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Abstract

High-Performance Control of Mean-Field Teams in Leader-Follower

Networks

Mohammad Mahdi Baharloo

In this thesis, a mean-field approach is used to find high-performance control strate-

gies for multi-agent systems. The system consists of one leader and possibly many dy-

namically coupled followers, and all agents are affected by noise. The global objective

of the multi-agent control system here is to achieve an agreement between the agents

while minimizing coupled linear-quadratic cost functions for two cases: a disturbance-

free system, and a system with disturbances. In the former case, the proposed solution

under non-classical information structure is near-optimal, which converges to the opti-

mal solution for a large number of followers. For the latter case, the problem is solved for

three non-classical information structures, namely, mean-field sharing, partial mean-field

sharing, and intermittent mean-field sharing. Using the minimax control technique, it is

shown that the solution obtained for the first structure is a unique saddle-point strategy.

On the other hand, it is proved that for the other two structures, the proposed solutions

tend to the unique saddle-point strategy when the number of followers goes to infinity.

The proposed strategies in both cases are linear, scalable and computationally efficient.

The theoretical findings are verified by simulation results.
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Chapter 1

Introduction

1.1 Motivation

There has been a growing interest recently in the control of networked systems, due

to the application of this type of systems in emerging areas such as coordination of

unmanned vehicles [1], environmental monitoring using sensor networks [2], and smart

grids [3], to name only a few. In the control of multi-agent systems, every agent ex-

changes information with a subset of agents in order to properly coordinate its position

and movement such that a global objective such as consensus is achieved. As a result,

each agent requires some computational effort in order to determine its control action

based on the information available to it. Different structures are proposed in the liter-

ature for information exchange between agents. An information pattern is said to be
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classical if all agents receive the same information and have perfect recall [49]; otherwise,

it is called non-classical.

In developing coordination protocols for multi-agent systems, different performance

measures such as minimum time or energy are sometimes considered in the literature

along with some constraints on communication and computation resources. This type

of limitations are often encountered in practical networks.

1.2 Leader-Follower Structure

The leader-follower structure is commonly used in the coordination control of multi-

agent networks. In this type of system, each agent is either a leader or a follower, where

the movement of the followers is dependent on the trajectory of the leader(s). A global

objective that is of special interest is consensus, where the states of the agents are de-

sired to converge to a common value [4–6]. If the communication graph representing the

network is connected, then consensus can be reached, e.g., using a linear strategy. How-

ever, such a strategy suffers from the curse of dimensionality, in general. In other words,

the strategy may not be computationally feasible when the number of agents increases.

In addition, the required amount of communication between agents under this type of

strategy is typically high. This can lead to some practical problems, specially given that

the battery consumption of each node is closely related to the amount of its information

exchange. Therefore, an optimal control strategy can be very important for the efficient
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resource management in the network. It is well-known that the optimal control strategy

for a system with linear dynamics and a quadratic performance index under central-

ized information structure is a linear feedback law. According to the counterexample

of [7], however, when the information structure is non-classical (e.g. decentralized), the

optimal strategy may not be linear. Distributed linear quadratic control problem was

investigated in [8] and [9], where it was shown that the solution is limited by the com-

putational cost, and hence not suitable for large-scale networks. Therefore, the problem

of finding a decentralized linear optimal strategy for a leader-follower network with a

large number of agents is computationally challenging.

On the other hand, real-world multi-agent systems are subject to external distur-

bances. Thus, a practical control strategy should be robust to disturbances. One of the

numerous techniques to design a robust controller in the literature, is minimax control,

which has two main challenges. Computational complexity of solutions and commu-

nication constraints. To address these shortcomings, this work is focused on utilizing

mean-field teams approach in minimax problems in order to propose decentralized and

scalable solution.

