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Highlights

e The convergence, steady-state and tracking behaviour of the LP-based
adaptive feedback canceller with and without probe noise depends on the

adaptive algorithm employed.

e The cost of achieving an unbiased feedback cancellation using linearprediction-
based adaptive feedback cancellation system with shaped probeinoisejis
an increase in the steady-state error, in comparison withathe'feedback

canceller without probe noise when RLS algorithm is used.

e For the NLMS algorithm, the cost of an unbiased feedback estimate is a
reduction in the rate of convergence, along with an inerease in the tracking

error, as compared to the feedback cancellerswithout probe noise.

e The Spectrogram-based comparison of the, LP-based feedback canceller
with shaped probe noise and the basicfeedback canceller with probe noise
for the respective loudspeaker outputs'shows that the loudspeaker output
of the former has less distortion‘and whistling problem as compared to

that of the latter.

e Derived expressions provide an accurate approximation of the power trans-
fer function; rate of convergence and steady-state error for a synthetic sig-
nal and‘speech signal as input, despite the assumptions made during the

analysis.
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Abstract

We consider an adaptive linear prediction based feedback canceller for hearing
aids that exploits two (an external and a shaped) noise signals for a bias-less
adaptive estimation. In particular, the bias in the estimate of the feedback path
is reduced by synthesizing the high=frequency spectrum of the reinforced signal
using a shaped noise signal. Moreover, a second shaped (probe) noise signal is
used to reduce the closed-loop signal correlation between the acoustic input and
the loudspeaker signal at low”frequencies. A power-transfer-function analysis
of the system is¢provided/from which the effect of the system parameters and
adaptive algerithmsy[normalized least mean square (NLMS) and recursive least
square (RLS)] on the rate of convergence, the steady-state behaviour and the
stability of the feedback canceller is explicitly found. The derived expressions are
verified through computer simulations. It is found that, as compared to feedback
canceller without probe noise, the cost of achieving an unbiased estimate of the
feedback path using the feedback canceller with probe noise is a higher steady-

state misadjustment for the RLS algorithm, whereas a slower convergence and
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a higher tracking error for the NLMS algorithm.
Keywords: Adaptive filters, feedback cancellation, probe noise, hearing-aid,

band-limited LPC vocoder, convergence rate, power transfer function.

1. Introduction

Acoustic leakage takes place when an assistive listening device is.vented. or
ill-fitted [1, 2, 3]. Consequently, the microphone of the audio systémypicksmup a
portion of the loudspeaker output signal thereby resulting in fan acoustic feed-
back path from the system loudspeaker to the microphene. Thesproblem of
acoustic feedback degrades the performance of the audio system. In fact, the
system might ultimately become unstable, causingfeedback whistling and howl-
ing to occur [2, 3]. Feedback can be suppressed adaptively by using adaptive
filters to identify the acoustic environment, which in turn affects the feedback
path [4, 5]. Traditional approaches for controlling the feedback path problem
and facilitating an unbiased solution, of the-feedback path can be categorized
as feed-forward suppression arnd-feedback cancellation techniques. The feed-
forward suppression methodsy such as gain reduction and phase modification,
are based on modifying the forward signal processing path from the microphone
to the loudspeaker.« Feedback cancellation methods, such as feedback cancella-
tion using adaptive filters, are based on estimating the true feedback path to
generate ap“estimate-of the original feedback signal. Among many such ap-
proaches, band-limited linear predictive coding (LPC)-based adaptive feedback
cancellation (AFC) system stands out due to its effectiveness in efficiently re-
ducing the high- frequency bias in the estimate of the original feedback path
[6]sHowever, since a small amount of bias still persists, introduction of probe
noise signal in the feedback estimation path can further reduce the bias [7]. It
is essential that the probe noise signal be of a power level comparable to that
of the loudspeaker signal at all frequencies and also be uncorrelated with the
incoming desired signal [8]. The problem with a probe signal of a strong power

level is that it is audible to the users of the assistive listening devices and thus,
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undesirable. A weak probe noise signal, which is not audible to the users, re-
duces not only the rate of convergence of the adaptive algorithm but also the
ratio of the probe noise signal and the disturbing signal [9]. A shaped probe
noise signal, generated using spectral masking filters, is not annoying as it is
inaudible to the users. The masking capability of the human auditory system
is used by these filters so that the modified (probe-injected) loudspeaker sig=
nal, consisting of the loudspeaker input and the shaped probe sigral,, sounds
perceptually identical to the former [10].

Adaptive feedback cancellers may employ different adaptation algorithms
such as the least-mean-square (LMS), recursive least squares(RLS), normalised
least-mean-square (NLMS) or variations of these algorithms<[11]. From an ob-
jective point of view, the performance of a feedback eanceller can be evaluated
in terms of various quantities that decide theverallssystem behaviour. In order
to determine the rate of convergence andythe steady-state error of an adaptive
algorithm, the feedback path is considered/to be time-invariant. However, to
determine the tracking error, the feedback path must be considered to be time-
varying by using different variation_models for the feedback path [8]. Among
the many measures for eyaluating the performance of a feedback canceller, the
mean-square error (MSE) evaluation is the most commonly used one. The rate
of convergence and thesteady-state error are indicated by the decay of the MSE.
The MSE evaluation method can be conveniently employed for physical mea-
surementsfand simulation purposes. Another type of performance measure is
the meanssquare deviation (MSD) between the original feedback path and the
feedback paph estimate [11]. In such a performance measure, it is essential that
the feedback path is already known, which is convenient for simulation purposes.
In [7], the time-domain performance analysis of the adaptive feedback canceller
with probe noise (discussed above) was done based on the MSE performance
measure. The disadvantage of the aforementioned performance evaluation mea-
sures in time-domain is their inability to shed light upon the frequency-domain
behaviour of the AFC system. The power transfer function (PTF) can be used

to overcome this disadvantage and to provide fruitful knowledge about the adap-
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tive system in the frequency domain [8]. The hearing impaired can hear sounds
at certain frequencies and not at others. Frequency-domain analysis of the AFC
design using the PTF method is more suitable than time-domain measures to
study the electro-acoustic characteristics of the feedback path, the frequency-
domain behavior of the feedback cancellation system and the acoustic percepti-
bility of the human auditory system. The PTF-based frequency-domain analysis
has been done for the basic adaptive feedback canceller without prebe noise in
[12] and that for the AFC system with probe noise in [13]. However, in our
work, we analyse the linear predictive (LP) analysis and synthesis-based AFC
system with probe noise. The inclusion of LP analysis and.synthesis improves
the loudspeaker signal quality as compared to that in [12] by”using the high-
frequency portion of the synthetic replica of thefreinferced signal for reducing
the closed-loop signal correlations at high frequenecies;.and thereby reducing the
bias in the adaptive estimation of the feedback path [7]. Moreover, the work
done in [13] considers the use of enliancentent filters for processing the error
signal. However, in our work, spectral shaping filters are used to render the
probe signal imperceptible in presence of the loudspeaker signal. Furthermore,
since our work as well as/that'in [12] and [13] are based on the application of
adaptive algorithms, similar,measures are used for the prediction of the system
behavior in all of.thejaforementioned works, despite analysing a different AFC
framework in€ach, case.

In thispaper, we present a comparative frequency-domain performance anal-
ysis ofthe linear prediction-based adaptive feedback cancellers with and without
probe noise in the estimation path. The approximate expressions for the PTF
are deriyed for the linear prediction-based feedback cancellation system with as
well as without the introduction of the probe noise signal in the adaptive filter
path for both the RLS and NLMS adaptive algorithms. The performance of
these feedback canceller schemes is discussed in terms of the convergence rate of
the adaptive algorithm, system stability and their steady-state behaviour, ex-
pressions for which are derived from the aforementioned RLS algorithm-based

as well as NLMS algorithm-based approximate expressions for the PTF. The



90

95

100

105

110

115

behaviour of both the feedback cancellers (with and without probe noise) is
analysed and characterized for both RLS and NLMS algorithms based on the
overall-system parameters and the adaptive-algorithm employed. Expressions
for different adaptive-algorithm parameters are also determined for achieving
desired system behaviour. The organisation of the paper is as follows. Section
2 contains a brief description of the linear prediction-based feedback canegellers
with and without the probe noise signal, along with the parameters which aré
common to both the schemes. In Section 3, we derive detailed“expression for
the PTF-approximation for the RLS adaptive algorithm-based feedback can-
cellation scheme with probe noise in the filter estimation path; on the basis
of this expression, expressions for the rate of convergenee, stability constraint
for the system and the steady-state behaviour.6f the adaptive algorithm are
derived and, the influence of the overall-systemsparameters and the adaptive
algorithm used is discussed. In Section 4y.approximate expression for the PTF
is derived and a discussion on the interaction between the system and its pa-
rameters is made for the NLMS adaptive algorithm-based feedback cancellation
scheme with probe noise. Following the approach for the frequency-domain
analysis of the feedback canceller with probe noise in Sections 3 and 4, the
derivation of approximate expressions for the PTF, system-behaviour analysis
and adaptive-algorithm parameters for the desired system behaviour are carried
out in Sectiond for.the RLS as well as NLMS adaptive algorithm-based feedback
canceller without probe noise. Computer simulations are presented in Section
6 in support of.the analysis and Section 7 contains the conclusions.

