

Predicting US Elections with Social Media

and Neural Networks

Ellison Yin Nang Chan

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

Montreal, Quebec, Canada ´

February 2019

© Ellison Yin Nang Chan

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ellison Yin Nang Chan

Entitled: Predicting US Elections with Social Media and Neural Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

__ Chair

Dr. T.-H. Chen

__ Examiner

Dr. T. Glatard

__ Examiner

Dr. C. Poullis

__ Co-supervisor

Dr. Ching Y. Suen

__ Co-Supervisor

Dr. Adam Krzyzak

Approved by ___________________________________ Date: _____

i

Abstract

Increasingly, politicians and political parties are engaging their electors using social

fpmedia. In the US Federal Election of 2016, candidates from both parties made heavy use of

Social Media, particularly Twitter. It is then reasonable to attempt to find a correlation between

popularity on Twitter, and eventual popular vote in the election. In this thesis, we will focus on

using the subscriber ‘location’ field in the profile of each candidate to estimate support in each

state.

A major challenge is that the Twitter location field in a user profile is not constrained,

requiring the application of machine learning techniques to cluster users according to state.

In this thesis, we will train a Deep Convolutional Neural Network (CNN) to classify place

names by state. Then we will apply the model to the Twitter Subscriber ‘location’ field of Twitter

subscribers collected from each of the two candidates, Hillary Clinton (D), and Donald Trump (R).

Finally, we will compare predicted popular votes in each state, to the actual results from the 2016

Presidential Election.

The hypothesis is that a city name has a strong correlation to the people who founded it

and then incorporated it. Further, it’s hypothesized that the original settlers were mostly

homogeneous, relative to the country of origin and shared a common language, thus resulting in

place names using the language of their origin.

In addition to learning the pattern related to the State Names, this additional information

may help a machine learning model learn to classify locations by state.

ii

The results from our experiments are very promising. Using a dataset containing 695,389

cities, correctly labelled with their state, we partitioned the cities into a training dataset containing

556,311 cities, a validation dataset containing 111,262, and a test dataset containing 27,816. After

the trained model was applied to the test dataset. We achieved a Correct Prediction rate of

84.4365%, a False Negative rate of 1.6106%, and a False Positive rate of 1.0697%.

Applying the trained model on Twitter Location data of subscribers of the two candidates,

the model achieved an accuracy of 90%. The trained model was able to correctly pick the winner,

by popular vote, in 45 out of the 50 states. With another US and Canadian election coming up in

2019, and 2020, it would be interesting to test the model on those as well.

iii

Acknowledgments

I express my gratitude to Dr. Ching Y. Suen, and Dr. Adam Krzyzak for their great patience

and guidance, in refining the ideas in my research. I thank Dr. Suen for his friendship and

welcoming me into the CENPARMI family. I thank Dr. Krzyzak for an excellent Machine

Learning course, which opened my eyes to the possibilities. In addition, I thank Dr. Leila Kosseim

and her insightful course, introducing me to the intricacies Artificial Intelligence and Dr. Sudhir

Mudur, for an excellent Advanced Graphics Course which introduced me to Nvidia GPUs, which

was a major component of this thesis.

Finally, I would like to dedicate this work to both my parents Wai Hong Chan and Shun

Har Chan, who unfortunately are no longer with me, at the end of my academic journey. I’m sure

they both are smiling from heaven.

iv

Contents
1 Introduction ..1

1.1 Motivation and Research Topic ...1

1.2 Challenges ..2

1.3 Thesis Approach ..3

1.4 Related Work ...5

1.5 Novelty of Thesis Approach ..5

2 Performance Analysis for MNIST of Classification Algorithms8

2.1 Linear Classifiers ...8

2.2 K-Nearest Neighbors ...9

2.3 Neural Networks ..11

2.4 Convolutional Neural Networks ..13

2.5 Simple Pattern Matching..15

3 Convolutional Neural Network Basics ..16

3.1 Convolution Layers ..16

3.2 Pooling Layers ...18

3.3 Fully Connected Layer ...18

3.4 Dropout ..19

4 Data Description and Model Training ...20

4.1 Data Sources ..20

4.2 Data Description ..20

4.3 Model Input ..23

4.4 Duplicate Data ...24

v

4.5 Algorithm ...24

4.5.1 Vocabulary of Characters ..24

4.5.2 Histogram Representation ..26

4.5.3 Data Encoding ..30

4.5.4 Converting to Image Representation ...30

4.5.5 Splitting Dataset ...32

4.5.6 Augmenting the Dataset ...33

4.5.7 Shuffling Data ..33

4.5.8 Splitting Data into Training, Validation, and Test Sets34

4.5.8.1 Training Data...34

4.5.8.2 Validation Data ...34

4.5.8.3 Test Data ...34

4.5.9 Addressing Data Imbalance ...34

4.6 Model Preparation ..37

4.6.1 Model Definition ..37

4.6.2 Convolution Layers Description ..37

4.6.3 Pooling Layers Description..38

4.6.4 Fully Connected Layers Description ...38

4.6.5 Batch Normalization ..39

4.7 Model Training ..41

4.7.1 Optimizer ...41

4.7.2 Loss Function ...43

4.7.3 Epochs and Batch Size Effect on Optimization43

vi

4.7.4 GPU Acceleration ..44

4.8 Model Cross-Validation ...46

4.8.1 Randomized Data ...47

4.8.2 Cross-Validation Results ...48

4.8.3 Discussion on Overfitting ..48

5 Discussion ..50

5.1 Analytical Approach ..50

5.2 Quantitative Analysis ...51

5.2.1 False Positives ..53

5.2.2 False Negatives ..53

5.2.3 Wrong Predictions ...55

5.2.4 Correct Predictions...57

6 Predicting 2016 US Election with Trained CNN Model58

6.1 Results Analysis ...58

6.1.1 T-Test of Predicted vs Actual Results ...59

6.1.2 Election Results Predicted vs Actual ...61

7 Conclusion ...68

7.1 Finding #1 – Reframed Text Classification into Image Recognition68

7.2 Finding #2 – Model Successfully Applied to Election Prediction69

7.3 Finding #3 – Model Breaks Down when Cues are Insufficient70

7.4 Future Work ...70

7.4.1 Application of Model for Campaign Intelligence70

7.4.2 Application for NLP ..71

vii

8 Appendixes ..72

8.1 Appendix A ..72

Image Processing using Histogram of Gradients method (HOG)72

8.2 Appendix B ..73

Image Representation of US States..73

8.3 Appendix C ..78

Sample 3D Plots of US States ..78

9 Glossary ...91

10 Bibliography ..91

viii

List of Figures

Figure 1 - MNIST Database Sample ... 4

Figure 2- California Bigram Frequency Plot (side view) ... 6

Figure 3 - California Bigram Frequency Plot (top view) .. 7

Figure 4- Convolution Layer First Pass .. 17

Figure 5- Convolution Layer Second .. 17

Figure 6- 2x2 Max Pooling ... 18

Figure 7 - Composite State Histograms for Some States .. 27

Figure 8- Bigram Frequency of South Bradenton, FL(Side) .. 28

Figure 9 - Bigram Frequency of South Bradenton, FL(top) ... 28

Figure 10 - Bigram Frequency for Florida (Side) ... 29

Figure 11 - Bigram Frequency for Florida (Top).. 29

Figure 12 - Composite Picture of Bigrams in All Cities and All States 31

Figure 13 - Image Representation of Bigram Frequencies (Sample) ... 32

Figure 14- Frequency Distribution Histogram for Datasets (All, Train, Validation, Test) 36

Figure 15- Batch Normalization Formulae [9] ... 39

Figure 16-Training and Validation Accuracy Curves ... 42

Figure 17- Training and Validation Loss Curves ... 42

Figure 18 - Binary Cross Entropy ... 43

Figure 19 -10-Fold Cross-Validation with Holdout.. 46

Figure 20 - Bigram Frequency (All Cities, All States) ... 47

ix

Figure 21- City Frequency Distribution by State (Folds 0 - 4) ... 47

Figure 22- City Frequency Distribution by State (Folds 5 - 9) ... 48

Figure 23 - Prediction Rate for Test Dataset .. 52

Figure 24 - Prediction Rate for Training Data .. 52

Figure 25 - Prediction Rate for Validation Dataset .. 52

Figure 26 – F-Test Actual vs Predicted (Trump) .. 59

Figure 27 - T-Test Actual vs Predicted (Trump) .. 60

Figure 28- F-Test Actual vs Predicted (Clinton) .. 60

Figure 29- T-Test Actual vs Predicted (Clinton) .. 61

Figure 30- Predict vs Actual (Trump) ... 63

Figure 31 - Predict vs Actual (Clinton)... 63

Figure 32- - 2016 Election Results (Votes) .. 64

Figure 33 - 2016 Election Results (Percentage) ... 65

Figure 34 – Sample Ratio ... 65

Figure 35 - Election Results Predicted vs Actual ... 66

Figure 36 - Overall Winner ... 66

Figure 37 - Prediction Rate for Election 2016 .. 67

Figure 38- Actual Total Votes by Candidate .. 67

x

List of Tables

Table 1 - Linear Classifiers [5] ... 8

Table 2 - K-Nearest Neighbors [5] ... 10

Table 3 - Neural Networks [5] .. 12

Table 4 - Convolutional Neural Networks (CNN) [5] .. 14

Table 5 - US Cities Dataset (Excerpt)... 21

Table 6 – Sample Twitter Profile Locations ... 22

Table 7 – US Cities Dataset Converted o JSON ... 22

Table 8 – Sample Twitter Profile Locations Converted to JSON ... 22

Table 9- Characters in the Vocabulary ... 26

Table 10 - Permutation Operation on State Names and Cities ... 33

Table 11 - Training, Validation, Test Data ... 37

Table 12- Keras Model Definition .. 40

Table 13 - Training Hyperparameters ... 41

Table 14 - Epoch #1 of CNN Training (GPU, Nvidia GTX 1070) ... 44

Table 15 - Epoch #1 of CNN Training (CPU, Intel I7, 16GB) ... 45

Table 16 – Results of 10-Fold Cross-Validation .. 49

Table 17- Prediction Results ... 51

Table 18 - Test Dataset Predictions (False Positives) ... 53

Table 19 - Test Dataset Predictions (False Negatives) ... 54

Table 20 - Test Dataset Predictions (Wrong) ... 56

Table 21 - Test Dataset Predictions (Correct)... 57

1

1 Introduction

1.1 Motivation and Research Topic

 Increasingly, politicians and political parties are engaging their electors using social

media. In the US Federal Election of 2016, candidates from both parties made heavy use of Social

Media, particularly Twitter. It is then reasonable to research a correlation between popularity on

Twitter, and eventual popular vote in the election. In this thesis, we will focus on using the

subscriber location information of each candidate to estimate support in each state.

For this thesis, over 7.8 million subscriber profiles were gathered from Twitter for the two

candidates, Hillary Clinton and Donald Trump, between 2015 and 2016.

The goal is to use the locations of subscribers to each Candidate to determine who will win

the most popular votes by state.

In fact, cities and towns in the US have been named by the people who colonized the area.

For instance, in the Eastern US states, the northern states have primarily been colonized by people

of French descent, and many place names are French, whereas place names get increasingly

English as you move south. Same patterns are also seen. as you head west, with the place names

adopting more Native American languages, and progressively more Spanish as you head towards

the west and south. With this technique, as well as other features, we will classify city and town

names into states by using a suitably trained CNN classifier. It is felt from after having studied

the analysis done by LeCun [1] that for its accuracy and shorter convergence time, especially when

2

using GPU acceleration that CNN is an ideal algorithm for classifying the state names when

representing them as sparse images.

Furthermore, the CNN should also be able to recognize letter patterns, such as the short

state names along with full state names. (i.e. CA/California, AK/Alaska, ME/Maine …)

1.2 Challenges

 A major challenge is that the Twitter “location” field in a user profile is not constrained,

requiring the application of AI and Machine Learning algorithms to create clusters corresponding

to state names.

