forebrain that releases adenosine acting on the sleep center in the 

preoptic area. Also, it was shown involvement of DP1 on microglia and reactive astrocytes in 

neuroinflammation in Alzheimer’s disease (AD) and on the other hand, its involvement in 

neuroprotection by rescue of neurons in paradigm of glutamate toxicity. Interaction of PGD2 with 

DP2 inhibits cAMP generation and increases Ca2+ level in cells. DP2 is expressed in eosinophils, 

basophils and Th2 cells and its interaction with PGD2 mediates chemotaxis of these cells in allergic 

inflammation sites, so a PGD2-DP2 interaction shows a proinflammatory effect.17 PGD2 can be 

metabolized by 11-keto PGD2 reductase to 9α,11βPGF2α.15 Also, because of an instability in 

aqueous solutions, PGD2 can be non-enzymatically dehydrated to PGs of J series: PGJ2, ∆12-PGJ2, 

15-deoxy-∆12,14-PGJ2.17 For PGJs it was shown an ability to interact with the nuclear receptor 

Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) that promotes adipocyte and 

macrophage differentiation.15 Finally, it was shown that PGJs have neurotoxic effects and lead to 

chronic neuroinflammation and neurodegeneration.18 

Prostaglandin E2 (PGE2) is the most abundant COX-derived AA metabolite.17 Three 

different proteins were found that show the ability to transform PGH2 to PGE2 in vitro: cytosolic 

PGE synthase (cPGES), microsomal PGE synthase-1 (mPGES-1) and microsomal PGE synthase-

2 (mPGES-2). However, to date, for only for mPGES-1, it was proved to have an involvement to 

in vivo PGE synthesis. mPGES-1 is a member of membrane-associated proteins involved in 

eicosanoid and glutathione metabolism superfamily and requires glutathione as a cofactor. It 

functionally coupled with COX-2 more preferably than with COX-1 and as COX-2 induced by 

cytokines and growth factors and downregulated by anti-inflammatory glucocorticoids. However, 

constitutive formation of mPGES-1 in particular tissues and cells was reported. cPGES is 

constitutively produced in cytosol of different cells and tissues and requires glutathione as cofactor 

as well. It shows to be coupling with COX-1 preferably and seems to be able to convert only COX-

1 derived PGH2. mPGES-2 constitutively expressed in different tissues and cells as well, coupled 

with COX-1 and COX-2 nonselectively and requires reducing agents but not only glutathione can 

be used.19 PGE2 is acting through four different receptors: EP1, EP2, EP3, EP4, which are encoded 

by distinct genes. EP3 and EP4 are most widely distributed and can be found in almost all tissues 

and have the highest affinity to PGE2. EP1 can be found only in the lungs, stomach and kidneys 

and EP2 is the least abundant, and both show a much lower affinity to PGE2. PGE2 interacting with 

https://www.ncbi.nlm.nih.gov/pubmed/28677503
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different EP receptors can regulate the function of different cells such as macrophages, dendritic 

cells (DC), and T and B lymphocytes causing pro- and anti-inflammatory effects. EP1 acts through 

mobilization of intracellular Ca2+ concentration. It induces edema and hyperalgesia during the 

inflammation process. Also, through PGE2-EP1, the interaction sodium excretory mechanism can 

be regulated that can affect on cardiovascular homeostasis. It was shown that EP1 receptor on 

native T cells by inducing Th1 differentiation modulates the immune response. An important role 

of EP1 may be found in the Central nervous system (CNS) where its interaction with PGE2 can 

regulate stress responses. EP2 and EP4 receptors act via an increase of cAMP levels as well as 

using β-arresting-mediated signaling. These receptors being on different immune cells such DC or 

T cells regulate their activity by inhibition or promotion. Also, showed involvement of EP2 in 

neuroprotection, neuroinflammation, and mediating pain perception. Together with EP1, EP2 

mediates wakefulness-augmenting effects around the third ventricle. EP4 acts as a vasodilator, 

maintaining intestinal homeostasis, in the CNS in the way that EP2 performs neuroprotection,  

modulates cerebral flow dynamics, participates in sleep together with the DP1 receptor of PGD2. 

The EP3 receptor acts via a decrease in cAMP levels in the cell. It mediates fever generation in 

response to pyrogens, and together with EP1, regulates water and salt transport along the nephron.17 

PGE2 inactivation stats from its oxidation by 15-hydroxyprostaglandin dehydrogenases to a 15-

keto compound. After that, reduction of the double bond between C-13 and C-14 and ώ-oxidation 

follow.20 Also dehydration of PGE2 leads to prostaglandin A2 that undergoes two steps of 

isomerisation and via prostaglandin C2, it transforms into prostaglandin B2.
8 

Prostaglandin F2α (PGF2α) can be produced in different tissues but the exact mechanism of 

synthesis is not clearly understood. There are three known pathways of biosynthesis of PGFs that 

are performed by reductases involving NADH or NADPH to the reaction. PGH2 9-,11-

endoperoxide reductase produces PGF2α reducing two electrons of the 9,11-endoperoxide group of 

PGH2. PGE2 9-ketoreductase produces PGF2α from PGE2 and PGD2 11-keto reductase produces 

9α, 11β-PGF2α – stereoisomer of PGF2α fromPGD2.
15 PGF2α acts via the FP receptor that is coupled 

to Gq and increases the level of cytosolic Ca2+ in the cell.17 It is the least selective of the prostanoid 

receptors and can bind other PGs.19 PGF2α is actively produced in female the reproductive system 

and plays an important role in luteolysis, ovulation, initiation of parturition and contraction of 

smooth muscles of uterine.15 It was shown that PGF2α plays a significant role in renal function, 

contraction of arterial smooth muscles, stimulation of hair growth, pain, brain injury, myocardial 
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dysfunction, and regulation of ocular pressure (FP agonist is used in the treatment of glaucoma).15,19 

PGF2α is metabolized in 15-Keto-dihydro-PGF2α that can be found in peripheral plasma and urine.19 

Prostaglandin I2 (PGI2), also known as Prostacyclin, unlike other PGs, has ether linkage 

between C-9 and C-5. It is produced by Prostacyclin synthase (PGIS) – a member of cytochrome 

P450 monooxygenase superfamily. PGIS colocalizes with COX in the endoplasmic reticulum, 

plasma membrane and nuclear membrane and constitutively expressed in endothelial cells.19 Heme-

iron of PGIS interacts with C-11 of PGH2 causing hemolytic cleavage of the C-11 – C-9 

endoperoxide bond and produces an ether bond between C-9 and C-5. This bond is very unstable 

that leads to its hydrolysis and formation of inactive product 6-keto PGF1α that is usually used for 

monitoring PGI2 formation.8 PGI2 has one IP receptor that binds with Gs and acts via an increased 

level of cAMP in cells. This receptor is produced in the kidneys, liver, lungs, platelets, heart, and 

aorta.19 PGI2-IP interaction plays an important role in vascular homeostasis causing vasodilatation 

and inhibiting aggregation of platelets.15 Together with the EP1 receptor, it induces pain and edema 

during the inflammation process.19 Also it was shown that PGI2-IP interaction has a pro- or anti- 

inflammatory function in the immune system depending on the context.17 PGI2 can act through 

Peroxisome Proliferator-Activated Receptor delta (PPARδ) and Peroxisome Proliferator-Activated 

Receptor beta (PPARβ) to modulate transcription in the uterus and lungs, respectively.15 

Thromboxane A2 (TxA2) has unusual for prostanoids structure with 6-member oxane ring 

and its formation is performed by thromboxane A synthase (TXAS) that is similar to PGIS and is 

also a member of the cytochrome P450 superfamily. However, unlike in the PGIS reaction, here, 

heme iron interacts with C-9 endoperoxide oxygen of PGH2, which allows for C-11 oxygen radical 

to interact with C-12 producing an oxirane ring of TxA2. In parallel, in this reaction TXAS forms 

12-hydroxyheptadecatrienoic acid and malondialdehyde.15 Because TxA2 has labile ether linkage, 

it is rapidly hydrolyzed forming inert ThromboxaneB2 (TxB2).
8 TxA2 is predominantly produced 

in platelets via COX-1. TxA2 interacts with the TP receptor that increases the level of Ca2+ in cells. 

Together with PGI2 , TxA2 is the major prostanoids of the cardiovascular system but it acts in the 

opposite way: it causes vasoconstriction and platelets aggregation. TxA2, like PGI2, has a pro- or 

anti- inflammatory function in the immune system depending on the context.17,19 
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1.1.3 Lipoxygenase pathway (LOX) 

In LOX pathway central role play enzymes called lipoxygenases (LOX). There are 6 known 

lipoxygenases today: 5-LOX, 12-(S)-LOX, 12(R)-LOX, 15-LOX-1, 15-LOX-2 and eLOX-3. They 

all have nonheme iron – an essential component of catalytic activity. During a reaction, they 

introduce molecular oxygen to polyunsaturated fatty acids (predominantly AA) with the formation 

of lipid hydroperoxides in the first step of the reaction. The number in their name shows the carbon 

position in AA that is oxygenated in the initial step (Figure 1.5).21 

Figure 1.5 Biochemical pathway of the metabolism of arachidonic acid into the biologically 

active leukotrienes. Arachidonic acid released from phospholipids by cytosolic phospholipase 

A2α is metabolised by 5-lipoxygenase to 5-hydroperoxyeicosatetraenoic acid (5 HpETE) and 

leukotriene A4 (LTA4), which is then enzymatically converted into leukotriene B4 (LTB4) or 

conjugated by glutathione to yield leukotriene C4 (LTC4). Reprinted from reference 7, copyright 

2016, with permission from Elsevier. 
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5-LOX performs the first two steps in leukotrienes biosynthesis.8 This enzyme is formed 

only in bone marrow derived cells such as mast cells, dendric cells, macrophages, granulocytes, B-

lymphocytes where its expression is regulated by different factors e.g. cytocines.21 5-LOX activity 

is promoted by Ca2+, cAMP, phosphorylation, also unlike other LOX, 5-LOX needs five 

lipoxygenases activation proteins (FLAP). 5-LOX activity is going in special nuclear envelope that 

is rich in phosphatidylcholine.7 At the first step, 5-LOX incorporates molecular oxygen to C-5 

carbon of AA forming 5-hydroperoxy-eicosatetraenoic acid (5-HpETE) involving Fe3+ in the active 

center. At the second step, synthesized 5-HpETE is undergo by catalytic rearrangement by 5-LOX 

forming leukotriene A4 (LTA4). Also, depending on the conditions 5-HpETE can be secreted 

directly or reduced to a more stable 5-Hydroxyeicosateteraenoic acid (5-HETE) that can be further 

reduced by 5-hydroxyeicosatetraenoic acid dehydrogenase (5-HEDH) to 5-oxo-icosatetraenoic 

acid (5-oxoETE). LTA4 is a very labile molecule because of the epoxide group in its structure and 

can be hydrolyzed by LTA4 hydrolase (LTAH) that relates to zinc metalloproteases family to 

leukotriene B4 (LTB4), or nonenzymatically forming stereoisomers of LTB4: ∆6-trans LTB4, 12-

epi LTB4 and ∆6-trans, 12-epi LTB4. Also, LTA4 can be conjugated with glutathione by LTC4 

synthase (LTCS) forming leukotriene C4 (LTC4). Glutathione of LTC4 can be cleaved by 

endogenous peptidases e.g. γ-glytamyl transpeptidase that is located on the plasma membrane and 

removes glutamic acid forming leukotriene D4 (LTD4) from LTC4. Dipeptidases, such as human 

membrane-bound dipeptidase-1, can hydrolyze the cysteinyl-glycine bond of LTD4 forming 

leukotriene E4 (LTE4).
8 

LTB4 has two specific receptors BLT1 and BLT2. BLT1 is mostly synthesized in 

polymorphonuclear leukocytes and in much lower amounts in macrophages, thymus and spleen.  

Unlike BLT1, BLT2 can be expressed in different tissues, most abundantly in the spleen, liver, 

ovaries and leukocytes. Transduction of signals initiated by these receptors depends on G-proteins 

coupled to a receptor and is different in different cells. LTB4 plays an important role in the 

inflammatory process inducing migration and adherence of leukocytes and acts usually via the 

BLT1 receptor. On date LTB4 is associated with several inflammatory events such as asthma, 

rheumatoid arthritis, psoriasis, atopic dermatitis, septic peritonitis.22 Inactivation of LTB4 can be 

performed in two pathways: oxidative and reductive. Oxidation involves cytochrome P450s of the 

CYP4F family that converts LTB4 to 20-hydroxy-LTB4 (20-OH-LTB4) that however has some 

biological activity. 20-OH-LTB4 can be further metabolized to inactive 20-carboxy-LTB4 (20-
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COOH-LTB4), 18-COOH-tetranor-LTB4 and 16-COOH-tetranor-LTB4. Reductive pathway stats 

from oxidation of LTB4 by 12-Hydroxydehydrogenase/15-oxo-prostaglandin 13-reducatse (13-

PGR) forming inactive 12-oxo-LTB4 and subsequent reductive products 12-oxo-10,11-dihydro-

LTB4, 10,11-dihydro-LTB4 and 10-HOTrE.7 

Cysteinyl leukotrienes LTC4, LTD4 and LTE4 have two main receptors cysLT1 and cysLT2. 

Both receptors act via elevation of Ca2+ levels in cells. cysLT1 can be synthesized in different cells, 

usually in cells that synthesized cysteinyl LTs. It has the following affinity to LTs: 

LTD>LTC>>LTE. cysLT2 is more specified and can be found in the heart, brain, vasculature and 

has similar with cysLT1 affinity to LTs: LTD=LTC>>LTE.8 Also it was found that LTE4 has its 

own specific receptor, GPR99.7 Cysteinyl leukotrienes together are called “slow reacting substance 

of anaphylaxis” and play important roles in the inflammation processes. Through cysLT receptors, 

they induce smooth muscle contraction (e.g. bronchial smooth muscle contraction in asthma) and 

increase vascular permeability leading to edema.8 Inactivation of LTs is performed by cytochrome 

450 by ώ and β oxidation resulting in a series of chain-shortened products (Figure 1.6).7 

It is suggested that 5-HETE doesn’t play any significant role, however its metabolite 5-

oxoETE is an important component of particular inflammation processes. 5-oxoETE is formed 

from 5-HETE via oxidation by 5-HEDH. 5-HEDH is an enzyme that requires NADP+ for 

enzymatic activity and level of NADP+ in cell regulate activity of 5-HEDH. This enzyme is usually 

formed in various inflammatory and structural cells such as epithelial and endothelial cells, airway 

smooth muscle cells, platelets, DС and monocytes. 5-oxoETE acts via specific receptors called 

OXE that increase the intracellular level of Ca2+ and inhibit the formation of cAMP. It was shown 

that 5-HETE and 5-HpETE also can interact with OXE receptors, however they have much lower 

affinity to it. This receptor is highly expressed in macrophages, neutrophils and eosinophils 

inducing their chemotaxis, calcium mobilization, actin polymerization, CD11b expression and L-

selectin shedding. 5-oxoETE-OXE interaction plays an important role in the bronchial asthma 

process enhancing the influx of eosinophils and neutrophils, which increases the proliferation of 

prostate cancer cells and via affects on neutrophils it could be involved in cardiovascular disease. 

5-oxoETE can be further metabolized via oxidation to different inactive metabolites, conjugated 

with glutathione (GSH) by LTCS or converted back to 5-HETE by 5-HEDH, however, here the 

oxidation reaction is dominant.22 
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Figure 1.6 Common metabolic transformations of leukotriene C4 (LTC4) to the biologically 

active sulfidopeptide leukotrienes, LTD4 and LTE4. Subsequent ω-oxidation of LTE4 by 

cytochrome P450 leads to the formation of 20-carboxy-LTE4 that can undergo β-oxidation, after 

formation of the CoA ester, into a series of chain-shortened cysteinyl leukotriene metabolites. 

Reprinted from reference 7, copyright 2016, with permission from Elsevier. 
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Biological activities of other LOXs products are not clear and the significance of 12- and 

15-LOX is not fully defined.7 12(S)-LOX that localizes at platelets together with 15-LOX-1 and 2 

can convert AA to either 12-HpETE and 15-HpETE that can further be metabolized to 12S-HETE-

12-oxoETE and 15-HETE-15-oxoETE respectively, while 12(R)-LOX that localizes in skin can 

convert AA only to 12-HpETE and 12(R)-HETE with R-stereoconfiguration. Also, murine 

homolog of 15-LOX-2 produces 8-HpETE that converts to 8-HETE.21 Despite that mechanism of 

action of HETEs remains unclear it was shown that HETE demonstrates its participation in some 

biological activities including regulation of PPARα and PPARγ, expression of monocyte 

chemoattractant protein-1, angiogenesis, cancer growth and metastasis. Both 12-LOXs can produce 

Hepoxilins A3 (HXA3) and B3 (HXB3) from 12-HpETE incorporating epoxide across C-11 and C-

12 and additional hydroxyl at C-8 for HXA3 and C-10 for HXB3. Because of instability of epoxide 

they can be further hydrolyzed to trioxilin A3 and B3 (TrXA3 and TrXB3). Some biological 

activities were shown by HXA3 including Ca2+ release, neutrophil migration, insulin secretion, 

ichthyosis, and modulation of neuronal signaling. 12- and 15-LOXs participate in Lipoxins A4 

(LXA4) and B4 (LXB4) formation that can be performed in three ways: neutrophil produces LTA4 

that then is taken up by platelets where it is converted to LXs by 12- or 15-LOXs; 15HpETE or 5-

HETE are generated in platelets by 15-LOX and then are taken up by neutrophil where they are 

converted to LXs by 5-LOX; aspirin acetylated COX2 acts like 15-LOX producing LXs. LXs 

contain conjugated tetraene and hydroxyl at C-6 in LXA4 and C-14 in LXB4. LXs act via the ALX 

receptor, as well as via interaction with cysLT1 and aryl hydrocarbon receptors and nuclear 

transcription factor. They demonstrate anti-inflammatory activity. 12- and 15-LOXs can form 

14,15-LTA4 incorporation epoxide across C-14 and C-15 of AA. 14,15-LTA4 then can be 

conjugated with glutathione at C-14 forming analogues of LTs called eoxins (EXC4, EXD4, EXE4),
 

they demonstrate weak contractile activity.8 

1.1.4 Cytochrome P450 pathway (CYP) 

Cytochrome P450 (CYP) is a diverse superfamily of enzymes present in different cells and 

tissues. In eicosanoids biosynthesis they perform introduction of single oxygen atom to AA and in 

this term their activity similar to LOXs. However, unlike LOXs, CYPs contain heme-iron in active 

sites and NADPH as a cofactor. Depending on the oxidation mechanism, CYP products are divided 

into 3 classes: Hydroxyeicosateteraenoic acids (HETEs) formed by allylic oxidation, products of 
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oxidation of terminal alkyl chain region of AA (also HETEs) and cis-epoxyeicosatrienoic acids 

(EETs) formed by insertion of oxygen into the carbon-carbon bond of AA (Figure 1.7).8 

Figure 1.7 Structures of cytochrome P450 metabolites. Cytochrome P450 enzymes can catalyze 

v-oxidation (example: 20-HETE) and epoxidation (11,12-EET) reactions. Reprinted from 

reference 8. 

 

In process of HETEs formation, CYP reduces catalytic iron and oxygen forming reactive 

oxo-iron species that perform abstraction of sp3 hybridized hydrogen of AA and the transfer of 

oxygen to this site to stabilize the AA molecule. If that occurs between C-5 and C-15 of AA, a 

molecule class similar to LOX products is formed. It contains 5-, 8-, 12-, 15-HETE that have the 

same structure as LOX products (some of them are epimeric). If CYP introduces hydroxyl to the 

sp3-hybridized ώ-carbons of the AA unique class of HETEs is formed that contains 16-, 17-, 18-, 

19-, 20-HETE. 20-HETE is most characterized of that HETEs and shows several important 

activities: it plays an important role in hypertension, inhibits KCa channels activity by that 

promoting systemic vasoconstriction, inhibits Na+-K+-ATPase activity in the kidneys by blocking 

sodium resorption. Other ώ-HETEs show opposite to 20-HETE activities promoting vasodilatation 

and sodium reuptake in the kidneys. Also, it was shown that 16-HETE can inhibit neutrophil 

adhesion. Despite several activities were demonstrated for HETEs neither receptor nor second 

messenger were found for them, so their mechanism of action is still unclear.8 

In process of EETs, formation reactive oxo-iron species formed by CYP, remove a single 

electron from sp2-hybridized carbon of AA and transfer oxygen there forming epoxy group. There 

are four known EET: 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET that can exist either as an R,S or 

the S,R enantiomer. EETs demonstrate their role in several processes such as angiogenesis, renal 
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function, vascular tone, leukocyte adhesion, and neuronal signaling. EETs have been identified as 

active ligands for cation channels and PPARs. However, the effect of specific EET isomers as well 

as mechanism of their action still unclear. EETs are metabolized by epoxide hydrolase (sEH) to 

dihydroxy-eicosatrienoic acids (DHETs) that were expected to be inactivated metabolites of EETs, 

however they show ability to activate BKCa channels as well as PPARα and PPARγ.8 

1.1.5 Nonenzymatic pathway 

Oxidative stress generates free radicals that can participate in the metabolization of AA 

(and other polyunsaturated fatty acids (PUFA)) in cells. PG-like compounds, called isoprostanes 

(IsoPs), can be formed by free radical catalyzed peroxidation of AA (Figure 1.8). Nonenzymaticaly 

derived analogs of PGF2α, PGD2, PGE2, PGJ2, PGA2 and Thromboxane exist. There are two main 

differences between IsoPs and COX derived PGs: IsoPs have side chains cis-oriented to the 

prostane ring and COX-PGs have trans-oriented side chains; IsoPs are formed in situ esterified to 

phsopholipids and then released by phospholipase whereas COX-PGs are formed from released 

free AA. The formation of these abnormal phospholipids can affect fluidity and integrity of 

membranes during oxidative stress. Also, it is known that IsoPGs can interact with FP and TP 

receptors causing the same effects as COX-PGs.23 Also, free radicals can metabolize AA in a LOX-

like way, and as a result all LOX and CYP derived HETEs can be formed. Additionally, 9-HETE 

can be formed that doesn’t have any biological activity and can’t be formed by any enzymatic way.  

All these nonenzymatically derived eicosanoids can be used as biomarkers of oxidative stress.8 
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Figure 1.8 Mechanism of formation of the F2-IsoPs from the free radical-catalyzed peroxidation 

of arachidonate. Four regioisomers are generated, each consisting of 8 racemic diastereomers. 

For simplicity, stereochemistry is not indicated. Reprinted from reference 23. 

1.2 Analysis of eicosanoids in brain tissue 

Eicosanoids play an important role in brain processes such as temperature and sleep 

regulation, neuroinflammation, neuroprotection, brain maturation, regulation of synaptic activity 

and plasticity, cerebral blood flow regulation etc. (Table 1.1).24 However, the function and 

mechanism of action of many eicosanoids in brain tissue is still unclear. Studying  eicosanoids in 

the brain is not a trivial task due to several analytical challenges: extremely low concentrations of 

eicosanoids in brain tissue (1-50 pg/mg of protein, see Table 1.1), high chemical noise caused by 

the complexity and heterogeneity of the brain matrix, which decreases selectivity and sensitivity, 
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existence of many eicosanoid isomers, and the possible formation of eicosanoids during animal 

sacrifice in in vitro methods of analysis that therefore does not reflect real in vivo eicosanoid brain 

composition.  

Table 1.1 Concentrations and functions of some eicosanoids in the brain 

Eicosanoid Detected concentrations 

pmol/g wet tissue 

Functions 

PGD2 

27±5 (normal brain)25 

5.01±1.65 (post-injury)26 

2.91±0.06 (ischemic)27 

937 ± 305 (asphyxial cardiac 

arrest)28 

Sleep regulation,24 synaptic plasticity (memory and 

learning),24 neuroinflammation,24 vasorelaxation29 

PGE2 

42.73±7 (normal brain)30 

11.311±2.62 (post-injury)26  

14.44±0.94 (ischemic)27 

35.5 ± 12.3 (asphyxial cardiac 

arrest)28 

Sleep regulation,24 synaptic plasticity (memory and 

learning),24 neuroinflammation,24 vasorelaxation 

and vasoconstriction,29 nociceptive transmission,29 

regulation of membrane excitability,29 apoptosis29 

PGF2α 

14.4 ± 7 (asphyxial cardiac 

arrest)28 

vasoconstriction29, inflammation19 

 

Today several analytical methodologies are used for eicosanoid analysis including 

immunoassays,31 gas chromatography - (tandem) mass spectrometry (GC-MS or GC-MS/MS),32,33 

liquid chromatography – (tandem) mass spectrometry (LC-MS34 or LC-MS/MS35). Enzyme-linked 

and radio-labeled immunoassays, despite their sensitivity, have poor reproducibility and 

specificity. HPLC with UV or fluorescent detection cannot be used due to lack of good 

chromophores or fluorescing systems in the eicosanoid structures, unless derivatization is used. 