The following notation has been adopted throughout the paper; [.]7 for the
transpoge of a matrix, [.] for the Hermitian transpose of a matrix, [.|~! for
the inverse of a matrix, [.]* for complex conjugation, E[.] for the expectation
operation, n for discrete-time index, k for discrete-time delay operator such
that k~*m(n) = m(n — 1) , w for frequency, bold-faced lower-case letters for
column vectors and bold-faced upper-case letters for matrices. A discrete-time
filter of length L is represented as a polynomial F(k) in terms of k=1 as F(k) =
fo+ fik™t + ...+ fo_1k~E*! or by its coefficient vector £ = [fo, f1, ..., fr_1]T"
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The signal m(n) is filtered by F(k) as F(k)m(n) = f* (n) m(n) , with m (n) =
[m(n),m(mn—1),...m(n—L+1)]7. F(w,n) denotes the frequency response

of F(k) .

2. System Description

The block diagram of the linear prediction-based feedback cancellationisys-
tem, with a shaped probe noise signal introduced in the filter estimation path,
is shown in Fig. 1. A similar AFC system without probe noise, introduced in
[6], is shown in Fig. 2. In this section, we consider the linéar prediction-based
feedback cancellers, with and without the probe-nois€ signal, on the basis of
some welldefined system parameters. We formulate the PTF to facilitate fur-
ther study of the frequency-domain behaviour of the feedback cancellers shown
in Figs. 1 and 2, respectively. The fundamental idea of the linear prediction-
based approach is based on the production ‘ofia _synthetic copy of the forward
processed signal such that it is identicaly butiuncorrelated with the desired sound
signal [6]. The feedback signalfy(m).is formed when the loudspeaker signal is
passed though the acoustic environment represented by F'(k). We consider F (k)
as an FIR filter of length,L; and coefficient vector f = [fo, f1,..., fr—1]7. The
adaptive filter F' (k) 'is also ednsidered as an FIR filter of length L 7 and the
coefficient vector' f = [fo, /1, ...,fo,l]T.

The time-varying behaviour of F'(k) can be represented using the Random-

Walk modely[14, 15] as
F(w,n)=F (w,n—1)+F (w,n), (1)

where F' (w, n) is the frequency response of the feedback path F(k) and F (w,n)
is considered as the frequency response of the variation vector of the feedback
path. We consider the variation vector of the feedback path to be a Gaussian
random process of zero mean such that F (w,n) is a complex quantity [8, 14].

The power spectral density of F (w,n) is given as

St (W) =E[Fwn)F (wn)|. (2)



To get a preliminary expression of the PTF, we start with the time-domain

representation of the system parameters. The feedback path variation vector is

f(n)=f(mn)—f(n-1), (3)
where f = [?0,?1, ...7?Lf71]T. Similarly, we can express the feedback path
estimation-error vector f = [ fos fi, - f1 f_l]T as the difference between, the

coefficient vector of the adaptive estimator and the original feedback path as

f(n)=f(n)—f(n). (4)

Considering Figs. 1 and 2, the microphone signal

y(n) =x(n)+ fi(n) ()

The error signal
e(n) =y (n)=uln), (6)

where v (n) is the output of the adaptive filter. The loudspeaker signal

q(n) = uip(n) + usyn np (1) , (7)

where the signal vector‘gqy= {q (n),qgn—1),...,q (n —Li+ 1>}T, and up, (1)
is the low-frequency/component of the reinforced forward path signal u (n) and
Usyn_hp (1) is the high-frequency component of the synthetic version of u (n)
with vector.definitions wy, (n) = [wy, (1), up, (R — 1), ..., up (n — L + 1)]T and
Ugyn hp (1) = [usyn?hp (n) , Usyn hp (M — 1), ..., Usyn hp (n —L; + 1) }T respectively.
TheAow,pass, filter Lp (k) is designed to allow only the frequency spectrum of
4 (n) below 2 kHz to pass through, the high-pass filter Hp (k) is designed to
allow ofily the 2 kHz spectrum to pass through, and H (k) is the estimated P
order all-pole signal model which is used to obtain a synthetic replica of u (n)
and is a part of the LP analysis and synthesis block in Figs. 1 and 2 [6]. The
gain G (k) of the hearing aid provides reinforcement to the error signal e (n),

and can be expressed as

G (k) =k %G (k), dg > 1, (8)
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where dg is the time-delay and G (k) is the transfer function which provides a
frequency-specific reinforcement to the error signal to reduce the listening effort
[6].

In Fig. 1, the shaped probe noise signal rs (n) is generated by passing a
Gaussian white-noise sequence r (n) of zero mean and unit variance through a

spectral shaping filter A (k) with coefficient vector a (n) = [ag, a1, ..., ap )" a8

rs(n) =Ak)r(n). (9)

Considering Fig. 1, the probe-injected loudspeaker outputican be expressed in

vector form as

q: (n) =q(n)+rs(n), (10)

where q, = {qr(n),qr(n—l),...7qr (n—L};—i—l)}T,q: [q(n),q(n—1)7...,q(n—Lf»—l—l)}T

and rg = {rs (n),rs(n—1),...,75 (n —La+ l) }T.

The frequency-domain expressionof the MSD is referred to as the PTF [8].
In this work, the frequency-domain expression for the MSD between the original
feedback path and the feedback path estimate, i.e. E [Hf (n) — f(n)HQ] , is the
PTF which can conveniently describe the behaviour of an adaptive feedback
canceller. The open-leop transfer function of the closed-loop AFC system in

Fig. 1 and Fig. 2,4or a’specific frequency w and time-instant n, is given as
O (wm) = G (w,n) Ly (w,n) (F (w,n) — F (w,n)) . (11)

If we considerythe closed-loop AFC system in Figs. 1 and 2 to be linear and
time-invariant, then as per the Nyquist stability criterion, they will be unstable
when [16]

G (w,n) Ly (w,n) (F (w,n) — F(w,n))‘ >1

LG (w,n) Ly (w,n) (F (w,n) — F (w,n)) = j2m, (12)

where j is an integer. Generally, the feedback path F' (k) is not known apriori

and thus it is not possible to calculate the open-loop transfer function O (w, n).
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However, we can express the expected value of the magnitude-square of O (w, n)
as

E [0 @,m)*] = |G (w,n) Ly (w,m) ¢ (w,n). (13)

where ¢ (w,n) is the expected value of the magnitude-squared transfer function
between points A and B! in Figs. 1 and 2; this transfer function is also called
as the PTF. It can be written in terms of the MSE in frequency domain for a

feedback cancellation framework as [14]

C(w,n)=E Uﬁ(w,n) —F(w,n)ﬂ . (14)

From the above equation, it can be observed that for an ideal feedback cancel-
lation system where F' (w,n) = F (w,n), the valueof the RTF will be equal to
zero at all frequencies. However, in practical applications, ¢ (w,n) is random
in nature as the original feedback path is unknewn and changes randomly [12].
Substituting the frequency-domain version 6fy(4) into (14), an expression for

the PTF can be expressed as [14]
¢ (w,n) = B Ftw,n) F* (w,n)], (15)

where F (w,n) is the fréquency [response of the feedback path estimation-error
signal f (n). The reinforeement filter G (k) and thereby, its frequency response
G (w,n), is already known. Consequently, the expectation of the magnitude-
squared O (wyn) iny(13) can be determined. However, the problem is that
O (w, n)ais considered to be random in nature and is unknown a priori due
to F(w,n) being unknown. As a result, the PTF cannot be computed di-
rectly. Hence, if we can obtain an approximation of F (w,n), an expression
forsapproximate-PTF ¢ (w,n) can be conveniently obtained using (15). The

importance of the expression for approximate-PTF 5 (w,n) is that it allows us

LAll derivations in this work are done after omitting the reinforcement filter G (k), i.e., on
an open-loop setup. However, the simulations were performed for a closed-loop AFC system of
a hearing aid, with a delay inserted in the forward path [12]. It was found that the derivations

were applicable for the closed-loop system and results were verified.

10
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to analyse and characterize the behaviour of the AFC system using statistical

characteristics of the signals, order of the adaptive filter, adaptive algorithm

used and the assumptions made for the variations in the feedback path, when

the feedback path is not known apriori [8, 17]. The following assumptions are

made in this paper for further analysis:

i

il

=

ii

iv

The shaped probe noise signal 5 (n) and the unshaped probe noise signal
r (n) are assumed to be uncorrelated with the desired signal z(n) and with

loudspeaker signal g (n).

A sufficiently large filter length L i of the adaptive-estimation filter models
the unknown feedback path to avoid undermodelling and the length L; of
the adaptive filter is assumed to be identical t¢ thelength L of the feedback
path [12, 18].

The length L, of the shaping filter AY(k),is assumed to be less than the

length Lf of the adaptive estimator, i.e), L, < Lf in the system of Fig. 1.