1.3 Mean-Field Control

The concept of mean field can be traced back to the statistical mechanics literature [45,

46], where it was used as a basis for understanding phase transition phenomenon, which
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suggest that an atomic spin moves in the average field (or mean field) produced by all

other spins. It is known that the propagation of a large number of microscopic particles

(moving independently) can be modeled by a macroscopic mass that spreads over time

according to the diffusion equation [48]. This property has been widely used in control

theory to alleviate the computational complexity of large-scale control systems. For

instance, mean-field game theory was developed to study the non-cooperative behavior

of a large number of players [10,11,43]. The main idea in mean-field games is to exploit

two key features in the presence of a large number of players: the negligible influence of

individual players and the law of large numbers. The solution proposed in [10,43,44] is

an approximate Nash equilibrium that is given in terms of two coupled forward-backward

equations. The existence of such a solution is established by imposing proper fixed-point

conditions and the monotonicity hypothesis.

A new line of research was recently initiated by introducing mean-field teams

(MFT), which investigate the cooperative behavior of an arbitrary number of agents

(which is not necessarily large). The main difference between the mean-field team and

mean-field game approaches is that the MFT approach exploits the symmetry of the

problem rather than the negligible influence of individual players [12–19, 50] and iden-

tifies the globally optimal solution (rather than Nash equilibrium or person-by-person

optimal solution) in terms of two decoupled equations. In additions, neither fixed-point

conditions nor the monotonicity hypothesis are required to find the solution of MFT. As
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an application of MFT, the authors in [17] investigate a network of users infected by an

infectious process such as disease. The optimal and sub-optimal solutions for the network

are obtained by using MFT techniques under two different information structures.

For linear quadratic control systems, the mean-field solution is optimal for any

arbitrary number of agents, under mean-field sharing, and it is sub-optimal under partial

mean-field sharing. This thesis is focused on linear quadratic mean-field teams, wherein

mean-field type control may be viewed as a special case [42, 47].

1.4 Thesis Contributions

Two main problems are investigated in this dissertation. The first problem is concerned

with a multi-agent network consisting of one leader and many identical followers, where

the agents are coupled in both dynamics and cost function. Some important character-

istics of the network such as convergence rate of followers to the leader or the collective

behavior of followers are discussed. Then, a near-optimal strategy for a non-classical

information structure is proposed by solving two decoupled Riccati equations. The com-

putational complexity of the method is independent of the number of followers because

the corresponding equations are decoupled. Then, it is shown that the proposed solution

converges to the optimal strategy obtained in [15] at a rate inversely proportional to the

number of followers.

The second problem studied in this dissertation is concerned with finding a robust
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control strategy for the multi-agent system introduced above by solving a minimax

control problem under three decentralized information structures, namely, mean-field

sharing, partial mean-field sharing and intermittent mean-field sharing. Under mean-

field sharing information structure, it is proved that a unique saddle-point strategy exists.

It is also shown that the proposed strategies under the other two information structures,

partial mean-field sharing and intermittent mean-field sharing, converge to the saddle-

point strategy as the number of followers tends to infinity. Moreover, it is shown that

the robust solutions are scalable, similar to the first problem. The effectiveness of

disturbance rejection and the consensus-reaching behavior of the solution are discussed

and their dependency on the parameters of cost function is analyzed.

1.5 Thesis Layout

The structure of the thesis is as follows:

• Chapter 1 includes the motivation and background for the study, and outlines

the contributions of the work. Parts of this chapter are adopted from the author’s

publication below:

J. Arabneydi, M. M. Baharloo and A. G. Aghdam, “Optimal distributed control

for leader-follower networks: A scalable design,” in Proceedings of the 31st IEEE

Canadian Conference on Electrical and Computer Engineering, pp. 1 - 4, 2018.
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• Chapter 2 studies a decentralized stochastic control system consisting of one

leader and many homogeneous followers. The leader and followers are coupled

in both dynamics and cost; the agent dynamics are linear and the cost function

is quadratic in the states and actions of the leader and followers. By using the

concept of mean-field teams, a near-optimal control strategy is proposed, which

is shown to converge to the optimal solution as the number of followers increases.

Three numerical examples are provided to demonstrate the efficacy of the results.

• Chapter 3 investigates a soft-constrained minimax control problem of a leader-

follower network. The network consists of one leader and an arbitrary number of

followers that wish to reach consensus with minimum energy in the presence of

external disturbances. The problem is solved for three non-classical information

structures.

