
Provisioning of Edge Computing Resources for
Heterogeneous IoT Workload

Nouha Kherraf

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

March 2019

c© Nouha Kherraf, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Nouha Kherraf

Entitled: Provisioning of Edge Computing Resources for Heterogeneous IoT

Workload

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Otmane Ait Mohamed

External Examiner
Dr. Jamal Bentahar

Examiner
Dr. Otmane Ait Mohamed

Supervisor
Dr. Chadi Assi

Co-supervisor
Dr. Ali Ghrayeb

Approved by
Dr. W. E. Lynch, Chair
Department of Electrical and Computer Engineering

2019
Amir Assif, Dean
Faculty of Engineering and Computer Science

Abstract

Provisioning of Edge Computing Resources for Heterogeneous IoT Workload

Nouha Kherraf

With the evolution of cellular networks, the number of smart connected devices have wit-

nessed a tremendous increase to reach billions by 2020 as forecasted by Cisco, constituting what is

known today as the Internet of Things (IoT). With such explosion of smart devices, novel services

have evolved and invaded almost every aspect of our lives; from e-health to smart homes and smart

factories, etc. Such services come with stringent QoS requirements. While the current network in-

frastructure (4G) is providing an acceptable QoE to the end users, it will be rendered obsolete when

considering the critical QoS requirements of such new services. Hence, to deliver the seamless

experience these services provide, MEC has emerged as a promising technology to offer the cloud

capabilities at the edge of the network, and hence, meeting the low latency requirements of such

services. Moreover, another QoS parameter that needs to be addressed is the ultra high reliability

demanded by the IoT services. Therefore, 5G has evolved as a promising technology supporting ul-

tra Reliable Low Latency Communication (uRLLC) and other service categories. While integrating

uRLLC with MEC would help in realizing such services, it would however raise some challenges for

the network operator. Thus, in this thesis, we address some of these challenges. Specifically, in the

second chapter, we address the problem of MEC Resource Provisioning and Workload Assignment

(RPWA) in an IoT environment, with heterogeneous workloads demanding services with stringent

latency requirements. We formulate the problem as an MIP with the objective to minimize the re-

sources deployment cost. Due to the complexity of the problem, we will develop a decomposition

approach (RPWA-D) to solve the problem and study through different simulations, the performance

of our approach. In chapter 3, we consider both ultra high reliability and low latency requirements

of different IoT services, and solve the Workload Assignment problem (WA) in an IoT environment.

iii

We formulate the problem as an MIP with the objective of maximizing the admitted workload to the

network. After showing the complexity of the problem and the non scalability of the WA-MIP, we

propose two different approaches; WA-D and WA-Tabu. The results show that WA-Tabu was the

most efficient and scalable.

iv

Acknowledgments

I would like to express my deepest gratitude to my supervisors Dr. Chadi Assi and Dr. Ali

Ghrayeb, for their continuous support, motivation and guidance.

I would like to give a special thanks to my mother Hanane Larabi for her endless love and

support, without you, this would have never been possible. I would also like to thank my father

Abdelkarim Ouarie for encouraging me to step a leg in this path and pursue my dreams. To my sis-

ters Amira, Achouak and Hala, thank you for cheering me up when I needed it. To my aunt Najwa

Larabi, you have been a great support, thank you so much.

I would also like to take the opportunity to thank my friends and colleagues in Qatar, Algeria

and Montreal for the wonderful times and interesting discussions we had over the past two years.

Last but not least, I would like to give a special thanks to my wonderful grandfather Abdallah

Larabi, for his continuous support, prayers and encouragement.

v

Contents

List of Figures ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Evolution of cellular communication technologies 1

1.2 IoT paradigm and 5G . 2

1.3 Mobile Edge Computing (MEC) . 3

1.4 Contributions . 5

1.4.1 Optimized Provisioning of Edge Computing Resources with Heterogeneous

Workload in IoT Networks . 5

1.4.2 Heterogeneous workload assignment in an MEC-IoT environment for uRLLC 6

2 Optimized Provisioning of Edge Computing Resources with Heterogeneous Workload

in IoT Networks 7

2.1 Introduction . 7

2.2 Literature review . 10

2.2.1 Task offloading and resource allocation in MEC 10

2.2.2 Novelty of our work . 12

2.3 System Model . 13

2.3.1 MEC-enabled Smart Environment . 13

vi

2.3.2 Problem Description . 15

2.4 RPWA - A MIXED INTEGER PROGRAM (RPWA-MIP) 17

2.4.1 Problem Definition . 17

2.4.2 Problem Formulation . 17

2.4.3 Complexity Analysis . 22

2.5 RPWA-D: A Decomposition Approach . 22

2.5.1 The Delay Aware Load Assignment (DALA) 24

2.5.2 The Mobile Edge Servers Dimensioning (MESD) 27

2.5.3 Decomposition Algorithm . 28

2.6 Numerical Evaluation . 29

2.6.1 Evaluation setup . 30

2.6.2 RPWA-MIP vs. RPWA-D . 30

2.6.3 Evaluation of RPWA-D . 32

2.6.4 Comparison of RPWA-D with existing work 39

2.7 Conclusion . 40

3 Heterogeneous workload assignment in an MEC-IoT environment for uRLLC 41

3.1 Introduction . 41

3.2 Related work . 44

3.2.1 Latency in MEC & IoT infrastructure . 45

3.2.2 Reliability in MEC & IoT infrastructure 45

3.2.3 Novelty of our work in comparison to the literature 46

3.3 System Model . 46

3.3.1 Network model . 47

3.3.2 Reliability and Latency model . 47

3.4 The uRLLC-aware workload assignment problem 52

3.4.1 Problem Definition . 52

3.4.2 Problem Formulation . 52

3.4.3 Complexity Analysis . 57

vii

3.5 WA-D approach . 57

3.5.1 RACS heuristic . 57

3.5.2 LAWA MIP . 58

3.6 WA-Tabu . 60

3.7 Numerical Evaluation . 62

3.7.1 Experimental setup . 62

3.7.2 WA-MIP vs. WA-D vs. WA-Tabu . 64

3.7.3 WA-D vs. WA-Tabu . 65

3.7.4 Performance evaluation of WA-Tabu: . 67

3.8 Conclusion . 72

4 Conclusion & Future Work 73

4.1 Conclusion . 73

4.2 Future Work . 74

Appendix A Linearization of RPWA problem 75

A.1 Linearization of RPWA-MIP constraints . 75

A.2 Linearization of DALA-MIP constraints . 78

Appendix B Linearization of WA problem 80

B.1 Linearization of Eq.(3.11) . 80

B.2 Linearization of Eqs.(3.16) and (3.24) . 81

B.3 Linearization of Eqs.(3.14) and (3.25) . 83

Bibliography 84

viii

List of Figures

Figure 2.1 MEC-enabled smart environment. 13

Figure 2.2 Flowchart of RPWA-D. 29

Figure 2.3 Admission rate under varying number of applications. 33

Figure 2.4 Admission rate under varying workloads. 34

Figure 2.5 Admitted rate over varying number of locations and applications. 35

Figure 2.6 Admission rate over varying workload and applications. 36

Figure 2.7 Network utilization under variable MEC capacities. 36

Figure 2.8 Deployment cost under varying network delays. 37

Figure 2.9 Deployment cost under varying workload. 38

Figure 2.10 Admitted rate over varying deadline. 39

Figure 3.1 IoT enabled smart environment . 46

Figure 3.2 Illustrative Example . 51

Figure 3.3 Admitted load under varying size of St . 66

Figure 3.4 Execution time under varying I . 67

Figure 3.5 Admission rate under varying workloads 68

Figure 3.6 Admission rate under varying the network delay 69

Figure 3.7 Admission rate under varying the required reliability 70

Figure 3.8 Admission rate for different subsets selection strategies 71

Figure 3.9 Resource utilization for different subsets selection strategies 71

ix

List of Tables

Table 2.1 Parameters of RPWA-MIP. 17

Table 2.2 Parameters of the DALA-MIP. 25

Table 2.3 Parameters of the MESD-IP. 27

Table 2.4 QoS of different industry verticals [1, 2]. 30

Table 2.5 Evaluation of RPWA-MIP vs. RPWA-D. 31

Table 3.1 IoT QoS requirments for different industry verticals 52

Table 3.2 Parameters of WA-MIP. 53

Table 3.3 WA-MIP vs. WA-D vs. WA-Tabu. 65

x

List of Abbreviations

1G First Generation

2G Second Generation

3G Third Generation

4G Fourth Generation

5G Fifth Generation

6G Sixth Generation

APs Access Points

AR Augmented Reality

BSs Base Stations

DALA Delay Aware Load Assignment

eMBB enhanced Mobile Broadband

ILP Integer Linear Program

IoT Internet of Things

ITS Intelligent Transportation Systems

ITU-R International Telecommunication Union - Radio communication sector

LAWA Latency Aware Workload Assignment

LAWA-MIP Latency Aware Workload Assignment - Mixed Integer Program

MCC Mobile Cloud Computing

MEC Mobile Edge Computing

MESD Mobile Edge Servers Dimensioning

MIP Mixed Integer Program

mMTC massive Machine Type Communication

xi

NFC Near Field Communication

QoE Quality of Experience

QoS Quality of Service

RACS Reliability Aware Candidate Selection

RFID Radio Frequency Identification

RPWA Resource Provisioning and Workload Assignment

RPWA-D Resource Provisioning and Workload Assignment - Decomposition approach

RPWA-MIP Resource Provisioning and Workload Assignment - Mixed Integer Program

SDN Software Defined Networking

UE User Equipment

uRLLC ultra Reliable Low Latency Communication

VMs Virtual Machines

WA Worload Assignment

WA-D Workload Assignment - Decomposition approach

WA-MIP Workload Assignment - Mixed Integer Program

WA-Tabu Workload Assignment - Tabu search-based algorithm

xii

Chapter 1

Introduction

1.1 Evolution of cellular communication technologies

Over the past few decades, mobile wireless technologies have evolved to adapt to the ever

emerging people’s lifestyle. With the introduction of new cellular generation (G) every ten years,

higher data rates and improved quality of service (QoS) are provided to the end users. It all started

when the first generation (1G) was introduced in early 1980’s [3]. The first generation was designed

to support voice communication with a data rate up to 2.4kbps. In 1990’s, the second generation

(2G) was established to support short messages (SMS) and e-mail in addition to the voice com-

munication with a data rate up to 64 − 144kbps. The transmission data rate raised up to 2Mbps

with the introduction of 3G in 2000 supporting enhanced voice and data capacity. This in return,

opened the door for a wide variety of applications, such as live TV broadcasting, weather forecasts

and video calls [4]. Along with these applications, a new wave of smart devices; such as tablets and

smart phones were made available to the users. As technology advances, user expectations rise, and

hence, as a response to this demand, 4G was launched to support up to 100Mbps data rate for users

with high mobility and up to 1Gbps for users with local wireless access [5]. The fourth generation

led to an increase in the number of smart devices trying to connect to the internet on a daily basis

(e.g. smart watches, smart TV, smart cars, etc.). Further, as predicted by Cisco, the number of the

devices connected to the internet is expected to exceed 50 billions by 2020 [6]. These connected

devices constitute what is known today as the Internet of Things (IoT) [7].

1

1.2 IoT paradigm and 5G

The Internet of Things could be defined as a network of smart connected objects with the ability

of collecting and sharing data, as well as reacting to changes in the environment. For many, the

term "connected objects" is associated only to smart phones, tablets, laptops and PCs connected

to the internet. However, in the current era of smart things, many other devices such as sensors

and actuators are also connected to the internet [8]. As mentioned earlier, the number of the IoT

devices is increasing dramatically and it is excepting to reach billions of devices in the near future.

With such proliferation of devices, the IoT is transforming our environment into a smart one. For

instance, in a smart hospital, the integration of IoT allows for intelligent drug/medecine control and

patient tracking and monitoring. Moreover, integrating IoT in transportation systems realized the

so called "Intelligent Transportation Systems (ITS)" allowing for traffic guidance, remote vehicle

monitoring, vehicle and road coordination, etc. [9]. Due to the increase in the number of IoT de-

vices and the amount of the data they generate, as well as the heterogeneity of this data along with

their stringent QoS requirements (e.g. ITS has low latency (10 − 100ms) and ultra high reliability

(99.9999%) requirements), the current network infrastructure (4G) would fall short in supporting

these challenges. This, in return, has raised research interest in the development of the next genera-

tion cellular networks (5G) [10].

The promise of 5G is to provide the end users with a better QoS and user experience through sup-

porting higher data rates, better coverage and massive number of connected devices. Furthermore,

according to the International Telecommunication Union-Radio communication sector (ITU-R), ser-

vices promised by the fifth generation are categorized as 1) enhanced Mobile Broadband (eMBB);

supporting high data rates for stable connections making it suitable for Augmented Reality (AR) and

360-degree video streaming applications, 2) ultra Reliable Low Latency Communications (uRLLC);

that supports applications with low latency and ultra high reliability requirements such as factory

automation (0.25− 10ms latency and 99.999% reliability), and 3) massive Machine Type Commu-

nications (mMTC) which supports a massive number of connected devices [11]. In order to realize

the delivery of such services categories offered by 5G and ensure a satisfactory QoS to the end

users, some enabling technologies have emerged. Traditionally, the Mobile Cloud Computing was

2

the go to solution providing computing and storage services to mobile users remotely. Mobile Cloud

Computing came as a direct response to address the limitations of the IoT devices. Even though IoT

devices support real time applications (e.g.Augmented Reality (AR), Virtual Reality (VR), etc.),

they fall short in executing such resource-hungry applications due to their limited storage and com-

puting resources. By leveraging the remote cloud capabilities, mobile devices (e.g.smart phones)

running real time applications offload their computing intensive tasks, either entirely or partly, to

be processed at the remote cloud [12]. Although Mobile Cloud Computing (MCC) helped in the

realization of real time applications, the offloading approach faces some challenges such as the long

response times resulting from the large distance between the end users and the remote cloud server,

as well as the high bandwidth requirements. With such shortcomings of the MCC, providing the

service categories offered by 5G would not be possible. Hence, bringing the cloud’s capabilities

closer to the users would be a key technology to realize those services, which led to the emergence

of Mobile Edge Computing (MEC) [13].

1.3 Mobile Edge Computing (MEC)

It is now clear that only depending on the remote cloud computing and storage capabilities is

not sufficient for those latency critical applications. Hence, the concept of Mobile Edge Computing

(MEC) has emerged promising better QoE to end users by bringing the remote cloud’s comput-

ing and storage capabilities in a close proximity to the mobile users reducing the latency to mil-

liseconds. The edge-cloud was first introduced by Satyanarayan in the form of a cloudlet, which

was defined as a micro-cloud that connects the nearby mobile devices (e.g.laptops, tablets, etc.)

via WiFi/Bluetooth [14] [12]. The cloudlet infrastructure consists of three layers; mobile devices,

cloudlets and a centralized data-center. Leveraging the virtualization technologies, mobile users can

offload their latency sensitive and computationally intensive tasks to the nearby cloudlets placed in

local areas (e.g.coffee shops, train stations, etc) to be processed by applications running on virtual

machines (VMs) hosted on the cloudlets [14]. Unlike cloudlets, mobile edge computing (MEC)

has been introduced as a more sophisticated approach to allow all mobile users, not only specific

3

users, to access the cloud computing capabilities at the edge of the network. Mobile edge comput-

ing was first introduced by the European Telecommunications Standards Institute (ETSI) as edge

servers collocated nearby base stations (BSs). The edge servers could refer to either base stations

or datacenters collocated with base stations [15]. Mobile Edge Computing was then redefined as

Multi-access Edge Computing to include more access technologies such as WiFi, Z-wave and fixed

access technologies. One other advantage of MEC is its location and context awareness. This offers

the service providers the opportunity to collect more information about their customers’ location

and interests, and hence, provide them with more personalized services improving their QoE. An-

other edge computing term that was introduced by Cisco is Fog Computing. Any equipment with

storage and computing capabilities could be considered as a fog node, such as routers, base stations,

access points, vehicles, etc. [14]. While there exist some differences between Multi-access edge

nodes, fog nodes and cloudlets, these three terms have been used interchangeably in the literature to

refer to nodes deployed at the edge of the network. Within the IoT enviroment, edge servers could

be deployed to serve the great amount of data generated by the IoT devices by running different

types of IoT applications. With such promising technology, integrating MEC with 5G in an IoT

environment would raise new challenges. Particularly, the challenges could be categorized into the

following: 1) Edge servers placement: since one of the goals of the adoption of MEC is to serve

devices with low latency demands, misplacing the edge servers could result in long network de-

lays and unbalanced distribution of workloads. Hence, studying different strategies to optimize the

placement of edge servers is of great importance. Some work in the literature has addressed this

problem [16] [17] [18] [19]. For instance the work in [18] addressed this problem within a smart

city environment. They formulated the problem as a multi-objective MIP to minimize the access

delays and balance workloads by minimizing the workload difference between edge servers. 2) IoT

applications provisioning: since IoT devices generate tremendous workloads demanding different

IoT services, edge servers host IoT applications of different types to serve them. Therefore, provi-

sioning IoT applications would play a crucial role in ensuring a satisfactory QoS to the end users.

Hence, different research has targeted the provisioning of these applications in terms of determin-

ing their allocated computing resources and the edge servers hosting them [20] [21] [22]. 3) Task

4

offloading and assignment: MEC has emerged allowing users to offload their computationally in-

tensive tasks to the edge of the network to overcome the shortcomings of their devices. Furthermore,

although MEC was a response to the long propagation delays in MCC, processing the tasks at the

network edge would still incur some delays (e.g. access delays, network delays, processing delays,

etc.). Given the heterogeneous low latency requirements of the IoT services, optimizing the assign-

ment of the generated workloads from the IoT devices is extremely important to deliver a seamless

experience to the users. Thus, extensive research has been done in this area [23] [24] [25] [26].

1.4 Contributions

In this thesis, we aim to study the aforementioned challenges, namely, edge servers deployment

problem; that is deciding on the number and location of the edge servers, IoT applications placement

problem; which is deciding on the number and placement of IoT applications as well as the amount

of computing resources allocated to them, and the workload assignment problem; that is deciding

on the mapping of the IoT devices generated workloads to the edge servers. Further, all these

challenges are coupled with the stringent QoS requirements of the IoT services. We investigate these

challenges in details and provide efficient approaches to address them. Below is a brief description

of our contributions.

1.4.1 Optimized Provisioning of Edge Computing Resources with Heterogeneous

Workload in IoT Networks

Managing the heterogeneity of the workload generated by IoT devices, especially in terms of

computing and delay requirements, while being cognizant of the cost to network operators requires

an efficient dimensioning of the MEC-enabled network infrastructure. Hence, in this chapter, we

study and formulate the problem of MEC Resource Provisioning and Workload Assignment for IoT

services (RPWA) as a Mixed Integer Program (MIP) to jointly decide on the number and the location

of edge servers and applications to deploy, in addition to the workload assignment. Given its com-

plexity, we propose a decomposition approach to solve it which consists of decomposing RPWA

5

into the Delay Aware Load Assignment (DALA) sub-problem and the Mobile Edge Servers Di-

mensioning (MESD) sub-problem. We analyze the effectiveness of the proposed algorithm through

extensive simulations and highlight valuable performance trends and trade-offs as a function of

various system parameters.

1.4.2 Heterogeneous workload assignment in an MEC-IoT environment for uRLLC

Along with the dramatic increase in the number of IoT devices, different IoT services with het-

erogeneous QoS requirements are starting to see the light with the aim of making the current society

smarter and more connected. In order to deliver such services to the end users, the network infras-

tructure has to accommodate the tremendous workload generated by the smart devices and their

heterogeneous and stringent latency and reliability requirements. This would only be possible with

the emergence of uRLLC promised by 5G. MEC has emerged as an enabling technology to help

with the realization of such services by bringing the remote cloud computing and storage capabili-

ties closer to the users. However, integrating uRLLC with MEC would require the network operator

to efficiently map the generated workloads to MEC nodes along with resolving the trade-off between

the latency and reliability requirements. Thus, we study in this chapter the problem of Workload

Assignment (WA) and formulate it as a Mixed Integer Program (MIP) to decide on the assignment

of the workloads to the available MEC nodes. Due to the complexity of the WA problem, we de-

compose the problem into two subproblems; Reliability Aware Candidate Selection (RACS) and

Latency Aware Workload Assignment (LAWA-MIP). We evaluate the performance of the decom-

position approach and propose a more scalable approach; Tabu meta-heuristic (WA-Tabu). Through

extensive numerical evaluation, we analyze the performance and show the efficiency of our pro-

posed approach under different parameters.