The incoming desired acoustic\signal x (n) is considered to be a stationary
random signal of zero m€an. The'input auto-correlation r, (m) expressed as
ry (M) = E [z (n) z(n'=m)]such that r, (m) = 0V |m| > mg, where myq is a

finite integer.

With referenceto the expression in (3) for the feedback path variation vector
f (n)%he variations in the feedback path are independent of z (n), q(n),
r¢(n))and B(n) [8].

.. Frequency-domain analysis for RLS algorithm

In this section, we derive an expression for the PTF-approximate é (w,n) for

the RLS adaptive algorithm for the feedback cancellation system shown in Fig.

1. The RLS adaptive algorithm gives faster convergence, albeit at an additional

cost of computational complexity, as compared to the NLMS algorithm[11].

Further, we use the derived expression for Q: (w,n) for analysing the effect of the

11
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system parameters and the RLS algorithm parameters on the system behaviour.
We also find the expression to allow for the choice of a forgetting-factor value

that facilitates a required system property.

3.1. Approximate expression for PTF

Theorem 1. Consider the linear prediction-based adaptive feedback canceller
with shaped probe noise in Fig. 1. Let the adaptive filter F (k) be updated using
the RLS algorithm, and suppose that assumptions (i)-(v) hold. Them,/thesPTF
of (15) can be written as

(1))

A (@)[*S, (w)
where X is the forgetting factor such that 0 < A“<\1, Ly)is the length of the

{(w,n) = (2A—1)C(w,n—1) + Ly S (@S (w),  (16)

feedback path, A(w) is the frequency response of ‘shaping filter A (k), S, (w)
is the PSD of unshaped probe noise r (n), S, (w) is the PSD of the incoming

acoustic signal x (n) and 57 (w) is the varianceyof the feedback path.

Proof. The detailed derivation of the, approximate expression for the PTF of
the linear prediction-based AFC system with shaped probe noise is presented

in a step-wise manner in Appendix A. O

We will now use the RTF expression in (16) to derive and predict the system
behaviour in terins of the/rate of convergence, steady-state error and tracking

error.

3.2. Prediction,of system behaviour

The eonvergence rate (CR) can be determined as the decay-rate of the MSD
between the original and the estimated feedback path. In frequency domain,
convergence rate can be defined as the decay of the PTF ¢ (w,n) as the iterations

progress and can be written as

CR = lim a ¢ (wy,m). (17)

n—oo dn

It will be seen later in this work that for the RLS algorithm, CR is independent of

w, whereas it is a function of w for the NLMS algorithm. Hence, the convergence

12
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rate is simply mentioned as CR in (17). The steady-state error (SSE) is the final
MSD value between the true and the estimated feedback path, corresponding

to a stationary feedback path, and can be written as

. 2
SSE (w) = lim E UF(w,n) —F(w,n)’ ] , 5= (w) = 0. (18}

n— o0 f
The tracking error (TE) is the misadjustment in tracking the non-stationary

feedback path and can be expressed as
. 2
TE (w,n) = E UF(w,n)—F(w,n)‘ } 5% (w) #0. (19)

Lemma 1 derives the expressions for the convergence rate defined”in (17), the
steady-state error in (18) and tracking error in (19) for, the linear prediction-
based feedback canceller with shaped probe noisein Fig. 1 to analyse the system

behaviour when RLS adaptive algorithm is useds

Lemma 1. For the AFC system in Fig. Tvand under the assumptions stated in

Section 2, the following holds
i System convergence (CR) in (ITuslows down with increasing A.

it SSE in (18) increaseswith increasing Ly and Sy (w), and with decreasing A

and Sp (w)
iii TE in (19) ificreases with increasing A for S (w)>0
Proof. The proof of Lemma 1 is presented in detail in Appendix C. O

We will use the expression obtained in (C.9) in the proof of Lemma 1 to
obtain thevalue of forgetting factor of the RLS algorithm for achieving a desired

system/behaviour in Corollary 1.

Corollary 1. For the system in Fig. 1 and under assumptions (i)-(v), the se-
lection of the forgetting factor value, for achieving a required rate of convergence

of the RLS adaptive algorithm, can be carried out according to

CR

o 1+10"

A 5 ,

(20)

13
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the convergence rate CR being in dB per iterative instant n. The selection of
the forgetting factor for obtaining the desired steady-state error é (w,00) can be

done according to
_ 25, (w)((w,0)

A=1
Ly Sy (W)

(21)

Proof. The proof of Corollary 1 is presented in detail in Appendix C. [J

4. Frequency-domain analysis for NLMS algorithm

In this section, following the treatment in the proof of Theorem 1, we derive
an approximate expression for the PTF for the NLMS adaptive.algorithm for the
feedback cancellation system shown in Fig. 1. Moreover, we-tise this derived
expression for analysing the effect of the system parameters and the NLMS
algorithm parameters on the system behaviours=We also find the expression
that allows the choice of a step size value, which, facilitates a required system

characteristic.

4.1. Approzimate expression for thesPTF

Corollary 2. For the feedbaekycanceller with shaped probe noise in Fig. 1, where
F (k) is updated using.thesNLMS algorithm and under assumptions (i)-(v), the
PTF of (15) can bé written, as

fm= (125275 5,0) Cen =)

M) 6 )8, (@) + 5
Lt s yor)? 57 ()52 )+ 55 ), (22)

where S, (w) is the PSD of shaped probe noise rs(n), fi(n) is the normalized
step.size of the adaptive algorithm, 6 is a small positive real number and 012, is

the variance of rs(n).

Proof. The detailed derivation of the approximate expression for the PTF of
the linear prediction-based AFC system with shaped probe noise is presented
in a step-wise manner in Appendix D, with reference to the NLMS adaptive

algorithm. O

14
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4.2. Prediction of system behaviour

Lemma 2 derives the expressions for the convergence rate defined in (17), the
steady-state error in (18) and the tracking error in (19) for the linear AFC sys-
tem in Fig. 1 to analyse the system behaviour when NLMS adaptive algorithmy

is used.

Lemma 2. For the AFC system in Fig. 1 and under assumptions (i)-(v)jthe
following holds

i System CR in (17) increases with increasing fi (n)

it SSE in (18) increases with increasing values of Ly(and ft(n), and with de-

creasing value of S, (w)

iii TE in (19) increases with increasing Ly, sas.well. as with a decreasing ratio

of Sp(w)/ (6 + Lyo})
Proof. The proof of Lemma 2 is presented in detail in Appendix D. O

The expression in (D.11) can‘nowtbe used to derive an expression for ob-
taining the value of step sizé'parameter for a required system behaviour char-

acteristic.

Corollary 3. ForthelAF(C system in Fig. 1 and under assumptions (i)-(v), se-
lection of the normalized step-size parameter for the NLMS algorithm, to achieve

a required‘given rate of convergence, can be carried out according to

CR

1-10%

fi(n)=(6+Lyoy) 25, (@)

(23)

CR being in dB per iterative instant n, and the selection of the normalized
step-size parameter for obtaining the desired steady-state error f (w,0), corre-

sponding to a time-invariant feedback path, can be done according to

1) 02) ¢ w, 00
A= 20F LLffS:E 5)( ), (24)

Proof. The proof of Corollary 3 is presented in detail in Appendix D. O

15



245

250

Remark 1. In a feedback cancellation design with probe noise, it is desired that
the probe noise r (n) be inaudible to the listeners in presence of the loudspeaker
signal q (n) such that g, (n) is perceived as q(n). To achieve this, a shaped
probe noise rs (n), instead of r(n), is added to q(n) to facilitate an unbiased
estimation. The shaped probe noise exploits the masking capabilities of the audi-

tory system in humans and S, (w) is chosen to be approzimately 15-25 dB\below
Sq(w) 8], [19].

Remark 2. Here, we present the delay condition for achieving an unbiased
solution for the feedback path. For this, we consider Fig.. bhwhen rs(n) is
used in the estimation path of the AFC system. A shaped probe signal reduces
the decorrelation effect, which is required to reducelthe bias in the estimate of
the feedback path [18]. The optimal solution forsthe feedback path is biased,
even when rs (n) is a white-noise signal [7, 20]. This shows that the shaping
filter introduces a bias in the feedback path estimate, which can be prevented by
introducing a sufficiently large delay in the, forward path [18]. Let us assume

that rs (n) has a finite correlationnfunction as
Rp(m) =0V |m| > mo, (25)

where mg is a finite Anteger-WAs presented in [7, 21], an unbiased optimal solu-

tion for the feedback path is possible when

From/(8)y. it “¢an be seen that the forward path G (k) consists of a delay dg4
along with the actual reinforcement filter G (k) of length Ly. In order to prevent
G (k) from contributing to the bias in the feedback path estimate, the delay d,

introduced in the forward path should be such that
dg> Ly +mo+ Lg. (27)

The above equation presents a general delay condition for achieving a bias-free
estimate of the feedback path, when a shaped probe noise signal is introduced in

the filter estimation path of the linear prediction-based AFC system.
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Table 1 summarizes the effect of the overall-system parameters on the be-
haviour of the feedback cancellation design in Fig. 1, based on the choice of the

adaptive algorithm (NLMS or RLS).