However, derivatization makes the analytical process more complicated, and incomplete 

derivatization and side reactions may occur. GC-MS and GC-MS/MS can be used for analysis of 

most primary eicosanoids, however it is not suitable for labile compound like EETs (derivatization 

as well can help here). The most popular method in eicosanoid analysis is LC-MS or LC-MS/MS 

due to its sensitivity, resolution and high throughput. This helps to solve problems with low 



19 
 

abundance and separate many of the eicosanoid isomers of interest.36 Due to these advantages, a 

LC-MS/MS method was used in this research and will be discussed in more detail below. 

Sample preparation and extraction procedures that reduce matrix complexity and provide 

good recovery and/or enrichment of eicosanoids of interest are key steps in eicosanoid analysis.37 

In vitro sample preparation starts with a homogenization step with subsequent extraction of 

eicosanoids by liquid-liquid extraction (LLE) or solid phase extraction (SPE). The selected 

extraction method should be reproducible, fast, and cost effective. Matrix effects should be 

controlled and minimized as much as possible because a complex matrix can suppress signals from 

the analyte by decreasing ionization efficiency.38 Also, new eicosanoids can be generated in the 

matrix from their precursors during the extraction process, therefore it is important to use inhibitors 

like indomethacin, ethylenediaminetetra-acetic acid (EDTA), diethylentriaminepenta-acetic acid 

(DTPA) and butylated hydroxyl toluene (BHT) to prevent this.36 Indomethacin is a known COX 

inhibitor, so its use prevents synthesis of PGs from AA in biological matrices where COX may be 

active.15 EDTA and DTPA are chelating agents and have the ability to sequester metal ions, 

therefore inhibiting activity of metal dependant enzymes (e.g. LOX). BHT is an antioxidant that 

scavenges a free radical species, therefore preventing non-enzymatic eicosanoid formation.39 In 

brain samples, BHT is most widely used. Usually 0.1 mM of BHT is added to the homogenization 

solvent.28,40–42 Golovko et al. evaluated how BHT can prevent oxidation of PGs. They analyzed 

identical brain samples with 0, 0.1%, 0.005% (weight/volume) added to extraction solvents. They 

found that using 0.1% BHT can cause clogging of the LC system due to the of formation of 

precipitate, however 0.005% BHT does not form a precipitate but, it helps to decrease variability 

of analysis of PGs and prevents 2.8-fold reduction in an amount of 6-oxo-PGF1α.
43 In addition to 

the extraction procedure, sampling and tissue harvesting are critical steps. It was shown that during 

decapitation and sampling of the brain post-mortem, synthesis of eicosanoids can take place that 

influence the measured eicosanoid concentrations. Golovko and Murphy suggested to use 

microwave irradiation at 70-800С in order to denature enzymes and prevent post-mortem formation 

of eicosanoids.43 However, this method showed its efficiency mainly for PGs. 
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1.2.1 Brain tissue homogenization 

Homogenization of brain tissue in eicosanoid analysis is usually performed by different 

types of homogenizers as well as via sonication. Masoodi et al. analyzed PGs35 and HETEs44 by 

homogenizing brain tissue in water using a Dounce glass mini homogenizer kept on ice during the 

process. This was followed by making an adjustment to 15% methanol, internal standard (IS) 

spiking and removal of any precipitated proteins, adjustment of supernatant to pH 3 and finally 

SPE. Yue et al.26 homogenized cortex brain tissue in methanol with formic acid using micro 

ultrasonic cell disruptor, followed by centrifugation and dilution of the supernatant before loading 

on SPE. Miller et al.40 and Liu et al.41 used the same sample preparation method for HETEs and 

PGs, where they homogenized brain tissue in 0.12 M potassium phosphate buffer containing 5 mM 

magnesium chloride and 0.113 mM BHT, centrifuged the homogenate, spiked the supernatant with 

IS, and performed SPE. Strauss et al.45 homogenized brain tissue with high power sonication in a 

methanol extraction buffer containing 0.1% formic acid, 0.01% BHT and mix of IS, followed by 

centrifugation and dilution of supernatant before loading on SPE, for the successful measurement 

of HETEs and EETs. Furman et al.42 used a tip sonicator for a 60 second homogenization step in 

an autosampler vial containing Bligh-Dyer extraction monophasic solvent with subsequent 

addition of dichlormethane with water and sonication. Jouvene et al.46 homogenized brain tissue in  

liquid nitrogen using mortar and pestle. The resulting powder was resuspended in Tyrode-HEPES 

buffer (pH 7.4), extracted with chloroform/ethanol (2:1 volume/volume (v/v)), followed by 

acidification to pH 3 and SPE. In summary, different approaches to date have been used for brain 

tissue homogenization, however in the experiments that were mentioned above, recovery 

evaluation was focused on the SPE step, so it is difficult to make a conclusion what approach in 

brain homogenization is most efficient in the eicosanoid analysis. 

1.2.2 Liquid-liquid extraction (LLE) 

Folch47 and Bligh and Dyer48 extraction protocols that are commonly used for lipid 

extraction can be utilized for the extraction of eicosanoids from brain tissue. In these protocols 

biphasic mixtures of methanol/chloroform/water are used for extraction.30,42,49 An important step 

in LLE of eicosanoids is the acidification of the lower layer to obtain eicosanoids in non-ionized 

form that allows to be extracted into the organic phase. However, excess acidification could cause 

alterations of eicosanoids.36 More specific LLE methods for eicosanoid extraction that have higher 

efficiency were developed. Saunders et al.50 used hexane/2-propanol extraction and observed a 12-
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37% increase in recovery of PGs versus the Folch method. Golovko et al.43 compared hexane/2-

propanol extraction followed by acetone extraction against acetone extraction followed by 

hexane/chloroform extraction methods. Both methods showed comparable LOD and masses of 

extracted PGs from brain tissue, however acetone extraction followed by hexane/chloroform 

extraction produced much lower chemical background noise. Brose et al.27 compared acetone 

extraction followed by hexane/chloroform extraction, Bligh and Dyer extraction and one-step 

methanol extraction of PGs from brain tissue. Methanol extraction showed a 20% higher recovery 

of IS (97%) than acetone extraction (77%). Bligh and Dyer extraction showed only 10% recovery 

in this experiment. The efficiency of methanol extraction might be the result of an elimination of 

losses during multiple-step extraction protocols. Also, one-step methanol extraction showed a 

1.45x higher signal to noise ratios than acetone extraction. Even though some LLE protocols show 

high recovery of eicosanoids they all have several disadvantages: large solvent volume 

consumption and possible problems with separation of layers (e.g. emulsification).36 SPE helps to 

address some of these problems, therefore it is the most popular in vitro extraction method for 

eicosanoids in brain tissue. 

1.2.3 Solid-phase extraction (SPE) 

Solid-phase extraction allows concentration of analytes along with removing some 

impurities from the sample, thus improving detection limits of analytical methods. For eicosanoid 

extraction, due to their lipophilic nature, reversed-phase SPE is usually used.37 However, for the 

extraction of more hydrophilic eicosanoids, such as PGs, anion exchange can be used due to its 

ability to interact with the carboxyl groups of these eicosanoids.37 Figure 1.9 shows the main steps 

of a typical SPE procedure. During reversed-phase SPE, the hydrophobic aliphatic moieties of the 

eicosanoids interact with the non-polar stationary phase allowing them to be retained while other 

polar and mid-polar compounds from the sample can be washed away by a polar wash solvent. 

Eicosanoids are then removed from the cartridge by an appropriate elution solvent such as 

methanol.37 

There are two widely used reversed phase SPE sorbents for eicosanoids: C-18 and 

Hydrophilic-Lipophilic Balanced sorbent (HLB). C-18 SPE stationary phase contains silica 

particles with bonded octadecyl alkyl chains (18 carbons hence C-18) that provide strong 

hydrophobic interactions with lipophilic compounds. HLB contains a resin made from a co-
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polymer of divinylbenzene that provides hydrophobic interactions and vinyl pyrrolidinone that 

provides hydrophilic interactions. 

 

Figure 1.9 General SPE workflow. Reprinted from reference 51.51 

Masoodi and Nicolaou35 extracted 27 prostanoids from brain tissue using (Phenomenex) C-

18 SPE. Sample pH was adjusted to 3 with 0.1 M hydrochloric acid and prostanoids were eluted 

with methyl formate. The recovery of analytes was 84-100%. The method was later expanded44 to 

cover an additional 20 eicosanoids (mostly HETEs, hydroxyeicosapentaenoic acids (HEPEs) and 

Resolvins (Rvs)) from brain tissue with recovery between 76-115%. Farias et al.52 used (Strata) C-

18 SPE cartridges for extraction of eicosanoids from rat brain, elution was with methanol. Yue et 

al.26 extracted PGs, HETEs, EETs, DiHETrEs and AA from a rat brain using (Oasis) HLB SPE 

and eluted the analytes with acetonitrile and ethyl acetate with a final recovery between 72-99%. 

Miller et al.40 also used HLB SPE for the extraction of the same groups of eicosanoids from brain 

cortical tissue. However, elution was with methanol, resulting in the final recovery of analytes 

ranging from 73-94%. HLB in combination with methanol elution was also used by Shaik et al.,28 

to extract PGs from rat brain. Ostermann et al.53 compared extraction recovery of all classes of 

eicosanoids from plasma on different SPE cartridges: Oasis HLB, Strata-X, SepPak-C-18, 

BondElut strong and weak anion exchange. The comparison was performed in a plasma matrix. It 

was concluded that C-18 is the optimal cartridge for oxylipin analysis in plasma (Figure 1.10). 
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Since no single method covers all eicosanoids of interest, it was decided to develop new extraction 

method. 

 

Figure 1.10 Recoveries of internal standards (IS) for the tested SPE protocols. IS was added to 

the samples either at the beginning of the analysis (panel A) or after the SPE step (panel B). 

Shown is the mean recovery rate ± SD (n=5). Reprinted by permission from Springer Nature: 

from reference 53, copyright 2014. 

 
Another important step in the sample preparation process using SPE is the evaporation of 

solvent after elution and reconstitution of the sample in injection solvent. Here, three main 

approaches were found: evaporation under a stream of nitrogen,28 argon26 or in a vacuum 

centrifuge53. To minimize adsorptive losses of oxylipins, it was recommended to add  6 µL of 30% 

glycerol in methanol to the tubes where evaporation will be performed.53 This prevents the 

interaction of eicosanoids with the walls of the tube after evaporation of the solvent, because 

glycerol is not volatile and after evaporation 1.8 µL of glycerol remains on the bottom of the tube 

forming “safety trap” for eicosanoids.53  
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The above strategies for measuring the eicosanoids all aim to maximize recovery and 

ultimately accuracy but, they do not deal with the issue of ante-mortem/post-mortem changes in 

eicosanoids. Instead of focusing on solving the problems of post-mortem measurement perhaps it 

would be better to measure the correct levels of eicosanoids in living tissues.  One technique that 

could potentially measure eicosanoids in particular brain regions, and at particular times, is in vivo 

solid-phase microextraction (SPME). 

1.2.4 In vivo solid-phase microextraction (SPME) 

Solid-phase microextraction (SPME) is a non-exhaustive extraction technique that 

combines sampling, analyte isolation and enrichment into one step. Using SPME, only a small 

portion of the analyte is extracted causing minimal perturbation to the living system, which allows 

this technique to be used for in vivo analysis. To use SPME for in vivo analysis, the device coating 

must be made with biocompatible materials such as polydimethylsiloxane (PDMS), polypyrrole 

(PPY) or polyethylene glycol (PEG). Biocompatibility is important even if exposure to fiber is not 

long because it prevents fouling of the fiber with large biomolecules such proteins. The sorbent of 

interest (e.g. C-18, HLB etc.) that is used in SPME coating needs to be covered by the 

biocompatible polymer but also allow analyte diffusion through it. This minimizes adverse 

reactions to the living system and prevents the adhesion of the macromolecules to the surface of 

the SPME devices. Different designs of SPME devices exist but fiber SPME is most widely used 

for direct in vivo sampling. Fiber SPME consists of a thin metal fiber core partially coated with 

sorbent and assembled within a hypodermic needle that covers and protects the fiber before and 

after extraction (Figure 1.11).54 

Typical fiber SPME workflow consists of several steps. After a preconditioning step, where 

the SPME fiber is immersed into organic solvent to condition the sorbent, the fiber is introduced 

into the biological matrix and analytes begin to diffuse between the matrix and the sorbent until 

the system reaches equilibrium. However, often in in vivo SPME shorter sampling times, without 

waiting for equilibrium, are used. At the next step, the fiber is removed from the biological matrix, 

quickly rinsed, in water, and immersed into a small amount of organic solvent (enough to fully 

immerse the coated part of the fiber, usually ~100 µL for commercial 15 mm-long coatings) to 

desorb the analytes. This desorption solvent, containing the analytes, is analyzed or an 

evaporation/reconstitution step may be added to further improve limits of detection (Figure 1.12).54 
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Figure 1.11 Commercial prototype SPME fiber assembly based on a hypodermic needle for in 

vivo applications (A) and schematic of conventional SPME fiber with typical coating length of 

10-15 mm (B) and high-spatial-resolution fiber with discontinuous coating (C). Reprinted with 

permission from reference 54, Copyright 2011, American Chemical Society. 

 

 

 

Figure 1.12 Workflow of in vivo extraction of analyte from brain tissue using SPME fibers. 

Reprinted from reference 58 with permission from John Wiley and Sons. 
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The extraction of the analyte by SPME is nonexhaustive and can be described by Equation 

1.1.54 

Equation 1.1 Amount of analyte extracted by SPME54 

𝑛𝑒 =
𝐾𝑓𝑠𝑉𝑠𝑉𝑓

𝐾𝑓𝑠𝑉𝑓 + 𝑉𝑠
𝐶0 

where ne – concentration of analyte extracted at equilibrium, Kfs – distribution coefficient of the 

analyte between sorbent and sample matrix, Vs and Vf – volumes of sample and sorbent 

respectively, C0 – initial concentration of analyte in the sample.  

The distribution coefficient Kfs can be described by Equation 1.2.54 

Equation 1.2 Distribution coefficient54 

𝐾𝑓𝑠 = 𝐶𝑓 ÷ 𝐶𝑠 

where Cf and Cs are the concentrations of the analyte in the sorbent and in the sample at equilibrium. 

The distribution coefficient depends on different conditions including temperature, pressure and 

matrix composition. 

In cases when the sample volume is much larger than KfsVf, Equation 1.1 can be simplified to 

Equation 1.3.54 

Equation 1.3 Amount of analyte extracted by SPME when sample volume is large54 

𝑛 = 𝐾𝑓𝑠𝑉𝑓𝐶0 

Equation 1.3 allows calculation of the concentration of the analyte without defining the volume of 

the sample and can be used for in vivo extraction when the sample volume is unknown provided it 

is much larger than the volume of the sorbent. 

Equations 1.1 and 1.3 are relevant only in situations when sampling time is long enough to reach 

equilibrium. In case of pre-equilibrium extraction Equation 1.4 must be used. In this thesis pre-

equilibrium SPME were performed and time-averaged concentrations were measured. 

Equation 1.4 Amount of analyte extracted by SPME at pre-equilibrium conditions54 

𝑛 = [1 − 𝑒𝑥𝑝−𝑎𝑡]𝑛𝑒 
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where n is amount of extracted analyte at time t, ne is amount of analyte extracted at equilibrium 

and a is a rate constant that is dependent on the volumes of the extraction phase and sample, the 

mass transfer coefficients, the distribution coefficients, and the surface area of the extraction phase.  

In vivo SPME was applied to different living systems including microorganisms,55 plants,56 

insects57 and animals58. Brain in vivo sampling was performed in several experiments. In vivo 

SPME sampling of rat brain tissue is performed via guide cannulae surgically implanted into the 

cranium, similar to what is used for microdialysis (MD) sampling.59 Win-Shwe et al.60 used fiber 

SPME to measure the pharmacokinetics of intraperitoneally injected toluene in mouse brain 

(hippocampus region). This experiment showed that the level of toluene in the hippocampus rapidly 

increased in the first 30 minutes after injection and returned to the basal level after 2 hours. Cudjoe 

et al.59 measured levels of serotonin and dopamine in rat brain before and after administration of 

fluoxetine using in vivo SPME and MD. Fluoxetine is an anti-depressant drug that affects the 

serotonin levels without changing dopamine levels in the brain.  Both methods demonstrated the 

same trends where the level of serotonin increased after drug administration and the level of 

dopamine was not changed. However, SPME showed better precision than MD potentially because 

matrix effects are higher for MD. 

To date in vivo SPME of eicosanoids was performed only once by Bessonneau et al.61 in 

circulating rat blood. The goal of the experiment was to monitor rapid changes in blood 

concentrations of eight eicosanoids (TXB2, PGD2, PGE2, LTB4, 15-HETE, 12-HETE, DHA and 

AA) after lipopolysaccharide (LPS)-induced inflammation. Extraction was performed using a 

biocompatible C-18 SPME fiber via catheters implanted into carotid artery and diffusion-based 

calibration was used for quantitative analysis. 15-HETE, PGE2 and PGD2 could not be measured 

in vivo because their concentrations in blood were lower than the lower limit of quantitation 

(LLOQ) for the method, however, they were detected. TXB2 and LTB4 did not show significant 

changes upon LPS treatment, while the levels of AA, docosahexaenoic acid (DHA) and 12-HETE 

were increased. Additionally, validation experiments were performed where the concentrations 

obtained via SPME and the precipitation method were compared. The concentrations that were 

measured using SPME were slightly higher, which was explained by the higher stability of 

eicosanoids on SPME fibers. Despite its small sample size of only 2 rats, this experiment showed 

that fiber SPME can be used for sampling of eicosanoids in vivo. However, the inability to detect 
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three of eight selected eicosanoids in this experiment also demonstrates some of the key difficulties 

with this analysis. Eicosanoids are effectively protein-bound (99%) in blood and in vivo SPME can 

extract only a small fraction of the free concentration of a given eicosanoid. This thesis will expand 

on this preliminary work in order to use fiber SPME for the measurement of eicosanoids in rat 

brain in vivo and it will be the first experiment of this kind. However, to be able to measure such 

low levels of eicosanoids method limits of detection must be further improved. 

1.2.5 Liquid chromatography (LC) 

 Many oxylipin species have the same molecular formula, the same mass and thus cannot 

be resolved by even high-resolution mass spectrometry. This makes liquid chromatography an 

essential part of any analysis since chromatographically it is possible to separate many eicosanoid 

isomers prior to MS detection.  

It is known that smaller particle size decreases the height equivalent of a theoretical plate 

(HETP) and thus improves the efficiency of the separation.62 Thus, the popularity of ultra-high 

performance liquid chromatography (UHPLC) columns containing 1.7-1.8 µm fully porous 

particles or 1.7-2.6 µm particles containing solid core has grown over the last decade.63–66 Solid 

core particles improve peak shape and resolution because mobile phase containing analytes cannot 

penetrate into particle pore thus decreasing axial diffusion.36,67 Unfortunately, smaller particles in 

UHPLC columns increase the backpressure up to 1000 bar, compared with 400 bar for traditional 

HPLC.  Solid-core particles can give resolution similar to UHPLC but with traditional HPLC 

backpressure. Ecker showed that with both UHPLC and solid-core HPLC excellent separation and 

peak shapes can be obtained, however for higher volumes of complex matrices UHPLC are 

preferable.67 Kortz et al.68 showed improvement of resolution between PGD2 and PGE2 using a 

Kinetex core-shell column rather than traditional fully porous C-18 HPLC. Brose et al.27 using 

UHPLC obtained five times narrower chromatographic peaks for PGE, PGD and isoprostanes from 

mouse brain as compared to the peaks obtained using traditional HPLC. In summary, the use of 

UHPLC or solid-core particles, such as Kinetex core-shell from Phenomenex, can improve 

sensitivity and separation of oxylipins and will be examined in this thesis. 

Different LC modes can be used for separation of arachidonic acid metabolites including 

reversed-phase (RP-HPLC), normal-phase (NP-HPLC), chiral HPLC, and nanoLC that will be 

discussed below. RP-HPLC with C-18 columns is the most widely used method of separation in 
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eicosanoid analysis and is based on hydrophobic interactions between the stationary phase and 

eicosanoids.63–66 However, sometimes NP-HPLC can help in separation of particular eicosanoids. 

For example, Qu et al.69 separated 19-HETE and 20-HETE using NP-HPLC where it was not 

possible to with RP-HPLC. Chiral HPLC is useful for separation of prostaglandin/isoprostane 

stereoisomers70, R- and S-enantiomers of HETEs and HpETEs71,72 and enantiomers of EETs73. 

Brose et al.70 separated PGE2 and its enantiomer (entPGE2) from brain tissue using a Lux Amylose2 

column. Neilson et al.71 separated R- and S-enantiomers of 5-, 12- and 15-HETE in mouse colonic 

mucosa using a Chiral-Pak AD-RH column. Mesaros et al.73 analyzed  enantiomers of 8,9-EET, 

11,12-EET, 14,15-EET using NP-chiral-LC-MS employing a Chiralpak AD-H column. Jouvene et 

al.46 used a Chiralcel OD-H column to resolve R- and S-enantiomers of HETEs and hydroxy-

docosahexaenoic acids (HDoHE) – oxidation products of docosahexaenoic acid (DHA) in rat brain 

tissue. They used ratio between R- and S-enantiomers of these eicosanoids to determine their origin 

because enzymatic oxidation of PUFA produces mainly S-enantiomers meanwhile nonenzymatic 

oxidation produces racemic mixtures. The drawback of chiral chromatography is the limited 

availability of UHPLC columns.  UHPLC chiral columns were developed recently, however, and 

there are no reports about analysis of eicosanoids on this type of column. 

Recently, Kumari et al.74 also applied supercritical fluid chromatography (SFC) for 

separation of eicosanoids. SFC utilizes supercritical carbon dioxide (CO2) as the mobile phase.   Its 

high diffusivity, and low viscosity, allow higher flow rates on UHPLC columns in order to decrease 

analysis time. The addition of modifiers (2-40% v/v of e.g. methanol) can improve the elution 

strength and solvating power of CO2. Kumari et al. assessed seven SFC columns to choose one that 

gives the best separation of eicosanoid standards, mobile phase was modified with methanol 

(MeOH) and 10 mM ammonium acetate (AmAc) at a flow rate of 1.5 mL/min. A 2-picolyamine 

(2-PIC) column was chosen as the best, and after optimization of the method, allowed separation 

of five eicosanoids within 3 minutes. Despite the efficient and fast separation only five hydrophilic 

eicosanoids were analyzed in this experiment and it is not clear how other classes of eicosanoids 

would be separated by this method. 

The main difference between nanoLC and HPLC/UHPLC is the much lower flow rate in 

nanoLC (nL/min). Nanoflow provides improved sensitivity because less solvent is going to the 

mass spectrometer electrospray ionization (ESI) source where ionization of analytes occurs. which 
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can decrease the matrix effect and increase ionization efficiency. NanoLC is mainly used in 

proteomics, however Ando et al.75 suggested using nanoLC for the analysis of eicosanoids in brain 

tissue. They hypothesized that the sensitivity of nanoLC-MS/MS could help to detect low 

concentrations of eicosanoids. In this approach, brain tissue was homogenized with methanol and 

formic acid, transferred to a Captiva ND lipids 96-well plate to remove ion-suppressing 

phospholipids and proteins then centrifuged for 2 min and injected onto a nanoLC-MS/MS system 

using an 50 µm i.d. column, and flow rate of 200 nL/min with 

water/acetonitrile:isopropanol:acetone (95:5:5) mobile phases, containing 0.1% acetic acid. They 

analyzed seven eicosanoids and achieved LOQs of 0.05 ng/ml for most of them. However, nanoLC 

usually requires long separation times and this analysis took 85 min. Also, it is not as robust as 

HPLC/UHPLC methods and retention times are less reproducible. 