 The task at hand is to turn the chaos into order. The Twitter "location" field in a

Twitter subscriber profile provides information about where the user resides. However, the text is

unconstrained. To obtain information from this Twitter field requires filtering out text that has a

low likelihood of being a location, then grouping the remaining locations into US States.

Additionally, we need to remove locations with a low likelihood of being a US State.

Since we have over 7.8 million locations to classify, we need an algorithm suitable for such a large

dataset.

One possibility is an unsupervised clustering algorithm, such as K-Means, which has an

algorithmic complexity of O(n2). The challenge of using this algorithm is the time required to

achieve the clustering on such a large dataset and the second challenge is that we need to apply the

long clustering process to every new dataset. Research has been done to speed up this algorithm

with GPU acceleration, with good success. [2] However, this does not achieve our goal of having

an algorithm that can easily be applied to input data.

3

Using a supervised algorithm, such as Convolutional Neural Network (CNN), will achieve

the goal of training once, and applying to future data. Additionally, many modern Deep Learning

frameworks such as Tensorflow, and Keras can use GPU acceleration to speed up training.

1.3 Thesis Approach

 In recent years there has been a big resurgence in Neural Networks, primarily due to

an increase in computing power, which enables training dense Deep Learning Neural Networks

quickly.

 The company Google has created a computational framework called Tensorflow, which

enables GPU accelerated high-performance computations. This is especially suitable for creating

and training Deep Learning Neural Networks. Weight calculations are matrix multiplications,

which are well suited for parallel execution on massively parallel systems, such as the GPU

graphics platform.

In this thesis, our primary tool for learning the similarity function for state classification

will be done using a Convolution Neural Network, with the Keras library running in the

Tensorflow framework. This enables high-speed training, and inferencing.

After training a CNN to recognize an input dataset of cities labelled with their

corresponding states, we will apply this CNN to predict the US state of a Twitter Subscriber, based

on what they input into the ‘location’ field in their profile. The hypothesis is that subscribers, on

twitter, to a candidate is an expression of support, and will translate to a vote for the candidate, in

the election. We will then compare the predicted result to the actual election results for the 2016

US Federal Election.

4

We will encode the cities as bigrams, with a vocabulary of 26 uppercase and 26 lowercase

letters, including 3 non-alphabet characters, giving us a total vocabulary size of 55 characters. We

will then convert this bigram matrix into 55x55 RGB images. This will enable a CNN to train on

the city names. In fact, once encoded as images, the images resemble what’s in the MNIST

database, which is a standard dataset used to train models to recognize handwritten numbers. A

sample from the MNIST Database is in Figure 1. A sample of our encoding of the city name

bigrams can be found in Figure 8. They are similar in size and sparseness of the image.

Figure 1 - MNIST Database Sample1

1 C. Cortes, C. J. Burges and Y. LeCun, "MNIST database of handwritten digits - Yann LeCun," [Online].

Available: http://yann.lecun.com/exdb/mnist/

5

1.4 Related Work

Use of CNN for NLP is not new. Typically, sentences are converted into vectors using

word embedding, using an algorithm such as Word2Vec [3], from Google. Recently, Google has

patented this algorithm, which might have an impact on the research community.

In related work at CENPARMI, Ebrahimi, Mohammad Reza; Suen, Ching Y.;

Ormandjieva, Olga [4], has used a Deep Learning CNN and Word2Vec with GPU acceleration, in

order to detect predatory conversations, using social media. In the paper, “CNN-Webshell:

Malicious Web Shell Detection with Convolutional Neural Network” [5], a CNN and Word2Vec

are used to detect malicious Web Shell patterns inside the URLs of HTTP requests.

1.5 Novelty of Thesis Approach

As mentioned in the previous section, CNNs have been used in combination with a

Word2Vec embedding, to perform NLP on sentences. In this thesis, we are not interested in

parsing sentences and classifying them into categories. Instead, we are interested in building a

classifier for state names. This prevents us from using Word2Vec type of embedding, the letters

in themselves do not have associated meanings. We, therefore, need to apply context to the letters

in relationship to specific state names. The feature we choose to use, is the frequency of occurrence

of a bigram in city names, in the state. Each state will have a different frequency which could

uniquely identify the states. An example of plots of bigrams frequency is seen in Figure 2, which

is the side view and in Figure 3, which is the top view.

6

The novelty of this thesis approach is that rather than relying on Google’s word embedding,

we train a CNN to learn the bigram embedding in relationship to each state. We do this by training

a CNN to recognize the affinity that a state has to a set of letter bigrams.

After searching through prior work, it is believed that this a new approach that has not been

tried yet.

Figure 2- California Bigram Frequency Plot (side view)

7

Figure 3 - California Bigram Frequency Plot (top view)

8

2 Performance Analysis for MNIST of

Classification Algorithms

The approach chosen is to convert state names into letter bigrams, and subsequently encode

the bigrams as 2-dimensional arrays which can be easily represented as 2D images. Using our

dataset of correctly labelled states, we will train a model to classify location names into their

respective states.

The MNIST database is the standard when it comes to image recognition algorithm

performance analysis. In LeCun’s website [1], he compares various machine learning algorithmic

performances on classification of the MNIST handwritten digit database. The following tables are

extracted from the LeCun publication [1], tabulating the Test Error rate for each type of classifier.

This data clearly indicates that the best performing algorithm for small images with sparse features,

such as what is contained in the MNIST Database are well suited for the Convolution Neural

Network based algorithms. The Error Rate for CNN, according to this survey is below 2% with

rates as low as 0.23%. (Table 4) On the other hand, other algorithms, such as K-Nearest-Neighbor

(KNN) have significantly higher Error Rates, which can be as high as 5.0%. (Table 2)

2.1 Linear Classifiers

In Table 1 LeCun [1] has tabulated some results of linear classifier performance on the

MNIST dataset. The error rates are as high as 12%.

Table 1 - Linear Classifiers [1]

9

CLASSIFIER PREPROCESSING TEST ERROR RATE (%) Reference

Linear Classifiers

linear classifier (1-layer NN) none 12.0 LeCun et al. 1998

linear classifier (1-layer NN) deskewing 8.4 LeCun et al. 1998

pairwise linear classifier deskewing 7.6 LeCun et al. 1998

2.2 K-Nearest Neighbors

In Table 2 LeCun [1] examines the KNN algorithm on MNIST, and the results are much

better going down to the single digit test error rates for most of the tested algorithms. Although

performance is higher than Linear Classifiers, we do not achieve the goal of training a general

classifier that can be applied to new datasets. We must apply the KNN algorithm each time we

want to classify a new set of data.

http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98

10

Table 2 - K-Nearest Neighbors [1]

CLASSIFIER PREPROCESSING

TEST

ERROR

RATE (%)

Reference

K-Nearest Neighbors

K-nearest-neighbors, Euclidean

(L2)
none 5.0

LeCun et al.

1998

K-nearest-neighbors, Euclidean

(L2)
none 3.09

Kenneth Wilder,

U. Chicago

K-nearest-neighbors, L3 none 2.83
Kenneth Wilder,

U. Chicago

K-nearest-neighbors, Euclidean

(L2)
deskewing 2.4

LeCun et al.

1998

K-nearest-neighbors, Euclidean

(L2)

deskewing, noise removal,

blurring
1.80

Kenneth Wilder,

U. Chicago

K-nearest-neighbors, L3
deskewing, noise removal,

blurring
1.73

Kenneth Wilder,

U. Chicago

K-nearest-neighbors, L3
deskewing, noise removal,

blurring, 1-pixel shift
1.33

Kenneth Wilder,

U. Chicago

K-nearest-neighbors, L3
deskewing, noise removal,

blurring, 2-pixel shift
1.22

Kenneth Wilder,

U. Chicago

K-NN with non-linear

deformation (IDM)
shiftable edges 0.54

Keysers et al.

IEEE PAMI 2007

K-NN with non-linear

deformation (P2DHMDM)
shiftable edges 0.52

Keysers et al.

IEEE PAMI 2007

K-NN, Tangent Distance
subsampling to 16x16

pixels
1.1

LeCun et al.

1998

K-NN, shape context matching
shape context feature

extraction
0.63

Belongie et al.

IEEE PAMI 2002

committee of 35 conv. net, 1-

20-P-40-P-150-10 [elastic

distortions]

width normalization 0.23
Ciresan et al.

CVPR 2012

http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://finmath.uchicago.edu/~wilder/Mnist/
http://www.iupr.org/~keysers/files/Keysers--Deformation-Models--TPAMI2007.pdf
http://www.iupr.org/~keysers/files/Keysers--Deformation-Models--TPAMI2007.pdf
http://www.iupr.org/~keysers/files/Keysers--Deformation-Models--TPAMI2007.pdf
http://www.iupr.org/~keysers/files/Keysers--Deformation-Models--TPAMI2007.pdf
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://http.cs.berkeley.edu/projects/vision/shape/
http://http.cs.berkeley.edu/projects/vision/shape/
http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745

11

2.3 Neural Networks

In Table 3, we have LeCun’s, analysis of neural networks of varying size and deepness.

Performance varies depending on how the training data is prepared, the size of the hidden layers,

and the number of hidden layers. We can see the deeper the network, the better the performance

we get.

12

Table 3 - Neural Networks [1]

CLASSIFIER PREPROCESSING

TEST

ERROR

RATE (%)

Reference

Neural Nets

2-layer NN, 300 hidden units,

mean square error
none 4.7 LeCun et al. 1998

2-layer NN, 300 HU, MSE,

[distortions]
none 3.6 LeCun et al. 1998

2-layer NN, 300 HU deskewing 1.6 LeCun et al. 1998

2-layer NN, 1000 hidden units none 4.5 LeCun et al. 1998

2-layer NN, 1000 HU,

[distortions]
none 3.8 LeCun et al. 1998

3-layer NN, 300+100 hidden

units
none 3.05 LeCun et al. 1998

3-layer NN, 300+100 HU

[distortions]
none 2.5 LeCun et al. 1998

3-layer NN, 500+150 hidden

units
none 2.95 LeCun et al. 1998

3-layer NN, 500+150 HU

[distortions]
none 2.45 LeCun et al. 1998

3-layer NN, 500+300 HU,

softmax, cross entropy,

weight decay

none 1.53 Hinton, unpublished, 2005

2-layer NN, 800 HU, Cross-

Entropy Loss
none 1.6 Simard et al., ICDAR 2003

2-layer NN, 800 HU, cross-

entropy [affine distortions]
none 1.1 Simard et al., ICDAR 2003

2-layer NN, 800 HU, MSE

[elastic distortions]
none 0.9 Simard et al., ICDAR 2003

2-layer NN, 800 HU, cross-

entropy [elastic

distortions]

none 0.7 Simard et al., ICDAR 2003

NN, 784-500-500-2000-30 +

nearest neighbor, RBM + NCA

training [no distortions]

none 1.0
Salakhutdinov and Hinton,

AI-Stats 2007

6-layer NN 784-2500-2000-

1500-1000-500-10 (on GPU)

[elastic distortions]

none 0.35

Ciresan et al. Neural

Computation 10, 2010 and

arXiv 1003.0358, 2010

committee of 25 NN 784-800-10

[elastic distortions]

width

normalization,

deslanting

0.39 Meier et al. ICDAR 2011

deep convex net, unsup pre-

training [no distortions]
none 0.83

Deng et al. Interspeech

2010

http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://www.cs.toronto.edu/~hinton/
http://research.microsoft.com/~patrice/publi.html
http://research.microsoft.com/~patrice/publi.html
http://research.microsoft.com/~patrice/publi.html
http://research.microsoft.com/~patrice/publi.html
http://www.cs.utoronto.ca/~hinton/absps/nonlinnca.pdf
http://www.cs.utoronto.ca/~hinton/absps/nonlinnca.pdf
http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1003.0358
http://yann.lecun.com/exdb/mnist/
http://research.microsoft.com/pubs/152133/DeepConvexNetwork-Interspeech2011-pub.pdf
http://research.microsoft.com/pubs/152133/DeepConvexNetwork-Interspeech2011-pub.pdf

13

2.4 Convolutional Neural Networks

In Table 4, LeCun [1] examines the Convolutional Neural Network (CNN) performance

on the MNIST dataset. On sparse images such as MNIST, the CNN a better performer. This is

due to the pooling of features between convolution networks. Since the bigram image encoding

scheme, employed in this thesis creates images that are similar in sparseness, we feel that CNN is

the algorithm to choose. We will elaborate on this in the next chapter.