5. Frequency-domain analysis for the feedback canceller without probe

noise

Corollary 4. For the linear prediction-based adaptive feedback cantellerwithout
probe noise in Fig. 2, in which F (k) is updated using the RLS algorithm and
supposing that assumptions (ii)-(v) hold, the PTF of (15)-Can be written as

Clwyn)=2A— 1) (w,n—1) + Lf%sz (w) =S5 (),  (28)

where Sy (w) is the PSD of the loudspeaker signal g\(n).

Proof. The approximate expression for thesPTF of the linear prediction-based
AFC system in Fig. 2 can be derived following the proof of Theorem 1. For
detailed derivation, see Appendix. E. O

Lemma 3 derives the expressions for the convergence rate in (17), the steady-
state error in (18) and the tracking error in (19) for the feedback canceller
without probe noisé. (see-Eig.” 2) to analyse the system behaviour when RLS

adaptive algorithm is used.

Lemma 3. For the system in Fig. 2, and under assumptions (ii)-(v), the

following-holds
i System/CR in (17) decreases with increasing A

it SSE in (18) increases with increasing Ly and Sy, (w), and with decreasing A

and Sp (w)
iti TE in (19) decreases with increasing \ for S? (w)>0

Proof. The proof for the above follows Lemma 1 and is presented in Appendix

E. O
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Corollary 5. The selection of the forgetting factor value to achieve a required
given rate of convergence can be done as (20) where the convergence rate is
in dB per iterative instant n, and the selection for forgetting factor value for

obtaining desired steady-state error é (w, 00) can be done according to

~28; (w) ¢ (w, )

-1
A Ly S, (w)

(20)

Proof. The proof for the above follows that of Corollary 1 and is presented jin
Appendix E. |

Corollary 6. For the feedback canceller in Fig. 2 using the NLMS adaptive
algorithm and under assumptions (ii)-(v), the PTF of4(15) can be written as

E(w,n) = (1 - 2(%& (w)) & (w,n— 1)

[i? (n)
f(éj:Lng)z Sq (WhSe (W) + 55 (W) (30)

Proof. The proof for the above follows, that, of Corollary 1 and is presented in
Appendix F. O

Lemma 4 derives the expressions for the convergence rate in (17), the steady-
state error in (18) andsthe'tracking error in (19) for the linear prediction-based
feedback canceller“without \probe noise (see Fig. 2) to analyse the system be-

haviour when NLMS adaptive algorithm is used.

Lemma 4., For the' AFC system in Fig 2, and under assumptions (ii)-(v), the
following hold

i System CR in (17) decreases with increasing Ly

i, SSE in (18) increases with increasing Ly, fi (n) and Sy (w), and with de-

creasing o

iti TE in (19) increases with increasing Ly and with decreasing ratio of Sq (w) / (6 + Ly 02)

Proof. The proof for the above follows that of Lemma 2 and is presented in

Appendix F. O
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Corollary 7. For the system in Fig. 2 and under assumptions (ii)-(v), the se-
lection of the normalized step-size parameter for the NLMS algorithm, to achieve

a required given rate of convergence, can be done according to

i) = (54 Lyod) i @)

where the convergence rate is in dB per iterative instant n, and the selectionof

the normalized step-size parameter for obtaining the desired steady-state error

¢ (w,00) can done according to

2(0+ Lyo?) ¢ (w, )
[ = : 32
fi(n) L 5 () (32)
Proof. The proof for the above follows that of Cerollary 3 and is presented in

Appendix F. O

Remark 3. From Lemmas 1 and 3, it can\be ¢oncluded that when RLS adaptive
algorithm is used, the steady-state error inythe feedback canceller with shaped
probe noise is increased by o factormof. Sy (w) /Sy (w), as compared to that for

the feedback canceller without,probe moise.

Remark 4. From Lemmasy2 and 4, it can be concluded that using NLMS algo-
rithm with the same value of step size and for the same values of 03 and Ug, the
values of steady-state error obtained are identical but the rate of convergence of
the feedback cancellation system with shaped probe noise is decreased by a fac-
tor of/Sy(w) /Sy (w), as compared to that for the feedback cancellation system
without probe noise. Similarly, the tracking error of the feedback canceller with

shaped probe noise is increased by a factor of Sy (w) /S, (w) as compared to that

for the feedback canceller without probe noise.

A brief description of the relation between the overall-system parameters

and the behaviour of the feedback canceller in Fig. 2 is presented in Table 2.
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6. Simulation and Results

In this section, we consider the behaviour of the linear prediction-based
adaptive feedback canceller with and without a probe noise signal in the feedback
estimation path. The goal of the simulations presented in this section is to verify
the derived expressions for the PTF, rate of convergence and steady-state error
and compare the performance of the feedback cancellers in Figs. 1 and 2."The
simulations have been performed on MATLAB using a sampling“frequency’ of
16 kHz.

The original feedback path is known during the simulation and isconsidered
to be an FIR filter of order 50. Fig. 3 shows the magnitude response of the
original feedback path obtained using a behind-the-ear hearing aid. A higher
magnitude of the feedback path from 2 to 7 kHz shows that the feedback oscil-
lations are more likely to occur at higher frequencies. The feedback estimation
filter is also an FIR filter of order 50. The forward path consists of a simple
hearing aid gain |G| = 5 and a delay dg =\57. The frequency response of the
complementary filter pair of the high-pass filter Hy, (k) and the low-pass filter
H, (k) of order 40 and a cut-off frequency of 2 kHz is shown in Fig. 4. The
Band-limited linear prediction vocoder reduces the correlation between x (n)
and ¢ (n) and facilitatessan unbiased PTF expression. Thus, there is no need
to use additional shaping filters for them as is done in [8]. The unshaped probe
noise signal isiconsidered as a zero-mean and unit-variance white-Gaussian-noise
signal. Theishaping filter is also an FIR filter of order 1 [8, 18, 21] and has a
coeficient vegtor a (n) = [1, —0.3]T. The value of the forgetting factor is chosen

as 0.99 (see footnote 2).

6.1. Synthetic signal as input

The feedback path remains fixed for the first half of the simulation. Accord-

n
ing to the random-walk model represented as f(i,n) = f(¢,0) + > ey (m),
m=10%
where f(i,n) is the i*" tap of the original feedback path impulse response at a

h

time instant n and e (m) is the m™ sample of the realization of a Gaussian
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random sequence with mean py = 0 and variance UJ% = 0.014, is introduced in
the subsequent half of the simulation experiment. A stable signal-model esti-
mate of order 20 can be obtained using the LP analysis window length of 20
ms. The input signal is a synthetic signal produced by passing a new realiza-
tion of a Gaussian random sequence through a shaping filter with an impulse
response [1, —0.5]T, for each simulation run. We have chosen the level‘of the
probe noise signal to be 1.414 times the level of the loudspeaker signal for the
ease of simulation. We have computed the PTF approximate expression by tak-
ing an average of the values over 100 simulation runs of 2x102 iterations each,

at example frequency w = 22;", where m =7, 12.

Fig. 5(a) shows the simulation of the feedback canceller-with shaped probe
noise using (C.2) and (C.9), and Fig. 5(b) shows the simulation of the feed-
back canceller without probe noise using (C.2)rands(E.11) for the frequency bin
m = 7. Fig. 6(a) shows the simulationgof feedback cancellation design with
shaped probe noise using (C.2) and (C.9),\and Fig. 6(b) shows the simulation
of feedback cancellation design without probe noise using (C.2) and (E.11) for
the frequency bin m = 12. Comparing Fig. 5(a) with Fig. 5(b), it can be seen
that the rate of convergence for, the adaptive feedback canceller without probe
noise and the adaptivefeedback canceller with shaped probe noise remains con-
stant for the same valie of*A at the example frequency bin m = 7. Similarly,
for the same value of A/ it can be seen from Fig. 6(a) and Fig. 6(b) that the
convergenée rate for'both the aforementioned systems remains constant at the
example frequency bin m = 12. This is because the convergence rate for the
RIS.algorithm depends only on A and not on the frequency or any other signal
property. In this work, since S; (w) = 2 S, (w), the steady-state error in Fig.
5(a) is increased by a factor of 2 as compared to that in Fig. 5(b). As a result,
the sum of the steady-state and the tracking errors has also increased in Fig.
5(a) as compared to that in Fig. 5(b). Similarly, the steady-state error and the
sum of the steady-state and the tracking errors are increased in Fig. 6(a) as
compared to that in Fig. 6(b).

Fig. 7 shows the simulation of the AFC system with shaped probe noise using
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(20), and a forgetting-factor value of 0.9983 for a desired value of the steady-
state error. It can be observed from Figs. 5, 6 and 7 that the simulations verify

the derived expressions.

