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Highlights

• The convergence, steady-state and tracking behaviour of the LP-based

adaptive feedback canceller with and without probe noise depends on the

adaptive algorithm employed.

• The cost of achieving an unbiased feedback cancellation using linear prediction-

based adaptive feedback cancellation system with shaped probe noise is

an increase in the steady-state error, in comparison with the feedback

canceller without probe noise when RLS algorithm is used.

• For the NLMS algorithm, the cost of an unbiased feedback estimate is a

reduction in the rate of convergence, along with an increase in the tracking

error, as compared to the feedback canceller without probe noise.

• The Spectrogram-based comparison of the LP-based feedback canceller

with shaped probe noise and the basic feedback canceller with probe noise

for the respective loudspeaker outputs shows that the loudspeaker output

of the former has less distortion and whistling problem as compared to

that of the latter.

• Derived expressions provide an accurate approximation of the power trans-

fer function, rate of convergence and steady-state error for a synthetic sig-

nal and speech signal as input, despite the assumptions made during the

analysis.
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Abstract

We consider an adaptive linear prediction based feedback canceller for hearing

aids that exploits two (an external and a shaped) noise signals for a bias-less

adaptive estimation. In particular, the bias in the estimate of the feedback path

is reduced by synthesizing the high-frequency spectrum of the reinforced signal

using a shaped noise signal. Moreover, a second shaped (probe) noise signal is

used to reduce the closed-loop signal correlation between the acoustic input and

the loudspeaker signal at low frequencies. A power-transfer-function analysis

of the system is provided, from which the effect of the system parameters and

adaptive algorithms [normalized least mean square (NLMS) and recursive least

square (RLS)] on the rate of convergence, the steady-state behaviour and the

stability of the feedback canceller is explicitly found. The derived expressions are

verified through computer simulations. It is found that, as compared to feedback

canceller without probe noise, the cost of achieving an unbiased estimate of the

feedback path using the feedback canceller with probe noise is a higher steady-

state misadjustment for the RLS algorithm, whereas a slower convergence and
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a higher tracking error for the NLMS algorithm.

Keywords: Adaptive filters, feedback cancellation, probe noise, hearing-aid,

band-limited LPC vocoder, convergence rate, power transfer function.

1. Introduction

Acoustic leakage takes place when an assistive listening device is vented or

ill-fitted [1, 2, 3]. Consequently, the microphone of the audio system picks up a

portion of the loudspeaker output signal thereby resulting in an acoustic feed-

back path from the system loudspeaker to the microphone. The problem of5

acoustic feedback degrades the performance of the audio system. In fact, the

system might ultimately become unstable, causing feedback whistling and howl-

ing to occur [2, 3]. Feedback can be suppressed adaptively by using adaptive

filters to identify the acoustic environment, which in turn affects the feedback

path [4, 5]. Traditional approaches for controlling the feedback path problem10

and facilitating an unbiased solution of the feedback path can be categorized

as feed-forward suppression and feedback cancellation techniques. The feed-

forward suppression methods, such as gain reduction and phase modification,

are based on modifying the forward signal processing path from the microphone

to the loudspeaker. Feedback cancellation methods, such as feedback cancella-15

tion using adaptive filters, are based on estimating the true feedback path to

generate an estimate of the original feedback signal. Among many such ap-

proaches, band-limited linear predictive coding (LPC)-based adaptive feedback

cancellation (AFC) system stands out due to its effectiveness in efficiently re-

ducing the high- frequency bias in the estimate of the original feedback path20

[6]. However, since a small amount of bias still persists, introduction of probe

noise signal in the feedback estimation path can further reduce the bias [7]. It

is essential that the probe noise signal be of a power level comparable to that

of the loudspeaker signal at all frequencies and also be uncorrelated with the

incoming desired signal [8]. The problem with a probe signal of a strong power25

level is that it is audible to the users of the assistive listening devices and thus,
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undesirable. A weak probe noise signal, which is not audible to the users, re-

duces not only the rate of convergence of the adaptive algorithm but also the

ratio of the probe noise signal and the disturbing signal [9]. A shaped probe

noise signal, generated using spectral masking filters, is not annoying as it is30

inaudible to the users. The masking capability of the human auditory system

is used by these filters so that the modified (probe-injected) loudspeaker sig-

nal, consisting of the loudspeaker input and the shaped probe signal, sounds

perceptually identical to the former [10].

Adaptive feedback cancellers may employ different adaptation algorithms35

such as the least-mean-square (LMS), recursive least squares (RLS), normalised

least-mean-square (NLMS) or variations of these algorithms [11]. From an ob-

jective point of view, the performance of a feedback canceller can be evaluated

in terms of various quantities that decide the overall system behaviour. In order

to determine the rate of convergence and the steady-state error of an adaptive40

algorithm, the feedback path is considered to be time-invariant. However, to

determine the tracking error, the feedback path must be considered to be time-

varying by using different variation models for the feedback path [8]. Among

the many measures for evaluating the performance of a feedback canceller, the

mean-square error (MSE) evaluation is the most commonly used one. The rate45

of convergence and the steady-state error are indicated by the decay of the MSE.

The MSE evaluation method can be conveniently employed for physical mea-

surements and simulation purposes. Another type of performance measure is

the mean-square deviation (MSD) between the original feedback path and the

feedback path estimate [11]. In such a performance measure, it is essential that50

the feedback path is already known, which is convenient for simulation purposes.

In [7], the time-domain performance analysis of the adaptive feedback canceller

with probe noise (discussed above) was done based on the MSE performance

measure. The disadvantage of the aforementioned performance evaluation mea-

sures in time-domain is their inability to shed light upon the frequency-domain55

behaviour of the AFC system. The power transfer function (PTF) can be used

to overcome this disadvantage and to provide fruitful knowledge about the adap-
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tive system in the frequency domain [8]. The hearing impaired can hear sounds

at certain frequencies and not at others. Frequency-domain analysis of the AFC

design using the PTF method is more suitable than time-domain measures to60

study the electro-acoustic characteristics of the feedback path, the frequency-

domain behavior of the feedback cancellation system and the acoustic percepti-

bility of the human auditory system. The PTF-based frequency-domain analysis

has been done for the basic adaptive feedback canceller without probe noise in

[12] and that for the AFC system with probe noise in [13]. However, in our65

work, we analyse the linear predictive (LP) analysis and synthesis-based AFC

system with probe noise. The inclusion of LP analysis and synthesis improves

the loudspeaker signal quality as compared to that in [12] by using the high-

frequency portion of the synthetic replica of the reinforced signal for reducing

the closed-loop signal correlations at high frequencies, and thereby reducing the70

bias in the adaptive estimation of the feedback path [7]. Moreover, the work

done in [13] considers the use of enhancement filters for processing the error

signal. However, in our work, spectral shaping filters are used to render the

probe signal imperceptible in presence of the loudspeaker signal. Furthermore,

since our work as well as that in [12] and [13] are based on the application of75

adaptive algorithms, similar measures are used for the prediction of the system

behavior in all of the aforementioned works, despite analysing a different AFC

framework in each case.

In this paper, we present a comparative frequency-domain performance anal-

ysis of the linear prediction-based adaptive feedback cancellers with and without80

probe noise in the estimation path. The approximate expressions for the PTF

are derived for the linear prediction-based feedback cancellation system with as

well as without the introduction of the probe noise signal in the adaptive filter

path for both the RLS and NLMS adaptive algorithms. The performance of

these feedback canceller schemes is discussed in terms of the convergence rate of85

the adaptive algorithm, system stability and their steady-state behaviour, ex-

pressions for which are derived from the aforementioned RLS algorithm-based

as well as NLMS algorithm-based approximate expressions for the PTF. The

5
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behaviour of both the feedback cancellers (with and without probe noise) is

analysed and characterized for both RLS and NLMS algorithms based on the90

overall-system parameters and the adaptive-algorithm employed. Expressions

for different adaptive-algorithm parameters are also determined for achieving

desired system behaviour. The organisation of the paper is as follows. Section

2 contains a brief description of the linear prediction-based feedback cancellers

with and without the probe noise signal, along with the parameters which are95

common to both the schemes. In Section 3, we derive detailed expression for

the PTF-approximation for the RLS adaptive algorithm-based feedback can-

cellation scheme with probe noise in the filter estimation path; on the basis

of this expression, expressions for the rate of convergence, stability constraint

for the system and the steady-state behaviour of the adaptive algorithm are100

derived and, the influence of the overall-system parameters and the adaptive

algorithm used is discussed. In Section 4, approximate expression for the PTF

is derived and a discussion on the interaction between the system and its pa-

rameters is made for the NLMS adaptive algorithm-based feedback cancellation

scheme with probe noise. Following the approach for the frequency-domain105

analysis of the feedback canceller with probe noise in Sections 3 and 4, the

derivation of approximate expressions for the PTF, system-behaviour analysis

and adaptive-algorithm parameters for the desired system behaviour are carried

out in Section 5 for the RLS as well as NLMS adaptive algorithm-based feedback

canceller without probe noise. Computer simulations are presented in Section110

6 in support of the analysis and Section 7 contains the conclusions.

The following notation has been adopted throughout the paper; [.]T for the

transpose of a matrix, [.]H for the Hermitian transpose of a matrix, [.]−1 for

the inverse of a matrix, [.]∗ for complex conjugation, E[.] for the expectation

operation, n for discrete-time index, k for discrete-time delay operator such115

that k−1m(n) = m(n − 1) , ω for frequency, bold-faced lower-case letters for

column vectors and bold-faced upper-case letters for matrices. A discrete-time

filter of length L is represented as a polynomial F (k) in terms of k−1 as F (k) =

f0 + f1k
−1 + ... + fL−1k

−L+1 or by its coefficient vector f = [f0, f1, ..., fL−1]T .

6
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The signal m(n) is filtered by F (k) as F (k)m(n) = fT (n) m(n) , with m (n) =120

[m (n) ,m (n− 1) , ...,m (n− L+ 1)]T . F (ω, n) denotes the frequency response

of F (k) .