The rest of the thesis is organized as follows, we present our first and second contributions in

chapter 2 and 3 respectively. We then conclude and present future work in chapter 4.

6

Chapter 2

Optimized Provisioning of Edge

Computing Resources with

Heterogeneous Workload in IoT

Networks

2.1 Introduction

The number of Internet-connected devices (e.g., smart phones, tablets, smart cameras, industrial

sensors, connected cars, smart traffic lights, etc.) is expected to exceed 50 billions by 2020 [27],

hence inadvertently realizing the paradigm of the so-called Internet of Things/Everything (IoT/E).

Given the immense proliferation of IoT devices, continuous advancements and development of data

analytics and networking will empower them with enhanced real-time capabilities [28]. For in-

stance, advances in Radio Frequency Identification (RFID) and Near Field Communication (NFC)

technologies made real-time monitoring of almost every entity in a supply chain possible, from in-

ventory tracking to after-sales services. Moreover, sensor technologies have enabled real-time mon-

itoring and processing of traffic flows and vehicles’ information in an intelligent traffic ecosystem.

The integration of IoT devices in the healthcare domain enabled tracking patients and monitoring

7

their vital signs [29]. However, owing to the shear volume of data these devices generate, they

fall short in terms of computing capacity and storage [30], hence restricting their capabilities and

hindering the performance of the applications they can support. Traditionally, the cloud has been

the go-to solution for providing storage and computing resources to process the vast amount of

data generated by IoT devices and to execute the necessary analytics [31, 32]. However, offloading

the workload generated by these devices to a remote cloud infrastructure for processing is subject

to high communication delays and energy consumption which will eventually violate the latency

requirements of real-time IoT applications [23, 33].

Mobile Edge Computing (MEC) has emerged as a new paradigm to overcome the aforemen-

tioned challenges. By leveraging a distributed range of computing and storage resources deployed

in close proximity to User Equipment (UE), MEC provides the IoT devices the opportunity to of-

fload and run their workload on a wide range of IoT applications deployed on edge servers, hence,

supplying them with varying Quality of Service (QoS) requirements [34]. Unlike the traditional cen-

tralized cloud, edge servers are collocated with 4G/5G cellular Base Stations (BSs) [35] deployed

at the edge of the network. Recently, the term MEC has been redefined as Multi-access Edge Com-

puting, extending its applicability to include new connectivity options such as WiFi, Z-wave and

fixed access technologies and, hence, enabling the support of a wider variety of devices and use

cases [14]. Another paradigm that has been introduced by Cisco is fog computing which also brings

the cloud’s intelligence and processing capabilities to the edge of the network. Fog, however, offers

a multi-layer cloud computing architecture where fog nodes are deployed in different network tiers

(i.e., small base stations, vehicles, wifi access point, and user terminals) [36] [37]. The terms fog

and edge computing have been used interchangeably in the literature [38]. Further, edge computing

capabilities can be enabled at business premises and accessed through wifi Access Points (APs) and

are typically known as cloudlets [37]. IoT devices access these edge resources by connecting via an

existing wireless access network technology, therefore providing faster response times and saving

bandwidth by reducing the load on the network core [23, 33].

In order to enable MEC capabilities, current network infrastructure should be dimensioned to

support the deployment of edge servers. However, the cost of such deployment is one of the major

obstacles facing network operators given the massive number and spatial spread of IoT devices

8

which are expected to be served within tolerable/low delays [33, 39]. In addition, as the offloaded

IoT workloads are required to be processed by different types of applications, usually running on

Virtual Machines (VMs) hosted on the edge servers, the decision on the number of instances and

the computing resources to assign to each of them becomes challenging and has a direct impact

on the response time achieved. Finally, as many IoT devices may be requiring the edge servers

capabilities at the same time, efficient and dynamic assignment of their workloads to the hosted

applications is required. Since collectively addressing these challenges is a difficult task, the authors

of [23] assumed already deployed cloudlets (e.g. edge servers) and addressed the problem of IoT

applications placement and workload assignment. The problem of joint application placement on

fog nodes and data stream routing from IoT devices to them has been considered recently in [33]

with both bandwidth and delay performance guarantees. Task offloading to cloudlets interconnected

through a metropolitan wide area network has also been studied in [40], where tasks require virtual

functions for their processing. In addition, the optimal placement of cloudlets in a metropolitan

area network has been addressed in [41] with the objective of balancing the workload among the

deployed cloudlets.

Unlike the work in the literature, we envision an environment with a large number of IoT de-

vices requesting a set of delay-sensitive services (e.g., smart cities, connected cars, industrial con-

trol, environmental monitoring, etc.) [42, 43] that can be offered by a wide range of applications.

We address the MEC Resource Provisioning and Workload Assignment for IoT services (RPWA)

problem which consists of jointly solving: 1) The MEC dimensioning sub-problem which consists

of deciding on the number and the placement of edge servers; 2) The IoT applications placement

sub-problem which aims at determining the number and the placement of different types of appli-

cations’ instances to deploy on the edge servers, in addition to deciding on the computing resources

(i.e., CPU shares) to allocate to each of them; 3) The workload assignment sub-problem which

proposes the assignment of the workload generated by IoT devices to the required type of appli-

cation instance hosted on a suitable edge server and able to achieve its required response time.

We formulate the RPWA problem as a Mixed Integer Program (RPWA-MIP) with the objective of

minimizing the edge servers deployment cost. As we prove its NP-Hardness, we exploit the inter-

dependency existing between the three aforementioned sub-problems composing it, and propose

9

a decomposition approach (RPWA-D) to address its different aspects in a more efficient and scal-

able strategy. Hence, we divide the RPWA problem into two sub-problems: 1) The Delay Aware

Load Assignment (DALA) sub-problem which solved the workload assignment sub-problem while

deciding on the number and the computing resources to assign to the applications to deploy; and

2) The Mobile Edge Servers Dimensioning (MESD) sub-problem which solves the MEC dimen-

sioning sub-problem while deciding on the placement of the applications that needs to be deployed

(i.e., provided by DALA) on the provisioned edge servers. Through extensive numerical evaluation,

we explore and analyze the different trade-offs existing between the edge servers deployment cost

and the workloads of variable QoS requirements which can be served. Under varying parameters,

we show that our proposed decomposition approach is efficient, scalable and provide comparable

results to those provided by the RPWA-MIP.

The remainder of the paper is organized as follows. Section 2.2 presents the literature review.

Section 2.3 introduces the system model. Section 2.4 defines and formulates the RPWA problem.

Section 2.5 presents and explains the proposed decomposition approach. Our numerical evaluation

is depicted in Section 2.6. We conclude in Section 2.7.

2.2 Literature review

The new concept of MEC has stimulated much research work in the past few years, of which

we are going to survey a prime selection of the most closely related.

2.2.1 Task offloading and resource allocation in MEC

The authors of [44] have recently presented a survey on exploiting MEC technologies for the

realization of IoT applications. The authors in [45] considered the cloudlets placement problem in

a Software Defined Networking (SDN)-based IoT network with a focus on minimizing the average

cloudlet access delay. They assumed that the SDN control plane manages the routing of IoT devices’

requests by commanding a set of SDN-enabled APs. They proposed an enumeration-based algo-

rithm that finds the optimal placement of the cloudlets by evaluating all possible combinations. To

reduce the complexity, they devised another ranking-based near-optimal algorithm for the cloudlets

10

placement. The authors, however, did not consider the cloudlets deployment cost.

The work in [46] accounted for the static and dynamic design of an edge cloud network, while

respectively considering the absence and the presence of user mobility. Thus, they presented a

column generation approach to determine the sites on which the cloudlets have to be installed.

Then, they determined the BSs to cloudlets assignment. Finally, the authors addressed the resource

allocation problem in terms of determining the placement of each VM required by an end device

with respect to its mobility conditions and latency requirement. Although the authors in [46] took

into account the cloudlets deployment cost, they did not consider the sharing of VMs between

multiple end devices.

The authors in [47] developed an Integer Linear Program (ILP) model for the placement of IoT

application services. Unlike [46], the authors considered that VMs could be shared by multiple

IoT devices. They solved the model iteratively by considering a new objective at each iteration.

These objectives not only addressed the cost efficiency of operating the network (i.e., minimizing

the number of active computation nodes and gateways, maximizing the number of admitted appli-

cations requests, etc.) but also accounted for the latency reduction (minimizing the hop count). The

work in [22] considered the data placement of IoT applications in a fog infrastructure with the ob-

jective to minimize the network latency. The authors developed a divide and conquer heuristic in

which the fog nodes were weighted and partitioned, resulting in a data placement sub-problem for

each partition. Each sub-problem was then solved using algorithms implemented in the simulator

iFogSim. However, in both works [47] [22], specific latency requirement for each IoT application

was overlooked.

Unlike [22, 47], the authors in [33] jointly considered the IoT applications latency and band-

width requirements. They tackled the applications’ requests assignment problem in a fog infras-

tructure and developed a provisioning model that is responsible for applications’ data routing and

assignment to the fog nodes. However, they considered that each application has specific hard-

ware requirements, preventing it from being able to be served by any of the fog nodes as some of

them may be deprived from the requested hardware resources. The authors in [23] tackled both

the resource allocation and IoT application requests assignment problems in an edge infrastructure.

They accounted for the limited computing resources of the cloudlets in addition to both network

11

and computation delays of the application requests. They assumed that any IoT application has

a specific latency requirement and, unlike [33], can be hosted on top of a VM deployed on any

cloudlet. Within this framework, the authors were aiming at minimizing the response time of the

applications’ requests. Hence, they developed an algorithm that sequentially solves the assignment

and resource allocation problems.

The problem of optimal placement of cloudlets in a metropolitan area network, where cloudlets

are assumed to be collocated with APs, has been addressed in [41]. Given the complexity of the

problem, the authors presented two heuristic solutions. They also considered the users to cloudlet

assignment problem to minimize the response time, and noted that routing traffic normally to the

closest cloudlet may not always yield a satisfactory solution in terms of response times and, thus,

it is necessary to balance the workload among the deployed cloudlets. Task offloading to cloudlets

hosting virtual network functions has been considered in [40], and more recently, in [48] for MEC

in software defined ultra dense networks.

The resource allocation problem was also considered in the central cloud by the authors of

[49,50]. In [49], the authors considered a cloud resource provisioning scheme to reduce the price the

customers have to pay for leasing cloud resources using stochastic optimization. However, in [50],

the authors presented a bidding strategy to decide on the customers to serve with the objective of

maximizing the cloud provider profit while minimizing the amount of Service Level Agreement

Violation (SLA). While in both works the cloud infrastructure was considered as available, we aim

in this work at planning and dimensioning the edge cloud infrastructure.

2.2.2 Novelty of our work

To the best of our knowledge, the work in the literature focused on solving at most two of

the aforementioned subproblems; MEC dimensioning, IoT placement and workload assignment.

Further, most of the work mentioned above assumed a homogeneous workload or a single user

equipment. While the work in [23] considered the heterogeneity of applications’ requests in an IoT

environment, they, however, did not address the MEC dimensioning problem and assumed a network

where the edge servers are already placed. The novelty of our work is, therefore, manifested by

jointly solving the three above mentioned problems and considering a large scale IoT environment

12

Figure 2.1: MEC-enabled smart environment.

with heterogeneous applications’ requests.

2.3 System Model

2.3.1 MEC-enabled Smart Environment

The system model we target resembles the scenario depicted in Fig. 2.1. A metropolitan area

encompassing a massive number of Internet-enabled devices generating requests to diverse IoT

applications to support services such as smart health, intelligent transportation, and environmen-

tal monitoring. We assume a multi-access edge cloud where IoT applications are hosted on edge

servers, fog nodes or cloudlets, that are accessible through a set of WiFi APs (or cellular BSs).

We also assume a backbone network infrastructure available to interconnect the APs to each other.

Hence, some APs may not need to host edge servers or may host an edge server but not support a

particular IoT application. This enables a graceful, rather than ubiquitous, cost-effective deployment

of edge servers. We further assume that a wide range of devices spatially distributed throughout the

smart environment generate workload by requesting given IoT services provided by corresponding

application types hosted on selected edge servers. This can lead to scenarios where a given device

can access applications on edge servers co-located with APs other than its serving AP. Therefore,

13

the various edge servers hosting IoT applications should be accessible by devices from various lo-

cations via the backbone network infrastructure. Formally, the network is abstracted as a graph

G(N,E), where N is the set of nodes; N = L ∪R is composed of a set of APs (or BSs) dispersed

at various accessible locations (l ∈ L) in the network, andR represents the set of backbone network

equipment (e.g., routers, switches, etc.). All nodes in the network are interconnected with a set E of

communication links. Each IoT device connects to the closest AP, and can utilize services provided

by IoT applications deployed at either an edge server attached to its serving AP or an edge server

attached to another AP that is accessible through the network backbone. Let M be the set of edge

servers, each with a computing capacity cm. An edge server m once deployed at AP l will incur

a location-dependent deployment cost πlm. Let A be the set of all IoT applications; an application

a ∈ A will be hosted on a VM running on one of the edge servers. Each application provides

certain functions for a particular IoT service and, hence, is subject to workload generated from IoT

devices that are subscribed to this particular service; for example, a smart camera may request its

video streams to be processed by an application providing rendering or surveillance functionality.

Applications are classified into different types T (i.e., video processing, face recognition, etc.) and,

thus, we define µta ∈ {0, 1} to denote that an application a is of type t. In addition, each application

requires minimum computing resources pamin to run and efficiently handle the computation of the

minimum load of the IoT devices accessing it [51]. In order to avoid assigning all the computing

resources of an edge server to one IoT application, we denote by pamax the maximum computing

resources that can be assigned to an IoT application a ∈ A. More precisely, pamin and pamax are

the minimum and maximum computing resources that can be assigned to the VM hosting the IoT

application a. Further, given that some services require ultra-low latency (e.g., tactile Internet or in-

dustrial control), each application of type t ∈ T is subject to a maximum allowable response time δt

to ensure satisfactory QoS. The aggregate workload requesting the service provided by applications

of type t generated from the devices located within the coverage area of AP deployed at location l is

assumed to follow a Poisson process, with an arrival rate λtl (requests/sec), where each request has

a given average computing size wt (e.g., CPU cycles needed to complete the task). This workload

can be processed by any hosted application of the requested type t. Further, a given application

may receive workload requests from different locations in the network. The higher the intensity of

14

the offloaded workload on a particular application, the more computing resources this application

should be provided in order to keep the processing and queuing delays of the corresponding tasks

low. Thus, we denote by pa (measured in cycles/second), the computing capacity assigned to the

IoT application a through the VM hosting it. Further, given that an application hosted on a VM

running on an edge server could be shared by multiple loads coming from different locations l ∈ L

following a Poisson process, and the load computation time is exponentially distributed, each ap-

plication is modeled as an M/M/1 queue [52], with an aggregate arrival rate of IoT requests and a

service rate based on the processing capacity pa of each application. Finally, as mentioned earlier,

a request can be either processed by its home edge server (the edge server that is co-located with

its serving AP l) or processed by a different edge server at AP deployed at location l′. Therefore,

we denote by hl
′
l the network delay representing the delay incurred by routing the workload request

from the serving AP at location l to the assigned edge server at location l′.

2.3.2 Problem Description

Providing efficient IoT devices workload offloading and processing requires upgrading existing

networks to become MEC-enabled. Thus, based on the proposed system model (Section 2.3.1) and

while accounting for stringent latency requirement of the offloaded workload, we study and explore

three interleaving challenges intrinsic for a successful cost-efficient dimensioning of current net-

works to become MEC-enabled. Hence, we exploit the following sub-problems:

1) The MEC dimensioning sub-problem which consists of deciding on the number and the place-

ment of edge servers. Such decision is affected by the workload to be offloaded from the different

existing locations and their required response times. Further, the computing capacities of the edge

servers to deploy at different locations may also be variable and subject to the workload which it

will be processing. Hence, as edge servers of variable computing capacities may be available for

deployment, the MEC dimensioning sub-problem seeks at choosing those with enough computing

capacity to deploy at specific locations. Such decision has a direct impact on the deployment cost

which increases with the edge servers computing resources.

2) The IoT applications placement sub-problem which aims at determining the number and the

placement of different types of applications’ instances to deploy on the edge servers. Such decision

15

is coupled to the size of the workload requesting a specific application type from each location and

its latency requirement. For instance, as each application instance can only be deployed on exactly

one edge server, the choice of the edge server that will host it will affect the response time of the

workload that it will be processing. Such response time includes the network delay (e.g., if the

application was deployed on an edge server collocated to an AP/BS other than its serving AP/BS),

in addition to the processing and queuing delays. These latter are respectively dependent on the

processing capacity assigned to the application and the amount of workloads assigned to this spe-

cific application. Thus, the IoT applications placement sub-problem is also required to decide on

the processing capacity pa to assign to the application instance to deploy. Note that, the choice of

pa limits the choice of edge servers that can host the application instance, as some of them may not

have enough computing resources left to host it. In fact, the computing capacity of edge servers

should be optimally allocated to different types of applications in order to successfully meet the de-

lay requirements of the assigned workloads. Further, the processing resources (pa) assigned to the

application instances to deploy impacts the deployment cost as more edge servers may be needed to

accommodate those applications.

3) The workload assignment sub-problem which consists of assigning the workload generated

by IoT devices to the required type of application instance hosted on a suitable edge server, able

to meet its response time. It is important to note that assigning the workloads to the closest edge

server may not yield an optimal or feasible solution. In fact, the closest edge server collocated to the

serving AP/BS may not be hosting the required type of application. Alternatively, the processing ca-

pacity assigned to the required application hosted on the edge server may not be enough to serve the

workload with respect to its latency requirement. Hence, as we note the inter-dependencies between

the three aforementioned sub-problems, we define a joint problem entitled MEC Resource Provi-

sioning and Workload Assignment for IoT services (RPWA) which we mathematically formulate

next.

16

2.4 RPWA - A MIXED INTEGER PROGRAM (RPWA-MIP)

2.4.1 Problem Definition

Definition 1. GivenG(N,E), a setM of edge servers, a setA of IoT applications of different types,

and a set of IoT devices requesting their workloads to be offloaded and processed by a specific

application type within a determined response time δt, determine the lowest cost deployment of

edge servers and IoT applications in G(N,E), the processing capacity to allocate to the deployed

applications, in addition to the assignment of workloads to these latter with respect to their latency

requirements.

2.4.2 Problem Formulation

Network Inputs
G(N,E) Network of N nodes where N = L ∪ R and E

links connecting them.
L Set of locations mounted with APs/BSs.
R Set of backbone network equipment.
M Set of edge servers to be deployed in G(N,E).
A Set of IoT applications to be hosted in m ∈M .
T Set of applications’ types.
cm ∈ R+ Processing capacity of edge server m ∈M .
πl ∈ Z+ Setup cost of an edge server at location l ∈ L.
k ∈ Z+ Cost of a unit of processing capacity.
µta ∈
{0, 1}

Parameter which depicts that application a ∈ A
is of type t ∈ T (1) or not (0).

δt ∈ R+ Maximum allowable response time when utiliz-
ing an application of type t ∈ T .

pamin ∈
R+

Minimum processing capacity required by ap-
plication a ∈ A.

pamax ∈
R+

Maximum processing capacity that can be as-
signed to application a ∈ A.

λtl ∈ Z+ Arrival rate of requests for an application of
type t ∈ T generated by IoT devices associated
to AP/BS at location l ∈ L.

wt ∈ Z+ Average number of CPU cycles per request for
an application of type t .

hl
′
l ∈ R+ Network delay of a request from its home edge

server at l ∈ L to its assigned edge server at
l′ ∈ L.

Table 2.1: Parameters of RPWA-MIP.