6.2. Speech signal as input

To demonstrate the application of the proposed algorithm in practical sce-
narios, a female-spoken speech segment of 5 seconds was chosen as amyinputito
the hearing-aid system shown in Fig. 1 and to the basic adaptivesfeedback can-
celler presented in [8, 18]. The simulation was carried out for a time:invariant
feedback path. Using the perceptual audio coding techniques based on mask-
ing capabilities of the auditory system in humans, a prebe noise signal can be
generated that is imperceptible in the presence of the loudspeaker signal [19].
For our simulations, we used a random white.noisessignal which was uncorre-
lated with the loudspeaker signal. This random"white noise signal was shaped
according to the thresholds estimated by the’spectral masking model presented
in [22] for the loudspeaker signal ¢ (n)in Fig. 1 and that for the loudspeaker
signal of the basic adaptive feedback cancellation system with probe noise. Us-
ing these estimated masking thresholds as the basis, a shaping filter of order
127 for the proposed deedback /canceller in Fig. 1 and a shaping filter of or-
der 119 for the basie. AFC)with probe noise was created using the frequency
sampling techiique of FIR filter design. We verified the inaudibility of these
perceptually-shaped)probe signals by evaluating the loudspeaker output with
added perceptually-shaped probe noise using the MATLAB implementation of
then PESQ algorithm provided in [23]. Table 3 presents the explanation of the
PESQ score of the audio signal. The PESQ value computed for the loudspeaker
signal' with perceptually-shaped probe signal for the linear prediction-based feed-
back canceller with shaped probe noise was 3.98, which according to Table 3,
is very close to being ‘perceptible but not annoying’. For the basic AFC with
probe noise, the PESQ value was computed as 3.562, which lies between ‘slightly
annoying’ and ‘perceptible but not annoying’. Thus, a loudspeaker signal with

satisfactorily imperceptible shaped probe noise signal was generated making it
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possible to simulate both the above mentioned feedback cancellers with probe
noise.

Spectrogram of the original speech signal without the effect of feedback is
presented in Fig. 8 (a). The spectrogram for the loudspeaker signal of the basic
AFC with probe noise is presented in Fig. 8 (b) and that of the loudspeaker
signal for the linear prediction-based feedback canceller with shaped probenoise
is presented in Fig. 8 (c). Signal formants are preserved in both Figs. 8 (b)
and 8 (c). However, it can be seen from Fig. 8 (b) that there is“distortion and
whistling between 2 kHz to 6 kHz due to the presence of correlation between the
input acoustic signal and the loudspeaker signal at high frequencies. Comparing
Figs. 8 (c) and 8 (b), it can be observed in Fig. 8(¢) that the distortion,
along with whistling, is reduced between 2 kHz t6 6 kHz due to the presence of
BLPC vocoder that further reduces the high<frequency correlation between the
loudspeaker signal and the incoming desived acoustic signal [6].

Further more, we computed the/PSD‘\éstimates of the incoming acoustic
signal x (n) and the loudspeaker signal\g (n) and inserted them in the expressions
in (C.2) and (C.9) to obtain predietion values for the PTF for speech signal as
input. The true PTF values were computed according to the expression in
(15). Figure 9 shows”the simulation for the linear prediction-based feedback
canceller with shapedyprobe noise at frequency bin m = 12 for the speech signal
as input. It can be seen from the figure that the simulation curve is very close
to the predicted convergence rate and the predicted steady-state value. Thus,
the effectiveness of the proposed algorithm is verified in practical scenarios.
Owing te the dynamic nature of the speech signal, variations are observed in
the simulation curve of Fig. 9. The results presented in Figs. 5, 6 and 7 are
averaged over 100 simulation runs of 2x10? iterations each and are smoother
as compared to that in Fig. 9, which has been averaged for only 5 simulation
runs of approximately 120 seconds. Hence, the derived expressions are verified
for speech input to the linear prediction-based feedback canceller with shaped

probe signal.
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7. Conclusion

We have analysed the linear prediction-based AFC system with and with-
out probe noise, and derived approximate expressions for their PTFs. We have
used these expressions to predict the performance of both the aforementioned
feedback cancellation schemes on the basis of their rate of convergence, stéady
state behaviour and stability constraint. The expressions derived for the rate of
convergence and the steady-state error describe the effect of the overall.systém
parameters and the adaptive algorithm on the system perforinance. Also, we
have used the PTF approximate expressions for controlling the step.size for the
NLMS algorithm and the forgetting factor for the RLS\algorithm for achieving
the desired rate of convergence or steady-state behaviour)at a particular fre-
quency level. Our analysis has shown that the cost of achieving an unbiased
feedback cancellation using linear prediction-based AFC system with shaped
probe noise is an increase in the steady-statéverror by the ratio S, (w) /Sp (w)
in comparison to the feedback canceller without probe noise, when RLS algo-
rithm is used. However, for NLMSralgorithm, the cost of an unbiased feedback
estimate is a reduction in the.rate of convergence, along with an increase in the
tracking error, by the ratio. S, (w) /Sp (w). A comparison of the linear prediction
based feedback canceller.with’shaped probe noise and the basic feedback can-
celler with probé noise'was also done based on spectrograms of the respective
loudspeaker-outputs: The loudspeaker output of the former had less distortion
and whistling/problem as compared to that of the latter. Finally, it has been
observed/and verified from the resulting simulations that the expressions de-
rived provide an accurate approximation of the PTF, rate of convergence and
steady-state error for a synthetic signal and speech signal as input, despite the
assumptions made during the analysis.

As part of future research, we aim to improve upon the observed drawbacks
for feedback cancellation with shaped probe noise in a linear prediction-based
framework. Moreover, we also wish to use a variable-tap-length adaptive filter

in the proposed feedback canceller and analyse its feedback cancellation perfor-
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mance in a high-noise environment in terms of the PTF criterion.
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Figure Captions

1

Linear prediction-based AFC system with shaped probe noise
signal

Linear prediction-based AFC system without probe noise [6]
Magnitude response of the original feedback path

Frequency Response of the high-pass filter H}, (k) and the low-
pass filter L, (k)

Simulation results for linear prediction-based feedbagk canceller
(a) with shaped probe noise and (b) without probe noise for the
frequency bin m =7

Simulation results for linear prediction-based feedback canceller
(a) with shaped probe noise and (b) without probe noise for the
frequency bin m = 12

Simulation result for linear prediction=based feedback canceller
with shaped probe noise for the desired steady-state error of -
0.015 dB per iterative instant n

Spectrogram for (a)«Speech mput. (b) Loudspeaker output of the
basic AFC with probe noise in [8, 18]. (c) Loudspeaker output of
the linear predietion-based feedback canceller with shaped probe
noise

Simulationruns for linear prediction-based feedback canceller
with/shaped probe signal when speech signal is used as input

m =12
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Figure 8: Spectrogram for (a) Speech input. (b) Loudspeaker output of the basic AFC with
probe noise in [8, 18]. (c) Loudspeaker output of the linear prediction-based feedback canceller

with shaped probe noise
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Table 1: Summary of the influence of the parameters of RLS and
NLMS algorithms on the behaviour of propesed feedback cancellation

design with shaped probe noise

Algorithm/parameter;[ CR ‘ SSE ‘ TE ‘
RLS Algorithm
A IP (25) IP (28) | DP (28)
L - DP (28) -
Sy (10) - - -
S, (@) ; IP (28)
S, () - DP (28) -
S W) - - DP (28)
|A (W) - IP (28) -
NLMS Algorithm
fi(n) DP (24, 39) | DP (42) | IP (42)
ﬁ - DP (42) -
% DP (24, 39) - IP (42)
Sy (w) - DP (42) ]
S+ W) - - DP (42)
|A (W) DP (24, 39) - P (42)

(DP: Directly proportional, IP: Inversely proportional)
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Table 2: Summary of the influence of the parameters of RLS and NLMS
algorithms on the behaviour of the linear prediction-based AFC system

without probe noise

Algorithm/parameters ‘ CR ‘ SSE ‘ TE ‘
RLS Algorithm
A IP (25) IP (C.11) | DP (C.11)
L; - DP (C.11) -
Sq (w) - IP (C.11) -
Sz (w) - DP (C.11) -
S7 (w) - - DP(C.11)
NLMS Algorithm
fi(n) DP (24, D.6) | DP (D.9) |. IP(D.9)
ﬁ - DP (D.J9) -
(517% DP (24, D.6) . IP (D.9)
Sy (w) - DP (D.9) ;
5'7 (w) - - DP (D.9)

(DP: Directly proportional, IP: Inversely proportional)

Table 3: Explanation of PESQ values

‘ PESQ value ‘ Signal Quality ‘ Comments on impairment

1 Poor Very annoying

2 Bad Annoying

3 Fair Slightly annoying

4 Good Perceptible but not annoying
5 Excellent Imperceptible
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Appendix A.