14

Table 4 - Convolutional Neural Networks (CNN) [1]

CLASSIFIER PREPROCESSING
TEST ERROR

RATE (%)
Reference

Convolutional nets

Convolutional net LeNet-1
subsampling to

16x16 pixels
1.7 LeCun et al. 1998

Convolutional net LeNet-4 none 1.1 LeCun et al. 1998

Convolutional net LeNet-4 with K-NN

instead of last layer
none 1.1 LeCun et al. 1998

Convolutional net LeNet-4 with local

learning instead of last layer
none 1.1 LeCun et al. 1998

Convolutional net LeNet-5, [no

distortions]
none 0.95 LeCun et al. 1998

Convolutional net LeNet-5, [huge

distortions]
none 0.85 LeCun et al. 1998

Convolutional net LeNet-5,

[distortions]
none 0.8 LeCun et al. 1998

Convolutional net Boosted LeNet-4,

[distortions]
none 0.7 LeCun et al. 1998

Trainable feature extractor + SVMs [no

distortions]
none 0.83

Lauer et al., Pattern

Recognition 40-6, 2007

Trainable feature extractor + SVMs

[elastic distortions]
none 0.56

Lauer et al., Pattern

Recognition 40-6, 2007

Trainable feature extractor + SVMs

[affine distortions]
none 0.54

Lauer et al., Pattern

Recognition 40-6, 2007

unsupervised sparse features + SVM,

[no distortions]
none 0.59

Labusch et al., IEEE TNN

2008

Convolutional net, cross-entropy

[affine distortions]
none 0.6 Simard et al., ICDAR 2003

Convolutional net, cross-entropy

[elastic distortions]
none 0.4 Simard et al., ICDAR 2003

large conv. net, random features [no

distortions]
none 0.89 Ranzato et al., CVPR 2007

large conv. net, unsup features [no

distortions]
none 0.62 Ranzato et al., CVPR 2007

large conv. net, unsup pretraining [no

distortions]
none 0.60 Ranzato et al., NIPS 2006

large conv. net, unsup pretraining

[elastic distortions]
none 0.39 Ranzato et al., NIPS 2006

large conv. net, unsup pretraining [no

distortions]
none 0.53 Jarrett et al., ICCV 2009

large/deep conv. net, 1-20-40-60-80-

100-120-120-10 [elastic distortions]
none 0.35 Ciresan et al. IJCAI 2011

committee of 7 conv. net, 1-20-P-40-

P-150-10 [elastic distortions]

width

normalization

0.27 +-

0.02
Ciresan et al. ICDAR 2011

committee of 35 conv. net, 1-20-P-40-

P-150-10 [elastic distortions]

width

normalization
0.23 Ciresan et al. CVPR 2012

http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://hal.archives-ouvertes.fr/hal-00018426/en
http://hal.archives-ouvertes.fr/hal-00018426/en
http://hal.archives-ouvertes.fr/hal-00018426/en
http://hal.archives-ouvertes.fr/hal-00018426/en
http://hal.archives-ouvertes.fr/hal-00018426/en
http://hal.archives-ouvertes.fr/hal-00018426/en
http://www.inb.uni-luebeck.de/publications/pdfs/LaBaMa08c.pdf
http://www.inb.uni-luebeck.de/publications/pdfs/LaBaMa08c.pdf
http://research.microsoft.com/~patrice/publi.html
http://research.microsoft.com/~patrice/publi.html
http://yann.lecun.com/exdb/publis/index.html#ranzato-cvpr-07
http://yann.lecun.com/exdb/publis/index.html#ranzato-cvpr-07
http://yann.lecun.com/exdb/publis/index.html#ranzato-06
http://yann.lecun.com/exdb/publis/index.html#ranzato-06
http://yann.lecun.com/exdb/publis/index.html#jarrett-iccv-09
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1202.2745

15

2.5 Simple Pattern Matching

Creating regular expressions to match location names. It’s a manual process requiring lots

of work to capture a pattern or set of patterns for all 50 states, and various permutations. Old school

method, being replaced by Machine Learning algorithms.

City and state were obtained from compiled list of cities, and properly labeled states. In

total 51 states labels were trained. (See section 9.1.4) Using reverse indexed array and pattern

matching would be possible but would not provide the flexibility of SoftMax classification with a

neural network. Pattern matching is a all or nothing method, and require multiple iterations to

develop a generalized matcher. Even after such a pattern matcher is developed, we could still lose

data due to previously unseen data falling out of the pattern matched. Additionally, using a

SoftMax activation for the classifier in a neural network provides us a probability for each

class(state) and allows us to adjust our acceptance cutoff.

It’s not our opinion that a regular expression will work, however it will not be easy or

possible to define one that can match all cases of misspelling of a state or city name, for instance.

Also defining a regular expression is a manual process whereas training a neural network to

recognized misspelled place names can be automated.

16

3 Convolutional Neural Network Basics

After studying LeCun’s research, CNN was chosen for it’s quick convergence time, and

high accuracy. In addition, we are looking for a supervised algorithm that would enable us to train

a model on a dataset of cities labeled by state, apply the model to Twitter subscriber location field.

According to LeCun’s study, a Convolutional Neural Network (CNN) is used for image

recognition, to classify entire images or recognition of objects inside an image. A CNN will

typically have a test error rate of under 1%. With today’s hardware advancements, and software

advancements such as GPU acceleration, and neural network enabling frameworks like Keras, and

Tensorflow, training large Deep Learning Neural Networks has been greatly improved. It makes

sense to try and reframe the classical text classification problem as an image classification

problem.

It’s felt that the spatial relationship is present in place names and state labels. In fact what

the CNN appear to have learned is the special relationship between the bigrams of a place name,

relative to language of the place name, and presence of either the short state name or long state

name bigrams.

A typical CNN will consist of alternating Convolution Layers, Pooling Layers, and finally

a Fully Connected (FC) layer. Each layer is fed into a subsequent layer in a sequential fashion.

The convolution layers serve the purpose of learning features in the input image, eventually

feeding into the FC layer for classification. The following is a detailed explanation of the function

of each layer.

3.1 Convolution Layers

17

The simple concept of a Convolution Layer is that it’s a series of dot products. The goal

is to reduce the size of the original image into a smaller set of features. In effect, the image is

filtered each time it passes through a convolution Layer.

The following figures help to illustrate how a CNN network functions and are extracted

from Michael Nielsen’s online book2.

Figure 4- Convolution Layer First Pass

Figure 5- Convolution Layer Second

2 http://neuralnetworksanddeeplearning.com/chap6.html

18

3.2 Pooling Layers

The output of a convolution layer often results in a sparse matrix. To further reduce the

output of a convolution layer, while keeping the learned features intact, a pooling layer is applied

after each convolution. As an example, a 2x2 max pooling layer would take the maximum value

of a group of 4 neurons on the output of a convolution layer and reduce that to a single neuron. In

this paper, the authors discuss the use of Stochastic Pooling for regularization of a CNN. [6]

Figure 6- 2x2 Max Pooling

3.3 Fully Connected Layer

After the application of one or more convolution and pooling layers, the outputs are then

passed into a fully connected layer with an activation function for classification. Typically, this

will be a two-layer neural network classifier, where the inputs represent the features found in the

convolution layers, and the output being the classes under which the inputs fall.

Typical choices for activation are Sigmoid for multiclass, and SoftMax for single class.

19

3.4 Dropout

To avoid overfitting, a technique often used is to randomly reset a certain percentage of

each convolution pass. This is achieved using a “dropout” layer after each pooling layer. At each

dropout lay weights are randomly selected and removed. Because in applications where images

are considered sparse, we can remove weights which have become zero.

An analysis is made by Park S., and Kwak N. [7] analysis the dropout effect on a CNN.

20

4 Data Description and Model Training

The method we decided to use to build our model with is a Convolutional Neural Network

for classifying our city names. With current advances in hardware (GPU training), and software

(Tensorflow), we can train on GPU hardware and Deep Learning Neural Networks.

We will be converting location names to bigram frequency, and them mapping them on

two axes and using a Convolution Neural Network to classify into states by image recognition.

Data representation is the key to a successful algorithm. In our algorithm, we choose to

represent place names as bigrams and then convert bigrams into a two-dimensional matrix with

each point representing the frequency of occurrence of a bigram in the place name.

4.1 Data Sources

The cities and labels were obtained from two sources.

Purchased Dataset:

 https://www.uscitieslist.org/cart/packages/

Open Source Dataset;

https://github.com/grammakov/USA-cities-and-states

4.2 Data Description

https://www.uscitieslist.org/cart/packages/

21

The data comes in two categories. The first is a labelled set of city names and labelled with

each state that the city belongs to. These are all correctly spelled and correctly labelled. This is

the basis of the training, validation and test sets, from which the model is trained, validated and

tested. A sample of this is found in Table 5. We will place it under the umbrella of Model Data.

Table 5 - US Cities Dataset (Excerpt)

1,Adak,Aleutians West Census Area,AK,Alaska,City,51.88,-176.65806

2,Akhiok,Kodiak Island Borough,AK,Alaska,City,56.94556,-154.17028

3,Akiachak,Bethel Census Area,AK,Alaska,CDP,60.90944,-161.43139

4,Akiak,Bethel Census Area,AK,Alaska,City,60.91222,-161.21389

5,Akutan,Aleutians East Borough,AK,Alaska,City,54.13556,-165.77306

6,Alakanuk,Kusilvak Census Area,AK,Alaska,City,62.68889,-164.61528

7,Alatna,Yukon-Koyukuk Census Area,AK,Alaska,CDP,66.56393,-152.838

The second category of input data is the Twitter subscriber profile ‘location’ field. This is

the data which we want to apply the model against to help us classify Twitter subscribers into

states for each of the election candidates. A sample of these data can be found in Table 6.

To improve data processing time, the data has been converted to JSON format with only

the essential information that we anticipate will be needed for training and prediction. Examples

of the converted JSON are in Table 7. We will extract the location of each subscriber and convert

the location field into bigram. A sample of this converted location name is in Table 8.

Several possibilities exist for those who are subscribing to both candidates. Those could

include journalists, or possibility undecided voters. From a statistics point of view, and in relation

22

to building our model, these subscribers would cancel out each other for the state they reside and

will not skew or bias the results.

Table 6 – Sample Twitter Profile Locations

[{"logged_at": "2016-10-23T10:30:06",

 "created_at": "2011-12-09T18:30:19",

 "id_str": "433007427",

 "last_tweet": "788554771250581505",

 "favourites_count": 324,

 "followers count": 56,

 "friends count": 184,

 "listed count": 3,

 "statuses count": 294,

 "following_id_str": "HillaryClinton",

 "is_translator": 0,

 "geo_enabled": 0,

 "location": "Arlington, Texas",

 "verified": 0,

 "screen_name": "<removed>",

 "lang": "es",

 "utc_offset": -1,

 "time_zone": "", "name":

 "????", "description":

 "<removed>",

 "argmax": 0.0,

 "orig": null,

 "idx": null,

 "prob": null,

 "correct": null}]

Table 7 – US Cities Dataset Converted o JSON

{"state_short": "FL", "letters": ["FL", " W", "at", "er", "ga", "te"], "location":
"FL Watergate"}
{"state_short": "TX", "letters": ["Cr", "ec", "y,", " T", "X "], "location": "Crecy,
TX"}
{"state_short": "TN", "letters": ["Da", "nd", "ri", "dg", "e ", "TN"], "location":
"Dandridge TN"}
{"state_short": "NC", "letters": ["NC", " L", "um", "be", "rt", "on"], "location":
"NC Lumberton"}

Table 8 – Sample Twitter Profile Locations Converted to JSON

23

{"letters": ["so", "me", "wh", "er", "e ", "be", "in", "g ", "pe", "tt", "y "],
"following_id_str": "HillaryClinton", "logged_at": "2016-10-23T10:30:06", "id_str":
"35399372", "created_at": "2009-04-25T22:11:25", "verified": 0}
{"letters": ["Ar", "li", "ng", "to", "n,", " T", "ex", "as"], "following_id_str":
"HillaryClinton", "logged_at": "2016-10-23T10:30:06", "id_str": "859131001",
"created_at": "2012-10-02T21:35:56", "verified": 0}
{"letters": ["DC"], "following_id_str": "HillaryClinton", "logged_at": "2016-10-
23T10:30:06", "id_str": "2333943649", "created_at": "2014-02-08T12:02:58",
"verified": 0}

4.3 Model Input

The Model Data will be pre-processed before inputting into the CNN. This includes a

permutation of place names to augment the input data, and remove any duplicate city names, the

total number of cities with corresponding state names is 695389 entries. The premise is that a

CNN can learn to recognize a pattern in the place names when properly trained.