1.2.6 Mass spectrometry (MS) 

 Due to their low concentrations, analysis of eicosanoids in brain tissue requires highly 

sensitive MS instruments. Also, its coupling with UHPLC requires fast data acquisition capability 

because of high flow rate. Electrospray ionization (ESI) in negative mode is used in the majority 

published LC-MS methods because eicosanoids readily ionize to form [M-H]- ions. For eicosanoid 

analysis in negative ESI two main additives are used: acetic acid63–65,76 and formic acid45,49,77 in 

different (low) concentrations ranging from 0.005 to 0.1% (v/v). However, positive ESI is 

sometimes used for ionization of leukotrienes and eoxins.78 Different MS instruments are used in 

eicosanoid analysis including triple quadrupole (QQQ), Quadrupole-Time-of-Flight (QTOF) and 

hybrid quadrupole-linear ion trap (QqLIT) mass analyzers. Selected reaction monitoring (SRM) or 

multiple reaction monitoring (MRM) on QQQ is the most popular method for targeted eicosanoid 

analysis.28,35,40,75 In this analysis, a selected precursor ion is filtered in the first quadrupole then it 

is fragmented via collision induced dissociation (CID) in the second quadrupole using low collision 

energy (usually between -15 and -35 eV), after that specific product ions are filtered in the third 

quadrupole and go to the detector. Masoodi and Nicolaou35 performed an analysis of 27 prostanoids 

from brain tissue using HPLC-QQQ and MRM mode, the LLOQ for the prostanoids was 2-100 pg 

on-column. Shaik et al.28 analyzed 11 prostanoids in rat brain tissue using UHPLC-QQQ and SRM 

mode, the LLOQ for the majority of prostanoids was 6.25 pg on column (0.104 ng/ml).  Miller et 

al.40 performed an analysis of HETEs, EETs, and DiHETrEs from brain tissue using UPLC-QQQ 

and SRM mode and obtained LLOQ 0.208 ng/ml in solvent for the analyzed compounds. Using 
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linear ion trap (LIT) instead the third quadrupole can help to increase sensitivity and popularity of 

QqLIT in targeted eicosanoid analysis is growing.25,42,46,63 Similar to quadrupole, LIT uses 

electrical fields to manipulate ions, however using additional endcap electrodes LIT can not only 

pass ions like a quadrupole but also trap and accumulate these ions according to their masses with 

their subsequent ejection to the detector. For the analysis of 43 brain oxylipins Wong et al.25 used 

QqLIT and MRM mode to reach LLOQ of 0.01 nmol/g tissue. Jouvene et al.46 analyzed 16 

eicosanoids from rat brain tissue using QqLIT. Thakare et al.63 analyzed 34 eicosanoids in different 

biological matrices (including plasma, bronchoalveolar lavage fluid (BALF) and sputum) with 

LLOQ of 0.2-3 ng/ml. 

In a QTOF mass spectrometer the third quadrupole is replaced by a time-of-flight mass 

analyzer to increase resolution compared to QQQ. In TOF, product ions (if fragmentation took 

place in the quadrupole) or only parent ions (without fragmentation) travel through the drift tube 

to the detector and separate according to their mass-to-charge ratios. Lighter ions move faster than 

heavier ones (for the same charge). QTOF is used much less than QQQ in eicosanoid analysis. It 

belongs to high resolution MS and has higher resolving power and mass accuracy which is 

important in complex biological matrixes where it is possible to have interferences with the same 

nominal mass as the analyte(s). Also, QTOF is useful because it can collect full product ion spectra 

rapidly in order to confirm the identification of isomers that cannot be resolved 

chromatographically. Brose et al.27 analyzed nine PG and Isoprostanes from mouse brain using 

UHPLC-QTOF without fragmentation and observed LLOQ of 1±0.5 pg on column.  Tajima et al.49 

performed an analysis of 31 eicosanoids of different classes on UHPLC-QTOF with fragmentation, 

however LLOQs were not reported. In this thesis targeted analysis and untargeted profiling of 

oxylipins will be performed on QTOF MS. 

1.2.7 Summary of the LC-MS methods for oxylipin measurement in brain 

Existing analytical methods to measure brain eicosanoids are summarized in Table 1.2. 

Generally, these methods focus on specific classes of eicosanoids and only three of them cover all 

main classes of eicosanoids derived from AA (Wong25, Petta76, Furman42). However even these 

methods do not cover all eicosanoids of interest. For example, Wong’s method25 does not include 

measurement of PGF2α isomers, LTD4, LXA4, 5-oxoETE; Petta’s method76 does not include 

measurement of PGF2α isomers, 8-HETE, 11-HETE, 16-HETE, (±)14(15)-EET, (±)11(12)-EET; 

Furman’s method42 does not include measurement of LTD4, LTE4 and oxoETEs. Moreover, 
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Wong25 and Furman42 used LLE for extraction of eicosanoids from brain tissue and LLE has several 

drawbacks such as large solvent consumption and possible problems with separation of layers. 

Also, in descriptions of these methods recovery of analytes was not shown so it is difficult to 

evaluate the efficiency of these methods. Thus, it was decided to use SPE for the extraction of 

oxylipins from brain tissue and, because no existing method covers all analytes of interest, we 

decided to develop and optimize our own SPME method and evaluate its recovery.  

As it was mentioned in Section 1.2.4 for in vivo SPME, maximum sensitivity is required 

because we expect very low levels of eicosanoids in these extracts. Among these three methods 

with maximum coverage of oxylipins the LLOQ were shown only for Wong’s method,25 however 

LLOQ of 3 ng/g tissue is not acceptable for our analysis because we expect levels lower than this 

of 3 ng/g. Among other existing methods (see Table 1.2) the lowest LLOQ were reached by Ando75 

and Shaik28 of 0.05 and 0.1 ng/ml respectively. However, these LLOQs were shown only for PGs 

and only in solvent. Also, Ando et al. used nanoLC and it takes 85 minutes for separation of more 

hydrophilic PGs and Txs. For the separation of all eicosanoids of interest including more 

hydrophobic compounds it possibly will take much longer, drastically reducing sample throughput. 

Another drawback of these two methods is that they use QQQ MS which means that they can 

analyze only known eicosanoids that are resolved chromatographically or have different 

fragmentation patterns. However, in vivo SPME may possibly extract some oxylipins that are not 

in the list of targets and that may not have been described before. Thus, it is important to use full 

scan mode and resolve the analytes chromatographically as much as possible as some isomeric 

eicosanoids of interest will have the same fragmentation patterns. Among existing methods (see 

Table 1.2) only two used full scan mode Tajima et al.49 and Brose et al.27, however they do not 

cover all eicosanoids of interest and they do not report, or report very high, LLOQ (10 ng/ml) 

respectively. Thus, for analysis of the SPME extracts we had to develop a novel, sensitive, LC-MS 

method that can resolve chromatographically all eicosanoids of interest, or when that it is 

impossible, resolve them using MS/MS and perform it in full scan mode to be able to find other 

eicosanoids that are not in our list of targets. 

 

 

 



33 
 

Table 1.2 Summary of the LC-MS methods for oxylipin measurement in brain 

Reference Target analyte classes / 

number of analytes 

covered 

Extraction 

method 

LC-MS 

method/scan mode 

LLOQ Analysis 

time (min) 

Masoodi et al.35  PGs, Txs / 27 SPE (C-18) HPLC-QQQ MS/ 

MRM 

in solvent 

1-20 ng/ml 

30 

Yue et al.26 PGs, DiHETrEs, 

HETEs, EETs/19 

SPE (HLB) HPLC-Q MS/ 

SRM 

in solvent 

0.2-2 

ng/ml 

45 

Golovko et al.43 PGs, Txs / 5 LLE HPLC-QQQ MS/ 

MRM 

n.r. 50 

Farias et al.52 PGs, LTs, HETEs/13 SPE (C-

18/HLB) 

HPLC-QQQ or 

QTRAP MS/ 

MRM 

in solvent 

1.76-10.51 

ng/ml 

45 

Masoodi et al.44 HODEs, HEPEs, 

HETEs, LTB4, Rvs, 

PDs, 17S-HDHA/19 

SPE (C-18) HPLC-QQQ MS/ 

MRM 

in solvent 

4-10 ng/ml 

35 

Miller et al.40 HETEs, EETs, 

DiHETrEs/10 

SPE (HLB) UPLC-QQQ MS/ 

SRM 

in solvent 

0.208 

ng/ml 

4.8 

Brose et al.70 PGs, isoPGs/5 LLE HPLC and Chiral 

HPLC-QQQ MS/ 

MRM 

n.r. 80 

Strauss et al.45 HETEs, EETs/20 SPE (HLB) HPLC-QQQ MS/ 

MRM 

n.r. 8 

Tajima et al.49 PGs, HETEs, HEPEs, 

HDoHEs, DiHETEs/62 

LLE UPLC-TOF MS/ 

Full Scan 

n.r. 67 

Liu et al.41 PGs/4 SPE (HLB) UPLC-QQQ MS/ 

SRM 

n.r. n.r. 

Brose et al.27 PGs/9 MeOH 

extraction 

UPLC-QTOF/ 

Full Scan 

in solvent 

10±5 ng/ml 

16.5 

Shaik et al.28 PGs/11 SPE (HLB) UPLC-QQQ MS/ 

SRM 

in solvent 

0.1-

0.2ng/ml 

12 
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Wong et al.25 PGs, LTs, DiHETs, 

HETEs, EETs/49 

LLE HPLC-QTRAP MS 

MRM 

in matrix 

3ng/g 

tissue 

n.r. 

Petta et al.76 PGs, LTs, DiHETs, 

HETEs, EETs/23 

SPE (C-18) HPLC(fused core)-

QQQ MS/ 

MRM 

n.r. 30 

Ando et al.75 PGs, Txs, LTB4 MeOH 

extraction  

nanoLC-QQQ MS/ 

SRM 

in solvent 

0.05 ng/ml 

85 

Furman et al.42 PGs, LTs, HETEs, 

EETs/55 

LLE HPLC-QTRAPMS/ 

MRM 

n.r. 35 

Jouvene et al.46 HETEs, HDoHES, 

LTB4, RvD1, PDs/16 

SPE (MAX) UPLC and Chiral 

HPLC-QTRAPMS/ 

MRM 

n.r. 40/27 

*n.r-not reported 
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1.3 Research objectives 

The existing methods for the analysis of eicosanoids in brain tissue require sacrifice of the 

animal followed by tissue homogenization and subsequent extraction of eicosanoids using LLE or 

SPE. However, post-mortem synthesis can change eicosanoid levels, so that the existing in vitro 

methods may not reflect ante mortem levels of eicosanoids in living/functioning brains. For this 

reason, it is important to develop an in vivo method that can measure accurately levels of 

eicosanoids in living brain with good spatial and temporal resolution. The single existing in vivo 

method for brain analysis is MD but it has limitations for lipid analysis because they can interact 

with the MD device tubing causing analyte losses. In vivo MD was used for extraction of oxylipins 

from brain, however, representatives of only one class of more hydrophilic oxylipins (PGs) were 

detected. SPME can solve this problem of losses during sampling and become the first in vivo 

method for the analysis of oxylipins in brain tissue that covers all main classes. Thus, the main 

objective of this thesis was to demonstrate this capability of SPME for the first time. However, 

because of the low abundance of eicosanoids and because SPME is a non-exhaustive method that 

can extract only a small portion of the analyte, very sensitive LC-MS was required. Thus, the first 

step of this work focused on the development of the LC-MS method that was capable of detecting 

and quantifying all oxylipins of interest. According to the literature review, RP C-18 was selected 

for the separation method and columns packed with both fully porous and core-shell particles will 

be compared. After that, SPME fibers were used for in vivo sampling from the rat brain and the 

resulting samples were analyzed using the developed LC-MS method. Authentic standards were 

used to confirm the identification of as many oxylipins as possible that were extracted by in vivo 

SPME. The second objective of this thesis was to develop a reliable SPE method capable of 

extracting all oxylipins of interest from brain tissue and plasma in vitro. This optimized method 

was then be applied to brain tissue samples and human plasma samples.  Oxylipins were detected 

and quantified in these samples. Coverages of in vivo and in vitro methods for the brain tissue were 

compared. 
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2 Ultra-high performance liquid chromatography – high resolution 

mass spectrometry method for detection and quantitation of 

oxylipins in plasma. 

Alexander Napylov, Dajana Vuckovic 

Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada 

2.1 Abstract 

Oxylipins are bioactive oxygenated products of long chain (18-22) polyunsaturated fatty 

acids (PUFA). They play important roles in different physiological processes acting as local 

hormones, so they may be used as biomarkers of these processes. In addition, the pathways and 

exact biological functions of many members of this family are not clear and need further 

investigation. To enable such investigations, it is important to have a reliable and accurate 

analytical method for oxylipin measurements. The objective of this work was to develop a multi-

class oxylipin analytical method to detect and quantitate oxylipins in plasma samples. High-

resolution scan mode is used for further identification and annotation of unknown oxylipins. A 

sensitive liquid chromatography-mass spectrometry method was developed for 65 oxylipins and 7 

internal standards that was used to detect 38 oxylipins in human plasma and accurately quantitate 

25 of them. The method relied on Strata C-18 SPE followed by two LC-MS analyses on an Agilent 

QTOF 6550 iFunnel, one of 2.5x preconcentrated and one of 40x diluted samples. 

Chromatographic separation of oxylipins, including their isomers, was achieved with a C-18 

UHPLC column using water/acetonitrile:isopropanol mobile phases, containing 0.02% acetic acid 

in 40 min. Three pairs of standards required MS/MS for positive identification/quantitation. The 

average recovery was 70-97 % and the matrix effect was 27-105%. The chromatographic 

selectivity of the method was further investigated using shallower gradient and different 

chromatographic columns to ensure selectivity of the identifications. The results showed that 

shorter methods could suffer from oxylipin misidentifications even when authentic standards and 

very narrow accurate retention time matching was used due to the existence of very large numbers 

of oxylipin isomers.  
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2.2 Introduction 

Oxylipins are bioactive oxygenated products of long chain (18-22) PUFA.7 The main 

precursors of oxylipins are AA, DHA, EPA, Linoleic acid (LA), Alpha-linolenic acid (ALA), 

Dihomo-gamma-linolenic acid (DGLA) and 11,14-eicosadienoic acid. Membrane phospholipids 

are the main source of PUFA that are released from cell membranes by PLA2 enzyme.11 After 

mobilization, PUFA can be oxidized by COX, LOX and CYP enzymes as well as 

nonenzymatically.8 Oxygenated PUFA act through specific G-protein-coupled receptors close to 

the place of their synthesis.7,8 In living systems, eicosanoids, and other oxylipins, play important 

roles in various physiological processes such as inflammation,19 sleep and memory,24 

cerebrovascular function79 and others29,80. Depending on their roles, oxylipins may be used as 

therapeutic targets or biomarkers of different disorders. To investigate these and other biological 

roles of oxylipins, reliable quantitative analytical methods for various biological tissues and fluids 

are needed. 

Different analytical methodologies can be used for the analysis of oxylipins in biological 

matrices including immunoassays31, GC-MS or GC-MS/MS32,33 and LC-MS or LC-MS/MS34,35. 

Radio-labeled and enzyme-linked immunoassays were historically popular for oxylipin analysis. 

However, their key disadvantages include cross-reactivity and they cannot be used for 

simultaneous measurement of multiple oxylipin analytes of interest. GC-MS and GC-MS/MS can 

be used for the analysis of most primary oxylipins (e.g. PGs) but are not suitable for labile oxylipins 

(e.g. EETs). In addition, GC-based methods require derivatization which makes the analytical 

process more complicated because of factors such as incomplete derivatization and side reactions. 

To date, LC-MS/MS is the most popular methodology for oxylipin analysis due to its sensitivity, 

resolution and high throughput.36 Reversed-phase liquid chromatography on C-18 is commonly 

used for the effective separation of isomeric compounds, followed by MS analysis of oxylipins in 

negative ESI, mostly on QQQ or QqLIT mass analyzers in SRM or MRM modes.53,65,81–83 For 

example, Zhang et al.81 successfully quantified 15 oxylipins in human plasma with LOQs of 20-33 

pg/ml. Miller et al.82 quantified 10 oxylipins in human plasma and achieved 0.416 ng/ml LOQ for 

all analytes. These targeted methods generally provide high sensitivity and good limits of detection, 

but they only allow quantification of the oxylipins that were included in the target list before 

analysis. However, many unknown oxylipins and oxylipins are still being annotated84 and typical 

target lists usually do not even contain all the known oxylipins that could be possibly detected. 
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Thus, using high-resolution mass spectrometry for oxylipin profiling is of significant interest in 

order to expand the range of oxylipin species that can be monitored.85 Only a few methods to date 

have examined QTOF performance for oxylipin profiling,27,49,86,87 and among these only Berkecz 

et al.86 used MS1 scan mode for analysis. The identification of known oxylipins with authentic 

standards was performed based on retention time and accurate mass while unknown oxylipins were 

further characterized using data-dependent acquisition (DDA) mode to obtain fragment ions. As a 

result, 31 oxylipins from the target list were identified in plasma and an additional 20 potential 

oxylipins that were not on the target list were identified due to using the scan mode and DDA in 

the 20 min analysis time. One potential issue with the use of such short chromatographic times is 

possible co-elution of isomeric oxylipins, and this requires further investigation. 

Sample preparation and extraction procedures are also critical steps in oxylipin analysis. 

For the extraction of oxylipins from plasma, LLE,81 protein precipitation83,88,89 and SPE65,82,86,90 

are frequently used. Among these, SPE is the most popular due to its robustness, reproducibility 

and high recoveries.53 There are many existing SPE methods for oxylipin extraction from plasma 

showing different oxylipin coverage, recoveries of standards and reproducibility. However, most 

often they are optimized for a particular class of oxylipins with similar properties. For methods 

covering a wide range of oxylipins the reported validation does not usually reflect real recovery or 

the matrix effect of each oxylipin but, rather for a small group of internal standards to avoid 

problems with endogenous levels of oxylipins. For example, the methods developed by Strassburg 

et al.3 and Wang et al.91, that used SPE for extraction of more than 100 oxylipins used 11 and 26 

internal standards respectively for method validation, evaluation of recovery and matrix effect. 

With so few validation species, the results cannot really reflect recovery and matrix effect for every 

analyte. For that reason, it was decided to develop and optimize a SPE method for extraction of 

oxylipins from plasma with evaluation of recovery and matrix effect for every oxylipin analyte. 

The aim of this study was to develop a sensitive analytical method for quantitative analysis 

and profiling of eicosanoids and other oxylipins in plasma and to investigate, in detail, the possible 

interferences of isomeric species for the analysis of 65 oxylipins. The optimized method includes 

solid phase extraction optimized for plasma and LC-HRMS in scanning mode for broad oxylipin 

profiling and is suitable for detection of 38 oxylipins, among which 25 oxylipins could be 

accurately quantified. 
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2.3 Materials and methods 

2.3.1 Chemicals 

LC-MS grade water, methanol, acetonitrile, isopropanol and HPLC grade ethyl acetate 

were purchased from Fisher Scientific (Ottawa, Ontario, Canada). Acetic acid (HAc, ACS grade, 

99.7%) and formic acid (FA, for mass spectrometry, 98%), tricloracetic acid solution (TCA, 6.1 

N), ammonium acetate (AmAc, for mass spectrometry), ammonium hydroxide solution (NH4OH, 

≥25% in H2O, eluent additive for LC-MS) were purchased from Sigma-Aldrich (Oakville, Ontario, 

Canada). Ethanol (EtOH, ACS grade) was purchased from MP Biomedicals, LLC. Pooled human 

plasma and individual human plasma with sodium citrate as anticoagulant was purchased from 

Bioreclamation Inc. (Baltimore, MD, USA). 

2.3.2 Oxylipin standards 

In total, 76 oxylipin standards including 8 deuterated standards (Supplementary Tables S1 

and S2) were purchased from Cayman Chemicals (Ann Arbor, MI, USA). During the initial method 

development four of them (Table S1) were excluded from further analysis: LTC4 was not 

detectable in negative mode, TXB2 showed a very broad peak with unacceptable tailing, whereas 

5(6)-EET and 5(6)-EET-d11 gave very low signal relative to other EETs making them undetectable 

in low concentrations. 12-oxoETE, 5-HpETE and 15-HpETE did not pass an autosampler 24-hour 

stability test (Supplementary Figure S14) and were excluded from all quantitative analyses, 

however they were used in Mix 65 and Mix 72 to preserve the possibility for their detection in 

samples. All standard solutions were prepared in MeOH and stored at -80°C, unless otherwise 

noted. Individual standard stock solutions were prepared at 10 µg/ml. Three 100 ng/ml working 

solutions were prepared: one of all non-labelled oxylipins and internal standards (Mix72), second 

of all non-labelled oxylipins (Mix 65), and third of deuterated internal standards (Mix 7d). 

2.3.3 Optimized C-18 SPE procedure for standards in solvent 

C-18 (Strata Phenomenex 200 mg) SPE was performed as follows: (i) conditioning with 1 

ml of MeOH and 1 ml of 20% MeOH, (ii) loading 100-1000 µl of sample, percentage of organic 

solvent in sample should be ≤20% (iii) washing with 1 ml of 20% MeOH, (iv) elution with 1 ml of 

99% MeOH with 1% HAc into a 5 ml culture glass tube. After elution, all eluent was transferred 

to a 1 ml amber glass round-bottom tube contained 20 µl of 30% glycerol in MeOH and evaporated 

in a speedvac to dryness (6 µl of glycerol remaining at the bottom of the tube).  The evaporation 

required different times depending on the matrix (~2 hours for standard solutions). After 
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evaporation, the samples were reconstituted with 40 µl of MeOH with vortex mixing. Samples 

were then transferred to 250 µl glass inserts placed in 1.5 ml Eppendorf tubes for centrifugation at 

15 000 x g for 10 minutes at 4°C. Finally, 20 µl of supernatant was transferred to a new HPLC 

glass insert for LC-MS analysis. 

2.3.4 C-18 SPE with TCA precipitation 

Pooled plasma (100 µl) was added to a 1.5 ml polypropylene Eppendorf tube and spiked at 

final concentration of 5 ng/ml ISTDs mix and then placed in the freezer at -800C for 1 hour. 

Samples were thawed and mixed with 100 µl of 10% (v/v) TCA, vortexed and then centrifuged at 

15000 x g for 15 min at 40C. 150 µl of supernatant was transferred to a clean 1.5 ml polypropylene 

Eppendorf tube and pH was adjusted to 3 using NH4OH and pH paper. The samples (approximately 

150 µl, taking into account a few drops of NH4OH that were added for pH adjustment) were then 

extracted by SPE followed by evaporation/reconstitution as described in Section 2.3.3. 

2.3.5 C-18 SPE without prior protein precipitation step 

Plasma (100 µl) was added to a 1.5 ml polypropylene Eppendorf tube and spiked to a final 

concentration of 0.5 ng/ml ISTDs mix and placed in the freezer at -800C for 1 hour. Samples were 

thawed and loaded on SPE and evaporation/reconstitution as described in Section 2.3.3. After 

reconstitution, samples were transferred from the glass inserts and placed into 1.5 ml Eppendorf 

tubes for centrifugation. Centrifugation was performed at 15 000 x g for 10 minutes. 20 µl of final 

supernatant were transferred to the HPLC glass inserts for LC-MS analysis of low abundance 

oxylipins. 10 µl of supernatant was diluted 100X with 100% MeOH, 20 µl of diluted sample was 

transferred to an HPLC glass insert for LC-MS analysis of high abundance analytes. Samples were 

injected in 100% MeOH as no impact on accuracy or peak shape was observed during development 

experiments (Supplementary Figure S7). 

2.3.6 IPA protein precipitation 

Pooled plasma (100 µl) was added to a 1.5 ml polypropylene Eppendorf tube and spiked to 

a final concentration of 0.5 ng/ml ISTDs mix then placed in the freezer at -800C for 1 hour. Samples 

were then mixed with 300 µl of IPA, vortexed and then centrifuged at 15000 x g for 15 minutes at 

40C. Finally, 350 µl of supernatant was transferred to a new 1.5 ml Eppendorf tube. In HPLC glass 

inserts, 10 µl of supernatant was diluted with 27.5 µl of water before LC-MS injection. 
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2.3.7 Final LC-MS method  

The chromatographic separation was performed on an Agilent 1290 Infinity II UHPLC 

system with a ZORBAX Eclipse plus C-18, 1.8 µm (2.1 mm x 100 mm) Rapid Resolution High 

Definition (RRHD) column (Agilent Technologies, Santa Clara, CA, US) protected by a guard 

column (2.1 mm x 5 mm; Agilent) made of the same packing material. The temperature of the 

column was held at 50oС with a mobile phase flow rate of 0.4 ml/min. Mobile phase (A) consisted 

of 0.02% acetic acid in LC-MS grade water and (B) 0.02% acetic acid, 10% isopropanol and 90% 

acetonitrile. The MP started at 95% A : 5% B for 1 min, then the % B was increased to 20% over 

0.1 min, followed by a linear gradient from 20% to 80% B over 29.9 min. Then, %B was increased 

to 95% over 0.1 min where it remained for 3.9 min followed by column re-equilibration to initial 

conditions for 5 min. Total run time per sample was 40 min. Injection volume was 10 µl.  