Proof of Theorem 1

Proof. Using the shaped-probe-noise approach for feedback path estimation, the

microphone signal in (5) can be rewritten as
y(n)=xz )+ F(k,n—1)g (n). (AL

Rewriting (6), we have

e(n) =y (n) — F (kin—1)g, (n). (A.2)

Combining (10) with (A.1) and substituting into (A.2), we get

e(n) =z(n)+F(kn—-1)¢ (n) = F(kn—1)q (a)
—z(n) - (F(k,nf 1) — F(k,n— 1)) q(n) > (F(k,nf 1) — F(k,n— 1)) re (n).
(A.3)
Rewriting (4) in the frequency domain ‘and substituting into (A.3), we have
e(n)=x(n)—F (kyn—1)qn) — F (k,n — 1) 7 (n). (A4)
The RLS weight update equation fot'the feedback path estimation filter F (k)
in Fig. 1 is given as [11]
f)=f(n—1)+D(n)rs(n)e(n), (A.5)
where
R t(n-1)

A+ T (MR (n—1)rg(n)’
and-Aidenoctes the forgetting factor such that 0 < A < 1. In (A.6), R (n) is the

D (n) = (A.6)

L ix L i input auto-correlation matrix which can be computed recursively as
R(n) = R (n—1) —rs (n)r’ (n). (A7)

In order to compute the filter coefficients of the adaptive filter, a recursive
expression for R™! (n) is required in terms of R~ (n — 1) [11]. Using matrix

inversion lemma [10], R™! (n) can be obtained from (A.7) as

R'n)=XHR'n-1)-D®)rs(n)rl ()R (n—1)|. (A.8)
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In (A.8), R71(0) = 01, where I is an identity matrix and the regularization
parameter 0 is a positive real number such that R (n) does not become singular
for a small value of n [11]. Substituting the combination of (3), (4) and (A.4)
into (A.5), we get

f'(n) = [I —D(n)ry(n)q” (n) =D (n)rs (n)rs (n)] (n—1)
+D(n)rs(n)z(n) = f (n). (A.9)

For further analysis, we consider the estimation-error covarianee matrix

F(n)=E [? (n) 7 (n)] . (A.10)

In order to compute F (n) from (A.10), f (n) is assuhed tobeéTncorrelated with
all the other terms in (A.9) (assumption (v)). Substituting (A.9) into (A.10),

we have

F(n)=E[f(n-DF (n—1) - Fn— 1) F 1) a )l ()D ()
- (n—Dr. ()l M)D(n) ¥ f(n—1)z(n)q” (n)D(n)
D (n)rs(n)q” (n)f (n— DE"r—T1)
D (n)rs (n)q" (n) 1) (n—1)a(n)rd (n) D (n)
D (n)r, (n) n) Bp 1) z (n)q” (n) D (n)
D (n)rs () a"(n) Eln — DE" (n — 1) x (n)xd (n) D (n)
—D(n)xs )l () fn—1DF" (n—1)
+ D) s () s () E(n—DE (n—1)a(n)rd (n)D(n)
D) () MEn -1z g’ (n)D(n)
D) r. (n)rd () E(n—1DE (n—1)rs (n)rl (n)D (n)
D(mamz @ (n-1)-Dmamaz®i (n-1)am)r (n)Dn)
D(n)q(n)z(n)z(n)q” (n)D (n)
—D(m)amam (n—)r.m)rl (MDm)+£m)E (n) ] (A11)

To represent (A.11) in a simplified form, let us represent a matrix A (n) such
that
An)=TI-D(n)rs(n)q” (n) =D (n)rs (n)r" (n). (A.12)
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Collecting terms in (A.11), substituting (A.12) into (A.11) and using assumption
(iv), we get
F(n)=F(n—1)—D(n)rs (n)r;" (n)F(n—1)
—F(n—Drs(n)r,T (n)D (n) + F (n)
+D (n)rs (n)rsd (n) R, (0)D(n) + E {D (n)rs (n) z (n) fT (nd 1)

+E[E(n-1)2 )" () D m)] - Fn-1)amr! (m)D @

N

~D (n)r, (n)q" (n)F(n - 1)
( () F (n — 1)rs ()17 (n) D ()
(

+D(n)rs (n)q" (n) F (n—1)q(n)rl (n) D(n), (A.13)

where F (n) = E |f (n) [ (n)} is the feedback path variation vector covariance
matrix. It can be seen that (A.13) is a difference equation in terms of F (n).
According to the direct averaging method i4, 24], the term rq (n) s (n — m)
can be replaced by its sample averageias

N
R, (m) = lim 3 r(n)r" (n—m), (A.14)

n=1

where m is the time delay. ‘Similarly, the term ry (n) q© (n — m) can be replaced

by its sample average which can be expressed using assumption (i) as

N
Rypim) = lim. % S v (n) o (n— m) =0. (A.15)
n=1

Combining. (A;14) and (A.15) for m = 0, and substituting into (A.13), we get

the approximate feedback estimation-error covariance matrix as

F Y =F,(n—1)—D(n)R, (0)F, (n— 1) — Fy (n — 1) R, (0) D (n) + F (n)
+D(n) Ry (0)R, (0)D (n) + E [D (n) rs (n) z (n) £ (n — 1)}

+E [? (n—1)z (n)rT (n)D (n)} . (A.16)

Further, there is a need to evaluate the terms F {D (n)rs (n) z (n) T (n — 1)}
and £ [f' (n—1)x(n)rl (n)D (n)] in (A.16) to obtain the final expression for
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F. (n). The evaluation of both the terms is presented in Appendix B in detail.

Finally, we have
F.(n)=F.(n—1)—=D )R, (0)Fa(n—1) —F,(n—1)R, (0) D (n) +F (n)

to
+D(n)D" (n) Y Ry (t)ra (t). (AAT)
t=—to
In (15), the expression for ¢ (w,n) contains F(w,n), which is the”frequency
response of f (n). In order to find an expression for ¢ (w, n), let D'be ath L x Ly
DFT matrix such that T’ is a complex quantity. Then, we can sdy that T’
diagonalizes a Toeplitz matrix asymptotically as Ly — &0 [145 25]. Therefore,

diagonalizing F, (n) using T', we obtain
x (n) =T F, (n) TH, (A.18)

Here, x (n) approaches a diagonal matrixvas L ; —oo and has diagonal elements

expressed by f(w, n). Substituting (A.17) into (A.18), we have

() =T Fa(n—1)T¥ +T FOPRA—D (n) Lier(O) 7T, (n—1)T#
f
1y F.(n -1 TPER, (0) T¥D(n)
Ly
+ D (n) DT ZO TR, (t) THr, (t). (A.19)

In (A.19),4he matriX F (n) is diagonalized as T'F (n) T'# having diagonal ele-
ments S7 (w)a Similarly, the matrix Ry, (0) is diagonalized as L% 'R, (0) TH
having ‘diagonal elements Sp, (w), which is the PSD of rg (n) and is defined as
the Fourier transform of the auto-correlation function of 4 (n). We can express

Sp (@) as
Sp (w) = A (W)[*S, (W), (A.20)

where A (w) is the frequency response A (k) and S, (w) is the PSD of unshaped
probe noise 7 (n). The PTF-approximation ¢ (w,n) forms the diagonal elements

of the matrix X (n). Therefore, replacing the terms x (n), T' F, (n — 1) T'H,
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ACCEPTED MANUSCRIPT

LifI‘ R, (0) TH and T F (n) TH in (A.19) with their respective diagonal ele-

ments, the expression for é (w,n) can be written as
5(“7”) = (1 - 2d(w7n) SP (w))f(w,n - 1)
+ Ly d®(w,n) Sy (W) Sy (W) + 37 (w)

= (1—2d(w,n) 1A (w)[2S, (w)) Elw,n—1) 2,
+ Ly d® (w,n) [A()[*S; (w) Sy (w) + S5 (W) )

where d(w,n) is the diagonal entry of - l" D (n) T# (see Appendix B) ex-
pressed as

1-x 1
Sp(w) A (w

d(w,n) = , (A.22)

and Sy (w) is the PSD of the incoming desire ignal ¢ (n) and is defined

as the Fourier transform of r, (m). Subst .22) into (A.21), the PTF of

(15) can be written approximately ag\(16). O
Appendix B.
Evaluation of the ter r(n)z(n)fT (n—1)
We substitute (A.9) and rewrite the expression for f (n) as
() f(n—1)+D(n)rs(n)z(n) — £ (n). (B.1)
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Simplifying the expanded expression in (B.2), we get

=[[awio+> K I1 ac )( (m)rs (m) (m)?(m))]. (B.3)

l=m+1
In (B.3), it is assumed that the iteration for the adaptation process begins

at n =0 and also [[ A () = IVny > n. Substituting (B.3) into (A.16)Afor

l:no
the term E {D (n)rs (n)z (n) T (n — 1)} , using assumption (iv) and considering
£(0) = (0) — £(0) to be uncorrelated with rs (n), we have

E[D (n) rs (n) z (n) F° (nfl)]
E|D (n)rs (n) z (n) <HA (OHf (0 Z( II A(l))

m=1 \l=m+1

|:D(m)r'S (m)x(m)?(m)]) :|

—(n—1) n—1 T
> D(n)DT(n+t)rs(n)r3(n+tm(t)< I A(l)), (B.4)

t=—1 I=n+1+t

where ¢ = m—n. Since only the steady-staté behaviour of the PTF is influenced

by (B.4), we can consider a large value ofyn for n — 1 > ¢y and rewrite (B.4) as
E [D (n) rs (n)  (n) TT ()| =

_X:D(n DT (n+ )¢ (n)rsT (n+1) 7, t)( H A(l)) . (B.5)

t=-—1 l=n+1+t

Em) ZAm [am-DFn-2+D0-Dr (- Dem-1)-f (n-1)]
+ DAn) s (n) x (n) — £ (n)
=A(n) [A(n—n{A(n—2)?(n—3)+D(n—2)rs(n—2)x(n—2)—F(n—2)}
+D(n-Drs(n-Dam-1)-f (-] +Dm)r@az®) - f ®)..
=AmMAn-1)An-2)F(n-3)
+AMAMR-1)[DMn-2)rs(n-2)zn-2) - f (n-2)]
+ A (n) {D(n—l)rs(n—1)x(n—1)—?(n—1):| +Dn)rs(n)z(n) — £ (n) ...

