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ABSTRACT

Surface Nanoscale Axial Photonics (SNAP) for Optofluidics

Tabassom Hamidfar, Ph.D.

Concordia University, 2018

Sensing with optical whispering gallery modes (WGMs) is a rapidly developing detection method

in modern microfluidics research. This method explores the perturbations of spectra of WGMs

propagating along the wall of an optical microresonator to characterize the liquid medium

inside it. Out of the many available types of WGM microresonators, the surface nanoscale axial

photonics (SNAP) platform enables fabrication of resonant ultralow loss photonics structures at

the surface of an optical fiber with unprecedented precision currently approaching 0.1 angstroms.

In this work, first we explore a new technique for the creation of SNAPs, by using a regular

hydrogen-oxygen torch, which requires less equipment than current techniques. The transmis-

sion spectra shows that light can be fully localized by pulling a fiber, with very low loss resonant

modes. We then present the first demonstration of a platform with potential for microfluidic

sensing based on SNAP microresonators fabricated in silica capillary fiber with ultra-thin walls

by local annealing with a focused CO2 laser and internal etching with hydrofluoric acid. This

demonstration paves the groundwork for advanced microfluidic sensing with SNAP microres-

onators.

Finally, we show that light circulating in a silica microcapillary can be fully localized by evanes-

cent coupling to a water droplet forming a high Q-factor microresonator. The discovered phe-

nomenon suggests a novel method for microfluidics sensing and a new type of tunable resonant

microfluidic-based photonic devices.
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Chapter 1

Introduction

Optical microresonators have been receiving considerable attention, owing to their remarkable

optical properties. Because of the optical confinement at the microscale, there is an enhancement

of the electromagnetic field inside the resonator which has led to the straightforward observation

of high quality factor resonances in the spectra. This makes them suitable for technological

applications in various fields such as photonics and biosensing.

Micro-scale optical microresonators based on whispering galley modes (WGMs) are dielectric

structures that confine light through total internal reflection. Thanks to their low losses, they

show high enhancement of their internal fields [1]. Research and development of them has

grown significantly over the last several decades finding applications in telecommunications [2–5],

fabrication of microlasers [6–10], quantum electrodynamics [11, 12], quantum networks [13, 14],

microfluidics [15–18], optomechanics [19,20], and other fields of science and engineering. These

microresonators are usually fabricated in the form of spheres, toroids, bottles, bubbles, cylinders,

disks, and capillaries (see e.g., Refs [2, 3, 11, 15, 21]).

Similar to the acoustic WGMs, optical WGMs propagate very close to the surface of optical

microresonators. This fact has both positive and negative consequences for applications. On the

one hand, since WGMs are isolated from the microresonator core, thermal and electrical tuning

devices can be included into interior part of the microresonator without degrading its quality

factor [22, 23]. Of special interest is the development of microfluidic optomechanics based on

1
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liquid-filled microcapillaries, which is also based on the e↵ect of isolation of WGMs from the

liquid inside the resonator [24, 25].

Alternatively, coupling between WGMs and the interior of the microresonator is critical for the

development of ultra-precise capillary microfluidic sensors [15, 18, 26, 27]. Researchers fabricate

optical microcapillaries having very narrow (a few microns thick) walls, which allow WGMs to

evanescently penetrate through the internal capillary surface and probe the interior medium. It

is expected that these microfluidic sensors, similar to WGM microresonators sensing the envi-

ronment at their peripheral surface [16], can achieve breakthrough single-molecule sensitivity.

Out of the many available types of WGM microresonators, the surface nanoscale axial pho-

tonics (SNAP) platform enables fabrication of resonant photonic structures at the surface of

an optical fiber with unprecedented precision currently approaching 0.1 angstroms [28]. The

idea of SNAP consists in exploring whispering gallery modes (WGMs) which slowly propagate

along the surface of an optical fiber. For this reason, these modes are slow and their axial speed

and propagation constant are small. As a result, the distribution of light propagating in the

form of a WGM along an optical fiber surface can be fully controlled by the exceptionally small

nanoscale variation of the e↵ective fiber radius [29].

In this case of a capillary fiber, it is of great interest to investigate how the spatial and temporal

variation of the media adjacent to the internal capillary surface a↵ect the spectrum of the SNAP

resonator created at the capillary wall. In particular, it is important to find out if it is possible

to determine the internal e↵ective radius variation of the capillary from the measure spectra,

as was done for the outer radius in SNAP [30].

The idea of producing SNAP devices was first published by M. Sumetsky and J. M. Fini in

2011 [28,31]. A SNAP resonator confines light by means of an e↵ective radius variation (ERV)

in a cylindrically symmetric dielectric structure. The e↵ective radius is defined as the product

of the radius of the structure and the refractive index of the material, re↵(z) = r(z)n(z), where

r is the radius of the structure and n its refractive index. Thus, an ERV can be introduced

in an optical fiber by causing a change in either its radius or its refractive index. The ERVs

needed to produce good optical confinement are on the order of tens of nanometers. They

initially demonstrated two methods of fabrication based on the modification of an ERV for a

variety of glass and photosensitive fibers with CO2 laser treatment [30] and UV beam exposures
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Table 1.1: SNAP vs. photonic technologies developed previously [29, 35–37]

[32], which we explain them in detail in the next chapter. Recently, using a CO2 laser, more

sophisticated structures such as resonators with parabolic and semi-parabolic profiles [4] have

been demonstrated. It has also been discovered lately that light confinement can be induced

temporarily in silica capillaries through joule heating of a specially patterned metal wire inside

[33], or using femtosecond laser pulses [34].

SNAP devices are particularly interesting because of their low optical losses. They are made of

silica, which has low absorption and a smooth surface that reduces the scattering of light. Table

1.1 summarizes the properties of SNAP devices as compared to prior photonic devices. The

advantages of a SNAP device include attributes such as robust whispering gallery modes which

are localized inside of the fiber and properties of silica such as roughness of the surface and low

material losses. Moreover, because of the micrometer dimensions and low attenuation coe�-

cients of SNAP, these photonic devices can be considered as a suitable platform for miniature

integrated photonic circuits.

The characteristic dimensions of individual SNAP elements can potentially be as small as 10µm.

While dimensions of this scale are equal to or greater than the dimensions of previous devices,

such as silica microresonators or photonic crystals, the propagation loss of SNAP devices can be

up to two orders of magnitude smaller than that of those devices. Also, the fabrication accuracy

of SNAP devices can be significantly better than previous technologies.
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Figure 1.1: a. Speed in free space or optical fiber. b. Speed in photonic circuit. c. Di↵erent
photonic circuits used in slowing light [44].

Due to the flexibility and ultra-low loss of SNAP platforms, which lead to the creation of high-

quality WGM microresonators, they show great promise as photonic micro-devices in many

applications like switching, filtering, lasing, sensing with high precision, slow light delay lines

[38], bu↵ers and signal processors [39], frequency comb generators [40], and optomechanical

devices [41]. These structures could also be used to investigate Anderson localization [42]

and tunneling [43] in optical contexts. The main potential applications of the SNAP platform

include:

Slow light

SNAP can be better than any other slow light devices previously suggested [44]. First of all, we

define slow light as: when a regular pulse propagates in the free space of an optical fiber, the

speed is determined by the speed of light c divided by refractive index n, as shown in Figure

1.1(a). We can make e↵ectively the speed of light smaller. Of course, we can not change the

fundamental constant c, but photonic circuits that slow down light can be created. The size of

the photonic circuit is small, so that the the speed of light is determined by the size L divided by

the time light spend in this photonic circuit (see Figure 1.1(b)). Several examples of this circuits
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Figure 1.2: Illustration of SNAP slow light [44].

are shown in Figure 1.1(c) [45]. We can curve the waveguide and of course the e↵ective speed

of light is smaller because it has to cover a long distance there. We can use a ring resonator

for the same reason, and also we can use photonics crystals. Scientists are very interested in

this technology, because by using these approaches they can create very small di↵erent optical

devices such as optical delay lines, photonics sensors, microfluidic sensors, and so.

But the problem is that technology is still not precise enough and dispersion, bandwidth, and

loss of light are factors limiting the use of these slow light devices [46]. Thus, about 10 years

ago, scientists understood these approaches are not satisfactory and the interest on slow light

decreased significantly. Instead, SNAP can be suggested as a new approach [4]. While the

fabrication precision of a SNAP platform is two order of magnitude more precise than that with

other achieved technologies, the transmission loss of SNAP fibers is two orders of magnitude

smaller than any other microphotonic technology developed to date.

Sensing with high precision

Optical WGMs microresonators in the form of microspheres [26, 47], microbubble [48, 49], mi-

crorings [50,51], or microdisks [37,52] are an emerging biological or chemical sensing technology
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Figure 1.3: An optical biosensor based on a straight waveguide (left) and one based on a
WGM (right).

that has been under intensive investigation in the past decade. Compared to a straight waveg-

uide sensor, a WGMs microresonator can deliver sensing performance much better while using

orders of magnitude less surface area and sample volume. Figure 1.3 shows an optical biosensor

based on a straight waveguide and a WGM microresonator. Biorecognition molecules, such as

antibodies, are frozen onto the surface of the waveguide. They interact with the evanescent field

of the laser extending into the medium surrounding the waveguide. When targets are captured,

the refractive index near the waveguide surface changes and causes modifications in the opti-

cal signal of the output detector. Since the light passes through the waveguide once, and the

sensing signal is gathered outside of the waveguide, a long waveguide is needed to detect small

quantities of biomolecules [53].

On the other side, the light in the WGMs resonators interacts repeatedly with the biomolecules

on the surface of the microresonator through the evanescent field. The e↵ective interaction

length of a WGMs resonator is related to the quality factor, not the physical length of the

sensor and it is defined by [54]

Le↵ =
Q�

2⇡n
(1.1)

where n is the refractive index of the resonator and � is wavelength. As a WGM resonator, the

SNAP capillary resonator performs sensing by detecting the refractive index changes inside of

the capillary. The change of refractive index can be produced by the binding of the biomolecules
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Figure 1.4: a. A SNAP Sensor. b. WGM shifts from �1 to �2 in response to binding of the
target biomolecules to SNAP capillary microresonator interior surface [57].

to the sensor surface (see Figure 1.4(a)or the change of bulk solution inside the capillary [55].

The WGM spectral position is related to the refractive index through the resonant condition [56]

m� = 2⇡rne↵ (1.2)

where m is an integer that describes the azimuthal quantum number, � is the resonant wave-

length, r is the capillary radius, and ne↵ is the e↵ective refractive index experienced by the

WGMs. Equation 1.2 shows that resonance wavelength happens when an integer multiple of

that wavelength matches the circumference. When the target biomolecules are captured to

the interior surface of SNAP capillary, the refractive index near the SNAP surface is modified,

thus ne↵ changes, which leads to the shift in the WGM spectral position, as shown in Figure

1.4(b) [57].

��

�
⇡ �n

n
(1.3)

Therefore, by directly or indirectly monitoring the spectral shift of WGM, it is possible to

obtain information about the binding of biomolecules interaction on the interior surface of the

SNAP resonator [58]. To investigate the sensitivity of a capillary sensor, some other parameters

are required such as wall thickness of the capillary [53], operating wavelength [26], resonator

size [59], and so.
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Microfluidic

Microfluidic sensing with optical WGMs circulating along the uniform capillary has been pro-

posed and demonstrated in Ref. [26] and developed in numerous publications [15, 18]. White,

Oveys, and Fan [26] proposed and demonstrated a fused silica capillary with a few micron thick

wall acting as a WGM resonator sensor of the refractive index of liquid carried by the capillary.

In their first demonstration and follow up publications [8,15], an axially uniform silica capillary

coupled to a transverse microfiber or planar waveguide was explored. Sensing of fluid inside the

capillary was performed locally at the position of the transverse waveguide and was based on

the measurement of variation of a single resonance. Employing a SNAP resonator at the capil-

lary surface allows to significantly advance this method. In particular, it enables the detection

of changes, which happen away from the waveguide position along the length of the resonator

by controlling the variation of resonant spectra of this resonator [38]. In fact, this approach

suggested potentially enables the reconstruction of the spatial distribution of refractive index

of fluid flowing inside the capillary from the resonator spectrum and simultaneous sensing and

manipulation of fluid components.

1.1 Dissertation Organization

The present research work is directed towards the introduction of SNAP microresonators for

optofluidics. The thesis comprises 6 chapters. Chapter 1 (the present chapter) provides a general

introduction, and the thesis outline.

The following chapter will present a brief review of the theoretical background of SNAP device

and SNAP theory, including an analogy to quantum mechanics concerning the behavior of the

light in a SNAP, common methods of SNAP fabrication, and SNAP spectrograms. The following

three chapters are dedicated to specific SNAP topics.

In chapter 3, we introduce a new low-cost method to fabricate SNAP optical microresonators

in an optical fiber by pulling it using the flame brush technique. We characterize the resulting

resonators and find that they can host tens of axial modes with very high quality factors.
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We will present in chapter 4 a demonstration of SNAP microresonators fabrication at the surface

of an optical capillary fiber, and how to reduce the wall thickness to achieve sensitivity to the

capillary inside.

In chapter 5, we combine the ideas of SNAP devices at a surface of a capillary fiber and WGM

microfluidic sensing platforms, showing that control over the WGMs propagating along the

microcapillary can be performed only by nonuniformities of the liquid.

Finally, the last chapter will cover the main conclusion, summarize this work, as well as the

suggestions for future research.



Chapter 2

Surface Nanoscale Axial Photonics

(SNAP)

In this chapter, a theoretical description of surface nanoscale axial photonics is presented before

introducing our experimental works and results in the following chapters. First, a brief overview

of some concepts of resonators is given. We then introduce the theory of light in a cylindrical

step-profile structure, including an analogy to Quantum Mechanics, as well as the description of

the light in SNAP resonators, and common fabrication methods. Finally we briefly talk about

SNAP spectrograms.

2.1 Background

In this section, we describe some commonly used aspects of an optical microresonators, including

whispering gallery modes (WGMs), quality (Q-)factor, free spectral range (FSR), and Maxwell

equations. These features will help us to describe our resonator.

2.1.1 Optical Whispering Gallery Modes

A whispering gallery mode (WGM) is a type of wave that can travel inside a convex surface.

They were first discovered as acoustic waves in the dome of St. Paul’s Cathedral in London, and

10
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then mathematically described by Lord Rayleigh more than 100 years ago [60]. When the light

enters a convex surface with a refractive index higher than that of the surrounding medium, it is

trapped inside the cavity and guided around by optical total internal reflection at the interface

between the cavity and its surrounding area (see Figure 2.1). These microresonators can have

di↵erent shapes and geometries like toroid, sphere, ring or disk (see Figure 2.2).

Figure 2.1: Whispering Gallery Mode (WGM) propagation inside a cavity.

Figure 2.2: Di↵erent types of WGM resonators, a. Silica microsphere whispering gallery
resonators [11]. b. Microtoroid resonators [11]. c. Microring resonators [11]. d. Microdisk

resonators [11].

In silica glass fibers, due to their smooth surface, very low absorption loss (less than 7 dB/km

[61]), and small material attenuation (10�3 pm [29]) WGMs can stay confined for long times.

Only certain wavelengths will interfere constructively and build up a modal field. These wave-

lengths are knows as resonances and are mathematically described by Equation 1.2.
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2.1.2 Free spectral range

The azimuthal free spectral range of a resonator is defined as the frequency or wavelength

spacing between two adjacent modes, for example �m+1 and �m.