Table 2.1 delineates the parameters used throughout the formulation of RPWA-MIP presented

17

below. We define a variable xlm to determine whether edge server m ∈ M is deployed at location

l ∈ L.

xlm =


1 if edge server m ∈M is deployed at location l ∈ L,

0 otherwise.

Our objective is to minimize the edge servers deployment cost while meeting the delay requirements

of the workloads requesting to be processed by a specific type of IoT applications:

Minimize
∑
l∈L

∑
m∈M

xlm(πl + kcm) (2.1)

In order to meet our objective, several constraints, that we elucidate in the following, have to be

respected. Let ylma be a decision variable that determines whether application a ∈ A is placed on

edge server m ∈M deployed at location l ∈ L.

ylma =


1 if IoT application a is placed on m at location l,

0 otherwise.

In order to simplify some of the constraints, we define σla to determine whether application a is

placed at location l.

σla =


1 if IoT application a is placed at location l,

0 otherwise.

zalt is another decision variable that indicates whether the workload generated by IoT devices at

location l ∈ L demanding an application of type t ∈ T are mapped to application a ∈ A.

zalt =


1 if workload generated by devices at location l and

demanding an application of type t is mapped to a,

0 otherwise.

Further, let pa ∈ R+ specifies the amount of computing resources assigned to application a ∈ A.

18

Hence, the RPWA problem constraints can be classified as follows:

Placement of edge servers

First, we need to guarantee that each edge server m ∈M is deployed on at most one location l ∈ L

(Eq.(2.2)), that is:
∑

l∈L x
l
m = 1 if edge serverm is deployed at location l, and 0 otherwise. Further,

Eq.(2.3) guarantees that each location can host at most one edge server; hence,
∑

m∈M xlm = 1 if

location l is hosting one edge server, and 0 otherwise.

∑
l∈L

xlm ≤ 1 ∀m ∈M (2.2)

∑
m∈M

xlm ≤ 1 ∀l ∈ L (2.3)

Placement of applications on edge servers

Once the edge servers are deployed, we provision IoT applications and assign computing resources

to them. Eq.(2.4) ensures that each application a ∈ A is placed on at most one edge server m ∈M .

Thus, if application a is placed on an edge server m, then
∑

l∈L
∑

m∈M ylma = 1, and 0 otherwise.

Further, each application’s computing resource is guaranteed a minimum value pamin (Eq.(2.5)), and

limited to a maximum value pamax (Eq.(2.6)).

∑
l∈L

∑
m∈M

ylma ≤ 1 ∀a ∈ A (2.4)

pa ≥
∑
m∈M

∑
l∈L

ylma pamin ∀a ∈ A (2.5)

pa ≤
∑
m∈M

∑
l∈L

ylma pamax ∀a ∈ A (2.6)

Constraint (2.7) guarantees that all IoT applications provisioned on an edge server m ∈ M do not

exceed the capacity cm of m. Constraint (2.8) guarantees that each application a ∈ A can only be

placed on a deployed edge server m ∈M .

∑
l∈L

∑
a∈A

pay
lm
a ≤ cm ∀m ∈M (2.7)

19

ylma ≤ xlm
∀l∈L
∀m∈M
∀a∈A

(2.8)

Further, (2.9) ensures that if ylma = 1 then σla = 1.

σla =
∑
m

ylma
∀l∈L
∀a∈A (2.9)

Workload assignment

Once applications are placed, the workload generated by devices associated to an AP/BS at location

l ∈ L is assigned to an IoT application of the requested type t ∈ T . Thus, constraint (2.10) ensures

that zalt gets a value, for some a, when λtl > 0; H is a big integer number and λtl << H .

∑
a∈A

zalt ≥
λtl
H

∀l∈L
∀t∈T (2.10)

Constraint (2.11) guarantees that the generated load from location l requesting application of type t

is mapped to at most one IoT application a:

∑
a∈A

zalt ≤ 1 ∀l∈L
∀t∈T (2.11)

In addition, we need to make sure that each load is mapped to an application a ∈ A providing the

same requested type t:

zalt ≤ µtaλtl
∀t∈T
∀l∈L
∀a∈A

(2.12)

Note that Eq.(2.12) guarantees that zalt = 0 if there are no requests for an application of type t

coming from location l, i.e., λtl = 0. Constraint (2.13) ensures that requests are only mapped

to applications that are deployed on an edge server m ∈ M placed at some location l ∈ L and

constraint (2.14) prevents hosting an application a on an edge server m if it is not processing any

load.

zalt ≤
∑
m∈M

∑
l′∈L

yl
′m
a

∀l∈L
∀t∈T
∀a∈A

(2.13)

∑
m∈M

∑
l∈L

ylma ≤
∑
l∈L

∑
t∈T

zalt ∀a ∈ A (2.14)

20

Delay Constraints

Offloaded IoT traffic experiences delays consisting of access delays from IoT device to the serving

AP (or BS), network delays if traffic is to be routed from the serving AP to the AP where the edge

server is hosted, and finally server delays incurred at the edge server of the receiving application

and that constitutes queuing and processing delays. We assume negligible access delays and focus

on the network delays and server delays. To guarantee delay requirements for each IoT service

provided by applications of type t, we constrain in Eq.(2.15) the total delay experienced by the

traffic to a given target response time δt.

2dl,tn + dl,ts ≤ δt ∀l∈L
∀t∈T (2.15)

where dl,tn represents the network delays experienced by a workload generated from location l re-

questing an application of type t and assigned to an IoT application hosted in a remote location, and

is given by:

dl,tn =
∑
a∈A

∑
l′ 6=l

hl
′
l z

a
ltσ

l′
a

∀l∈L
∀t∈T (2.16)

dl,ts depicts the server delay that constitutes the queuing and processing delays that the workload gen-

erated from location l experiences at the edge server of the receiving application of type t. As men-

tioned earlier, given the workload assigned from various locations l′ to each application, we model

an application a as an M/M/1 queuing system with aggregate request arrival rate of
∑

l′∈L z
a
l′tλ

t
l′ and

service rate of pa
wt

, where pa is the processing capacity in cycles per second assigned to application

a and wt is the average request size in cycles. Therefore,

dl,ts =
∑
a∈A

zalt

(
1

pa
wt
−
∑

l′∈L z
a
l′tλ

t
l′

)
∀l∈L
∀t∈T (2.17)

Eq. (2.15) after some manipulation can be rewritten as:

∑
a∈A

zalt
pa
wt
−
∑
a∈A

∑
l′∈L

zaltz
a
l′tλ

t
l′ ≥

1

δt − 2
∑

a∈A
∑

l′ 6=l h
l′
l z

a
ltσ

l′
a

∀l∈L
∀t∈T

(2.18)

21

To maintain a stable queue at the application, we force the service rate to be greater than the arrival

rate as per below:
pa
wt
−
∑
l′∈L

zal′tλ
t
l′ ≥ 0 ∀a∈A

∀t∈T (2.19)

The above model is a mixed integer non-linear program. Appendix A.1 presents linearization of

Eq.(2.7) and Eq.(2.18).

2.4.3 Complexity Analysis

The RPWA-MIP formulation is complex and the model is clearly hard to solve even for a small

network (Section 2.6). In fact, the complexity of the RPWA problem can be highlighted through

the complexity of the different sub-problems it solves. For instance, the MEC dimensioning and the

IoT applications placement sub-problems combined can be proven as NP-Hard via a reduction from

the capacitated facility location problem [53] (known to be NP-Hard) where the facilities are the

edge servers to be deployed at locations l ∈ L and the customers are the applications to place on the

deployed edge servers. Further, the NP-Hard generalized assignment problem [54] can be reduced

to the workload assignment sub-problem where the workloads constitute the items that need to be

assigned to bins representing the IoT applications. Hence, the workload assignment sub-problem is

also NP-Hard. Thus, the RPWA problem is NP-Hard as it combines three NP-Hard sub-problems.

Given its complexity, we present in the following an efficient decomposition approach to solve it.

2.5 RPWA-D: A Decomposition Approach

As addressing the MEC dimensioning, the IoT applications placement and the workload as-

signment sub-problems jointly is challenging, we investigate the inter-dependency tightening these

three sub-problems together in the aim of exploring a more efficient approach to solve them. Thus,

we first notice that the workload assignment sub-problem highly couples the MEC dimensioning

sub-problem and the IoT applications placement sub-problem which makes it difficult to address

each of these three sub-problems independently. By investigating the workload assignment sub-

problem, we observe that the placement of the applications on edge servers has a direct impact on

22

the network delay experienced by the workload assigned to the application. Further, the decision

on the computing resources to allocate to each application is dependent on the size of the work-

load it will be processing and affects the server delay of this latter. In fact, the response time (δt)

of the IoT service requested by the offloaded workloads is to be met as per Eq.(2.15). Hence, we

re-evaluate the response time constraint in Eq.(2.15) given that it is a critical constraint linking the

three aforementioned sub-problems. Eq.(2.15) is rewritten as follows:

dl,ts ≤ δt − 2dl,tn
∀l∈L
∀t∈T (2.20)

By substituting dl,ts given in Eq.(2.17) into Eq.(2.20), we obtain:

∑
a∈A

zalt

(
1

pa
wt
−
∑

l′∈L z
a
l′tλ

t
l′

)
≤ δt − 2dl,tn

∀l∈L
∀t∈T (2.21)

From (2.21), we notice that if dl,tn is known, it will be easy to decouple the workload assign-

ment sub-problem from the IoT applications placement and MEC dimensioning sub-problems as

the placement of the Iot applications and edge servers will no longer affect the response time re-

quirement (δt). To resolve this, we assume a maximum network delay experienced by the load

(dmax
n = max (hl

′
l), ∀l,l′∈L), to guarantee that any obtained solution will meet the response time

requirement. Although this assumption simplifies the decomposition of our problem, it may result

in over-provisioning the edge servers as it assumes that some loads incur higher network delays

from what they actually experience. Eq.(2.21) can then be rewritten as follows:

∑
a∈A

zalt

(
1

pa
wt
−
∑

l′∈L z
a
l′tλ

t
l′

)
≤ δ′t ∀l∈L∀t∈T (2.22)

where δ′t = δt − 2dmax
n and represents the maximum server delay allowed to meet the response time

requirement. Eq.(2.22) shows that given the maximum network delay, one can decide on the com-

puting resources pa to assign to each application a as well as the workload mapped to this applica-

tion. Determining the number of needed applications of the same type and the computing resources

(pa) to assign to each of those applications based on a maximum server delay (δ′t), which may be

experienced by all workloads requesting the same application type, simplifies the IoT applications

23

placement sub-problem to simply respecting the edge servers capacities. In fact, the applications

and the edge servers can then be placed at any location without incurring any violation to the re-

sponse time requirement. Hence, since applications placement on edge servers is dependent on the

computing capacities of these edge servers and their number, consequently, the total deployment

cost is affected. Thus, the MEC dimensioning sub-problem can take care of the IoT applications

placement, if fed with those to be deployed under the objective of minimizing the deployment cost.

The workload assignment sub-problem can, hence, take care of deciding on the number and the

computing resources to be assigned to the applications to deploy. Thus, the decisions initially taken

by the IoT applications placement sub-problem are divided between the two other sub-problems

(i.e., MEC dimensioning and workload assignment sub-problems). Therefore, in the following, we

decouple the RPWA problem and decompose it into two different sub-problems:

1) The Delay Aware Load Assignment (DALA) sub-problem that decides on the workload assign-

ment to the IoT applications while determining the number of needed applications and their com-

puting resources with respect to the response time requirement.

2) The Mobile Edge Servers Dimensioning (MESD) sub-problem which determines the placement

of the applications and edge servers.

2.5.1 The Delay Aware Load Assignment (DALA)

Definition 2. Let G(N,E) denotes the network, Rt represents the set of all workloads demanding

the service of an IoT application of type t (each r ∈ Rt denotes a load with rate λr requests/sec for

application of type t). Let At depicts the set of all IoT applications of type t, maximize the fraction

of workloads that can be admitted to the network while determining the number of applications to

be deployed in G(N,E) and the assignment of the admitted workloads to those applications with

respect to the response time requirement.

We delineate in Table 2.2 the parameters used throughout our formulation. The remaining

ones are as defined in Table 2.1. As the main objective of the RPWA problem is to minimize the

deployment cost of edge servers, a possible objective for the DALA sub-problem is to minimize

the sum of computing resources assigned to the applications to deploy, as it will reduce the number

of edge servers needed to host those applications and hence, minimize the deployment cost. While

24

Network Inputs
At Set of applications of type t.
Rt Set of all workloads demanding the service of an appli-

cation of type t.
λr ∈
Z+

Arrival rate of requests of workload r ∈ Rt.

wt ∈
Z+

Average number of computing cycles demanded by one
request r ∈ Rt.

δ′t ∈ R+ Maximum tolerated server delay by an application of
type t.

Table 2.2: Parameters of the DALA-MIP.

this is a possible objective and comes aligned with the definition of the RPWA problem, it requires

admitting all the workloads; this might lead to infeasibility for the same instances which are can be

solved by the RPWA-MIP. This is because DALA considers the maximum network delay (dmax
n)

when searching for a solution, which tightens up the server delay (Eq.2.22) and hence, the solution

space. Thus, to obtain a solution for the same instances of RPWA, we define DALA under the

objective of maximizing the fraction of the admitted workloads. Hence, we define αr ∈ [0 − 1] to

depict the fraction of the load that can be admitted to the network and we depict the objective of

DALA in Eq.(2.23).

Maximize
∑
r∈Rt

λrαr (2.23)

This objective is subject to several constraints, as elaborated in the sequel. We introduce the decision

variable ρa ∈ {0, 1} to depict whether an application a ∈ At is assigned at least one workload to

process.

ρa =


1 if application a is used,

0 otherwise.

We define a new variable zar ∈ {0, 1} to specify whether a workload r ∈ Rt is mapped to application

a ∈ At as follows:

zar =


1 if workload r is mapped to application a,

0 otherwise.

25

In addition, we define pa ∈ R+ to depict the computing resources to be allocated to application

a ∈ At. An application is used and should be deployed in the network if at least one workload is

mapped to it as specified in Eq.(2.24).

ρa ≥ zar ∀a∈At
∀r∈Rt

(2.24)

A workload r ∈ Rt can be mapped to and processed by exactly one application as determined by

Eq.(2.25). ∑
a∈At

zar ≤ 1 ∀r∈Rt (2.25)

A workload r ∈ Rt should be processed by an application a ∈ At that has enough computing

resources to process it without violating the server delay requirement as depicted in Eq.(2.26).

drs ≤ δ′t ∀r∈Rt (2.26)

where drs represents the server delay (processing and queuing delays) and is determined by (2.27).

drs =
∑
a∈At

zar

(
1

pa
w −

∑
r′∈Rt

zar′λr′αr′

)
∀r∈Rt (2.27)

Further, the queue of each application should remain stable. That is, the average service rate of the

IoT application a ∈ At should be larger than the aggregate average arrival rates of all workloads

mapped to application a as given in Eq.(2.28).

pa
w
−
∑
r′∈Rt

zar′λr′αr′ > 0 ∀a∈At (2.28)

Finally, the computing resources assigned to an application should be at least equal to its minimum

required computing capacity as depicted in Eq.(2.29) and at most equal to pmaxa as specified in

Eq.(2.30)

pa ≥ paminρ
a ∀a∈At (2.29)

pa ≤ pamaxρ
a ∀a∈At (2.30)

26

Eq.(2.26) and Eq.(2.28) are non linear and can be easily linearized (Appendix A.2). We note that

DALA is a MIP that can run in multiple threads where each thread finds the solution for one appli-

cation type.

2.5.2 The Mobile Edge Servers Dimensioning (MESD)

Definition 3. Given a network G(N,E), a set A of IoT applications and a set M of edge servers,

determine the number and the placement of edge servers in G(N,E), in addition to the placement

of the applications on the deployed edge servers such that the total deployment cost is minimized.

Network Inputs

Ā Set of applications to deploy.
pa ∈ R+ Computing resources of application a ∈ A.

Table 2.3: Parameters of the MESD-IP.

Table 2.3 presents the parameters used. The remaining parameters are as defined in Table 2.1. In

order to formulate the MESD sub-problem, we define the decision variable xlm ∈ {0, 1} to specify

whether the edge server m ∈M is deployed at location l ∈ L as follows:

xlm =


1 if edge server m is deployed at location l,

0 otherwise.

In addition, we introduce a decision variable yma ∈ {0, 1} to indicate whether application a ∈ Ā is

placed on edge server m ∈M as follows:

yma =


1 if application a is placed on edge server m,

0 otherwise.

The objective of the MESD sub-problem is to minimize the deployment cost of the edge servers

(Eq.(2.31)).

Minimize
∑
l∈L

∑
m∈M

xlm(πl + kcm) (2.31)

27

Subject to the following constraints. First, an edge server can be placed on at most one location

Eq.(2.32). ∑
l∈L

xlm ≤ 1 ∀m ∈M (2.32)

Similarly, a location l ∈ L can host at most one edge server m ∈M as depicted in Eq.(2.33).

∑
m∈M

xlm ≤ 1 ∀l ∈ L (2.33)

In addition, an application can be deployed on exactly one edge server as specified in Eq.(2.34).

∑
m∈M

yma = 1 ∀a ∈ Ā (2.34)

Finally, Eq.(2.35) guarantees that the edge servers capacities are not violated and that the applica-

tions are only hosted on placed edge servers.

∑
a∈Ā

yma pa ≤ cm
∑
l∈L

xlm ∀m ∈M (2.35)

2.5.3 Decomposition Algorithm

We design and implement the RPWA decomposition solution (RPWA-D) to solve the RPWA

problem. Our proposed decomposition approach captures the collaboration between the DALA and

the MESD sub-problems. Thus, we depict in Fig.2.2 a flowchart detailing the steps of RPWA-D.

In fact, RPWA-D accounts for the independency that exists between the applications types. For

instance, the assignment of the workloads requesting the service provided by a specific type of

applications and the computing resources to be assigned to those applications have no impact on

the same decisions made for any other type of applications. Hence, several instances of the DALA-

MIP are executed as parallel threads in order to provide a workloads assignment and application

computing resources determination for each type of applications. Thus, RPWA-D pre-processes the

simulation data by categorizing it by the type of application it is requesting. It then instantiate a

thread to execute the DALA-MIP for each application type. Once the execution of all the DALA-

MIP threads is finalized, their solutions are processed to capture the application instances that need

28

Pre-process simulation

data

Solve DALA-MIP for

applications of type 1

Solve DALA-MIP for

applications of type t

...

Send parameters to each

DALA-MIPs

Solve MESD-

IP

All DALA-

MIPs are

solved?

YES

NO

Process DALA-

MIPs solutions

Figure 2.2: Flowchart of RPWA-D.

to be deployed on edge servers (i.e., the application instances that were set as used by the DALA-

MIP threads (ρa = 1)), in addition to their assigned computing resources (pa). Those latter are

supplied to MESD-IP as parameters. The MESD-IP is then executed in order to decide on the

number and the location of edge servers to place, in addition to the placement of the applications

which need to be deployed. Thus, with the help of the DALA-MIP, the MESD-IP provides the

minimum edge servers deployment cost.

2.6 Numerical Evaluation

We conduct an extensive empirical study to evaluate the performance of the RPWA-MIP against

our decomposition approach (RPWA-D). We also explore the efficiency of RPWA-D under varying

parameters and study the trade-off between the edge servers deployment cost and the percentage

of the workloads that can be admitted. Our numerical evaluation is conducted using IBM ILOG

CPLEX Optimization Studio version 12.8.

29

2.6.1 Evaluation setup

In our tests, we consider networks of different sizes where we vary the number of locations

hosting APs/BSs (L) and the number of edge servers that can be collocated to the existing APs/BSs

(M). However, we consider that each edge server m ∈ M has a computing capacity cm = 6GHz

(unless stated otherwise) and a deployment cost normalized to 8 units. In addition, we perform our

tests under different number of available IoT applications (variable A) of 4 different types (T = 4)

that belong to the same industry vertical and hence, may require the same QoS (i.e., response time).