(B.2)
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I=n41+¢
where the factors of A (I) can be expressed following (A.12) as

n—1
In the above equation, the term ( II A1) ] can be simplified for t = —to,

M an= [I (I—D(n)rsm)qT(n)—D<n>r5<n>r5<n>>.
l=n—t,+1 l=n—t,+1

Expanding (B.6), collecting terms and substituting into (B.5), it canbe observed
that apart from I, all other terms result in higher-order terms consisting of
D (n)DT (n+t)rs (n)rsT (n +t) in (B.5) and can be neglected. Henge, we can

rewrite (B.6) as

ﬁ A()~1 (B.7)

l=n—to+1
Substituting (B.7) into (B.5), we have
—to

E|D(n)rg (n)z (n) f7 (n—1)} = > D@D (n+t)rs (n) " (n+t) 7y (¢).

t=—1

(B.8)

Here, it can be assumed that D (n)\is varying slowly over time such that the

variation in D (n) is slower than the decay of 7, (¢). Then, we have
D () D* (n+t) = D (n) DT (n). (B.9)

Then, (B.8) can beyexpressed with the help of (B.9) as

E |D (n)rs (m) z (n) £7 (nfl)} = D)D" (n) Y Ry ()r.(t), (B.10)

t=—1

where R,/ (t) = rs (n) rs7 (n +t) using the direct-averaging method.

Evaluation of the term E [f' (n—1zn)rL (n)D (n)}
Substituting (B.3) into (A.16) similarly as above for the term E [f' (n—1)x(n)rT (n)D(n)|,

we have

Ef(nq)x(n)rg(n)n(n)} = DD ()Y Ry (t)r. (1), (B.11)
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Substituting (B.10) and (B.11) into (A.16), we get the final expression for F, (n)
in (A.17).

Evaluation of diagonal elements of L—lf I'D(n)TH

To obtain the expression for f (w,n), the time-average shaped probe noise
signal correlation matrix R (n) for the RLS algorithm in Fig. 2 can be expressed
after the addition of the regularization term in the cost function as

n

R(n)=> X"'ro(i)rl (i) + A" 1 (B.12)
i=1
where R (n) is a diagonal matrix and I is the Ly x L uidentity matrix [11].
Asymptotically, for a large value of n and as Atol, the matrix > A\"~irg (i) rl (i)
i=1
tends to have large values [14]. As a result, R=! (n)ytefids to contain small

entries and D (n) in (A.6) can be expressed ‘as
D (n) = R L)) (B.13)
In (B.13), it is assumed that R=l(n) has converged? such that R™1 (n) =
R~!(n—1). Thus, R™! (n) can be written by substituting (B.13) into (A.8) as
D (n) =2 "D (n) =D (n)rs (n)r! (n)D (n)]. (B.14)

Upon convergence, D (n)in (B.14) becomes a Toeplitz matrix. Following (A.18),
D (n) can alsénbe diagonalized as L% I'D (n) T'H. Then, the diagonal entries of

+ T DAn) B can be written as
s
d(w,n) ~ A (d (w,n) — d*(w,n) S, (w)). (B.15)

Thessolution to the second-order difference equation of (B.15) can be written as

(A.22).

2Tt is not necessarily implied that n — oo for R™! (n — 1) to converge.
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Appendix C.

Proof of Lemma 1

Proof. The PTF expression in (16) is a first-order difference equation in terms
of ¢ (w,n) and it can be expressed as

ate

where «a, 8 are real numbers. The coefficient o determines the conv
of the feedback canceller and can be written in terms of the forgetting factor
as®

a=2\—1, (C.2)

whereas the coefficient § in (C.1) can be expre

2
B = Lf(;'p_—(:\)is (C.3)
As defined in (17), the convergence in this case is determined as the decay
of é (w,n), and can be computedy per iterative instant n as
- 1010g,0 (Blal") (C4)
dn

where 8]a|" is the iipulse onse function of 7 (k). Further solving (C.4), we

- od (In(a)"\ Ina d
CR=100, ( In 10 ) =10 <ln10> an ™

= 10log;, (a) . (C.5)

have

bstituting (C.2) in (C.5), we have

CR = 10log;q (2A — 1). (C.6)

3In (C.2), we consider values of A such that A — 1. This allows for slow convergence of
the RLS algorithm due to which a good approximation of F (n) by Fa (n) can be obtained in
(A.17).
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590

595

It can be observed from the above equation that the convergence rate is neither
dependent on the frequency nor on the incoming acoustic signal x (n), but only
dependent on A. In fact, it decreases with increasing A and the convergence
becomes slower. From (C.1), it can be seen that 7 (k) is stable when the poles
lie inside the unit circle, i.e. |a] < 1. Thus, it can be said that the linear
prediction-based feedback cancellation system with shaped probe noise (see Fig:
1) is stable for

0< A<l (C.7)

Using (18), the steady-state behaviour of the aforementioned,system can be
expressed as

é(w, o0) = lim é(w,n). (C.8)

n—o0

Substituting (16) into (C.8), we get

. 1—\ 87 (@)
C(w,oo) = LfmSI ((.U) + ﬁ
150 57 (W)

~aaese) Y =y (9

In the above equation, the first term denotes the steady-state error, i.e. the
minimum possible valueof f(w,n) in the steady state, and the second term
denotes the tracking” error ‘dué to changes in the feedback path. It can be
observed in (C.9) that,L ;/and S, (w) are directly proportional to the steady-
state error, while the steady-state error decreases with increase in A and Sp, (w).
The tracking error is independent of S}, (w) but its value increases with increase
in thelvalue of Xfor the feedback path variations when S? (w) > 0. This implies
a/slower tracking. Infact, the convergence rate in (C.6) is also independent of
Sp.(w),/but dependent on A. Hence, it can be said that the value of ¢ (w, o)
in(C.9) is a trade-off between the steady-state behaviour for a time-invariant

feedback path and the tracking ability for a time-varying feedback path. O

Proof of Corollary 1

Proof. Using (C.6), a required rate of convergence can be obtained by choosing

the value of X as (20), where the convergence rate is in dB per iterative instant
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n. For a time-invariant feedback path, ignoring the tracking error in (C.9) and
rearranging the terms, we have the expression in (21) that can be used to select

a value of A for obtaining a required steady-state error. O

Appendix D.

Proof of Corollary 2

Proof. Consider the AFC system of Fig. 1. The weight update equation for
NLMS algorithm is given as [11]

f(n)=f(n—1) +un)rs(n)em), (D.1)
where e (n) is expressed as (A.2) and p(n) is writtemas

_ fi (n)
p(n) = ST () 1) (D.2)

where [i (n) is the normalized step sizeparaméter and ¢ is a positive real number.

The term ri” (n) rq (n) in (D.2) can be expressed as

r.” (n)rg(n) = Ly 6§, (D.3)

2

where &p

is an estimate of the shaped probe noise signal variance &g. However

2

for fi(n) — 0, 65

can/be replaced by o2 in (D.3) [17]. This is because, for a
small value ofstep. size,/the NLMS algorithm can have a low-pass influence on

the loudspeaker signal [11]. Thus, we can rewrite (D.2) as

ft(n)
= D.4
H (n) 0+ Ly 0’% ’ ( )
where O'g is the variance of r5(n). Following the proof of Theorem 1, the ex-

pression for approximated feedback estimation-error covariance matrix can be

written as

B (n) = Fa(n — 1) — () Ry (0) Fa (n — 1) — 1 () Fy (n — 1) R, (0) + F (n)

+4* (n) D Ry ()7 (). (D.-5)

t=—to
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Diagonalizing F, (n) in (D.5) using DFT matrix T', we have

1

f(n) =TF,(n—1)TY +TF (n) T — 1 (n) L—I‘Rp(O)I‘HI‘Fa(nfl)I‘H
f

— 1 (n) Lifrﬁa(n—nrHer 0)TH + 4% (n) 20: TR, (t) T, (4).

t=—t,

(D.6)