FSR(�) = 2⇡rne↵

✓
1

m
� 1

m+ 1

◆
⇡ �2

2⇡rne↵
⇡ �2

Optical path length
(2.1)

or it can be written as FSR(�) = c/2⇡rne↵. We can see that when the radius of microcavity

decreases, the FSR increases.

2.1.3 Quality factor

Generally, the quality factor (also known as Q-factor) is a dimensionless parameter related to the

loss of energy in an oscillatory system. This parameter shows the e�ciency of light confinement

inside a resonator. It is defined as the resonance wavelength over the full width half maximum

(FWHM) of the mode (see Figure 2.3). A high quality factor means that the rate of energy loss

is lower and that the magnitude of the field inside is stronger [62].

Figure 2.3: Definition of quality factor of mode.

Q =
Resonance wavelength (�c)

Full width half maximum of mode (��)
(2.2)
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In an optical resonant structure, the Q-factor is proportional to the decay time of the mode

(Q = !⌧), which in turn is inversely related to the losses rate, extrinsic and intrinsic [63]. The

extrinsic loss is due to coupling of light out, and can be expressed as

Qext =
2⇡N

K
(2.3)

where N is the mode number and K is the coupling coe�cient. When the microcavity is coupled

to a single mode waveguide, increasing the coupling will reduce the quality factor [64]. As a

results the total quality factor is made up these two components as Q�1 = ⌃Q�1
int,i+Q�1

coup. The

intrinsic quality factor is determined by [65]

1

Q
=

1

Qrad
+

1

Qs.s.
+

1

Qcont
+

1

Qmat
(2.4)

where Qrad is the radiation loss, Qs.s. the surface scattering loss, Qcont the contaminant loss,

and Qmat the material loss.

The radiation loss (Qrad) is due to the fact that the field bends inside the curved cavity. Thus

this loss can be reduced with increasing the size of the microcavity. The surface scattering

loss (Qs.s.) depends on the quality of the process of fabrication. The fabrication of SNAP

microresonator is based on the mechanism of surface tension of silica optical fiber, which makes

smooth surfaces and leads to reduce this loss. The contaminant loss (Qcont) is introduced by the

surface contaminants or adsorption of impurities. This loss can be reduced by fabricating the

microcavities in a very clean surroundings. The material absorption loss (Qmat) is the dominant

loss for a large microcavity with smooth and clean surfaces. This loss is significantly dependent

on the wavelength and refractive index of the microcavity and can be estimated as [66]

Qmat =
2⇡n

↵�
(2.5)

where n is the refractive index, ↵ is the attenuation coe�cient, and � is the resonant wave-

length. In order to reduce the loss and consequently increase the quality factor, choosing a

suitable wavelength becomes more important. For example 1550 nm is the most commonly
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used wavelength in optical communication systems due to the very low absorption loss of silica

fiber (4.6 ⇥ 10�6 cm�1), around 1500 nm [67]. However for aqueous systems, when a micro-

cavity is in contact with water, 1550 nm is not an appropriate wavelength, since water has the

high attenuation coe�cient of 10.8 cm�1 at this wavelength, at room temperature [68]. The

minimum attenuation coe�cient of water (around 2⇥ 10�4 cm�1) is reported near 475 nm [69].

A typical resonance spectrum of a SNAP microresonator with diameter of 22 µm is shown in

Figure 2.4. The free spectral range of the SNAP should be around 12.1 nm, while the quality

factor is around 106.

Figure 2.4: Typical transmission spectrum of a 22 µm SNAP microresonator.

2.1.4 Maxwell’s equations

For a theoretical description of how an electromagnetic wave propagates through an optical

fiber, we have to look at Maxwell’s equations. By assuming harmonic time dependence in

Maxwell’s equations, the Helmholtz equation for waves can be obtained. Modes are defined

as the possible solutions of the Helmholtz equation. In a homogeneous and isotropic dielectric

medium Maxwell’s equations are defined as

r⇥�!
E = �µ

@

@t

�!
H, r⇥�!

H = ✏
@

@t

�!
E (2.6)

r.
�!
E = 0, r.

�!
H = 0 (2.7)
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where µ is the magnetic permeability (µ = µrµ0) and ✏ is the electric permittivity of the material

(✏ = ✏r✏0). Taking the curl of equation 2.6 and assuming a harmonic time dependence for the

field, the Helmholtz equation can be derived (details can be found in [70])

(r2 + k2) = 0  = ~E, ~H (2.8)

Where k2 = !2µ✏. Considering that ! = kc
n , we can write

µ✏ =
n2

c2
(2.9)

where n is the refractive index of the material.

2.2 Surface Nanoscale Axial Photonics (SNAP)

Surface Nanoscale Axial Photonics (SNAPs) devices, a new generation of silica-based WGMs

resonators with low losses and high quality factors, consist of a regular capillary optical fiber with

smooth variation of its radius and equivalent variation of its refractive index [71]. In Figure 2.5

SNAP shows as extreme bubbles but this variation of radius is of the order of a few nanometers.

The dependence of external and internal radii of the capillary, rint(z) = r(0)int + �rint(z) and

rext(z) = r(0)ext + �rext(z), are assumed to be adiabatically slow and the refractive index is

defined as

n(⇢, z) =

8
>>>>><

>>>>>:

nint, 0 < ⇢  rint(z),

ncap, rint(z) < ⇢  rext(z),

next, rext(z) < ⇢.

(2.10)

and the e↵ective radius variation can be given as

�reff (z) = r0�nf (z) + nf0�r(z) (2.11)
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Figure 2.5: Schematic of a hollow Surface Nanoscale Axial Photonics (SNAP) device.

In standard optical fibers, light with a wavelength of � is guided along the fiber’s core. The

propagation constant of the light is defined as �0(�) =
2⇡nf0

� and the speed of light is v0 =
c

nf0
.

The SNAP platform is based on whispering gallery mode which allows the light slowly propagate

along the capillary z-axis and circulate around its surface. So, due to this direction of light

propagation in SNAP, the axial propagation is naturally slow (� << �0(�)) and the axial speed

of the modes is slower than the speed of the light in regular fibers (i.e. v << v0) [72]. In

addition, the propagation of the light is restricted to the region of the capillary fiber containing

the radius variation and light can not escape.

SNAP devices are particularly interesting because of the ultra-low losses, which lead to ultra-

high quality factor. They are made of silica, which has low absorption and smooth inner and

outer walls surfaces that reduces the scattering of light.

2.3 Step-Profile Fiber

The step-profile fiber is shown in Figure 2.6. This profile is an optical fiber waveguide with

a circularly homogeneous cross-section, consists of an unbounded core with uniform refractive

index nco, surrounded by an unbounded cladding with uniform refractive index of nclad and the

core radius of r [80–82]. The mathematical model of a step-profile fiber is shown in Figure 2.7

. The refractive index profile is expressed as
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Figure 2.6: Section of a step-profile fiber. n(⇢) is the refractive index profile and ⇢ is radius
of the core.

n(⇢) = nco, 0  ⇢ < r; n(⇢) = nclad, r < ⇢ < 1 (2.12)

Figure 2.7: Index profile of a step-index fiber.

The fiber axis corresponds to the z-axis. We continue this section with a solution of Helmholtz

equation for this waveguide. For a general waveguide with no free charge sources, the Helmholtz

equation (r2+k2) = 0 ,  = ~E, ~H) represents an eigenvalue problem for k with eigenfunctions

~E(~r,~k). Here, the eigenfunctions are called modes of the field. A time-dependent solution of

this equation for harmonic fields in free space is a plane wave

�!
E (~r, t) = ~E0 exp

i(~k.~r�!t) (2.13)

In the cylindrical coordinates (⇢,�, z), the fields can be represented with z as the longitudinal

propagation direction and (⇢,�) as the transverse coordinates
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E(⇢,�, z) = e(⇢,�)exp(ikzz); H(⇢,�, z) = h(⇢,�)exp(ikzz) (2.14)

where kz is the propagation constant in z-axis. In cylindrical coordinates, the gradient operator

is given by r = (⇢̂@⇢ + �̂1
⇢@� + ẑ@z). When considering the field propagating along the z-axis

of an optical fiber, the cylindrical symmetry of the fiber allows us to express the Helmholtz

equation as

⇣ @2

@⇢2
+

1

⇢

@

@⇢
+

1

⇢2
@2

@�2
+

@2

@z2

⌘
 + k2 = 0 (2.15)

where  denotes ez or hz and where ~k is the propagation vector and |k| = 2⇡/�. There is an

approximation we can make to simplify solving this equation. We can assume that propagation

in our system is based on WGMs; the field along the z-axis has a very slow variation, thus

@2z = 0. So in cylindrical coordinates, the Helmholtz equations become

✓
@2

@⇢2
+

1

⇢

@

@⇢
+

1

⇢2
@2

@�2
+ k2T

◆
ez(⇢,�) = 0 (2.16)

and

✓
@2

@⇢2
+

1

⇢

@

@⇢
+

1

⇢2
@2

@�2
+ k2T

◆
hz(⇢,�) = 0 (2.17)

as a 2D eigenvalue di↵erential equation, and where the transverse wave number kT is

k2T = k2 � k2z = !2µ✏( ~⇢T )� k2z (2.18)

Using coordinate separation into with radial and azimuthal separation as ez(⇢,�) / R(⇢)�(�)

and hz(⇢,�) / R(⇢)�(�), leads to second order di↵erential equations

✓
@2

@�2
+m2

◆
�(�) = 0 (2.19)
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✓
@2

@⇢2
+

1

⇢

@

@⇢
+ k2T � m2

⇢2

◆
R(⇢) = 0 (2.20)

where m is constant.

The harmonic azimuthal independent solutions for Equation 2.19 are

�(�) = sin(m�) �(�) = cos(m�) (2.21)

where m is an integer number, equal to or greater than zero and indicates the number of nodes

of the field.

The radial Equation 2.20 can be simplify to the form of Bessel’s di↵erential equation. The

general linear solution of this Equation inside a cylindrical waveguide (e.g. the core of an

optical fiber) for any m, where 2m indicates the nodes number of the field, is defined by the

Bessel function of the first kind [83]

Rm
⇢<r(⇢) = AmJm(kT⇢) (2.22)

Outside of the core, the boundary condition for an infinite cladding assuming kz < ncladk require

us to use combinations of the Bessel functions, known as the first and second kind of Hankel

functions

Rm
⇢>r(⇢) = BmH(1)

m (kT⇢) + CmH(2)
m (kT⇢) (2.23)

where

H(1)
m (k⇢) = Jm(k⇢) + iYm(k⇢), H(2)

m (k⇢) = Jm(k⇢)� iYm(k⇢) (2.24)

Definition of the boundary conditions leads to the eigenvalue equation. Each eigenvalues corre-

sponds to a precise radial mode number of p. Thus each mode is defined by two mode numbers
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of p and m, the radial mode number, and azimuthal mode number. The eigenvalue equation for

HEpm and EHpm and whispering gallery modes with a propagation constant of � and a wave

number of k = 2⇡/� with radius of ⇢0 is given by

✓
F1m(U) + F2m(W )

◆
F1m(U) +

n2
clad

n2
co

F2m(W )

�
=


m�

knco

�2 V

UW

�4
(2.25)

where

F1m(x) =
1

xJm(x)

dJm(x)

dx
, F2m(x) =

1

xH(2)
m (x)

dH(2)
m (x)

dx
(2.26)

where U and W are defined by

U = r(k2n2
co � �2)1/2; W = r(k2n2

clad�
2)1/2 (2.27)

and V is defined as V = kr(n2
clad � n2

co)
1/2. In the zero propagation constant, Equation 2.25

can split into two equations. The TE modes is given by:

F1m(U0) + F2m(W0) = 0 (2.28)

and for TM modes we have:

F1m(U0) +
n2
clad

n2
co

F2m(W0) = 0 (2.29)

where U0 = ncokr, and W0 = ncladkr.
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2.4 Quantum Analogy

In this section, we discuss formal analogies between the guided wave optics and quantum

mechanics. We will subsequently explain the theory of SNAP by presenting a solution of

Helmholtz’s equation for a capillary fiber.

2.4.1 Analogy of guided optical modes and quantum mechanics

We present an analogy between the Helmholtz equation and Schrödinger’s equation. To simplify

the discussion, we consider the one-dimensional form of both equations. The similarity between

physical equations allows us to understand better the behavior of the light at the surface of a

SNAP device.

2.4.1.1 Guided optical waves - Helmholtz equation

The general solution for waveguide modes or electric field along z-direction is

Ez(x, z) = Ez(x)e
i�z (2.30)

Ez(x) is a transverse eigenfunction of a guided mode profile that propagates along the z-axis of

a dielectric step-index waveguide with a core dimension of (2d). For distances between (d) and

(�d), the refractive index is equal to n1 (the core refractive index) and for distances greater

than (d) or less than (�d), the refractive index is equal to n2, the cladding refractive index. In

this configuration, we can write the Helmholtz equation as

h d2

dx2
+ k2T

i
Ez =

h d2

dx2
+ (k2 � k2z)

i
Ez =

h d2

dx2
+ !2µ✏(x)� k2z

i
Ez

=
h d2

dx2
+ k20n

2(x)� k2z

i
Ez = 0 (2.31)
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Figure 2.8: Solution of the 1D Helmholtz equation for a step-index dielectric waveguide.

The eigenvalue kT = k2�k2z is the transverse propagation constant, where kz is the longitudinal

propagation state, also known as �, |k|2 = !2µ✏(x), and k20n
2 is x-sectional index profile.

Figure 2.8 shows the solution to the one-dimensional Helmholtz equation in a step-index dielec-

tric waveguide.The figure is interesting for three reasons. First, it shows only discrete propaga-

tion constant (�) values are possible. Second, higher order modes have more nodes (Ez(x) = 0).

Third, longer waveguides with higher index contrast supports more modes. For guided modes

nclad < ne↵ < ncore (2.32)

2.4.1.2 Quantum mechanics - Time-independent Schrödinger equation

On the other hand, a time-independent Schrödinger solution for the wavefunction  (r) with an

eigenvalue energy of E for a particle of mass m in a potential well is shown in Figure 2.9.

As you can see here, for distances less than (�d) and greater than d, the potential is V2, and for

distances equal to or less than d and (�d), it equals V1. The corresponding time-independent

Schrödinger equation in one-dimension is written as:
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"
�h2

2m

d2

dx2
+ V (x)� E

#
 = 0 (2.33)

with wavefunctions (energy eigenstates)

U(x, t) =  (x)e�iE~ t (2.34)

Figure 2.9: Time-independent Schrödinger solution in one-dimension.