Mass spectrometric analysis was performed on an Agilent Q-TOF 6550 iFunnel equipped 

with Dual AJS ESI operated in negative mode. The following MS parameters were used: capillary 

voltage 3500 V, nozzle voltage 500V, drying gas temperature 250oС, drying gas flow 15 l/min, 

sheath gas temperature 275oС, sheath gas flow 12 l/min, mass range 100-1000 m/z. The LC-MS 

method was divided into 3 time segments: first (0-22.08 min.) and third (22.48-40 min) segments 

MS mode, acquisition rate 2 spectra/second; second segment (22.08-22.48 min), acquisition rate 

for MS - 2 spectra/second plus MS/MS mode for detection of 8-HETE (parent ion 

319.22787/fragment ion 155.07) and 12-HETE (parent ion 319.22787/fragment ion 179.1).  For 

MS/MS - 3 spectra/second, collision energy 16, iso. width – narrow (~1.3 m/z), delta retention time 

0.2 min. To individually quantitate 10,17-DiHDHA+MaR1 and 11-HEDE+15-HEDE, two 

additional time segments were used 15.53-16.13 min with CID 15 for 10,17-DiHDHA (parent ion 

359.22280/fragment ion 153.09) and MaR-1 (parent ion 359.22280/fragment ion 250.12) and 

23.99-24.59 with CID 20 for 11-HEDE (parent ion 323.259173/fragment ion 199.13) and 15-

HEDE (parent ion 323.259173/fragment ion 223.17), all other MS/MS settings are the same as the 

MS/MS segment in the basic method. Internal calibration was performed using Dual AJS system 

and an isocratic pump with a flowrate of 0.1 ml/min. Calibrant masses 119.03632 (purine), 

980.01638 (HP-0921 acetate adduct) from Agilent mass reference solution were used. Data 

acquisition was controlled using MassHunter software version B.07.00 (Agilent). 
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2.3.8 Data analysis 

Data analysis was performed using Agilent Masshunter software (TOF Qualitative Analysis 

B.07.00 and QTOF Quantitative Analysis B.07.00). Extraction window of [M-H]- was 10-30 ppm 

depending on the compound. All calibration curves were built using 1/x weighted linear regression. 

2.3.9 Calibration curves 

For the quantitation of oxylipins in plasma samples four types of calibration curves were 

used. (i) Solvent calibration curve. A mixture of 72 standards and ISTDs at 100 ng/ml in methanol 

was serially diluted with methanol to obtain the following standards: 100, 50, 25, 12.5, 6.25, 3.12, 

1.56, 0.781, 0.391, 0.195, 0.098 ng/ml. 10 µl of each sample were injected. (ii) SPE calibration 

curve. A mixture of 65 standards at 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.063, 0.031 ng/ml concentration 

were prepared in 20% methanol by serial dilution. Prior to SPE, each sample was spiked at 0.4 

ng/ml with ISTDs. Volume of the standard loaded was 125 µl (100 µl 20% MeOH + 20 µl of 65 

analytes + 5 µl ISTDs mix). Samples were subjected to SPE as described in Section 2.3.3 with 10 

µl of reconstituted sample injected. The peak area ratio, between analyte and selected ISTD, was 

used to build the calibration curve (iii) SPE standard addition curve for the measurement of low 

abundance oxylipins in plasma with 2.5x enrichment was prepared by performing SPE on three 

100 µl pooled plasma replicates spiked at 40 ng/ml of 15-HETE-d8 and 0.4 ng/ml concentration of 

the other six ISTDs and a series of 100 µl plasma samples spiked with Mix 65 standards at 

increasing concentration from 0.031 to 16 ng/ml and with Mix of seven ISTDs at 0.4 ng/ml 

concentration. Final volume of the sample at loading was 125 µl (100 µl of pooled plasma + 20 µl 

spike with Mix 65 + 5 µl spike with ISTDs mix). All steps were the same as for SPE calibration 

curve. The endogenous levels of oxylipins, in the pooled plasma, were calculated using three blank 

pooled plasma samples and were subtracted from each calibration point. (iv) SPE standard addition 

calibration curve in plasma with 40x dilution for the measurement of high-abundance oxylipins. 

All steps were the same as for the curve described in (iii), but samples were spiked with Mix 18 

standards that contains the 18 most abundant oxylipins in plasma (Supplementary Table S1) at 800, 

400, 200, 100, 50, 25, 12.5 ng/ml concentration prepared in 20% methanol and with 15-HETE-d8 

at 40 ng/ml concentration. Final volume at the loading step was 125 µl (100 µl of pooled plasma + 

20 µl spike with Mix 18 + 5 µl spike with 15-HETE-d8). Samples were loaded on SPE as described 

in Section 2.3.3. After reconstitution and centrifugation 10 µl of supernatant was diluted 100x with 

100% MeOH and 10 µl of diluted sample was injected. 15-HETE-d8 was used as internal standard 
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for building all calibration curves for high abundance oxylipins. The endogenous levels of 

oxylipins in pooled plasma were determined using three pooled plasma samples spiked with ISTD 

only and were subtracted from each calibration point. These samples were described in (iii) and 

were diluted 100x after reconstitution and prior to LC-MS analysis. 

2.3.10 Method evaluation – recovery and matrix effects 

 For the fully optimized method, the recovery and matrix effect were assessed. To measure 

the recovery in solvent, 100 µl of 4 ng/ml Mix 72 standard (containing all analytes and internal 

standards) in 20% MeOH were loaded on SPE as described in Section 2.3.3 (n=3). The obtained 

peak areas from these pre-extraction spiked samples were measured against the peak areas obtained 

for post-extraction spiked samples. These were prepared by subjecting 20% methanol to SPE as 

described in Section 2.3.3 and reconstituting the samples after evaporation using 40 µl of 10 ng/ml 

Mix 72 standard in MeOH (n=3). This corresponds to the final expected oxylipin concentration in 

SPE samples at the time of injection. To measure the oxylipin recovery in plasma for low 

abundance oxylipins, the procedure was the same as for solvent recovery but Mix of 72 standards 

was spiked in pooled plasma at 4 ng/ml concentration, analysis was performed for 6 pre- and 6 

post-spiked samples. To measure the recovery in plasma for high abundance oxylipins, the pooled 

plasma samples were spiked with Mix 25 that contains 18 most abundant oxylipins and 7 ISTDs at 

40 ng/ml concentration and loaded on SPE as described in Section 2.3.3 (n=6).  After 

reconstitution, 10 µl of each sample were diluted 100X with MeOH and 10 µl of diluted sample 

were injected. The obtained peak areas were measured against the peak areas in post-extraction 

spiked plasma, so final equation is Recovery=(Area in pre-extraction spiked/Area in post-

extraction spiked)*100. In all cases, the absolute matrix effect was assessed by measuring the peak 

areas in post-spiked samples, at an expected concentration of 10 ng/ml, against the peak areas of 

10 ng/ml oxylipin standards in methanol as per the commonly employed Matuszewski et al.92 

procedure. 

2.4 Results and discussion 

2.4.1 SPE method development  

Sample preparation is a critical step in oxylipin analytical methods. Many oxylipins exist 

in very low concentrations (e.g. 0.1 ng/ml) in biological matrices. Thus, sample preparation should 

provide enrichment and decrease matrix complexity. Today C-18, or polymeric, reversed-phase 
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materials (e.g. HLB) SPE, are the most commonly used methods for sample preparation in oxylipin 

analysis.53,67,93,94 Both of these approaches show high recovery for particular groups of oxylipins, 

however these methods were rarely applied to all of the diverse classes and do not cover all 

oxylipins of interest. In the first step of method development in this work, a detailed comparison 

of HLB and C-18 SPE was performed. Supplementary Figure S1 shows the method efficiency 

results for oxylipin standard solutions. For most oxylipins, the method efficiency was higher than 

60% ranging from 62 to 102 for C-18 SPE and 60 to 100 for HLB SPE and comparable for both 

SPE. Only RvD1, LXA4, LTE4 and LTD4 showed low recoveries between 10-57% (Supplementary 

Figure S1). The eluents, after loading and washing steps, were analyzed and contained no 

detectable concentrations of oxylipins.  This means that a possible source of loss in recovery was 

incomplete elution from the SPE cartridge. Next, the composition and volume of the elution solvent 

were optimized to maximize recovery (Supplementary Figures. S2-S3).  Methanol was selected as 

elution solvent due to better elution of HETEs, LTEs, EETs and PUFA precursors. Elution with 1 

ml of 99% MeOH + 1% HAc was determined as optimal for the standards of interest. Acidification 

of the elution solvent was required for leukotrienes, but if this subclass is not of interest elution 

with methanol provides quantitative recoveries for all other subclasses (78-130%). Despite 

comparable recovery, C-18 was chosen for further development because C-18 can decrease the 

complexity of the matrix by not retaining polar compounds, similar to the results obtained by 

Ostermann et al.53 who investigated optimal sample preparation method for analysis of oxylipins 

in plasma and found that C-18 SPE outperforms other sample preparation methods.   

Enrichment of the sample is an important component of the sample preparation procedure 

in oxylipin analysis. By comparing method recovery, with and without the inclusion of 

evaporation/reconstitution step, it was determined that the evaporation/reconstitution step is a 

critical step in contributing to oxylipin losses (up to 80%) during sample preparation. In the 

literature, evaporation of the SPE eluent is commonly performed in speedvac, or under a stream of 

nitrogen, or argon,93 but the recovery losses of oxylipins during evaporation/reconstitution step 

were not reported. In order to further evaluate the extent of losses during this critical step, a 

comparison of speedvac versus nitrogen evaporation was performed. The results for this 

comparison showed 15-30% higher recovery by Speedvac evaporation in comparison with nitrogen 

evaporation and much better precision (Supplementary Figure S4). However, too few replicates 

were used in this experiment and additional experiment with at least 30 replicates is needed to 
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make final decision what evaporation is better. But at that time speedvac evaporation was chosen 

for the final sample preparation method, and then further optimized to decrease losses during this 

important step. For that, the optimal vessel for evaporation, the composition and volume of 

reconstitution solvent were determined. In addition, other ways to decrease the adsorptive losses 

such as the addition of glycerol in the evaporation tube, preliminary rinsing of evaporation tube 

with acid and the evaporation to 2 µl, rather than to dryness were assessed. The results of these 

experiments are shown in Supplementary Figures S5-S7. As a result, the final optimized 

evaporation/reconstitution method includes using 1 ml glass tubes with the addition of 20 µl of 

30% glycerol in MeOH, evaporation in speedvac, and subsequent reconstitution in 40 µl MeOH. 

The use of glycerol to minimize non-specific adsorption of oxylipins during 

evaporation/reconstitution step has also been successfully employed in other studies.53,95–97  

The final optimized method is summarized in Figure 2.1. The recovery and precision of the 

final method were evaluated for standard solutions as shown in Figure 2.2. The oxylipins were 

sorted according to their elution order on C-18 and in most cases this corresponds to ascending 

LogP values (Supplementary Table S3).  As shown in Figure 2.2, more hydrophilic oxylipins (e.g. 

PGs) have a higher recovery than more hydrophobic (e.g. EETs) oxylipins. In general, the recovery 

of standard solutions was >50%: PGs (88-109%), DiHETEs (59-78%), HEPEs (72-90%), HETEs 

(74-93%), HDoHEs (63-81%) and EETs (57-64%). The most hydrophobic compounds: DHA and 

AA-d8 had recoveries around 40% and AA was not detected at this low concentration (0.4 

ng/cartridge) but can be quantitatively recovered at higher concentrations (e.g. Supplementary 

Figure S1). Lower recoveries for the more hydrophobic oxylipins shown in Figure 2.2 are likely 

due to increased non-specific adsorptive losses at very low oxylipin concentrations. This is 

supported by Supplementary Figure S1 where all oxylipins, at higher concentrations of 3.125 

ng/ml, could be recovered with acceptable performance (except leukotrienes) and with recovery 

data obtained in plasma (Figure 2.3) 
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Figure 2.1 Final optimized SPE method workflow. For plasma samples ISTD mix contains six 

ISTDs at 10 ng/ml and 1000 ng/mL 15-HETE-d8 in MeOH 

 

C-18 Strata® SPE 200 mg 

Wash: 1000 µl MeOH  

Conditioning: 1000 µl 20% MeOH  

Loading: 100 µl sample + 5 µl ISTDs Mix  

Wash: 1000 µl 20% MeOH  

Elution: 1000 µl 99% MeOH + 1% HAc  

Full evaporation in Speedvac (~ 5 hours) 

Reconstitution in 40 µl MeOH with 15 sec. vortexing 

Transfer to 250 µl glass inserts placed in 1 ml Eppendorf 

tubes and centrifugation 15 000 g 10 min 

10 µl of supernatant are injected directly 

Collect eluent in 5 ml glass culture tubes and transfer to 

1 mL glass tubes with 20 µl 30% Glycerol in MeOH 

 

10 µl of supernatant diluted 100x with MeOH and 

injected 
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At a spiking mass of 0.4 ng/cartridge in simple solvent which is at the low/high end of the 

expected masses, the recoveries of LTE4, LTE4-d5, LTD4 were 0. Experiments with higher 

loading masses (concentrations) in solvent (Supplementary Figures S1-S3) as well as spiking 

plasma with 0.4 ng of these oxylipins (Figure 2.3 and 2.5a) showed higher recovery, ranging from 

2 to 24% in solvent and 40-55% in plasma. These losses are attributed to non-specific adsorption 

throughout the procedure, and poor long-term stability of leukotrienes under acidic conditions at 

elevated temperatures such as those during speedvac evaporation. To reduce non-specific 

adsorption, “active sites” throughout the procedure can be first be filled with blocking molecules 

that decrease losses of targeted oxylipins (sequential loading). For instance, when LTE4-d4 was 

first loaded on a SPE cartridge to block such sites, the recovery of LTE4 increased to 70% even at 

the 0.4 ng loaded level. This strategy can be used for matrices where problems with oxylipin 

recovery, due to excessive non-specific adsorption, are observed.  Similar challenges in the 

extraction of leukotrienes were reported by Astarita et al.94 and the majority of papers that describe 

oxylipin methods do not report the recovery of LTE4 and LTD4.  In terms of method precision, the 

average RSD in this experiment (n=3) was 7% confirming that the developed method has 

acceptable precision for the oxylipin extraction. 
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Figure 2.2 Extraction recovery of oxylipin standards using the optimized SPE method. Recovery %=Apre/Apost*100%, pre- and post-

extraction spikes were performed at 4 ng/ml mix. The results show mean recovery (n=3), error bars show mean values (n=3) of SD 

for each oxylipin. This figure shows 65 oxylipins (including two unresolved pairs: 10(S),17(S)-DiHDHA+MaR1 and 11-HEDE + 15-

HEDE ) out of 72 that were used in this experiment, 7 oxylipins were excluded: LTE4, LTE4-d4, LTD4, AA were not detectable as 

discussed in Section 2.4.1; 12-oxoETE, 5-HpETE and 15-HpETE were excluded due to their instability as discussed in Section 2.4.4 
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2.4.2 Protein precipitation of plasma samples before SPE 

The optimized SPE method was next applied for the analysis of oxylipins in pooled human 

plasma. Protein precipitation with TCA prior to SPE was initially selected instead of precipitation 

with MeOH or ACN.90,95,98 The use of an organic solvent for precipitation requires subsequent 

dilution of the sample after precipitation to decrease high organic solvent level to 20% to enable 

sample loading on SPE without losses of oxylipins. The use of TCA can avoid such step while 

providing efficient protein removal from plasma. A TCA to plasma ratio of 1:1 was used99,100 

followed by pH adjustment to 3 with NH4OH prior to SPE loading. When 100 µl pooled plasma 

samples were spiked to 5 ng/ml ISTDs (Table 2.1) before precipitation, several endogenous 

oxylipins were detected, however none of the ISTDs were detectable indicating possible losses 

during the precipitation step. In follow-up experiments, the concentration of spiked ISTDs was 5, 

10 and 20 ng/ml. In the 20 ng/ml samples, no ISTDs, except for the most hydrophilic 11βPGF2α-

d4 were detected (recovery of 15%, data not shown). These experiments showed that severe losses 

of oxylipins occur during the precipitation step.  To further confirm this finding, the extraction was 

repeated without preliminary precipitation by loading spiked pooled plasma samples directly on 

equilibrated SPE cartridges as reported in other studies65,101. In this experiment, the detected 

concentrations of oxylipins were much higher than in the preliminary experiment with TCA 

precipitation. The concentration range of detected oxylipins was very wide from 0.26 to 821 ng/ml 

(Table 2.1). The direct loading of plasma for SPE was then further compared to IPA protein 

precipitation of plasma and showed comparable oxylipin levels. Altogether, these results show that 

tremendous losses of oxylipins were specific to TCA precipitation and that organic solvent 

precipitation, or direct loading, for SPE are preferred for oxylipin analysis.  

The direct loading of plasma samples on the SPE cartridge (without preliminary protein 

precipitation) caused the appearance of precipitate after the reconstitution of evaporated sample. 

For that reason, an additional centrifugation step was added after reconstitution. This centrifugation 

step should be performed in a 250 µl glass insert placed in 1.5 mL Eppendorf tube at 15 000 x g 

for 10 min. It is necessary to use a glass insert, instead of an Eppendorf tube, because plastic tubes 

can cause losses of oxylipins (Supplementary Figure S5).  
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Table 2.1 Comparison of TCA protein precipitation versus direct loading on oxylipin recovery in 

human plasma. The results show the mean in ng/ml ± SD (n=3). The HMDB column shows the 

range of oxylipin concentrations, in ng/ml, reported in the Human Metabolome Data Base 

(HMDB)102 (accessed November 2018). ND-compound was not detected. NR-concentrations were 

not reported. For both TCA protein precipitation and direct loading of plasma for SPE a solvent 

calibration curve was used for quantitation. 

Oxylipin TCA protein precipitation followed by 

SPE (ng/mL) 

Direct loading of plasma on 

SPE (ng/mL) 

HMDB [104] 

8-iso-15(R)-PGF2α 0.06±0.006 0.26±0.01 NR 

15-HETE 0.6±0.2 376±34 0.26-358 

9-HETE 0.64±0.29 408±35 0.05±0.55 

5-HETE 0.76±0.46 681±54 0.29-1123 

14,15-EET ND 2.71±0.14 0.04-0.56 

5-oxoETE ND 24±2 0.04-0.05 

EPA 1.41±0.88 248±27 0.12-635250 

DHA 0.95±0.89 821±111 1.1-160965 

The observed dynamic range of oxylipins in plasma is very high, roughly 3 orders of 

magnitude, as shown in Table 2.1, and the very high concentrations of some oxylipins in plasma 

caused detector saturation. To address this issue, it was necessary to use two injections of the 

reconstituted and centrifuged plasma. The first injection is a direct injection of the reconstituted 

sample, corresponding to 2.5x pre-concentration from the initial plasma and is used to detect and 

quantitate the low abundance oxylipins. For the second injection, the reconstituted sample is diluted 

100x with MeOH, i.e. 40x dilution compared to the initial plasma and is used to quantitate the more 

abundant oxylipins. However, even with this dilution arachidonic acid is still too concentrated for 

accurate quantitation. The use of two injections with different dilution/enrichment factors also 

allows the method to provide accurate results for oxylipins whose concentrations can vary widely 

across individuals (Table 2.2), so the appropriate low or high abundance calibration curve can be 

used, as needed, for quantitation of each analyte in each individual.  

2.4.3 Evaluation of recovery and matrix effect of the developed SPE method in plasma 

The developed method was evaluated for matrix effect and recovery in human plasma as 

described in Section 2.3.10 The assessment was performed only for oxylipins from Table 2.3 that 

can be measured accurately, and all internal standards. The recoveries of oxylipins in plasma were 

higher than in solvent with an average of 83% (range from 70 to 97%), Figure 2.3. The higher  
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Figure 2.3 Evaluation of extraction recovery of oxylipins from human plasma. 

Recovery%=Apre/Apost*100%, where red colour is used for less abundant oxylipins, there pre- 

and post-extraction spikes were performed at 4 ng/ml mix of standards accounting for 2.5x 

enrichment. For more abundant oxylipins (highlighted in blue) pre- and post-extraction spikes 

were performed at 4o ng/ml mix of 18 most abundant standards and ISTDs accounting for 40x 

dilution. The results show mean values (n=6), error bars show mean values of SD for each 

standard.  

recovery, from a complicated biological sample such as plasma, compared to the very simple 

standard solutions can be explained by the fact that, in addition to the analytes, there are also many 

hydrophobic compounds in plasma that can interact with the high activity binding sites of the 

cartridge that would otherwise irreversibly bind oxylipins leading to their loss. The recovery of 

internal standards showed the same trend (range: 36-88%) and among them LTE4-d5 showed: 0% 

in solvent at 0.4 ng/ml, 36% in plasma at 0.4 ng/ml and 55% at 4 ng/ml (Figure 2.5a). The recovery 

evaluation was performed using 6 replicates, RSD for all standards was ≤ ±15% showing excellent 

method precision. In the majority of recent studies only method efficiency for SPE that incorporates 

both recovery and matrix effect was reported and ranged from 15 to 95% (approximately, because 

only bar graphs reflecting recoveries were demonstrated) for 22 oxylipins in plasma,27 from 6.7% 

to 73.4% for 17 oxylipin ISTDs90 and from 54.3 to 112.7% for 26 oxylipin ISTDs91. These values 

can be compared with the method efficiency of our method calculated using ISTDs (Supplementary 

Figure S15) that ranged from 42 to 76%. Recoveries of our method, Figure 2.3 and Figure 2.5a are 

comparable to those calculated by Rago et al.95 and Strassburg et al.3. Rago et al. showed recoveries 
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for 18 oxylipins ranging from 55.6 to 97.4%. Strassburg et al. showed recoveries for 11 oxylipin 

ISTDs ranging from 45 to 84%. Both methods used HLB SPE for extraction which is expected to 

affect the recovery.  

Figure 2.4 Comparison of matrix effect in plasma. Signal intensity %=Apost/Asolvent*100%.  

Analytes in red colour are for less abundant oxylipins where the post-extraction spike was 

performed at 10 ng/ml mix of standards and measured against 10ng/ml mix of standards in 

solvent. For the more abundant oxylipins (in blue) the post-extraction spike was performed at 

10 ng/ml mix of the 18 most abundant standards and ISTDs accounting for 40x dilution 

standards and measured against 10 ng/ml mix of standards in solvent. The results show mean 

values (n=6), error bars show mean values of SD for each standard.  

Matrix effect was not observed for oxylipins in the 40x diluted plasma samples because this 

dilution decreases the amount of competing compounds sufficiently to minimize it (Figure 2.4). 

For the less abundant oxylipins that were measured in 2.5x preconcentrated samples, absolute 

matrix effect was more noticeable and generally decreased the signal intensity by 2x. The most 

severe matrix effect was observed for 9- and 13-HOTrEs, that eluted close to each other, and 

suffered complete suppression or signal intensity drops to 27%. A possible reason for this severe 
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suppression is the co-elution of an interference with m/z 277.145 and showed 1x107 signal 

intensity. For the internal standards, in diluted samples, the matrix effect was not observed any of 

them. In the preconcentrated samples, the matrix effect was more noticeable and signal intensity 

was 60-80% depending on compound. According to the matrix effect results, at least 9-HOTrE has 

to be excluded from the quantitative analysis list due to such pronounced matrix effects. Adding 

labelled HOTrE as an internal standard would likely improve method performance for this/these 

compound(s). The LLOQ was 0.1 ng/ml for the majority of oxylipins tested in solvent and in 

plasma. 

Figure 2.5 Comparison of (a)recovery and (b)matrix effect of deuterated oxylipins in plasma. 

(a) Recovery%=Apre/Apost*100%, where red colour is used for 2.5x enrichment, there pre- and 

post-extraction spikes were performed at 4 ng/ml mix of standards accounting for 2.5x 

enrichment. For 40x dilution (highlighted in blue) pre- and post-extraction spikes were 

performed at 4o ng/ml mix of 18 most abundant standards and ISTDs accounting for 40x 

dilution. (b) Signal intensity %=Apost/Asolvent*100%, where red colour is used for 2.5x 

enrichment, there post-extraction spike was performed at 10 ng/ml mix of standards and 

measured against 10ng/ml mix of standards in solvent. For 40x dilution (highlighted in blue) 

post-extraction spike was performed at 1o ng/ml mix of 18 most abundant standards and ISTDs 

accounting for 40x dilution standards and measured against 10ng/ml mix of standards in 

solvent. The results show mean values (n=6), error bars show mean values of SD for each 

standard.  