The diagonal elements of x (n) are defined as the PTF approximation as

¢ (wn) = (1 =2 (n) Sp W) ¢ (won = 1) + Ly 4 (n) Sp (w) S () H57 (@)
(D.7)

Substituting (D.4) into (D.7), we have the approtimate,PTF expression for
the NLMS adaptive algorithm-based feedback cancellation system with shaped
probe noise as (22). O

Proof of Lemma 2

Proof. Equation (22) is a first-order différence equation in ¢ (w,n) and can be
written following (C.1), where « isfrequency dependent as
fi(n)
212" g
Qo 5 + Lf O_IQ) p ((U)

_ fi(n) 2
v 1—QW\A(W)| Sr(w), (D.8)

whereas [.an be written as
~2
n
BL— ) g ()8, @)+ 55 () (D.9)
((5 + Lf Ug)
From (C.1), it can be seen that the system is stable || < 1 and therefore, the

range of ji (n) which ensures stability of the system can be given as

d+ Lyo?
0<p(n)< %

max,, Sp (w)

(D.10)
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We can express the steady-state behaviour of the system in Fig. 1 for the NLMS
algorithm by substituting (22) into (C.8) as

A _ S+ (w)
¢ (w,00) nler;CLf 2(51(2102)57/ (w) + nhﬁrr;o (5 + Ly Og) m
P

57 (W)

= lim Ly i) Sy (w) + ILm (6+Lgol)

n=oo ' 25+ Lyo2) " 2% (n) | A (WI2Sy (@)

(D11)

In the above equation, the first term denotes the steady-state errorsand the
second term denotes the tracking error due to changes in the feedback path.
It can be seen from (D.11) that Ly and ji(n) are directlysproportional to the
steady-state error, while the steady-state error decreases with increasing ag.
The tracking error is inversely proportional to-the ratio Sy (w)/ (6 4+ Ly 02),
but increases with increasing Ly. It can be seen from~(C.5) and (D.8) that the
rate of convergence is dependent upon thesratio S, (w) / (6 + Ly 02) and also
decreases with increasing Ly. Also,he rate of convergence decreases and the

tracking error increases owing tosa small yalue of |A (w)]?. O

Proof of Corollary 3

Proof. Substituting (I:8) into (C.5) and rearranging, a required given rate of
convergence can be obtained for the step size [ (n) as (23). Similarly from
(D.11), ignoring the tracking-error term and rearranging, the expression for
determining the value of fi (n) to achieve a required value of ¢ (w, 00) is obtained

as (24). O

Appendix E.

Proof of Corollary 4

Proof. The microphone signal in (5) can be rewritten as

yn)=zmn)+ F(k,n—1)q(n). (E.1)
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We can rewrite the expression for e (n) in (6) as
e(n) =z (n) — (F(k,n— 1) — F (k,n— 1)) q(n)
=xz(n)—F(k,n—1)q(n). (E.2)

The RLS adaptive weight update equation for the feedback path estimation
filter F (k) is given as [11]

fn)=f(n-1)+D(n)q(n)e(n), (E.3)
where
D) (B4)
YN T )R (n— 1) q(n) '
and
R'(n) = XMN'[R'»n-1 — D(n)gn)g" R ' (n—-1)]. (E5)

The approximate feedback estimation-error covariance matrix can be written as
F.(n)=F,(n—1)-D )R, (0)Eg(n —\1) = F, (n — 1) R, (0)D (n) +F(n)

+D (n) Ry (0)7 (0) D) + BYD (n) a(m) x (m) 7 (n — 1)]

+E|F(n-1)z(n)q" (n)D (n)] : (E.6)
where
Ry (1) 5= ngnooﬁzq m), (E7)

where m is the time delay, using direct-averaging method. After further evaluat-
ing the terms B {D (n)q(n)z (n)fT (n — 1)} and £ [f' (n—1)z(n)qT (n) D (n)
in (E«6) following Appendix B to obtain the final expression for F, (n), we get

F.(n)=FL(n—1)—~Dn)Ry (0)Fa(n—1) — Fa (n— 1) R, (0)D (n) + F (n)

+D () D" (n) Y Ry (t)ra (). (E.8)

t=—to
Following the proof of Theorem 1, we can diagonalize (E.8) using an Ly x Ly
DFT matrix I', which consists of complex entries, as
C(wm) = (1= 2d (w,n) 8, (@) )¢ (w,n = 1)+ Ly d? (w,n) S, (@) 8o (w) + 57 (@),
(E.9)
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where d (w, n) is the diagonal entry of L% I'D (n) TH and is expressed as

1-—A
Sq (W)

d(w,n) = (E.10)

and S, (w) is the PSD of the incoming desired acoustic signal z(n) and is
defined as the Fourier transform of r, (¢). Then, the PTF of (15) for the linear
prediction-based feedback cancellation design without probe noise (shown in

Fig. 2) can be written as (28). O

Proof of Lemma 8

Proof. Following the proof of Lemma 1, the steady-state behaviour of the system

in Fig. 2 can be expressed using (28) as

. A Shw)

1—
2.5, (w)
The expression for ¢ (w,0) in (E.11) is the.sum 6f two terms. The first term
denotes the minimum possible valueyof {“ (w,n) in the steady state and the
second term denotes the trackingserror due to changes in the feedback path. In
(E.11), it is seen that Ly and S, (w) are directly proportional to the steady-
state error, while the steady-state error decreases with increase in S, (w) and
A. The tracking errot is unaffected by S, (w), but increases with increasing A
for the feedback path variations when S? (w) > 0 leading to a slower tracking.
Following the proofiof Lémma 1, it can be concluded that the convergence rate is
also unaffeeted by Sy (w) , but depends on the value of A as shown in (C.6). So,
it cantbe $aid that the overall value of ¢ (w, o) is a trade-off between the steady-
state behaviour for a time-invariant feedback path and tracking behaviour for a

time-varying feedback path. O

Proof of Corollary 5

Proof. The expression for selecting a forgetting factor value for RLS adaptive
algorithm to obtain a required given rate of convergence for the AFC system
without probe noise can be obtained following Corollary 1. Also, following

Corollary 1 in ignoring the tracking-error term in (E.11) and rearranging, we
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obtain the expression for choosing the value of A to obtain a desired steady-state

error ¢ (w,00) as (29). O

Appendix F.

Proof of Corollary 6

Proof. The weight update equation for the NLMS algorithm-based. adaptive
filter in Fig. 2 is given by [11]

F(m)=F(n—1)+ p(m)a()en), (F.1)
where )
nn) = 52 (F2)

The expression for F, (n) can be written as
F.(n) =Fa(n—1) = p(n)Ry (0)F, (n % =y (n) Fo (n = 1) R, (0) + F (n)
+ 1% (n) Y Ry () ralt)- (F.3)

Diagonalizing F, (n) in (F23) using the DFT matrix T', we have

@ (n) = TF, (n — YT+ BF(n) T — 1 (n) Liqu () TYTF, (n—1) T
f

T'F,(n—1)THTR,(0) TH + 42 (n) 20: TR, (t) Tr, (1).

1
—p(n) I;
f t=—t¢

(F.4)
The-diagonal elements of W (n) are defined as the PTF of (15), and expressed

as

ooy = (1= 201(n) Sy (@) )& (w,n = 1) + Ly 12 (n) S (@) S (@) + 57 ().
(F.5)
Substituting the expression for u(n) from (F.2) into (F.5), we have the PTF

of (15) for the NLMS adaptive-algorithm-based feedback cancellation system

without probe noise as (30). O
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Proof of Lemma 4

Proof. Following the proof of Lemma 2, we have from Corollary 6

_ fi(n)
and
= 7/]2 (n) w w — (w
I 80 8 ), (P

The AFC system in Fig. 2 is stable for the range for i (n) given as
6+ Lso:

max,, Sy (W)

0<f(n) < (F.8)

The steady-state behaviour of the feedback cancellation/system“in“Fig. 2 can

be expressed as

A _ S (w)
Clonse) = i Lyl s )+ MENSWIAOD) 720 o
q

(F.9)
The expression for ¢ (w,0) in (F.9)ds the/fum of two terms. The first term
denotes the minimum possible value of 5 (w,n) in the steady state and the second
term denotes the tracking error due to changes in the feedback path. It can be
seen from (F.9) that both”L s and the step size ji (n) are directly proportional
to the steady-state error, while the steady-state error decreases with increase
in 03. Owing to the presence of 03, the tracking error is inversely proportional
to the ratio Sg'(@w)./ (6 + Ly 02) instead of only the value of S, (w). Also, the
tracking error|is increased with an increase in Ly. Similarly, it can be seen
from (C.5) and (F.6) that the convergence rate is dependent upon the ratio
Sgdw) /(8 +/Ls 02) and decreases with increase in Ly. O

Proof of Corollary 7

Proof. Following the proof of Corollary 3, the expression for fi(n) for a given
rate of convergence can be obtained from (F.9) as (31), where the convergence
rate is in dB per iterative instant n. Similarly, using (F.9) and ignoring the
tracking error, we have the expression for determining the value of fi(n) for

obtaining a desired steady-state error ¢ (w,c0) as (32). O
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