Where  (x) is time-independent wave function. Now, by comparing Equations 2.33 and 2.31,

we can conclude that the potential V (x) in Schrödinger’s equation is equivalent to �n2(x)

in the Helmholtz equation, while the energy (eigenvalue) E is equivalent to the propagation

constant along the z-axis, k2z . In a 1d potential well, the energies are quantized, meaning that

only discrete energy values are are allowed. Also, wave functions with higher energy have more

nodes ( (x) = 0), and deeper and wider potential wells gives more bounded states. For bounded

states

V2 < E < V1 (2.35)

This analogy is summarized in table 2.1.
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Table 2.1: The guided optical waves and Quantum mechanics

Guided wave Quantum mechanics

Helmholtz equation in a waveguide"
r+ k20n

2(x)� �2

#
Ez = 0

1D time independent Schrödinger equation"
�h2

2m
d2

dx2 + V (x)� E

#
 = 0

Ez(x): x-sectional optical mode  (x): time-independent wavefunction
k20n

2(x): x-sectional index profile V (x): potential energy
�2: propagation constant E: energy (eigenvalue)

Electric field along z-direction
Ez(x, z) = Ez(x)ei�z

Time-dependent wavefunction

U(x, t) =  (x)e�iE~ t

Discretized propagation
constant - � values

Discretized energy levels
- states

Transverse standing wave
for confined photon

Transverse standing wave
for bound particle

Longer with higher index contrast
waveguide, contains more modes

Broader and deeper potential well
contains more bounded states

Higher order modes supports
more nodes (E = 0)

Wavefunction with higher energy
supports more nodes ( = 0)

Guided modes:
nclad < ne↵ < ncore

Bond states:
V1 < E < V2

2.4.2 SNAP theory

Let’s go back to Equation 2.15. We consider that  / exp (im')exp(i�z) along the azimuthal

direction, thus @2z = ��2 and 1
⇢2@

2
' = �m2

⇢2 , where m is the discrete azimuthal quantum number

and � is the propagation constant. These assumptions allow us to rewrite the equation in the

form of Bessel’s di↵erential equation

@2⇢ +
1

⇢
@⇢ +

�
k2 � m2

⇢2
� �2

�
 = 0 (2.36)

which is the general equation of the Helmholtz equation in cylindrical coordinate. Following

this brief background, we can now explain SNAP theory. There are several approximations that

we can apply to a SNAP device possessing a nanoscale variation in radius. We first assume

that the field is propagating inside the wall of a SNAP capillary fiber along the z-axis. Our

second assumption is to suppose that there are no input or output waveguides in a capillary

fiber, so that the propagating field is based on the whispering gallery modes inside the wall of
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a SNAP capillary fiber. The WGMs considered are labeled by the azimuthal quantum number

m, radial quantum number p, and the axial quantum number q. In SNAP microresonator, the

axial component is not variable, but its amplitude of them are very sensitive to bridge of the

the fiber. Finally, we consider the propagation of light to be adiabatic. This signifies that the

e↵ective radius variation of a SNAP varies slowly without perturbing the mode shape so that

the scale of the propagating light does not change. In cylindrical coordinates (z, ⇢,'), the field

distribution is defined as [71]

Empq(z, ⇢,') = exp(±im')Qmp(⇢) mpq(z) (2.37)

where  mpq(z) is the distribution of the WGMs along the z-axis. If we apply this equation to

the Helmholtz equation, we can write

(r2 + k2) exp(±im')Qmp(⇢) mpq(z) = 0 (2.38)

To simplify this equation for cylindrical waveguides, we can use a transversal (x, y) and lon-

gitudinal (z) field decomposition. As shown in Equation 2.18 the propagation constant (k) is

written as k2 = k2T + k2z , where kT and kz are the transverse and longitudinal propagation

constants, respectively. For a lossless propagating wave inside the wall of a capillary fiber, we

can consider kz = �. The slowness of WGMs is manifested in the small value of their �(z),

or, equivalently in the proximity of their wavelength � to the cuto↵ wavelength. The fact that

the cuto↵ wavelengths of the WGMs with very large azimuthal quantum numbers m corre-

spond to the zero propagation constant, � = 0, does not contradict to the well-known relation

kmpnext < � < kmpncap for small m [84]. As a result, we can write

k2 = k2T + �2 (2.39)

Therefore, Equation 2.38 will be

r2
�
 mpq(z)Qmp(⇢) exp(±im')

�
+ (k2T + �2) mpq(z)Qmp(⇢) exp(±im') = 0 (2.40)
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Then

 mpq(z)r2
?
�
Qmp(⇢) exp(±im')

�
+

�
Qmp(⇢) exp(±im')

�d2 
dz2

+K2
T

�
 mpq(z)Qmp(⇢) exp(±im')

�
+ �2

�
 mpq(z)Qmp(⇢) exp(±im')

�
= 0 (2.41)

We can split Equation 2.41 and rewrite it as

1

Qmp(⇢) exp(±im')

"
r2

?
�
Qmp(⇢) exp(±im')

�
+K2

T

#
 mpq(z)

+
1

Qmp(⇢) exp(±im')

"
d2

dz2
+ �2

#
 mpq(z) = 0 (2.42)

By solving the equation above, we will find the one-dimensional Schrödinger equation to be

d2 mpq

dz2
+ �2(�, z) mpq = 0, �2(�, z) = E(�)� V (z) (2.43)

where the e↵ective energy, which is proportional to deviation of the wavelength from the cut-o↵

wavelength, is calculated as

E(�) = �k2
��

�0
(2.44)

and the e↵ective potential of the wave is proportional to the variation of radius and refractive

index or the variation of the e↵ective radius, thus

V (z) = �2k2
⇥�r(z)

r0
+
�n(z)

n0

⇤
= �2k2[

�reff (z)

n0r0
] (2.45)

where k = 2⇡n0
�0

.
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The expression for the propagation constant of a slow WGM can be derived using the first order

perturbation theory [85]. The solution of Helmholtz equation in the axially symmetric optical

capillary fiber in the cylindrical coordinates (⇢, z,') as Equation 2.37 where function Qmp(⇢,�)

satisfies the di↵erential equation [84]

d2Qmp(⇢,�)

d⇢2
+

1

⇢

dQmp(⇢,�)

d⇢
+

⇣�2⇡n(⇢)
�(z)

�2 � m2

⇢2
� �2mp(�)

⌘
Qmp(⇢,�) = 0 (2.46)

where n(⇢) is the radial distribution of the refractive index. For WGMs having m >> 1, the

cuto↵ frequencies �mp correspond to the vanishing propagation constant.

�mp(�mp) = 0 (2.47)

We rewrite Equation 2.46 as

LQmp(⇢,�) = �2mp(�)Qmp(⇢,�)

L =
d2

d⇢2
+

1

⇢

d

d⇢
+

⇣2⇡n(⇢)
�

⌘2
� m2

⇢2
(2.48)

It is seem from Equation 2.48 that �2mp(�) is the eigenvalue of the operator L. Consequently,

from Equation 2.47, functions Qmp(⇢,�mp) are the eigenfunctions of the operator

L(0)
mp =

d2

d⇢2
+

1

⇢

d

d⇢
+

⇣2⇡n(⇢)
�mp

⌘2
� m2

⇢2
(2.49)

and have zero eigenvalues. Here we are interested in the situation when the variation of the

cuto↵ wavelength, �(cut)mp (z)��(0)mp, and the deviation of the radiation wavelength from the cuto↵,

�� �(cut)mp (z), are small. This condition is satisfied for the small variation of radii, �rint(z) and

�rext(z), and for the evanescent values of Qmp(⇢, z) near the internal wall surface. Under these

assumptions, for small �mp(�) we have
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L = L(0)
mp +�L(0)

mp,

�L(0)
mp =

⇣2⇡n(⇢)
�

⌘2
�

⇣2⇡n(⇢)
�mp

⌘2
⇡

2
�
2⇡n(⇢)

�2

�3mp

�
�mp � �

�
(2.50)

Using Equation 2.50, we can find eigenvalues �2mp(�) in the first order of the perturbation

theory [86]

�2mp(�) =
D
Qmp(⇢,�mp)|�L(0)

mp|Qmp(⇢,�mp)
E

=
8⇡2

�3mp

D
Qmp(⇢,�mp)|�L(0)

mp|Qmp(⇢,�mp)
↵�
�mp � �

⌘
(2.51)

where functionsQmp(⇢,�mp) are normalized,
D
Qmp(⇢,�mp)|Qmp(⇢,�mp)

E
= 1. SinceQmp(⇢,�mp)

is localized in the region of the capillary wall where n(⇢) = ncap = const, we can ignore the

contribution of evanescent parts of Qmp(⇢,�mp) in Equation 2.51 which is simplified to

�2mp(�) =
8⇡2

�3mp
n2
cap

�
�mp � �

�
(2.52)

Finally to simplify solving the Helmholtz equation in an optical capillary fiber, we can assume

that propagation in our system is based on WGMs which are localized along the capillary

axis. The slowness of WGMs is manifested in the small value of their propagation constant,

�, or, equivalently, in the proximity of their wavelength � to cuto↵ wavelength �(cut)mp (z). Then

equation (Eq. 2.46) is simplified to the following equation independent of wavelength �

@2⇢Qmp +
1

⇢
@⇢Qmp +

⇣�2⇡n(⇢, z)
�mp

(cut)(z)�2 � m2

⇢2

⌘
Qmp = 0 (2.53)

The general linear solution of this equation is defined by
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Qm,p(⇢, z) =

8
>>>>><

>>>>>:

AJm(kmpnint⇢), 0 < ⇢  rint(z),

BJm(kmpncap⇢) + CYm(kmpncap⇢), rint(z) < ⇢  rext(z),

DHm(kmpnext⇢), rext(z) < ⇢.

(2.54)

Here kmp = 2⇡/�(cut)mp , function Jm(x) and Ym(x) are Bessel functions, and parameters A,B,C

and D are determined from of continuity of Qmp(⇢, z) and its derivative over ⇢ by applying

electromagnetic boundary conditions. The solution of Equation 2.54 with the refractive index

profile determined by Equation 2.10 allows us to express the cuto↵ wavelength, �(cut)mp (z), through

the external and internal radii, rext(z) and rint(z).

2.4.2.1 “Quantum theory” of light in SNAP devices

SNAP devices can be divided into three di↵erent regimes, which are illustrated in Figure 2.10.

The position of energy, (E), indicates the structure of a SNAP device similar to the three basic

phenomena of quantum mechanics [86]. Here, it is proportional to the wavelength detuning

from the resonator. The point z1 shows the position of a microfiber along a SNAP fiber.

The first regime exhibits a bottle microresonator [87], which corresponds to a quantum well

in quantum mechanics and the potential is proportional to the negative change of the e↵ective

radius variation. When the microfiber is located in this regime, it leads to formation of the

excited WGMs. The modes are restricted between tuning points of zt1 and zt2 at di↵erent series

of wavelength, resulting in the formation of discrete states in this regime. At the point z1, the

amplitude of resonance transmission is proportional to the amplitude of the WGM [28]. Also, if

the microfiber is located at the node of WGM, no coupling occurs and the WGMs will be dark.

These points are shown in Figure 2.10 as a dark state. Due to the e↵ective radius variation of

the SNAP device, waves which are launched in positive and negative directions along the SNAP

device are reflected at the turning points zt1 and zt2, resulting in constructive interference [88].

The second regime shows a shallow concave fiber waist, which corresponds to a potential barrier.

If the energy is greater than the potential, corresponding to an energy found above the barrier,

the WGMs excited in the SNAP device will not be localized. If the energy is less than the
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Figure 2.10: SNAP devices, a. WGM bottle microresonator [28]. b. Concave fiber waist [28].
c. Monotonic variation of fiber radius [28].

potential, corresponding to an energy found below the barrier, the amplitudes of the excited

WGMs will exponentially decay from point z1.

If the e↵ective radius variation is equal to zero (implying a uniform fiber), the WGMs are

delocalized. As a result, the excited WGMs in a uniform fiber radiate out along the axis of the

fiber. However, we rarely see a resonant mode due to the self-interference of these Gaussian

beams that occurs when they are rotating close to the surface. Also, the quality factor of

this resonant mode is at least 2.5 times smaller than the equivalent modes in a spheroidal

microresonator [89].

Finally, in the third regime, the radius of the SNAP device monotonically increases close to

the point of z1. In this regime, the excited WGMs propagating in the direction of decreasing

radius (i.e. the negative direction along the SNAP device) from point z1 will interfere with

the WGMs reflected from the turning point of zt and, from the other side, the excited WGMs

which propagate in the positive direction will undergo destructive interference. Therefore, the

propagation of light is launched between the turning point zt and the point z1 in this regime [90].
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2.5 Coupling light

In general, coupling describes the process of energy transfer from one medium to another.

In optics, when two or more optical waveguides, such as optical fibers, are placed in close

proximity, coupling is achieved. In this situation, the evanescent field generated by one of the

fibers reaches the other fibers before decaying completely [73]. Evanescent field couplers have

various geometries such as prism [65, 74], tapered fiber [75, 76] , planar waveguide [77, 78] and

etc. Coupling to microcavity through a tapered fiber has several advantages such as relatively

simple fabrication, and controlling the coupling e�ciency by changing the microfiber thickness.

Since for microfluidic application, low loss of power and high e�cient coupling are important,

evanescent coupling through a optical microfiber is used.

Figure 2.11: Coupling of the light from a microfiber (MF) to a hollow SNAP resonator.

As is shown in Figure 2.11, for coupling the light in the SNAP we are using a tapered fiber as a

waveguide which generates a strong evanescent field [79]. The tapered fiber has a subwavelength

waist and it was fabricated from a conventional single-mode fiber after stripping the polymer

coating. The tapering method, which include pulling the fiber with two linear stages, was similar

to flame-brushing method developed for the fabrication of biconical tapers softened in flame. We
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sent the light from a laser through the tapered fiber, with the light coming out of the waveguide

sent to an optical spectrum analyzer for analyzing. When the SNAP is close to the tapered fiber,

the fiber’s evanescent field produced propagating wave modes in the SNAP microresonator. As

a result, the light is coupled from the microfiber to the SNAP microresonator and whispering

gallery modes are excited. When we observe the transmission at di↵erent wavelengths, we can

see the transmission drops when a resonant mode is excited (see Figure 2.12).

Figure 2.12: Spectra of a SNAP resonator, at di↵erent range of wavelength. a. �� =
86.13nm. b. �� = 10.26nm. c. �� = 2.55nm.

More details about tapered fibers and their fabrication can be found in [70].

2.6 Current Fabrication Methods of SNAP

Three techniques were originally introduced for the fabrication of SNAP device; IR beam expo-

sure, UV beam exposure [91] and femtosecond laser [34].
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IR beam exposure

The first method is based on modification of the density and refractive index of the tapered fiber

material by annealing. In this set-up, a fiber is first tapered to a small diameter 10� 50 µm. A

CO2 laser beam is then focused on the surface of the tapered fiber (see Figure 2.13(a)). Due to

absorption of the laser light, heating causes a local annealing of the fiber, resulting in changes

in the density and refractive index of the fiber. This method is applicable for a variety of glass

fibers [92].

Figure 2.13: a. First fabrication method of SNAP device with IR (CO2 laser) beam exposure
[30]. b. Second fabrication method of SNAP devices with UV beam exposure [30].

UV beam exposure

This method is based on the modification of the refractive index and density of a fiber by UV

beam exposure. A photosensitive Germanium (Ge)-doped, coreless tapered fiber is needed. An

excimer laser beam with a wavelength of 248 nm is radiated to the fiber through an amplitude

mask with the desired pattern of a 300 µm period (see Figure 2.13(b)). The bottle microres-

onators created by this method are very shallow, with an axially asymmetric e↵ective radius

variation of 0.5 nm.