• Chapter 4 presents the conclusion as well as the possible directions for future

research in this area.
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Chapter 2

Near-Optimal Control Strategy in

Leader-Follower Networks: A Case

Study for Linear Quadratic

Mean-Field Teams

In this chapter, a decentralized stochastic control system consisting of one leader and

many homogeneous followers is studied. The objective of the agents is to reach consensus

while minimizing their communication and energy costs. The leader knows its local

state and each follower knows its local state as well as the state of the leader. The

number of required links to implement this decentralized information structure is equal
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to the number of followers and in the special case of a leaderless network (which can

be modeled as a leader-follower network with a constant reference state trajectory as a

virtual leader), no links need to exist between agents, i.e., the communication graph is

not required to be connected. We propose a near-optimal control strategy that converges

to the optimal solution as the number of followers increases. One of the salient features

of the proposed solution is that it provides a framework to determine the convergence

rate and collective behavior of the followers by choosing appropriate cost functions.

In addition, the computational complexity of the proposed solution does not depend

on the number of followers. Furthermore, the proposed strategy can be computed in a

distributed manner, where the leader solves one Riccati equation and each follower solves

two Riccati equations to determine their strategies. Numerical examples are provided

to demonstrate the effectiveness of the results in the control of multi-agent systems.

This chapter is based on the following publication:

M. Baharloo, J. Arabneydi, and A. G. Aghdam, “Near-optimal control strategy in

leader-follower networks: A case study for linear quadratic mean-field teams,” in Pro-

ceedings of the 57th IEEE Conference on Decision and Control, pp. 3288–3293, 2018.

The most important additions to the above-mentioned paper are as follows. Lem-

mas 2.2 and 2.3 along with their proofs as well as the detailed proof of Lemma 2.4 have

been added here. In addition, to compare the effect of different cost function parameters,

a numerical example is presented in this chapter which does not appear in the paper.
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2.1 Introduction

The control of multi-agent systems with leader-follower structure has attracted much

interest in the past two decades due to its wide range of applications in various fields

of science and engineering. Such applications include vehicle formation [20], sensor

networks [21], surveillance using a team of unmanned aerial vehicles (UAVs) [22] and

flocking [23, 24], to name only a few. In this type of problem, a group of agents (called

followers) are to track another group (called leaders), while certain performance spec-

ifications are met. Different performance measures such as minimum energy, fuel or

time are considered in the literature. For this purpose, limited communication and

computation resources are two main challenges that need to be overcome.

To address the above challenges, the following two problems have been investi-

gated in the context of consensus control protocols in the literature recently: (i) how

the states of the followers can reach the state of the leader under communication con-

straints (distributed control problem), where consensus is reached under appropriate

linear strategies for properly connected communication graphs [25–27], and (ii) how the

states of the followers can reach the state of the leader with minimum energy consump-

tion (optimal control problem). Note that the optimal control strategy for a quadratic

performance index with linear dynamics under centralized information structure is a

linear feedback rule obtained by the solution of the celebrated Riccati equation [28].

11



Combining the above two objectives, however, is quite challenging as it leads to a de-

centralized optimal control problem wherein the optimal control law is not necessarily

linear [7]. Furthermore, since the dimension of the matrices in the network model in-

creases with the number of followers, the optimal control law may be intractable for

a network of large size. In this chapter, we consider a decentralized optimal control

problem with a large number of followers.

For dynamically decoupled followers and also the case of a leaderless multi-agent

system, [8, 9] use the control inverse optimality approach to compute the optimal dis-

tributed control strategies for special classes of communication graphs. The authors

in [29] consider a large number of homogeneous followers and determine the optimal

strategy by solving two coupled Riccati equations. In contrast, this work studies a

leader-follower multi-agent network with coupled dynamics under a directed communi-

cation graph in which there is a direct link from the leader to each follower. In the

special case of a leaderless network, the communication graph is not required to be con-

nected. When the initial states of followers are identically and independently distributed,

a near-optimal strategy is proposed for a large number of homogeneous followers by solv-

ing two decoupled Riccati equations using mean-field team approach introduced in [12]

and showcased in [13–15,30].