2.4.4 LC-MS method development 

The effect of three mobile phase additives: HAc, FA and AmAc on ionization efficiency of 

oxylipins was evaluated (Supplementary Figures S11-S12).103 Similar to what was observed for 
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other lipid classes in negative ESI, 0.02% HAc provided the maximum sensitivity, with an average 

improvement of 8x versus AmAc and minor improvement 1.25x versus FA. This agrees with the 

study by Berkecz et al.86 who also evaluated mobile phase additives for oxylipin analysis and 

determined that 0.02% HAc was the optimal choice. 

For oxylipin separations, reversed-phase C-18 chromatography is the most widely used. 

UHPLC C-18 columns, with sub-2 µm particles, are increasingly in popularity as they provide 

higher efficiency and better resolution.67,93,94 However, the smaller particle size requires higher 

operating pressure. Core-shell columns that provide comparable efficiency with fully porous 

UHPLC columns can also be used to enhance the separation without the need for dedicated UHPLC 

equipment.67 During method development, four LC columns were evaluated: Zorbax Eclipse plus 

C-18, 1.8 µm (2.1 mm x 100 mm) RRHD UHPLC column; Kinetex core-shell C-18, 2.6 µm (2.1 

mm x 50 mm) HPLC column; Cortex T3, 1.6 µm (2.1 mm x 100mm) UHPLC column and Kinetex 

Pentofluorophenyl (PFP) 2.6 µm (2.1mm x 50mm) HPLC column to determine the column that 

gives maximum chromatographic separation of oxylipins. The Zorbax C-18 was determined to 

provide the best separation for this application. Core-shell Kinetex C-18 showed comparable 

performance for many standards versus Zorbax C-18, but for critical pairs of isomeric oxylipins 

(e.g. 8isoPGF2α/8isoPGF2β) Zorbax C18 showed better separation than Kinetex due to narrower 

chromatographic peaks (Supplementary Figure S8). T3 columns are C-18 columns optimized for 

separation of polar compounds since they are compatible with 100% aqueous mobile phases. T3 

columns were previously used for oxylipin analysis, however, for more hydrophilic PGs only.27 

The UHPLC Zorbax C18 and core-shell Cortex T3 columns showed comparable separation for the 

majority of standards. For more hydrophilic oxylipins, T3 showed better separation than the Zorbax 

column, possibly because of the smaller particle diameter of the T3 column giving narrower 

chromatographic peaks and optimization of T3 for more polar compounds. However, for more 

hydrophobic compounds T3 showed poorer separation and for some isomeric oxylipins (e.g. 11,12-

EpETE and 8,9-EpETE) (Supplementary Figure S9). To the best of our knowledge PFP columns 

were not evaluated previously for oxylipin analysis. PFP columns have highly negatively charged 

fluorine atoms and much less hydrophobic interactions, so retention of hydrophobic oxylipins on 

these columns is not efficient that was showed by our experiment, when isomeric peaks eluted 

together with minimal separation (Supplementary Figure S10).  
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The LC gradient (2% per min, 20-80% organic) used in this work was optimized to obtain 

chromatographic separation of as many of the isomeric oxylipins listed in Supplementary Table 1 

as possible using a 40-min analysis time. This method is longer than many contemporary LC-MS 

methods for oxylipins that have average analyses times of 25 min and focus on a wide range of 

oxylipins.85 However, all these methods use a SRM mode for oxylipin quantification, so that 

chromatographic separation is deemed not important for oxylipins provided that they have different 

fragmentation patterns. However, considering the large number of oxylipin isomers with a given 

formula, it is likely that it may not be possible to select SRM transitions that have no overlap with 

other possible interferences, resulting in misidentification and inaccurate quantitation. In our case, 

where full-scan mode HRMS detection is used, it is important to resolve all isomeric compounds. 

Although our chromatographic method provides baseline resolution for the majority of standards 

of interest, 3 pairs of standards co-eluted and required MS/MS fragmentation for their individual 

quantification (see Section 2.3.7). Also, three pairs: 15-HEPE/11-HEPE, 16-HDoHE/17-HDoHE, 

11,12-EpETE/8,9-EpETE elute with a separation of less than 0.2 mins and consequently they may 

not be resolved enough for individual quantitation but need to be reported together (Figure 2.6).  

Figure 2.6 shows the comparison of chromatographic separation obtained for oxylipin 

standards in solvent versus pooled human plasma sample. It clearly shows that additional isomeric 

interferences are observed in the biological matrix which precludes correct quantification of some 

oxylipins in plasma due to partial co-elution of the analyte of interest and the isobaric interference.  

(Figure 2.6 m/z 353, 351, 313, 337). We further examined if changing the LC gradient could help 

to solve this problem. Shallower (1% and 0.5% per min) gradients were assessed, however they 

could not help to separate the analytes from the unknown interferences (data not shown).  The use 

of these shallower gradients with Zorbax column as well as application of these gradients on Cortex 

T3 column (that has slightly different selectivity) allowed us to further evaluate the correctness of 

the identifications for oxylipins observed in human plasma samples tested in this work. As 

summarized in Supplementary Table S1, this approach showed several misidentifications which 

were discovered by the retention time of standard and unknown oxylipin no longer matching on 

the long chromatographic method e.g. PGE2 and PGD2. These standards were excluded from list 

of oxylipins that can be detected in plasma using current method. Table 2.3 lists 25 oxylipins that 

can be accurately quantified in human plasma without interferences and that were detected at 
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Figure 2.6 Chromatographic separation of oxylipin isomers. S – EIC of standards in solvent, P 

– EIC of endogenous oxylipins in human plasma. m/z window ±10 ppm. 1)- 9-HOTrE, 2)- 13-

HOTrE, 3)- 13-OxoODE, 4)- 9-OxoODE, 5)- 12,13-DiHOME, 6) 9,10-DiHOME, 7)- 14,15-

DiHET, 8) 11,12-DiHET, 9)-20-HETE, 10)-16-HETE, 11)-15-HETE, 12)-11-HETE, 13)-12-

HETE+8-HETE, 14)-9-HETE, 15)-5-HETE, 16)- 14,15-EET, 17)- 11,12-EET, 18)- 8,9-EET, 

19)-15-HEPE, 20)-11-HEPE, 21)-9-HEPE, 22)-5-HEPE, 23)-15-HpETE, 24)-11,12-EpETE, 

25)-8,9-EpETE, 26)-12-oxoETE, 27)-5-HpETE, 28)-5-oxoETE, 29)- 8-iso-PGA1, 30)-8,15-

DiHETE, 31)-5,15-DiHETE, 32)-LTB4, 33)-5,12-DiHETE, 34)-5,6-DiHETE, 35)- 20-HDoHE, 

36) 16-HDoHE, 37)-17-HDoHE, 38)-14-HDoHE, 39) 4-HDoHE, 40)-PGE2, 41)-PGD2, 42)-

LXA4, 43)-13,14-dihydro-15-keto-PGD2, 44)-8-iso-15(R)-PGF2α, 45)-8-iso-PGF2α, 46)-8-iso-

PGF2β, 47)-11β-PGF2α, 48)-15(R)-PGF2α, 49)-PGF2α 

endogenous levels in current study. Other group of 38 oxylipins that incorporates 25 oxylipins from 

Table 2.3 is oxylipins that were accurately detected using our method, and are highlighted in green 

 

m/z 293.2122 

S 

P 

m/z 313.2384 

S 

P 

m/z 317.2122 

S 

P 

m/z 335.2228 

S 

P 

m/z 337.2384 

S 

P 

m/z 343.2279 
S 

P 

m/z 351.2177 

S 

P 

m/z 353.2333 

S 

P 

m/z 319.2279 S 

P 

19 
20 

1 2 3 
4 

5 

6 7 
8 

9 

10 
11 12 

13 

14 
15 

16 17 18 
21 

22 
23 

24 25 

26 
27 

28 
29 30 

31 
32 

33 

34 

35 36 

37 

38 39 
40 

41 
42 43 

44 
45 

46 
47 

48 

49 



57 
 

in Supplementary Table S1. Twenty-five of them were detected and quantitated and 13 of them 

were detected only and were not quantitated due to the reasons mentioned in Supplementary Table 

S1. The third small group of five oxylipins determined as ND-P in Supplementary Table S1 

includes oxylipins that can be detected in plasma using our method if present above LOQ in a given 

plasma sample. In conclusion, based on these results we strongly recommend that existing oxylipin 

methods, especially very short methods, should be carefully evaluated for the possibility of 

interferences in biological matrices using orthogonal and/or very long chromatographic 

separations. As our results for PGE2 and PGD2 show the reliance on the match with the retention 

time of authentic standard is not sufficient, and this may be especially problematic for fast multi-

class oxylipin separations.  Isomeric and isobaric interferences still pose a significant issue in 

oxylipin analysis and may be an under-appreciated source of error. 

Also, according to the stability experiments that were performed (Supplementary Figure 

S14) unstable 15-HpETE, 5-HpETE and 12-oxoETE were excluded from this list as well as AA 

that with even 40x dilution is in the high concentration in plasma.  

2.4.5 Individual plasma samples: inter-individual variability and comparison to HMDB 

and other studies 

As was seen in Table 2.2, the pooled plasma sample analyzed using direct loading of plasma 

on SPE showed unexpectedly high concentrations of several oxylipins, specifically 9-HETE, 5-

oxoETE and 14,15-EET. The concentrations for these oxylipins were 5-740x higher than the 

highest concentrations of that analyte reported in HMDB database. The concentrations in Table 2.1 

which represented preliminary development work were quantitated using the solvent calibration 

curve, so this may represent an important source of error in calculation of correct concentrations. 

To further investigate this and examine inter-individual variability of oxylipin concentrations, we 

next analyzed six individual plasma samples (three male and three female). The results showed 

noticeable variability of the levels of oxylipins between samples regardless gender, and much 

higher variability than method precision which was below 15% as indicated by replicate analyses 

of pooled sample (Table 2.2). For example, 5,15-DiHETE level ranged from 0.38-0.44 ng/ml in 

Samples 3 and 4 was to 156 ng/ml in sample 5, almost three orders of magnitude. Interestingly, the 

average of these six randomly selected individual samples, was close to the concentration of the 

pooled plasma obtained from 30 individuals not related to individual plasma samples. One trend 

that can be noted in Table 2.2 is that a high correlation between oxylipin samples is observed. If in 
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a sample high levels of one oxylipin were observed, high levels for all oxylipins were also 

observed. 

Table 2.2 Individual variability of oxylipin concentrations in human plasma. For individual 

plasma samples F-Female, M-Male, (n=1), concentration in ng/ml, individual plasma samples were 

not diluted so some oxylipins showed saturated peaks-S. Results for pooled plasma (n=30) show 

mean concentrations (n=3) in ng/ml ± SD. “-“– oxylipin was not used in experiment. For individual 

plasma samples solvent curves were used for quantitation, for pooled plasma sample SPE solvent 

curve was used for quantitation. 
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8-iso-15(R)-PGF2α ND 0.34 ND ND 0.31 0.12 0.16±0.16 0.26±0.01 - 

5,15-DiHETE 1.02 95.6 0.38 0.44 156 41.3 49.1±64.4 48.6±5.98 0.02-0.18 

10(S),17(S)-DiHDHA 
+MaR1 

ND 100 ND 0.09 154 26.9 70.25±70 11.3±0.63 - 

12,13-DiHOME  1.38 12.18 1.36 1.10 2.76 5.01 3.96±4.28 1.27±0.09 1.57-5.22 

5,12-DiHETE  1.41 130 0.39 ND 184 87.3 80.57±80.34 84.8±9.23 - 

9,10-DiHOME  0.92 7.50 1.28 0.67 2.12 3.13 2.6±2.56 0.48±0.03 9.34-19.03 

13-HOTrE  0.42 11.8 0.22 0.13 30.9 16.2 9.94±12.35 7.61±0.31 0.15-0.56 

5-HEPE 5.74 45.1 1.43 0.28 45.4 28.6 21.1±21.3 26.7±1.9 0.07-0.37 

9-HODE - - - - - - - 49.1±6.17 1.93-3.47 

20-HDoHE - - - - - - - 56.3±3.68 0.08 

15-HETE  6.29 S 3.19 0.95 S S S 376±34 0.26-358 

13-oxoODE - - - - - - - 71.7±4.4 0.14-1.41 

11-HETE  4.72 S 2.56 0.30 S S S 355±27.4 0.13-0.33 

9-oxoODE  0.64 16.3 0.67 0.32 60.2 21.8 16.7±23.2 21±3.64 0.71-1.56 

14-HDoHE  3.11 S 2.52 0.21 S S S 89.5±9.4 0.57 

12-HETE  7.96 S 9.74 0.50 S S S 197±25.2 1.3-112 

8-HETE  2.88 S 1.23 0.17 S S S 172±49 0.16-0.67 

9-HETE  3.70 S 1.79 0.29 S S S 408±35 0.05-0.55 

5-HETE  87.7 S 27.6 2.04 S S S 681±54 0.29-1123 

4-HDoHE - - - - - - - 57.8±2.29 0.45 

14,15-EET  0.43 9.35 0.42 0.26 9.39 3.99 3.98±4.41 2.71±0.14 0.04-0.56 

5-oxoETE  2.18 86.9 0.38 0.04 163 54.8 51.3±65.4 24±2 0.04-0.05 

11-HEDE + 15-HEDE  0.33 103 0.19 0.07 85.7 89.5 46.5±51 14.05±0.85 - 

EPA S S 136 130 S S S 248±27 0.12-635250 

DHA S S S S S S S 821±111 1.1-160965 
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Willenberg et al.85 discussed oxylipin variability in their review article and suggested this 

may be caused by pharmacological and/or nutritional intervention, however the exact mechanism 

is not clear. Individual variability of oxylipin concentrations were previously reported by 

Yasumoto et al.90, however the observed inter-individual variability was much lower than in our 

experiment. For example, reported 5-HETE concentrations ranged from 69-231 pg/ml while in our 

experiment it was from 2 ng/ml to saturation peak level which means that the concentration 

exceeded 400 ng/ml in some samples. The accurately calculated mean concentration of 5-HETE in 

pooled plasma was 681 ng/ml, which is significantly higher than the pg/ml level reported by 

Yasumoto et al. For 5-HETE, HMDB reports a wide range that is consistent with our results (0.29-

1123 ng/mL). Analysis of recent publication showed that in all cases levels of oxylipins in human 

plasma taken from healthy persons without any preliminary treatment are in 0.1-10 ng/ml 

range.82,89,104 Even with direct loading of plasma on HLB SPE as was performed Gouveia-Figueira 

et al.65 experiment, concentration range of oxylipins was 0.1-10 ng/ml. On the other hand, Galvao 

et al.98 showed high concentrations for oxylipins such as 12-HETE and 5-HETE in 100-1000 ng/ml 

range consistent with our results. However these concentrations were obtained from patients 

receiving drug treatment, whereas for baseline cohort 0.1-10 ng/ml concentrations were observed.  

Looking at the HMDB102 and oxylipins beyond 5-HETE, some oxylipin levels detected in 

our study correspond to the levels reported in the HMDB e.g. level of 15-HETE with high 

calculated concentration 376±34 ng/ml corresponds to 0.26-358 ng/ml in (HMDB) (Table 2.2). 

However not all calculated concentrations correspond to the levels reported in the HMDB. For 

example, calculated concentration of 9-HETE was 408±35 ng/ml and in HMDB level was 0.05-

0.55 ng/ml only. Considering, that this high level for 9-HETE was not reported before, it is 

necessary to have additional evidence confirming 9-HETE identification and accurate 

measurement. Thus, an additional experiment was performed for all abundant oxylipins that were 

quantitated where the pooled plasma was spiked with high levels of particular standard.  This 

standard addition experiment confirms that doubled peak area in comparison to initial peak area 

(Supplementary Figure S13) and accuracy of our initial quantitation. For additional evidence, these 

standard addition samples were also subjected to 1 and 0.5 % per min shallower gradient to provide 

additional chromatographic resolution in case of possible interference peaks.  No interferences or 

differences in peak areas were detected in these experiments further confirming the accuracy of 

our measurement (data not shown).  
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Table 2.3 Oxylipins that can be detected and quantitated accurately in plasma. 

Oxylipin m/z RT Formula Precursor 

8-iso-15(R)-PGF2α 353.2334 9.06 C20H34O5  

 
 

 

 
 

AA 

 

5,15-DiHETE 335.2228 15.72 C20H32O4 

5,12-DiHETE   335.2228 16.71 C20H32O4 

15-HETE  319.2279 21.58 C20H32O3 

11-HETE  319.2279 22.03 C20H32O3 

12-HETE  319.2279 22.41 C20H32O3 

8-HETE  319.2279 22.41 C20H32O3 

9-HETE  319.2279 22.68 C20H32O3 

5-HETE  319.2279 22.99 C20H32O3 

14,15-EET 319.2279 23.84 C20H32O3 

5-oxoETE  317.2122 24.27 C20H30O3 

10(S),17(S)-

DiHDHA +MaR1 

359.2228 15.93 C22H32O4  

 

DHA 20-HDoHE  343.2279 21.21 C22H32O3 

14-HDoHE  343.2279 22.21 C22H32O3 

4-HDoHE 343.2279 23.49 C22H32O3 

DHA 327.2330 29.01 C22H32O2 

5-HEPE 317.2122 20.77 C20H30O3 EPA 

EPA 301.2173 27.26 C20H30O2 

12,13-DiHOME 313.2384 16.71 C18H34O4  
 

LA 
9,10-DiHOME 313.2384 17.16 C18H34O4 

9-HODE 295.2279 20.99 C18H32O3 

9-OxoODE 293.2122 22.04 C18H30O3 

13-oxoODE 293.2122 21.51 C18H30O3 

13-HOTrE 293.2122 19.15 C18H30O3 ALA 

11-HEDE+15-

HEDE 

323.2592 24.39 C20H36O3 11,14-eicosadienoic 

acid 

 

2.4.6 Calibration curves for plasma oxylipins 

Oxylipins are present endogenously in plasma, and their concentrations can vary widely 

across different individuals. This poses a significant problem regarding how to best perform 

accurate quantitation of these species. Choosing the proper calibration curve for the calculation of 

oxylipins in plasma is important and not a trivial task. Three types of calibration curves were 

assessed: standard calibration curve in solvent, SPE standard calibration curve, which takes into 

account the extraction recovery and any matrix effects due to SPE procedure, and the calibration 

curve that was built in a pooled plasma matrix and subjected all sample preparation procedures 

including SPE (equivalent to standard addition curve). The standard addition plasma calibration 

curves were built at two levels of concentration: regular concentrations that allow to measure 0.04-

20 ng/ml concentration range and high-concentration curve that allows to measure 15.6-1000 ng/ml 
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concentrations. The standard addition plasma calibration curves that underwent all sample 

preparation procedures allows to consider all losses that can occur during sample preparation as 

well to compensate for any matrix effect of the plasma. Although this is theoretically the best 

approach, pooled plasma contains endogenous levels of oxylipins that must be considered and 

subtraction of peak area of endogenous levels must be performed. However, if the oxylipin levels 

in a sample is lower than in the pooled sample used to prepare the calibration curve, this approach 

will fail to provide accurate quantitation for that oxylipin. Considering very high inter-individual 

variability of some oxylipins, the likelihood of this scenario is very high. One way to minimize this 

issue is to obtain and use pooled plasma with the lowest possible concentrations of oxylipins. Even 

using two calibration curves (low and high) does not completely solve this problem due to high 

variability of the levels of oxylipins in plasma. To further improve the performance of this 

calibration method, additional 7-10 calibration points are needed, but together with 18 existing 

points it will make this method too expensive and time consuming for routine implementation. 

The slopes of three types of calibration curves were compared to evaluate the possibility of 

using other types of calibration curve instead of matrix-matched (Figure 2.7). The slope of SPE 

calibration curve of standards in solvent is closer to matrix-matched plasma calibration curves than 

the slope of standard calibration curve in solvent. Because of this, we suggest the use of standard 

SPE calibration curve for the final quantitation method. The availability of data from enriched and 

diluted injection allows to evaluate the extent of matrix effects, and together with internal 

standards, this can be used to determine the systematic bias inherent in this approach.  

In literature, there is no consensus regarding the best calibration method to use for oxylipin 

analysis. Some authors used standard calibration curves built in solvent for quantitation of 

oxylipins in plasma.65,81,104 Hu et al.105 used standard calibration curve after SPE to take into 

account losses during extraction, similar to our proposed approach. Miller at al.82 evaluated 

different matrices suggested human serum albumin is the best choice to build calibration curve 

because of low endogenous oxylipins level and better compatibility with human plasma. 

Mazaleuskaya et al.89 built curve in charcoal-stripped fetal bovine serum (FBS), but charcoal 

stripping drastically changes the matrix composition. Galvao et al.98 built calibration curve in 

plasma, however subtraction of endogenous level was not reported. Their approach also uses 

separate calibration curves for low and high abundance oxylipins that is similar to our suggestion.  
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Another possibility is to build calibration curves in plasma using labelled standards, but for panels 

with 50-70 oxylipins of interest this rapidly becomes extremely expensive and impractical. 

Figure 2.7 Comparison of calibration curves for (a) 8-iso-15(R)-PGF2α and (b) 5-oxoETE. 

SPE-curve prepared in solvent and passed SPE. PSPE-curve prepared in plasma covering range 

from 1-50 ng/mL and subjected to SPE. Solvent-curve in solvent. Response on y-axis means 

signal intensity obtained at particular level. 

2.5 Conclusions 

The goal of this study was to develop a sensitive and reliable LC-MS method for the detection 

and quantitation of oxylipins representing different classes in plasma samples. To reach maximum 

sensitivity, the sample preparation, chromatographic separation (stationary phase/column), mobile 

phase additive, and MS/MS fragmentation were optimized. The developed method was applied to 

the analysis of oxylipins in pooled and individual plasma samples and was able to detect 38 and 

accurately quantitate 25 out of 38 detected oxylipins. The results showed high inter-individual 

variability of many oxylipin concentrations, and it is the first time that such high concentrations 

were detected and confirmed for some of the oxylipins such as 9-HETE and 11-HETE. Also, one 

of the main finding was that checking peak purity in oxylipin analysis should be mandatory to 

prevent misidentifications. 
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Abstract 

Oxylipins are key lipid mediators that play important roles in a brain including pain, sleep, 

oxidative stress and inflammation. For the first-time, an in-depth profile of up to 52 oxylipins can 

be obtained from the brains of awake moving animals using in vivo solid-phase microextraction 

(SPME) in combination with liquid chromatography – high resolution mass spectrometry. This 

new approach successfully eliminates changes in oxylipin concentrations routinely observed 

during the analysis of post-mortem samples, allows time-course monitoring of their concentrations 

with high spatial resolution in specific brain regions of interest and can be performed using the 

same experimental set-up as in vivo microdialysis (MD) thus providing a new and exciting tool in 

neuroscience and drug discovery.  

3.1 Introduction 

Eicosanoids are highly bioactive oxygenated products of long chain 20-carbon 

polyunsaturated fatty acids where AA plays a central role as a precursor. In addition to AA, other 

common precursors include ω3 polyunsaturated fatty acids such as EPA and DHA.7 As these 

precursors have different number of carbon atoms, the term oxylipin is used to broadly define the 

family of oxygenated fatty acids derived from unsaturated fatty acids by pathways involving at 

least one step of dioxygen-dependent oxidation.4 Oxylipins can be derived from the appropriate 

polyunsaturated fatty acid precursor via oxidation by COX, LOX, CYP and via nonenzymatic 

oxidation.8 They generally act locally, close to the place of their synthesis through G-protein-

coupled receptors.2 In the brain, eicosanoids and other oxylipins play an important role in many 

physiological processes29 such as neuroinflammation,19 cerebral blood flow regulation,79 
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neuroprotection,106 regulation of temperature107 and sleep108, maturation of brain109 and pain110, 

thus making these pathways critical targets in drug discovery. They can also be used as possible 

biomarkers of pathological processes such as oxidative stress111 and inflammation112. For instance, 

AA-derived eicosanoids, such as prostaglandins can have both pro- and anti-inflammatory roles, 

but are generally involved in the onset of inflammation, whereas lipid mediator class switching and 

the release of EPA- and DHA-derived oxylipins occur during its resolution.113 Thus, simultaneous 

monitoring of multiple oxylipin classes is needed to further elucidate their biological roles and 

better understand these dynamic time-dependent processes in vivo. 