Due to formation of GeOHC at around 240 nm, this kind of fiber demonstrates substantial

absorption at UV wavelengths [93], showing significant attenuation. As a result, the e↵ective

radius variation at the front fiber surface is di↵erent than the e↵ective radius at the back fiber

surface. In spite of this, the UV beam exposure method allows for a very accurate variation of

the fiber’s e↵ective radius.
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Femtosecond laser

This new method is based on the femtosecond laser and does not rely on relaxation of the

remaining stress inside of a fiber. In this technique, the powerful electromagnetic field of the

ultra-short femtosecond pulse is using a nonlinear optical interaction in the medium. A mi-

crometer volume of the focal point of the laser can confine this optical interaction. Thus, the

modified area induced by this technique inside of the fiber can be much smaller than the spot

size of light on the surface of the fiber in the previous methods.

Figure 2.14: Third fabrication method of SNAP device with femtosecond laser [34].

In this set-up, a femtosecond laser pulse with � = 520 nm and duration of 350 fs is focused

on an optical fiber with radius of 40 µm [94]. Results show that this method can improve

the fabrication precision and reduce errors of the e↵ective radius variation. This fabrication is

applicable for various type of materials [95].

2.7 SNAP Spectrogram

After fabrication, we characterize our SNAP by using the method of characterization with sub-

angstrom precision [96]. Because of the cylindrical geometry of microfibers and SNAP devices,

common methods of characterization such as atomic force microscopy (AFM), transmission

electron microscopy (TEM), or scanning electron microscopy (SEM) are not applicable.

The experimental set-up is shown schematically in figure 2.15. In this method, a light source

and a light detector are connected to the microfiber directly. The microfiber is placed in a
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linear stage with two translational axis, x and z. It moves along the z-axis of the SNAP

microresonators while touching the SNAP fiber at periodic position. At each of these positions,

the transmission is measured.

Figure 2.15: A schematic of characterization of SNAP with sub-angstrom precision.

At each step of measurement, while the microfiber has a distance �x (along the x axis) from

the SNAP fiber, the microfiber is moved by �z along the SNAP microresonator and is then

translated along x until it touches the SNAP capillary fiber. The transmission spectrum is

measured at this position. The microfiber is subsequently moved back by �x along the x axis

from the SNAP microresonator to prepare for a new step of measurement.

Therefore, by using this method, we put the tapered fiber at di↵erent position along the fiber and

measure the WGM spectra of the SNAP (see the Figure 2.16 (a)) and make SNAP spectrogram

in 2D (see the Figure 2.16 (b)). The dips correspond to the blue lines and now we can analyse

what is going on the fiber.
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Figure 2.16: a. An example of collecting the spectrum at several points along the fiber. b.
corresponding SNAP spectrogram in 2D.



Chapter 3

SNAP induced by pulling a fiber

In this chapter, we re-purpose the well-established flame brush method for pulling optical

fibers [97] into a technique for the creation of SNAP resonators. This is similar to the recently

demonstrated creation of parabolic SNAP resonators by pulling a fiber using a laser-heated fur-

nace [98]. Although current fabrication methods are accurate in producing the desired variation

of e↵ective radius, they require specialized equipment and supplies that might not be easily

available, such as a CO2 laser or photosensitive fibers.

We show that is possible to lift these requirements, allowing for the creation of SNAP resonators

in any facility already equipped with a basic flame brush set-up. We characterize the resonators

resulting from our fabrication by evanescent spectroscopy, using a tapered optical fiber for

coupling. The transmission spectra show that light can be fully localized by just pulling a

fiber using a flame, and that the created resonators can host very low loss resonant modes. To

further characterize the resonators we also evaluate the transmission spectrum for di↵erent gap

separations between the resonator and tapered fiber.

3.1 Fabrication

The starting stock for the fabrication of SNAP resonators is conventional single-mode optical

fiber (Corning SMF�28E+ in our case) with an initial diameter of 125 µm. WGMs are probed

in the fiber by physically contacting a microfiber at a 90-degree angle. The microfiber, shown

37
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in Figure 3.1, is fabricated from the same stock fiber, and has a biconical taper with a diameter

at the waist estimated to be in the order of 1 µm [99]. Unless otherwise indicated, the tapered

optical fiber was positioned in physical contact with the SNAP resonator. Details of microfiber

fabrication can be found in [70].

Figure 3.1: Optical microscopic image of a microfiber.

Before fabrication, the protective polymer bu↵er is removed mechanically from a section of the

fiber. The stripped length is around 20 mm. The bare fiber is then cleaned with a wipe wet

with isopropyl alcohol to remove dust and any remnants of the bu↵er coating. After stripping

and cleaning, the fiber is scanned with a microfiber to ensure that the polymer jacket was

completely removed without damage to the glass surface. Figure 3.2 shows a microscopic image

of a tapered fiber on the top of the optical fiber.

Figure 3.2: An optical microscopic image of an optical fiber with radius of 125 µm and a
tapered fiber.

The WGM spectra of the cleaned section of fiber were measured at microfiber positions spaced

by 10 µm in a 50 nm bandwidth (1550 nm to 1600 nm) along the fiber axis. In order to increase

the e�ciency of the process, we use an AutoHotkey script to collect the data (See Appendix A).

Also, we write Python scripts to plot our spectra (See Appendix B). Figure 3.3 shows the results

of these measurements. The transmission spectrum as a function of the microfiber position (the

position spectrogram) shows straight lines, corresponding to WGMs in a glass cylinder, with a

free spectral range (FSR) of 4.38 nm. Using that
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FSR =
�2

(n⇡D)
(3.1)

where D is the fiber diameter and we assume that the refractive index is n = 1.46, we find

that the measured FSR is consistent with the expected fiber diameter of 125 µm. The fact

that the lines denoting the absorption due to the WGMs in the fiber are straight indicate that

the diameter of the fiber is essentially constant [96] and that the mechanical stripping did not

create significant damage in the fiber surface. The small perturbations that can be observed in

the spectra are most likely due to a combination of laser jitter and possible small remainders of

the polymer coating.

Figure 3.3: Position spectrogram of a fiber after mechanical stripping and cleaning, before
any further processing.
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3.2 Characterization

Figure 3.4 shows the set-up used to characterize our device; each component is introduced in

Table 3.1. A schematic of the experimental set-up is shown in Figure 3.5.

Figure 3.4: Overview of the SNAP microresonator characterization station. Details are given
in Table 3.1.

Figure 3.5: A schematic of the characterization set-up of a SNAP device.



41

Table 3.1: Components of characterization system

number Component Company Description

1 Tunable Laser GN-Nettest TUNICS-plus 3644HE-15
2 Oscilloscope Tektronix MDO 4034
3 Fabry-Perot

Wavelocker
JDS Uniphase FPWL 211501100

4 Splitter Fiber Optics
Communications Inc.

C-WS-AL-05-S-1210-15-AP/AP

5 Circulator New Focus CIR10BN32N� 01
6 Isolator E-TEK IWDMA410CRV 06
7 Fiber Polarization

Controller
OZ Optics FPC� 100

8 Attenuator OZ Optics 172766� 001
9 Photo-diode

Detector
Thorlabs PDA� 10CF

10 Manually stages Various —
11 Optical microscope Veho VMS� 460
12 accurate stage Micronix USA PPS� 20 (⇥3)
13 TF holder — —
14 SNAP holder — —

To measure the resonant spectrum of WGMs, light is sent from a tunable laser (with a tuning

range between 1500 nm and 1600 nm) through the microfiber. We use a manual polarization

controller to match the polarization of the light in the microfiber to that of the resonant modes

in the SNAP resonator. The output of the microfiber is collected at an amplified photodiode

which is connected to a digital storage oscilloscope for data acquisition. The laser wavelength

is scanned in a range typically going from 1550 nm to 1600 nm in order to capture more than

one group of resonant modes.

In order to reduce the diameter of the fiber, increase the FSR, and induce light localizing struc-

tures, we use the flame brush technique with a hydrogen-oxygen flame. We use an oxyhydrogen

torch (SRA-250 H2O Hydrogen torch), whose flame temperature ranges between 1200oC and

1500oC, with an American wire gauge (AWG) 30 torch tip. The recipe and details of this

fabrication is described in detail in [70]. We typically pull until the fiber diameter is near

20 µm, trying to minimize the resonator mode volume without incurring significant radiation

losses [100].
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Figure 3.6 shows the optical image of coupling light between one of our microresonators with

a tapered fiber. Here, light is sent to the tapered fiber from a tunable laser (Toptica, with a

tuning range between 815 nm and 855 nm).

Figure 3.6: An optical microscopic image of a typical our microresonator with radius of
⇠ 20 µm and a tapered fiber.

Figure 3.7 provides example time-lapse images of light coupling into a SNAP microresonator

during scanning with a microfiber from wavelength 935.5 nm to 920.5 nm at 0.6 nm/s. The

corresponding video may be viewed on youtube thorough: https://youtu.be/N0ghwZeIm8Q.

Di↵erent modes occur in di↵erent positions along the SNAP microresonator which correspond

to di↵erent dips on the transmission spectra.

3.3 Results

While it would be a reasonable assumption to consider that the tapering of the fiber would

leave a smooth surface, the pulling process itself creates non-uniformities with an ERV large

enough to provide complete localization of light [97]. Figure 3.8 shows the position spectrogram

of a fiber pulled to a diameter of 22 µm. It can be seen from the data that light can be fully

localized in at least four di↵erent positions along the pulled fiber.

Before focusing on the details of the light confinement that can be found on the pulled fiber, a

di↵erent point is discussed. According to the analysis of the fabrication of SNAP resonators with

a CO2 laser, the localized heating with the laser releases some of the strain that is introduced

during the fiber pulling [28]. This release of strain then results in the ERV that creates light

confinement. It would then seem that a localized anneal with the torch may result in a similar

process, creating a SNAP resonator in a predetermined position in the pulled fiber. We tried
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Figure 3.7: Optical microscopy images captured from the video (https://youtu.be/
N0ghwZeIm8Q) recorded during scanning a SNAP resonator with a microfiber from wavelength

935.5 nm to 920.5 nm at 0.6 nm/s a. 18 sec, and b. 24 sec.

this by briefly passing the torch under a specific position on the already pulled optical fiber.

The resulting position spectrogram is shown in Figure 3.9.

The spectrogram shows clear changes in the region treated with the flame, where the spectrum

loses any localization it may have had before the treatment. Figures 3.10(a) and 3.10(b) show

the optical microscope image of the pulled fiber coupled to an input-output microfiber before

and after passing the flame, respectively. A comparison of Figs. 3.10(a) and 3.10(b) shows that

the localized treatment led to a deformation in the pulled fiber. We speculate that this is due

to the flame excessively softening the glass, leading to a significant and unpredictable change in

the local properties of the fiber that eliminates the previously seen optical confinement. Figure

3.9 shows that the regions not a↵ected by the flame still show evidence of localization of light.

Let’s now turn the attention to the characteristics of the optical confinement obtained right after

the fiber pulling. Table 3.2 shows a summary of the characteristics of four SNAP resonators

created by pulling the fiber. The first two SNAP resonators are close enough to interact with
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Figure 3.8: Position spectrograms along 7 mm of the pulled fiber before passing the torch.
The spatial resolutions of the scans was 10 µm.

each other and make a single coupled-resonators system [92]. The e↵ective radius variation and

the extent of each SNAP resonator are also estimated. The height of the introduced ERV is

estimated as �r0 ⇠ ��0r0/�0, where ��0 is the spectral distance between the base and the

peak of the SNAP, r0 is the reference radius, and �0 is the wavelength near the mid-height of the

SNAP in the spectrogram. For instance, the length of resonator number 4 was ⇠ 0.58 mm. From

Figure 3.8, the spectral width of this resonator is ��0 ⇠ 5.95 nm at a radiation wavelength of

�0 ⇠ 1.56 µm. The height of the introduced ERV is then estimated as �r0 ⇠ 42.0nm.

Table 3.2: Resonator properties

SNAP Position
[mm]

ERV
�r0[nm]

Extent
[mm]

1 0.96 91.76 ⇠ 1.56
2 1.63 110.77 ⇠ 1.56
3 2.53 19.14 0.36
4 3.51 42 0.58
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Figure 3.9: Position spectrograms along 7 mm of the pulled fiber after extra annealing. The
spatial resolutions of the scans was 10 µm.

Figure 3.10: a-b. Optical microscope image of the pulled fiber and a tapered fiber before
passing the torch and after extra annealing, respectively. The thin black arrows in Figure 3.8

and 3.9 indicate the position corresponding to each image.

We will concentrate now on one particular spectral slice, belonging to the SNAP resonator

number 4, and marked by the red arrow in Figure 3.8. This spectrum is displayed in Figure

3.11, which clearly shows two groups of modes. The FSR calculated by the spectral separation

between these groups of modes is ⇠ 24.8 nm, consistent with our measured diameter of 22 µm.

In order to better understand the mode structure, we zoom into the first group of modes,

changing the abscissa to frequency. The result is shown magnified in Figure 3.12. Many sharp

lines, corresponding to di↵erent axial modes, in this magnified view can be observed. The
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Figure 3.11: Normalized transmission response of the fabricated SNAP at its central position.

azimuthal quantum number (assuming the mode group to correspond to the fundamental radial

mode) as m ⇠ 2⇡nr0/�0, where n is the refractive index of the fiber can be estimated. For a

silica fiber, n = 1.46 and we find m ⇠ 65. As the spectrum has been plotted as a function of

frequency, it can be clearly appreciated that the spacing between the modes is not constant,

becoming smaller at higher frequencies. This indicates the fact that our SNAP resonator does

not possess a parabolic change in its ERV. This agrees with the observed shape of the resonator

envelope in Figure 3.8, which is not symmetric respect to its central axis.

Figure 3.12: Magnified spectral region of the spectrum plot showing a single group of modes.

Finally, the quality factor of the narrowest resonant mode in the lower frequency side of the
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spectrum, which is plotted in Figure 3.13 is estimated. The loaded quality factor of this mode

has a value of 7.4⇥ 105, which is very high.

Figure 3.13: Detail of the resonance of the mode indicated by the red ellipse in Figure 3.12.

We also investigated the transmission spectrum for di↵erent gaps between the SNAP resonator

and the microfiber for the first resonant mode in Figure 3.12 (at 192.112 THz or 1560.51 nm).

This allows us to get a better view of the intrinsic characteristics of the mode, as well as

determining the coupling regime when the microfiber and resonator are in contact. These

spectra are shown in Figure 3.14, with the gap decreasing in the upward direction. It can be

clearly seen that decreasing the gap leads to increased coupling, resulting in more absorption

by the mode and therefore some broadening. As the gap decreases, the system reaches critical

coupling and then goes into the overcoupling regime (where a small but consistent red-shift can

be seen). Not long after the transition to the overcoupling regime, the gap has decreased enough

for the microfiber to stick to the SNAP fiber and remain in physical contact with it. At this

point, a maximum red-shift of 29 pm in the resonant mode can be observed, due to the contact

between the fiber and resonator. The loaded Q factor closest to critical coupling is 105, which

corresponds to an intrinsic Q-factor for the mode of approximately 2⇥ 105.