Thus, we delineate in Table 2.4 the different industry verticals accounted for in our tests, and present

the range of their required response times in addition to the one used to set the value of δt. Note

that, we consider that each IoT application a ∈ A requires a minimum processing capacity of

pamin = 1.7GHz and can consume up to pamax = 1.9GHz of computing resources. We account for

IoT devices scattered at different locations within the considered network. Each of these IoT devices

is connected to an AP/BS available at its location and is requesting the service of a determined type

of application. We evaluate variable arrival rates (variable λtl) of the IoT devices requests per second

for different application types spread at different locations of the network. However, we assume an

average of wt = 2× 106 CPU cycles/request for a defined application type t ∈ T .

Industry Vertical Allowable
response times
(ms)

Applied re-
sponse time
(δt) (ms)

Tactile Internet 1 - 10 5
Factory Automation 0.25 - 10 10
Smart Grids 3 - 20 20
Intelligent transportation
Systems (ITS)

10 - 100 50

Tele Surgery ≤ 250 110

Table 2.4: QoS of different industry verticals [1, 2].

2.6.2 RPWA-MIP vs. RPWA-D

We first study the performance of RPWA-D and compare it against RPWA-MIP in terms of

optimality (e.g., deployment cost) and scalability (e.g., execution time) as we vary the number of

locations in the network. In fact, increasing the number of locations depicts an increase in the work-

loads as more IoT devices requests originating from the added locations are to be accounted for.

30

Hence, we consider a maximum ofM = 10 edge servers andA = 4 applications of T = 4 different

types belonging to a factory automation vertical (δt = 10ms) that can be deployed in the network.

In addition, we assume λtl = 60 requests/sec originating from each location l ∈ L and requesting

the service of an application of type t ∈ T . The maximum network delay is set to 4ms. Our results

are presented in Table 2.5.

Instance
< L,M, T,A >

RPWA-MIP RPWA-D
Cost
(units)

Execution
Time
(ms)

Cost
(units)

Execution
Time
(ms)

Load
admitted
(%)

L=5, M=10, T=4,
A=4

16 69 16 57 100

L=7, M=10, T=4,
A=4

16 90 16 60 100

L=15, M=10, T=4,
A=4

- - 16 90 50

L=15, M=10, T=4,
A=12

- 2days+ 32 661 100

Table 2.5: Evaluation of RPWA-MIP vs. RPWA-D.

1) Optimality Gap: Table 2.5 depicts that for a small number of locations (L = 5 and L = 7),

RPWA-D is able to provide the optimal cost of 16 units supplied by RPWA-MIP while admitting all

the workloads. Note that, this cost remained constant for L = 5 and L = 7 given that the deployed

edge servers when L = 5 had enough free computing resources to accommodate the additional

applications needed to handle the extra workloads generated from the two added locations (when

L = 7). In other words, no extra edge servers were needed to be deployed. As we increase the

number of locations to L = 15, RPWA-MIP fails to give a feasible solution as it is constrained by

admitting all the generated workloads and the fixed number of applications (A = 4) that can be

deployed. However, RPWA-D admitted 50% of the workload with a cost of 16 units. As A = 4 ap-

plications were not sufficient for RPWA-MIP to provide a solution, we performed a final test where

we increased the number of applications from A = 4 to A = 12 for the same number of locations

(e.g., L = 15). However, this resulted in a large increase of the size of the problem and RPWA-MIP

failed to give a solution even after 2 days of execution. However, RPWA-D was able to admit all

the loads.

31

2) Execution Time: In order to evaluate the scalability of the proposed methods, we delineates

in Table 2.5 the execution time of RPWA-MIP and RPWA-D. As the size of the problem increases

with the increase of the number of locations and the number of applications, finding a solution for

the problem becomes more challenging, and hence, the runtime of both methods increases exponen-

tially. However, Table 2.5 clearly shows that the increase of the runtime of RPWA-D is at a slower

pace than that of RPWA-MIP and remains in the order of milliseconds (661 ms) while the runtime

of RPWA-MIP exceeded the 2 days without providing a solution (L = 15 andA = 12). This proves

that RPWA-D is much more scalable than RPWA-MIP.

2.6.3 Evaluation of RPWA-D

Given the non-scalability of RPWA-MIP, we focus in the following on studying the impact

of varying network parameters on the deployment cost using RPWA-D while highlighting several

trade-offs existing between the evaluated system parameters. Thus, unless stated otherwise, we con-

sider a network consisting of L = 10 different locations, and a maximum of M = 5 edge servers

that can be deployed in it. The maximum network delay is set to 1.5ms.

1) Impact of varying the number of IoT applications for different industry verticals: We first inves-

tigate the impact of varying the number of available applications on the admitted workloads given

IoT services belonging to different industry verticals [42, 43]. Thus, we consider four application

types (T = 4) for each of the industry verticals depicted in Table 2.4 and represented by their

maximum allowable response time (5ms ≤ δt ≤ 110ms). We evaluate the percentage of admitted

workload for each of them as we vary the maximum number of applications that can be deployed in

the network (4 ≤ A ≤ 12). Fig.2.3 illustrates an increase of the percentage of admitted workload

with the increase of the number of applications. For instance, when considering Tactile Internet

(δ = 5ms), the admitted workload almost doubled when the number of applications went from

A = 4 to A = 8. Similar observation can be deducted for the other presented types of industry ver-

ticals. This infers that, even though enough edge servers computing resources are available, a low

number of applications was not able to admit all the workloads even when all the applications are

deployed and assigned the maximum processing resources they can acquire (pamax). This shows that

the maximum computing resources allocated to each application is not enough to meet the required

32

QoS (response time), if assigned more workloads. In fact, an increase of the server delay will be

observed with the increase in the workloads assigned to an application. Furthermore, Fig.2.3 depicts

that when the response time increases (e.g., considering all the industry verticals), the percentage of

admitted workload increases for a fixed number of applications. For instance, when A = 12, IoT

applications utilizing Tactile Internet (δt = 5ms) admitted 57.4% of the generated workloads while

those used for factory automation (δt = 10ms) were able to admit 94.3%. This trend continues as

the response time increases to reach 100% of admission with the applications employed for Tele-

Surgery. This can be explained by the fact that when the response time is relaxed, the workloads

can tolerate higher queuing and processing delays which allows the applications to be able to meet

the QoS requirement for a bigger fraction of their assigned load.

 Admitted Load (%) vs. Deadline

5 10 20 50 110
Deadline (ms)

0

20

40

60

80

100

120

 A
dm

itt
ed

 L
oa

d
(%

)

A=4
A=8
A=12

99.5%

Tactile
Internet

Tele
Surgery97.9%

75.8%

37.9%

94.3%

68.7%

34.3%

57.4%

38.3%

19.1%

39.4%

79.0% 80.0%

40.0%

Factory
Automation

Smart
Grids

100.0%ITS

Figure 2.3: Admission rate under varying number of applications.

2) Impact of varying workloads for different industry verticals: We evaluate the impact of the work-

load increase on the admission rate for different industry verticals. Thus, we consider A = 12

applications that can be deployed in the network and we vary the workload by varying the value of

205 requests/sec ≤ λtl ≤ 265 requests/sec. Fig.2.4 depicts that as the generated workloads per loca-

tion per type increase for a given industry vertical, the percentage of admitted ones decreases, given

that more workloads will be contending for the same computing resources (applications), which

are not sufficient to serve all of them while meeting the required response time, since they will be

33

experiencing higher queuing delay. However, this increased queuing delay can be tolerated if the re-

sponse time increased. More precisely, one can note that as the workload for smart grid applications

increased by 22.6% (from 205 requests/sec to 265 requests/sec), the admitted workload decreased

by 6.4% showing that when all the computing resources (applications) are being consumed, the

network fails to cope with the increased workloads and hence, less load is admitted. Further, when

λtl = 265 requests/sec, the admission rate increases with the increase of the response time to reach

95.5% for less latency sensitive applications such as those used in Tele-surgery.

 Admitted Load (%) vs. Deadline

5 10 20 50 110
Deadline (ms)

0

20

40

60

80

100

120

 A
dm

itt
ed

 L
oa

d
(%

)

=205
=235
=265

Tactile
Internet65.9%

57.4%
50.9%

99.4%
94.3%

Tele Surgery Factory Automation Smart Grids
100%100%

95.5%
100%

95.0%
99.5%

93.6%
100% 97.9%

ITS

90.5%

Figure 2.4: Admission rate under varying workloads.

3) Impact of varying the network size: We consider a factory automation industry where the allowed

response time of its application is fixed to δt = 10ms. We evaluate the trade-off existing between

the number of locations and the number of applications in a network where at most M = 5 edge

servers can be deployed. We account for λtl = 235 requests/sec generated from each location for

each of the T = 4 types of available applications.

Fig. 2.5 demonstrates that for the same number of applications, the admission rate decreases with

the increase of the number of locations. This is explained by the fact that as the network size

increases, more workloads are generated from the additional locations making the existing appli-

cations experience more congestion which leads to having their allocated computing resources fall

short in serving the additional workloads within the allowed delay. However, as the number of appli-

cations increases (for a specific number of locations), more computing resources become available

34

4 5 6 7 8 9 10 11 12
Number of Locations (L)

0

20

40

60

80

100

 A
dm

itt
ed

 L
oa

d
(%

)

 Admitted Load (%) vs. Number of Locations

A=4
A=8
A=12

Figure 2.5: Admitted rate over varying number of locations and applications.

to process the additional workloads which explains the increase in the admission rate.

4) Impact of varying the generated workloads and applications: Under the same simulation setup

mentioned in the previous test (Section 2.6.3(3)), we provide a large scale test in order to demon-

strate the feasibility of the RPWA-D approach. Thus, we increase the workload size for each type

of application generated from every location by varying the value of λtl between 150 requests/sec

and 550 requests/sec. As we consider L = 10 locations and T = 4 types of applications, the total

workload generated from all locations targeting all application types varied between 6000 request-

s/sec and 22000 requests/sec. In this test scenario, We vary the number of applications that can be

placed on edge servers from A = 4 to A = 12 to study its impact on the admission rate. Fig. 2.6

illustrates that for the same number of applications, the admission rate decreases with the increase

of the generated workload. This can be interpreted that the provisioned processing capacities for

a given number of applications cannot accommodate growing workload demand unless more re-

sources are made available. As such, we can note that when the number of applications increases,

the admission rate increases for the same amount of workload λtl .

5) Impact of varying the edge servers capacities: We explore the relation between the edge

servers capacities and the network utilization for different generated workloads. The network uti-

lization is defined as the ratio between the total computing resources used by the deployed applica-

tions
∑

a∈A pa and the total computing capacity available by the deployed edge servers
∑

m∈M cm

35

100 150 200 250 300 350 400 450 500 550

l
t (req/sec)

0

20

40

60

80

100

 A
dm

itt
ed

 L
oa

d
(%

)

 Admitted Load (%) vs. l
t

A=4
A=8
A=12

Figure 2.6: Admission rate over varying workload and applications.

(
∑

a∈A pa∑
m∈M cm

). Hence, we consider a factory automation industry (δt = 10ms) of L = 10 locations,

M = 5 edge servers that can be deployed to host up to A = 12 applications of T = 4 different

types. Fig.2.7 depicts the percentage of network utilization as we increase the capacities of the edge

servers (4Ghz ≤ cm ≤ 6.8GHz) and arrival rates of the requests (λtl ∈ {150, 200} requests/sec).

4 4.7 5.4 6.1 6.8
MEC Capacity (GHz)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

 Utilization vs. MEC Capacity
=150
=200

Figure 2.7: Network utilization under variable MEC capacities.

Fig.2.7 delineates that 0% of the network resources are utilized when cm ∈ {4, 4.7} GHz and

λtl ∈ {150, 200} requests/sec as RPWA-D fails to give a feasible solution since the total computing

resources specified by the DALA-MIP and required to process the maximum amount of workload

exceed those offered by all the edge servers that can be placed by the MESD-IP. The same behavior

36

is observed when cm = 5.4GHz and λtl = 200 requests/sec. However, for a lower arrival rate of

λtl = 150 requests/sec, the network was fully utilized as the total computing resources provided by

the edge servers were just enough to accommodate all the required applications determined by the

DALA-MIP. As the value of cm continues to increase, we observe that the network utilization de-

creases given that
∑

a∈A pa stabilized once all the workload is admitted and
∑

m∈M cm increases.

6) Deployment cost evaluation under varying network delay: We evaluate the impact of the increase

of the maximum network delay on the edge servers deployment cost. Thus, we consider a smart

grid system (δt = 20ms) of L = 10 locations, M = 10 edge servers of varying configurations of

computing capacity cm ∈ {3, 5, 7, 9, 11} GHz. We vary the setup cost between πl ∈ [5 − 20] unit

cost and we set the cost of 1Ghz to be k = 1 unit cost. We consider A = 20 applications of T = 4

different types to process a workload generated at an arrival rate of λtl = 400 requests/sec and vary

the maximum network delay between 2ms and 10ms.

2 3 4 5 6 7 8 9 10
Network Delay (ms)

0

20

40

60

80

100

120

D
ep

lo
ym

en
t C

os
t (

un
it

co
st

)

Deployment Cost vs. Network Delay
Smart Grid

0
(Infeasibility)

68.25 69.75 70 72.25

89 89 89.25 89.25

Figure 2.8: Deployment cost under varying network delays.

In fact, increasing the network delay leads to very strict delay limit at the edge server to completely

process requests by the hosted applications. As a result, more computing resources are required

to be allocated to the applications when increased network delays are considered. Given that each

of these applications has an upper bound on the maximum computing resources it can be assigned

(pamax), more applications will be needed to process all the workload. This will require deploying

37

more edge servers to be able to host these applications, which will eventually increase the deploy-

ment cost as shown in Fig.2.8. Note that, for a network delay of 10ms, no solution was found as

the maximum server delay remaining to process the workload within the response time is 0ms (δ′t

= δt − 2dmax
n = 20− 2 ∗ 10 = 0ms) (Section 2.5). This, in fact, shows the importance of MEC in

responding to the delay sensitive requirements of new emerging services.

7) Deployment cost evaluation under varying workload: Finally, we evaluate the impact of the in-

crease of the generated workload on the deployment cost. We consider the same simulation setup

described in Section 2.6.3 (6) and we vary the workload arrival rate λtl ∈ [250−650] requests/sec.

Our results depicted in Fig.2.9 show that the deployment cost increases with the increase of the

workload as more edge servers need to be provisioned to handle such increase. However, one can

note that the deployment cost remains the same for a load of 450, 550 and 650 requests/sec. With

a more detailed evaluation of the cause of such result, we noticed that for all the aforementioned

generated workloads, the total amount of admitted load remained stable at 17820 requests/sec with a

deployment of all the A = 20 applications which explains that the number of available applications

and the maximum processing capacity pmax they can be allocated limited the admission rate which

stabilized the deployment cost.

250 350 450 550 650
λ l

t (req/sec)

0

20

40

60

80

100

120

D
ep

lo
ym

en
t C

os
t (

un
it

co
st

)

Deployment cost vs. λ l
t

Smart Grid

68.25

89.25 89.25 89.25

50

Figure 2.9: Deployment cost under varying workload.

38

2.6.4 Comparison of RPWA-D with existing work

As mentioned earlier, we are not aware of any existing literature that addressed the joint prob-

lem of MEC dimensioning, IoT application placement, and workload assignment. Moreover, most

of the existing work did not account for various types of applications. As a result and to evaluate

the efficiency of our proposed decomposition approach RPWA-D, we consider only one type of ap-

plications (T = 1) and compare against the work in [41] that addressed the placement of cloudlets

(edge servers) and user (load) assignment in a Wireless Metropolitan Area Network WMAN. In

order to apply their Density Based Clustering solution to our work, we use M/M/1 queue as the

cloudlet model and assign deadlines to users’ requests. Fig. 2.10 shows the simulation results of

our proposed approach (RPWA-D) against the method proposed in [41] and referred to as DBC.

Our simulation setup consists of M = 5 edge servers and L = 10 locations. We account for

150 users, each generating requests within the range of [50 − 100] requests/sec. The value for

λtl in RPWA-D is calculated based on the total number of user requests generated from location l

in the DBC algorithm. Our test regroups different vertical industries with varying response times

{5, 10, 20, 50, 110}ms. As illustrated in Fig.2.10, using our proposed scheme RPWA-D, the ad-

 Admitted Load (%) vs. Deadline

5 10 20 50 110
Deadline (ms)

0

20

40

60

80

100

120

 A
dm

itt
ed

 L
oa

d
(%

)

DBC
RPWA-D

Factory
Automation ITS

Tactile
Internet

Smart
Grids Tele Surgery

100.0%98.5% 99.8%100.0%100.0%

91.2%
99.9%

68.5%71.3%
66.0%

Figure 2.10: Admitted rate over varying deadline.

39

mission rate can be increased by approximately 5.3%, 31.4%, 8.8%, 1.5% and 0.2% than the DBC

algorithm for each of the presented vertical industries respectively. This is explained by the fact

that DBC places cloudlets (edge servers) based on the most dense locations while in our approach

an optimal edge servers placement is obtained. Further, in the DBC approach, a workload is either

admitted or rejected completely, while, our approach allows a fraction of the load generated from

one location to be admitted leading to more efficient and flexible workload assignment.

2.7 Conclusion

In this chapter, we studied the RPWA problem that jointly solves the MEC dimensioning, IoT

applications placement and workload assignment sub-problems. To the best of our knowledge,

this is the first work to address the three aforementioned sub-problems jointly. We mathemati-

cally formulated the RPWA problem as a MIP with the objective of minimizing the deployment

cost while respecting the IoT applications’ maximum allowable response times. Given the showed

NP-Hardness of RPWA and the non scalability of the RPWA-MIP, we presented a decomposition

approach (RPWA-D) to efficiently solve it. Unlike RPWA-MIP that considers admitting all the

workloads, RPWA-D studies the percentage of the workloads that can be admitted given the avail-

able computing resources. Hence, RPWA-D can be used to study the trade-off between the increase

of the workload admission rate and the extra computing resources needed to process the additional

workload. Through extensive simulations, we verified the efficiency of RPWA-D under varying

parameters and network conditions. Our proposed decomposition approach serves as a tool for

network operators to develop cost effective strategies for edge network planning and design.

40

Chapter 3

Heterogeneous workload assignment in

an MEC-IoT environment for uRLLC

3.1 Introduction

The Internet of Things (IoT) paradigm has emerged as the future Internet since 1999 [55]. It is

now evolving to be an intrinsic part of our daily lives, where everyday objects are embedded with

transceivers, protocols and microcontrollers turning them into smart things that can communicate

with each other [56]. In the current era of smart things, novel use cases (e.g. Tactile Internet, Intel-

ligent Transportation Systems (ITS), Tele-surgery, etc.) are contributing to the evolution of smart

cities. Such cities exploit those applications to enhance the quality of life by providing seamless

services (i.e., e-health care, intelligent transportation, etc) to end users. However, in order to offer

the immersive experience these applications promise, low latency (within milliseconds) and high

reliability (less than 10−5 packet loss rate) are required [57]. Such requirements would only be

possible with the emergence of ultra-reliable low latency communications (uRLLC) promised by

the fifth generation mobile communication system (5G).

The terms reliability and latency are broad terms that encompass different meaning based on

their definitions. For instance, latency could be defined as the end-to-end latency caused by trans-

mission, queuing, and processing delays [58]. Further, Reliability - in general - denotes the prob-

ability of successfully transmitting the packets over a period of time. However, it could also be

41

defined as the availability; which is the probability that a specific service is available [59]. Hence,

it is indispensable to properly define both terms. For the sake of clarity, in the rest of the paper the

term latency is defined as the end-to-end latency and reliability as the availability; for instance,

availability of 99.999% means that the service is available to the end users 99.999% of the time [60].

Within this uRLLC framework, a network has to be designed upon three building blocks;

i)Scale: accommodation of the huge number of devices and the volume of data they produce

ii)Risk: robustness towards uncertainty and sudden system changes and iii)Tale: dealing with

the heterogeneity and randomness of latency and reliability requirements [58]. Building such net-

work is plausible by leveraging technologies such as spatial diversity, machine learning, network

coding, and others. [58]. One of the rather appealing enablers is Mobile Edge Computing (MEC).