We will calculate a letter bigram for each city, and then count the frequency of occurrence

in each city name. This will be fed into the CNN as training data. This has been successfully used

to classify languages based on small corpora. It’s a hypothesis that this can work in location

classification as well.

24

4.4 Duplicate Data

It is difficult to deal with collisions of city names. However, in most cases, city names are entered

in conjunction with state names. Additionally, the model does not learn only by matching 112 city

names as a pattern, but rather the frequency of bigrams in all city in a state. This is one advantage

over a simple pattern matcher.

4.5 Algorithm

The bigrams for each place name will be converted into an image representation to be fed

into a CNN for training. In image processing, the HOG algorithm is quite successful. By

representing our bigrams as a histogram of occurrences in the location names we can build a matrix

to represent each location and convert that matrix into an image for our CNN model.

4.5.1 Vocabulary of Characters

. We want to limit our vocabulary size for our input data so that each city name will not

map into too large a matrix for the efficient training and running of our model. Characters chosen

to be part of our vocabulary are listed in Table 9. They include all letters of the alphabet,

distinguishing between upper and lower case. We chose to do this city because we are classifying

place names where capitalization is an important factor. In addition, we will include two

punctuations, comma and period, which are also important in place names. Space is included in

vocabulary, but we will trim the left and right of the place name and remove punctuations and

spaces. Only internal punctuation and spaces are kept. With the x-axis representing bigram

25

combinations of our vocabulary and. y-axis representing bigram frequency shows histogram plots

of bigram frequencies for some sample states. The states California, Arkansas, Massachusetts,

Pennsylvania, and New York are representative of densely populated states. The histograms are

similar in profile but there are enough dissimilarities to consider each state’s histogram to be

unique. It’s a reasonable assumption, then, to expect that a neural network will be capable of

learning this pattern. The question this thesis tries to answer is whether it can be generalized to

the recognition of city names, which are not a part of the training data.

26

Table 9- Characters in the Vocabulary

Lower Case Letters abcdefghijklmnopqrstuvwxyz

Upper Case Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

Punctuation (internal only) ,.

Space (internal only)

4.5.2 Histogram Representation

With a vocabulary size of 55 characters, our bigrams can be represented by a 55x55 matrix

of bigram frequencies, giving us a mapping space of 3025 bigrams. Our algorithm is a histogram

method, such as HOG which converts an image into histograms, to recognize features for

classification. The HOG algorithm has been successfully applied in previous work to recognize

sparse featured images such as handwriting. An example of this is this paper where the authors

used it for Arabic handwriting. [8] For further details, please see Appendix A

.

However, in our method, we will not directly calculate the Sobel operator, but rather we

will train a Convolutional Neural Network to learn the features of an image built from letter bigram

frequencies found in cities, of each US state. The histograms can be found in Figure 7. These

histograms would represent all the cities for the state converted into bigram frequencies composed

into one graph for each state. The individual city histograms would be much sparser. For instance,

in Figure 8, and Figure 1, we present a 3D scatter plot of South Bradenton, FL, with bigram

frequency on the z-axis. The X-Y coordinates are the characters in our vocabulary.

27

Figure 7 - Composite State Histograms for Some States

28

Figure 8- Bigram Frequency of South Bradenton, FL(Side)

Figure 9 - Bigram Frequency of South Bradenton, FL(top)

29

Figure 10 - Bigram Frequency for Florida (Side)

Figure 11 - Bigram Frequency for Florida (Top)

30

4.5.3 Data Encoding

As previously stated, we want to reframe the place name classification problem into an

image processing problem, and to apply state-of-the-art hardware and software, actively being

used in image classification research. Our data encoding is simple. The x and y-axis of our image

will be one character in the bigram and each pixel in our images will represent the 24-bit frequency

for that bigram. By convention, we will encode the first letter of the bigram in the x-axis and the

second character in the y-axis.

Steps are:

1 - Remove leading and training spaces.

2 – Create bigram by selecting two-character pairs in succession.

3- Remove any character not falling in the vocabulary list, which are upper- and lower-case letters,

and special characters, space, comma, period.

4.5.4 Converting to Image Representation

To enable a CNN to train on our histograms, we will convert them into a two-dimensional

image. The x and y-axis are indexes to each letter of our vocabulary, and the RGB values represent

a 24-bit sized frequency of occurrence for the bigram. More details of the encoding process are

found in section Data Encoding. These are composite images of all the bigrams of all cities in that

state.

Sample images built in this manner are shown in Figure 13. These images represent the

superposition of all bigram frequencies for all cities in the respective state. The images help to

illustrate that some bigrams combinations occur more frequently with some states. Together this

represents a “fingerprint” of sorts that we hope a neural network can learn the pattern to and thus

31

be able to classify cities by their bigrams. As in fingerprint recognition, each fingerprint is

composed of recognizable features. The CNN will be trained to recognize the features that each

state fingerprint is composed of. Using our method, the image in Figure 12 represents bigram

frequencies of all cities in the US.

Figure 12 - Composite Picture of Bigrams in All Cities and All States

In Figure 13, are the images of bigram frequencies for some sample states individually.

Even with a visual inspection, we can see that each state is quite unique. The full set of images for

each state can be found in Appendix 7.2.

32

Figure 13 - Image Representation of Bigram Frequencies (Sample)

4.5.5 Splitting Dataset

Starting from the full list of cities and labels, we will create the Training, Validation, and

Test Datasets. The CNN will be trained using the Training Set. The Validation Set will be kept

separate from the Training set and used during training to calculate the loss and accuracy after

every epoch. The test set is used to test the model accuracy at the end of training. It will be data

that was not used as part of the training process.

It should be noted that we are only training on the 51 states that can vote in the US

Presidential election. Territories such as Puerto Rico, Guam, etc. are not included in any of the

training or validation datasets. It is felt that including non-voting states could skew the training.

33

4.5.6 Augmenting the Dataset

To augment the basic list of city names and states, the operations in Table 10 are applied

to the original list. This will help to capture the variations that people will use in the location field

of their Twitter profile. It’s interesting to note that these permutations do not contain the city name

alone with no state name. This is done intentionally to avoid confusing the neural network. Many

states carry common city names and adding this permutation would result in adjusting weights

towards one state, and then when the same city came in for another state it would undo that training

resulting in the neural network oscillating back and forth, until the last entry of that city.

Table 10 - Permutation Operation on State Names and Cities

Operation Description

[Long State Name] Long state name alone

[City], [Long State Name] City and Long State separated by a comma

[City] [Long State Name] City and Long State Name separated by space

[Long State Name], [City] Long State Name and City separated by a

comma

[Long State Name] [City] Long State Name and City separated by a

space

[City], [Short State Name] City and Short State Name separated by a

comma

[City] [Short State Nam] City and Short State name separated by a

space

[Short State Name], [City] Short State Name and City separated by a

comma

[Short State Name] [City] Short State Name and City separated by a

space

4.5.7 Shuffling Data

An initial shuffling of the data is necessary, for the next step of splitting between the

training, validation, and test sets. This will ensure an even distribution for each of the datasets

after splitting. To achieve this, the numpy “shuffle” function is used. Numpy is a common python

module used in data science for numerical and data analysis. In Figure 14, we have graphed the

frequency with which a state appears in the dataset. The first graph represents the full dataset.

34

This matches very closely with the same graphs for the Training, Validation, and Test data splits.

Therefore, we are confident that each split represents the total population of the full dataset.

4.5.8 Splitting Data into Training, Validation, and Test Sets

The final step is to split the data into the separate components. We will keep 80% of the

original data for training while splitting the remaining 20% into validation (16%), and test (4%).

The details on actual sizes of each and descriptive statistics are listed in Table 11.

4.5.8.1 Training Data

This is the main data set used to train the CNN.

4.5.8.2 Validation Data

During training we are using the validation dataset to compare training accuracy relative

to accuracy for validation data. The difference between the two accuracies is calculated. Since we

are using “early stop” in our training, if the difference between epochs is too low or unchanged,

we will stop training the model.

4.5.8.3 Test Data

Test data is set aside and never seen during training. We will use this data to objectively

evaluation our model, at the end of training.

4.5.9 Addressing Data Imbalance

We can see from Figure 14 that some states have significantly more cities than others. Data

imbalance is a significant issue, when it comes to two class, as this could lead to imbalance in

35

predictions. However, in our case we have 51 classes, and it’s felt that we had enough labeled

cities in each state to avoid the issue. We also did not observe any bias when applying the trained

model to the full dataset, and the subscriber locations. Furthermore, with Data Augmentation, as

described in Table 10, we have boosted training samples for the lower city count states.

In future work, it would be useful to do a study on data imbalance.

36

Figure 14- Frequency Distribution Histogram for Datasets (All, Train, Validation, Test)

37

Table 11 - Training, Validation, Test Data

City

Entries
File Name

Description Statistics

Numpy.describe()

Full Data

(100%)
695389 cities_shuffled_all.json

nobs=52, minmax=(0, 46271),

mean=12929.98076923077,

variance=94827083.3525641,

skewness=1.3722954619398018,

kurtosis=1.9301177227759876

Training (80%) 556311 cities_shuffled_train.json

nobs=52, minmax=(0, 37041),

mean=10342.307692307691,

variance=60726949.62895928,

skewness=1.3738867581234702,

kurtosis=1.9387584597763698

Validation

(16%)
111262 cities_shuffled_valid.json

(nobs=52, minmax=(0, 7420),

mean=2069.6923076923076,

variance=2435641.3152337857,

skewness=1.3721646821298885,

kurtosis=1.915920922857353

Test (4%) 27816 cities_shuffled_test.json

nobs=52, minmax=(0, 1810),

mean=517.9807692307693,

variance=148579.43099547512,

skewness=1.3356616905991185,

kurtosis=1.7888861304572803

4.6 Model Preparation

4.6.1 Model Definition

We are using five 2D convolution layers with 2x2 max pooling layers between each

convolution layer. The Keras Neural Network Framework is being used to define our

Convolutional Neural Network. Keras is a popular framework for defining, training, and

generating predictions, and provides GPU acceleration using a Tensorflow Backend. The

programming language of choice is Python.

The model is summarized in Table 12. We will provide the details in the next sections.

4.6.2 Convolution Layers Description

38

In out CNN model, we use 5 convolution layers. The first convolution layer is an input

layer and designed for our 55x55, 3 colour image. The first layer will pick out the smaller features

of our image, and pass it on to subsequent layers, after passing the features into a pooling layer.

4.6.3 Pooling Layers Description

We are using a 2x2 pooling layer in between each convolution. Since each image

represents the whole bigram space of 55x55 characters, resulting in 3025 bigrams, the resulting

matrix of frequencies is considered sparse. This is a similar recognition problem of that of MNIST,

and handwritten digit recognition. Like CNN models built to recognize MNIST characters, we will

place pooling layers after each convolution layer. The pooling function we are using is

Maxpool2d. This is a function that will condense every recognized feature from a 2x2 grid of

neurons into one neuron. This is illustrated in Figure 6. This will help us, in reducing the size of

subsequent convolution layers, by reducing the number of values that are zero and reducing the

number of similar features.