The remainder of this chapter is organized as follows. The problem is formulated

12



in Section 2.2, where the main contributions of the work are also outlined. Then in Sec-

tion 2.3, some important assumptions are presented and the control strategy is derived.

Numerical examples are provided in Section 2.4 and finally the paper is concluded in

Section 2.5.

2.2 Problem Formulation

2.2.1 Notation

In this chapter, N and R denote natural and real numbers, respectively. The short-hand

notation xa:b is used to denote vector (xa, . . . , xb), a ≤ b ∈ N. For any k ∈ N, Nk is

the finite set of integers {1, 2, . . . , k}. Tr(·) is the trace of a matrix and var(·) is the

covariance of a random vector.

2.2.2 Dynamics

Consider a multi-agent system consisting of one leader and n ∈ N followers. Denote by

x0
t ∈ R

dx , u0
t ∈ R

du , and w0
t ∈ R

dx , dx, du ∈ N, the state, action, and noise of the leader

at time t ∈ N, respectively. In addition, let xi
t ∈ R

dx , ui
t ∈ R

du , and wi
t ∈ R

dx denote the

state, action, and noise of follower i ∈ Nn at time t ∈ N, analogously. The state of the

13



leader evolves as follows:

x0

t+1 = A0

tx
0

t +B0

t u
0

t +D0

t x̄t + w0

t , (2.1)

where x̄t :=
1

n

∑n

i=1
xi
t is the average of the states of the followers at time t, and will

hereafter be called mean-field [12]. Similarly, the state of each follower i ∈ Nn evolves

as follows:

xi
t+1 = Atx

i
t +Btu

i
t +Dtx̄t + Etx

0

t + wi
t. (2.2)

Let NT , T ∈ N, be the control horizon. It is assumed that the primitive random variables

{x0
1, x

1
1, . . . , x

n
1 , w

0
1, w

1
1, . . . , w

n
1 , . . . , w

0
T , w

1
T , . . . , w

n
T} are defined on a common probability

space, and are mutually independent.

2.2.3 Information structure

At time t ∈ N, the leader observes its state x0
t and chooses its action u0

t according to a

control law g0t : Rdx → R
du , i.e.,

u0

t = g0t (x
0

t ). (2.3)

In addition, for any i ∈ Nn, follower i observes its state xi
t as well as the state of the

leader x0
t at time t, and decides its action ui

t as follows:

ui
t = git(x

i
t, x

0

t ), (2.4)
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where git : Rdx × R
dx → R

du is the control law. Note that the control actions (2.3)

and (2.4) have a non-classical decentralized information structure.

Remark 2.1. The number of links required to implement the above information structure

is n, which is the number of followers. In addition, no information about the states of

the followers is communicated; hence, the privacy of the followers is preserved.

Remark 2.2. It is worth highlighting the difference between the coupling in dynamics

given by (2.1) and (2.2), that refers to the physical interactions among agents, and

information coupling in (2.3) and (2.4), that attributes to the information exchange.

The set of all control laws g := {g01:T , g
1
1:T , . . . , g

n
1:T} is called the strategy of the

network. The objective of the followers is to track the leader in an energy-efficient

manner. To this end, the following cost function is defined:

JT (g)=E

[

T
∑

t=1

(x0

t )
ᵀQ0

tx
0

t+(x̄t−x0

t )
ᵀFt(x̄t−x0

t )+(u
0

t )
ᵀR0

tu
0

t

+
1

n

n
∑

i=1

(xi
t)

ᵀQtx
i
t + (xi

t−x0

t )
ᵀPt(x

i
t−x0

t ) + (ui
t)

ᵀRtu
i
t

+
1

2n2

n
∑

i=1

n
∑

j=1

(xi
t − xj

t)
ᵀHt(x

i
t − xj

t)
]

, (2.5)

where the expectation is taken with respect to the probability measures induced by the

choice of strategy g, and {Q0
t , Ft, R

0
t , Qt, Pt, Rt, Ht} are symmetric matrices of appro-

priate dimensions. It is to be noted that the rate of convergence of the followers to

the leader depends on the matrices Pt and Ft. Moreover, the collective behavior of the

15



followers changes by matrix Ht.