MEC is an emerging computation paradigm that was introduced to overcome the high latency

and low reliability of communication resulting from the large distance between the end users and

the cloud [61]. In an MEC infrastructure, the cloud capabilities are brought closer to the IoT devices

(e.g. smart cameras, industrial sensors, etc.) by equipping the nearby 4G/5G Base Stations (BSs)

or WiFi Acess Points (APs) with computing and storage capabilities, creating an MEC node. Tra-

ditionally, the MEC nodes host Virtual Machines (VMs) running different IoT applications to serve

the IoT devices. Hence, IoT devices can offload their computationally intensive workloads to the

MEC nodes located at a close proximity to them, rather than the distant cloud, and thus, reducing

latency and ensuring a more reliable network [62].

Provisioning a smart city with uRLLC backed with MEC would ensure a seamless delivery of

services and a satisfactory Quality of Experience (QoE) for the end users. However, a critical aspect

of this adoption is considering the various underlying trade-offs in a uRLLC system. Some of these

trade-offs could arise between latency, reliability, energy consumption, spectral efficiency, SNR,

etc,. For instance, a fundamental trade-off, where intensive research has been done, is between

latency and energy consumption in which the device would consume more energy by periodically

checking for packet delivery; the more frequent checks, the lower the latency but the higher energy

consumption [58].

One of the less tackled trade-offs is between the latency and reliability. For instance, different

IoT devices (smart sensors, smart cameras, etc.) generate a shear volume of data to be offloaded

42

to the MEC nodes to provide a specific type of service (Tactile Internet, Process Automation, etc.).

Since each service has both reliability and latency requirements, offloading the workload to an MEC

node that satisfies the latency requirement does not guarantee achieving the required reliability and

vice versa. Hence, a decision needs to be made on which MEC node the workload should be

processed to satisfy and optimize both requirements. Moreover, the generated workload is subject

to different failure scenarios either through accessing the network; communication link failures (due

to jamming and equipment failure) or being processed on an MEC node; MEC node failure (DoS

attacks, hardware failure) [63], causing the service to be unavailable to the end user. Therefore,

achieving the ultra high reliability demanded by the IoT services coupled with the aforementioned

failure scenarios may require repeated transmissions which would incur a higher latency [58]. Some

work has been done to address the reliability and latency in mobile edge computing either jointly

or separately. For instance, the authors in [63] considered the probability of occurrences of failure

scenarios for both communication and MEC nodes. Further, the work in [61] addressed the problem

of workload assignment considering the latency and transmission reliability. However, to the best

of our knowledge, no work has considered the reliability of the individual MEC nodes along with

the specific reliability and delay requirements of the IoT services.

In this work, we consider a large number of IoT devices generating workloads demanding ul-

tra high reliability and low latency services. We further consider the reliability of the individual

MEC nodes. We address the Workload Assignment (WA) problem in a smart environment, which

aims to assign the generated workloads from the IoT devices to IoT applications of the same re-

quested type hosted on MEC nodes. We formulate the WA problem as a Mixed Integer Program

(WA-MIP) with the objective of maximizing the admitted load with respect to the latency and re-

liability requirements. We prove that the WA-MIP is NP-Hard, and hence, we propose an efficient

decomposition approach (WA-D) that first solves the resiliency problem and then the latency prob-

lem. Thus, WA-MIP is decomposed into two sub-problems, 1) The Reliability Aware Candidate

Selection (RACS) sub-problem which is tackled by a heuristic search to determine the set of poten-

tial MEC nodes satisfying the ultra high reliability requirements. 2) The Latency Aware Workload

Assignment (LAWA) sub-problem which is formulated as a MIP that takes the solution of RACS as

an input and determines the optimal workload assignment with respect to the latency requirements.

43

Through extensive numerical evaluation we prove that the WA-D is more scalable than the WA-MIP.

However, it showed unscalability for a very large network. Therefore, we propose a Tabu-search-

based meta-heuristic approach (WA-Tabu) to solve the WA problem.

The remainder of this paper is organized as follows. Section 3.2 presents the related work, the

system model is introduced in 3.3, the problem is formulated as a MIP in 3.4, the proposed WA-D

approach is discussed in 3.5 and the WA-Tabu in 3.6 . The numerical evaluation and conclusion are

presented in 3.7 and 3.8 respectively.

3.2 Related work

One of the rather disruptive advancements in the IoT industry is the introduction of 5G and

its promise of uRLLC. Some work has been done on the feasibility of 5G and uRLLC within the

context of IoT. Specifically, the authors in [64] studied the use of uRLLC in factory automation

and proved its feasibility in factory automation with latency of sub milliseconds and failure rate

of 10−9. Further, the work in [65] studied the feasibility of 5G mm-wave as an enabler to Con-

nected Autonomous Vehicles (CAV) applications. It was concluded that the 5G mm-wave satisfied

the latency requirements of safety-critical applications and achieved high data rates sufficient for

real-time applications (e.g. video streams processing for in-vehicle infotainment system). Further,

extensive work has been done exploring the possibilities and use cases of MEC as a key technology

for the inception of uRLLC in an IoT environment. For instance, the authors in [14] presented a

detailed survey on MEC and its integral part in the development of 5G. The authors explored the

various MEC use cases and challenges within the context of IoT and smart cities. Some of the chal-

lenges the authors presented was the Service Orchestration; optimizing the synergies between the

different entities in an edge network (MEC nodes dimensioning, applications placements and work-

load assignment), as well as Service Enhancements; improving the users’ Quality of Experience

(QoE) and achieving Resiliency.

44

3.2.1 Latency in MEC & IoT infrastructure

Many research has focused on workload offloading in an MEC infrastructure with an emphasis

on the end-to-end latency. For instance, Xiang et al. in [66] considered a network where multiple

users are offloading their workload to the geographically distributed MEC nodes. They proposed a

latency aware offloading framework that minimizes the total response time incurred by the users’

workload. Further, the work done in [67] discussed the provisioning of resources (edge servers and

applications) as well as the workload assignment, with the objective of minimizing the cost with re-

spect to latency requirements of different industry verticals. A more realistic model is when latency

is coupled with another system design parameter. For example, in [68], the authors considered the

trade-off between energy consumption and latency by addressing workload offloading problem in

an IoT environment. Their proposed framework optimizes the energy consumption and the system

utility while respecting the latency requirement.

3.2.2 Reliability in MEC & IoT infrastructure

Unlike latency, little research has considered the reliability issues in MEC and IoT context, let

alone considering the trade-off between reliability and latency together.

In [61] the tradeoff between latency and reliability was studied. The problem was formulated

to jointly minimize the end to end latency and the failure probability of offloading tasks to MEC

nodes. Further, the authors only considered the transmission reliability(offloading failure probabil-

ity), and only one user with one task to be offloaded. The task is partitioned into subtasks, where

each is transmitted using the whole channel bandwidth in a sequential manner. It was concluded

that the higher channel quality, the better achieved reliability. On the other hand, the authors in [63]

formulated an ILP to minimize the operational cost of placing Virtual Process Control Functions

(VPFs) on MEC nodes with respect to capacity and resiliency constraints for different failure sce-

narios. The failures are due to either MEC node failure or communication link failure. Each failure

scenario is assigned a probability based on historical data. Due to the complexity of the problem,

the authors developed an iterative algorithm that uses the generalized Benders Decomposition and

linear relaxation to reduce the search space.

45

3.2.3 Novelty of our work in comparison to the literature

In the aforementioned work, most of the authors often considered the latency requirements and

overlooked the reliability demands. However, the few works that considered the reliability; commu-

nication link failure or MEC node failure, considered a single user task and its end to end delay [61],

or the latency was neglected [63]. Further, in both works [61] and [63], the specific service reliabil-

ity and latency requirements were not considered and they were not tailored towards an IoT context.

To the best of our knowledge, our work is the first to consider the workload assignment problem

in a densely populated, MEC-enabled IoT environment with multiple workloads/IoT devices while

considering both ultra high reliability and low latency requirements of the IoT services, and the

availability of the MEC nodes.

Figure 3.1: IoT enabled smart environment

3.3 System Model

We depict our system model in Figure 3.1 which consists of a smart environment where differ-

ent IoT devices are spatially distributed and connected to the nearby WiFi APs (or cellular BSs).

The IoT devices generate a tremendous workload by requesting IoT services granted by IoT ap-

plications of different types and capabilities hosted on MEC nodes. Serving the IoT devices does

46

not only depend on their requested services’ types, but also on the service’s latency and reliability

requirements. In what follows, we formally explain the network, reliability and latency models.

3.3.1 Network model

Formally, the network is represented by a graph G(N,E) where E is the set of communication

links connecting a set of nodes N . N(= L ∪ R) is composed of APs/BSs dispersed at different

locations l ∈ L, and the backbone network equipment R (routers, switches, etc.). We assume a set

M of MEC nodes deployed nearby the APs/BSs, and hence, we denote by πlm that MEC node m ∈

M is located at l ∈ L. IoT devices are connected to their nearby WiFi APs or cellular BSs located

at locations l ∈ L, and request IoT services provided by IoT applications hosted on MEC nodes.

Therefore, a set A of IoT applications are hosted on Virtual Machines (VMs) running on the MEC

nodes. Each application a ∈ A is assigned pa processing capacity to process the workload generated

by IoT devices. Further, we denote by σma which MEC node m ∈ M is hosting application a ∈ A.

Moreover, each application a ∈ A is providing a specific type of IoT service requested by IoT

devices. We use T to denote the set of types of the IoT applications. In addition, the parameter µta

represents whether IoT application a ∈ A is of type t ∈ T . For the sake of simplicity, we assume

that each MEC node m ∈ M is hosting one instance of each IoT application providing service of

type t ∈ T , and hence, all MEC nodes are capable of supporting all IoT applications’ types. For

instance, in a smart hospital environment, IoT devices are collecting various environmental data

(temperature, humidity, etc.) to regulate the surroundings and vital data to monitor the patients.

In order to deliver such functionalities, the IoT devices would offload their data to the MEC nodes

requesting it to be processed by IoT applications providing 1) temperature monitoring and 2) patient

tracking services. Hence, all MEC nodes would be running two applications, each providing one of

the previously mentioned IoT services.

3.3.2 Reliability and Latency model

The IoT devices offload their workload to the MEC nodes to be processed by IoT applications

providing a service of type t. For simplicity and without loss of generality, we consider the ag-

gregate demand generated by all IoT devices located at l ∈ L and requesting IoT application of

47

type t ∈ T . This aggregate demand is assumed to follow a Poisson process with an arrival rate of

λtl (requests/sec), and has an average computing size of wt (CPUcycles) per request [66] [67].

Given that the smart environment is backed with uRLLC, different IoT services with stringent la-

tency and reliability figures are granted by applications providing the same service type t ∈ T to

ensure a seamless experience and a satisfactory QoS. For instance, in order to provide the ultimate

experience promised by ITS, latency has to be as low as 10 − 100ms and an almost guaranteed

reliability of 99.9999% [57]. Consequently, we denote by δt and rt the maximum allowable re-

sponse time when using an IoT application of type t, and the minimum reliability required by the

requested service of type t ∈ T respectively. Within this framework, we model each IoT applica-

tion as M/M/1 queues with an average arrival rate of IoT devices’ requests (λtl) and a service rate

determined by pa and wt. Further, we consider scenarios where the IoT devices’ workload may not

be assigned to the MEC node at which it was generated (home node), but it is redirected to another

MEC node. This could be due to insufficient computing capacity, failure to satisfy the latency or

reliability requirements. Hence, we define hl
′
l to depict the network delay incurred from redirecting

the load from its home MEC node at location l to the MEC node at location l′. Therefore, the total

delay experienced by a workload offloaded and processed by an application running on an MEC

node is calculated as in Eq.(3.1) which will be explained in details in section 3.4.

Delaytotal = 2(hl
′
l) +

1

ServiceRate−ArrivalRate
(3.1)

Similarly, some failure scenarios could result in the IoT workload not being processed or trans-

mitted. These failures could be due to transmission links failure resulting from jamming, denial

of service attacks or Hardware Failure (MEC node failures) which could happen due to equipment

error, cyber attacks, etc [63]. Some work has already taken care of the transmission failures [61],

and in our work, we consider the MEC nodes failure scenarios. Given that the IoT applications are

hosted on VMs running on the MEC nodes, a failure of the MEC node would result in the failure

of executing the IoT application. In other words, the IoT applications inherit the reliability of their

hosting MEC nodes. Hence, we assign a reliability θm for each MEC node m ∈ M to depict its

availability. This probability is assigned based on historical data of the average repair time and time

48

between failures [69]. In order to achieve the required service reliability demanded by the work-

load, we replicate the load and assign it to one or more applications hosted by one or more MEC

nodes such that the required reliability is met. Therefore, the overall achieved reliability of a certain

workload is the probability that at least one MEC node that can accept it, is available as shown in

Eq.(3.2). The derivation of Eq.(3.2) will be shown in section 3.4.

Reliabilityacheived = 1−
∏

m∈M
(1− θm) (3.2)

Hence, the more MEC nodes accepting the workload replicas, the higher the achieved reliability.

This is demonstrated in the following illustrative example.

Illustrative example

Consider five locations; l1, l2, l3, l4, l5 in a smart environment where workloads are generated re-

questing different IoT services. Specifically, workload generated from l1 is requesting Tele-surgery

services, while the workloads generated from l2 and l3 are requesting Process automation services.

The arrival rate (λtl) for each generated load from location l ∈ L requesting IoT service of type

t ∈ T is given below:


l1 l2 l3 l4 l5

t1 100 0 0 0 0

t2 0 250 40 0 0


To ensure a satisfactory quality of service, the workload from each location has to be completed

within a specific window of time and it has to be served with an ultra high reliability. The response

times and reliabilities of the IoT services are listed in Table 3.1. Particularly, workload requesting

tele-surgery service has to be processed within 50ms and guaranteed an availability of 99.99%,

and as for the Process Automation service, a response time of 100ms and a reliability of 99.9%

are required. To accommodate these requirements, we consider five MEC nodes m1, m2, m3, m4,

m5 each with reliability θm of 0.96, 0.96, 0.9, 0.9, and 0.9 respectively. Each MEC node hosts

two IoT applications, each providing tele-surgery and process automation services. Specifically,

let a1, a3, a5, a7, a9 be the applications providing Tele-surgery services while process automation

49

services are provided by a2, a4, a6, a8 and a10. Moreover, let m1,m2, m3, m4 and m5 be located

at l1, l2, l3, l4 and l5 respectively. For the sake of simplicity we assume that the network delay

is 1.5ms for all MEC nodes. In addition, we assume that the service rate pa
wt

(requests/sec) of

all applications of type tele-surgery is 150requests/sec and that of applications of type process

automation is 300requests/sec. In this example, we start off by considering only two workloads are

generated from locations; l1 and l2 as shown in Figure 3.2(a). With the aforementioned assumptions,

workload generated from l1 could not be sent to only one MEC node as none satisfies its required

reliability individually. Consequently, the workload has to be replicated to multiple MEC nodes to

achieve its required reliability. The achieved reliability resulting from sending workload generated

from l1 replicas to MEC nodes m1, m2, m3 and m4 is 0.99998 satisfying its requested service

reliability requirements (0.9999). In fact, the workload generated from l1 could be assigned to any

combination of MEC nodes satisfying its reliability according to Eq.3.2. Moreover, the maximum

total delay incurred by the workload when processed by one of the MEC nodes that it is sent to,

according to Eq.3.1, is:

2(1.5ms) +
1

150− 100
= 23ms ≤ 50ms

Hence, the workload generated at l1 is assigned to m1, m2, m3 and m4. Similarly, the workload

generated from l2 could be sent to any combination of MEC nodes that satisfies its reliability and

latency requirements (e.g.{m2,m3,m4}, {m1,m2,m3}, etc.). Let m2, m3 and m4 be the MEC

nodes that the load is assigned to since the maximum total delay incurred by the workload is 23ms

(≤ 100ms) and the achieved reliability is 0.9996 (≥ 0.999).

Now, we consider another load that is generated from location l3 requesting process automa-

tion service as shown in Figure 3.2(b). The requested service reliability (0.999) would be met by

replicating the load and mapping it to any combination of MEC nodes that satisfies its required re-

liability such as {m2,m3,m4}, {m1,m2,m3} and {m1,m3,m5}. However, since {m2,m3,m4}

has already a load assigned to it from l2 requesting the same service process automation, assigning

the new workload generated from l3 to the same MEC nodes would incur an additional queuing de-

lay at the applications providing service of type Process automation running on those MEC nodes.

Therefore, the total delay incurred by the workload generated at l3 if assigned to {m2,m3,m4}

50

(a) Scenario 1

(b) Scenario 2

Figure 3.2: Illustrative Example

would be given by

2(1.5ms) +
1

300− (250 + 40)
= 103ms � 100ms

Similarly, this workload can not be assigned to any combination of MEC nodes that contains m2 or

m4 as it would incur 3ms additional network delay which would result in a total delay of 103ms

violating the latency requirements (100ms). Thus, the workload from l3 is replicated and sent to

{m1,m3,m5} which satisfies the latency and reliability requirements with a total delay of 100ms

and an achieved reliability of 0.9996.

51

IoT service Reliability (%) Allowable response
time (ms) Used δt (ms)

Factory-
automation 99.999 0.25-10 10

Smart Grids 99.999 3-20 20
ITS 99.9999 10-100 30
Tele-surgery 99.99 <=250 50
Process-
automation 99.9 50-100 100

Table 3.1: IoT QoS requirments for different industry verticals

From this example, it can be seen that determining an optimal workload assignment is challeng-

ing where the objective is to satisfy most of the users’ requests along with their low latency and

ultra high reliability requirements.

3.4 The uRLLC-aware workload assignment problem

3.4.1 Problem Definition

Definition 4. Given G(N,E), a set M of deployed MEC nodes, a set A of IoT applications of

different types hosted on the given MEC nodes, and a set of IoT devices requesting their generated

workloads to be offloaded and processed by a specific application type within a determined response

time δt and a minimum reliability requirement rt, determine the optimal assignment of the generated

workloads to IoT applications that maximizes the admitted load, with respect to their latency and

reliability requirements.

3.4.2 Problem Formulation

Table 3.2 shows the parameters used throughout the formulation of the WA-MIP presented be-

low.

We define a variable xtl ∈ [0, 1] to determine the fraction of load generated from location l and

requesting service of type t, that can be admitted to the network, and hence our objective becomes:

Maximize
∑
l∈L

∑
t∈T

λtl .x
t
l (3.3)

52

Network Inputs
G(N,E) Network of N nodes where N = L ∪ R and E

links connecting them.
L Set of locations where APs/BSs are mounted.
R Set of backbone network equipment.
M Set of MEC nodes in G(N,E).
A Set of IoT applications hosted on m ∈M .
T Set of IoT applications’ types.
πlm ∈
{0, 1}

Parameter which depicts that MEC node m ∈
M is deployed at location l ∈ L (1) or not (0).

µta ∈
{0, 1}

Parameter which depicts that application a ∈
A is of type t ∈ T (1) or not (0).

σma ∈
{0, 1}

Parameter to depict that application a ∈ A is
hosted on MEC node m ∈M (1) or not (0).

δt ∈ R+ Maximum allowable response time required by
an application providing service of type t ∈ T .

rt ∈ R+ Minimum required reliability of IoT service of
type t ∈ T .

θm ∈ R+ Reliability of MEC node m ∈M .
pa ∈ R+ Processing capacity of application a ∈ A

hosted on m ∈M .
λtl ∈ Z+ Arrival rate of requests for an application of

type t ∈ T generated by IoT devices located
at l ∈ L.

wt ∈ Z+ Average number of CPU cycles per request for
an application of type t .

hl
′
l ∈ R+ Network delay of a request from its home MEC

node at l ∈ L to its assigned MEC node at l′ ∈
L.

Table 3.2: Parameters of WA-MIP.

That is to maximize the percentage of admitted load subject to the reliability and latency constraints.

To realize our objective, we introduce a binary decision variable zalt ∈ {0, 1} to determine if a work-

load generated from location l ∈ L requesting IoT service of type t ∈ T is mapped to application

a ∈ A that is hosted on a MEC node.

zalt =


1

if generated workload at location l demanding

service of type t is mapped to application a,

0 otherwise.