Considering the experimental characterization of the flame- formed SNAP resonators we can

see that they can hold a large number of modes with very low optical losses, and the expected

rich but understandable bottle-like mode structure [101], the formation of SNAP resonators is

not as predictable as those methods using a localized treatment. Nevertheless, in our experience

the pulling always induces at least one SNAP resonator with mode structures similar to those

described here. Due to the variability, we would not recommend our method to make devices
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Figure 3.14: Transmission spectra for di↵erent separations between the resonator and tapered
fiber. The gap decreases in the upward direction, and the top spectrum corresponds to the
resonator and microfiber being in physical contact. The red arrow indicates the trace closest to

critical coupling.

requiring specific positioning or geometry of the SNAP (like optical delay lines or frequency

combs, in that case a laser heated furnace will produce more reproducible results [98]). The

method will be much more useful for applications where only the presence of low-loss modes

is required, without concern about the specific mode structure and dispersion, such as optical

label-free sensing [102].

3.4 Summary

In summary, a very simple technique for inducing localization of light based on pulling a con-

ventional single mode optical fiber have introduced. By using the flame brush technique with a
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hydrogen-oxygen torch, and no other equipment, we made a number of SNAP microresonators

in a fiber. This method is very straightforward and easy to replicate. SNAP spectrograms to

estimate the number and spatial extent of the formed resonators have measured. By looking in

detail at the mode structure in a fabricated SNAP resonator, we see that our flame-fabricated

SNAPs have non-parabolic shapes, and that they have the potential to host very low loss res-

onant modes. The variation of the spectrum of a fabricated microresonator as we changed the

separation between the resonator and the coupling microfiber has investigated, mapping the

coupling regime from undercoupled to overcoupled. We believe that future development and

optimization of this technique will allow for the fabrication of more complex SNAP resonator

profiles with even higher Q-factors. Generally, a very simple, fast, and easy to implement

method for the fabrication of very low loss microresonators has provided.



Chapter 4

SNAP at a capillary fiber

Hollow WGM resonators have been successfully explored in the context of sensing [103], since

their open inside region allows for flowing gases or liquids that modify their optical properties.

Most hollow WGM resonators are in the form of tubes, bottles, or spheres. The sensing platform

developed in this chapter extends the surface nanoscale axial photonics (SNAP) platform to

the case of thin-walled capillary fibers, including those filled with gas, liquid, or solid media.

In particular, this approach based on coupling between WGMs and the interior of the thin-

wall microresonator promises further improvements in the sensitivity and precision of capillary

microfluidic sensors. The evanescent tail of a WGM localized inside the wall of a capillary

microresonator penetrates into the interior region and can be used as a probe of the interior

medium.

Here, we explore WGMs, which circulate inside the capillary wall and slowly propagate along the

capillary axis for sensing the media adjacent to the internal capillary surface and, specially the

nonuniformity of the internal surface itself. The wavelength of WGMs considered is very close

to their cuto↵ wavelength. For this reason, the propagation constant of these modes is small

and their speed along the capillary axis is slow [4]. It has been shown that the axial distribution

of slow WGMs is sensitive to extremely small nanoscale variations of the optical fiber radius.

In the case of a capillary fiber, it is of great interest to investigate how the spatial and temporal

variations of the media adjacent to the internal capillary surface a↵ect the spectrum of the

SNAP resonator created at the capillary wall. It is important to find out if it is possible to

50
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determine the internal e↵ective radius variation of the capillary from the measured spectra, as

was done for the outer radius in SNAP.

In this chapter, first, we explain briefly the fabrication process of the micro-capillary fiber, the

fabrication technique that we used to make a tapered fiber from a single mode fiber and a

SNAP microresonator on the surface of a capillary. We then describe the method used for the

characterization of the SNAP devices. Finally, we describe the process of etching, followed by

a presentation of some of our spectroscopy results.

Using a SNAP resonator at the capillary surface allows to significantly advance this method.

In particular, this approach potentially enables the regeneration of the spatial distribution of

refractive index of fluid flowing inside the core of the capillary from the resonator spectrum

and consequently sensing and manipulation of fluid components, at the same time. The work

presented in this chapter is adapted from the following publications [104] and [105]. This work

was conducted at Aston Aston Institute of Photonics Technologies (AIPT), Birmingham, UK.

4.1 Fabrication

Fabrication of the sample has three sections which are explained here.

4.1.1 Fabrication of the micro-capillary

The capillary fiber was drawn at OFS Laboratories from a tube-shaped preform fabricated of

pure silica. The wall thickness of the capillary was controlled by the original dimensions of the

tube and internal pressure introduced in the process of drawing. The capillary fiber was coated

with a protective polymer. In this experiment, we removed the polymer coating in hot sulfuric

acid and cleaned the extracted silica capillary in deionized water. After stripping the capillary,

we scanned the surface of the capillary with a tapered fiber, to make sure the polymer jacket

was completely removed. Figure 4.1 shows the measurements mode of the capillary surface. The

method of measurement is explained in detail in section 3.2. We can see that we still have some

remainders at the surface of the capillary. In particular they will disappear when we introduce

a SNAP structure. The spectra resolution of the spectrum is 2µm.
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Figure 4.1: Scanning 7.5mm of surface of the capillary with a tapered fiber.

4.1.2 Fabrication of the tapered fiber

For a coupling the light in to the SNAP microresonator we are using a tapered fiber as a

waveguide, which generates a strong evanescence field. The tapered fiber has a micron diameter

waist, and it was fabricated from a conventional single mode fiber. First, we stripped the

polymer coating from single mode fiber. Then we aligned it inside a sapphire capillary, while

heating with the CO2 laser. The tapering method, which included pulling the fiber with two

linear stages, was similar to the flame-brushing method developed for the fabrication of bionically

tapered fibers softened in flame, which we are using in our lab currently at Concordia University.

Figure 4.2: A schematic of fabrication method of SNAP with CO2 laser beam.
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4.1.3 Fabrication of SNAP microresonator

The fabrication is based on modification of the density and refractive index of the capillary

fiber material. We are using a silica fiber capillary with external radius of 21µm and initial wall

thickness of 6µm. We focused the CO2 laser beam on the surface of capillary. Figure 4.2 shows

a schematic of this process. By a local annealing, when the strain is realized, we can make a

nanoscale variation on the surface of the capillary.

Thus, we used this method and introduced an asymmetric SNAP microresonator at the capillary

surface.

4.2 Characterization

We use the method which is described in 2.7 and we put the tapered fiber at di↵erent position

along the capillary and measure the WGM spectra of the SNAP. Figure 4.3 shows the spectrum

of our SNAP microresonator. At di↵erent spatial positions, we can observe distinct patterns in

the spectra, corresponding to coupling to di↵erent axial modes. Here, the tapered fiber positions

are spaced by 20µm along the capillary axis. From this Figure, we can infer an spatial extent of

300µm for the SNAP microresonator along the capillary. From Figure 4.3, the spectral width

of resonator is ��0 = 0.15nm at a radiation wavelength of �0 ⇡ 1.57nm. The height of the

introduced external e↵ective radius variation (ERV) is estimated as �r0 = ��0r0/�0 ⇡ 2nm.

The resonant spectra shown in this Figure has the azimuthal and radial quantum numbers of

m ⇡ 2⇡ncapr0/�0 and P = 0, respectively. For a silica capillary with ncap ⇡ 1.46, we have

m ⇡ 122.

The power of the laser beam and the radiation time of the laser pulse can play important roles

in the process of producing a SNAP. If the power is low, the variation of the surface will be

shallow, the spectral width of resonator will be small, and since the axial resonances are close to

each other, it is not easy to distinguish them. A small change in the power of laser produces a

significant change in the capillary surface (see Figure 4.4(a)). This can be explained by Figure

4.5 [106]. Silica is an amorphous (non-crystalline) material, and with increasing temperature,

volume increases. Thus, the best power for making a SNAP is when the transition temperature
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Figure 4.3: Surface plot of spectra of the fabricated SNAP resonator measured with 20µm
resolution along the capillary axis [105].

is smaller than the melting temperature (tm) of the silica. If the power of laser is too high, the

capillary surface will deformed (see Figure 4.4(b)).

Figure 4.4: The surface plots of the transmission power spectra show the e↵ect of power of
laser on the surface of a capillary. a. Four SNAP resonators is produced with the laser power of
15%, 16%, 14%, and 13%. They have the same radiation time= 0.5s, the relaxation time= 10s,
and the distance between each position of pulse= 70µm. b. The power of laser was higher than

the melting temperature of silica, the surface of capillary is deformed.

4.3 Etching

As we reviewed in the chapter 1, for the capillary with the original wall thickness of 6µm (see

Figure 4.6), the WGM spectrum of the SNAP microresonator was not that much sensitive to
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Figure 4.5: Typical glass transition volume-temperature dependence, tgs is the glass transition
temperature for slow cooling, tgf corresponds to the glass transition temperature for fast cooling,

and tm is the melting temperature. Figure is from [106].

the presence of water, used as micro-fluid in our experiment. Thus, in order to enhance the

sensitivity we etched the internal capillary surface with hydrofluoric acid to reduce the wall

thickness, and simultaneously controlled the process of etching by monitoring the resonance

spectrum.

Figure 4.6: The optical microscope image of the cross-section of the silica microcapillary used
in the experiment.

Figure 4.7 shows our etching set-up used to internally etch the capillary; each component is

introduced in Table 4.1. A schematic of the etching set-up is also shown in Figure 4.8. The set-

up consists of two containers and one syringe. We fill one of the containers with the dilute HF,

put a tapered fiber close to the capillary and monitor the spectra in an optical spectrum analyzer

(OSA). The syringe pump produces vacuum in the second sealed container, and therefore, the

HF flows in the capillary. The whole process is done in the clean room, under the fume hood.

The etching process is stopped after we observe a shift of the axial resonance modes in the



56

Figure 4.7: Overview of etching process. Details are given in Table 4.1.

Table 4.1: Components of the etching set-up

number Component number Component

1 Apex analyzer 5 Optical microscope
2 HF container 6 Capillary fiber
3 Vacuum container 7 Syringe pump
4 Tapered fiber 8 Monitor

spectra as shown in the following video: https://www.youtube.com/watch?v=Zg1dbp_OLU8.

We remove the capillary from the the HF container and put it in deionized water to rise inside

and outside with water.

After the etching, we take a spectra of our etched capillary.

4.4 Results

Figure 4.9(a) shows the SNAP resonator spectra for the capillary after etching, which shows

strong modifications. It is seen that the axial WGM resonances near to the cuto↵ wavelength
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Figure 4.8: A schematic of etching process.

with the fundamental radial number series (P = 0, q = 0, 1, 2, ..., bottom) experience relatively

small distortion. However, the axial resonances of WGMs with a larger radial quantum number

(hypothetically the P = 1 series, top) change dramatically. In addition, the P = 0 axial

resonances are narrower, which means they are less lossy than the P = 1 resonances, due to the

fact that they have less overlap with the internal surface of the capillary.

The dramatic shrinking of the P = 1 WGMs compared to the P = 0 WGMs along the axial

direction can be explained by axial non-uniformities introduced by hydrofluoric etching. We

suspect that the CO2 laser annealing deforms the capillary wall as a whole. This deformation

disturbs the hydrofluoric acid flow and leads to the creation of a bump of the capillary wall

illustrated in the inset of Figure 4.10. While the P = 0 WGM series have small overlap with

the internal wall surface and, therefore, are not noticeably sensitive to the appearance of this

bump, it causes an evident additional localization of the P = 1 WGMs.

Now we fill our etched capillary with the water. Comparison of Figures 4.9(a) and 4.9(b) shows

that filling the capillary with water led to a reduction in the separation between the axial

series of resonances with di↵erent axial quantum numbers q clearly seen for the fundamental

radial mode of P = 1 series. In our experiment, adding water introduced a shift of the SNAP

microresonator spectrum by 0.13 nm for the first axial fundamental resonance q = 0. This shift

is presumably due to mechanical deformation of the capillary pressurized by water.

When we zoom in the P = 0 radial resonances series (see Figures 4.11(a) and 4.11(b)), we notice

that the separation of the resonant wavelength of the fundamental axial modes with q = 0 did
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Figure 4.9: Surface plots of spectra of the fabricated SNAP microresonator measured with
20µm resolution along the capillary axis. a. After etching, empty capillary, P = 0 (bottom)
and P = 1 (top). b. After etching, capillary filled with water, P = 0 (bottom) and P = 1

(top) [104].

not significant change.

This fact confirms, again, that the capillary wall thickness in the region of localization of fun-

damental axial WGMs was large enough. However, the e↵ect of water on the resonance shift

increased with axial quantum number q. As we expected, this shift is significantly smaller for

the P = 0 series.

We used the developed theory in the section 2.4.2 to estimate the internal ERV, rint(z) =

r
(0)
int+�rint(z), from the measured spectra of the SNAP resonator. We also numerically analyzed

and compared the p = 1 resonances for the empty and water-filled capillaries shown in Figs.

4.9(a) and 4.9(b), respectively. The major contribution to the appearance of these resonances

was caused by variation of the internal radius rint(z). Therefore, in our calculations, we neglected

the variation of the external radius. Figure 4.12(a) compares the dependencies of the cuto↵

wavelength on the internal radius for rint(z) ⌘ r0 = 21.12 µm, ncap = 1.46, two azimuthal
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Figure 4.10: Illustration of a capillary fiber coupled to an input-output microfiber. The
capillary is processed with a CO2 laser beam and, internally, with hydrofluoric acid. Inset:

magnified cross section of the capillary wall (not to scale) [104].

quantum numbers, m = 113 and m = 105, and three radial quantum numbers, p = 0, 1, 2. We

suggest that our experimental situation can be approximated by the calculated behavior of the

m = 113, p = 0 and m = 105, p = 1 series.

Figure 4.12(b) compares the deviations of dependencies shown in Figure 4.12(a) from their

value �(0)mpq for a thick capillary (rint < 16 µm) magnified to the nanometer wavelength scale

of our interest. The curves in Figure 4.12(b) look remarkably similar and coincide with good

accuracy after the horizontal translation into the darker rectangle in this figure. Thus, all of

them can be defined by a common function ��(cut)(rint+s) with the appropriate choice of shift

s. Consequently, the internal ERV can be found as �(cut)mpq = ��(cut)(rint + s) + �(0)mpq. While

the actual value of s is not important for the determination of variation of the internal radius,
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Figure 4.11: Surface plots of spectra of the fabricated SNAP microresonator. a. After etching,
empty capillary, showing fundamental P = 0 radial series. b. After etching, capillary filled with

water, showing the fundamental P = 0 radial series [105].

Figure 4.12: a. Cuto↵ wavelength as a function of internal ERV for the quantum numbers
indicated on the plot. b. Dependencies shown in (a) magnified and shifted along the vertical

axis [104].

the direct application of this result to our experiment is complicated because the accurate

measurement of �(0)mpq is not possible.

To solve this problem, we proceed as follows. Figures 4.13(a) and 4.13(b) compare the behavior

of cuto↵ wavelength with m = 113 and q = 0, 1, 2 for the empty capillary and the capillary

filled with water. These dependencies, again, coincide with a good accuracy after horizontal
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Figure 4.13: a. Cuto↵ wavelength as a function of internal ERV for the empty and water-
filled capillaries for the quantum numbers indicated on the plot. b. Dependencies shown in
4.13(a) magnified and shifted along the vertical axis. Curves shown in 4.12(b) and 4.13(b) are

compared by horizontal translation into the darker rectangles. [104].

translation [they are compared in the darker rectangles of Figures 4.13(a) and 4.13(b)]. In

particular, the shift of the cuto↵ wavelength caused by filling the capillary with water is defined

by a common function:

f��
(cut)

(rint + s) = �(cut)mpq (rint + s)|water � �(cut)mpq (rint + s)|empty (4.1)

which does not depend on �(0)mpq. Thus, this function does not depend on the actual values of

the azimuthal and radial quantum numbers m and p, respectively, which were not precisely

determined from the experiment.