Problem 2.1. Consider the above leader-follower system with dynamics (2.1) and (2.2)

and information structure (2.3) and (2.4). We are interested to find an ε(n)-optimal

strategy g∗

ε such that for every strategy g,

JT (g
∗

ε) ≤ JT (g) + ε(n), (2.6)

where ε(n) ∈ [0,∞) and limn→∞ ε(n) = 0.

Remark 2.3. It is to be noted that if matrices B0
t , D

0
t , Q

0
t and R0

t are zero, Problem 2.1

reduces to the optimal control of a leaderless multi-agent network. In that case, x0
t

represents the desired reference trajectory, and as noted before, the followers do not

share anything with each other once they receive the reference trajectory information

x0
t , according to (2.4).

2.2.4 Main challenges and contributions

There are two main challenges in finding a solution to Problem 2.1. The first one is

concerned with non-classical information structure, as the optimal strategy under this

type of information structure is not necessarily linear [7]. The second challenge is the

curse of dimensionality as the matrices in Problem 2.1 are fully dense, yet their dimension

increases with the number of followers.
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In their previous work [15], the authors show that if the mean-field x̄t is available

to the leader and followers, then the optimal solution is unique and linear. However,

collecting and sharing the mean-field among all agents is not cost-efficient, in general,

specially when the number of followers n is large. It is shown in the next section that

the effect of such information sharing on the performance of the network is negligible

when the number of followers is large enough.

2.3 Main Results

In this section, we propose a strategy and compute its performance with respect to the

optimal performance, and show that the difference between them converges to zero at

rate 1

n
.

For the sake of clarity in the notation, we use letters s and v to denote the states

and actions, respectively, under the optimal strategy. Therefore, from (2.1) and (2.2),

the dynamics of the leader and followers at time t ∈ NT under the optimal strategy are

given by

s0t+1 = A0

t s
0

t +B0

t v
0

t +D0

t s̄t + w0

t , (2.7)

sit+1 = Ats
i
t +Btv

i
t +Dts̄t + Ets

0

t + wi
t, i ∈ Nn, (2.8)
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where s̄t :=
1

n

∑n

i=1
sit. Similarly to [15], define the following matrices:

Āt :=









A0
t D0

t

Et At +Dt









, B̄t :=









B0
t 0dx×du

0dx×du Bt









, (2.9)

Q̄t :=









Q0
t+Pt+Ft −Pt−Ft

−Pt−Ft Qt+Pt +Ft









, R̄t :=









R0
t 0du×du

0du×du Rt









. (2.10)

Assumption 2.1. Matrices Qt+Pt+Ht and Q̄t are positive semi-definite and matrices

Rt and R0
t are positive definite.

Define two decoupled Riccati equations such that for any t ∈ NT ,

M̆t = −Aᵀ
t M̆t+1Bt

(

Bᵀ
t M̆t+1Bt +Rt

)

−1

Bᵀ
t M̆t+1At

+ Aᵀ
t M̆t+1At +Qt + Pt +Ht, (2.11)

M̄t = −Āᵀ
t M̄t+1B̄t

(

B̄ᵀ
t M̄t+1B̄t + R̄t

)

−1
B̄ᵀ

t M̄t+1Āt + Āᵀ
t M̄t+1Āt + Q̄t, (2.12)

where M̆T+1 = 0dx×dx and M̄T+1 = 02dx×2dx . According to [12, 15], the optimal perfor-

mance J∗

T is obtained under the following linear strategies:

v0t = L̄1,1
t s0t + L̄1,2

t s̄t, (2.13)
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vit = L̆ts
i
t + L̄2,1

t s0t + (L̄2,2
t − L̆t)s̄t, (2.14)

where L̆t and L̄t =:









L̄1,1
t L̄1,2

t

L̄2,1
t L̄2,2

t









can be found by using these formulas:

L̆t = −
(

Bᵀ
t M̆t+1Bt +Rt

)

−1

Bᵀ
t M̆t+1At,

L̄t = −
(

B̄ᵀ
t M̄t+1B̄t + R̄t

)

−1
B̄ᵀ

t M̄t+1Āt. (2.15)

2.3.1 Solution of Problem 2.1

The following standard assumptions are imposed on the model.