4.6.4 Fully Connected Layers Description

The last two layers of our model are fully connected classification layers. The first one is

a dense input layer which takes the input of the final pooling layer as input and feeds into a dense

hidden layer that will classify the features into the final 51 classes. In our CNN, we have 51

classes, one for each state. We are using the Sigmoid activation function which is more suited for

multiclass.

39

4.6.5 Batch Normalization

As the last step of each convolution layer, we will apply a batch normalization layer.

According to S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift [9], it will help to increase the accuracy or the model, even

with the use of higher learning rates. This is achieved by normalizing the weight at the end of each

convolution. Although some think that Batch Normalization has little effect on convergence and

accuracy, such as discussed in the paper by these authors of the paper, “Batch Normalization: Is

Learning An Adaptive Gain and Bias Necessary?” [10]. A deeper discussion is beyond this thesis,

so please refer to the paper written by Ioffe & Szegedy for more details. In Figure 15, we present

the formulae used in batch normalization.

Figure 15- Batch Normalization Formulae [9]

40

Table 12- Keras Model Definition

__

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 55, 55, 32) 896

activation_1 (Activation) (None, 55, 55, 32) 0

batch_normalization_1 (Batch (None, 55, 55, 32) 128

max_pooling2d_1 (MaxPooling2 (None, 18, 18, 32) 0

dropout_1 (Dropout) (None, 18, 18, 32) 0

conv2d_2 (Conv2D) (None, 18, 18, 64) 18496

activation_2 (Activation) (None, 18, 18, 64) 0

batch_normalization_2 (Batch (None, 18, 18, 64) 256

conv2d_3 (Conv2D) (None, 18, 18, 64) 36928

activation_3 (Activation) (None, 18, 18, 64) 0

batch_normalization_3 (Batch (None, 18, 18, 64) 256

max_pooling2d_2 (MaxPooling2 (None, 9, 9, 64) 0

dropout_2 (Dropout) (None, 9, 9, 64) 0

conv2d_4 (Conv2D) (None, 9, 9, 128) 73856

activation_4 (Activation) (None, 9, 9, 128) 0

batch_normalization_4 (Batch (None, 9, 9, 128) 512

conv2d_5 (Conv2D) (None, 9, 9, 128) 147584

activation_5 (Activation) (None, 9, 9, 128) 0

batch_normalization_5 (Batch (None, 9, 9, 128) 512

max_pooling2d_3 (MaxPooling2 (None, 4, 4, 128) 0

dropout_3 (Dropout) (None, 4, 4, 128) 0

flatten_1 (Flatten) (None, 2048) 0

dense_1 (Dense) (None, 1024) 2098176

activation_6 (Activation) (None, 1024) 0

batch_normalization_6 (Batch (None, 1024) 4096

dropout_4 (Dropout) (None, 1024) 0

dense_2 (Dense) (None, 52) 53300

activation_7 (Activation) (None, 52) 0

===

41

4.7 Model Training

We trained our CNN model on 556311 city names from our training dataset. In addition to

the model definition in Table 12, when training there are hyperparameters that need to be set,

which can affect the outcome of the trained model. These are listed in Table 13. We will discuss

these parameters in greater detail and provide some discussion on how training and model

accuracies are affected in the next sections.

Table 13 - Training Hyperparameters

Parameter Value Description

Batch Size 32 Number of samples between gradient calculation.

Optimizer Adam

Adam optimizer, with an initial learning rate of

0.001, and decay rate of 0.001.

Loss Function Binary Cross

Entropy

Calculates the loss between each gradient

calculation.

Maximum Epochs <= 75 Rather than using a fixed number of epochs, we are

using early stop, if the validation loss does not

change for 4 epochs.

4.7.1 Optimizer

In neural networks, the “learning rate” determines how fast it converges or whether it will

converge at all. For our training, we are using the Adam optimizer to find the optimal learning

rate. It has been shown to converge quickly for CNN [11] [12] [13] [14]. In Figure 16 and Figure

17, we have plotted the training and validation accuracies for each epoch. We can tell by this that

the model has converged by epoch 4 with slight oscillation. After epoch 4 the training and

validation accuracies are similar along with the training and validation losses.

42

Figure 16-Training and Validation Accuracy Curves

Figure 17- Training and Validation Loss Curves

43

4.7.2 Loss Function

For our loss function, it is standard to use the Binary Cross Entropy function. This uses a

sigmoid function binary classification on each category. That is the decision will be to determine

the probability of the input is in the state or not. Then we will calculate loss scores for each class

independently of the other classes. The classes, in our case, are the 51 states. Figure 18 shows the

formula and flow diagram for this the Binary Cross Entropy function. A good discussion on cross-

entropy can be found in this paper. [15]

Figure 18 - Binary Cross Entropy

4.7.3 Epochs and Batch Size Effect on Optimization

The other hyperparameters Batch Size and Maximum Epochs control the mechanics of the

training. Batch Size determines how many samples from the training set are passed into the CNN

before the optimizer and loss calculations are done. The larger the batch size the more data is input

into the neural network between gradient and loss calculation. The goal of a gradient descent

optimization is to find the lowest minima of all weights in the neural network. As the optimization

and loss calculations are relatively expensive operations using a large batch size means we need

to calculate these functions less frequency resulting in faster training. However, this can also lead

to missing some local minima, and overall lead to a less optimal model. Due to our large data set

44

which consists of training set of 556311 samples, would require higher training time with a smaller

batch size. Because we are using GPU hardware accelerated libraries for our CNN model training,

this reduces out training time. The training accuracy and loss curves, in Figure 16 and Figure 17

shows slight fluctuations after convergence after the 4th epoch.

4.7.4 GPU Acceleration

The strength of GPU acceleration is that we can calculate the optimization and losses faster.

These are basically matrix operations, which can be done in parallel. We can leverage the power

of GPU acceleration and will be able to choose a smaller batch size, thus leading to a potentially

more optimized model. Because of this, we chose a batch size of 32. Because of this batch size,

for our training data size of 556311 entries, we will calculate the loss and optimization of a total

of 17384 times for all weights in the neural network. Each epoch in the training takes

approximately 40 minutes per epoch, running on a Nvidia GTX-1070 video card. (Table 14).

Without GPU acceleration, training with such a small block size would take approximately 75

minutes per epoch running on an Intel I7 processor with 16GB of system memory. (Table 15)

Table 14 - Epoch #1 of CNN Training (GPU, Nvidia GTX 1070)

Epoch 1/75

 1/17384 [..............................] - ETA: 15:55:46 - loss: 0.6931 - acc: 0.9808

 2/17384 [..............................] - ETA: 8:12:57 - loss: 0.8755 - acc: 0.7338

 5/17384 [..............................] - ETA: 3:20:05 - loss: 0.9696 - acc: 0.5987

 9/17384 [..............................] - ETA: 2:04:00 - loss: 0.9757 - acc: 0.5569

…

 222/17384 [..............................] - ETA: 38:52 - loss: 0.3538 - acc: 0.8466

223/17384 [..............................] - ETA: 38:50 - loss: 0.3526 - acc: 0.8472

 224/17384 [..............................] - ETA: 38:48 - loss: 0.3514 - acc: 0.8478

 225/17384 [..............................] - ETA: 38:46 - loss: 0.3503 - acc: 0.8484

 226/17384 [..............................] - ETA: 38:44 - loss: 0.3491 - acc: 0.8490

 227/17384 [..............................] - ETA: 38:41 - loss: 0.3480 - acc: 0.8495

 228/17384 [..............................] - ETA: 38:43 - loss: 0.3468 - acc: 0.8501

…

45

Table 15 - Epoch #1 of CNN Training (CPU, Intel I7, 16GB)

Epoch 1/75

 1/17384 [..............................] - ETA: 10:31:48 - loss: 0.6931 - acc: 0.9808

 2/17384 [..............................] - ETA: 6:07:17 - loss: 0.8753 - acc: 0.7338

 3/17384 [..............................] - ETA: 4:35:44 - loss: 0.9335 - acc: 0.6591

4/17384 [..............................] - ETA: 3:49:41 - loss: 0.9600 - acc: 0.6194

 5/17384 [..............................] - ETA: 3:22:20 - loss: 0.9681 - acc: 0.5984

 6/17384 [..............................] - ETA: 3:03:12 - loss: 0.9742 - acc: 0.5828

 7/17384 [..............................] - ETA: 2:47:35 - loss: 0.9794 - acc: 0.5708

 8/17384 [..............................] - ETA: 2:35:36 - loss: 0.9780 - acc: 0.5648

…

 222/17384 [..............................] - ETA: 1:15:47 - loss: 0.3534 - acc: 0.8474

 223/17384 [..............................] - ETA: 1:15:45 - loss: 0.3522 - acc: 0.8480

 224/17384 [..............................] - ETA: 1:15:44 - loss: 0.3510 - acc: 0.8485

 225/17384 [..............................] - ETA: 1:15:42 - loss: 0.3499 - acc: 0.8491

 226/17384 [..............................] - ETA: 1:15:41 - loss: 0.3488 - acc: 0.8497

 227/17384 [..............................] - ETA: 1:15:39 - loss: 0.3476 - acc: 0.8503

 228/17384 [..............................] - ETA: 1:15:38 - loss: 0.3465 - acc: 0.8508

…

This represents an almost 2:1 ratio. Our CNN model took 12 epochs to converge (See

Figure 16, and Figure 17) This translates to 8 hours to train the model on the full training set on

GPU versus 15 hours on a CPU. That’s a significant reduction in training time. It should be noted

that the Intel I7 is considered the top end for CPU regarding performance, whereas the GTX-1070

video card is considered a midrange performing card. On this website3, a benchmark of the top

of the line GTX -1080ti is 53% faster than the GTX-1070. This is due to it having more memory,

and processors. However, the price also scales at the same rate. With Nvidia about to release the

next generation of RTX-2080ti cards, initial benchmarks show a 94% increase in speed. However,

the cost of these cards, at $1000 USD, is a steep price to pay for that performance increase.

3 http://gpu.userbenchmark.com/Compare/Nvidia-GTX-1080-Ti-vs-Nvidia-GTX-1070/3918vs3609

http://gpu.userbenchmark.com/Compare/Nvidia-GTX-1080-Ti-vs-Nvidia-GTX-1070/3918vs3609

46

4.8 Model Cross-Validation

At the end or training the model, we used 10-fold cross validation, with hold out, in order

to do a first pass verification of the trained model. In additional to that, we have also applied the

model to training, validation, and test datasets, compared false positive, false negatives, correct,

and incorrect predictions to further evaluate the model. A visual representation is shown in Figure

19.

Figure 19 -10-Fold Cross-Validation with Holdout

47

4.8.1 Randomized Data

To ensure we each fold is a good representation of the total dataset, to avoid any skewing

during validation, we have plotted out the histograms of city and state frequencies in the completed

dataset, shown in Figure 20. This shows the frequency with which a state occurs in the cities list.

In Figure 21 and Figure 22, we show the histogram for each of the holdout folds from fold 1 to

fold 10. From these histograms, we can conclude that the folds are representative of the overall

dataset.

Figure 20 - Bigram Frequency (All Cities, All States)

Figure 21- City Frequency Distribution by State (Folds 0 - 4)

48

Figure 22- City Frequency Distribution by State (Folds 5 - 9)

4.8.2 Cross-Validation Results

The cross-validation accuracy results are presented in Table 16. The mean Cross-

Validation accuracy is 99.74% with a standard deviation of +/- 0.00. This is an indication that the

model behaves stably. As with the full training dataset, we are only limiting cross-validation to

the 51 states which are eligible to vote in the 2016 Presidential Election.