In both cases of empty and water-filled capillaries, we estimate the cuto↵ wavelength dependency

corresponding to p = 1 spectral series in Figs. 4.9(a) and 4.9(b) by parabolas,

�(cut)water(z) = �w � �wz
2 (4.2)

and

�(cut)empty(z) = �e � �ez
2 (4.3)
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Figure 4.14: a. Parabolic approximation of the cuto↵ wavelength for the empty (black curve)
and water-filled (blue curve) capillary. Dashed red curve is the di↵erence of these curves. b.
The restored internal ERV. The solid, dashed, and dotted curves correspond to �w � �e equal

to 0.05 nm, 0.04 nm, and 0.06 nm, respectively [104].

respectively. Here parameters �w,e are expressed through the separation of resonances along

the axial quantum number, ��w,e, as �w,e = 2(⇡ncap��w,e)2�
�3
0 [28]. From Figures 4.9(a) and

4.9(b), setting the top of the p = 0 resonance series as a reference (which, as noted above, has a

negligible e↵ect of water), we estimate ��e ⇠ 0.01 nm, ��w ⇠ 0.08 nm, and �w ��e ⇠ 0.05 nm.

Consequently, �w = �1.1⇥ 10�7 µm�1 and �e = �6.9⇥ 10�8 µm�1.

Figure 4.14(a) shows the dependencies �(cut)empty(z) and �
(cut)
water(z) (black and blue curves, respec-

tively), which are translated into surface plots on Figs. 4.9(a) and 4.9(b) and show good

agreement with the experiment. Finally, the black solid curve in Figure 4.14(b) shows the inter-

nal ERV �rint(z) restored from the di↵erence �(cut)water(z)� �(cut)empty(z) [red dashed curve in Figure

4.14(a)] following Eq. 4.1.

This variation appears to be quite di↵erent from parabola and has the micrometer scale. In con-

trast, as it follows from the SNAP theory of a regular fiber [4,29,30], the same cuto↵ wavelength

variation can be introduced by the external ERV �rext(z) = (�empty(cut)(z) � �(0)mpq(z)r0/�0,

which has nanometer rather than micrometer scale.

4.5 Summary

In summary, we have developed a theory of a capillary SNAP platform and experimentally

demonstrated a SNAP microresonator at the surface of a capillary that is sensitive to the pres-

ence of fluid inside the capillary. The resonator was created by local annealing of the capillary
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with a focused CO2 laser beam and internal etching with hydrofluoric acid. We investigated

the variation of the spectra of fabricated microresonator resulted from thinning of the capillary

wall and the presence of water inside the capillary. We determined the internal e↵ective radius

variation of the capillary from the spectra of the SNAP resonator measured experimentally.

We believe that the future development of the theory, which has been described in the section

2.4.2, will allow for the simultaneous determination of the internal and external e↵ective radius

variation of the capillary. In addition, we suggest that the developed approach will allow for the

determination of the complex structure of microfluidic components adjacent to the internal cap-

illary surface, e.g., the resonant structure of microparticles [107]. Generally, this demonstration

provides the groundwork for advanced microfluidic sensing with SNAP microresonators.



Chapter 5

Localization of light in an optical

microcapillary induced by a droplet

As we show in previous chapter, light propagating in the form of a WGM along an optical fiber

surface can be fully controlled by the exceptionally small nanoscale variation of the e↵ective

fiber radius [29]. In particular, the deformation of a fiber by just a fraction of a nanometer

can completely localize WGMs and form a high quality-factor microresonator [28]. This means

that the fiber radius variation su�cient for governing WGMs can be dramatically smaller than

the wavelength of light. The technological platform based on this phenomenon — SNAP —

demonstrates the fabrication of miniature resonant optical devices at the fiber surface with

unprecedented sub-angstrom precision and ultralow loss [4, 29, 108].

The success of the work presented below is primarily based on the idea of bridging the SNAP

platform [29] and WGM microfluidic sensing platform [26], which have much in common [38].

In fact, while SNAP considers WGMs controlled by nanoscale deformation of the outer surface

of an optical fiber, similar control can be performed in microcapillaries by small and slowly

varying internal nonuniformities. In the previous chapter, we showed that the introduction of

SNAP resonators is possible by deformation of the external as well as the internal capillary

surfaces [104].

Alternatively, here we consider liquid situated in a uniform microcapillary. We show that the

control over the WGMs propagating along the microcapillary can be performed only by the

64
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nonuniformities of the liquid. In particular, we demonstrate that a water droplet situated inside

a silica microcapillary can fully localize WGMs and introduce a high quality-factor optical

microresonator. The spectra of this resonator, measured with a microfiber translated along the

capillary, presents a hierarchy of resonances that allow us to determine the size of the droplet

and variation of its length due to the evaporation. The resolution of our measurements of this

variation equal to 4.5 nm is only limited by the resolution of the optical spectrum analyzer

used. Our discovery paves the way for the development of a novel comprehensive method for

microfluidic sensing and a new type of tunable resonant microfluidic-based photonic devices. The

work presented in this chapter was conducted at Aston Aston Institute of Photonics Technologies

(AIPT), Birmingham, UK. It is adapted from the following publications: [101] and [109].

5.1 Observation of an Optical Microresonator Induced by a

Droplet

The microcapillary used in our experiment was prepared from a polymer-coated silica capillary

fiber drawn at OFS Laboratories. Figure 5.1 shows the optical microscope image of the cross

section of this capillary after the polymer coating was removed in hot sulfuric acid. From this

image, the external and internal radii of the capillary were determined as rint = 61 µm and

rext = 68 µm.

In our experiment, one end of a several-centimeters-long fiber was glued in into the needle of

a syringe that was used to launch and position the water droplets inside the fiber. The other

end was left open. The silica microcapillary was prepared by removing the coating from a few-

centimeter section in the middle of this fiber. An optical microscope image of a sample droplet

positioned inside the stripped section of the fiber is shown in Figure 5.2. It is seen that the

droplet possesses the characteristic meniscuses introduced by the surface tension.

The idea of our experiment is illustrated in Figure 5.3. A biconical fiber taper with a micron-

diameter waist (3-mm-length microfiber with diameter of 1.6 µm) was oriented normal to the

capillary and connected to a LUNA optical spectrum analyzer (1.3 pm wavelength resolution).
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Figure 5.1: The optical microscope image of the cross section of the silica microcapillary
used in the experiment. This image was used to determine the radius of the capillary and the

thickness of its wall.

Figure 5.2: The optical microscope image of a water droplet inside the capillary. The droplet
meniscuses caused by the surface tension are clearly seen.

The microfiber was translated along the capillary axis z and periodically placed in direct me-

chanical contact with the capillary to measure the transmission power P (z,�) as a function of

the microfiber coordinate along the capillary z and wavelength � [29].

Figure 5.4 shows the surface plot of transmission spectra P (z,�) collected in the bandwidth

1539.5 nm < � < 1545 nm at points spaced by 2 µm along the 600 µm capillary section with

the droplet in the middle. The spectra are found to be quasiperiodic in wavelength with a

period of 3.92 nm (see Appendix C).
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Figure 5.3: Illustration of the experiment. The input-output taper with a micron-diameter
waist (microfiber) is positioned normally to the capillary. The microfiber excites WGMs which

propagate along the microcapillary wall and sense the droplet.

The time of each measurement (including the time required for recording the spectrum and the

time of translation of the microfiber between the measurement points) was 10s. Consequently,

the full time of recording of the spectra along the 600 µm capillary section was 50 min, while

the measurements along the length of the droplet took around 11 min.

The spectral plot in Figure 5.4(a) clearly outlines the area where the water droplet is situated.

As explained in the next section, the green pathways (dips) outside the droplet area correspond

to the cuto↵ wavelengths of WGMs. Some of these pathways (e.g., those close to 1540.2 nm,

1540.9 nm, and 1541.8 nm) cross the droplet area una↵ected. This means that the correspond-

ing WGMs are not perturbed by the presence of the droplet. Other lines (e.g., those close to

1539.9 nm, 1540.5 nm, and 1543.3 nm) are interrupted in the droplet area, indicating that the

corresponding WGMs are perturbed by the droplet. The interruption of these lines is accom-

panied by the appearance of additional resonances, which are explained by the full localization

of the corresponding WGMs in the droplet area. The evanescent coupling of these WGMs to

the water droplet causes the positive shifts of their cuto↵ wavelengths and the formation of a
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high-quality factor microresonator. The position of resonances is in excellent agreement with

the theory presented below.

Figure 5.4: a. Surface plot of the transmission power spectra collected by the input-output
microfiber translated along the microcapillary with a droplet inside. The spectral (vertical axis)
and spatial (horizontal axis) resolutions of the scan were 1.3 pm and 2 µm, respectively. The
central part of the plot indicates the region where the droplet was situated. b. and c. Surface
plots of the calculated transmission power spectra corresponding to the stationary droplet with
the initial (b) and final (c) dimensions which were obtained for a single cuto↵ wavelength using
Eqs. 5.2-5.4. The initial and final dimensions were taken from the experimental plot (a) at
axial coordinates z1 and z2 [Fig. 5.3] when the measurement of the droplet region started and

finished.

5.2 Theory of Cuto↵ Wavelengths and Quantization of Slow

WGMs

High-quality-factor optical resonance lines are commonly observed in the WGM spectra of op-

tical fibers [15,26,27]. These resonances correspond to the so-called cuto↵ wavelengths of light

�mp. Here m and p are the azimuthal and radial quantum numbers, which are numerate modes

propagating in an axially symmetric and uniform fiber (in particular, a capillary fiber). The
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expression for the electromagnetic field of these modes is factorized in cylindrical coordinates

(z, ⇢,') as [84]

E±
mpq(z, ⇢,') = exp(±i�mp(�)z) exp(im')Qmp(⇢) (5.1)

Here the slowness of WGMs is manifested in the small value of their propagation constant,

�mp(�), or, equivalently, in the proximity of their wavelength � to the cuto↵ wavelength �(cut)mp (z).

The fact that the cuto↵ wavelengths of the WGMs with very large azimuthal quantum numbers

m correspond to the zero propagation constant, � = 0, does not contradict to the well-known

relation kmpnext < � < kmpncap for small m [84]. Also, the function Qmp(⇢) exponentially

decreases outside the capillary for ⇢ > rext and inside the capillary for ⇢ < rint. The optical

modes of our interest are the WGMs, which are adjacent to the optical fiber surface. At cuto↵

wavelengths �mp, the propagation constants of these modes approach zero, �mp(�mp) = 0. The

speed of propagation of WGMs with small �mp(�) along the capillary axis is slow. It is due to the

slowness of WGMs that they can be governed by angstrom-scale variations of the e↵ective fiber

radius employed in SNAP [29]. As explained below, a similar e↵ective radius variation e↵ect

can be introduced by the shifts of cuto↵ wavelengths �mp caused by the evanescent coupling of

WGMs to a water droplet inside a capillary fiber.

Figure 5.5(a) shows the dependencies of �mp for the silica microcapillary with the refractive index

ncap = 1.46 and external radius rext = 68 µm as a function of internal radius rint. The solid and

dashed curves correspond to the empty and water-filled capillary, respectively. The external

and internal radii, rint = 61 µm and rext = 68 µm, of the capillary used in our experiment are

indicated by the vertical dashed lines. In calculations, we chose the azimuthal quantum number

m = 364 so that the cuto↵ wavelength of the first WGM sensitive to water corresponds to the

wavelength ⇠ 1.54 µm close to the value of an experimental cuto↵ wavelength in Figure 5.4(a).

The noticeable shifts caused by the presence of water are found for the WGMs with radial

quantum numbers p � 2. Specifically, for p = 2, 3, 4, and 5 these shifts are 0.003 nm, 0.2 nm,

1.1 nm, 3.2 nm, and 6.0 nm, respectively. The characteristic behavior of evanescent field in the

water-filled microcapillary can be found, e.g., in [26].
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Figure 5.5: Cuto↵ wavelengths with the azimuthal quantum number m = 364 and radial
quantum numbers p = 0, 1, 2, 3, 4, 5 for the silica microcapillary with external radius rext =
68 µm as a function of the microcapillary internal radius rint. The solid and dashed curves

correspond to the empty and water-filled microcapillary, respectively.

Figure 5.6(b) shows the calculated cuto↵ wavelengths �mp for the transverse-electric (TE)-

polarized WGMs with radial quantum numbers p = 0, 1, ..., 5, which are situated in the band-

width 1.54 µm < � < 1.55 µm (see Appendix C). As we found above, the WGMs having fre-

quencies �mp with small p = 0 and 1 are not a↵ected by liquid. On the other hand, the WGMs

with large p � 1, which strongly scatter from interfaces, may be undetectable due to their high

attenuation. For this reason, the values �mp situated in the bandwidth 1.54 µm < � < 1.55 µm

are shown in Figure 5.6(b) for quantum numbers p  5, which are presumably detected in our

experiment. The corresponding azimuthal quantum numbers m ranging from 347 to 393 are

shown in Figure 5.6(b) as well.

The cuto↵ wavelengths of the transverse magnetic (TM)-polarized WGMs, which are not shown
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Figure 5.6: The distribution of cuto↵ wavelengths (dots) for the TE-polarized WGMs having
p = 0, 1, 2, 3, 4, 5 in the bandwidth 1540 nm < � < 1550 nm. The corresponding azimuthal

quantum numbers m are shown next to each of the dots.

in this figure, are known to have significantly smaller quality-factors than those of the TE-

polarized WGMs due to scattering from the surface and bulk nonuniformities [66]. The distri-

bution of the cuto↵ wavelengths in Figure 5.6(b) is in a reasonable quantitative agreement with

that of the measured resonant wavelengths in Figure 5.4(a).

The appearance of a microresonator induced by a water droplet is explained as follows. In the

vicinity of cuto↵ wavelengths, the propagation constant is small and can be determined in the

first order of the perturbation theory as

�(a),(w)
mp (�) = 23/2⇡ncap

�
�(a),(w)
mp

��3/2�
�(a),(w)
mp � �

�1/2
(5.2)

where ncap is the refractive index of the capillary material and superscript indices (a) and (w)

correspond to the air-filled and water-filled capillaries, respectively. This equation is identical
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to Equation 2.52 in section 2.4.2.

From Equation 5.2, the propagation constant is real for wavelengths � < �(a),(w)
mp and pure imag-

inary for � > �(a),(w)
mp . Assume that the cuto↵ wavelength �(a)mp of the empty capillary experiences

a relatively small positive perturbation and becomes equal to �(w)
mp after the capillary is filled

in with water. Then, for the wavelength �, which is close to �(a)mp and �(w)
mp , the expressions for

propagation constants in the water-filled and empty capillary can be calculated from Equation

5.2.