2. System Description

The block diagram of the linear prediction-based feedback cancellation sys-

tem, with a shaped probe noise signal introduced in the filter estimation path,125

is shown in Fig. 1. A similar AFC system without probe noise, introduced in

[6], is shown in Fig. 2. In this section, we consider the linear prediction-based

feedback cancellers, with and without the probe-noise signal, on the basis of

some welldefined system parameters. We formulate the PTF to facilitate fur-

ther study of the frequency-domain behaviour of the feedback cancellers shown130

in Figs. 1 and 2, respectively. The fundamental idea of the linear prediction-

based approach is based on the production of a synthetic copy of the forward

processed signal such that it is identical, but uncorrelated with the desired sound

signal [6]. The feedback signal fb(n) is formed when the loudspeaker signal is

passed though the acoustic environment represented by F (k). We consider F (k)135

as an FIR filter of length Lf and coefficient vector f = [f0, f1, ..., fL−1]T . The

adaptive filter F̂ (k) is also considered as an FIR filter of length Lf̂ and the

coefficient vector f̂ = [f̂0, f̂1, ..., f̂Lf̂−1]T .

The time-varying behaviour of F (k) can be represented using the Random-

Walk model [14, 15] as

F (ω, n) = F (ω, n− 1) +
^

F (ω, n) , (1)

where F (ω, n) is the frequency response of the feedback path F (k) and
^

F (ω, n)

is considered as the frequency response of the variation vector of the feedback

path. We consider the variation vector of the feedback path to be a Gaussian

random process of zero mean such that
^

F (ω, n) is a complex quantity [8, 14].

The power spectral density of
^

F (ω, n) is given as

S^
f

(ω) = E
[

^

F (ω, n)
^

F
∗

(ω, n)
]
. (2)

7
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To get a preliminary expression of the PTF, we start with the time-domain

representation of the system parameters. The feedback path variation vector is

^

f (n) = f (n)− f (n− 1) , (3)

where
^

f = [
^

f 0,
^

f 1, ...,
^

fLf−1]T . Similarly, we can express the feedback path

estimation-error vector f̃ = [f̃0, f̃1, ..., f̃Lf−1]T as the difference between the

coefficient vector of the adaptive estimator and the original feedback path as

f̃ (n) = f̂ (n)− f (n) . (4)

Considering Figs. 1 and 2, the microphone signal

y (n) = x (n) + fb (n) . (5)

The error signal

e (n) = y (n)− v (n) , (6)

where v (n) is the output of the adaptive filter. The loudspeaker signal

q (n) = ulp (n) + usyn hp (n) , (7)

where the signal vector q =
[
q (n) , q (n− 1) , ..., q

(
n− Lf̂ + 1

)]T
, and ulp (n)

is the low-frequency component of the reinforced forward path signal u (n) and

usyn hp (n) is the high-frequency component of the synthetic version of u (n)

with vector definitions ulp (n) =
[
ulp (n) , ulp (n− 1) , ..., ulp

(
n− Lf̂ + 1

)]T
and

usyn hp (n) =
[
usyn hp (n) , usyn hp (n− 1) , ..., usyn hp

(
n− Lf̂ + 1

) ]T
respectively.

The low-pass filter LP (k) is designed to allow only the frequency spectrum of

u (n) below 2 kHz to pass through, the high-pass filter HP (k) is designed to

allow only the 2 kHz spectrum to pass through, and Ĥ (k) is the estimated P th

order all-pole signal model which is used to obtain a synthetic replica of u (n)

and is a part of the LP analysis and synthesis block in Figs. 1 and 2 [6]. The

gain G (k) of the hearing aid provides reinforcement to the error signal e (n),

and can be expressed as

G (k) = k−dg Ḡ (k) , dg ≥ 1, (8)

8
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where dg is the time-delay and Ḡ (k) is the transfer function which provides a

frequency-specific reinforcement to the error signal to reduce the listening effort140

[6].

In Fig. 1, the shaped probe noise signal rs (n) is generated by passing a

Gaussian white-noise sequence r (n) of zero mean and unit variance through a

spectral shaping filter A (k) with coefficient vector a (n) = [a0, a1, ..., aLa−1]
T

as

rs (n) = A (k) r (n) . (9)

Considering Fig. 1, the probe-injected loudspeaker output can be expressed in

vector form as

qr (n) = q (n) + rs (n) , (10)

where qr =
[
qr (n) , qr (n− 1) , ..., qr

(
n− Lf̂ + 1

)]T
,q =

[
q (n) , q (n− 1) , ..., q

(
n− Lf̂ + 1

) ]T

and rs =
[
rs (n) , rs (n− 1) , ..., rs

(
n− Lf̂ + 1

) ]T
.

The frequency-domain expression of the MSD is referred to as the PTF [8].

In this work, the frequency-domain expression for the MSD between the original

feedback path and the feedback path estimate, i.e. E

[∥∥∥f (n)− f̂ (n)
∥∥∥

2
]

, is the

PTF which can conveniently describe the behaviour of an adaptive feedback

canceller. The open-loop transfer function of the closed-loop AFC system in

Fig. 1 and Fig. 2, for a specific frequency ω and time-instant n, is given as

O (ω, n) = G (ω, n)Lp (ω, n)
(
F (ω, n)− F̂ (ω, n)

)
. (11)

If we consider the closed-loop AFC system in Figs. 1 and 2 to be linear and

time-invariant, then as per the Nyquist stability criterion, they will be unstable

when [16]

∣∣∣G (ω, n)Lp (ω, n)
(
F (ω, n)− F̂ (ω, n)

)∣∣∣ ≥ 1

6 G (ω, n)Lp (ω, n)
(
F (ω, n)− F̂ (ω, n)

)
= j2π, (12)

where j is an integer. Generally, the feedback path F (k) is not known apriori

and thus it is not possible to calculate the open-loop transfer function O (ω, n).

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

However, we can express the expected value of the magnitude-square of O (ω, n)

as

E
[
|O (ω, n)|2

]
= |G (ω, n)Lp (ω, n)|2ζ (ω, n) , (13)

where ζ (ω, n) is the expected value of the magnitude-squared transfer function

between points A and B1 in Figs. 1 and 2; this transfer function is also called

as the PTF. It can be written in terms of the MSE in frequency domain for a

feedback cancellation framework as [14]

ζ (ω, n) = E

[∣∣∣F̂ (ω, n)− F (ω, n)
∣∣∣
2
]
. (14)

From the above equation, it can be observed that for an ideal feedback cancel-

lation system where F̂ (ω, n) = F (ω, n), the value of the PTF will be equal to

zero at all frequencies. However, in practical applications, ζ (ω, n) is random

in nature as the original feedback path is unknown and changes randomly [12].

Substituting the frequency-domain version of (4) into (14), an expression for

the PTF can be expressed as [14]

ζ (ω, n) = E
[
F̃ (ω, n) F̃ ∗ (ω, n)

]
, (15)

where F̃ (ω, n) is the frequency response of the feedback path estimation-error

signal f̃ (n). The reinforcement filter G (k) and thereby, its frequency response145

G (ω, n), is already known. Consequently, the expectation of the magnitude-

squared O (ω, n) in (13) can be determined. However, the problem is that

O (ω, n) is considered to be random in nature and is unknown a priori due

to F̃ (ω, n) being unknown. As a result, the PTF cannot be computed di-

rectly. Hence, if we can obtain an approximation of F̃ (ω, n), an expression150

for approximate-PTF ζ̂ (ω, n) can be conveniently obtained using (15). The

importance of the expression for approximate-PTF ζ̂ (ω, n) is that it allows us

1All derivations in this work are done after omitting the reinforcement filter G (k), i.e., on

an open-loop setup. However, the simulations were performed for a closed-loop AFC system of

a hearing aid, with a delay inserted in the forward path [12]. It was found that the derivations

were applicable for the closed-loop system and results were verified.

10
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to analyse and characterize the behaviour of the AFC system using statistical

characteristics of the signals, order of the adaptive filter, adaptive algorithm

used and the assumptions made for the variations in the feedback path, when155

the feedback path is not known apriori [8, 17]. The following assumptions are

made in this paper for further analysis:

i The shaped probe noise signal rs (n) and the unshaped probe noise signal

r (n) are assumed to be uncorrelated with the desired signal x (n) and with

loudspeaker signal q (n).160

ii A sufficiently large filter length Lf̂ of the adaptive-estimation filter models

the unknown feedback path to avoid undermodelling and the length Lf̂ of

the adaptive filter is assumed to be identical to the length Lf of the feedback

path [12, 18].

iii The length La of the shaping filter A (k) is assumed to be less than the165

length Lf̂ of the adaptive estimator, i.e. La < Lf̂ in the system of Fig. 1.

iv The incoming desired acoustic signal x (n) is considered to be a stationary

random signal of zero mean. The input auto-correlation rx (m) expressed as

rx (m) = E [x (n)x (n−m)] such that rx (m) = 0∀ |m| > m0, where m0 is a

finite integer.170

v With reference to the expression in (3) for the feedback path variation vector
^

f (n), the variations in the feedback path are independent of x (n), q (n),

rs (n) and f̃ (n) [8].

3. Frequency-domain analysis for RLS algorithm

In this section, we derive an expression for the PTF-approximate ζ̂ (ω, n) for175

the RLS adaptive algorithm for the feedback cancellation system shown in Fig.

1. The RLS adaptive algorithm gives faster convergence, albeit at an additional

cost of computational complexity, as compared to the NLMS algorithm[11].

Further, we use the derived expression for ζ̂ (ω, n) for analysing the effect of the

11
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system parameters and the RLS algorithm parameters on the system behaviour.180

We also find the expression to allow for the choice of a forgetting-factor value

that facilitates a required system property.

3.1. Approximate expression for PTF

Theorem 1. Consider the linear prediction-based adaptive feedback canceller

with shaped probe noise in Fig. 1. Let the adaptive filter F̂ (k) be updated using

the RLS algorithm, and suppose that assumptions (i)-(v) hold. Then, the PTF

of (15) can be written as

ζ̂ (ω, n) = (2λ− 1) ζ̂ (ω, n− 1) + Lf
(1− λ)

2

|A (ω)|2Sr (ω)
Sx (ω) + S^

f
(ω) , (16)

where λ is the forgetting factor such that 0 < λ < 1, Lf is the length of the

feedback path, A (ω) is the frequency response of shaping filter A (k), Sr (ω)185

is the PSD of unshaped probe noise r (n), Sx (ω) is the PSD of the incoming

acoustic signal x (n) and S^
f

(ω) is the variance of the feedback path.