Assumption 2.2. The initial states of the followers are i.i.d. with mean µx ∈ R
dx and

finite covariance matrix
∑

x ∈ R
dx × R

dx. In addition, the local noises of the followers

are i.i.d. with zero mean and finite covariance matrix
∑

w ∈ R
dx × R

dx.

Assumption 2.3. Matrices At, A
0
t , Bt, B

0
t , Dt, D

0
t , Et, Ft, Qt, Q

0
t , Rt, R

0
t ,

∑

x and
∑

w

do not depend on the number of followers n.

Define a stochastic process z1:T such that z1 := µx and for any t ∈ NT :

zt+1 = (At +BtL̄
2,2
t +Dt)zt + (BtL̄

2,1
t + Et)x

0

t . (2.16)

Note that the leader and followers can compute zt under the information structures (2.3)
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and (2.4). Given the matrix gains defined in (2.15), the following strategies are proposed:

u0

t = L̄1,1
t x0

t + L̄1,2
t zt, (2.17)

ui
t = L̆tx

i
t + L̄2,1

t x0

t + (L̄2,2
t − L̆t)zt, i ∈ Nn. (2.18)

At any time t ∈ NT , define the following relative errors e0t , et and ζt:

e0t := s0t − x0

t , et := s̄t − zt, ζt := x̄t − zt. (2.19)

Lemma 2.1. The relative errors defined in (2.19) evolve linearly in time as follows:

















e0t+1

et+1

ζt+1

















= Ãt

















e0t

et

ζt

















+

















0dx×1

w̄t

w̄t

















, (2.20)

where w̄t :=
1

n

∑n

i=1
wi

t and

Ãt :=

















A0
t +B0

t L̄
1,1
t B0

t L̄
1,2
t +D0

t −D0
t

BtL̄
2,1
t + Et At +BtL̄

2,2
t +Dt 0dx×dx

0dx×dx 0dx×dx At +BtL̆t +Dt

















. (2.21)

Proof. From (2.7) and (2.13):

s0t+1 = (A0

t +B0

t L̄
1,1
t )s0t + (B0

t L̄
1,2
t +D0

t )s̄t + w0

t . (2.22)
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Also, it results from (2.1) and (2.17) that

x0

t+1 = (A0

t +B0

t L̄
1,1
t )x0

t +B0

t L̄
1,2
t zt +D0

t x̄t + w0

t . (2.23)

Similarly, from (2.8) and (2.14):

s̄t+1 = Ats̄t +Btv̄t +Dts̄t + Ets
0

t + w̄t, (2.24)

where v̄t :=
1

n

∑n

i=1
vit is given by:

v̄t = L̆ts̄t + L̄2,1
t s0t + (L̄2,2

t − L̆t)s̄t = L̄2,1
t s0t + L̄2,2

t s̄t. (2.25)

Substituting (2.25) in (2.24) yields:

s̄t+1 = (At +BtL̄
2,2
t +Dt)s̄t + (BtL̄

2,1
t + Et)s

0

t + w̄t. (2.26)

In addition, from (2.2) and (2.18), one arrives at:

x̄t+1 = Atx̄t +Btūt +Dtx̄t + Etx
0

t + w̄t, (2.27)

where ūt :=
1

n

∑n

i=1
ui
t is as follows:

ūt+1 = L̆tx̄t + L̄2,1
t x0

t + (L̄2,2
t − L̆t)zt. (2.28)
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From (2.27) and (2.28), it results that:

x̄t+1 = Atx̄t + BtL̆tx̄t + BtL̄
2,1
t x0

t + Bt(L̄
2,2
t − L̆t)zt + Dtx̄t + Etx

0

t + w̄t. (2.29)

Equations (2.19), (2.22) and (2.23) lead to:

e0t+1 = (A0

t +B0

t L̄
1,1
t )s0t +B0

t L̄
1,2
t s̄t +D0

t s̄t + w0

t

− (A0

tx
0

t +B0

t L̄
1,1
t x0

t +B0

t L̄
1,2
t zt +D0

t x̄t + w0

t )