Further, a new decision variable ymlt ∈ {0, 1} is introduced to determine if workload generated from

53

location l ∈ L requesting service of type t ∈ T is mapped to MEC node m ∈M .

ymlt =


1

if generated workload at location l demanding

service of type t is assigned to MEC node m,

0 otherwise.

Further, we declare rmlt ∈ [0, 1] to depict the achieved reliability when sending the workload

generated at location l ∈ L requesting IoT application of type t ∈ T to MEC node m ∈M . Hence,

the following constraints are considered:

1) Workload Assignment:

We need to make sure that whenever there is a generated load (λtl > 0), it is mapped to an IoT

application a ∈ A; i.e., zalt = 1 ∑
a∈A

zalt ≥
λtl
H

∀l∈L
∀t∈T (3.4)

H is a large integer number.

Similarly, the load λtl is mapped to an MEC node m ∈M ; ymlt = 1

∑
m∈M

ymlt ≥
λtl
H

∀l∈L
∀t∈T (3.5)

Furthermore, the generated load is mapped to an application providing the same requested service

type. This is ensured by Eq.(3.6).

zalt ≤ µta.λtl
∀l∈L
∀t∈T
∀a∈A

(3.6)

Eq.(3.4)-(3.6) together ensure that loads would always be assigned to IoT applications and if there

exists no load, there will be no assignment.

Moreover, Eq.(3.7) and (3.8) ensure that whenever a load λtl is mapped to MEC node m ∈ M

(ymlt = 1), the load is also mapped to an application a ∈ A hosted on the same m (zalt = 1), and vice

versa.

zalt ≤
∑
m∈M

ymlt .σ
m
a

∀l∈L
∀t∈T
∀a∈A

(3.7)

ymlt ≤
∑
a∈A

zalt.σ
m
a

∀l∈L
∀t∈T
∀m∈M

(3.8)

54

2) Reliability Constraints:

In order to admit a workload requesting service of type t to an MEC node m, its requested service

requirements should be met. Hence, the required reliability rt has to be satisfied. Considering

both the service required reliability rt and the reliability of the MEC node θm, one of two possible

outcomes would occur. The first possibility is that for an MEC node m ∈ M with reliability θm,

the service required reliability rt is achieved, that is θm ≥ rt. Hence, if the workload is sent to

that MEC node, the achieved reliability would solely depend on the reliability of the one MEC

node processing it. Therefore, Eq.3.9 ensures that the achieved reliability is at least the required

reliability.

rmlt ≥ rt
∀t∈T
∀l∈L
∀m∈M

(3.9)

Where rmlt is the achieved reliability and is defined as: rmlt = ymlt .θm.

When considering all MEC nodes in the network, Eq.3.9 becomes:

∑
m

rmlt ≥ rt ∀t∈T
∀l∈L (3.10)

On the other hand, the other possibility would be that the required service reliability is not met,

that is non of the MEC nodes in the network could satisfy the required reliability (i.e θm < rt).

In this case, the workload is replicated and sent to multiple MEC nodes taking advantage of the

independency of their reliabilities. Hence, the failures of one MEC node would not influence the

availability of the other MEC nodes. This means that replicating and sending the workload to

multiple MEC nodes would increase the overall achieved reliability as it would become dependent

on the reliability of the MEC nodes that can accept the workload and its replicas. Hence, the new

achieved reliability becomes rmlt = 1 −
∏

m∈M (1 − ymlt .θm). Eq.(3.11) makes sure that the IoT

service required reliability is guaranteed:

1−
∏

m∈M
(1− ymlt .θm) ≥ rt ∀l∈L

∀t∈T (3.11)

Thus, a decision needs to be made on which subset of MEC nodes will satisfy the required reliability

of the requested service.

55

3) Latency Constraints:

The offloaded workload from IoT devices incurs different types of delays. These delays could be

due to accessing the network (access delay), redirecting the workload from the home MEC node

to another node (network delay) and queuing and processing delays (system delays). In this work,

for the sake of simplicity, we consider the access delays to be negligible. Hence, the total delay

incurred by the offloaded workload is represented solely by the system and network delays.

We use dmlt
network to depict the network delay experienced by workload generated from location l

requesting service of type t to be transfered to MEC node m and is given by:

dmlt
network =

∑
l′ 6=l

hl
′
l y

m
lt .π

l′
m

∀l∈L
∀t∈T
∀m∈M

(3.12)

Further, we define daltsystem to represent the system delay. Given that each IoT application is modeled

as M/M/1 queue with an average arrival rate of
∑

l′∈L z
a
l′t.x

t
l′ .λ

t
l′ and service rate of pa

wt
, the System

Delay is given by:

daltsystem = zalt

(
1

pa
wt
−
∑

l′∈L z
a
l′t.x

t
l′ .λ

t
l′

)
∀l∈L
∀t∈T
∀a∈A

(3.13)

To avoid congestion at the application, the service rate should be greater than the arrival rate as in

Eq.(3.14).
pa
wt
−
∑
l′∈L

zal′t.x
t
l′ .λ

t
l′ ≥ 0 ∀a∈A

∀t∈T (3.14)

Combining both delays together, the total delay Dma
lt incurred by offloading a workload to applica-

tion a hosted on an MEC node m is:

Dma
lt = 2dmlt

network + daltsystem

∀l∈L
∀t∈T
∀m∈M
∀a∈A

(3.15)

And finally, in order to meet the delay requirements δt of each IoT service provided by an

application of type t, we have:

Dma
lt ≤ δt

∀t∈T
∀a∈A
∀l∈L
∀m∈M

(3.16)

The above model is a mixed integer non-linear program. Appendix B presents the linearization of

Eqs.(3.11), (3.14) and (3.16).

56

3.4.3 Complexity Analysis

The WA is a MIP (WA-MIP) which is complex and hard to solve. Its NP-Hardness can be easily

proven by a reduction from the Generalized Assignment Problem (GAP) (known to be NP-Hard),

where the workloads represent the items to be assigned to bins (MEC nodes) [54, 70]. Given its

complexity, we devise two different approaches to solve it.

3.5 WA-D approach

Solving the workload assignment problem with respect to both reliability and latency require-

ments is challenging. In order to solve the problem, we exploit the independency of the reliability

and latency requirements and decompose the problem into two subproblems; the Reliability Aware

Candidate Selection subproblem (RACS) and the Latency Aware Workload Assignment subproblem

(LAWA).

3.5.1 RACS heuristic

Given the heterogeneity of the MEC nodes reliabilities, not all the MEC nodes can admit the

workloads coming from the different locations. Hence, for all workloads generated from different

locations demanding the same service type t, a set St of potential MEC nodes candidates is gen-

erated. The heuristic algorithm starts by determining the set of requested types by the generated

workloads. It then forms a set of combinations of MEC nodes. To avoid generating all possible

combinations (2M − 1), the size of each combination ranges between one MEC node and a prede-

fined numberN of MEC nodes. We chooseN based on a worst case scenario; that is when all MEC

nodes have the lowest possible reliability θm and a generated load requesting a service having the

highest required reliability rt. Hence, N is the minimum number of MEC nodes needed to satisfy

the service with the highest required reliability. Each combination is represented in binary to sim-

plify the computation and to depict which MEC nodes are in the set; 0 for m /∈ set and 1 otherwise.

For each requested type, the achieved reliability is computed for each combination according to

Eq.(3.11). If the achieved reliability is ≥ rt, the combination is added to St. The ith element in the

set St is denoted by St
i , and represents either a potential MEC node or a subset of them, and hence,

57

St
i ∈ St. We denote by I the set of all elements belonging to St. Further, each element i ∈ I is

weighted and all are sorted ascendingly according to the weighing function defined in Eq.3.17. A

pre-defined number of subsets i ∈ I with the minimum weight are selected for each St and passed

to the LAWA MIP.

W (MEC nodes subset) =

w1 (reliability(MEC nodes subset)− rt)

+ w2 (|MEC nodes subset|)

s.t : w1 + w2 = 1

(3.17)

In other words, the weighting function in Eq.(3.17) ensures using the available resources (MEC

nodes) efficiently by selecting the elements that precisely satisfy the required reliability of a specific

service of type t requested by a load. For instance, consider two elements in St with the same

number of MEC nodes and a load requesting a service of type t requiring a reliability of 0.999.

Mapping the load to the first element would achieve a reliability of 0.9999 and mapping it to the

second element would achieve a 0.999999 reliability. Hence, according to Eq.(3.17), the load should

be assigned to the first subset. Thus, a predefined number of elements, minimizing the difference

between the required reliability and achieved reliability and consisting of the lowest number of

resources (MEC nodes), are selected from each St.

3.5.2 LAWA MIP

Given the set St of the potential MEC nodes for the generated workloads from different locations

demanding service of type t obtained from the RACS heuristic, the LAWA MIP determines the

optimal candidate St
i for each generated load λtl . The optimal candidates are chosen to maximize

the fraction of admitted load while satisfying the workloads’ latency requirements. Formally, we

use the decision variable xtl ∈ [0, 1] as defined in section 3.4.2 to determine the fraction of admitted

load. The LAWA objective is as depicted in Eq.(3.18).

Maximize
∑
t∈T

∑
l∈L

λtl .x
t
l (3.18)

58

that is to maximize the percentage of admitted load subject to latency constraints. In order to meet

our objective, we define gtli to depict whether the ith element in the set St is selected to admit

workload λtl or not.

gtli =


1 if the ith element in St is selected,

0 otherwise.

Further, we use the decision variable zalt ∈ {0, 1} as defined in section 3.4.2 to determine if workload

generated from location l demanding service of type t ∈ T is mapped to application a ∈ A.

We consider the following constraints.

Eq.(3.19) makes sure that at most one element should be selected from St.

∑
i

gtli ≤ 1 ∀t∈T
∀l∈L (3.19)

We need to make sure that whenever there is a generated workload demanding service of type t

(λtl > 0), it is mapped to an IoT application a ∈ A hosted on an MEC node (zalt = 1).

∑
a∈A

zalt ≥
λtl
H

∀t∈T
∀l∈L (3.20)

Furthermore, the generated load is mapped to an application providing the same requested service

type. This is ensured by Eq.(3.21).

zalt ≤ µta.λtl
∀t∈T
∀a∈A
∀l∈L

(3.21)

Eqs. (3.20) and (3.21) together ensure that loads would always be assigned to IoT applications and

if there exists no load, there will be no assignment.

Moreover, we need to make sure that the workload λtl is assigned to an application a ∈ A that is

hosted on an MEC node m ∈M that is in the ith element in St. This is ensured by Eq.(3.22).

zalt ≤
∑
i∈I

∑
m∈St

i

gtli .σ
m
a

∀t∈T
∀l∈L
∀a∈A

(3.22)

Whenever an element i (subset of MEC nodes) is selected glti = 1, the load is assigned to all

59

applications of type t hosted on the MEC nodes in St
i . This is ensured by Eq.(3.23).

∑
i∈I
|St

i |gtli ≤
∑
a∈A

zalt
∀t∈T
∀l∈L (3.23)

Further, we need to make sure that each individual MEC node in the selected subset St
i meets the

delay requirements δt of workload λtl . This is verified by Eq.(3.24).

2

(∑
l′ 6=l

hl
′
l .z

a
lt.σ

m
a .π

l′
m

)
+ zalt

(
1

pa
wt
−
∑

l′∈L z
a
l′t.x

t
l′ .λ

t
l′

)
≤ δt

∀t∈T
∀a∈A
∀l∈L
∀m∈M

(3.24)

To avoid congestion, the service rate should be greater than the arrival rate. This is ensured by

Eq.(3.25).
pa
wt
−
∑
l′∈L

zal′t.x
t
l′ .λ

t
l′ ≥ 0 ∀a∈A

∀t∈T (3.25)

As WA-D requires to solve an MIP, this makes it challenging to solve the problem. Hence, in the

following section we propose a meta-heuristic approach to accelerate the performance of WA-D.

Eqs.(3.24) and (3.25) are non-linear and their linearization is presented in Appendix B.

3.6 WA-Tabu

The Tabu search-based algorithm consists of the following components:

(1) Initial solution: The WA-Tabu starts by an initialization step of constructing an initial solu-

tion for the workload assignment to the MEC nodes. This is done by first generating a set

of potential candidates St for each requested IoT service type t ∈ T as described in section

3.5.1. The load assignment is then performed by selecting the best subset of MEC nodes

for each workload. The selection is based on maximizing the weighting function given in

Eq.(3.26) that is conditioned to satisfy the latency requirements of the workload’s requested

60

service.

W (Mec nodes subset) = w1(minxt
l
)

− w2 (reliability(MEC nodes subset)− rt)

− w3 (|MEC nodes subset|)

s.t : w1 + w2 + w3 = 1

(3.26)

Where minxt
l

is the fraction of the load that a subset can admit, determined by the MEC

node admitting the least fraction of load. In other words, the best subset of MEC nodes is

the one satisfying the latency requirement of the workload’s requested service, maximizing

the percentage of admitted load, minimizing the difference between the required and the

achieved reliability, and using the lowest number of resources (MEC nodes). The priority

of load assignment is then calculated for each load based on the priority function given in

Eq.(3.27) and the load with the highest priority is assigned. The process repeats until all

loads are considered.

P (λtl) = W (Best MEC nodes subset)

−W (2nd Best MEC nodes subset)

(3.27)

(2) Neighborhood Solutions: Given the initial load assignment, the algorithm searches for im-

proving the workload assignment in the neighborhood of the current solution based on the

weighting function defined in Eq.(3.26). Within this context, a neighborhood is defined as

any solution that involves shifting a workload from the MEC nodes subset that is assigned

to, to another. In order to reduce the search space, we consider shifting loads from the most

loaded subsets to the least. Hence, if an improved workload assignment is found, the initial

load assignment is updated. If, however, no improving assignments were found, the algorithm

finds the first non-improving assignment by allowing shifting a workload to the first subset

yielding less weight. This raises the chances of reaching a global maximum.

61

(3) Tabu list: A tabu move is defined as shifting the load assignment of a workload from the

more loaded subsets to the less loaded. Once the shift is performed, the tabu move is added

to the tabu list where it is not considered for the next tabuListSize iterations. This prevents

the workload from cycling back to its original subset before allowing other possible moves to

be considered. Further, choosing a solution with a lower weight than the current solution is

also considered as a tabu move.

(4) Aspiration Criterion: In certain scenarios, we allow the violation of the tabu status of moves

if the move gives a better solution than the best solution found so far.

(5) Stopping Criteria: The algorithm iterates until:

• A maximum number of iterations is reached.

• All the loads are admitted.

The pseudocode for the Tabu-search is shown in Algorithm (1).

3.7 Numerical Evaluation

In this section, we compare the performance of WA-MIP, WA-D and WA-Tabu through exten-

sive numerical evaluation. Further, we evaluate the efficiency of our proposed WA-Tabu approach

under varying different parameters.

3.7.1 Experimental setup

To evaluate our algorithms, we consider a network with L = 25 locations (unless stated oth-

erwise) where at each location an MEC node is deployed. Each MEC node has a reliability θm

that is randomly generated between [0.9 − 0.96] [71]. Further, from each location a workload is

generated with an average arrival rate λtl taking random values between [70 − 300]requests/sec.

The generated workloads request different types of IoT services with various latency and reliabil-

ity requirements. Hence, we consider T = 4 types of IoT services corresponding to the industry

verticals and their QoS requirements presented in Table 3.1, which yields an aggregate load of

62

Algorithm 1 WA-Tabu
1: Input:
2: ymlt current, x

t
lcurrent: initial solution

3: tabuMove : (l, t, subsetoriginal, subsetnew)
4: TabuList: holds tabu moves
5: TabuListSize: indicates size of TabuList
6: ymlt best, x

t
lbest: indicates the best Assignment so far

7: while stopping criteria is not met
8: firstImrpovAssign← getF irstImprovAssign()
9: if (firstImprovAssign is found and /∈ tabuList)

10: ymlt current, x
t
lcurrent← firstImrpovAssign

11: else
12: firstNonImprovAssign←
13: getF irstNonImrpovAssign()
14: if (firstNonImprovAssign /∈ tabuList)
15: ymlt current, x

t
lcurrent←

16: firstNonImrpovAssign
17: end if
18: if

∑
xtlcurrent >

∑
xtlbest

19: ymlt best, x
t
lbest← ymlt current, x

t
lcurrent

20: end if
21: Add tabuMove to tabuList
22: if tabuList is full
23: remove first element added to tabuList
24: end if
25: iter + +
26: end while

63

[7k − 30k]requests/sec. In addition, for each of the requested types, we assume an average com-

puting size wt generated randomly between 1× 106 and 2× 106CPUcycles per request. In order

to accommodate the generated workload, we consider applications providing different IoT services

hosted on the MEC nodes. We then assume that all the MEC nodes support all types of applications,

and hence, the number of applications A is equal to T ×M . Each of the applications is assigned

computing resources pa chosen randomly within the range of [1.7 − 1.9]GHz. Furthermore, since

some of the generated loads might migrate to different MEC nodes other than their home MEC

nodes, we assume the network delay to be generated between 1 and 2ms at random. Moreover,

since the loads could be replicated and offloaded to a subset of MEC nodes satisfying the QoS re-

quirements of its requested type, we choose the size of the set St of the potential subsets that a

load could be assigned to, to be between 200 and 900 (unless stated otherwise). All our numerical

evaluations are averaged over 5 sets. The WA-MIP and the WA-D are evaluated using IBM ILOG

CPLEX Optimization Studio v.12.8.

3.7.2 WA-MIP vs. WA-D vs. WA-Tabu

We first compare the performance of our proposed solutions; WA-MIP, WA-D and WA-Tabu

in terms of optimality (total admitted load) and scalability (CPU run time). To do so, we vary the

network size by increasing the number of locations L, the number of MEC nodesM and the number

of applications A. In fact, increasing the number of locations in the network implies increasing the

aggregate generated load. Thus, more MEC nodes subsets are needed to accommodate the added

load, and hence, increasing I (the size of St) as the size of the network increases for both WA-D and

WA-Tabu. Further, we consider that the applications are of T = 4 different types belonging to smart

grid industry vertical with δt = 20ms and rt = 99.999%. The evaluation results are presented in

Table 3.3.

• Scalability: From Table 3.3 it is shown that as the size of the network increases, the execution

time (CPU run time) increases exponentially for the WA-MIP. This behavior continues until

it fails to give a solution when the size of the network is L = M = 20, T = 4 and A = 80.

On the other hand, WA-D proved to be more scalable compared to the WA-MIP. This can be

64

Instance
<L, M, T, A, I>

Execution Time (sec) Admitted Load (%)
WA-MIP WA-D WA-Tabu WA-MIP WA-D WA-Tabu

<5, 5, 4, 20, 10> 0.025 0.020 0.017 100% 100% 100%
<8, 8, 4, 32, 50> 0.99 0.36 0.047 100% 100% 100%

<11, 11, 4, 44, 100> 2.1 1.31 0.13 100% 100% 100%
<14, 14, 4, 56, 200> 20 2.37 0.40 100% 100% 100%
<17, 17, 4, 68, 300> 288.4 15.2 0.87 100% 100% 100%
<20, 20, 4, 80, 500> Out of Mem. 27.07 2.40 - 100% 100%
<23, 23, 4, 92, 700> - 20.1mins 4.61 - 100% 100%

Table 3.3: WA-MIP vs. WA-D vs. WA-Tabu.

seen from the execution time of the WA-D where it increases exponentially as the size of the

network increases, but at a slower rate compared to the WA-MIP. It can be observed that the

WA-D gave a solution when the network size was L = M = 25, T = 4 and A = 92, but the

run time jumped to 20.1mins. Alternatively, the WA-Tabu proved to be the most scalable as

its execution time increases linearly as the size of the network increases.

• Optimality: As can be seen from Table 3.3, the algorithm WA-MIP was able to accept all

the load up to the network size L = M = 17, T = 4 and A = 68. It failed however, to give

a feasible solution for the last two instances. On the other hand, the algorithms WA-D and

WA-Tabu were able to admit all the generated load which yields to an optimality gap of 0%

in the considered instances.