Proof. The detailed derivation of the approximate expression for the PTF of

the linear prediction-based AFC system with shaped probe noise is presented

in a step-wise manner in Appendix A.190

We will now use the PTF expression in (16) to derive and predict the system

behaviour in terms of the rate of convergence, steady-state error and tracking

error.

3.2. Prediction of system behaviour

The convergence rate (CR) can be determined as the decay-rate of the MSD

between the original and the estimated feedback path. In frequency domain,

convergence rate can be defined as the decay of the PTF ζ (ω, n) as the iterations

progress and can be written as

CR = lim
n→∞

d

dn
ζ (ω, n) . (17)

It will be seen later in this work that for the RLS algorithm, CR is independent of

ω, whereas it is a function of ω for the NLMS algorithm. Hence, the convergence

12
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rate is simply mentioned as CR in (17). The steady-state error (SSE) is the final

MSD value between the true and the estimated feedback path, corresponding

to a stationary feedback path, and can be written as

SSE (ω) = lim
n→∞

E

[∣∣∣F̂ (ω, n)− F (ω, n)
∣∣∣
2
]
, S^

f
(ω) = 0. (18)

The tracking error (TE) is the misadjustment in tracking the non-stationary

feedback path and can be expressed as

TE (ω, n) = E

[∣∣∣F̂ (ω, n)− F (ω, n)
∣∣∣
2
]
, S^

f
(ω) 6= 0. (19)

Lemma 1 derives the expressions for the convergence rate defined in (17), the195

steady-state error in (18) and tracking error in (19) for the linear prediction-

based feedback canceller with shaped probe noise in Fig. 1 to analyse the system

behaviour when RLS adaptive algorithm is used.

Lemma 1. For the AFC system in Fig. 1 and under the assumptions stated in

Section 2, the following holds200

i System convergence (CR) in (17) slows down with increasing λ.

ii SSE in (18) increases with increasing Lf and Sx (ω), and with decreasing λ

and Sp (ω)

iii TE in (19) increases with increasing λ for S^
f

(ω) > 0

Proof. The proof of Lemma 1 is presented in detail in Appendix C.205

We will use the expression obtained in (C.9) in the proof of Lemma 1 to

obtain the value of forgetting factor of the RLS algorithm for achieving a desired

system behaviour in Corollary 1.

Corollary 1. For the system in Fig. 1 and under assumptions (i)-(v), the se-

lection of the forgetting factor value, for achieving a required rate of convergence

of the RLS adaptive algorithm, can be carried out according to

λ =
1 + 10

CR

10

2
, (20)

13
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the convergence rate CR being in dB per iterative instant n. The selection of

the forgetting factor for obtaining the desired steady-state error ζ̂ (ω,∞) can be

done according to

λ = 1− 2Sp (ω) ζ̂ (ω,∞)

Lf Sx (ω)
. (21)

Proof. The proof of Corollary 1 is presented in detail in Appendix C.

4. Frequency-domain analysis for NLMS algorithm210

In this section, following the treatment in the proof of Theorem 1, we derive

an approximate expression for the PTF for the NLMS adaptive algorithm for the

feedback cancellation system shown in Fig. 1. Moreover, we use this derived

expression for analysing the effect of the system parameters and the NLMS

algorithm parameters on the system behaviour. We also find the expression215

that allows the choice of a step size value, which facilitates a required system

characteristic.

4.1. Approximate expression for the PTF

Corollary 2. For the feedback canceller with shaped probe noise in Fig. 1, where

F̂ (k) is updated using the NLMS algorithm and under assumptions (i)-(v), the

PTF of (15) can be written as

ζ̂ (ω, n) =

(
1− 2

µ̃ (n)

δ + Lf σ2
p

Sp (ω)

)
ζ̂ (ω, n− 1)

+ Lf
µ̃2 (n)

(
δ + Lf σ2

p

)2 Sp (ω)Sx (ω) + S^
f

(ω) , (22)

where Sp (ω) is the PSD of shaped probe noise rs (n), µ̃ (n) is the normalized

step size of the adaptive algorithm, δ is a small positive real number and σ2
p is220

the variance of rs (n).

Proof. The detailed derivation of the approximate expression for the PTF of

the linear prediction-based AFC system with shaped probe noise is presented

in a step-wise manner in Appendix D, with reference to the NLMS adaptive

algorithm.225
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4.2. Prediction of system behaviour

Lemma 2 derives the expressions for the convergence rate defined in (17), the

steady-state error in (18) and the tracking error in (19) for the linear AFC sys-

tem in Fig. 1 to analyse the system behaviour when NLMS adaptive algorithm

is used.230

Lemma 2. For the AFC system in Fig. 1 and under assumptions (i)-(v), the

following holds

i System CR in (17) increases with increasing µ̃ (n)

ii SSE in (18) increases with increasing values of Lf and µ̃ (n), and with de-

creasing value of Sx (ω)235

iii TE in (19) increases with increasing Lf , as well as with a decreasing ratio

of Sp (ω) /
(
δ + Lf σ

2
p

)

Proof. The proof of Lemma 2 is presented in detail in Appendix D.

The expression in (D.11) can now be used to derive an expression for ob-

taining the value of step size parameter for a required system behaviour char-240

acteristic.

Corollary 3. For the AFC system in Fig. 1 and under assumptions (i)-(v), se-

lection of the normalized step-size parameter for the NLMS algorithm, to achieve

a required given rate of convergence, can be carried out according to

µ̃ (n) =
(
δ + Lf σ

2
p

) 1− 10

CR

10

2Sp (ω)
, (23)

CR being in dB per iterative instant n, and the selection of the normalized

step-size parameter for obtaining the desired steady-state error ζ̂ (ω,∞), corre-

sponding to a time-invariant feedback path, can be done according to

µ̃ (n) =
2
(
δ + Lf σ

2
p

)
ζ̂ (ω,∞)

Lf Sx (ω)
. (24)

Proof. The proof of Corollary 3 is presented in detail in Appendix D.
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Remark 1. In a feedback cancellation design with probe noise, it is desired that

the probe noise r (n) be inaudible to the listeners in presence of the loudspeaker

signal q (n) such that qr (n) is perceived as q (n). To achieve this, a shaped245

probe noise rs (n), instead of r (n), is added to q (n) to facilitate an unbiased

estimation. The shaped probe noise exploits the masking capabilities of the audi-

tory system in humans and Sp (ω) is chosen to be approximately 15-25 dB below

Sq (ω) [8], [19].

Remark 2. Here, we present the delay condition for achieving an unbiased

solution for the feedback path. For this, we consider Fig. 1 when rs (n) is

used in the estimation path of the AFC system. A shaped probe signal reduces

the decorrelation effect, which is required to reduce the bias in the estimate of

the feedback path [18]. The optimal solution for the feedback path is biased,

even when rs (n) is a white-noise signal [7, 20]. This shows that the shaping

filter introduces a bias in the feedback path estimate, which can be prevented by

introducing a sufficiently large delay in the forward path [18]. Let us assume

that rs (n) has a finite correlation function as

Rp (m) = 0∀ |m| > m0, (25)

where m0 is a finite integer. As presented in [7, 21], an unbiased optimal solu-

tion for the feedback path is possible when

dg ≥ Lf +m0. (26)

From (8), it can be seen that the forward path G (k) consists of a delay dg

along with the actual reinforcement filter Ḡ (k) of length Lḡ. In order to prevent

Ḡ (k) from contributing to the bias in the feedback path estimate, the delay dg

introduced in the forward path should be such that

dg ≥ Lf +m0 + Lḡ. (27)

The above equation presents a general delay condition for achieving a bias-free250

estimate of the feedback path, when a shaped probe noise signal is introduced in

the filter estimation path of the linear prediction-based AFC system.
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Table 1 summarizes the effect of the overall-system parameters on the be-

haviour of the feedback cancellation design in Fig. 1, based on the choice of the

adaptive algorithm (NLMS or RLS).255

5. Frequency-domain analysis for the feedback canceller without probe

noise

Corollary 4. For the linear prediction-based adaptive feedback canceller without

probe noise in Fig. 2, in which F̂ (k) is updated using the RLS algorithm and

supposing that assumptions (ii)-(v) hold, the PTF of (15) can be written as

ζ̂ (ω, n) = (2λ− 1) ζ̂ (ω, n− 1) + Lf
(1− λ)

2

Sq (ω)
Sx (ω) + S^

f
(ω) , (28)

where Sq (ω) is the PSD of the loudspeaker signal q (n).

Proof. The approximate expression for the PTF of the linear prediction-based

AFC system in Fig. 2 can be derived following the proof of Theorem 1. For260

detailed derivation, see Appendix E.

Lemma 3 derives the expressions for the convergence rate in (17), the steady-

state error in (18) and the tracking error in (19) for the feedback canceller

without probe noise (see Fig. 2) to analyse the system behaviour when RLS

adaptive algorithm is used.265

Lemma 3. For the system in Fig. 2, and under assumptions (ii)-(v), the

following holds

i System CR in (17) decreases with increasing λ

ii SSE in (18) increases with increasing Lf and Sp (ω), and with decreasing λ

and Sp (ω)270

iii TE in (19) decreases with increasing λ for S^
f

(ω) > 0

Proof. The proof for the above follows Lemma 1 and is presented in Appendix

E.
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Corollary 5. The selection of the forgetting factor value to achieve a required

given rate of convergence can be done as (20) where the convergence rate is

in dB per iterative instant n, and the selection for forgetting factor value for

obtaining desired steady-state error ζ̂ (ω,∞) can be done according to

λ = 1− 2Sq (ω) ζ̂ (ω,∞)

Lf Sx (ω)
. (29)

Proof. The proof for the above follows that of Corollary 1 and is presented in

Appendix E.275

Corollary 6. For the feedback canceller in Fig. 2 using the NLMS adaptive

algorithm and under assumptions (ii)-(v), the PTF of (15) can be written as

ζ̂ (ω, n) =

(
1− 2

µ̃ (n)

δ + Lf σ2
q

Sq (ω)

)
ζ̂ (ω, n− 1)

+ Lf
µ̃2 (n)

(
δ + Lf σ2

q

)2 Sq (ω)Sx (ω) + S^
f

(ω) . (30)

Proof. The proof for the above follows that of Corollary 1 and is presented in

Appendix F.