In our approximation, the relatively small perturbation of the WGM dependence on the radial

coordinate in Qmp(⇢) due to the presence of water can be neglected. Then, the behavior of

WGMs along the microcapillary with a droplet inside is determined by the one-dimensional

wave equation,

d2 mp

dz2
+ �2mp(�, z) mp = 0 (5.3)

where �mp(�, z) = �(w)
mp (�, z) inside the droplet region, z1 < z < z2 [Fig. 5.3(c)], and �mp(�, z) =

�(a)mp(�, z) outside it. Substitution of expressions for the propagation constants from Eq. 5.2

into Eq. 5.3 makes Eq. 5.3 equivalent to the Schrödinger equation for the rectangular quantum

well [110].

In particular, it becomes obvious that WGMs with wavelengths �(a)mp < � < �(w)
mp can be localized

by the droplet. These modes are oscillatory in the droplet region (here �mp(�, z) is real) and

exponentially decay outside it (here �mp(�, z) is pure imaginary). The quantization rule for these

modes is similar to the quantization rule for the rectangular quantum well. The transmission

amplitude through the microfiber placed in contact with the capillary at point z is expressed

through the Green’s function of Equation 5.3, G(z, z,�) as [71]

A(z,�) = A0 �
i|C|2G(z, z,�)

1 +DG(z, z,�)
(5.4)

Here constants A0, |C|, and D are the microfiber capillary coupling parameters, which are

usually determined experimentally.
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As an example, Figure 5.7 shows the surface plot of the transmission power P (z,�) = |A(z,�)|2

for our microcapillary having rint = 61 µm and rext = 68 µm with a water droplet of 100 µm

length inside. The transmission power P (z,�) shown in Figure 5.7 is found for the characteristic

microfiber capillary coupling parameters A0 = 0.8 � 0.1i, |C|2 = 0.02 µm�1, and D = 0.02 +

0.025i µm�1 [71].

Figure 5.7: A sample surface plot of transmission power spectra calculated using Eqs. 5.2,
5.3, and 5.4 for the water-induced shift of the cuto↵ wavelength equal to 1 nm and microfiber-

capillary coupling parameters indicated in the text.

The cuto↵ wavelength of the empty capillary is set to �(a)mp = 1540 nm, close to one of the cuto↵

wavelengths observed in our experiment [Fig. 5.4(a)]. Approximating the behavior of the p = 3

cuto↵ wavelength in Figure 5.5, we assume that this wavelength increases by ��mp = 1 nm and

becomes �(w)
mp = 1.541 µm in the droplet region. The introduced cuto↵ wavelength profile [bold

black dashed line in Figure 5.7] corresponds to a quantum well in Equation 5.3 and, equivalently,

to an optical microresonator. The right-hand-side vertical axis in Figure 5.7 is the e↵ective

radius variation determined from the cuto↵ wavelength variation by the rescaling equation

�rmp/rext = ��mp/�
(a)
mp. The horizontal resonance pathways in Figure 5.7 with interchanging
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nodes and antinodes correspond to the axial eigenvalues of this microresonator with quantum

numbers q = 0, 1, ..., 6. In analogy to the bottle microresonators induced by the external radius

variation [29], this microresonator can be called a droplet-induced bottle microresonator.

5.3 Interpretation of the Experimental Observations

The surface plot of the experimental spectra in Figure 5.4(a) exhibits several series of resonance

pathways. Some of pathways cross the droplet region without visible perturbation. As explained

above, they correspond to the cuto↵ wavelengths with small radial quantum numbers p <

2. Other pathways experience a break in the droplet region, which is accompanied by the

appearance of series of resonance lines with interchanging nodes and anti-nodes. The behavior

of each of these series, taken separately, is similar to that in the numerical example of a droplet-

induced bottle resonator shown in Figure 5.7. To clarify this, we consider two examples.

The first example corresponds to the behavior of the cuto↵ wavelength which is close to

1540.44 nm outside the droplet. This wavelength experiences a positive shift of 2.85 nm in

the region of the droplet. The shift introduces a microresonator containing 15 eigenvalues with

axial quantum numbers q = 0, 1, ..., 14 indicated on the theoretical 2D plots of transmission

power in Figs. 5.4(b) and 5.4(c) described below. Based on calculations shown in Figure 5.5,

we suggest that the radial quantum number of these eigenvalues is equal to p = 4.

As noted above, the process of characterization of the microresonator region took around 11 min.

During this time the droplet became smaller in length due to evaporation. It is well known from

quantum mechanics that the decrease of the length of the rectangular quantum well (resonator)

leads to the growth of the separation between its eigenvalues [110]. For this reason, the pathways

indicating the axial eigenvalues in Figure 5.4(a) have a small negative slope. As shown in the

next section, the measurement of this slope allows us to detect the variation of the droplet size

with nanometer precision.

Figures 5.4(b) and 5.4(c) show the results of our theoretical characterization of the droplet using

Eqs. 5.2, 5.3, and 5.4, which fit the experimental spectra before and after measurements (see

Appendix C). The theoretical as well as experimental pathways with axial quantum numbers q



75

indicated in Figure 5.4(b) consist of q + 1 anti-nodes. The agreement between the positions of

wavelength resonances found theoretically and their positions found experimentally is excellent.

Figure 5.8: a.-c. Magnified spectral region of the surface plot 5.4(a) and the theoretical
models of the droplet similar to those shown in 5.4(b) and 5.4(c) but for a di↵erent cuto↵

wavelength.

In the second example, we consider a 2D spectral fragment magnified in Figure 5.8(a). Here

the cuto↵ wavelength equal to 1539.88 nm outside the droplet is shifted by 0.7 to 1540.58 nm

in the droplet region. Based on calculations presented in Figure 5.5, we suggest that the radial

quantum number of this cuto↵ wavelength is p = 3. Our numerical modeling shown in Figs.

5.8(b) and 5.8(c) precisely confirms the length of the droplet L equal to 129.7 and 126.3 µm

before and after its characterization, which has been initially calculated in the first example.

Finally, Figure 5.9 shows that the quality factor of the induced microresonator is remarkably

large, ⇠ 5⇥ 105.

Before the full stabilization of the droplet, it was translated along the originally dry capillary

from right to left. As the result, tiny micro-islands of water adjacent to the internal capillary sur-

face were left behind at the right-hand-side of the droplet. Examination of resonance pathways

outside the droplet in Figure 5.4(a) allows us to distinguish between the perturbations caused
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Figure 5.9: The resonance of the droplet-induced microresonator measured at the node indi-
cated at the spectral plot 5.8(a).

by outside contamination, which disturbs all pathways similarly, and perturbations caused by

the water islands situated inside the capillary. As discussed above, the latter disturb the path-

ways with relatively large radial quantum numbers p and has negligible e↵ect on pathways with

p < 2.

For example, the pathway close to � = 1540.9 nm, which crosses the droplet unperturbed and

presumably has p = 0, is straight everywhere except the disturbance near z = 500 µm. Since

this disturbance is replicated in all other pathways, we suggest that it is caused by perturbations

of the external capillary surface. However, the pathway close to � = 1540.5 nm is straight at

the left hand of the droplet and, unlike the pathway at � = 1540.9 nm, is corrugated at its

right-hand side. For this reason, we suggest that these corrugations are caused by water islands

inside the capillary.
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5.4 Evaporation of the Droplet and Concomitant E↵ects

Due to the evaporation of the droplet in the process of its characterization, the successive

measurements comprising the 2D plot in Figure 5.4(a) present the spectra of the microresonator

continuously reducing in length. For this reason, in contrast to the purely horizontal resonance

pathways in theoretical plots in Figs. 5.4(b), 5.4(c), 5.8(b), and 5.8(c), the resonance pathways

in the droplet region of experimental Figure 5.4(a) are tilted. Analysis of the behavior of these

tilted pathways allows us to determine the variation of the droplet length with exceptionally

accurate nanometer precision.

Figure 5.10 shows the magnified fraction of the 2D plot in Figure 5.4(a), which includes the

resonance pathway corresponding to axial quantum number q = 12 consisting of 13 anti-nodes.

The most accurate measurement of the immediate wavelength eigenvalue of the microresonator

is achieved at the nodes of this pathway, which correspond to the minimum coupling between

the excited WGM and input-output microfiber.

Figure 5.10: Magnified spectral region of the surface plot 5.8(a) containing the pathway of
resonances with the axial quantum number q = 12 which was used for the analysis of the droplet

evaporation.
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For the model of the rectangular quantum well described by Eqs. 5.2 and 5.3, the change �L of

the resonator length L can be determined from the shift �� of the eigenvalue �mpq with large

axial quantum number q � 1 by the equation

�L =
4n2

capL
3

q2�3mp
�� (5.5)

derived in Appendix C. From this equation and analysis of the pathway with axial quantum

number q = 12 shown in Figure 5.10, we find that the total wavelength shift ��t = 0.11 nm,

which the eigenvalue �mp,12 ⇡ 1.541 µm acquires during the time of scan of the droplet region

equal to 10.7 min, corresponds to the droplet reduction in length of ��t = 3.8 µm and shrinking

speed of 0.35 µm/min . Using Equation 5.5, the resolution of the measurement of the droplet

length variation is found from the resolution of our optical spectrum analyzer equal to ��r =

0.13 pm as �Lr = 4.5 nm. Due to geometric reasons, this remarkably high resolution is,

nevertheless, two orders of magnitude worse than that achieved in SNAP technology for the

e↵ective variation of the optical fiber radius [4, 29, 108].

It is interesting to estimate the deformation of the capillary due to the surface tension induced

by the droplet. The additional pressure P experienced by the capillary wall can be estimated

by the Young–Laplace equation, P = 2�/R [111]. Assuming the characteristic value of the

surface tension � ⇠ 0.1 N/m and capillary and meniscus radii rext ⇠ R ⇠ 100 µm, we find

P ⇠ 1 kPa. Depending on the actual values of the surface tension at the water – air, water

– silica, and silica – air interfaces, which usually have the same order of magnitude [111], this

pressure can be positive or negative.

Consequently, it can increase or decrease the e↵ective radius of the capillary. The radius vari-

ation �r caused by the surface pressure can be found from the elasticity theory of thin-walled

cylinders as �r = Pr2ext(E�r)�1, where �r is the capillary wall thickness and E is its Young

modulus [112]. Since the e↵ect of the stress-induced refractive index variation is usually smaller

than that of the mechanical deformation, we estimate the corresponding shift of the capillary

radius as �r ⇠ 3 pm and the cuto↵ wavelength as �� ⇠ �r�/rext ⇠ �mp�(E�r)�1 ⇠ 0.1 pm.

These values are much smaller than those observed in our experiment for WGMs with radial



79

quantum numbers p > 2. We suggest that the introduced shift can be detected by more accu-

rate measurements of the cuto↵ wavelength shifts of WGMs with p = 0 since their evanescent

coupling to the droplet is negligibly small.

Usually, a water droplet carries an electric charge e (see e.g., Refs. [113,114]). The value of e is

limited by the maximum charge-induced expanding force, which can be withheld by the surface

tension. Estimating e by the Rayleigh formula for a spherical droplet, e  8⇡(✏0�)1/2R
3/2
0 , where

✏0 is the vacuum permittivity and R0 ⇠ 100 µm is the characteristic radius of the droplet, we

find e  2⇥ 10�11 C.

Assuming that the distribution of charge along the droplet surface is uniform, we find that the

charge induced e↵ective radius variation of the capillary (limited by the droplet stability) has the

same order of magnitude as the radius variation induced by the surface tension calculated above.

However, the electrostatic calculations (see e.g., [115]) show that the distribution of charge at

the droplet–capillary surface interface can be strongly nonuniform. The charge density can grow

by an order of magnitude near the droplet edges where the introduced capillary radius variation

can be significantly greater.

Another e↵ect induced by the droplet charge is the DC Kerr e↵ect [116, 117]. By modeling

the droplet as a cylinder of length L and charge e, we estimate the electric field inside the

capillary as E = e/(2⇡✏0ncapLrext). For e ⇠ 10�11 C, L ⇠ 100 µm and rext ⇠ 50 µm, we have

E ⇠ 107 V/m. The refractive index variation introduced by this field is expressed through the

third-order electric susceptibility �3 as �nDCKerr = (3�(3)/2ncap)E2 [117].

For silica, �(3) ⇠ 2⇥10�22 m2/V 2 and the refractive index variation of the capillary introduced

by the DC Kerr e↵ect in the droplet region is estimated as �nDCKerr ⇠ 10�7. This corresponds

to the cuto↵ wavelength shift of �� ⇠ �nDCKerr�mp/ncap ⇠ 0.1 pm having the same order

of magnitude as the shifts introduced by the surface tension mechanically. From the above

expressions for E and �nDCKerr, we have �nDCKerr ⇠ L�2. Therefore, the DC Kerr e↵ect can be

increased by an order of magnitude for a droplet with three times smaller length. In addition, the

DC Kerr e↵ect, being proportional to the local charge density squared, is significantly greater

near the droplet edges where, as noted above, the charge density maximizes.
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5.5 Summary

We have shown, experimentally and theoretically, that a droplet positioned inside an optical

microcapillary can trap the WGMs propagating along the capillary wall and localize them

completely. The evanescent tails of WGMs penetrate into a thin layer of the droplet through

the internal capillary surface. Consequently, the WGMs spectra characterize the medium, which

is adjacent to the interface between the droplet and the capillary. In contrast to previous WGM

microfluidic sensing methods [15–18], the presence of the droplet-induced microresonator allows

us to monitor the droplet dynamics nonlocally with the fixed position of the input-output

microfiber. For example, the resonance spacing measured at a single point z0 in the droplet

region [Fig. 5.3] allowed us to determine the immediate length of the droplet, which changed

in the process of evaporation. More generally, examination of the WGM spectra measured

at one or a few points along the droplet enables monitoring the behavior of the droplet away

from these points. An important question remaining is whether the collected spectral data is

su�cient to solve the inverse problem completely and determine the refractive index variation

near the internal capillary surface.

Future research and development exploring the discovered phenomenon promises wide-ranging

applications in microfluidics, surface science, and microphotonics. It is of great interest to

apply the developed method to investigate the droplets of di↵erent liquids, simple and complex,

including colloidal liquids [111]. As an example, the immediate positions and velocities of an

individual and, presumably, a few micro/nanoparticles in a colloidal liquid can be determined

from the dynamics of WGM spectrum measured at a fixed microfiber position. In contrast to the

SNAP microfluidic sensor [38, 104], the microresonator enabling this nonlocal characterization

of the droplet is naturally introduced and does not have to be fabricated.

It is expected that the size of particles that can be detected and monitored with our approach

can achieve sub-nanoscale dimensions. In fact, it has been shown that a WGM microsphere

resonator sensor enriched with plasmonic nanoparticles can detect single atoms [17]. Due to

the analogy between the behavior of evanescent WGM at the periphery of a microsphere and

at the interior of a capillary, we suggest that the similar resolution is feasible for plasmon

enhanced WGM sensing inside a microcapillary. Remarkably, our method potentially enables

the detection of the immediate axial coordinate of moving nanoparticles and molecules, which
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was not possible in the previous approaches. More complex phenomena at the solid – liquid

interfaces can be investigated [118–121].



Chapter 6

Conclusions and Outlook

Microfluidic sensing with optical whispering gallery modes (WGMs) circulating around the

capillary is a fast developing detection method in modern microfluidics research. This method

based on coupling between WGMs propagating along the wall of capillary and the interior region

of the optical microcapillary. Engaging a SNAP microresonator, which is is a new method to

produce microscopic optical devices, at the microcapillary surface allows to remarkably advance

this method. SNAP resonators are a new generation of WGM resonators consisting of an optical

fiber with nanoscale variation of its e↵ective radius. The ultra-low surface-limited loss (0.0001

dB/cm) of SNAP resonators leads to extremely good optical modes, with quality-factors (a

figure of merit for optical confinement) which can reach values of ten million or higher.