3.7.3 WA-D vs. WA-Tabu

In the previous section, we showed that WA-MIP is not scalable. Further, we showed that WA-D

is more scalable than WA-MIP, and WA-Tabu algorithm is the most scalable for the chosen values of

I in Table 3.3. In this section, we further evaluate the performance of the WA-D and WA-Tabu. We

thus select the instance from Table 3.3 with the network size L = M = 17, T = 4 and A = 68 to

investigate the performance under varying the size of St. We vary the size of St between (5− 300).

Our evaluation is in terms of execution time and total admitted load. The results are shown in

Figures 3.3 and 3.4.

From Figure 3.3, we observe that for small values of I (I = 5, I = 20), WA-D fails to give a

feasible solution after running for a couple of hours as the LAWA-MIP was hard to solve. While on

the other hand, WA-Tabu admits 90.9% and 98.5% of the load for I = 5 and I = 20 respectively.

65

0 50 100 150 200 250 300
Size of St

75

80

85

90

95

100

105

 A
dm

itt
ed

 L
oa

d
(%

)

 Admitted Load vs. Size of St

WA-Tabu

WA-D(20, infeasible)
(5, infeasible)

Figure 3.3: Admitted load under varying size of St

Further, as the size of I increases, the admission rate increases for both WA-D and WA-Tabu. This

is explained by the fact that increasing the size of St means increasing the number of potential

subsets of MEC nodes that the generated loads could be assigned to, and hence, admitting more

load. Moreover, for I = 80, WA-D performed slightly better than the WA-Tabu in terms of the total

admitted load with a difference less than 1%. In addition, for I > 80, both algorithms admit 100%

of the total generated load.

Moving to Figure 3.4, it can be observed that the CPU run time for WA-D decreases dramatically

as the size of I increases. This is due to the fact that increasing I makes it easier for the WA-D

to find a solution as more potential candidates (subsets) becomes available to it, and hence, the

lower the execution time. More interestingly, the CPU run time for WA-Tabu algorithm increases

slightly as I increases up to I = 80 where it starts decreasing until I is equal to 140, then it

starts increasing again. The first increasing behavior is because WA-Tabu iterates over the potential

subsets to construct the initial solution and find neighboring solutions. Hence, increasing the size of

I would increase the run time. When the size of I exceeds 80, the initial solution of the WA-Tabu

gives a 100% admitted load, and hence, the algorithm terminates before iterating over the subsets in

66

0 50 100 150 200 250 300 350
Size of St

0

50

100

150

200

 C
PU

 R
un

 T
im

e
(s

ec
)

 CPU Run Time vs. Size of St

WA-Tabu

WA-D

0.551.32 0.67
16.54

0.87

15.2

121.97

227.96

0.39
0.74

Figure 3.4: Execution time under varying I

St to improve the initial solution as the stopping criterion is met. Finally, the execution time hardly

increases for I > 140 as the WA-Tabu would only iterate over the subsets to construct the initial

solution.

3.7.4 Performance evaluation of WA-Tabu:

Varying the workloads for different industry verticals and its impact on the admission rate

We vary the workloads and study the impact on the admission rate for different industry verticals

with different requirements. Thus, we increase the generated workload and choose the values of λtl

to be {100, 200, 300} requests/sec. The results are presented in Figure(3.5). It can be seen from

the figure that for each industry vertical, as the generated workload per location l per IoT service

type t increases, the admission rate decreases. This is due to the fact that as λtl increases, more

load is requesting to be processed by the same available resources a ∈ A, which are not sufficient

to accommodate the newly generated load with the given QoS requirements. Thus, this results in

admitting less load. Moreover, for the same value of λtl , the admitted load increases as the latency

and reliability requirements become less strict. For instance, for λtl = 200, the total admitted load

67

 Admitted Load vs. Industry Vertical

(10 , 99.999) (20 , 99.999) (50 , 99.99) (100 , 99.9)
Industry Vertical (t (ms),rt (%))

0

20

40

60

80

100

120

 A
dm

itt
ed

 L
oa

d
(%

)

l
t=100

l
t=200

l
t=300

92.44%
100%

68.0%

100%

72.72%

93.39%
100% 100%

95.9%
89.56%

64.53%

99.99%
Tele
Surgery

Process
AutomationSmart

Grids

Factory
Automation

Figure 3.5: Admission rate under varying workloads

for the industry vertical factory automation with the QoS requirements (δt = 10ms, rt = 99.999%)

is 89.56%. While on the other hand, the admitted load for the smart grid industry vertical with

the QoS requirements (20ms, 99.999%) increased to 92.44%. The admission rate keeps increasing

to reach 100% for the industry vertical process automation with the least strict QoS requirements

(100ms, 99.9%).

Varying the network delay for ITS industry vertical and its impact on the admission rate

We evaluate the impact of increasing the network delay on the admission rate for the Intelligent

transportation systems (ITS) industry vertical with the latency requirements (δt = 30ms). We thus

vary the network delay between 6 and 16ms. The results are depicted in Figure(3.6). It can be

observed from the figure that as the network delay increases, the admission rate decreases. For

instance, the total admitted load decreased by almost 17% when the network delay went from 12ms

to 14ms. This behavior is due to the fact that increasing the network delay leads to a more limited

system delay at the MEC nodes to process the requests within the deadline(30ms). Further, for the

network delay 16ms, no load was admitted as no system delay remained to process the workload

68

 Admitted Load vs. Network Delay

6 8 10 12 14 16
Network delay (ms)

0

20

40

60

80

100

120

 A
dm

itt
ed

 L
oa

d
(%

)

ITS
99.39% 99.13% 98.49% 97.92%

81.25%

0.0%

Figure 3.6: Admission rate under varying the network delay

within the maximum allowable response time.

Varying the required reliability for different response times and its impact on the admission

rate

We consider the reliability requirements for different IoT industry verticals and overlook their

latency requirements. We then study the impact of varying the required reliability (rt) on the admis-

sion rate for two different deadlines (10, 100ms). Our results depicted in Figure(3.7) show that for a

specific maximum allowable response time (δt), as the required reliability becomes more strict, the

admission rate decreases. In fact, increasing the reliability requirements is coupled with replicating

the workload to more MEC nodes, which leads to an increase in the queuing delay at the MEC

nodes. Hence, the available resources (applications) would not be sufficient to completely process

the workload. For instance, for δt = 10ms, the admission rate decreased from 98.9% to 85.9%

when the required reliability went from 99.9% to a more strict value of 99.9999%. Moreover, it

can be seen that for a less strict deadline (100ms), more system delay at the MEC nodes remains to

process the workload, and hence, the admission rate increases as compared to 10ms.

69

99.9 99.99 99.999 99.9999
Required Reliability (%)

86

88

90

92

94

96

98

100

102

 A
dm

itt
ed

 L
oa

d
(%

)

 Admitted Load vs. Required Reliability

t=10ms

t=100ms

Figure 3.7: Admission rate under varying the required reliability

RACS-heuristic vs. random candidate selection

As part of our evaluation, we explore different strategies for the selection of the subsets com-

posing St. Particularly, as discussed in section 3.5.1, we use the RACS heuristic as our selection

methodology to select the subsets based on minimizing the achieved reliability with respect to the

reliability required, and the used resources (number of used MEC nodes). Alternatively, we devise

another selection strategy that randomly selects the subsets. We evaluate the performance of the

WA-Tabu algorithm for different industry verticals under both strategies in terms of admission rate

and resource utilization. The results are shown in Figures (3.8) and (3.9).

From Figure (3.8), it is observed that for the same selection strategy, the admission rate in-

creases as the QoS requirements become less strict from one industry vertical to the other. More

interestingly, for a given industry vertical, the random selection strategy gives a higher admission

rate compared to the RACS method, with an insignificant difference between 0 and 7%. While on

the other hand, the difference in the resource utilization is remarkable (between 12 and 24%) in fa-

vor of the RACS heuristic as demonstrated in Figure (3.9). More precisely, for the industry vertical

70

 Admitted Load vs. Industry Vertical

(10 , 99.999) (20 , 99.999) (50 , 99.99) (100 , 99.9)
Industry Vertical (t (ms),rt (%))

0

20

40

60

80

100

120

 A
dm

itt
ed

 L
oa

d
(%

)

RACS Heuristic
Random Selection

92.95%
97.95% 100% 100%100%99.7% 99.9%

95.2%

Tele
Surgery

Process
AutomationFactory

Automation

Smart
Grids

Figure 3.8: Admission rate for different subsets selection strategies

Resource Utilization vs. Industry Vertical

(10 , 99.999) (20 , 99.999) (50 , 99.99) (100 , 99.9)
Industry Vertical (t (ms),rt (%))

0

20

40

60

80

100

120

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

RACS Heuristic
Random Selection

100% 100%

Tele
Surgery

84%

100%

76%

100%

Process
Automation

88% 88%

Smart
GridsFactory

Automation

Figure 3.9: Resource utilization for different subsets selection strategies

factory automation with the the most strict QoS requirements, the WA-Tabu with the random selec-

tion strategy obtained a 7% more admitted load than the RACS heuristic. However, it utilized 12%

71

more resources to admit the load. Moreover, for the industry vertical process automation with the

least stringent QoS requirements, the resource utilization with the RACS heuristic was significantly

lower than the random selection with a difference of 24%, while both yield the same admitted load

(100%). In fact, the random selection method provides more diverse subsets composing St which

yields to less common MEC nodes between the subsets, and hence, the more admitted load. How-

ever, this diversity increases the probability of using more resources, and hence, the higher resource

utilization. One can note that there is a trade-off between admitting more load and utilizing less

resources. Moreover, from the network operator perspective, using the RACS strategy would al-

low saving energy, as he/she could shut down the unused MEC nodes. Another scenario where the

RACS selection method would be more favorable is when an additional load is generated in the

network, the unused resources could then be utilized to admit it.

3.8 Conclusion

In this chapter, we studied the WA problem and evaluated different approaches to solve it. We

first mathematically formulated the problem as a MIP with the objective of maximizing the total

admitted load to the network with respect to the IoT services QoS requirements. We then proved

the non-scalability of the WA-MIP in addition to the NP-Hardness of the WA problem. Therefore,

we developed the WA-D that decomposes the problem into two subproblems; namely, RACS and

LAWA-MIP. The decomposition approach showed a significant improvement over scalability as

compared to WA-MIP. Although WA-D proved to be more scalable, it is not scalable enough for very

large networks. Thus, a meta-heuristic approach (WA-Tabu) was developed to solve the problem for

larger networks with heterogeneous QoS requirements efficiently. Through extensive simulations

under various parameters, we evaluated the performance of our proposed approach (WA-Tabu). Our

proposed WA-Tabu aids the network operators to use the available resources in a network efficiently

to serve the maximum number of end users in an IoT environment.

72

Chapter 4

Conclusion & Future Work

4.1 Conclusion

MEC has emerged as an enabling paradigm to help in the realization of 5G. The integration of

MEC and 5G in an IoT environment would offer the end users a truly immersive experience. How-

ever, this integration would raise some challenges have gained a lot of attention in the literature.

In this thesis, we studied closely the different challenges facing the new emerging technologies

(i.e.,5G, MEC, uRLLC, and IoT) and proposed efficient approaches to solve them. Specifically,

in chapter 2, we studied the Resource Provisioning Workload Assignment (RPWA) problem that

jointly tackles the MEC nodes and IoT applications provisioning along with the workload assign-

ment problems. We considered a smart environment backed with MEC, with myriad IoT devices

generating heterogeneous workloads requesting different IoT services with stringent latency re-

quirements, corresponding to different industry verticals. We proposed an efficient decomposition

approach (RPWA-D) to solve the problem. In RPWA-D we decomposed the RPWA problem into

two subproblems; Delay Aware Load Assignment (DALA) subproblem to tackle the workload as-

signment along with determining the needed IoT applications resources to process the load, and the

Mobile Edge Servers Dimensioning (MESD) subproblem to address the placement of edge servers

and the IoT applications. Through extensive simulations, the results showed that our proposed

solution approach can be efficiently used by network operators to design and plan cost effective net-

works. We further extended this work in our second contribution (chapter 3) to consider the uRLLC

73

services offered by 5G and address the workload assignment (WA) problem in a smart environment

backed with MEC. Within such an environment, enormous number of IoT devices are generating

heterogeneous workloads requesting different IoT services with heterogeneous QoS requirements

(i.e. low latency and ultra high reliability). We studied and formulated the WA problem as an MIP,

and proposed two different approaches to solve it; WA-D and WA-Tabu. In WA-D, we decomposed

the problem into Reliability Aware Candidate Selection (RACS) subproblem to generate the set of

potential subsets of MEC nodes satisfying the availabiliy requirements of the IoT services. In the

second subproblem Latency Aware Workload Assignment (LAWA), the results of RACS are used to

determine the optimal assignment of each generated load satisfying its service latency requirement.

As the decomposition approach required solving an MIP, we proposed a Tabu search-based meta

heuristic (WA-Tabu) to accelerate its performance. Through our numerical evaluation, WA-Tabu

proved to be the most scalable and could be leveraged by network operators to serve the end users

and provide them with a satisfactory QoE and QoS.

4.2 Future Work

As a future work, we plan to extend our work in the second contribution (chapter 3) to in-

clude: 1) the provisioning of MEC nodes; deciding on the number and placement of MEC nodes to

be deployed at different locations in the network, 2) the placement of IoT applications resources;

deciding on the number of the applications, which MEC nodes to host them and the amount of re-

sources allocated to them, along with 3) the workload assignment. Another future direction could

be the dynamic workload assignment as an extension to our second contribution. The workload

assignment problem that we considered in 3 was based on the assumption that the generated work-

loads were already known. This assumption could be reformed to consider a dynamic environment

with an online arrival of workloads. One rather interesting research direction is the adoption of fly-

ing base stations in 5G to provide network coverage in locations where the network infrastructure

is scarce. This concept is anticipated to be fully utilized with the introduction of 6G to not only

provide network coverage, but also serve as computing servers [72]. Hence, provisioning the flying

base stations within 6G would be an interesting research direction.

74

Appendix A

Linearization of RPWA problem

A.1 Linearization of RPWA-MIP constraints

Linearization of Eq.(2.7)

Eq.(2.7) is non linear and can be linearized by declaring a new decision variable θlma ∈ R+ such

that:

θlma = pay
lm
a

∀l∈L
∀m∈M
∀a∈A

(A.1)

Eq.(2.7) can then be replaced by the following equations:

∑
l∈L

∑
a∈A

θlma ≤ cm ∀m ∈M (A.2)

θlma ≤ Hylma
∀l∈L
∀m∈M
∀a∈A

(A.3)

θlma ≤ pa
∀l∈L
∀m∈M
∀a∈A

(A.4)

θlma ≥ pa − (1− ylma)H
∀l∈L
∀m∈M
∀a∈A

(A.5)

θlma ≥ 0
∀l∈L
∀m∈M
∀a∈A

(A.6)

75

Where H = pamax Linarization of Eq.(2.18)

The total delay in Eq.(2.18) is given by:

2
∑
a∈A

∑
l′ 6=l

hl
′
l z

a
ltσ

l′
a+

∑
a∈A

zalt

(
1

pa
wt
−
∑

l′′∈L z
a
l′′tλ

t
l′′

)
≤ δt ∀l∈L∀t∈T

(A.7)

Eq.(A.7) is non linear and can be linearized by declaring a new decision variable ζalt such that:

ζalt ≥ zalt

(
1

pa
wt
−
∑

l′′∈L z
a
l′′tλ

t
l′′

)
∀l∈L
∀a∈A
∀t∈T

(A.8)

Hence, Eq.(A.7) becomes:

2
∑
a∈A

∑
l′ 6=l

hl
′
l z

a
ltσ

l′
a︸ ︷︷ ︸

dltn

+
∑
a∈A

ζalt︸ ︷︷ ︸
dlts

≤ δt ∀l∈L∀t∈T (A.9)

Eq.(A.9) is non linear and can be linearized by declaring a new decision variable ψal′
lt ∈ {0, 1} such

that:

ψal′
lt = zaltσ

l′
a

∀l,l′∈L
∀t∈T
∀a∈A

(A.10)

Eq.(A.9) can then be replaced by the following equations:

2
∑
a∈A

∑
l′ 6=l

hl
′
l ψ

al′
lt︸ ︷︷ ︸

dltn

+
∑
a∈A

ζalt︸ ︷︷ ︸
dlts

≤ δt ∀l∈L∀t∈T (A.11)

ψal′
lt ≤ zalt

∀l,l′∈L
∀t∈T
∀a∈A

(A.12)

ψal′
lt ≤ σl

′
a

∀l,l′∈L
∀t∈T
∀a∈A

(A.13)

ψal′
lt ≥ zalt + σl

′
a − 1

∀l,l′∈L
∀t∈T
∀a∈A

(A.14)

76

Eq.(A.8) is non linear and can be linearized by rewriting it as:

ζalt
pa
wt
−
∑
l′′∈L

ζaltz
a
l′′tλ

t
l′′ ≥ zalt

∀l∈L
∀a∈A
∀t∈T

(A.15)

and then declaring a new decision variable βal
′′

lt such that:

βal
′′

lt = ζaltz
a
l′′t

∀l,l′′∈L
∀t∈T
∀a∈A

(A.16)

Hence, Eq.(A.15) can be replaced by the following:

ζalt
pa
wt
−
∑
l′′∈L

βal
′′

lt λtl′′ ≥ zalt
∀l∈L
∀a∈A
∀t∈T

(A.17)

βal
′′

lt ≤ Hzal′′t
∀l,l′∈L
∀t∈T
∀a∈A

(A.18)

βal
′′′

lt ≤ ζalt
∀l,l′∈L
∀t∈T
∀a∈A

(A.19)

βal
′′

lt ≥ ζalt − (1− zal′′t)H
∀l,l′∈L
∀t∈T
∀a∈A

(A.20)

βal
′′

lt ≥ 0
∀l,l′∈L
∀t∈T
∀a∈A

(A.21)

Where H is a big integer number.

Eq.(A.17) is still non linear and can be linearized using the McCormick envelopes method. This

method involves introducing a new decision variable γalt such that:

γalt = ζaltpa
∀l∈L
∀t∈T
∀a∈A

(A.22)

In addition, since ζalt and pa are bounded by:

∵ 0 ≤ ζalt ≤
H

pamin

(A.23)

∵ 0 ≤ pa ≤ pamax (A.24)

77

Thus, Eq.(A.17) can be replaced with the following equations:

γalt
wt
−
∑
l′′∈L

βal
′′

lt λtl′′ ≥ zalt
∀l∈L
∀a∈A
∀t∈T

(A.25)

γalt ≥ 0
∀l∈L
∀a∈A
∀t∈T

(A.26)

γalt ≥
H

pamin

pa + ζaltp
a
max −

H

pamin

pamax

∀l∈L
∀a∈A
∀t∈T

(A.27)

γalt ≤
H

pamin

pa
∀l∈L
∀a∈A
∀t∈T

(A.28)

γalt ≤ ζaltpamax

∀l∈L
∀a∈A
∀t∈T

(A.29)

A.2 Linearization of DALA-MIP constraints

Linearization of Eq.(2.26)

Eq.(2.26) is non linear and can be rewritten as in Eq.(A.30)

∑
a∈At

zar
pa
w
−
∑
a∈At

∑
r′∈Rt

zar z
a
r′λr′αr′ ≥

1

δ′
∀r ∈ Rt (A.30)

Eq.(A.30) can the be linearized by declaring three new decision variables: νar ∈ R+ such that:

νar = zar pa
∀a∈At
∀r∈Rt

(A.31)

and τarr′ ∈ {0, 1} such that;

τarr′ = zar z
a
r′
∀a∈At
∀r,r′∈Rt

(A.32)

γarr′ ∈ [0− 1] such that:

γarr′ = τarr′α
′
r
∀a∈At
∀r,r′∈Rt

(A.33)

Eq.(A.30) can then be replaced by the following equations:

νar ≤ zar pamax
∀a∈At
∀r∈Rt

(A.34)

78

νar ≤ pa ∀a∈At
∀r∈Rt

(A.35)

νar ≥ pa − pamax(1− zar) ∀a∈At
∀r∈Rt

(A.36)

τarr′ ≤ zar
∀a∈At
∀r,r′∈Rt

(A.37)

τarr′ ≤ zar′
∀a∈At
∀r,r′∈Rt

(A.38)

τarr′ ≥ zar + zar′ − 1 ∀a∈At
∀r,r′∈Rt

(A.39)

γarr′ ≤ τarr′
∀a∈At
∀r,r′∈Rt

(A.40)

γarr′ ≤ αr
∀a∈At
∀r,r′∈Rt

(A.41)

γarr′ ≥ αr − (1− τarr′)
∀a∈At
∀r,r′∈Rt

(A.42)

∑
a∈At

νar
w
−
∑
a∈At

∑
r′∈Rt

γarr′λr′ ≥
1

δ′
∀r ∈ Rt (A.43)

Linearization of Eq.(2.28)

Eq.(2.28) is non linear and can be linearized by declaring new decision variable xar ∈ [0, 1] such

that:

xar = zarαr
∀a∈At
∀r∈Rt

(A.44)

Eq.(2.28) can then be replaced by the following equations:

xar ≤ zar ∀a∈At
∀r∈Rt

(A.45)

xar ≤ αa
∀a∈At
∀r∈Rt

(A.46)

xar ≥ αr − (1− zar) ∀a∈At
∀r∈Rt

(A.47)

pa
w
−
∑
r∈Rt

xarλr > 0 ∀a ∈ At (A.48)

79

Appendix B

Linearization of WA problem

B.1 Linearization of Eq.(3.11)

Eq.(3.11) is not linear and can be linearized by first rearranging the terms as follows:

1− rt ≥
∏

m∈M
(1− ymlt .θm) ∀t∈T

∀l∈L (B.1)

and then taking the natural logarithm of both sides, we get:

ln(1− rt) ≥ ln

(∏
m∈M

(1− ymlt .θm)

)
∀t∈T
∀l∈L (B.2)

Using the natural logarithm properties, Eq.(B.2) becomes:

ln(1− rt) ≥
∑
m∈M

ln

(
(1− ymlt .θm)

)
∀t∈T
∀l∈L (B.3)

Now, Eq.(B.3) can be linearized by observing the two possible outcomes of its right hand side:

ln(1− ymlt .θm) =


ln(1− θm) if ymlt = 1,

0 if ymlt = 0.