Lemma 4 derives the expressions for the convergence rate in (17), the steady-

state error in (18) and the tracking error in (19) for the linear prediction-based

feedback canceller without probe noise (see Fig. 2) to analyse the system be-280

haviour when NLMS adaptive algorithm is used.

Lemma 4. For the AFC system in Fig 2, and under assumptions (ii)-(v), the

following hold

i System CR in (17) decreases with increasing Lf

ii SSE in (18) increases with increasing Lf , µ̃ (n) and Sx (ω), and with de-285

creasing σ2
q

iii TE in (19) increases with increasing Lf and with decreasing ratio of Sq (ω) /
(
δ + Lf σ

2
q

)

Proof. The proof for the above follows that of Lemma 2 and is presented in

Appendix F.
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Corollary 7. For the system in Fig. 2 and under assumptions (ii)-(v), the se-

lection of the normalized step-size parameter for the NLMS algorithm, to achieve

a required given rate of convergence, can be done according to

µ̃ (n) =
(
δ + Lf σ

2
q

) 1− 10

CR

10

2Sq (ω)
, (31)

where the convergence rate is in dB per iterative instant n, and the selection of

the normalized step-size parameter for obtaining the desired steady-state error

ζ̂ (ω,∞) can done according to

µ̃ (n) =
2
(
δ + Lf σ

2
q

)
ζ̂ (ω,∞)

Lf Sx (ω)
. (32)

Proof. The proof for the above follows that of Corollary 3 and is presented in290

Appendix F.

Remark 3. From Lemmas 1 and 3, it can be concluded that when RLS adaptive

algorithm is used, the steady-state error in the feedback canceller with shaped

probe noise is increased by a factor of Sq (ω) /Sp (ω), as compared to that for

the feedback canceller without probe noise.295

Remark 4. From Lemmas 2 and 4, it can be concluded that using NLMS algo-

rithm with the same value of step size and for the same values of σ2
q and σ2

p, the

values of steady-state error obtained are identical but the rate of convergence of

the feedback cancellation system with shaped probe noise is decreased by a fac-

tor of Sq (ω) /Sp (ω), as compared to that for the feedback cancellation system300

without probe noise. Similarly, the tracking error of the feedback canceller with

shaped probe noise is increased by a factor of Sq (ω) /Sp (ω) as compared to that

for the feedback canceller without probe noise.

A brief description of the relation between the overall-system parameters

and the behaviour of the feedback canceller in Fig. 2 is presented in Table 2.305
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6. Simulation and Results

In this section, we consider the behaviour of the linear prediction-based

adaptive feedback canceller with and without a probe noise signal in the feedback

estimation path. The goal of the simulations presented in this section is to verify

the derived expressions for the PTF, rate of convergence and steady-state error310

and compare the performance of the feedback cancellers in Figs. 1 and 2. The

simulations have been performed on MATLAB using a sampling frequency of

16 kHz.

The original feedback path is known during the simulation and is considered

to be an FIR filter of order 50. Fig. 3 shows the magnitude response of the315

original feedback path obtained using a behind-the-ear hearing aid. A higher

magnitude of the feedback path from 2 to 7 kHz shows that the feedback oscil-

lations are more likely to occur at higher frequencies. The feedback estimation

filter is also an FIR filter of order 50. The forward path consists of a simple

hearing aid gain |Ḡ| = 5 and a delay dg = 57. The frequency response of the320

complementary filter pair of the high-pass filter Hp (k) and the low-pass filter

Hp (k) of order 40 and a cut-off frequency of 2 kHz is shown in Fig. 4. The

Band-limited linear prediction vocoder reduces the correlation between x (n)

and q (n) and facilitates an unbiased PTF expression. Thus, there is no need

to use additional shaping filters for them as is done in [8]. The unshaped probe325

noise signal is considered as a zero-mean and unit-variance white-Gaussian-noise

signal. The shaping filter is also an FIR filter of order 1 [8, 18, 21] and has a

coefficient vector a (n) = [1, −0.3]
T

. The value of the forgetting factor is chosen

as 0.99 (see footnote 2).

6.1. Synthetic signal as input330

The feedback path remains fixed for the first half of the simulation. Accord-

ing to the random-walk model represented as f(i, n) = f(i, 0) +
n∑

m=104

εf (m),

where f(i, n) is the ith tap of the original feedback path impulse response at a

time instant n and εf (m) is the mth sample of the realization of a Gaussian
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random sequence with mean µf = 0 and variance σ2
f = 0.014, is introduced in335

the subsequent half of the simulation experiment. A stable signal-model esti-

mate of order 20 can be obtained using the LP analysis window length of 20

ms. The input signal is a synthetic signal produced by passing a new realiza-

tion of a Gaussian random sequence through a shaping filter with an impulse

response [1,−0.5]
T

, for each simulation run. We have chosen the level of the340

probe noise signal to be 1.414 times the level of the loudspeaker signal for the

ease of simulation. We have computed the PTF approximate expression by tak-

ing an average of the values over 100 simulation runs of 2x104 iterations each,

at example frequency ω = 2πm
Lf

, where m = 7, 12.

Fig. 5(a) shows the simulation of the feedback canceller with shaped probe345

noise using (C.2) and (C.9), and Fig. 5(b) shows the simulation of the feed-

back canceller without probe noise using (C.2) and (E.11) for the frequency bin

m = 7. Fig. 6(a) shows the simulation of feedback cancellation design with

shaped probe noise using (C.2) and (C.9), and Fig. 6(b) shows the simulation

of feedback cancellation design without probe noise using (C.2) and (E.11) for350

the frequency bin m = 12. Comparing Fig. 5(a) with Fig. 5(b), it can be seen

that the rate of convergence for the adaptive feedback canceller without probe

noise and the adaptive feedback canceller with shaped probe noise remains con-

stant for the same value of λ at the example frequency bin m = 7. Similarly,

for the same value of λ, it can be seen from Fig. 6(a) and Fig. 6(b) that the355

convergence rate for both the aforementioned systems remains constant at the

example frequency bin m = 12. This is because the convergence rate for the

RLS algorithm depends only on λ and not on the frequency or any other signal

property. In this work, since Sq (ω) = 2 Sp (ω), the steady-state error in Fig.

5(a) is increased by a factor of 2 as compared to that in Fig. 5(b). As a result,360

the sum of the steady-state and the tracking errors has also increased in Fig.

5(a) as compared to that in Fig. 5(b). Similarly, the steady-state error and the

sum of the steady-state and the tracking errors are increased in Fig. 6(a) as

compared to that in Fig. 6(b).

Fig. 7 shows the simulation of the AFC system with shaped probe noise using365
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(20), and a forgetting-factor value of 0.9983 for a desired value of the steady-

state error. It can be observed from Figs. 5, 6 and 7 that the simulations verify

the derived expressions.

6.2. Speech signal as input

To demonstrate the application of the proposed algorithm in practical sce-370

narios, a female-spoken speech segment of 5 seconds was chosen as an input to

the hearing-aid system shown in Fig. 1 and to the basic adaptive feedback can-

celler presented in [8, 18]. The simulation was carried out for a time-invariant

feedback path. Using the perceptual audio coding techniques based on mask-

ing capabilities of the auditory system in humans, a probe noise signal can be375

generated that is imperceptible in the presence of the loudspeaker signal [19].

For our simulations, we used a random white noise signal which was uncorre-

lated with the loudspeaker signal. This random white noise signal was shaped

according to the thresholds estimated by the spectral masking model presented

in [22] for the loudspeaker signal q (n) in Fig. 1 and that for the loudspeaker380

signal of the basic adaptive feedback cancellation system with probe noise. Us-

ing these estimated masking thresholds as the basis, a shaping filter of order

127 for the proposed feedback canceller in Fig. 1 and a shaping filter of or-

der 119 for the basic AFC with probe noise was created using the frequency

sampling technique of FIR filter design. We verified the inaudibility of these385

perceptually-shaped probe signals by evaluating the loudspeaker output with

added perceptually-shaped probe noise using the MATLAB implementation of

the PESQ algorithm provided in [23]. Table 3 presents the explanation of the

PESQ score of the audio signal. The PESQ value computed for the loudspeaker

signal with perceptually-shaped probe signal for the linear prediction-based feed-390

back canceller with shaped probe noise was 3.98, which according to Table 3,

is very close to being ‘perceptible but not annoying’. For the basic AFC with

probe noise, the PESQ value was computed as 3.562, which lies between ‘slightly

annoying’ and ‘perceptible but not annoying’. Thus, a loudspeaker signal with

satisfactorily imperceptible shaped probe noise signal was generated making it395
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possible to simulate both the above mentioned feedback cancellers with probe

noise.

Spectrogram of the original speech signal without the effect of feedback is

presented in Fig. 8 (a). The spectrogram for the loudspeaker signal of the basic

AFC with probe noise is presented in Fig. 8 (b) and that of the loudspeaker400

signal for the linear prediction-based feedback canceller with shaped probe noise

is presented in Fig. 8 (c). Signal formants are preserved in both Figs. 8 (b)

and 8 (c). However, it can be seen from Fig. 8 (b) that there is distortion and

whistling between 2 kHz to 6 kHz due to the presence of correlation between the

input acoustic signal and the loudspeaker signal at high frequencies. Comparing405

Figs. 8 (c) and 8 (b), it can be observed in Fig. 8(c) that the distortion,

along with whistling, is reduced between 2 kHz to 6 kHz due to the presence of

BLPC vocoder that further reduces the high-frequency correlation between the

loudspeaker signal and the incoming desired acoustic signal [6].