4.8.3 Discussion on Overfitting

With overfitting we see that accuracy on training set is higher than validation set. In our

training and validation accuracy graph we do not see this phenomenon. Additionally, we have

employed a dropout layer between every convolution layer in order to mitigate overfitting

49

Table 16 – Results of 10-Fold Cross-Validation

Fold Number Accuracy

1 99.74%

2 99.73%

3 99.75%

4 99.74%

5 99.74%

6 99.74%

7 99.74%

8 99.74%

9 99.74%

10 99.74%

50

5 Discussion

We’ll look at the Model applied to each of the Datasets (Training, Validation, and Test) to

gauge the model’s accuracy before applying it to classify Twitter subscriber “location” field, in

order to predict election outcome.

After determining our model to be stable and accurate on the labelled datasets, we apply

the model on Twitter location fields. To judge the accuracy of the model on new data, we will

perform some standard tests, including a T-Test to gauge the variance between predicted election

results versus actual results. Finally, we will look at each state’s election results and determine our

accuracy in predicting election results for the two candidates.

5.1 Analytical Approach

First, we will run the model on the Test Dataset which we partitioned off from the main

data. The test dataset will contain completely unseen data, which was not part of the training data

or the validation data and is the first step to evaluating the model before applying it to classify the

Twitter locations of subscribers. We will do a quantitative analysis by calculating the prediction

rates and plotting the prediction rates for each dataset by state. Then we will do a qualitative

analysis of the predictions.

51

5.2 Quantitative Analysis

We can see from Table 17 that the correct prediction rate on the test dataset is 84.4365%.

The rest of the predictions are, including false positives, and false negatives, and wrong

predictions. For the test dataset, we have a false positive rate, and a false negative rate of 1.0697%

each and wrong predictions is at 12.2632%. This compares favourably to the training and

validation dataset accuracy.

Table 17- Prediction Results

Prediction

Type

Test Training Validation Description

False

Positives

1.0697% 1.5833% 1.7077% Predictions with a probability

greater than and equal to 50%, where

the labelled state does not match with

the predicted state.

False

Negatives

1.6106% 2.0073% 1.1.5513% Predictions with a probability less

than 50%, where the labelled state

matches the predicted state.

Wrong

Prediction

12.2632% 11.4952% 12.0743% Predictions with probability less

than 50%, where the labelled state and

predicted state do not match. (Note

that this means the model assigned a

state but was able to determine that

there was a low probability.)

Correct

Prediction

84.4365% 84.9142% 84.6667% Predictions with probability greater

than and equal to 50%, where labelled

and predicted states match.

The criteria we use for false positives, false negatives, wrong, and correct predictions are

also in Table 17.

The detailed analysis on what the overall prediction rate for the trained model on each of

the datasets have been plotted in Figure 23, Figure 24 and Figure 25. Again, the prediction rates

are stable between datasets, and not much variance is seen between states and datasets.

52

Figure 23 - Prediction Rate for Test Dataset

Figure 24 - Prediction Rate for Training Data

Figure 25 - Prediction Rate for Validation Dataset

53

5.2.1 False Positives

We have listed a sample of the false positives for the model, in Table 18. The majority of

these are due to Puerto Rico appearing in the data to be classified. As stated in our hypothesis, the

model may be able to learn a pattern based on a language affinity for cities in states. We can see

indeed that the model appears to classify cities in Puerto Rico, most of the time in New Mexico.

In Table 17, we see a few examples where Puerto Rico is classified as being in New Mexico. Both

were settled originally by the Spanish, and thus have many cities with Spanish names. It does

appear to some degree that it has learned that association. It’s felt that an overall rate of under 2%

for false positives is quite acceptable.

Table 18 - Test Dataset Predictions (False Positives)

 City|Labelled|Predicted|Match|P
False Positives Hato Rey PR |PR|OR|False|98.76

Illinois Wanlock|IL|AL|False|100.00
Illinois, Coloma|IL|HI|False|100.00
Puerto Rico, Repto Ana Luisa|PR|NM|False|89.46
Puerto Rico Las Piedras |PR|NM|False|76.84
Bo Pueblito Nuevo |PR|NM|False|82.89
Illinois Meacham|IL|AZ|False|100.00
Tennessee, Belvidere|TN|AK|False|100.00
COAMO Puerto Rico |PR|CO|False|100.00
Saline, Michigan|MI|AK|False|100.00
PR URB Sagrado Corazon|PR|CO|False|73.75
Puerto Rico, Parc El Tuque|PR|NM|False|84.25
Pace Florida|FL|AK|False|100.00
Virginia, Bishop|VA|HI|False|100.00
Puerto Rico, URB Arbolada |PR|CO|False|61.53
Volo, Illinois|IL|HI|False|100.00
Oregon|WI|OR|False|96.95
Napier|WV|HI|False|98.85
Ext Bda Monserrate, PR|PR|MT|False|90.46
Keechi TX |TX|IL|False|100.00
Jard De Arroyo Puerto Rico|PR|NM|False|84.77
Puerto Rico Ext Santa Maria |PR|NM|False|88.33
Hide A Way|TX|HI|False|99.76
PR, Repto Daguey|PR|OR|False|78.66

5.2.2 False Negatives

We have listed samples of false negatives, in Table 19. Most cases are because the

prediction probability is low relative our 50% cutoff rate. However, since the probability for the

54

classification is the argmax of all probabilities for all classes, the selected state could still be

considered a successful classification. However, to be able to eliminate false positives, for

unlabelled data, we decided to use a cutoff probability of 50% or greater to indicate a successful

prediction. We need to do additional analysis to determine what an optimal cutoff rate should be

without introducing too many false positives.

Another interesting observation is that most of the false negatives in this table are city

names with no state associated with it. All the cities in our training set labelled by state, and a

portion of the training data has been prepared using city names with no state. An indication that

the model has learned the bigram embedding related to a state is the entry “Monterey Park

|CA|CA|True|23.10”, in false negatives. The prediction was 23.10% of it being in California,

which is high enough to even consider it a correct prediction.

However, it is better to miss some successful classifications due to a high cutoff rate, rather

than to allow incorrect classifications. Therefore, we will keep the cutoff rate at 50%. This

provided us with a potential 84.4365% prediction rate for the Twitter location data. The overall

rate of under 2% for false negatives is acceptable.

Table 19 - Test Dataset Predictions (False Negatives)

 City|Labelled|Predicted|Match|P
False Negatives Halcott Center|NY|NY|True|4.49

Catharine |PA|PA|True|3.00
Jefferson Valley|NY|NY|True|6.53
Oceola, Ohio|OH|OH|True|34.36
DECATUR IN|IN|IN|True|17.61
Lake of the Woods |VA|VA|True|8.15
Buffalo |MN|MN|True|5.57
MO LAWRENCE |MO|MO|True|43.24
Nebraska, Verdon|NE|NE|True|0.61
Mosherville |PA|PA|True|6.65
Beverly Hts |PA|PA|True|11.48
Newton Lower Falls|MA|MA|True|11.92
Jax Naval Air |FL|FL|True|6.64
Wood Lake (Township)|MN|MN|True|19.25
VA Navy Mutual Aid Assoc|VA|VA|True|34.18
Llewellyn |PA|PA|True|4.88
S Westerlo|NY|NY|True|11.64
Alaska, Kongiganak|AK|AK|True|37.68
Elliott |IL|IL|True|4.22

55

Rush Lake |MN|MN|True|10.44
Sunny Isl Bch |FL|FL|True|12.60
JOHNSON, NE |NE|NE|True|48.79
Madison Lake|MN|MN|True|5.86
Elizabethtown |PA|PA|True|5.36
LAFAYETTE, MS |MS|MS|True|27.65
SD POTTER |SD|SD|True|12.81
Mountain (CDP)|WI|WI|True|14.37
Monterey Park |CA|CA|True|23.10
Lower Oxford|PA|PA|True|13.43
Apollo Beach|FL|FL|True|10.33
Hidden Meadows|CA|CA|True|6.94
Terrell Hills |TX|TX|True|12.94
Old Mill Crk|IL|IL|True|5.02
VA, Zacata|VA|VA|True|0.34
Cadams, Nebraska|NE|NE|True|44.02
Indiana, Brunswick|IN|IN|True|48.64

5.2.3 Wrong Predictions

In Table 20, we provide a sample of wrong predictions by the model. Most of these wrong

predictions are with low probability, in the single digits. This means our model is sufficiently

strong and enables it to easily pick only correct predictions. A few high predictions, that are still

below 50% are related to unseen data, such as Puerto Rico and is expected, since training data did

not include the US territories. As a refinement to the model, it would be better to train on the non-

voting territories, and then eliminate subscribers from the dataset instead. Overall, we feel that a

wrong prediction rate of 12% for all three datasets is within an acceptable range, to provide

accurate results for predicting the election.

56

Table 20 - Test Dataset Predictions (Wrong)

 City|Labelled|Predicted|Match|P
Wrong SWEETWATER|WY|MT|False|5.38

St. Vincent College |PA|AK|False|3.08
Diamond Point |WA|ME|False|5.79
PR, URB Cambalache Ii |PR|CA|False|0.87
Los Padillas|NM|CA|False|13.34
Rouse |SD|PA|False|3.91
North Chester |MA|PA|False|5.83
Pala|CA|MO|False|3.39
Coeur D Alene |ID|NY|False|4.82
PR URB Guanajibo Homes|PR|UT|False|0.49
College Hl|OH|PA|False|5.03
Genoa Bluff |IA|GA|False|17.37
Welcome |NY|TX|False|3.28
Blue Earth City |MN|TX|False|6.55
Hineston|LA|PA|False|4.95
Bda Clausells |PR|PA|False|12.14
Cordova |TN|NE|False|3.64
Midway|TN|PA|False|3.58
Lakehurst Nae |NJ|MN|False|4.23
Natl Institute Stds & Tech|MD|TX|False|45.70
Kelly Ridge |CA|PA|False|5.69
Blue Mound (Township) |KS|IL|False|19.37
Puerto Rico URB Olivia Pk |PR|OH|False|38.90
Mcclure |SD|PA|False|10.33
DIVIDE|ND|WI|False|7.22
Sherman |SD|PA|False|5.39
URB Highland Gdns |PR|GA|False|16.06
Monterey|IN|CA|False|5.04
Portal|GA|PA|False|3.39
Alaska, Kalskag |AK|KS|False|0.00
Puerto Rico, URB Batey|PR|NM|False|27.78
Riverside |MD|PA|False|5.19
Comerica|MI|NY|False|3.70
S Hamilton|MA|NY|False|19.37
URB San Vicente Puerto Rico |PR|OH|False|8.38
Elgin |PA|IL|False|6.13

57

5.2.4 Correct Predictions

In Table 21, we list examples of correct predictions. The overall rate for correct predictions

with the three datasets is 85%. We have successfully trained a machine learning classifier for state

names. This is enough to enable us to use this trained model to predict the election.

Table 21 - Test Dataset Predictions (Correct)

 City|Labelled|Predicted|Match|P

Correct Lakewood Harbor Texas |TX|TX|True|100.00
Broadbent OR|OR|OR|True|100.00
Motley MN |MN|MN|True|99.99
NY Greenwood Lk |NY|NY|True|100.00
Swan Lake Minnesota |MN|MN|True|100.00
Ohio, Wp Air Base |OH|OH|True|99.95
Minnesota, Biwabik|MN|MN|True|100.00
TX, Sanford |TX|TX|True|100.00
GA, Logistics & Distribution Ctr|GA|GA|True|100.00
Findlay IL|IL|IL|True|99.99
Fairview Heights Illinois |IL|IL|True|100.00
Forest Park, LA |LA|LA|True|95.53
TX Lane City|TX|TX|True|100.00
TN, Leach |TN|TN|True|100.00
ME Crouseville|ME|ME|True|100.00
California Twentynine Palms Mcb |CA|CA|True|100.00
SD, Iona|SD|SD|True|100.00
NJ, Boonton Township|NJ|NJ|True|100.00
Texas KLEBERG |TX|TX|True|100.00
Crews, TX |TX|TX|True|100.00
VA Horse Pasture|VA|VA|True|100.00
Social Security Administrat, MD |MD|MD|True|100.00
Defiance, Missouri|MO|MO|True|100.00
Florida, NY |NY|NY|True|99.96
NC, Milton|NC|NC|True|100.00
NY Bath |NY|NY|True|100.00
Leah, GA|GA|GA|True|100.00
AR Booker |AR|AR|True|100.00
Poindexter, KY|KY|KY|True|100.00
East Oakdale, CA|CA|CA|True|100.00
TX Sinton |TX|TX|True|100.00
VT Goose Green|VT|VT|True|100.00
MD Queensland |MD|MD|True|100.00
Twightwee Ohio|OH|OH|True|98.96
Bothell East WA |WA|WA|True|98.99
Missouri Labadie|MO|MO|True|100.00

58

Predicting 2016 US Election with Trained CNN

Model

Now that we have trained a CNN model to classify locations into US states, we can apply

the model to predict the election results for the Republican and Democratic candidates in the 2016

US Federal Election. The advantage using a CNN model versus simple pattern matcher, is that

the CNN can provide us with a probability of match from location name to US state. With SoftMax,

each class is assigned a probability with all classes summing up to 1.0. After the prediction we

choose the maximum probability out of each of 51 state classes, and then apply the threshold of

>= 50% to decide on a state match. This is in contrast to using a pattern matcher which is

a match or no match decision. In addition, using a CNN model, we can enable automatic model

definition, as opposed to building a pattern matcher, which is a manual and time-consuming

process.