80

Hence, the right hand side of Eq.(B.3) could be rewritten as in Eq.(B.4).

∑
m∈M

ymlt (ln(1− θm)) (B.4)

Thus, Eq.(3.11) can then be replaced by Eq.(B.5).

ln(1− rt) ≥
∑
m∈M

ymlt ln

(
(1− θm)

)
∀t∈T
∀l∈L (B.5)

B.2 Linearization of Eqs.(3.16) and (3.24)

Equations (3.16) and (3.24) are not linear and can be linearized by rewriting them as follows:

zalt

[
2

(∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m

)
+

(
1

pa
wt
−
∑

l′′∈L z
a
l′′t.x

t
l′′ .λ

t
l′′

)]
≤ δt

∀l∈L
∀t∈T
∀a∈A
∀m∈M

(B.6)

zalt
pa
wt
−
∑

l′′∈L z
a
l′′t.x

t
l′′ .λ

t
l′′

(
2.
pa
wt

∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m−

2.
∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m.
∑
l′′∈L

zal′′t.x
t
l′′ .λ

t
l′′ + 1

)
≤ δt

∀l∈L
∀t∈T
∀a∈A
∀m∈M

(B.7)

(
zalt.2.

pa
wt

∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m−

2.
∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m.
∑
l′′∈L

zalt.z
a
l′′t.x

t
l′′ .λ

t
l′′ + zalt

)

≤ δt.
pa
wt
−
∑
l′′∈L

zal′′t.x
t
l′′ .λ

t
l′′

∀l∈L
∀t∈T
∀a∈A
∀m∈M

(B.8)

Eq.(B.8) is nonlinear and can be linearized by declaring two new decision variables βall′′t ∈

81

{0, 1} and ψa
l′′t ∈ [0, 1] such that:

ψa
l′′t = zal′′t.x

t
l′′
∀l′′∈L
∀t∈T
∀a∈A

(B.9)

βall′′t = zalt.ψ
a
l′′t

∀l,l′′∈L
∀t∈T
∀a∈A

(B.10)

Eq.(B.8) can then be replaced by the following equations:

(
zalt.2.

pa
wt

∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m−

2.
∑
l′ 6=l

hl
′
l .σ

m
a .π

l′
m.
∑
l′′∈L

βall′′t.λ
t
l′′ + zalt

)

≤ δt.
pa
wt
−
∑
l′′∈L

ψa
l′′t.λ

t
l′′

∀l∈L
∀t∈T
∀a∈A
∀m∈M

(B.11)

ψa
l′′t ≤ zal′′t

∀l′′∈L
∀t∈T
∀a∈A

(B.12)

ψa
l′′t ≤ xtl′′

∀l′′∈L
∀t∈T
∀a∈A

(B.13)

ψa
l′′t ≥ xtl′′ + zal′′t − 1

∀l′′∈L
∀t∈T
∀a∈A

(B.14)

ψa
l′′t ≥ 0

∀l′′∈L
∀t∈T
∀a∈A

(B.15)

βall′′t ≤ zalt
∀l,l′′∈L
∀t∈T
∀a∈A

(B.16)

βall′′t ≤ ψa
l′′t

∀l,l′′∈L
∀t∈T
∀a∈A

(B.17)

βall′′t ≥ zalt + ψa
l′′t − 1

∀l,l′′∈L
∀t∈T
∀a∈A

(B.18)

βall′′t ≥ 0
∀l,l′′∈L
∀t∈T
∀a∈A

(B.19)

82

B.3 Linearization of Eqs.(3.14) and (3.25)

Eqs.(3.14) and (3.25) are nonlinear and can be linearized by replacing them by Eqs.(B.12),

(B.13), (B.14), (B.15) and (B.20).

pa
wt
−
∑
l′∈L

ψa
l′t.λ

t
l′ ≥ 0 ∀t∈T

∀a∈A (B.20)

83

Bibliography

[1] M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler,

“Business case and technology analysis for 5g low latency applications,” IEEE Access, vol. 5,

pp. 5917–5935, 2017.

[2] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf,

B. Almeroth, J. Voigt, I. Riedel et al., “Latency critical iot applications in 5g: Perspective

on the design of radio interface and network architecture,” IEEE Communications Magazine,

vol. 55, no. 2, pp. 70–78, 2017.

[3] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and emerging technologies,”

IEEE access, vol. 3, pp. 1206–1232, 2015.

[4] V. R. Atukuri and M. P. RamaKrishna Mathe, “Network evolution in 3g/4g: Applications and

security issues,” International Journal of Computer Science and Information Technologies,

vol. 2, no. 6, pp. 2835–2837.

[5] M. A. Albreem, “5g wireless communication systems: Vision and challenges,” in 2015 Inter-

national Conference on Computer, Communications, and Control Technology (I4CT). IEEE,

2015, pp. 493–497.

[6] D. Evans, “The internet of things how the next evolution of the internet is changing every-

thing,” Cisco Internet Business Solutions Group (IBSG), Tech. Rep., apr 2011.

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things:

A survey on enabling technologies, protocols, and applications,” IEEE communications sur-

veys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

84

[8] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of things (iot): A literature review,”

Journal of Computer and Communications, vol. 3, no. 05, p. 164, 2015.

[9] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot: Applications, challenges,

and opportunities with china perspective,” IEEE Internet of Things journal, vol. 1, no. 4, pp.

349–359, 2014.

[10] N. Saxena, A. Roy, B. J. Sahu, and H. Kim, “Efficient iot gateway over 5g wireless: A new

design with prototype and implementation results,” IEEE Communications Magazine, vol. 55,

no. 2, pp. 97–105, 2017.

[11] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5g wireless network slicing for

embb, urllc, and mmtc: A communication-theoretic view,” IEEE Access, vol. 6, pp. 55 765–

55 779, 2018.

[12] R. S. Somula and R. Sasikala, “A survey on mobile cloud computing: Mobile computing+

cloud computing (mcc= mc+ cc),” Scalable Computing: Practice and Experience, vol. 19,

no. 4, pp. 309–337, 2018.

[13] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing:

The communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,

pp. 2322–2358, 2017.

[14] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge

computing: A survey of the emerging 5g network edge cloud architecture and orchestration,”

IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[15] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge computing

architecture: The role of mec in the internet of things,” IEEE Consumer Electronics Magazine,

vol. 5, no. 4, pp. 84–91, 2016.

[16] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for capacitated cloudlet

placements,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 10, pp.

2866–2880, 2016.

85

[17] H. Xiang, X. Xu, H. Zheng, S. Li, T. Wu, W. Dou, and S. Yu, “An adaptive cloudlet placement

method for mobile applications over gps big data,” in 2016 IEEE Global Communications

Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[18] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server placement in mobile edge

computing,” Journal of Parallel and Distributed Computing, 2018.

[19] Q. Fan and N. Ansari, “Cost aware cloudlet placement for big data processing at the edge,” in

2017 IEEE International Conference on Communications (ICC). IEEE, 2017, pp. 1–6.

[20] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource provisioning for iot applica-

tion services in smart cities,” in 2017 13th International Conference on Network and Service

Management (CNSM). IEEE, 2017, pp. 1–9.

[21] M. Taneja and A. Davy, “Resource aware placement of iot application modules in fog-cloud

computing paradigm,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM). IEEE, 2017, pp. 1222–1228.

[22] M. I. Naas, L. Lemarchand, J. Boukhobza, and P. Raipin, “A graph partitioning-based heuristic

for runtime iot data placement strategies in a fog infrastructure,” in SAC 2018: Symposium on

Applied Computing, 2018.

[23] Q. Fan and N. Ansari, “Application aware workload allocation for edge computing based iot,”

IEEE Internet of Things Journal, 2018.

[24] ——, “Towards workload balancing in fog computing empowered iot,” IEEE Transactions on

Network Science and Engineering, 2018.

[25] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in fog-cloud

computing toward balanced delay and power consumption,” IEEE Internet of Things Journal,

vol. 3, no. 6, pp. 1171–1181, 2016.

[26] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot service delay via fog

offloading,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998–1010, 2018.

86

[27] R. James et al., “The internet of things: a study in hype, reality, disruption, and growth,”

Raymond James US Research, Technology & Communications, Industry Report, 2014.

[28] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and challenges for

enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[29] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks,

vol. 54, no. 15, pp. 2787–2805, 2010.

[30] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,” in

Proceedings of the 2015 Workshop on Mobile Big Data. ACM, 2015, pp. 37–42.

[31] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl,

“Maui: making smartphones last longer with code offload,” in Proceedings of the 8th interna-

tional conference on Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[32] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-

edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–

2808, 2016.

[33] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog computing-enabled

internet-of-things: A network perspective,” IEEE International Conference on Computer

Communications (INFOCOM), 2018. [Online]. Available: http://www.public.asu.edu/

~ruozhouy/docs/infocom-18-paper.pdf

[34] ETSI. ((2014)) Mobile-edge computing – introductory technical white paper. [On-

line]. Available: https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_

-_introductory_technical_white_paper_v1%2018-09-14.pdf

[35] K. Dolui and S. K. Datta, “Comparison of edge computing implementations: Fog computing,

cloudlet and mobile edge computing,” in Global Internet of Things Summit (GIoTS), 2017.

IEEE, 2017, pp. 1–6.

[36] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

87

http://www.public.asu.edu/~ruozhouy/docs/infocom-18-paper.pdf
http://www.public.asu.edu/~ruozhouy/docs/infocom-18-paper.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

[37] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile edge

networks: Convergence of computing, caching and communications,” IEEE Access, vol. 5,

pp. 6757–6779, 2017.

[38] A. Munir, P. Kansakar, and S. U. Khan, “Ifciot: Integrated fog cloud iot: A novel architectural

paradigm for the future internet of things.” IEEE Consumer Electronics Magazine, vol. 6,

no. 3, pp. 74–82, 2017.

[39] B. P. Rimal, D. P. Van, and M. Maier, “Mobile-edge computing versus centralized cloud com-

puting over a converged fiwi access network,” IEEE Transactions on Network and Service

Management, vol. 14, no. 3, pp. 498–513, 2017.

[40] M. Jia, W. Liang, and Z. Xu, “Qos-aware task offloading in distributed cloudlets with vir-

tual network function services,” in Proceedings of the 20th ACM International Conference

on Modelling, Analysis and Simulation of Wireless and Mobile Systems. ACM, 2017, pp.

109–116.

[41] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to cloudlet allocation in

wireless metropolitan area networks,” IEEE Transactions on Cloud Computing, 2017.

[42] M. Maternia, S. E. El Ayoubi, M. Fallgren, P. Spapis, Y. Qi, D. Martín-Sacristán, Ó. Car-

rasco, M. Fresia, M. Payaró, M. Schubert et al., “5g ppp use cases and performance eval-

uation models,” see https://5g-ppp. eu/wp-content/uploads/2014/02/5G-PPP-use-cases-and-

performance-evaluation-modeling_v1. 0. pdf, 2016.

[43] G. T. 22.864, “Feasibility study on new services and markets technology enablers - network

operation - stage 1,” 2016.

[44] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Survey on multi-access

edge computing for internet of things realization,” arXiv preprint arXiv:1805.06695, 2018.

[45] L. Zhao, W. Sun, Y. Shi, and J. Liu, “Optimal placement of cloudlets for access delay mini-

mization in sdn-based internet of things networks,” IEEE Internet of Things Journal, 2018.

88

[46] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design optimization,”

IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1818–1831, 2017.

[47] X. Dos Santos, J. Rafael, T. Wauters, B. Volckaert, and F. De Turck, “Resource provisioning

for iot application services in smart cities,” in CNSM2017, the 13e International Conference

on Network and Service Management, 2017, pp. 1–9.

[48] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software defined ultra-

dense network,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 3, pp. 587–

597, 2018.

[49] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning cost in cloud

computing,” IEEE Transactions on Services Computing, vol. 5, no. 2, pp. 164–177, 2012.

[50] Y. Choi and Y. Lim, “Optimization approach for resource allocation on cloud computing for

iot,” International Journal of Distributed Sensor Networks, vol. 2016, p. 23, 2016.

[51] I. Bolodurina and D. Parfenov, “Development and research of models of organization dis-

tributed cloud computing based on the software-defined infrastructure,” Procedia Computer

Science, vol. 103, pp. 569–576, 2017.

[52] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and image

placement in fog computing supported software-defined embedded system,” IEEE Transac-

tions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[53] L.-Y. Wu, X.-S. Zhang, and J.-L. Zhang, “Capacitated facility location problem with general

setup cost,” Computers & Operations Research, vol. 33, no. 5, pp. 1226–1241, 2006.

[54] S. O. Krumke and C. Thielen, “The generalized assignment problem with minimum quanti-

ties,” European Journal of Operational Research, vol. 228, no. 1, pp. 46–55, 2013.

[55] J. Pontin, “Bill joy’s six webs,” 2005.

[56] K. Avijit and R. Chinnaiyan, “Iot for smart cities,” 2018.

89

[57] G. Americas, “New services & applications with 5g ultra-reliable low latency communica-

tions,” 5G Americas, Tech. Rep., 2018.

[58] M. Bennis, M. Debbah, and H. V. Poor, “Ultra-reliable and low-latency wireless communica-

tion: Tail, risk and scale,” arXiv preprint arXiv:1801.01270, 2018.

[59] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, “Introduction to ultra reliable and low la-

tency communications in 5g,” Computing Research Repository (CoRR) abs/1704.05565, 2017.

[60] D. Öhmann, M. Simsek, and G. P. Fettweis, “Achieving high availability in wireless networks

by an optimal number of rayleigh-fading links,” in Globecom Workshops (GC Wkshps), 2014.

IEEE, 2014, pp. 1402–1407.

[61] J. Liu and Q. Zhang, “Offloading schemes in mobile edge computing for ultra-reliable low

latency communications,” Ieee Access, vol. 6, pp. 12 825–12 837, 2018.

[62] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing?a key

technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

[63] P. Zhao and G. Dán, “Resilient placement of virtual process control functions in mobile edge

clouds,” in IFIP Networking, 2017.

[64] O. N. Yilmaz, Y.-P. E. Wang, N. A. Johansson, N. Brahmi, S. A. Ashraf, and J. Sachs, “Anal-

ysis of ultra-reliable and low-latency 5g communication for a factory automation use case,” in

Communication Workshop (ICCW), 2015 IEEE International Conference on. IEEE, 2015,

pp. 1190–1195.

[65] S. M. Khan, M. Chowdhury, M. Rahman, and M. Islam, “Feasibility of 5g mm-wave commu-

nication for connected autonomous vehicles,” arXiv preprint arXiv:1808.04517, 2018.

[66] X. Sun and N. Ansari, “Latency aware workload offloading in the cloudlet network,” IEEE

Communications Letters, vol. 21, no. 7, pp. 1481–1484, 2017.

[67] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. Assi, and A. Ghrayeb, “Optimized pro-

visioning of edge computing resources with heterogeneous workload in iot networks,” IEEE

Transactions on Network and Service Management, 2019.

90

[68] Z. Wei and H. Jiang, “Optimal offloading in fog computing systems with non-orthogonal mul-

tiple access,” IEEE Access, vol. 6, pp. 49 767–49 778, 2018.

[69] L. Qu, M. Khabbaz, and C. Assi, “Reliability-aware service chaining in carrier-grade soft-

warized networks,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 3, pp.

558–573, 2018.

[70] M. Yagiura and T. Ibaraki, “The generalized assignment problem and its generalizations.”

[71] L. Qu, C. Assi, K. Shaban, and M. Khabbaz, “Reliability-aware service provisioning in nfv-

enabled enterprise datacenter networks,” in 2016 12th International Conference on Network

and Service Management (CNSM). IEEE, 2016, pp. 153–159.

[72] F. Tariq, M. Khandaker, K.-K. Wong, M. Imran, M. Bennis, and M. Debbah, “A speculative

study on 6g,” 2019.

91

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Evolution of cellular communication technologies
	IoT paradigm and 5G
	Mobile Edge Computing (MEC)
	Contributions
	Optimized Provisioning of Edge Computing Resources with Heterogeneous Workload in IoT Networks
	Heterogeneous workload assignment in an MEC-IoT environment for uRLLC

	Optimized Provisioning of Edge Computing Resources with Heterogeneous Workload in IoT Networks
	Introduction
	Literature review
	Task offloading and resource allocation in MEC
	Novelty of our work

	System Model
	MEC-enabled Smart Environment
	Problem Description

	RPWA - A MIXED INTEGER PROGRAM (RPWA-MIP)
	Problem Definition
	Problem Formulation
	Complexity Analysis

	RPWA-D: A Decomposition Approach
	The Delay Aware Load Assignment (DALA)
	The Mobile Edge Servers Dimensioning (MESD)
	Decomposition Algorithm

	Numerical Evaluation
	Evaluation setup
	RPWA-MIP vs. RPWA-D
	Evaluation of RPWA-D
	Comparison of RPWA-D with existing work

	Conclusion

	Heterogeneous workload assignment in an MEC-IoT environment for uRLLC
	Introduction
	Related work
	Latency in MEC & IoT infrastructure
	Reliability in MEC & IoT infrastructure
	Novelty of our work in comparison to the literature

	System Model
	Network model
	Reliability and Latency model

	The uRLLC-aware workload assignment problem
	Problem Definition
	Problem Formulation
	Complexity Analysis

	WA-D approach
	RACS heuristic
	LAWA MIP

	WA-Tabu
	Numerical Evaluation
	Experimental setup
	WA-MIP vs. WA-D vs. WA-Tabu
	WA-D vs. WA-Tabu
	Performance evaluation of WA-Tabu:

	 Conclusion

	Conclusion & Future Work
	Conclusion
	Future Work

	Appendix Linearization of RPWA problem
	Linearization of RPWA-MIP constraints
	Linearization of DALA-MIP constraints

	Appendix Linearization of WA problem
	Linearization of Eq.(3.11)
	Linearization of Eqs.(3.16) and (3.24)
	Linearization of Eqs.(3.14) and (3.25)

	Bibliography