Further more, we computed the PSD estimates of the incoming acoustic410

signal x (n) and the loudspeaker signal q (n) and inserted them in the expressions

in (C.2) and (C.9) to obtain prediction values for the PTF for speech signal as

input. The true PTF values were computed according to the expression in

(15). Figure 9 shows the simulation for the linear prediction-based feedback

canceller with shaped probe noise at frequency bin m = 12 for the speech signal415

as input. It can be seen from the figure that the simulation curve is very close

to the predicted convergence rate and the predicted steady-state value. Thus,

the effectiveness of the proposed algorithm is verified in practical scenarios.

Owing to the dynamic nature of the speech signal, variations are observed in

the simulation curve of Fig. 9. The results presented in Figs. 5, 6 and 7 are420

averaged over 100 simulation runs of 2x104 iterations each and are smoother

as compared to that in Fig. 9, which has been averaged for only 5 simulation

runs of approximately 120 seconds. Hence, the derived expressions are verified

for speech input to the linear prediction-based feedback canceller with shaped

probe signal.425
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7. Conclusion

We have analysed the linear prediction-based AFC system with and with-

out probe noise, and derived approximate expressions for their PTFs. We have

used these expressions to predict the performance of both the aforementioned

feedback cancellation schemes on the basis of their rate of convergence, steady-430

state behaviour and stability constraint. The expressions derived for the rate of

convergence and the steady-state error describe the effect of the overall system

parameters and the adaptive algorithm on the system performance. Also, we

have used the PTF approximate expressions for controlling the step size for the

NLMS algorithm and the forgetting factor for the RLS algorithm for achieving435

the desired rate of convergence or steady-state behaviour at a particular fre-

quency level. Our analysis has shown that the cost of achieving an unbiased

feedback cancellation using linear prediction-based AFC system with shaped

probe noise is an increase in the steady-state error by the ratio Sq (ω) /Sp (ω)

in comparison to the feedback canceller without probe noise, when RLS algo-440

rithm is used. However, for NLMS algorithm, the cost of an unbiased feedback

estimate is a reduction in the rate of convergence, along with an increase in the

tracking error, by the ratio Sq (ω) /Sp (ω). A comparison of the linear prediction

based feedback canceller with shaped probe noise and the basic feedback can-

celler with probe noise was also done based on spectrograms of the respective445

loudspeaker outputs. The loudspeaker output of the former had less distortion

and whistling problem as compared to that of the latter. Finally, it has been

observed and verified from the resulting simulations that the expressions de-

rived provide an accurate approximation of the PTF, rate of convergence and

steady-state error for a synthetic signal and speech signal as input, despite the450

assumptions made during the analysis.

As part of future research, we aim to improve upon the observed drawbacks

for feedback cancellation with shaped probe noise in a linear prediction-based

framework. Moreover, we also wish to use a variable-tap-length adaptive filter

in the proposed feedback canceller and analyse its feedback cancellation perfor-455
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mance in a high-noise environment in terms of the PTF criterion.
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Figure Captions

1 Linear prediction-based AFC system with shaped probe noise

signal

2 Linear prediction-based AFC system without probe noise [6]540

3 Magnitude response of the original feedback path

4 Frequency Response of the high-pass filter Hp (k) and the low-

pass filter Lp (k)

5 Simulation results for linear prediction-based feedback canceller

(a) with shaped probe noise and (b) without probe noise for the545

frequency bin m = 7

6 Simulation results for linear prediction-based feedback canceller

(a) with shaped probe noise and (b) without probe noise for the

frequency bin m = 12

7 Simulation result for linear prediction-based feedback canceller550

with shaped probe noise for the desired steady-state error of -

0.015 dB per iterative instant n

8 Spectrogram for (a) Speech input. (b) Loudspeaker output of the

basic AFC with probe noise in [8, 18]. (c) Loudspeaker output of

the linear prediction-based feedback canceller with shaped probe555

noise

9 Simulation runs for linear prediction-based feedback canceller

with shaped probe signal when speech signal is used as input

m = 12
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Table Captions560

1 Summary of the influence of the parameters of RLS and NLMS

algorithms on the behaviour of proposed feedback cancellation

design with shaped probe noise

2 Summary of the influence of the parameters of RLS and NLMS

algorithms on the behaviour of the linear prediction-based AFC565

system without probe noise

3 Explanation of PESQ values
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Figure 1: Linear prediction-based AFC system with shaped probe noise signal

Figure 2: Linear prediction-based AFC system without probe noise [6]
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Figure 3: Magnitude response of the original feedback path

Figure 4: Frequency Response of the high-pass filter Hp (k) and the low-pass filter Lp (k)
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(a)

(b)

Figure 5: Simulation results for linear prediction-based feedback canceller (a) with shaped

probe noise and (b) without probe noise for the frequency bin m = 7
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(a)

(b)

Figure 6: Simulation results for linear prediction-based feedback canceller (a) with shaped

probe noise and (b) without probe noise for the frequency bin m = 12

Figure 7: Simulation result for linear prediction-based feedback canceller with shaped probe

noise for the desired steady-state error of -0.015 dB per iterative instant n
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(a)

(b)

(c)

Figure 8: Spectrogram for (a) Speech input. (b) Loudspeaker output of the basic AFC with

probe noise in [8, 18]. (c) Loudspeaker output of the linear prediction-based feedback canceller

with shaped probe noise
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Figure 9: Simulation runs for linear prediction-based feedback canceller with shaped probe

signal when speech signal is used as input m = 12

Table 1: Summary of the influence of the parameters of RLS and

NLMS algorithms on the behaviour of proposed feedback cancellation

design with shaped probe noise

Algorithm/parameters CR SSE TE

RLS Algorithm

λ IP (25) IP (28) DP (28)

Lf - DP (28) -

Sq (ω) - - -

Sp (ω) - IP (28)

Sx (ω) - DP (28) -

S^
f
(ω) - - DP (28)

|A (ω)|2 - IP (28) -

NLMS Algorithm

µ̃ (n) DP (24, 39) DP (42) IP (42)
Lf

(δ+Lf σ
2
p)

- DP (42) -

Sp(ω)

(δ+Lf σ
2
p)

DP (24, 39) - IP (42)

Sx (ω) - DP (42) -

S^
f
(ω) - - DP (42)

|A (ω)|2 DP (24, 39) - IP (42)

(DP: Directly proportional, IP: Inversely proportional)
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Table 2: Summary of the influence of the parameters of RLS and NLMS

algorithms on the behaviour of the linear prediction-based AFC system

without probe noise

Algorithm/parameters CR SSE TE

RLS Algorithm

λ IP (25) IP (C.11) DP (C.11)

Lf - DP (C.11) -

Sq (ω) - IP (C.11) -

Sx (ω) - DP (C.11) -

S^
f
(ω) - - DP (C.11)

NLMS Algorithm

µ̃ (n) DP (24, D.6) DP (D.9) IP (D.9)
Lf

(δ+Lf σ
2
q)

- DP (D.9) -

Sq(ω)

(δ+Lf σ
2
q)

DP (24, D.6) - IP (D.9)

Sx (ω) - DP (D.9) -

S^
f
(ω) - - DP (D.9)

(DP: Directly proportional, IP: Inversely proportional)

Table 3: Explanation of PESQ values

PESQ value Signal Quality Comments on impairment

1 Poor Very annoying

2 Bad Annoying

3 Fair Slightly annoying

4 Good Perceptible but not annoying

5 Excellent Imperceptible
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Appendix A.

Proof of Theorem 1

Proof. Using the shaped-probe-noise approach for feedback path estimation, the

microphone signal in (5) can be rewritten as

y (n) = x (n) + F (k, n− 1) qr (n) . (A.1)

Rewriting (6), we have

e (n) = y (n)− F̂ (k, n− 1) qr (n) . (A.2)

Combining (10) with (A.1) and substituting into (A.2), we get

e (n) = x (n) + F (k, n− 1) qr (n)− F̂ (k, n− 1) qr (n)

= x (n)−
(
F̂ (k, n− 1)− F (k, n− 1)

)
q (n)−

(
F̂ (k, n− 1)− F (k, n− 1)

)
rs (n) .

(A.3)

Rewriting (4) in the frequency domain and substituting into (A.3), we have

e (n) = x (n)− F̃ (k, n− 1) q (n)− F̃ (k, n− 1) rs (n) . (A.4)

The RLS weight update equation for the feedback path estimation filter F̃ (k)

in Fig. 1 is given as [11]

f̂ (n) = f̂ (n− 1) + D (n) rs (n) e (n) , (A.5)

where

D (n) =
R−1 (n− 1)

λ+ rs
T (n) R−1 (n− 1) rs (n)

, (A.6)

and λ denotes the forgetting factor such that 0 < λ ≤ 1. In (A.6), R (n) is the

Lf̂ × Lf̂ input auto-correlation matrix which can be computed recursively as

R (n) = λR (n− 1)− rs (n) rs
T (n) . (A.7)

In order to compute the filter coefficients of the adaptive filter, a recursive

expression for R−1 (n) is required in terms of R−1 (n− 1) [11]. Using matrix

inversion lemma [10], R−1 (n) can be obtained from (A.7) as

R−1 (n) = λ−1
[
R−1 (n− 1)−D (n) rs (n) rTs (n) R−1 (n− 1)

]
. (A.8)
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In (A.8), R−1 (0) = δ I, where I is an identity matrix and the regularization

parameter δ is a positive real number such that R (n) does not become singular

for a small value of n [11]. Substituting the combination of (3), (4) and (A.4)

into (A.5), we get

f̃ (n) =
[
I−D (n) rs (n) qT (n)−D (n) rs (n) rs

T (n)
]
f̃ (n− 1)

+ D (n) rs (n)x (n)−
^

f (n) . (A.9)

For further analysis, we consider the estimation-error covariance matrix

F̄ (n) = E
[
f̃ (n) f̃T (n)

]
. (A.10)

In order to compute F̄ (n) from (A.10),
^

f (n) is assumed to be uncorrelated with

all the other terms in (A.9)
(
assumption (v)

)
. Substituting (A.9) into (A.10),

we have

F̄ (n) = E
[
f̃ (n− 1) f̃T (n− 1)− f̃ (n− 1) f̃T (n− 1)q (n) rTs (n)D (n)

− f̃ (n− 1) f̃T (n− 1) rs (n) rTs (n)D (n) + f̃ (n− 1)x (n)qT (n)D (n)