5.3 Results Analysis

Here we do some basic statistical analysis to determine the accuracy of the CNN

predications versus actual election results. We will do a F-Test to check for variances between the

predicted and actual results, and then a T-Test to see if the mean difference determines whether

the predicted results for each candidate are different from the actual results.

59

5.3.1 T-Test of Predicted vs Actual Results

One statistical technique we can use to check whether our prediction matches with the

actual election results is the T-Test. The test allows us to confirm or reject whether the variance

between our predictions is statistically significant to reject the model results.

Comparing both candidates Trump and Clinton predictions to their respective actual results show

that the variance between prediction and actual are not equal. (See Figure 26, and Figure 28)

Because of this, we will apply the T-Test for unequal variances, using Microsoft Excel, for the two

samples.

In candidate Trump’s case, the t-stat of 0.46517 is between the range of +/- t-critical value

1.99444. According to this result, we can say that the average difference between predicted results

versus actual results is not dissimilar. Within statistical significance, the model has predicted a

match with the actual result. Similar results are had for Clinton. The t-stat value -0.46517 falls

between t-critical range of -1.99444 and 1.99444.

Both F-tests and T-tests have similar results indicating that the model is stable between the two

Candidate datasets.

Figure 26 – F-Test Actual vs Predicted (Trump)

F-Test Two-Sample for Variances (Trump)

 trump_actual trump_predict

Mean 52.05640 51.12440

Variance 164.61617 36.09790

Observations 50.00000 50.00000

df 49.00000 49.00000

F 4.56027

P(F<=f) one-tail 0.00000

F Critical one-tail 1.60729

60

Figure 27 - T-Test Actual vs Predicted (Trump)

Figure 28- F-Test Actual vs Predicted (Clinton)

t-Test: Two-Sample Assuming Unequal Variances (Trump)

 trump_actual trump_predict

Mean 52.05640 51.12440

Variance 164.61617 36.09790

Observations 50.00000 50.00000

Hypothesized Mean Difference 0.00000

df 70.00000

t Stat 0.46517

P(T<=t) one-tail 0.32163

t Critical one-tail 1.66691

P(T<=t) two-tail 0.64325

t Critical two-tail 1.99444

F-Test Two-Sample for Variances (Clinton)

 clinton_actual clinton_predict

Mean 47.94360 48.87560

Variance 164.61617 36.09790

Observations 50.00000 50.00000

df 49.00000 49.00000

F 4.56027

P(F<=f) one-tail 0.00000

F Critical one-tail 1.60729

61

Figure 29- T-Test Actual vs Predicted (Clinton)

5.3.2 Election Results Predicted vs Actual

For our Election Results analysis, we are drawing from two sources. The first one, Source

#1, contains popular votes for all candidates and parties by state and county.

(https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-

county@public/) We will use this source as the basis of our popular vote comparison by state. Of

note is that this source was missing vote counts for the state of Alaska, so the analysis did not

include this state.

The second one, Source #2, give us a second sanity check and provides the total popular

vote by each candidate. An extracted table from this source is located in Figure 38 (

https://www.270towin.com/2016_Election/)

We will resample the Twitter subscriber data so that the total Trump subscribers versus

total Clinton subscribers will match closely with this ratio. Please see Figure 34 for details. The

sample ratio for Trump vs Clinton is 48.9%. Since we had collected more subscriber entries from

t-Test: Two-Sample Assuming Unequal Variances (Clinton)

Predict Actual

Mean 47.94360 48.87560

Variance 164.61617 36.09790

Observations 50.00000 50.00000

Hypothesized Mean Difference 0.00000

df 70.00000

t Stat -0.46517

P(T<=t) one-tail 0.32163

t Critical one-tail 1.66691

P(T<=t) two-tail 0.64325

t Critical two-tail 1.99444

https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-county@public/
https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-county@public/
https://www.270towin.com/2016_Election/

62

Trump, we resampled Trump’s data to match with this ratio of Trump popular votes to Clinton

popular votes.

In Figure 35 we have tabulated the predicted election results and actual election results for

the 2016 US Presidential Election. After summing the total votes received by candidates Clinton

and Trump, we calculate the percentage of the total votes each candidate has received in each state.

The “match” column indicates whether the predicted result matches with the actual result with ‘1’

indicating a match and ‘0’ indicating mismatch. The match rate is 90%, and the mismatch rate is

10%m with 45 matched and 5 missed. (discounting Alaska) These rates are slightly better than

with our model results on the Test dataset, which had a prediction rate of 84% on unseen place

names. (Figure 23).

To compare the prediction rates against actual, we have plotted the rates for each candidate

in Figure 30, and Figure 31 for Trump and Clinton, respectively. The predicted rates track well,

and the minima and maxima are a close match between the predicted curve and actual curve.

63

Figure 30- Predict vs Actual (Trump)

Figure 31 - Predict vs Actual (Clinton)

64

For further reference, the actual results are plotted separately in Figure 32, and Figure 33.

Figure 32- - 2016 Election Results (Votes)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

AK AR CA CT DE GA IA IL KS LA MD MI MO MT ND NH NM NY OK PA SC TN UT VT WI WY

Election Results (Votes)

Total Trump Hillary Sum

65

Figure 33 - 2016 Election Results (Percentage)

Finally, the model predicts overall that Trump won 29 states, while Clinton was predicted

to win 21. Recall that we did not include Alaska, as there was insufficient data for that state in our

source data. This is not too far off the actual results, which is 28 states for Trump and 22 states

for Clinton.

Figure 34 – Sample Ratio

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

AK AR CA CT DE GA IA IL KS LA MD MI MO MT ND NH NM NY OK PA SC TN UT VT WI WY

2016 Election Result (Percentage)

Trump Hillary

Predict Sample Actual (Source1) Actual (Source2)

Trump 387403 61064602 62980160

Clinton 404738 62426228 65845063

Percentage 48.91% 49.45% 49.45%

66

Figure 35 - Election Results Predicted vs Actual

Figure 36 - Overall Winner

state trump_predict trump_sub clinton_predict clinto_sub winner_predict trump_actual votes_actual clinton_actual votes_actual2 winner_actual match

AK n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

AL 54.91 9802 45.09 8050 trump 64.54 1306925 35.46 718084 trump 1

AR 54.5 4278 45.5 3571 trump 64.16 677904 35.84 378729 trump 1

AZ 52.19 9467 47.81 8671 trump 52.17 1021154 47.83 936250 trump 1

CA 42.29 30996 57.71 42306 clinton 34.72 3916209 65.28 7362490 clinton 1

CO 46.29 6420 53.71 7449 clinton 48.41 1137455 51.59 1212209 clinton 1

CT 49.35 3408 50.65 3498 clinton 43.04 668266 56.96 884432 clinton 1

DC 37.36 5799 62.64 9725 clinton 4.25 11553 95.75 260223 clinton 1

DE 44.69 1385 55.31 1714 clinton 44 185103 56 235581 clinton 1

FL 54.84 26000 45.16 21407 trump 50.66 4605515 49.34 4485745 trump 1

GA 53.4 11729 46.6 10235 trump 52.96 2068623 47.04 1837300 trump 1

HI 45.79 26794 54.21 31727 clinton 32.56 128815 67.44 266827 clinton 1

IA 53.44 3563 46.56 3104 trump 55.11 798923 44.89 650790 trump 1

ID 54.01 1327 45.99 1130 trump 68.22 407199 31.78 189677 trump 1

IL 45.35 10225 54.65 12323 clinton 41.57 2118179 58.43 2977498 clinton 1

IN 49.12 14118 50.88 14623 clinton 60.13 1556220 39.87 1031953 trump 0

KS 52.88 3701 47.12 3298 trump 61.26 656009 38.74 414788 trump 1

KY 56.97 5195 43.03 3924 trump 65.67 1202942 34.33 628834 trump 1

LA 53.53 7089 46.47 6155 trump 60.18 1178004 39.82 779535 trump 1

MA 42.17 6625 57.83 9086 clinton 35.54 1083069 64.46 1964768 clinton 1

MD 45.53 4929 54.47 5898 clinton 36.84 873646 63.16 1497951 clinton 1

ME 43.61 1774 56.39 2294 clinton 48.55 334838 51.45 354873 clinton 1

MI 50.43 8779 49.57 8628 trump 50.13 2279805 49.87 2268193 trump 1

MN 47.32 5273 52.68 5870 clinton 49.19 1322891 50.81 1366676 clinton 1

MO 53.01 6454 46.99 5722 trump 60.05 1585753 39.95 1054889 trump 1

MS 61.45 4003 38.55 2511 trump 59.49 678457 40.51 462001 trump 1

MT 45.99 2054 54.01 2412 clinton 61.1 274120 38.9 174521 trump 0

NC 51.77 13859 48.23 12913 trump 51.97 2339603 48.03 2162074 trump 1

ND 57.11 956 42.89 718 trump 69.8 216133 30.2 93526 trump 1

NE 54.44 1976 45.56 1654 trump 63.95 485819 36.05 273858 trump 1

NH 50.06 1306 49.94 1303 trump 49.8 345789 50.2 348521 clinton 0

NJ 50.01 8761 49.99 8758 trump 43.17 1535513 56.83 2021756 clinton 0

NM 35.9 2072 64.1 3699 clinton 45.35 315875 54.65 380724 clinton 1

NV 49.23 2955 50.77 3048 clinton 48.74 511319 51.26 537753 clinton 1

NY 40.52 23793 59.48 34927 clinton 38.92 2640570 61.08 4143874 clinton 1

OH 52.52 15158 47.48 13704 trump 54.47 2771984 45.53 2317001 trump 1

OK 56.8 5441 43.2 4139 trump 69.31 947934 30.69 419788 trump 1

OR 42.95 3820 57.05 5074 clinton 44.27 742506 55.73 934631 clinton 1

PA 51.29 12624 48.71 11989 trump 50.59 2912941 49.41 2844705 trump 1

RI 46.11 1267 53.89 1481 clinton 41.79 179421 58.21 249902 clinton 1

SC 56.7 5681 43.3 4339 trump 57.38 1143611 42.62 849469 trump 1

SD 52.53 1016 47.47 918 trump 66.43 227460 33.57 114938 trump 1

TN 59.58 9009 40.42 6113 trump 63.64 1517402 36.36 867110 trump 1

TX 52.8 31157 47.2 27852 trump 54.76 4681590 45.24 3867816 trump 1

UT 49.07 2857 50.93 2965 clinton 62.25 452086 37.75 274188 trump 0

VA 49.41 8374 50.59 8573 clinton 47.45 1731156 52.55 1916845 clinton 1

VT 40.32 577 59.68 854 clinton 34.79 95053 65.21 178179 clinton 1

WA 43.4 6260 56.6 8165 clinton 41.21 1129120 58.79 1610524 clinton 1

WI 50.38 4490 49.62 4422 trump 50.41 1403694 49.59 1380823 trump 1

WV 62.12 2222 37.88 1355 trump 72.17 486198 27.83 187457 trump 1

WY 56.85 585 43.15 444 trump 75.7 174248 24.3 55949 trump 1

Column1 # States (Pred) # States (Act)

Trump Wins 28 29

Clinton Wins 22 21

67

Figure 37 - Prediction Rate for Election 2016

Figure 38- Actual Total Votes by Candidate4

4 https://www.270towin.com/2016_Election

Matched 45

Mismatched 5

% Matched 90%

Candidate Party
Electoral

Votes

Popular

Votes

 Donald J. Trump Republican 304 62,980,160

 Hillary R. Clinton Democratic 227 65,845,063

 Gary Johnson Libertarian 0 4,488,931

 Jill Stein Green 0 1,457,050

 Evan McMullin Independent 0 728,830

68

6 Conclusion

We feel this project has been successful. The major finding is that we can reframe a

traditional text pattern matching task into an image recognition task. We have also successfully

applied a trained machine learning model to help predict locations of Twitter subscribers of the

two major candidates in the 2016 US general election, and have our predicted results match actual

results. However, the model needs to be refined further to prevent breaking down, in cases that

location names do not carry enough clues for classification.