Measuring oxylipins in brain tissue is extremely challenging due to their low abundance, 

the existence of numerous isobaric and isomeric species including stereoisomers with different 

biological activity, poor stability/short lifetime of some members of this family, and the inherent 

complexity, and heterogeneity of the brain matrix.36,94 Current methods for oxylipin measurement 

in the brain are mainly in vitro post-mortem methods that rely on tissue collection, homogenization 

and subsequent extraction using either LLE or SPE most commonly in combination with reversed-

phase LC-MS analysis.36 More rarely, gas chromatography – mass spectrometry and 

immunoassays may also be used. LLE methods include general lipid extraction methods such as 

Folch47 and Bligh and Dyer48, as well as hexane/2-propanol50, ether and acetone/chloroform 

methods43 for selected oxylipin classes. SPE methods predominantly utilize C-18 and Hydrophilic-

Lipophilic Balanced (HLB) sorbents to achieve high oxylipin recovery.36 Post-mortem oxylipin 

formation is one of the major sources of error in a traditional measurement of oxylipins in brain 

and is caused by phospholipase activation and the release of phospholipids and oxylipin 

precursors.43,114,115 For instance, Trepanier et al.114 showed CO2 asphyxiation results in the 

tremendous release of lipid mediators, such as the 522x increase in prostaglandinE2 (PGE2) 

concentration. The magnitude of this post-mortem oxylipin release is much higher than the typical 

magnitude of the effect under study and also results in the increased variability of measured 

oxylipin concentrations, thus further preventing appropriate interpretation of oxylipin results. 

Head-focused microwave irradiation can address some of these limitations by minimizing post-

mortem oxylipin release, but in vivo methods remain preferable in order to monitor oxylipin 

concentrations in individual animals over time. 
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Here, we introduce in vivo SPME sampling as a new method to accurately measure oxylipin 

profiles in the brains of living, awake rats. This new approach successfully eliminates post-mortem 

changes in oxylipin concentrations, allows time-course monitoring of their concentrations with 

high spatial resolution and can be performed using same experimental set-up as in vivo MD, which 

is considered the gold standard method in neuroscience.  In vivo MD is poorly suitable for oxylipin 

measurements due to their hydrophobicity, which makes them poorly soluble in aqueous buffers 

used for MD and highly susceptible to non-specific adsorptive losses during sampling. Some 

adaptations to optimize MD recovery in vitro were evaluated116 but the only successful in vivo 

measurements focus on prostaglandins and prostanoids in human muscle117,118, rat brain119–121 and 

human brain122. To the best of our knowledge, there is no data on in vivo concentrations of 

hydrophobic oxylipins from other classes. 

3.2 Results and discussion 

3.2.1 Oxylipin profiling using in vivo SPME 

SPME is a non-exhaustive extraction technique that combines sampling, analyte isolation 

and (potentially) enrichment into one step.54,123 In vivo SPME was previously successfully 

employed to measure the circulating concentrations of three eicosanoids and two precursors in rat 

plasma in response to lipopolysaccharide-induced inflammation.61 However, the levels of other 

prostaglandins of interest remained below the limit of detection for the method.  In brain, in vivo 

SPME was validated against in vivo MD for the measurement of neurotransmitters.59 This 

comparison showed better method precision of in vivo SPME and similar capability of both 

techniques to accurately measure temporal changes in neurotransmitter concentrations in response 

to drug dosing. The objective of the current work was to introduce SPME technology to enable 

accurate oxylipin measurement of the large panel of oxylipins using in vivo SPME for the first 

time. In vivo SPME sampling from the brain was performed using SPME fibers covered with thin 

biocompatible coatings, which were introduced directly to the brain via microdialysis guide 

cannulae surgically implanted into the cranium. This new approach together with the extensive 

optimization of LC-MS method to achieve low limits of detection103 allowed us to detect up to 20 

oxylipins in SPME samples from the 54-oxylipin panel initially tested (Supplementary Table S4). 

Among these, 15 oxylipins could be accurately quantitated. The two precursors AA and DHA 

exceeded the highest level of calibration due to their high abundance but can be accurately 

measured in future by extending the calibration range for these analytes.  12-HETE and 8-HETE 
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can be accurately individually quantified in MS/MS dimension of our LC-MS method. However, 

signal intensity of the fragment ions in SPME samples was too low, so the sum of these two 

oxylipins is reported instead in the current study. 12-oxoETE was detected above LOQ in 18 out 

of 30 in vivo SPME samples, but its autosampler stability is poor as indicated by unacceptable 

precision of pooled quality control sample for this oxylipin in the current study and further 

confirmed during the stability investigation of standard solutions. Figure 3.1 summarizes the 

concentrations of 10 oxylipins which were measured above the LOQ in the majority of samples. 

12,13-DiHOME and 9,10-DiHOME were detected above the LOD in 30 and 25 of in vivo SPME 

samples respectively, but their levels were below the LOQ in many of them, so these two oxylipins 

are not included in Figure 3.1 

 

Figure 3.1 Hierarchical clustering by class (baseline, drug and vehicle) using Euclidian distance 

of the oxylipins measured by in vivo SPME in a minimum of 50% of all study samples above 

LOQ. Clustering was performed using concentrations (ng/mL) using Metaboanalyst 4.0124,125 

Figures 3.2 and 3.3 show example changes in the concentration of three representative 

oxylipins and one precursor: prostaglandin D2 (PGD2), PGE2, 14-hydroxy Docosahexaenoic Acid 

(14-HDoHE) and EPA. Comparing the drug-dosed cohort to vehicle-dosed cohort, as would be 

performed traditionally, showed no statistically significant differences between the cohort and 

vehicle group for any of the oxylipins accurately measured. These results are in agreement with 

other studies that have examined the effect of dosing fluoxetine on a murine brain in combination 
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with microwave irradiation to prevent post-mortem oxylipin formation and found no changes in 

oxylipins except for 20-HETE which was not detected in the current study.126 Figures 3.1 and 3.3 

also show inter-animal variability of oxylipin concentrations. The variability of these 

concentrations is very high depending on the oxylipin of interest (% RSD range from 23 to 171%).  

However, the individual results shown in Figure 3.1 and the percent difference plots of the 

individual animals shown in Figure 3.2 confirm that the observed variability is true inter-animal 

variability. Post-dose sampling of an animal with an elevated baseline concentration of a given 

oxylipin generally resulted in high concentrations of the same oxylipin. For example, comparing 

highly variable baseline data in Figure 3.3 and individual animal data in Figure 3.2 for PGD2, 

shows that the changes in PGD2 are consistent across animals (median decrease of 66 and 65% for 

vehicle and drug groups respectively). For all quantified oxylipins, median change across animals 

showed the decreases of 28% and 21% for vehicle and drug groups respectively, thus confirming 

that intra-animal variability is much lower than inter-animal variability.  Finally, the hierarchical 

clustering and correlation analysis of quantified oxylipins show the expected trends whereby 

different subclasses cluster closely together as shown in Figure 3.5 (a). For example, all quantified 

HETEs cluster together, and all quantified prostaglandins cluster together. However, within the 

same class interesting trends showing low correlation between PGE2 and PGD2 are also observed 

in agreement with previous results observed for hippocampus region.127 

3.2.2 Comparison of in vivo SPME to post-mortem SPE extraction of pooled brain 

homogenate 

Next, the in vivo SPME results were compared to the C18 SPE extraction of pooled rat 

brain homogenate. Using post-mortem SPE after CO2 asphyxiation, 43 oxylipins were detected, 

and 41 of them were accurately quantitated (Supplementary Table S7). These SPE results show 

comparable or higher oxylipin coverage to other methods. Hennebelle et al.127 detected 16-30 

oxylipins in control rat brain depending on brain region and 34-53 in ischemic rat brain. Wong et 

al.25 detected 7 oxylipins in different regions of normal rat brain. Yue et al.26 detected 14 oxylipins 

in rat brain 72h post-injury. Shaik et al.28 detected 11 oxylipins in rat brain cortex tissue samples 

collected 5 min after the resuscitation of animals subjected to 12 min asphyxial cardiac arrest. 

Figure 3.4 shows the distribution of all quantified identified oxylipins that were detected by both 
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Figure 3.2 Relative change in the concentration of the selected oxylipins (PGD2, PGE2, 14-

HDoHE and EPA) for each animal with respect to its baseline value when dosed either vehicle 

only (n=7) or fluoxetine+vehicle (n=8). Missing bar means that oxylipin was below LOD in one 

of the samples detected. One red bar shown for 14-HDoHE indicates that the observed change 

is off-scale (480%). Median % change for each group is also shown directly on the panels. 

in vivo SPME and SPE methods, excluding the high-abundance precursors. The obtained 

distributions show significant differences, in particular much higher proportion HETEs was 

observed in SPE samples. HETEs and prostaglandins have been shown to be highly elevated during 

brain ischemia,114,127 and the observed difference in the distributions is consistent with post-mortem 

release of oxylipins. The correlation analysis of SPE versus SPME results shows the same trend, 

with the Pearson correlation coefficient of 0.12. When comparing SPE and SPME data, it is also 

important to note that 16-HETE and 20-HETE were not detected in any of in vivo SPME samples. 

16-HETE was detected in post-mortem brain samples at comparable concentrations as 9- and 11-

HETE (Supplementary Table S7), but in SPME only 9-and 11-HETE were detectable. 16-HETE 

is produced through CYP enzymatic pathway,8 indicating that its release may have occurred during 

anesthesia and/or asphyxiation and was not present in vivo at the same concentrations measured 
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Figure 3.3 Inter-individual variability in the measured concentrations of the selected oxylipins 

(PGD2, PGE2, 14-HDoHE and EPA) shown by time point and dosing status: baseline (t=0, 

n=15), vehicle only (n=7) or fluoxetine+vehicle (n=8). Box shows Q1, median and Q3. The X 

shows mean of all the concentrations measured for that animal. Any missing values are not 

shown and not used in the calculation. 

during the post-mortem tissue analysis. This is supported by the absence of 20-HETE, known 

marker of cerebral ischemia,128 from in vivo SPME samples, but its presence in post-mortem SPE 

samples.  In in vivo SPME samples, the most abundant quantified oxylipins after precursors were 

PGE2, PDE2, 14-HDoHE and 9-oxo-10,12-octadecadienoic acid (9-oxoODE).  PGE and PDE2 are 

known to be highly abundant across many brain studies25–28,30,127, but the in vivo results for 14-

HDoHE and 9-oxoODE were surprising. 14-HDoHE can be synthesized enzymatically via the 

LOX pathway and through auto-oxidation of DHA.  9-oxoODE was previously detected in very 

high abundance in the cortex, and at lower abundance in the hippocampus, cerebellum and the 

brain stem showing important differences in its spatial distribution.127 The same study did not 

report 14-HDoHE in any of the regions tested. However, in a comprehensive study of DHA-derived 

oxylipins, Derogis et al.129 showed high levels of 4-, 11-, 14- and 20-HdoHE in brain homogenates, 

whereas Jouvene et al.46 reported high-abundance of 4, 14- and 17- HDoHE in whole brain 
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homogenate. Thus, at this time it is not yet clear whether 14-HDoHE high abundance is 

regiospecific to the hippocampus or represents more accurate capture of its true in vivo 

concentration.  

 

Figure 3.4 Comparison of the distribution (% by amount) of oxylipins detected by in vivo SPME 

and post-mortem SPE extraction of oxylipins in brain. The precursors, AA, EPA and DHA 

represent 98.3% of all species quantified using in vivo SPME and 99.6% of all species quantified 

using post-mortem SPE so they are omitted for clarity 
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Figure 3.5 Hierarchical clustering and correlation analysis of oxylipins measured in this study 

(a) known and quantified oxylipins with levels >LOQ in more than 50% of samples using 

measured oxylipin concentration (ng/mL) and (b) unknown and subsequently identified 

oxylipins with levels >LOQ in more than 5 samples using peak areas.  
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3.2.3 Characterization of unknown oxylipins observed using in vivo SPME 

In addition to the 20 identified oxylipins, 32 unknown oxylipins (that were not presented in 

target list) were also detected using in vivo SPME as summarized in Table 3.1. In a subsequent 

experiment the identification of six of these oxylipins was confirmed using authentic standards as 

shown in Table 3.1 This included the identification of three additional HDoHEs: 4-, 17- and 20- 

HDoHE. This brings our results in excellent agreement with Jouvene et al.46 and Derogis et al.129. 

Among the 32 unknown oxylipins, 14 of these were also detected in post-mortem SPE samples. 

The remaining 18 oxylipins possibly represent unstable species that are degraded during traditional 

sample preparation (e.g. undergo enzymatic degradation) or that may be suppressed during LC-MS 

analysis of tissue samples if they elute in the regions of high matrix effect. To date, we have 

successfully confirmed the identity of one of the oxylipins unique to in vivo SPME – 13-HOTrE. 

To the best of our knowledge 13-HOTrE has not been detected in the hippocampus before although 

it was observed in brain stem in one recent study.127 13-HOTrE is derived from α-linolenic acid 

and is proposed to have the anti-inflammatory role.130 Future studies will focus on the extensive 

characterization of the remaining unknown oxylipins. 

Figure 3.5 shows the correlation analysis of all oxylipins detected by in vivo SPME. The 

correlation analysis of unknown oxylipins is particularly interesting as it shows clear pathway and 

precursor trends. For example, C20H32O3 oxylipins show poor correlation to C18- and C22-derived 

oxylipins, and high correlation and clustering to each other. Similarly, C18H30O3 shows high 

correlation to other C18-derived oxylipins and some members of HDoHE subclass (4-and 20-, but 

not 17-) indicating they may be derived via the same pathways. 
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Table 3.1 Summary of all unknown oxylipins detected using in vivo SPME. The 

identification of six of these oxylipins was performed in a subsequent experiment and is shown in 

brackets for the relevant oxylipin. The oxylipins indicated in green were also observed in post-

mortem SPE samples. The oxylipins indicated in black were observed only using in vivo SPME 

and show that traditional post-mortem analysis does not accurately capture oxylipin profiles in 

brain. 

m/z of 

unknown 

oxylipin 

Retention time (min) and identification shown in red Molecular 

Formula 

351.2177 10.37, 12.02, 12.73 C20H32O5 

317.2122 14.68, 15.10, 16.62, 17.36, 18.28, 18.56,19.07, 20.33 C20H30O3 

313.2384 15.91, 16.46 C18H34O4 

335.2227 17.4 C20H32O4 

319.2279 21.9, 23.92 C20H32O3 

293.2122 18.54, 18.78, 18.91 (13-HOTrE), 19.15, 21.20, 21.56 (13-oxoODE), 21.86 C18H30O3 

343.2278 21.22 (20-HDoHE), 21.82 (17-HDoHE), 21.98, 21.53 (4-HDoHE), 24.31 C22H32O3 

295.2279 20.6, 20.89, 21.03 (9-HODE) C18H32O3 

279.1966 17.77 C17H28O3 

 

In conclusion, to the best of our knowledge, the measurement of up to 52 oxylipins in the 

current study represents the largest panel of oxylipins ever measured in brain in vivo under normal 

baseline physiological conditions. Our results clearly show that in vivo SPME can be a powerful 

approach to study oxylipin biology in more detail and to capture accurately their concentrations in 

vivo with the unprecedented degree of temporal and spatial resolution. Since in vivo SPME uses 

the same set-up as microdialysis, this technology can be easily implemented to the existing well-

accepted workflows in order to obtain much richer oxylipin profiles than can be obtained using 

MD. Although not discussed in this work, a single in vivo sampling is sufficient to obtain full 

untargeted metabolomic profile in addition to the quantitative oxylipin analysis shown in the 

current study. In vivo SPME provides the new tool to evaluate temporal and circadian intra-animal 

variability in oxylipin concentrations. As shown in this study for the hippocampus, intra-animal 

variability is much lower than inter-animal variability, and this novel tool allows the monitoring of 

specific pathway activation in individual animals.  
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3.3 Experimental  

This study was performed on 15 adult male Sprague Dawley rats (220-250g, Charles River). 

Animals were stereotactically implanted with bilateral guides (MAB 4.15.IC, Scipro, Sanborn, 

NY) into the hippocampus (anteroposterior -5.0 mm, mediolateral 4.6 mm, and dorsoventral -2.5 

mm relative to bregma) one week prior to the experiments.131 Eight rats were intraperitoneally (IP) 

injected with fluoxetine (Tocris Bioscience) at 10 mg/kg of body weight, representing an acute 

drug dose. The remaining rats were dosed with the vehicle only (saline solution) as a control group. 

In vivo SPME was performed on all rats before dosing, and then 30 min after IP injection using 

biocompatible mixed-mode probes (C18 with benzenesulfonic acid, 4 mm, 45 µm thickness, 200 

µm diameter, support matrix – polyacrylonitrile, Millipore Sigma). Briefly, the probes were first 

pre-conditioned prior to use for a minimum of 30 min in acetonitrile/water (1:1 v/v). In vivo 

sampling was performed for 15.0 min. After extraction, fibers were first cleaned with a Kimwipe 

to remove mechanically any attached tissue residuals. The fibres were then vortexed in ultrapure 

water for 10 secs and immediately placed in -20°C freezer. At the end of the sampling day, fibers 

were transferred on dry ice to Concordia University and stored in -80°C freezer until LC-MS 

analysis. Fibres were desorbed using 80 µL of desorption solvent (ACN/MeOH/H2O, 40/40/20) 

which was spiked with the following deuterated internal standards: L-Phenylalanine-d5, Cholic 

acid-d4, L-Glutamic acid-d5, Melatonin-d4, Serotonin-d4 at the concentration of 160 ng/mL (for 

metabolomics analysis) and 11β-PGF2α-d4, LTB4-d4, 15-HETE-d8, (±)8(9)-EET-d11, and 

arachidonic acid-d8 at the concentration of 3.6 ng/mL (for oxylipin analysis). Desorption was 

performed for 1 hour at 450 rpm at room temperature. 50 µL of desorption solvent was then diluted 

with 30 µL of water, vortexed and analyzed by negative ESI LC-MS using the optimized C18 LC 

oxylipin profiling method on 1290 UHPLC coupled to 6550 iFunnel QTOF instrument (Agilent 

Technologies, Santa Clara, CA, US). More detailed information on LC-MS, data processing, post-

mortem SPE extraction, oxylipin identification and statistical data analysis is provided in the 

Supporting Information. In addition to the study samples, extraction blanks were also prepared on 

the sampling day by subjecting three SPME fibers to all the steps of SPME procedure except 

sampling of the animal. Non-optimal SPME set-up for oxylipins was used and additional 

improvements could be achieved by increasing injection volume, modifying extraction time and/or 

using HLB versus mixed-mode coating that was used in current in vivo experiment (Supplementary 

Figure S21). 
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4 Conclusions and future work 

4.1 Conclusions 

The developed LC-MS method can measure 62 oxylipins including representatives of the 

following classes: PGs, LTs, DiHOMEs, DiHETs, DiHETEs, HOTrEs, HODEs, oxoODEs, 

oxoETEs, HEDEs, EpETEs, HEPEs, HETEs, HDoHEs, EETs and 7 deuterated standards in solvent 

in high-resolution MS scan mode in 40 min. The sensitivity of the method was partially improved 

by promoting more efficient ionization using 0.02% (v/v) acetic acid as a mobile phase additive 

instead of 0.02% (v/v) formic acid 10 mM ammonium acetate. LLOQ in solvent for majority of 

standards was 0.1 ng/ml and LLOQ range in solvent was 0.1-0.8 ng/ml. Long LC separation 

allowed to resolve the majority of isomeric oxylipins, which is critical for successfully coupling 

the method to HRMS scan mode whereby parent ions without fragmentation are measured. During 

method development, three types of stationary phases were assessed: C-18 UHPLC, core-shell C-

18 HPLC, T-3 UHPLC and PFP HPLC. Among these, C-18 UHPLC showed the best separation. 

However, several pairs of isomeric oxylipins were still not resolved chromatographically: 12-

HETE/8-HETE; 10,17-DiHDHA/MaR-1; and 11-HEDE/15-HEDE. For all of these pairs, MS/MS 

fragmentation was developed and unique fragments were found for each oxylipin. However, the 

use of MS/MS for quantitation also impacted the LLOQs for these analytes except for 12-HETE/8-

HETE where the same LLOQ (0.1 ng/ml) as for parent ion was observed. For other pairs LLOQ 

drop of intensity was that does not allow their separate quantitation. Also, three pairs: 15-HEPE/11-

HEPE, 16-HDoHE/17-HDoHE, 11,12-EpETE/8,9-EpETE elute with a separation of less than 0.2 

mins and MS/MS fragmentation was required for their quantitation. 

During the development of the sample preparation method different parameters such as the 

type of SPE sorbent, the composition of elution solvent, and elution solvent volume were assessed 

and optimized to achieve maximum recovery and minimize the matrix effect. HLB and C-18 SPE 

showed comparable results in terms of recovery of oxylipins. However, C-18 was chosen for 

further method development as it can decrease the complexity of the matrix better by not retaining 

polar compounds. The final optimized method demonstrated recovery ≥50% for the majority of 

oxylipins in solvent, with an average recovery of 82% and a recovery range of 50-109%. Only 

seven standards demonstrated recovery <50%: EPA, DHA, AA, AA-d8, LTD4, LTE4 and LTE4-

d5 and were excluded from calculation of average recovery. In general, more hydrophilic oxylipins 

showed higher recovery than more hydrophobic. This can be explained by increased nonspecific 



76 
 

adsorption losses that occur when small amount of analytes (e.g. 0.4 ng) were loaded on the 

cartridge. This was confirmed by the analysis of flow-through and washed fractions, where no 

oxylipins were detected.  The loading of the higher amount of analytes on SPE or the loading of 

spiked plasma showed much higher recoveries, which is also consistent with a higher-degree of 

non-specific losses in standards with very low concentrations of oxylipins. In all of these cases, the 

recoveries of more hydrophobic and more hydrophilic oxylipin standards were comparable and the 

average recovery in plasma, for example, was 83% ranging from 70 to 97%. The worst method 

performance in terms of recovery was found for cystenyl leukotrienes. For example, LTE4, LTE4-

d5 and LTD4 showed 0% recovery when 0.4 ng/cartridge was tested in the recovery experiment. 

However, increasing the number of loaded analytes or analyzing spiked plasma instead of standard 

solutions can increase the recovery of these leukotrienes up to 70%. This can be achieved by 

loading an excess level of LTE4-d5 or similar internal standard to irreversible bind to any active 

spots within the sorbent/ This can be used for problematic matrices were losses of leukotrienes are 

noticeable. Another important finding for leukotrienes was that the acidification of elution solvent 

noticeably increased their recovery. However, if leukotrienes are not of interest for a given 

application, pure methanol can be used for elution of the remaining oxylipins and provides slightly 

higher recoveries than acidified methanol. 

Due to the expected low abundance of oxylipins in biological matrices, the analytical 

method for their analysis requires the preconcentration step. During method development, it was 

found that the preconcentration step could cause severe losses of analytes and very poor method 

precision, so several parameters were optimized to decrease these losses. First of all, a speedvac 

evaporator was chosen for further development because it showed higher recovery rates and better 

precision than nitrogen evaporation. The addition of the small volume of 30% glycerol prior to 

loading the sample into the evaporation tube further reduced losses during this critical step. Due to 

its high boiling point glycerol can not be evaporated in the speedvac, so after the complete 

evaporation of the other solvent glycerol remains on the bottom of the tube thus preventing 

interaction of oxylipins with the walls of the tube. This glycerol plug containing the oxylipin 

analytes can then be easily dissolved in methanol for further analysis. Also, it was found that the 

more hydrophobic oxylipins are prone to adsorptive losses in polypropylene tubes, so all 

manipulations, especially the evaporation/reconstitution steps must be performed in glass vessels. 
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The developed method was applied to plasma samples and it was found that protein 

precipitation of plasma samples before loading on SPE is the critical step that could lead to the 

severe oxylipin losses and thus to the underestimation of real oxylipin levels in plasma. We 

compared TCA protein precipitation of the plasma before loading with direct loading of plasma on 

SPE. We found that levels of many of oxylipins were much higher without precipitation and in 

many cases chromatographic peaks were even saturated. So it was concluded that direct loading of 

plasma samples on SPE is a preferred method for oxylipins analysis. However, direct loading 

caused changes in the final method. First of all, due to the appearance of the precipitate in samples 

after the reconstitution step, the additional centrifugation step was added before injection of the 

sample into the LC-MS system. Wide range of oxylipin concentrations measured in individual and 

pooled human plasma, for that reason it was decided to use two injections for each sample during 

analysis. The first injection is of 2.5x preconcentrated sample obtained after reconstitution and 

centrifugation, in order to quantify the less abundant oxylipins. The second injection corresponds 

to 40x diluted plasma in order to measure the more abundant oxylipins that have saturated peaks 

in the preconcentrated samples. The analysis of individual plasma samples also demonstrated high 

inter-individual variability of oxylipin levels. Similar variability was previously demonstrated in 

other studies85,90 and it was suggested that it can be caused by pharmacological and/or nutritional 

intervention. However, the exact mechanism is not clear. In our case, the variability was much 

higher than it was previously demonstrated but a very small cohort of individual samples was 

analyzed, and further experiments are needed to obtain more evidence of inter-individual 

variability. Also, high levels of some of oxylipins (e.g. 9-HETE) were demonstrated for the first 

time to the best of our knowledge, and do not match the values currently reported in the HMDB 

for this oxylipin. The measured levels of this oxylipin in our samples were further verified using 

standard addition method which confirmed our initial results. To ensure that these higher than 

expected levels, were not due to possible co-elution of another isobaric species, different LC 

gradients for the analysis of these spiked samples were also applied and further confirmed the 

accuracy of our measurement. However, the same experiments also showed that several oxylipins 

were misidentified using regular gradient and exhibited retention time shift comparatively to their 

authentic standards, when very shallow gradients were used, e.g. PGE2 and PGD2. So, these 

oxylipins were excluded from the list of identified compounds and it was concluded that to ensure 

the correct identification of oxylipins, a shallower gradient should be applied.  
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Another issue encountered in plasma experiment was the existence of interference peaks 

that have the same mass as oxylipins in our panel and cannot be resolved chromatographically.  