−D (n) rs (n)qT (n) f̃ (n− 1) f̃T (n− 1)

+ D (n) rs (n)qT (n) f̃ (n− 1) f̃T (n− 1)q (n) rTs (n)D (n)

−D (n) rs (n)qT (n) f̃ (n− 1)x (n)qT (n)D (n)

+ D (n) rs (n)qT (n) f̃ (n− 1) f̃T (n− 1) rs (n) rTs (n)D (n)

−D (n) rs (n) rTs (n) f̃ (n− 1) f̃T (n− 1)

+ D (n) rs (n) rTs (n) f̃ (n− 1) f̃T (n− 1)q (n) rTs (n)D (n)

−D (n) rs (n) rTs (n) f̃ (n− 1)x (n)qT (n)D (n)

+ D (n) rs (n) rTs (n) f̃ (n− 1) f̃T (n− 1) rs (n) rTs (n)D (n)

+ D (n)q (n)x (n) f̃T (n− 1)−D (n)q (n)x (n) f̃T (n− 1)q (n) rTs (n)D (n)

+ D (n)q (n)x (n)x (n)qT (n)D (n)

−D (n)q (n)x (n) f̃T (n− 1) rs (n) rTs (n)D (n) +
^

f (n)
^

f
T
(n)
]
. (A.11)

To represent (A.11) in a simplified form, let us represent a matrix ∆ (n) such

that

∆ (n) = I−D (n) rs (n) qT (n)−D (n) rs (n) rs
T (n) . (A.12)
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Collecting terms in (A.11), substituting (A.12) into (A.11) and using assumption

(iv), we get

F̄ (n) =F̄ (n− 1)−D (n) rs (n) rs
T (n) F̄ (n− 1)

− F̄ (n− 1) rs (n) rs
T (n) D (n) +

^

F (n)

+ D (n) rs (n) rs
T (n) Rx (0) D (n) + E

[
D (n) rs (n)x (n) f̃T (n− 1)

]

+ E
[
f̃ (n− 1)x (n) rs

T (n) D (n)
]
− F̄ (n− 1) q (n) rTs (n) D (n)

−D (n) rs (n) qT (n) F̄ (n− 1)

+ D (n) rs (n) qT (n) F̄ (n− 1) rs (n) rTs (n) D (n)

+ D (n) rs (n) qT (n) F̄ (n− 1) q (n) rTs (n) D (n) , (A.13)

where
^

F (n) = E
[
^

f (n)
^

f
T

(n)
]

is the feedback path variation vector covariance

matrix. It can be seen that (A.13) is a difference equation in terms of F̄ (n).

According to the direct averaging method [14, 24], the term rs (n) rs
T (n−m)

can be replaced by its sample average as

Rp (m) = lim
N→∞

1

N

N∑

n= 1

rs (n) rs
T (n−m), (A.14)

where m is the time delay. Similarly, the term rs (n) qT (n−m) can be replaced

by its sample average which can be expressed using assumption (i) as

Rrq (m) = lim
N→∞

1

N

N∑

n=1

rs (n) qT (n−m) = 0. (A.15)

Combining (A.14) and (A.15) for m = 0, and substituting into (A.13), we get

the approximate feedback estimation-error covariance matrix as

F̄a (n) = F̄a (n− 1)−D (n) Rp (0) F̄a (n− 1)− F̄a (n− 1) Rp (0) D (n) +
^

F (n)

+ D (n) Rp (0) Rx (0) D (n) + E
[
D (n) rs (n)x (n) f̃T (n− 1)

]

+ E
[
f̃ (n− 1)x (n) rTs (n) D (n)

]
. (A.16)

Further, there is a need to evaluate the terms E
[
D (n) rs (n)x (n) f̃T (n− 1)

]

and E
[
f̃ (n− 1)x (n) rTs (n) D (n)

]
in (A.16) to obtain the final expression for
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F̄a (n). The evaluation of both the terms is presented in Appendix B in detail.

Finally, we have

F̄a (n) = F̄a (n− 1)−D (n) Rrs (0) F̄a (n− 1)− F̄a (n− 1) Rp (0) D (n) +
^

F (n)

+ D (n) DT (n)

t0∑

t=−t0
Rp (t) rx (t). (A.17)

In (15), the expression for ζ (ω, n) contains F̃ (ω, n), which is the frequency

response of f̃ (n). In order to find an expression for ζ̂ (ω, n), let Γ be an Lf ×Lf
DFT matrix such that Γ is a complex quantity. Then, we can say that Γ

diagonalizes a Toeplitz matrix asymptotically as Lf → ∞ [14, 25]. Therefore,

diagonalizing F̄a (n) using Γ, we obtain

χ̂ (n) = Γ F̄a (n) ΓH . (A.18)

Here, χ̂ (n) approaches a diagonal matrix as Lf →∞ and has diagonal elements

expressed by ζ̂ (ω, n). Substituting (A.17) into (A.18), we have

χ̂ (n) = Γ F̄a (n− 1) ΓH + Γ
^

F (n) ΓH −D (n)
1

Lf
Γ Rp (0) ΓH Γ F̄a (n− 1) ΓH

− 1

Lf
Γ F̄a (n− 1) ΓH Γ Rp (0) ΓHD (n)

+ D (n) DT (n)

t0∑

t=−t0
Γ Rp (t) ΓHrx (t). (A.19)

In (A.19), the matrix
^

F (n) is diagonalized as Γ
^

F (n) ΓH having diagonal ele-

ments S^
f

(ω). Similarly, the matrix Rp (0) is diagonalized as 1
Lf

Γ Rp (0) ΓH

having diagonal elements Sp (ω), which is the PSD of rs (n) and is defined as

the Fourier transform of the auto-correlation function of rs (n). We can express

Sp (ω) as

Sp (ω) = |A (ω)|2Sr (ω) , (A.20)

where A (ω) is the frequency response A (k) and Sr (ω) is the PSD of unshaped

probe noise r (n). The PTF-approximation ζ̂ (ω, n) forms the diagonal elements

of the matrix χ̂ (n). Therefore, replacing the terms χ̂ (n), Γ F̄a (n− 1) ΓH ,
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1
Lf

Γ Rp (0) ΓH and Γ
^

F (n) ΓH in (A.19) with their respective diagonal ele-

ments, the expression for ζ̂ (ω, n) can be written as

ζ̂ (ω, n) = (1− 2 d (ω, n)Sp (ω)) ζ̂ (ω, n− 1)

+ Lf d
2 (ω, n) Sp (ω)Sx (ω) + S^

f
(ω)

=
(

1− 2 d (ω, n) |A (ω)|2Sr (ω)
)
ζ̂ (ω, n− 1)

+ Lf d
2 (ω, n) |A (ω)|2Sr (ω)Sx (ω) + S^

f
(ω) , (A.21)

where d (ω, n) is the diagonal entry of 1
Lf

Γ D (n) ΓH (see Appendix B) ex-

pressed as

d (ω, n) =
1− λ
Sp (ω)

=
1− λ

|A (ω)|2Sr (ω)
, (A.22)

and Sx (ω) is the PSD of the incoming desired acoustic signal x (n) and is defined570

as the Fourier transform of rx (m). Substituting (A.22) into (A.21), the PTF of

(15) can be written approximately as (16).

Appendix B.

Evaluation of the term E
[
D (n) rs (n)x (n) f̃T (n− 1)

]

We substitute (A.12) into (A.9) and rewrite the expression for f̃ (n) as

f̃ (n) = ∆ (n) f̃ (n− 1) + D (n) rs (n)x (n)−
^

f (n) . (B.1)
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Simplifying the expanded expression in (B.2), we get

f̃ (n) =
n∏

l=1

∆ (l)f̃ (0) +
n∑

m=1

[(
n∏

l=m+1

∆ (l)

)(
D (m) rs (m)x (m)−

^

f (m)
)]

. (B.3)

In (B.3), it is assumed that the iteration for the adaptation process begins

at n = 0 and also
n∏

l=n0

∆ (l) = I ∀n0 > n. Substituting (B.3) into (A.16) for

the term E
[
D (n) rs (n)x (n) f̃T (n− 1)

]
, using assumption (iv) and considering

f̃ (0) = f̂ (0)− f (0) to be uncorrelated with rs (n), we have

E
[
D (n) rs (n)x (n) f̃T (n− 1)

]

= E

[
D (n) rs (n)x (n)

(
n∏

l=1

∆ (l)f̃ (0) +
n∑

m=1

(
n∏

l=m+1

∆ (l)

)

[
D (m) rs (m)x (m)−

^

f (m)

])T]

=

−(n−1)∑

t=−1

D (n)DT (n+ t) rs (n) rTs (n+ t) rx (t)

(
n−1∏

l=n+1+t

∆ (l)

)T
, (B.4)

where t = m−n. Since only the steady-state behaviour of the PTF is influenced

by (B.4), we can consider a large value of n for n− 1 ≥ t0 and rewrite (B.4) as

E
[
D (n) rs (n)x (n) f̃T (n− 1)

]
=

−t0∑

t=−1

D (n) DT (n+ t) rs (n) rs
T (n+ t) rx (t)

(
n−1∏

l=n+1+t

∆ (l)

)T
. (B.5)

f̃ (n) = ∆ (n)
[
∆ (n− 1) f̃ (n− 2) + D (n− 1) rs (n− 1)x (n− 1)−

^

f (n− 1)
]

+ D (n) rs (n)x (n)−
^

f (n)

= ∆ (n)
[
∆ (n− 1)

{
∆ (n− 2) f̃ (n− 3) + D (n− 2) rs (n− 2)x (n− 2)−

^

f (n− 2)

}

+ D (n− 1) rs (n− 1)x (n− 1)−
^

f (n− 1)
]

+ D (n) rs (n)x (n)−
^

f (n) ...

= ∆ (n) ∆ (n− 1) ∆ (n− 2) f̃ (n− 3)

+ ∆ (n) ∆ (n− 1)
[
D (n− 2) rs (n− 2)x (n− 2)−

^

f (n− 2)
]

+ ∆ (n)

[
D (n− 1) rs (n− 1)x (n− 1)−

^

f (n− 1)

]
+ D (n) rs (n)x (n)−

^

f (n) ...