= (A0

t +B0

t L̄
1,1
t )e0t + (B0

t L̄
1,2
t +D0

t )et −D0

t ζt. (2.30)

Moreover, it results from (2.16), (2.19) and (2.26) that:

et+1 = Ats̄t +BtL̄
2,2
t s̄t +Dts̄t +BtL̄

2,1
t s0t + Ets

0

t + w̄t

− (Atzt +BtL̄
2,2
t zt +Dtzt +BtL̄

2,1
t x0

t + Etx
0

t ), (2.31)

= (At +BtL̄
2,2
t +Dt)et + (BtL̄

2,1
t + Et)e

0

t + w̄t. (2.32)

As a consequence of (2.16), (2.19) and (2.29), the following equation is obtained:

ζt+1 = (At +BtL̆t +Dt)x̄t +Bt(L̄
2,1
t − L̆t)x

0

t +BtL̄
2,2
t zt

+ Etx
0

t + w̄t − (At +BtL̄
2,2
t +Dt)zt − (BtL̄

2,1
t + Et)x

0

t

= (At +BtL̆t +Dt)ζt + w̄t, (2.33)

and this completes the proof. �
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Lemma 2.2. Let Assumption 2.2 hold. At any time t ∈ NT , E
[

e0t
]

= E
[

et
]

= E
[

ζt
]

=

0dx×1.

Proof. Initially at t = 1, E
[

e01
]

= E
[

s01 − x0
1

]

= 0dx×1, E
[

e1
]

= E
[

s̄1 − z1
]

= µx − µx =

0dx×1, and E
[

ζ1
]

= E
[

x̄1 − z1
]

= µx − µx = 0dx×1. Since the relative errors evolve

linearly according to Lemma 2.1 and also E
[

w̄t

]

= 0 according to Assumption 2.2, we

have E
[

e0t
]

= E
[

et
]

= E
[

ζt
]

= 0dx×1 at any t ∈ NT . �

Now, for any follower i ∈ Nn, define the following variables at time t ∈ NT :

x̆i
t := xi

t − x̄t, ŭ
i
t := ui

t − ūt, s̆
i
t := sit − s̄t, v̆

i
t := vit − v̄t. (2.34)

Lemma 2.3. At any time t ∈ NT , x̆
i
t = s̆it and ŭi

t = v̆it.

Proof. The lemma is proved by induction on noting that initially x̆i
1 = s̆i1 = xi

1 − x̄1

because xi
1 = si1. It follows from (2.14) and (2.18) that ŭi

1 = v̆i1 = L̆1(x
i
1 − x̄1). Suppose

x̆i
t = s̆it and ŭi

t = v̆it. It is now desired to show that x̆i
t+1 = s̆it+1 and ŭi

t+1 = v̆it+1.

From (2.2) and (2.8) and the induction assumption at t = 1, one arrives at:

s̆it+1 = Ats̆
i
t +Btv̆

i
t + w̆i

t = Atx̆
i
t +Btŭ

i
t + w̆i

t = x̆i
t+1, (2.35)

where w̆i
t := wi

t − w̄t. Also, it is implied from (2.14), (2.18) and (2.35) that:

v̆it+1 = L̆t+1s̆
i
t+1 = L̆t+1x̆

i
t+1 = ŭi

t+1. (2.36)

23



�

Lemma 2.4. Let ∆J denote the discrepancy between the performance of the optimal

strategies (2.13) and (2.14), and that of the proposed strategies (2.17) and (2.18). If

Assumption 2.2 holds, then ∆J is a quadratic function of the relative errors in (2.19),

i.e.,

∆J = E

[

T
∑

t=1

[

e0t et ζt

]ᵀ

Q̃t

[

e0t et ζt

]

]

, (2.37)

where

Q̃t :=









−Q̄t − L̄ᵀ
t R̄tL̄t 02dx×dx

0dx×2dx Qt + Pt + Ft + L̆ᵀ
tRtL̆t









. (2.38)