Shallower gradient was not able to resolve them requiring further LC development for this matrix. 

Thus, among the 38 identified oxylipins in plasma only 25 were successfully quantitated, the 

remaining 13 oxylipins had interferences that precluded correct quantification. For correct 

quantification use, proper calibration curve is required. However, due to high variability of 

endogenous level of oxylipins in plasma it is not a trivial task. An optimal calibration curve should 

take into account all possible losses of analytes during sample preparation step and possible matrix 

effect. So the ideal calibration curve should be built in the same matrix as analysed samples and 

should pass all sample preparation steps as analysed samples. We figured out that the calibration 

curve built in plasma is expensive and its preparation is time consuming. For that reasons SPE 

calibration curve built in solvent was determined as the best choice for our method. This type of 

curve does not consider the matrix effect, however in our case we quantitated 17 out of 25 oxylipins 

in diluted samples where the matrix effect was minimal and for other 8 oxylipins measured the 

matrix effect allowed to evaluate bias in their analysis.  

 The developed method was applied for in vitro analysis of oxylipins in rat brain tissue, for 

that, only one additional step with brain tissue homogenization was added to the developed method. 

This final method for brain tissue allowed for the identification of 43 oxylipins and the 

quantification of 41 of them. The concentration range of oxylipins in the brain was narrower than 

in the plasma, and allowed for the quantitation of all oxylipins of interest in one sample without 

dilution. These results were compared to the analysis of in vivo SPME rat brain extracts. Using in 

vivo SPME, 20 oxylipins were identified and 32 unknown peaks with oxylipin m/z were detected. 

Six of them were subsequently successfully identified using authentic standards. To the best of our 

knowledge, this is the largest oxylipin panel ever detected in vivo from the brain tissue of living 

animals. This experiment showed that in vivo SPME can be a powerful approach for in vivo studies 

of oxylipins in brain. The comparison of oxylipin profiles of in vivo SPME versus SPE showed 

significant differences between the two methods.  Using post-mortem SPE, HETEs were the 

predominant oxylipins while for in vivo samples PGE2, PGD2, 14-HDoHE and 9-oxoODE were 

the most abundant oxylipin species determined, not including precursors PUFAs. 13-HOTrE was 

measured only in in vivo samples, whereas 20-HETE and 16-HETE were determined only in in 

vitro samples. To the best our knowledge, 13-HOTrE was not identified in brain tissue before. 
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Also, among 32 unknown peaks only 14 were found in in vitro samples as well while 18 were 

unique for in vivo. This gives us additional evidence that in vitro and in vivo analysis of oxylipins 

yield different oxylipin profiles, possibly due to post-mortem formation or the degradation of 

unstable oxylipins during in vitro sample preparation. In order to obtain accurate profile of 

oxylipins in vivo analysis should be used. 

4.2 Future work 

Currently, 26 putative metabolites with oxylipin m/z remain unknown in in vivo SPME 

brain samples. Thus, their further identification using m/z, RT, MS/MS fragmentation and 

comparison to authentic standards is required. Furthermore, the brains from the animals that were 

used for in vivo extraction were collected and must be analyzed using in vitro post-mortem SPE 

and SPME methods in order to further compare the oxylipin coverage of in vivo and in vitro 

samples on the same brain specimens. This in vitro analysis will be performed for the exactly the 

same brain region that was used for in vivo SPME sampling. This will provide more in-depth 

evidence about the oxylipin profile differences observed using both types of analyses.  

The comparison of the method performance between solvent and plasma matrix showed 

many interferences by additional oxylipins present in biological matrices. Thus, further 

chromatographic separation and/or use of MS/MS in the future can increase the number of 

oxylipins that can be accurately quantified in human plasma.    

For further comparison of speedvac and nitrogen evaporator, additional experiments with 

30 replicates have to be performed to obtain good estimate of standard deviation. 

Developed profiling LC-HRMS in combination with in vivo SPME could become a 

powerful analytical instrument for profiling of oxylipins in brain. This methodology could be used 

for further investigation of oxylipins pathways and functions in the brain, drug development and 

determination of biomarkers of different physiological and pathological conditions. 
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Appendix A: Supplementary information for Chapters 2 and 3 

Figure S1 Comparison of method efficiency of HLB and C-18 SPE for the analysis of 3.125 ng/mL oxylipin standard without pre-

concentration factor (n=3). Hydrophilic-lipophilic-balanced sorbent (Oasis HLB) (3 cc, 60 mg, average particle diameter 29.2 µm, Waters, 

Massachusetts, USA) and C-18 (Strata Phenomenex 200mg) SPE was performed as follows: (i) conditioning with 1 ml 100% MeOH and 

1 ml 20% MeOH, (ii) loading 500 µl of 3.125 ng/ml mix of (61) standards in 20% MeOH, (iii) washing with 1 ml of 20% MeOH, (iv) elution 

with 1 ml of 99% MeOH +1% HAc in glass tube containing 20 µl 30% Glycerol in MeOH, (v) evaporation in speedvac followed by 

reconstitution in 500 µl MeOH and injection into LC-MS. The method efficiency was calculated using the following formula Method 

efficiency % = Aspe/Astd *100%, where Aspe is the average peak area of standard after SPE extraction and Astd is the peak area of the standard 

of the same concentration in solvent that did not undergo SPE. Error bars = ±SD 
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Figure S2 Comparison of ACN and MeOH as elution solvent for C-18 SPE. C-18 (Strata Phenomenex 200 mg) SPE were performed at 

steps (i)-(iii) as at Figure S1, (iv) elution was performed with 1 ml of 100% MeOH (n=3) or 100% ACN (n=3) in glass tubes and (v) transfer 

100 µl of eluent to HPLC glass inserts for LC-MS analysis. Method efficiency was calculated as in Figure S1. PGs, LXA4, LTB4 and 

DiHETs showed 10-20% higher recovery with ACN elution, however more hydrophobic HETEs, EETs and AA showed in most cases two 

times higher recovery with MeOH elution, also LTE4 and LTD4 where eluted only with MeOH. In the follow-up experiment additional 

elution with 1 ml of ethyl acetate was performed after elution with MeOH. The eluents were collected in separate glass tubes, evaporated 

in speedvac to dryness, reconstituted and injected into LC-MS. Oxylipins were not detected in EtAc eluent. So, MeOH was chosen as elution 

solvent for the final method. 
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Figure S3 Comparison of method efficiency with and without acid in elution solvent. C-18 (Strata Phenomenex 200mg) SPE were 

performed at steps (i)-(iii) as at Figure S1, (iiii) elution was performed with 100% MeOH and 99% MeOH with 1% HAc (n=3 replicates 

for each condition). After elution samples were evaporated in speedvac and reconstituted in 100 µl of 100% MeOH. Method efficiency was 

calculated as in Figure S1. It was assumed that acidification of elution solvent helps to keep oxylipins in protonated form that prevents 

secondary interaction of oxylipins with silica of stationary phase during elution. Experiment showed that elution with acetic acid in solvent 

gives slightly higher method efficiency for one oxylipins and slightly lower for others, however presence of acid in solvent is critical for 

recovery of LTE4 and LTD4. Elution with 1% and 4% acetic acid showed comparable recoveries (data not shown) so it was decided to use 

lower concentration of acetic acid in final method. Methanol volume was further optimized and 1ml was determined as optimal elution 

volume. 
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Figure S4 Comparison of speedvac and nitrogen evaporation. 100 µl of 20 ng/ml of oxylipin standards were added to glass amber 

round bottom tubes and evaporated in speedvac (n=3 replicates) and 100 µl were added to glass LC vial and evaporated under stream of 

nitrogen. After evaporation all samples were reconstituted in 100 µl MeOH and injected into LC-MS. Recovery was calculated as method 

efficiency in Figure S1. 
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Figure S5 Comparison of glass and polypropylene tubes.100 µl of 5 ng/ml of oxylipin mix were added to glass amber round bottom 

tubes (n=3) and to polypropylene Eppendorf tubes (n=3) and evaporated in speedvac. After evaporation all samples were reconstituted in 

100 µl MeOH and injected into LC-MS. Recovery was calculated as method efficiency in Figure S1. It was assumed that material which 

tubes for evaporation are made could influence on amount of losses of oxylipins during evaporation. For more hydrophilic PGs, LTB4 and 

DiHETs recovery was slightly higher in glass tubes, for leukotriens D4 and E4 recovery was slightly higher in plastic tubes but for more 

hydrophobic HETEs and EETs recovery in glass tubes was 2-5 times higher than in plastic, most hydrophobic AA was not observed at all 

after evaporation in plastic tubes. That can be explained by that more hydrophobic oxylipins have stronger interactions with hydrophobic 

polypropylene. Despite glass tubes have less interactions with oxylipins during evaporation 20-60% losses are observed.  
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 Figure S6 Optimization of speedvac evaporation 100 µl of 20 ng/ml of oxylipin standards were added to six 1 ml glass amber round 

bottom tubes that were not pretreated with anything, 100 µl were added to three glass tubes that were washed with concentrated acetic acid, 

100 µl were added to three glass tubes where 6 µl of 30% glycerol in MeOH were added. Samples in three tubes that were without any 

treatments were evaporated to 2 µl on the bottom of the tube, other nine samples were evaporated to dryness (in case of samples with 

glycerol after evaporation of solvent 2 µl of the glycerol left on the bottom of the tube). After evaporation all samples were reconstituted in 

100% MeOH and injected into LC-MS. Recovery was calculated as in Figure S1. The second way is to treat wall of the glass tubes with 

concentrated acid before loading the samples into the tube. Glass tubes may have negatively charged silica groups on their surface and 

these groups can be protonated by acid. The third way is addition 30% glycerol in methanol at the bottom of the tube before loading of the 

sample. The idea is that after full evaporation of solvent only small known amount of glycerol that cannot be evaporated at these conditions 

will be on the bottom of the tube and all oxylipins from the solvent will stick to this glycerol and during reconstitution glycerol will be 

dissolved in solvent and oxylipins as well. Comparison of these ways of evaporation in speedvac showed following trend for most oxylipins 

recovery was slightly growing from full evaporation and no treatment-treatment with acid-addition of glycerol-not full evaporation. 

Exception was observed only leukotriens D4 and E4 that showed 85% recovery in tubes with addition of glycerol comparatively to 30% 

recovery in tubes where not full evaporation was performed. So for the final sample preparation method addition of 20 µl of 30% MeOH 

before loading of the sample to the 1 ml glass tube for evaporation in speedvac (volume was increased from initial 6 µl because of wide 

diameter of the bottom of the tube, 2 µl of glycerol is not enough to cover full bottom). 
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 Figure S7 Assessment of reconstitution/injection solvent. (a)Peak area of standards injected in 50 and 100% MeOH and 50% EtOH 

relatively to standard injected in 20% MeOH. (b) EICs at m/z 353.2333 for standards injected in different solvents. Reconstitution after 

evaporation is important step as well because recovery of oxylipins strongly depends on efficiency of reconstitution. However, to obtain 

highest enrichment we have to use as lower volume of reconstitution as possible and at the same time this volume should be enough to 

reconstitute and remove all analytes without additional losses. At initial method reconstitution was performed in two steps: addition of 20 

µl of 100% MeOH to reconstitute majority of oxylipins on the bottom of the tube and then addition 80 µl of water to be able to wash walls 

of the tube and to decrease level of organic phase to 20% because in initial method samples before injection should have been in 20% 

organic. However, 100 µl is high volume that does not allow preconcentration e.g. 100 µl samples. Possibility of injection of oxylipins in 

other percentages of organic phase was assessed. It was found that injection of oxylipins in 50% and 100% of MeOH does not influence 

in peak area, peak shape and RT, so it was decided to inject samples from 100% MeOH. And this is allowing to decrease volume of 

reconstitution solvent and optimal volume was found (data not shown). In final method reconstitution performed by addition of 40 µl of 

100% MeOH with subsequent vortexing. Using of this volume show good reproducibility, high recovery and allows at least two injections 

of sample (injection volume in the method is 10 µl) and allows preconcentration of even small volume samples (100 µl). 
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Figure S8 EICs of 100 ng/ml oxylipin standard showing the separation of PGF2a isomers on Zorbax UHPLC and Kinetex core-shell 

HPLC columns.  
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Figure S9 EICs at (a) m/z 353.2333 (b) m/z 317.2122 showed chromatographic separation of oxylipin isomers performed by T3 and Zorbax 

UHPLC columns. T3 showed better separation for more hydrophilic 353.2333 while Zorbax was better for 317.2122. 
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Figure S10 EICs at (a) m/z 353.2333 (b) m/z 319.2179 showed chromatographic separation of oxylipin isomers performed by PFP and 

Zorbax UHPLC columns.  
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Figure S11 Comparison of 0.02% HAc (v/v) and 0.02% FA as mobile phase additives for the analysis of 200 ng/ml oxylipin standard (n=3). 

0.02% HAc increased peak areas of all oxylipins by 10-40% versus FA.  
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Figure S12 Comparison of 0.02% HAc and 10 mM AmAc as mobile phase additive for the analysis of 6.25 ng/ml oxylipin standard.   The 

use of 0.02% HAc improves signal intensity on average 8x and provides better peak shapes for this application. 
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Figure S13 EIC at m/z 319.22787 showed doubled peak area (pink) of 9-HETE and 5-HETE resulted in sum of endogenous (purple) and 

spiked standard (red) levels (10 ng/ml). Peak areas for each level are placed on chromatogram.  
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Figure S14 Evaluation of autosampler stability of oxylipin during 24 hours at concentration 1 ng/ml. 100µl of 1 ng/ml mix of oxylipins 

were added to glass inserts in glass LC vials (n=3). Vials were placed in 54-well autosampler tray at 40C and every sample was injected 

every 6 hours (fresh, 6, 12, 18, 24 hours). Stability was evaluated by comparison of peak areas of the standards in 6,12,18,24 hours samples 

with peak areas of standards in freshly prepared sample. 15-HpETE showed drastic drop of intensity up to 75%, also 5-HpETE and 12-

oxoETE showed drop of intensity over 20%, for that reason these oxylipins were excluded from quantitative analysis, however they still be 

monitoring during analysis.  
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Figure S15 Evaluation of method efficiency for method of extraction of oxylipins from plasma. Recovery%=Apre/Asol*100%, where red 

colour is used for 2.5x preconcentrated samples, there pre-extraction spike was performed at 4 ng/ml mix of standards and measured 

against 10ng/ml mix of standards in solvent. For more abundant oxylipins (highlighted in blue) pre-extraction spike was performed at 40 

ng/ml mix of 18 most abundant standards and ISTDs and measured against 10ng/ml mix of standards in solvent. The results show mean 

values (n=6), error bars show mean values of SD for each standard.  
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Table S1 List of standards analyzed by the method. Oxylipins that were detected in plasma are highlighted in green. In “Detection in plasma 

comment” column four types of detection quality were determined: DQ-detected and quantified; D- detected but accurate quantitation is not 

possible due to the reason specified in brackets; ND-P – not detected in plasma samples tested in this study, however, 10 ng/ml pre-spiked 

standard gives good quality peak, so potentially endogenous level of this oxylipin could be measured accurately if its concentration in a study 

sample is higher than LLOQ. ND – not detected and could not be accurately quantitated in pre-spiked plasma standards. The reasons for 

problems with quantitation include: (i) interference – interfering peak present in plasma co-elutes with analyte peak and results in inaccurate 

quantitation or obscures the peak of interest in case of large difference in concentrations between analyte and interference; (ii) shift – denotes 

that although the peak can be detected using regular gradient employed in final  method (and matches retention time of standard), further 

investigation using a shallower gradient with extremely long chromatographic method indicates that the analyte was in fact misidentified as it 

shows a retention time that no longer corresponds to authentic standard; (iii) unstable - means that the analyte does not show adequate 

autosampler stability either due to degradation or non-specific adsorption and correct quantitation is impossible unless labelled standard for 

that analyte is used; (iv) matrix effect - significant matrix effect is observed in plasma and adversely impacts quantitation; and (v) too high 

concentration of AA does not allow its accurate quantitation using the final extraction method and proposed low and high calibration ranges. 

The “Most abundant” column A shows the most abundant oxylipins in plasma that were used in Mix 18 and Mix 25 

Oxylipin name Abbreviation Formula m/z of [M-H]- RT (min) 
Detection in plasma 

comment 

Most 

abundant 

Resolvin E1 RvE1 C20H30O5 349.20204 7.53 ND-P  

Prostaglandin F2α ethanolamide PGF2α-EA C22H39NO5 396.27556 7.85 ND-P  

8-iso-15(R)-Prostaglandin F2α 

8-iso-15(R)-

PGF2α C20H34O5 353.23336 9.06 

DC  

8-iso-Prostaglandin F2α 8-iso-PGF2α C20H34O5 353.23336 9.23 D (interference)  

8-iso-Prostaglandin F2β 8-iso-PGF2β C20H34O5 353.23336 9.35 ND-P  

11β-Prostaglandin F2α 11β-PGF2α C20H34O5 353.23336 9.51 ND (shift)  

15(R)-Prostaglandin F2α 15(R)-PGF2α C20H34O5 353.23336 10.24 ND (interference)  

Prostaglandin F2α PGF2α C20H34O5 353.23336 10.36 ND (shift)  

Prostaglandin E2 PGE2 C20H32O5 351.2177 10.63 ND (interference)  

Prostaglandin D2 PGD2 C20H32O5 351.2177 11.09 

ND (interference + 

shift) 

 

Lipoxin A4 LXA4 C20H32O5 351.2177 12.16 

ND (interference + 

shift) 

 

Resolvin D1 RvD1 C22H32O5 375.2177 12.3 D (interference)  

Leukotriene D4 LTD4 C25H40N2O6S 495.25344 12.7 ND-P  
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13,14-dihydro-15-keto-Prostaglandin D2 

13,14-dihydro-

15-keto-PGD2 C20H32O5 351.2177 13 

ND (interference)  

8-iso-Prostaglandin A1 8-iso-PGA1 C20H32O4 335.2228 13.68 ND (interference)  

Prostaglandin J2 PGJ2 C20H30O4 333.20714 13.94 ND (interference)  

Leukotriene E4 LTE4 C23H37NO5S 438.23198 14.16 ND-P  

8,15-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid 8,15-DiHETE C20H32O4 335.2228 15.35 ND (interference)  

5,15-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid 5,15-DiHETE C20H32O4 335.2228 15.72 DC A 

10,17-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid  

10,17-

DiHDHA C22H32O4 359.2228 16.17 

DC, Unresolved, 

MS/MS must be 

used for quantitation 

 

Maresin 1 MaR-1 C22H32O4 359.2228 16.17  

Leukotriene B4 LTB4 C20H32O4 335.2228 16.17 ND (interference)  

12,13-dihydroxy-9Z-octadecenoic acid 

12,13-

DiHOME C18H34O4 313.23842 16.71 

DC  

5,12-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid 5,12-DiHETE C20H32O4 335.2228 16.71 DC A 

9,10-dihydroxy-12Z-octadecenoic acid 9,10-DiHOME C18H34O4 313.23842 17.16 DC  

14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid 14,15-DiHET  C20H34O4 337.23842 17.84 D (interference)  

11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid 11,12-DiHET C20H34O4 337.23842 18.53 ND-P  

9-hydroxy-10E,12Z,15Z-octadecatrienoic acid 9-HOTrE C18H30O3 293.21221 18.91 D (matrix effect)  

13-hydroxy-9Z,11E,15Z-octadecatrienoic acid 13-HOTrE C18H30O3 293.21221 19.15 DC  

15-deoxy-Δ12,14 Prostaglandin J2 
15-deoxy-

Δ12,14 PGJ2 C20H28O3 315.19658 19.35 
ND-P  

5,6-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid 5,6-DiHETE C20H32O4 335.2228 19.61 D (interference)  

20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 20-HETE C20H32O3 319.22786 19.82 ND-P  

15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid 15-HEPE C20H30O3 317.21221 19.85 D (interference)  

11-hydroxy-5Z,8Z,12E,14Z,17Z-eicosapentaenoic acid 11-HEPE C20H30O3 317.21221 19.97 D (interference)  

9-hydroxy-5Z,7E,11Z,14Z,17Z-eicosapentaenoic acid 9-HEPE C20H30O3 317.21221 20.45 D (interference)  

16-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 16-HETE C20H32O3 319.22786 20.63 ND (interference)  

5-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid 5-HEPE C20H30O3 317.21221 20.77 DC A 

9-hydroxy-10E,12Z-octadecadienoic acid 9-HODE C18H32O3 295.22786 20.99 DC A 

20-hydroxy Docosahexaenoic Acid 20-HDoHE C22H32O3 343.22786 21.21 DC A 

13-oxo-9Z,11E-octadecadienoic acid 13-OxoODE C18H30O3 293.21221 21.51 DC A 
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15-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid 15-HETE C20H32O3 319.22786 21.58 DC A 

16-hydroxy Docosahexaenoic Acid 16-HDoHE C22H32O3 343.22786 21.69 
D, not resolved 

 

17-hydroxy Docosahexaenoic Acid 17-HDoHE C22H32O3 343.22786 21.8  

11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid 11-HETE C20H32O3 319.22786 22.03 DC A 

9-oxo-10E,12Z-octadecadienoic acid 9-oxoODE C18H30O3 293.21221 22.04 DC A 

15-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid 15-HpETE  C20H32O4 317.21168 22.09 

ND (interference + 

unstable) 

 

14-hydroxy Docosahexaenoic Acid 14-HDoHE C22H32O3 343.22786 22.21 DC A 

11,12-Epoxyeicosatetraenoic Acid 11,12-EpETE C20H30O3 317.21221 22.32 

ND (shift + 

interference) 

 

12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid 12-HETE C20H32O3 319.22786 22.41 DC, unresolved 

MS/MS is required 

for quantitation 

A 

8-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid 8-HETE C20H32O3 319.22786 22.41 
A 

8,9-Epoxyeicosatetraenoic Acid 8,9-EpETE C20H30O3 317.21221 22.48 
ND (shift + 
interference) 

 

9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid 9-HETE C20H32O3 319.22786 22.68 DC A 

12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid 12-OxoETE C20H30O3 317.21221 22.85 D (unstable)  

5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid 5-HETE C20H32O3 319.22786 22.99 DC A 

5-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid 5-HpETE  C20H32O4 317.21168 23.56 D (unstable)  

4-hydroxy Docosahexaenoic Acid 4-HDoHE C22H32O3 343.22786 23.49 DC A 

14,15-epoxy-5Z,8Z,11Z-eicosatrienoic acid 14,15-EET  C20H32O3 319.22786 23.84 DC  

5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid 5-oxoETE C20H30O3 317.21221 24.27 DC A 

11-hydroxy-12E,14Z-eicosadienoic acid 11-HEDE C20H36O3 323.25917 24.75 DC, Unresolved, 
MS/MS is required 

for quantitation 

 

15-hydroxy-11Z,13E-eicosadienoic acid 15-HEDE C20H36O3 323.25917 24.75 
 

11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid 11,12-EET  C20H32O3 319.22786 24.56 ND (shift)  

8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid 8,9-EET  C20H32O3 319.22786 24.79 

ND 

(shift+interference) 

 

Eicosapentaenoic Acid EPA C20H30O2 301.21730 27.26 DC A 

Docosahexaenoic Acid DHA C22H32O2 327.23296 29.01 DC A 

Arachidonic acid AA C20H32O2 303.23296 29.43 

D (too high 

concentration) 
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Table S2 List of internal standards used in the method 

Oxylipin name Abbreviation Formula m/z of [M-H]- RT (min) 