(B.2)
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In the above equation, the term

(
n−1∏

l=n+1+t

∆ (l)

)
can be simplified for t = −t0,

where the factors of ∆ (l) can be expressed following (A.12) as

n−1∏

l=n−t0+1

∆ (l) =
n−1∏

l=n−t0+1

(
I −D (n) rs (n) qT (n) −D (n) rs (n) rTs (n)

)
.

(B.6)

Expanding (B.6), collecting terms and substituting into (B.5), it can be observed

that apart from I, all other terms result in higher-order terms consisting of

D (n) DT (n+ t) rs (n) rs
T (n+ t) in (B.5) and can be neglected. Hence, we can

rewrite (B.6) as
n−1∏

l=n−t0+1

∆ (l) ≈ I. (B.7)

Substituting (B.7) into (B.5), we have

E
[
D (n) rs (n)x (n) f̃T (n− 1)

]
=

−t0∑

t=−1

D (n) DT (n+ t) rs (n) rs
T (n+ t) rx (t).

(B.8)

Here, it can be assumed that D (n) is varying slowly over time such that the

variation in D (n) is slower than the decay of rx (t). Then, we have

D (n) DT (n+ t) = D (n) DT (n) . (B.9)

Then, (B.8) can be expressed with the help of (B.9) as

E
[
D (n) rs (n)x (n) f̃T (n− 1)

]
= D (n) DT (n)

−t0∑

t=−1

Rp (t) rx (t), (B.10)

where Rp (t) = rs (n) rs
T (n+ t) using the direct-averaging method.575

Evaluation of the term E
[
f̃ (n− 1)x (n) rs

T (n) D (n)
]

Substituting (B.3) into (A.16) similarly as above for the term E
[
f̃ (n− 1)x (n) rs

T (n) D (n)
]
,

we have

E
[
f̃ (n− 1)x (n) rTs (n) D (n)

]
= D (n) DT (n)

t
0∑

t=1

Rp (t) rx (t). (B.11)
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Substituting (B.10) and (B.11) into (A.16), we get the final expression for F̄a (n)

in (A.17).

Evaluation of diagonal elements of 1
Lf

Γ D (n) ΓH

To obtain the expression for ζ̂ (ω, n), the time-average shaped probe noise

signal correlation matrix R (n) for the RLS algorithm in Fig. 2 can be expressed

after the addition of the regularization term in the cost function as

R (n) =

n∑

i=1

λn−irs (i) rTs (i) + δ λn I (B.12)

where R (n) is a diagonal matrix and I is the Lf × Lf identity matrix [11].

Asymptotically, for a large value of n and as λto1, the matrix
n∑
i=1

λn−irs (i) rTs (i)

tends to have large values [14]. As a result, R−1 (n) tends to contain small

entries and D (n) in (A.6) can be expressed as

D (n) ≈ R−1 (n) . (B.13)

In (B.13), it is assumed that R−1 (n) has converged2 such that R−1 (n) =

R−1 (n− 1). Thus, R−1 (n) can be written by substituting (B.13) into (A.8) as

D (n) ≈ λ−1
[
D (n)−D (n) rs (n) rTs (n) D (n)

]
. (B.14)

Upon convergence, D (n) in (B.14) becomes a Toeplitz matrix. Following (A.18),

D (n) can also be diagonalized as 1
Lf

Γ D (n) ΓH . Then, the diagonal entries of

1
Lf

Γ D (n) ΓH can be written as

d (ω, n) ≈ λ−1
(
d (ω, n)− d2(ω, n) Sp (ω)

)
. (B.15)

The solution to the second-order difference equation of (B.15) can be written as580

(A.22).

2It is not necessarily implied that n→∞ for R−1 (n− 1) to converge.
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Appendix C.

Proof of Lemma 1

Proof. The PTF expression in (16) is a first-order difference equation in terms

of ζ̂ (ω, n) and it can be expressed as

η (k) =
β

1− αk−1
(C.1)

where α, β are real numbers. The coefficient α determines the convergence rate

of the feedback canceller and can be written in terms of the forgetting factor

as3

α = 2λ− 1, (C.2)

whereas the coefficient β in (C.1) can be expressed as

β = Lf
(1− λ)

2

Sp (ω)
Sx (ω) + S^

f
(ω) . (C.3)

As defined in (17), the convergence rate in this case is determined as the decay

of ζ̂ (ω, n), and can be computed in dB per iterative instant n as

CR =
d

dn
10 log10 (β|α|n) , (C.4)

where β|α|n is the impulse response function of η (k). Further solving (C.4), we

have

CR = 10
d

dn

(
ln (α)

n

ln 10

)
= 10

(
lnα

ln 10

)
d

dn
(n)

= 10 log10 (α) . (C.5)

Substituting (C.2) in (C.5), we have

CR = 10 log10 (2λ− 1) . (C.6)

3In (C.2), we consider values of λ such that λ → 1. This allows for slow convergence of

the RLS algorithm due to which a good approximation of F̄ (n) by F̄a (n) can be obtained in

(A.17).
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It can be observed from the above equation that the convergence rate is neither

dependent on the frequency nor on the incoming acoustic signal x (n), but only

dependent on λ. In fact, it decreases with increasing λ and the convergence

becomes slower. From (C.1), it can be seen that η (k) is stable when the poles

lie inside the unit circle, i.e. |α| < 1. Thus, it can be said that the linear

prediction-based feedback cancellation system with shaped probe noise (see Fig.

1) is stable for

0 < λ < 1. (C.7)

Using (18), the steady-state behaviour of the aforementioned system can be

expressed as

ζ̂ (ω,∞) = lim
n→∞

ζ̂ (ω, n) . (C.8)

Substituting (16) into (C.8), we get

ζ̂ (ω,∞) = Lf
1− λ

2Sp (ω)
Sx (ω) +

S^
f

(ω)

2 (1− λ)

= Lf
1− λ

2 |A (ω)|2Sr (ω)
Sx (ω) +

S^
f

(ω)

2 (1− λ)
. (C.9)

In the above equation, the first term denotes the steady-state error, i.e. the

minimum possible value of ζ̂ (ω, n) in the steady state, and the second term585

denotes the tracking error due to changes in the feedback path. It can be

observed in (C.9) that Lf and Sx (ω) are directly proportional to the steady-

state error, while the steady-state error decreases with increase in λ and Sp (ω).

The tracking error is independent of Sp (ω) but its value increases with increase

in the value of λ for the feedback path variations when S^
f

(ω) > 0. This implies590

a slower tracking. Infact, the convergence rate in (C.6) is also independent of

Sp (ω), but dependent on λ. Hence, it can be said that the value of ζ̂ (ω,∞)

in (C.9) is a trade-off between the steady-state behaviour for a time-invariant

feedback path and the tracking ability for a time-varying feedback path.

Proof of Corollary 1595

Proof. Using (C.6), a required rate of convergence can be obtained by choosing

the value of λ as (20), where the convergence rate is in dB per iterative instant
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n. For a time-invariant feedback path, ignoring the tracking error in (C.9) and

rearranging the terms, we have the expression in (21) that can be used to select

a value of λ for obtaining a required steady-state error.600

Appendix D.

Proof of Corollary 2

Proof. Consider the AFC system of Fig. 1. The weight update equation for

NLMS algorithm is given as [11]

f̂ (n) = f̂ (n− 1) + µ (n) rs (n) e (n) , (D.1)

where e (n) is expressed as (A.2) and µ (n) is written as

µ (n) =
µ̃ (n)

δ + rs
T (n) rs (n)

, (D.2)

where µ̃ (n) is the normalized step size parameter and δ is a positive real number.

The term rs
T (n) rs (n) in (D.2) can be expressed as

rs
T (n) rs (n) = Lf σ̂

2
p, (D.3)

where σ̂2
p is an estimate of the shaped probe noise signal variance σ̂2

p. However

for µ̃ (n) → 0, σ̂2
p can be replaced by σ2

p in (D.3) [17]. This is because, for a

small value of step size, the NLMS algorithm can have a low-pass influence on

the loudspeaker signal [11]. Thus, we can rewrite (D.2) as

µ (n) =
µ̃ (n)

δ + Lf σ2
p

, (D.4)

where σ2
p is the variance of rs (n). Following the proof of Theorem 1, the ex-

pression for approximated feedback estimation-error covariance matrix can be

written as

F̄a (n) = F̄a (n− 1)− µ (n) Rp (0) F̄a (n− 1)− µ (n) F̄a (n− 1) Rp (0) +
^

F (n)

+ µ2 (n)

t0∑

t=−t0
Rp (t) rx (t). (D.5)
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Diagonalizing F̄a (n) in (D.5) using DFT matrix Γ, we have

χ̂ (n) = Γ F̄a (n− 1) ΓH + Γ
^

F (n) ΓH − µ (n)
1

Lf
Γ Rp (0) ΓH Γ F̄a (n− 1) ΓH

− µ (n)
1

Lf
Γ F̄a (n− 1) ΓH Γ Rp (0) ΓH + µ2 (n)

t
0∑

t=−t0

Γ Rp (t) ΓHrx (t).

(D.6)

The diagonal elements of χ̂ (n) are defined as the PTF approximation as

ζ̂ (ω, n) = (1− 2µ (n)Sp (ω)) ζ̂ (ω, n− 1) + Lf µ
2 (n) Sp (ω)Sx (ω) + S^

f
(ω) .