In this work, we have first suggested a new low cost fabrication method to create SNAP optical

microresonators on an optical fiber by pulling it using the flame brush technique. Using this

well- established technique, we can create nanoscale variations in the e↵ective radius of the fiber

that localize light. We characterize the resulting resonators and find that they can host tens of

axial modes with very high quality factors.

Then, we have developed a theory of SNAP platform and then experimentally present a first, to

the best of our knowledge, demonstration of a sensing platform based on SNAP microresonator

at a capillary fiber. The platform explores optical whispering gallery modes, which circulate

inside the wall of a capillary and slowly propagate along its axis. Due to the small thickness of

the capillary wall, these modes are sensitive to spatial and temporal variations of the refractive

82
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index of the media adjacent to the internal capillary surface. In particular, the developed theory

allows us to determine the internal e↵ective radius variation of the capillary from the measured

mode spectra. Experimentally, a SNAP resonator is created by local annealing of the capillary

with a focused CO2 laser followed by internal etching with hydrofluoric acid. The comparison

of the spectra of this resonator in the cases when it is empty and filled with water allows us

to determine the internal surface nonuniformity introduced by etching. The results obtained

pave the ground way for a novel advanced approach in sensing of media adjacent to the internal

capillary surface and, in particular, in microfluidic sensing.

Finally, we have shown that WGMs in a silica microcapillary can be fully localized (rather

than perturbed) by evanescent coupling to a water droplet and, thus, form a high quality-factor

microresonator. We have demonstrated that a droplet positioned inside an optical microcapillary

can trap and completely localize the WGMs circulating along the capillary wall. The evanescent

tails of WGMs penetrates into a thin surface layer of the water through the internal capillary

surface. Thus, the WGMs spectra characterize the medium adjacent to the droplet-capillary

interface. Since the axial modes are not confined near the point of contact with the microfiber,

the spectra of the WGM measured at one point can depend on the properties of the droplet

a distance away from that point. The discovered phenomenon of complete localization of light

in liquid-filled optical microcapillaries suggests a new type of microfluidic photonic device as

well as an ultra-precise method for microfluidic characterization. This phenomenon can also be

utilized in a wide range of applications in surface science, and microphotonics. For example,

the immediate positions and velocities of individual micro/nanoparticles in a colloidal liquid

can be determined from the dynamics of the WGM spectrum measured at few points along the

capillary. We expect that our approach can achieve molecular scale sensitivity.

Potentially, our method enables detection of the immediate axial coordinate of moving nanopar-

ticles and local dynamic properties of microfluids which was not possible using existing ap-

proaches. More complex phenomena at the solid-liquid interfaces could also be investigated

with this technique.
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Appendix A

Data Collecting

As we explained in chapter 3, to increase the e�ciency of the process of saving data, we use the

following AutoHotkey script. This script uses the program of oscilloscope OpenChoice Desktop

and stage Micronix Motion Controller (WPF-MA10.exe).

Sleep 1000

n=0

loop {

tbegin:=A-TickCount

b:=++n

if b>100

{

Send x

}

WinActivate,OpenChoice Desktop

Sleep 9000

Click 128,365 ;Get Data

Sleep 7000

Click 132,546 ;Save As
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Sleep 3000

if b<10

{

Send a000%b% {Enter}

}

if (b>9 and b<100)

{

Send a00%b% {Enter}

}

if (b>99 and b<1000)

{

Send a0%b% {Enter}

}

if b>999

{

Send a%b% {Enter}

}

Sleep 30000

Click 519,388 ;Cancel

Sleep 1000

; WinActivate,WPF_MA10.exe - Shortcut

Click 1000,781

Sleep 500

Click 400,378

Sleep 2000

Click 448,177 ;<-

Sleep 1000
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Click 647,523 ;Change axis

Sleep 2000

Click 647,547 ;Axis 1

Sleep 1000

Click 647,523 ;Change axis

Sleep 2000

Click 627,550 ;Axis 1

Sleep 1000

Click 647,523 ;Change axis

Sleep 1000

Click 647,547 ;Axis 1

Sleep 2000

Click 286,177 ;-

Sleep 500

Click 286,177 ;-

Sleep 500

Click 286,177 ;-

Sleep 500

Click 479,177 ;->

Sleep 1000

Click 647,523 ;Change axis

Sleep 1000

Click 647,584 ;Axis 3

Sleep 1000

Click 647,523 ;Change axis

Sleep 2000

Click 620,587 ;Axis 3

Sleep 1000

Click 647,523 ;Change axis

Sleep 2000

Click 647,584 ;Axis 3
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Sleep 1000

Click 381,177 ;+

Sleep 500

Click 381,177 ;+

Sleep 500

Click 381,177 ;+

Sleep 500

;Click 381,177 ;+

;Sleep 1000

Click 479,177 ;->

Sleep 2000

Sleep 1000

tend:=A_TickCount

Sleep 5-tend+tbegin

}

return

x::ExitApp



Appendix B

Data Processing

In order to make a matrix from all our data and plot a spectra in chapter 3, during the processing

of our data we used the following python scripts B.1 and B.2. In this appendix, we report details

of these scripts by order of usage. In chapters 4 and 5, we use the Mathematica script in B.3.

B.1 extract-intensity-to-matrix.py

import sys

import numpy

from scipy.signal import decimate

if len(sys.argv) !=3:

print ("Usage:\n\t\tMDO-to-scope.py <infile> <outfile>\n");

sys.exit(1)

infile = sys.argv[1]

outfile = sys.argv[2]

try:

99
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Tr = numpy.loadtxt (infile, usecols=(0,), unpack=True)

except:

print ("Error in numpy.loadtxt")

try:

m = Tr

except:

print ("Error in reading the time")

for n in range (2, 101):

try:

print ("Trying file a%04d-cut.dat" % n)

Transmission = numpy.loadtxt ("a%04d-cut.dat" % n, usecols=(0,), unpack=True)

y = Transmission

except:

print ("Error in reading the transmission")

try:

m = numpy.c_[m, y]

except:

print ("Error at a%04d-cut.dat" % n)

else:

# print m.shape

numpy.savetxt (outfile, m, delimiter=’\t’)

print ("Well done")
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B.2 concatenate-two-matrix.py

#! /usr/bin/python

import sys

import numpy

# Process command line arguments.

if len(sys.argv) != 4:

print ("Usage:\n\t\tMDO-to-scope.py <infile1> < infile2> <outfile>\n");

sys.exit(1)

infile1 = sys.argv[1]

infile2 = sys.argv[2]

outfile = sys.argv[3]

try:

matrix1 = numpy.loadtxt(infile1, unpack=True)

except:

print("Error in reading matrix1")

try:

matrix2 = numpy.loadtxt(infile2, unpack=True)

except:

print("Error in reading matrix1")

try:

matrix12 = numpy.concatenate((matrix1.T, matrix2.T), axis=1)

except:

print("Error in concatenate")

try:
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numpy.savetxt (outfile, matrix12, delimiter=’\t’)

except:

print("Error in saving")

B.3 Mathematica script

SetDirectory[NotebookDirectory[]];

cutoffNumber = 0;

n = 140;

imp = Array[0, n];

For[i = 1, i <= n, i++,

imp1 = Import["a" <> IntegerString[(i), 10, 4] <> ".txt", "Table"];

If[i == 1,

step = imp1[[4, 7]];(*in pm*)

wavelengths = Flatten[Drop[imp1, 8, -2]];

wavelengths = Drop[wavelengths, cutoffNumber];

wavelengths = Drop[wavelengths, -cutoffNumber];

];

imp1 = Drop[imp1, 8, 2];(*Drops first 8 rows and 2 columns*)

imp1 = Drop[imp1, cutoffNumber];

imp1 = Drop[imp1, -cutoffNumber];

imp1 = Flatten[imp1];

imp[[i]] = Normal[imp1]

];

ColorData["Gradients"]

{"AlpineColors", "Aquamarine", "ArmyColors", "AtlanticColors", \
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"AuroraColors", "AvocadoColors", "BeachColors", "BlueGreenYellow", \

"BrassTones", "BrightBands", "BrownCyanTones", "CandyColors", \

"CherryTones", "CMYKColors", "CoffeeTones", "DarkBands", \

"DarkRainbow", "DarkTerrain", "DeepSeaColors", "FallColors", \

"FruitPunchColors", "FuchsiaTones", "GrayTones", "GrayYellowTones", \

"GreenBrownTerrain", "GreenPinkTones", "IslandColors", "LakeColors", \

"LightTemperatureMap", "LightTerrain", "MintColors", "NeonColors", \

"Pastel", "PearlColors", "PigeonTones", "PlumColors", "Rainbow", \

"RedBlueTones", "RedGreenSplit", "RoseColors", "RustTones", \

"SandyTerrain", "SiennaTones", "SolarColors", "SouthwestColors", \

"StarryNightColors", "SunsetColors", "TemperatureMap", \

"ThermometerColors", "ValentineTones", "WatermelonColors"}

interpolOrder = 0;

ListDensityPlot[Transpose[imp[[All, All]]],

AspectRatio -> 1/GoldenRatio, InterpolationOrder -> None,

ColorFunction -> "SunsetColors",

PlotRange -> {Full, {1570, 1575}, All}, ImageSize -> Scaled[.8],

DataRange -> {{0, 0.7}, {wavelengths[[1]], wavelengths[[-1]]}},

PlotLegends -> Automatic]



Appendix C

Supporting Content

This appendix provides supplementary information to chapter 5.

C.1 Expanded Experimental Data and Processing Details

The 2D plot of the transmission power P (z,�) shown in Figure 5.4(a) of the main text is a

fragment of the 2D plot measured in an expanded 10 nm bandwidth shown in Figure C.1. The

spectral quasiperiod equal to 3.92 nm was measured from Figure C.1. The black rectangle in

this figure, which contains a single period, outlines the region shown in Figure 5.4(a).

Figure C.2 illustrates the method we used to analyze the experimental data and, in particular,

to determine the initial and finite droplet widths, the shift of the cuto↵ wavelength due to the

presence of water, and the speed of the droplet evaporation. The left hand side (theory) and

right hand side (experiment) plots in this figure are fragments taken from the theoretical and

experimental plots of Figure 5.4.

With a good accuracy, the axial coordinates z1 and z2 of the contact circumferences between the

droplet meniscuses and the capillary (Fig. 5.3) correspond to the actual edges of the droplet-

induced resonator. In fact, since the contact angle between the meniscuses and capillary is finite,

the characteristic transition length between the cuto↵ wavelength of the empty and water filled

104
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Figure C.1: The surface plot of the transmission power spectra in the bandwidth from 1539 nm
to 1549 nm. The spectral (vertical axis) and spatial (horizontal axis) resolutions of the scan

were 1.3 pm and 2 µm, respectively.

capillary has the same sub-micron scale as the penetration depth of the WGMs into the air.

The latter fact justifies the model of rectangular resonator used in our simulations.

The experimental plot in Figure C.2 consists of magnified fragments of the experimental theo-

retical plots shown in Figure 5.4(a) and 5.4(b), respectively. The measured width of the droplet
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Figure C.2: Illustration of matching the theoretical and experimental data. The width of
the resonator is determined by the comparison of single resonance pathways. The height of the
resonator is determined by fitting the positions of all eigenvalues corresponding to the selected

cuto↵ wavelength.

was first determined directly from the experimental Figure 5.4(a). Next, in a more accurate

measurement, this width was determined from the comparison of numerical calculations of the

transmission spectra using Eqs. (5.2)-(5.4) with the experimental data in Figure 5.4(a). The

comparison method is illustrated in Figure C.2 We translated the square fragment of the ex-

perimental plot with an eigenvalue pathway inside outlined by a blue solid rectangular onto

the theoretical plot of Figure C.2. The width of the resonator was determined by fitting the

positions of the nodes of the experimental and theoretical plot indicated by vertical arrows.

This method determines the final width of the resonator and does take into account its possible

small displacement in the process of measurement.

Using the determined value of the resonator width as a first approximation, the cuto↵ wavelength

shift (the resonator height) and immediate initial and finite resonator widths were found by
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matching the theoretical and experimental positions of the resonator eigenvalues. This was

performed for all the eigenvalues corresponding to the selected cuto↵ wavelength. The process

of matching included both the variation of the resonator height and small adjustment of the

resonator width. The remarkably accurate matching of these positions illustrated in Figure C.2

justified the rectangular model of the resonator. Notice that the values of the cuto↵ wavelengths

shifts are independent of the droplet size and do not change in the process of measurement. For

the examples considered in Figure 5.4, these values, equal to 3.85 nm and 0.7 nm, were first

determined experimentally and then adjusted numerically in the process of fitting the wavelength

eigenvalue positions. This fact allowed us to determine the actual initial and finite widths of

the resonator and exclude the e↵ect of its small translation. From the same figure, the slope

of the cuto↵ wavelength due to the original fiber radius variation is 0.125 nm/mm. Thus, the

total tilt of the cuto↵ wavelengths along the length L = 130 µm of the droplet is as small as

0.017 nm and is neglected in our calculations.

C.2 Semiclassical Quantization Rule For WGMs in the Droplet-

Induced Microresonator

If the WGM coupling to the capillary interior is ignored, the cuto↵ wavelengths �±mp can be

analytically determined for large mp azimuthal quantum numbers m >> p by the asymptotic

equation (see e.g., Ref. [122]):

�±mp ⇡
2⇡ncaprext

m

✓
1 + ⇣p(2m

2)�1/3 +
n±1
cap

m(n2
cap � 1)1/2

◆
(C.1)

where ± corresponds to the TE/TM polarization and ⇣p are the zeros of the Airy function,

⇣0 = 2.338, ⇣1 = 4.088, ⇣2 = 5.521, ⇣3 = 6.787, and ⇣p  (38⇡(4p � 1))2/3 for p >> 1. From

Equation C.1, at wavelength around �0 = 1.54 µm the spectrum of cuto↵ wavelengths of

our microcapillary is quasiperiodic along the azimuthal quantum number with the period of

�� = 3.95 nm. The latter value is an excellent agreement with the experimental �� = 3.92 nm

found from Figure C.1. The cuto↵ wavelengths plotted in Figure 5.6 and found from Equation

C.1.
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The quantization rule for the WGMs localized in the region of the droplet z1 < z < z2 (Figure

5.3) is written as

�(w)
mp

�
�(w)
mpq

�
L = ⇡(q + ), q = 0, 1, 2, ... (C.2)

where L = z1 � z2 is the droplet length and  ⇠ 1 is the parameter determined by matching

solutions of Equation 5.3 at the droplet boundary [85]. Substitution of the expression for �(w)
mp (�)

given by Equation 5.2 into Equation C.2 yields the wavelength eigenvalues of the droplet induced

microresonator:

�(w)±
mpq = �(w)±

mp � (q + )2

8n2
capL

2

�
�(w)±
mp

�3
(C.3)

For large q >> 1 we can ignore  in Equation C.3 and the variation �L of microresonator

length L is expressed through the variation �� of eigenvalue �(w)±
mpq by the equation

�L =
4n2

capL
3

q2�3mp
�� (C.4)

used in the chapter 5.