11β-Prostaglandin F2α-d4 11β-PGF2α-d4 C20H30D4O5 357.25844 9.47 

Leukotriene E4-d5 LTE4-d5 C23H32D5NO5S 443.26335 14.1 

Leukotriene B4-d4 LTB4-d4 C20H28D4O4 339.24788 16.09 

Techin 15-HETE-d8 C20H24D8O3 327.27809 21.4 

5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic-6,8,9,11,12,14,15-d7 acid 5-oxoETE-d7 C20H23D7O3 324.25615 24.1 

(±)8(9)-epoxy-5Z,8Z,14Z-eicosatrienoic-16,16,17,17,18,18,19,19,20,20,20 acid 8,9-EET-d11  C20H21D11O3 330.29692 24.48 

5Z,8Z,11Z,14Z-eicosatetraenoic-16,16,17,17,18,18,19,19,20,20,20-d11 acid AA-d8 C20H21D11O2 311.28316 29.22 
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Table S3 LogP values for oxylipins from list of standards reported by different sources. Table is arranged in terms of elution order on C-18 

UHPLC column 

 

№ 

 

Oxylipin 
LogP 

Experimental1 ALOGPS1 ChemAxon1 ACD2 

1 RvE1 NA 4.24 NA NA  

2 PGF2α Ethanolamide NA 2.09 1.34 NA  

3 8-iso-15(R)-PGF2α  NA NA NA 2.14 

4 8-iso-PGF2α 2.183 3.11 2.61 NA  

5 8-iso-PGF2β NA 3.11 2.61 NA  

6 11β-PGF2α NA 3.11 2.61 NA  

7 15(R)-PGF2α NA  NA NA  2.14 

8 PGF2α 4.39 3.11 2.61 NA  

9 PGE2 2.82 3.31 3.23 NA  

10 PGD2 NA 3.12 3.23 NA  

11 LXA4 NA 4.61 3.05 NA  

12 RvD1 NA 4.66 3.12 NA  

13 LTD4 NA 1.17 0.76 NA  

14 13,14-dihydro-15-keto-PGD2 NA 3.52 3.64 NA  

15 8-isoPGA1 NA 4.21 4.74 NA  

16 PGJ2 NA 4.1 4.38 NA  

17 LTE4 NA 1.57 2.02 NA  

18 8,15-DiHETE NA 5.37 4.13 NA  

19 5,15-DiHETE NA 5.33 4.13 NA 

20 10,17-DiHDHA+Maresin 1 NA  NA NA  3.81 

21 LTB4 NA 5.46 4.13 NA 

22 12,13-DiHOME NA 5.2 4.32 NA 

23 5,12-DiHETE NA  NA NA  4.06 

24 9,10-DiHOME NA 5.18 4.32 NA 

25 14,15-DiHET  NA 5.28 4.49 NA  
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26 11,12-DiHET NA 5.41 4.49 NA 

27 9-HOTrE NA  NA  NA 4.81 

28 13-HOTrE NA 5.39 4.38 NA 

29 15-deoxy-Δ12,14 PGJ2 3.983 5.39 5.46 NA 

30 5,6-DiHETE NA NA NA  3.62 

31 20-HETE NA 5.87 5.15 NA 

32 15-HEPE NA 5.55 4.99 NA 

33 11-HEPE NA 5.53 4.99 NA 

34 9-HEPE NA 5.54 4.99 NA 

35 16-HETE NA 5.77 5.36 NA  

36 5-HEPE NA 5.54 4.99 NA 

37 9-HODE NA 5.88 5.19 NA 

38 20-HDoHE NA 6.01 5.52 NA 

39 15-HETE 4.405 5.82 5.36 NA  

40 9-OxoODE NA 5.62 5.6 NA 

41 16-HDoHE NA 5.95 5.52 NA 

42 17-HDoHE NA 5.96 5.52 NA  

43 13-oxoODE NA 5.66 5.6 NA 

44 11-HETE 4.056 5.85 5.36 NA 

45 15-HpETE  5.86 5.86 5.81 NA  

46 14-HDoHE NA 5.92 5.14 NA 

47 11,12-EpETE NA  NA NA 5.85 

48 12-HETE NA 5.86 5.36 NA 

49 8-HETE NA 5.86 5.37 NA  

50 8,9-EpETE NA NA NA  5.62 

51 9-HETE NA 5.88 5.36 NA 

52 12-OxoETE NA 5.79 5.77 NA 

53 5-HETE NA 5.88 5.36 NA  

54 5-HpETE  NA 5.92 5.81 NA 
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55 4-HDoHE NA 6.01 5.52 NA  

56 14,15-EET  NA 6.23 5.65  NA 

57 5-oxoETE NA 5.85 5.77  NA 

58 11-HEDE + 15-HEDE NA  NA NA  6.39 

59 11,12-EET  NA 6.25 5.65  NA 

60 8,9-EET  NA 6.25 5.65 NA 

61 Eicosapentaenoic Acid (EPA) NA 6.53 6.23 NA  

62 Docosahexaenoic Acid (DHA) 6.73 6.83 6.75 NA 

63 Arachidonic acid (AA) 6.98 6.8 6.59 NA  

1. Human metabolome data base (HMDB), accessed 20.11.2018 

2. www.chemspider.com, accessed 20.11.2018 

 

 

 

 

 

 

 

 

 

 

http://www.chemspider.com/
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Supplementary Methods (Chapter 3) 

Materials 

LC-MS grade solvents and mobile phase additives were purchased from Fisher Scientific (Ottawa, ON, Canada). L-Phenylalanine-d5, Cholic 

acid-d4, L-Glutamic acid-d5, Melatonin-d4 standards were purchased from CDN isotopes, Pointe-Claire, Quebec, Canada. Serotonin-d4 

hydrochloride standard was purchased from Toronto Research Chemicals (Toronto, ON, Canada). All oxylipin standards were purchased 

directly from Cayman Chemicals (Ann Arbor, MI, US) or their Canadian distributor Cedarlane Labs (Burlington, ON, Canada). 

Overall experiment schematic 

The same samples that were used for oxylipin analysis, were also used for untargeted metabolomics using both reversed-phase and HILIC as 

shown in Supplementary Figure S16. The latter two analyses are not further discussed in this manuscript, but it is important to emphasize two 

key points. Firstly, from a single in vivo SPME sampling sufficient material can be obtained to perform three analyses (oxylipin profiling and 

quantitation, analysis of polar metabolome and analysis of intermediate metabolome), thus providing very rich information profiles for all 

sampling time points. Secondly, the choice of mixed-mode coating was dictated by the need to analyze polar metabolome. If only oxylipin 

analysis is of interest, commercial biocompatible C18 coatings provide slightly better extraction efficiency and possibly oxylipin coverage 

(Supplementary Figure S21).  

SPE brain procedure 

10 tissue samples were weighed (approx. 20 mg), immersed in liquid nitrogen and then disrupted with a Bessman tissue pulverizer. Tissue 

pellet was transferred to 1.5 ml Eppendorf tube where 200 µl of 99% MeOH + 1% FA were added. Tissue was then homogenized with 

mechanical tissue grinder (Fisher Scientific). Ten homogenized tissue samples were mixed together, vortexed and divided into ten samples of 

200 µl each. Five samples were spiked with 10 µl of 10 ng/ml IS working standard, remaining 5 samples were not spiked. All samples were 

centrifuged at 15 000 g for 10 min at 40C. 100 µl of supernatant were transferred to separate tubes and nonspiked samples were now spiked 
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with 8.3 µl of 10 ng/ml of IS working standard. All 10 samples were then subjected to SPE procedure performed on C-18 (Strata Phenomenex 

200 mg): (i) conditioning with 1 ml of MeOH and 1 ml of 20% MeOH, (ii) loading 100 µl (or 108.3 µl in case of post-spiked samples) of 

sample, (iii) washing with 1 ml of 20% MeOH, and (iv) elution with 1 ml of 99% MeOH with 1% HAc into a 5 ml culture glass tube. After 

elution, all eluent was transferred to 1 ml glass amber round-bottom tube contained pre-dispensed 20 µl of 30% glycerol in MeOH and 

evaporated in speedvac to dryness (6 µl of glycerol on the bottom of the tube).  After evaporation, the samples were reconstituted with 40 µl 

of MeOH with vortexing. Finally, 20 µl was transferred to a new HPLC glass insert for LC-MS analysis.

 

Figure S16 Overall experimental design showing that both oxylipin quantitative profiling and full untargeted metabolomics profiles can 

be obtained from single sampling 
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LC-MS for oxylipin analysis 

The separation of analytes was performed on ZORBAX Eclipse plus C18, 1.8 µm (2.1 mm x 100 mm) Rapid Resolution High Definition 

(RRHD) column (Agilent) protected by a guard column (2.1 mm x 5 mm; Agilent) made of the same packing material. Temperature of column 

was 50°С. Mobile phase flow rate was 0.4 ml/min. Mobile phase A consisted of 0.02% acetic acid in LC-MS grade water while mobile phase 

B was composed of 0.02% acetic acid, 10% 2-propanol and 90% acetonitrile (v/v).  Initial mobile phase composition was 95% A : 5% B, and 

was held for 1.0 min. Then, %B was increased to 20% over 0.1 min, followed by a linear gradient from 20% to 80% over 29.9 min. Finally, 

%B was increased to 95% over 0.1 min, and held for 3.9 min. The column was then re-equilibrated to initial conditions of 95% A for 5 min 

prior to next injection. Total run time per sample was 40 min. Injection volume was 10 µl. Following MS parameters were set: capillary voltage 

3500 V, nozzle voltage 500 V, drying gas temperature 250oС and sheath gas temperature 275oС. Experiment was divided into four time 

segments: 0-22.3 min MS, 22.2-22.5 MS/MS with collision energy 20 V, 22.5-30 min MS, 30-40 min LC stream goes to the waste. Internal 

mass calibration was performed using Dual AJS ESI ion source using calibrant masses 119.03632 (purine) and 980.01638 (HP-0921 acetate 

adduct) from Agilent mass reference solution. LC-MS data acquisition was performed using MassHunter software version B.07.00 (Agilent). 

The concentrations of oxylipins in SPME extracts were determined using standard calibration curve prepared to match the final composition 

of SPME samples. Working oxylipin standard was first prepared at 312.5 ng/mL in MeOH from individual oxylipin stock standards. From this 

working standard, seven calibration points were obtained at final concentrations of 6.25, 3.125, 1.563, 0.78125, 0.3906, 0.1953, and 0.0977 

ng/mL prepared in final SPME sample solvent composition (ACN/MeOH/H2O, 25/25/50) using serial dilution. All samples were run in 

randomized order after conditioning of LC-MS system and running calibration curve 

Data processing 

Targeted data processing was performed using Agilent Masshunter software (TOF Qualitative Analysis B.07.00 and TOF Quantitative 

Analysis B.07.00) using 30 ppm extraction window. Deprotonated ion [M-H]- was the most intense ion for most of oxylipins and was used 

for all data processing. The calculation of oxylipin final concentrations was performed using 1/x weighted solvent calibration curves. The 
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determination of 12-HETE and 8-HETE was performed using MS/MS using product ions: m/z 179.1 and 155.07 respectively. Supplementary 

Tables summarize formulas, m/z and retention times of all oxylipins for which (i) authentic standards were available and were fully quantitated 

if present in sample (Supplementary Table S1), (ii) internal standards (Supplementary Table S2) or (iii) authentic standards which were 

purchased to confirm the identifications of several unknown oxylipins after initial study. 

Table S4 Authentic standards that were used in experiment for both identification and quantitation of oxylipins in brain 

Full name Abbreviation Formula [M-H]- m/z RT (min) 
LLOQ 

(ng/ml) 

ResolvinE1 RvE1 C20H30O5 349.2020 7.53 0.1 

Prostaglandin F2α ethanolamide PGF2α-EA C22H39NO5 396.2756 7.85 0.1 

8-iso-15(R)-Prostaglandin F2α 8-iso-15(R)-PGF2α C20H34O5 353.2334 9.06 0.1 

8-iso-Prostaglandin F2α 8-iso-PGF2α C20H34O5 353.2334 9.23 0.1 

8-iso-Prostaglandin F2β 8-iso-PGF2β C20H34O5 353.2334 9.35 0.1 

11β-Prostaglandin F2α 11β-PGF2α C20H34O5 353.2334 9.51 0.1 

15(R)-Prostaglandin F2α 15(R)-PGF2α C20H34O5 353.2334 10.24 0.1 

Prostaglandin F2α PGF2α C20H34O5 353.2334 10.36 0.1 

Prostaglandin E2 PGE2 C20H32O5 351.2177 10.63 0.1 

Prostaglandin D2 PGD2 C20H32O5 351.2177 11.09 0.1 

Lipoxin A4 LXA4 C20H32O5 351.2177 12.16 0.2 

ResolvinD1 RvD1 C22H32O5 375.2177 12.30 0.1 

Leukotriene D4 LTD4 C25H40N2O6S 495.2534 12.70 0.1 

Prostaglandin J2 PGJ2 C20H30O4 333.2071 13.94 0.2 

Leukotriene E4 LTE4 C23H37NO5S 438.2320 14.16 0.1 

8,15-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid 8,15-DiHETE C20H32O4 335.2228 15.35 0.1 

5,15-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid 5,15-DiHETE C20H32O4 335.2228 15.72 0.1 
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10,17-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid 10,17-DiHDHA C22H32O4 359.2228 15.91 0.1 

Maresin 1 MaR-1 C22H32O4 359.2228 15.96 0.1 

Leukotriene B4 LTB4 C20H32O4 335.2228 16.17 0.1 

12,13-dihydroxy-9Z-octadecenoic acid 12,13-DiHOME C18H34O4 313.2384 16.71 0.1 

5,12-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid 5,12-DiHETE C20H32O4 335.2228 16.71 0.1 

9,10-dihydroxy-12Z-octadecenoic acid 9,10-DiHOME C18H34O4 313.2384 17.16 0.1 

14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid 14,15-DiHET C20H34O4 337.2384 17.84 0.1 

11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid 11,12-DiHET C20H34O4 337.2384 18.53 0.1 

9-hydroxy-10E,12Z,15Z-octadecatrienoic acid 9-HOTrE C18H30O3 293.2122 18.91 0.1 

13-hydroxy-9Z,11E,15Z-octadecatrienoic acid 13-HOTrE C18H30O3 293.2122 19.15 0.1 

5,6-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid 5,6-DiHETE C20H32O4 335.2228 19.61 0.1 

20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 20-HETE C20H32O3 319.2279 19.82 0.1 

9-hydroxy-5Z,7E,11Z,14Z,17Z-eicosapentaenoic acid 9-HEPE C20H30O3 317.2122 20.45 0.1 

16-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 16-HETE C20H32O3 319.2279 20.63 0.1 

5-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid 5-HEPE C20H30O3 317.2122 20.77 0.1 

15-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid 15-HETE C20H32O3 319.2279 21.58 0.1 

11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid 11-HETE C20H32O3 319.2279 22.03 0.1 

9-oxo-10E,12Z-octadecadienoic acid 9-OxoODE C18H30O3 293.2122 22.04 0.1 

15-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid 15-HpETE C20H32O4 317.2117 22.09 0.1 

14-hydroxy Docosahexaenoic Acid 14-HDoHE C22H32O3 343.2279 22.21 0.2 

11,12-Epoxyeicosatetraenoic Acid 11,12-EpETE C20H30O3 317.2122 22.32 0.1 

12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid 12-HETE C20H32O3 319.2278 to 179.1 22.41 0.1 

8-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid 8-HETE C20H32O3 319.2278 to 155.07 22.41 0.1 

8,9-Epoxyeicosatetraenoic Acid 8,9-EpETE C20H30O3 317.2122 22.48 0.1 

9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid 9-HETE C20H32O3 319.2279 22.68 0.1 

12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid 12-OxoETE C20H30O3 317.2122 22.85 0.1 
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5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid 5-HETE C20H32O3 319.2279 22.99 0.1 

5-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid 5-HpETE C20H32O4 317.2117 23.56 0.1 

14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid 14(15)-EET C20H32O3 319.2279 23.84 0.1 

5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid 5-oxoETE C20H30O3 317.2122 24.27 0.1 

11-hydroxy-12E,14Z-eicosadienoic acid 11-HEDE C20H36O3 323.2592 24.40 0.1 

15-hydroxy-11Z,13E-eicosadienoic acid 15-HEDE C20H36O3 323.2592 24.40 0.1 

11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic acid 11(12)-EET C20H32O3 319.2279 24.56 0.1 

8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid 8(9)-EET C20H32O3 319.2279 24.79 0.1 

Eicosapentaenoic Acid EPA C20H30O2 301.2173 27.26 0.1 

Docosahexaenoic Acid DHA C22H32O2 327.2330 29.01 0.1 

Arachidonic acid AA C20H32O2 303.2330 29.43 0.4 
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Table S5 Deuterated internal standards that were used in experiment 

Full name Abbreviation Formula [M-H]-m/z RT (min) 
LLOQ 

(ng/ml) 

11β-Prostaglandin F2α-d4 11β-PGF2α-d4 C20H30D4O5 357.2584 9.47 0.1 

Leukotriene E4-d5 LTE4-d5 C23H32D5NO5S 443.2634 14.10 0.1 

Leukotriene B4-d4 LTB4-d4 C20H28D4O4 339.2479 16.09 0.1 

(5Z,8Z,11Z,13E,15S)-15-Hydroxy(5,6,8,9,11,12,14,15-2H8)-5,8,11,13-icosatetraenoic acid 15(S)-HETE-d8 C20H24D8O3 327.2781 21.40 0.1 

5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic-6,8,9,11,12,14,15-d7 acid 5-oxoETE-d7 C20H23D7O3 324.2562 24.10 0.1 

8(9)-epoxy-5Z,8Z,14Z-eicosatrienoic-16,16,17,17,18,18,19,19,20,20,20 acid 8(9)-EET-d11 C20H21D11O3 330.2969 24.48 0.1 

5Z,8Z,11Z,14Z-eicosatetraenoic-16,16,17,17,18,18,19,19,20,20,20-d11 acid AA-d8 C20H21D11O2 311.2832 29.22 0.8 

 

Table S6 Additional standards that were used after experiment for the identification of unknowns 

Full name Abbreviation Formula [M-H]- m/z RT (min) 
LLOQ 

(ng/ml) 

13,14-dihydro-15-keto-Prostaglandin D2 13,14-dihydro-15-keto-PGD2 C20H32O5 351.2177 13.00 0.4 

8-iso-Prostaglandin A1 8-iso-PGA1 C20H32O4 335.2228 13.68 0.1 

15-deoxy-Δ12,14 Prostaglandin J2 15-deoxy-Δ12,14 PGJ2 C20H28O3 315.1966 19.35 0.4 

15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid 15-HEPE C20H30O3 317.2122 19.85 0.1 

11-hydroxy-5Z,8Z,12E,14Z,17Z-eicosapentaenoic acid 11-HEPE C20H30O3 317.2122 19.97 0.2 

9-hydroxy-10E,12Z-octadecadienoic acid 9-HODE C18H32O3 295.2279 20.99 0.2 

20-hydroxy Docosahexaenoic Acid 20-HDoHE C22H32O3 343.2279 21.21 0.2 

13-oxo-9Z,11E-octadecadienoic acid 13-oxoODE C18H30O3 293.2122 21.51 0.1 

16-hydroxy Docosahexaenoic Acid 16-HDoHE C22H32O3 343.2279 21.69 0.4 

17-hydroxy Docosahexaenoic Acid 17-HDoHE C22H32O3 343.2279 21.80 0.4 

4-hydroxy Docosahexaenoic Acid 4-HDoHE C22H32O3 343.2279 23.49 0.4 
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Table S7 Average concentration (ng/ml or pg/mg brain tissue ± SD) of oxylipins in pooled brain sample (n=10 technical replicates) extracted 

by SPE. D-detected, but not quantitated   

Oxylipin Concentration (ng/ml) Concentration (pg/mg wet tissue) 

8-iso-15(R)-PGF2α 0.36±0.18 0.72±0.36 

8-iso-PGF2α 0.25±0.09 0.5±0.18 

11β-PGF2α 0.12±0.02 0.24±0.04 

PGF2α 1.08±0.08 2.16±0.16 

PGE2 1.15±0.22 2.3±0.44 

PGD2 3.39±0.83 6.78±1.66 

LXA4 1.53±1.14 3.06±2.28 

13,14-dihydro-15-keto-PGD2 0.49±0.27 0.98±0.54 

8,15-DiHETE 0.92±0.75 1.84±1.5 

5,15-DiHETE 0.37±0.14 0.74±0.28 

10,17-DiHDHA+MaR-1 0.07±0.01 0.14±0.02 

LTB4 0.25±0.16 0.5±0.32 

12,13-DiHOME 0.77±0.23 1.54±0.46 

5,12-DiHETE 0.37±0.14 0.74±0.28 

14,15-DiHET 0.28±0.07 0.56±0.14 

15-deoxy-Δ12,14 PGJ2 0.47±0.22 0.94±0.44 

20-HETE 0.37±0.04 0.74±0.08 

15-HEPE 0.36±0.34 0.72±0.68 

16-HETE 2.17±1.09 4.34±2.18 

9-HODE 1.48±0.3 2.96±0.6 

20-HDoHE 1.94±0.41 3.88±0.82 

15-HETE 10.72±3.5 21.44±7 

13-oxoODE 0.68±0.19 1.36±0.38 



118 
 

16-HDoHE 1.05±0.27 2.1±0.54 

17-HDoHE 1.3±0.23 2.6±0.46 

11-HETE 3.45±0.51 6.9±1.02 

9-oxoODE 0.58±0.16 1.16±0.32 

14-HDoHE 2.32±0.25 4.64±0.5 

11.12-EpETE 1.13±0.34 2.26±0.68 

12-HETE D D 

8-HETE D D 

8,9-EpETE 0.52±0.18 1.04±0.36 

9-HETE 3.1±0.5 6.2±1 

5-HETE 6.55±2.23 13.1±4.46 

4-HDoHE 3.51±0.92 7.02±1.84 

14,15-EET 1.59±0.79 3.18±1.58 

5-oxoETE 3.87±1.86 7.74±3.72 

15-HEDE+11-HEDE 0.12±0.02 0.24±0.04 

11,12-EET 2.15±1.05 4.3±2.1 

8,9-EET 1.95±1.3 3.9±2.6 

EPA 47.7±5.47 95.4±10.94 

DHA 1383±46.7 2766±93.4 

AA 7561±1617 15122±3234 
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Figure S17 Method precision (%RSD, n=10 technical replicates) of SPE method for the extraction of endogenous oxylipins from 

pooled brain homogenate  
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 Figure S18 Examples of calibration curves used for quantitation (a) PGE2, (b) 9-HETE in SPME samples. Concentration range 

0.098-6.25 ng/ml. 

  

 

 

 

 

 

 

a b 
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Figure S19 EICs of isomeric oxylipins in (a) oxylipin standard at final concentration of 3.12 ng/mL in MeOH solvent during SPME experiment 

(b) SPME blank, (c) oxylipins extracted from brain by in vivo SPME, (d) oxylipin standard at final concentration of 3.12 ng/mL in MeOH solvent 

during SPE experiment (e) SPE blank, (f) oxylipins extracted from brain by SPE. 1)-20-HETE, 2)-16-HETE, 3)-15-HETE, 4)-11-HETE, 5)-12-

HETE+8-HETE, 6)-9-HETE, 7)-5-HETE, 8)-14,15-EET, 9)-11,12-EET, 10)-8,9-EET, 11)-PGE2, 12)-PGD2, 13)-LXA4, 14)- 13,14-dihydro-15-

keto-PGD2, 15)- 8-iso-PGA1, 16)-8,15-DiHETE, 17)-5,15-DiHETE, 18)-LTB4, 19)-5,12-DiHETE, 20)-5,6-DiHETE, 21)-15-HEPE, 22)-11-

HEPE, 23)-9-HEPE, 24)-5-HEPE, 25)-15-HpETE, 26)-11,12-EpETE, 27)-8,9-EpETE, 28)-12-oxoETE, 29)-5-HpETE, 30)-5-oxoETE, 31)20-

HDoHE, 32)-16-HDoHE, 33)-17-HDoHE, 34)-14-HDoHE, 35)-4-HDoHE, 36)-9-HOTrE, 37)-13-HOTrE, 38)-13-oxoODE, 39)-9-oxoODE 
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Figure S20 Hierarchical clustering by class (baseline, drug and vehicle) using Euclidian distance of unknown and subsequently 

identified oxylipins observed by SPME in a minimum of 5 samples. Clustering was performed using peak area using Metaboanalyst 

4.0. 
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Figure S21 Oxylipin recoveries demonstrated by three types of SPME fiber coating: C-18, HLB and MixedMode. Extraction was 

performed from methanol 100 ng/ml solution of oxylipins during 12 hours at room temperature. SPME procedure was performed as 

described in Section 3.3. Extraction time profile of oxylipins was demonstrated by Bessonneau et al.61 
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