(D.7)

Substituting (D.4) into (D.7), we have the approximate PTF expression for

the NLMS adaptive algorithm-based feedback cancellation system with shaped

probe noise as (22).605

Proof of Lemma 2

Proof. Equation (22) is a first-order difference equation in ζ̂ (ω, n) and can be

written following (C.1), where α is frequency dependent as

α = 1− 2
µ̃ (n)

δ + Lf σ2
p

Sp (ω)

= 1− 2
µ̃ (n)

δ + Lf σ2
p

|A (ω)|2Sr (ω) , (D.8)

whereas β can be written as

β = Lf
µ̃2 (n)

(
δ + Lf σ2

p

)2Sp (ω)Sx (ω) + S^
f

(ω) (D.9)

From (C.1), it can be seen that the system is stable |α| < 1 and therefore, the

range of µ̃ (n) which ensures stability of the system can be given as

0 < µ̃ (n) <
δ + Lf σ

2
p

maxω Sp (ω)
. (D.10)

49



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

We can express the steady-state behaviour of the system in Fig. 1 for the NLMS

algorithm by substituting (22) into (C.8) as

ζ̂ (ω,∞) = lim
n→∞

Lf
µ̃ (n)

2
(
δ + Lf σ2

p

)Sx (ω) + lim
n→∞

(
δ + Lf σ

2
p

) S^
f

(ω)

2µ̃ (n)Sp (ω)

= lim
n→∞

Lf
µ̃ (n)

2
(
δ + Lf σ2

p

)Sx (ω) + lim
n→∞

(
δ + Lf σ

2
p

) S^
f

(ω)

2µ̃ (n) |A (ω)|2Sr (ω)
.

(D.11)

In the above equation, the first term denotes the steady-state error and the

second term denotes the tracking error due to changes in the feedback path.

It can be seen from (D.11) that Lf and µ̃ (n) are directly proportional to the

steady-state error, while the steady-state error decreases with increasing σ2
p.610

The tracking error is inversely proportional to the ratio Sp (ω) /
(
δ + Lf σ

2
p

)
,

but increases with increasing Lf . It can be seen from (C.5) and (D.8) that the

rate of convergence is dependent upon the ratio Sp (ω) /
(
δ + Lf σ

2
p

)
and also

decreases with increasing Lf . Also, the rate of convergence decreases and the

tracking error increases owing to a small value of |A (ω)|2.615

Proof of Corollary 3

Proof. Substituting (D.8) into (C.5) and rearranging, a required given rate of

convergence can be obtained for the step size µ̃ (n) as (23). Similarly from

(D.11), ignoring the tracking-error term and rearranging, the expression for

determining the value of µ̃ (n) to achieve a required value of ζ̂ (ω,∞) is obtained620

as (24).

Appendix E.

Proof of Corollary 4

Proof. The microphone signal in (5) can be rewritten as

y (n) = x (n) + F (k, n− 1) q (n) . (E.1)
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We can rewrite the expression for e (n) in (6) as

e (n) = x (n)−
(
F̂ (k, n− 1)− F (k, n− 1)

)
q (n)

= x (n)− F̃ (k, n− 1) q (n) . (E.2)

The RLS adaptive weight update equation for the feedback path estimation

filter F̂ (k) is given as [11]

f̂ (n) = f̂ (n− 1) + D (n) q (n) e (n) , (E.3)

where

D (n) =
R−1 (n− 1)

λ+ qT (n) R−1 (n− 1) q (n)
(E.4)

and

R−1 (n) = λ−1
[
R−1 (n− 1) − D (n) q (n) qT (n) R−1 (n− 1)

]
. (E.5)

The approximate feedback estimation-error covariance matrix can be written as

F̄a (n) = F̄a (n− 1)−D (n) Rq (0) F̄a (n− 1)− F̄a (n− 1) Rq (0) D (n) +
^

F (n)

+ D (n) Rq (0) rx (0) D (n) + E
[
D (n) q (n)x (n) f̃T (n− 1)

]

+ E
[
f̃ (n− 1)x (n) qT (n) D (n)

]
, (E.6)

where

Rq (m) = lim
N→∞

1

N

N∑

n=1

q (n) qT (n−m), (E.7)

where m is the time delay, using direct-averaging method. After further evaluat-

ing the terms E
[
D (n) q (n)x (n) f̃T (n− 1)

]
and E

[
f̃ (n− 1)x (n) qT (n) D (n)

]

in (E.6) following Appendix B to obtain the final expression for F̄a (n), we get

F̄a (n) = F̄a (n− 1)−D (n) Rq (0) F̄a (n− 1)− F̄a (n− 1) Rq (0) D (n) +
^

F (n)

+ D (n) DT (n)

t0∑

t=−t0
Rq (t) rx (t). (E.8)

Following the proof of Theorem 1, we can diagonalize (E.8) using an Lf × Lf
DFT matrix Γ, which consists of complex entries, as

ζ̂ (ω, n) =
(

1− 2 d (ω, n)Sq (ω)
)
ζ̂ (ω, n− 1) + Lf d

2 (ω, n) Sq (ω)Sx (ω) + S^
f

(ω) ,

(E.9)
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where d (ω, n) is the diagonal entry of 1
Lf

Γ D (n) ΓH and is expressed as

d (ω, n) =
1− λ
Sq (ω)

(E.10)

and Sx (ω) is the PSD of the incoming desired acoustic signal x (n) and is

defined as the Fourier transform of rx (t). Then, the PTF of (15) for the linear625

prediction-based feedback cancellation design without probe noise (shown in

Fig. 2) can be written as (28).

Proof of Lemma 3

Proof. Following the proof of Lemma 1, the steady-state behaviour of the system

in Fig. 2 can be expressed using (28) as

ζ̂ (ω,∞) = Lf
1− λ

2Sq (ω)
Sx (ω) +

S^
f

(ω)

2 (1− λ)
. (E.11)

The expression for ζ̂ (ω,∞) in (E.11) is the sum of two terms. The first term

denotes the minimum possible value of ζ̂ (ω, n) in the steady state and the630

second term denotes the tracking error due to changes in the feedback path. In

(E.11), it is seen that Lf and Sx (ω) are directly proportional to the steady-

state error, while the steady-state error decreases with increase in Sq (ω) and

λ. The tracking error is unaffected by Sq (ω), but increases with increasing λ

for the feedback path variations when S^
f

(ω) > 0 leading to a slower tracking.635

Following the proof of Lemma 1, it can be concluded that the convergence rate is

also unaffected by Sq (ω) , but depends on the value of λ as shown in (C.6). So,

it can be said that the overall value of ζ̂ (ω,∞) is a trade-off between the steady-

state behaviour for a time-invariant feedback path and tracking behaviour for a

time-varying feedback path.640

Proof of Corollary 5

Proof. The expression for selecting a forgetting factor value for RLS adaptive

algorithm to obtain a required given rate of convergence for the AFC system

without probe noise can be obtained following Corollary 1. Also, following

Corollary 1 in ignoring the tracking-error term in (E.11) and rearranging, we645
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obtain the expression for choosing the value of λ to obtain a desired steady-state

error ζ̂ (ω,∞) as (29).

Appendix F.

Proof of Corollary 6

Proof. The weight update equation for the NLMS algorithm-based adaptive

filter in Fig. 2 is given by [11]

f̂ (n) = f̂ (n− 1) + µ (n) q (n) e (n) , (F.1)

where

µ (n) =
µ̃ (n)

δ + Lf σ2
q

. (F.2)

The expression for F̄a (n) can be written as

F̄a (n) = F̄a (n− 1)− µ (n) Rq (0) F̄a (n− 1)− µ (n) F̄a (n− 1) Rq (0) +
^

F (n)

+ µ2 (n)

t0∑

t=−t0
Rq (t) rx (t). (F.3)

Diagonalizing F̄a (n) in (F.3) using the DFT matrix Γ, we have

Ψ̂ (n) = ΓF̄a (n− 1) ΓH + Γ
^

F (n) ΓH − µ (n)
1

Lf
Γ Rq (0) ΓH Γ F̄a (n− 1) ΓH

− µ (n)
1

Lf
Γ F̄a (n− 1) ΓH Γ Rq (0) ΓH + µ2 (n)

t0∑

t=−t0
Γ Rq (t) ΓHrx (t).

(F.4)

The diagonal elements of Ψ̂ (n) are defined as the PTF of (15), and expressed

as

ζ̂ (ω, n) =
(

1− 2µ (n)Sq (ω)
)
ζ̂ (ω, n− 1) + Lf µ

2 (n) Sq (ω)Sx (ω) + S^
f

(ω) .

(F.5)

Substituting the expression for µ (n) from (F.2) into (F.5), we have the PTF650

of (15) for the NLMS adaptive-algorithm-based feedback cancellation system

without probe noise as (30).
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Proof of Lemma 4

Proof. Following the proof of Lemma 2, we have from Corollary 6

α = 1− 2
µ̃ (n)

δ + Lf σ2
q

Sq (ω) , (F.6)

and

β = Lf
µ̃2 (n)

(
δ + Lf σ2

q

)2 Sq (ω)Sx (ω) + S^
f

(ω) . (F.7)

The AFC system in Fig. 2 is stable for the range for µ̃ (n) given as

0 < µ̃ (n) <
δ + Lf σ̂

2
q

maxω Sq (ω)
. (F.8)

The steady-state behaviour of the feedback cancellation system in Fig. 2 can

be expressed as

ζ̂ (ω,∞) = lim
n→∞

Lf
µ̃ (n)

2
(
δ + Lf σ2

q

)Sx (ω) + lim
n→∞

(
δ + Lf σ

2
q

) S^
f

(ω)

2µ̃ (n)Sq (ω)
.

(F.9)

The expression for ζ̂ (ω,∞) in (F.9) is the sum of two terms. The first term

denotes the minimum possible value of ζ̂ (ω, n) in the steady state and the second655

term denotes the tracking error due to changes in the feedback path. It can be

seen from (F.9) that both Lf and the step size µ̃ (n) are directly proportional

to the steady-state error, while the steady-state error decreases with increase

in σ2
q . Owing to the presence of σ2

q , the tracking error is inversely proportional

to the ratio Sq (ω) /
(
δ + Lf σ

2
q

)
instead of only the value of Sq (ω). Also, the660

tracking error is increased with an increase in Lf . Similarly, it can be seen

from (C.5) and (F.6) that the convergence rate is dependent upon the ratio

Sq (ω) /
(
δ + Lf σ

2
q

)
and decreases with increase in Lf .

Proof of Corollary 7

Proof. Following the proof of Corollary 3, the expression for µ̃ (n) for a given665

rate of convergence can be obtained from (F.9) as (31), where the convergence

rate is in dB per iterative instant n. Similarly, using (F.9) and ignoring the

tracking error, we have the expression for determining the value of µ̃ (n) for

obtaining a desired steady-state error ζ̂ (ω,∞) as (32).
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