6.1 Finding #1 – Reframed Text Classification into Image Recognition

Our primary finding from this experiment is that it is, in fact, possible to reframe a

traditional text classification problem into an image classification one for a CNN to train and build

a model for multiclass classification. In our experiment, we collected the location field from

Twitter subscriber accounts and converted them to bigrams. Then we encoded them into images

for our CNN model. This gives us the advantage of training with GPU hardware acceleration for

higher speed, by allowing us to use smaller training batch sizes, and slower learning rates for a

more optimized model at the end of training.

 In keeping with CNN performance in general (Table 4), our model accuracy is very high.

Generating predictions on unseen data, such as the test dataset. When not excluding the non-voting

US territories, we get an accuracy rate of 84% (Table 17). Since we did not train on Puerto Rico,

which is a territory not eligible for voting in the election, this lower rate is to be expected. Our

69

cross-validation accuracy on the training dataset, which does exclude non-voting territories, show

a stable model with a mean accuracy of 99.74%. (Table 16)

In Figure 36, we can see the model has predicted a Trump win of 29 states to Clinton’s 21.

Close match to the actual results where Trump wins with 28r and Clinton garners 22. We have

removed Alaska due to insufficient data.

It can be concluded that the model is stable and can, in fact, learn to classify Twitter subscriber

locations into US states using a Convolutional Neural Network.

6.2 Finding #2 – Model Successfully Applied to Election Prediction

After satisfying ourselves on the accuracy of the model, we applied our model to

classifying Twitter subscriber locations by state with the goal of predicting the 2016 Presidential

Election outcome. Our analysis shows a 90% correct prediction rate when compared against actual

election results, by state. All the large population states such as California, New York and several

swing states such as Pennsylvania, Wisconsin, and Florida were also predicted correctly. It can

be concluded that, in fact, the trained CNN model was able to predict the US 2016 Presidential

Election, with regards to the popular votes.

It should be noted that prediction by popular votes is a simplification of the US election

process. In fact, the US uses an Electoral College system whereby members of each state casts a

vote to decide the winner. Whichever candidate wins the most Electoral College votes is declared

the winner. The votes of the electoral college will typically be correlated with popular votes cast

in their respective states. Since our model predicts the winner by state, it should correlate closely

to the Electoral College votes.

70

6.3 Finding #3 – Model Breaks Down when Cues are Insufficient

Where the model breaks down, is when a location does not contain any cues regarding the

state that it is in. However, not in all cases. With a 90% correct prediction rate on unlabelled data

collected from the candidates’ Twitter subscribers, we feel the model is sufficiently accurate for

an election prediction. Even humans would not be able to select a state by city name alone, without

additional context.

6.4 Future Work

Although the current model is behaving stably, and with high accuracy, there are places

where it will break down. In Finding #3, when place names contain no clue for the state, the model

accuracy drops. In the future, it might help to boost model performance, and stability, by adding

more information from the Twitter Subscriber Profile, such as the name of the subscriber, and the

description field.

With the 2020 election one year away, it would be interesting to apply the model to a new

set of subscribers before the election and use the model to predict election results before the 2020

election. At this point we still don’t know the Candidates on both sides, so we will have to wait.

From the model design aspect, we can continue to tune the layer configuration and

hyperparameters to increase the model accuracy and reduce the training time.

6.4.1 Application of Model for Campaign Intelligence

71

By gathering the subscriber profiles of a candidate, and applying the trained model, a party

can determine where their supporters located, and where they their support is light. Such an

analysis can also be applied to their opponents to determine where extra campaigning needs to be

done.

6.4.2 Application for NLP

In this work, we have enabled a CNN to learn the bigram embedding relative to city and

state names. However, it’s felt that we can tokenize words from sentences and use a CNN to learn

the embedding between individual words as well. This would be like Word2Vec from Google.

72

7 Appendixes

7.1 Appendix A

Image Processing using Histogram of Gradients method (HOG)

A common method used as the first step in image processing is to plot a histogram of pixel

intensities as a histogram to identify similarities and differences between images. To go one step

further a common technique in image recognition is called Histogram of Oriented Gradients

(HOG), which calculates for each X,Y coordinates, within a sliding window of cells and blocks

covering the entire image. Then a 1-D Sobel operator is applied to the values in the cells.

Equation 1 - HOG Operator

73

7.2 Appendix B

Image Representation of US States

These are the bigram frequencies of each state represented as images. These images are a

composite of all bigrams of all cities in each respective state. The individual cities are fed into the

CNN and are all correctly labelled for the state from which they belong. The x and y-axes are the

two-letter components of the bigram. Each point represents the frequency of each bigram with

colour intensity representing the frequency of the bigram.

74

75

76

77

78

7.3 Appendix C

Sample 3D Plots of US States

These are the 3-D representations of the bigrams, with the axes again representing the letter

component of each bigram with the z-axis representing the bigram frequency.

79

80

81

82

83

84

85

86

87

88

89

90

91

8 Glossary

Term Definition

Deskewing Compute the principal axis of

the shape that is closest to the

vertical, and shifting the

lines to make it vertical (wiki)

Image Blurring In image processing, a Gaussian

blur (also known as Gaussian

smoothing) is the result of

blurring an image by a Gaussian

function (named after

mathematician and scientist

Carl Friedrich Gauss). It is a

widely used effect in graphics

software, typically to reduce

image noise and reduce detail.

(wiki)

Pixel Shift Pixel shifting is a term used

both for a method to prevent

"burn-in" of static images on

displays and as a method to

increase resolution in digital

imaging devices and projectors.

(wiki)

9 Bibliography

92

[1] C. Cortes, C. J. Burges and Y. LeCun, "MNIST database of handwritten digits - Yann

LeCun," [Online]. Available: http://yann.lecun.com/exdb/mnist/.

[2] Y. Li, K. Zhao, X. Chu and J. Liu, "Speeding up k-Means algorithm by GPUs," Journal of

Computer and System Sciences, vol. 79, no. 2, pp. 216-229, 2013.

[3] Q. Le and T. Mikolov, "Distributed Representations of Sentences and Documents," in

Proceedings of the 31st International Conference on International Conference on Machine

Learning - Volume 32, Beijing, China, 2014.

[4] M. R. Ebrahimi, C. Y. Suen and O. Ormandjieva, "Detecting predatory conversations in

social media by deep Convolutional Neural Networks," Digital Investigation, vol. 18, no. ,

pp. 33-49, 2016.

[5] Y. Tian, J. Wang, Z. Zhou and S. Zhou, "CNN-Webshell: Malicious Web Shell Detection

with Convolutional Neural Network," in Proceedings of the 2017 VI International

Conference on Network, Communication and Computing, Kunming, China, 2017.

[6] H. Fang, J. Fei, Q. Yin, C. Yang and D. Wang, "Restricted Stochastic Pooling for

Convolutional Neural Network," pp. 1-4, 2018.

[7] S. Park and N. Kwak, "Analysis on the Dropout Effect in Convolutional Neural Networks,"

in Computer Vision -- ACCV 2016, Taipei, Taiwan, 2016.

[8] N. A. Jebril, H. R. Al-Zoubi and Q. A. Al-Haija, "Recognition of Handwritten Arabic

Characters using Histograms of Oriented Gradient (HOG)," Pattern Recognition and Image

Analysis, vol. 28, no. 2, pp. 321-345, 2018.

93

[9] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift," in ICML'15 Proceedings of the 32nd International

Conference on International Conference on Machine Learning, Lille, France, 2015.

[10] Y. Wang, X. Wu, Y. Chang, S. Zhang, Q. Zhou and J. Yan, "Batch Normalization: Is

Learning An Adaptive Gain and Bias Necessary?," in Proceedings of the 2018 10th

International Conference on Machine Learning and Computing, Macau, China, 2018.

[11] K. Gopalakrishnan, S. K. Khaitan, A. N. Choudhary and A. Agrawal, "Deep Convolutional

Neural Networks with transfer learning for computer vision-based data-driven pavement

distress detection," Construction and Building Materials, vol. 157, no. , pp. 322-330, 2017.

[12] F. Xiong, Y. Xiao, Z. Cao, K. Gong, Z. Fang and J. T. Zhou, "Towards Good Practices on

Building Effective CNN Baseline Model for Person Re-identification.," Computer Vision

and Pattern Recognition , vol. abs/1807.11042, 2018.

[13] R. Ha, P. Chang, J. Karcich, S. Mutasa, R. Fardanesh, R. Wynn, M. Z. Liu and S.

Jambawalikar, "Axillary Lymph Node Evaluation Utilizing Convolutional Neural

Networks Using MRI Dataset," Journal of Digital Imaging, vol. 31, no. 6, p. 851–856,

2018.

[14] H. Li, X. Gong, H. Yu and C. Zhou, "Deep Neural Network Based Predictions of Protein

Interactions Using Primary Sequences," Molecules, vol. 23, no. 8, p. 1923, 2018.

94

[15] S. Mannor, D. Peleg and R. Y. Rubinstein, "The cross entropy method for classification,"

in Proceedings of the 22Nd International Conference on Machine Learning, Bonn,

Germany, 2005.

[16] S. Hallmark, R. R. Souleyrette and S. Lamptey, "Use of n-Fold Cross-Validation to

Evaluate Three Methods to Calculate Heavy Truck Annual Average Daily Traffic and

Vehicle Miles Traveled," Journal of The Air & Waste Management Association, vol. 57,

no. 1, pp. 4-13, 2007.

[17] P. Klęsk, "Probabilities of discrepancy between minima of cross-validation, Vapnik bounds

and true risks," International Journal of Applied Mathematics and Computer Science, vol.

20, no. 3, pp. 525-544, 2010.

[18] T. He, W. Huang, Y. Qiao and J. Yao, "Text-Attentional Convolutional Neural Network

for Scene Text Detection," IEEE Transactions on Image Processing, vol. 25, no. 6, pp.

2529-2541, 2016.

[19] Y. LeCun, "Gradient-based learning applied to document recognition," Proceedings of the

IEEE, vol. 86, no. 11, p. 2278–2324, 1998.

[20] B. Wang, L. Najjar, N. N. Xiong and R. C. Chen, "Stochastic Optimization: Theory and

Applications," Journal of Applied Mathematics, vol. 2013, no. , pp. 1-2, 2013.

[21] J. Ding, X.-H. Hu and V. N. Gudivada, "A Machine Learning Based Framework for

Verification and Validation of Massive Scale Image Data," IEEE Transactions on Big

Data, Vols. PP, no. 99, pp. 1-1, 2018.

95

[22] N. Gajhede, O. Beck and H. Purwins, "Convolutional Neural Networks with Batch

Normalization for Classifying Hi-hat, Snare, and Bass Percussion Sound Samples," in

Proceedings of the Audio Mostly 2016, New York, NY, USA, 2016.