Proof. From (2.5), we have

∆J = E

[

T
∑

t=1

(x0

t )
ᵀQ0

tx
0

t + (u0

t )
ᵀR0

tu
0

t + (x̄t − x0

t )
ᵀFt(x̄t − x0

t )

+
1

n

n
∑

i=1

(xi
t)

ᵀQtx
i
t + (xi

t − x0

t )
ᵀPt(x

i
t − x0

t ) + (ui
t)

ᵀRtu
i
t

+
1

2n2

n
∑

i=1

n
∑

j=1

(xi
t − xj

t)
ᵀHt(x

i
t − xj

t)
]

− E

[

T
∑

t=1

(s0t )
ᵀQ0

t s
0

t + (v0t )
ᵀR0

t v
0

t + (s̄t − s0t )
ᵀFt(s̄t − s0t )

+
1

n

n
∑

i=1

(sit)
ᵀQts

i
t + (sit − s0t )

ᵀPt(s
i
t − s0t ) + (vit)

ᵀRtv
i
t

+
1

2n2

n
∑

i=1

n
∑

j=1

(sit − sjt)
ᵀHt(s

i
t − sjt)

]

. (2.39)

The above equation can be re-written in terms of the variables defined in (2.34) as
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follows:

∆J = E

[

T
∑

t=1

(x0

t )
ᵀQ0

tx
0

t + (u0

t )
ᵀR0

tu
0

t + (x̄t − x0

t )
ᵀFt(x̄t − x0

t )

+
1

n

n
∑

i=1

(x̆i
t + x̄t)

ᵀQt(x̆
i
t + x̄t) + (x̆i

t + x̄t − x0

t )
ᵀPt(x̆

i
t + x̄t − x0

t )

+ (ŭi
t + ūt)

ᵀRt(ŭ
i
t + ūt) +

1

2n2

n
∑

i=1

n
∑

j=1

(x̆i
t − x̆j

t)
ᵀHt(x̆

i
t − x̆j

t)
]

− E

[

T
∑

t=1

(s0t )
ᵀQ0

t s
0

t + (v0t )
ᵀR0

t v
0

t + (s̄t − s0t )
ᵀFt(s̄t − s0t )

+
1

n

n
∑

i=1

(s̆it + s̄t)
ᵀQt(s̆

i
t + s̄t) + (s̆it + s̄t − s0t )

ᵀPt(s̆
i
t + s̄t − s0t )

+ (v̆it + v̄t)
ᵀRt(v̆

i
t + v̄t) +

1

2n2

n
∑

i=1

n
∑

j=1

(s̆it − s̆jt)
ᵀHt(s̆

i
t − s̆jt)

]

. (2.40)

On the other hand, by definition the following relations hold:

n
∑

i=1

x̆i
t =

n
∑

i=1

s̆it = 0dx×1,

n
∑

i=1

ŭi
t =

n
∑

i=1

v̆it = 0du×1. (2.41)
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By incorporating (2.41) in (2.40), it results that

∆J=E

[

T
∑

t=1









x0
t

x̄t









ᵀ

Q̄t









x0
t

x̄t









+









u0
t

ūt









ᵀ

R̄t









u0
t

ūt









+
1

n

n
∑

i=1

(x̆i
t)

ᵀ(Qt + Pt +Ht)(x̆
i
t) + (ŭi

t)
ᵀRt(ŭ

i
t)
]

− E

[

T
∑

t=1









s0t

s̄t









ᵀ

Q̄t









s0t

s̄t









+









v0t

v̄t









ᵀ

R̄t









v0t

v̄t









+
1

n

n
∑

i=1

(s̆it)
ᵀ(Qt + Pt +Ht)(s̆

i
t) + (v̆it)

ᵀRt(v̆
i
t)
]

.

According to Lemma 2.3, the above equation simplifies to

∆J=E

[

T
∑

t=1









x0
t

x̄t









ᵀ

Q̄t









x0
t

x̄t









+









u0
t

ūt









ᵀ

R̄t









u0
t

ūt









]

− E

[

T
∑

t=1









s0t

s̄t









ᵀ

Q̄t









s0t

s̄t









+









v0t

v̄t









ᵀ

R̄t









v0t

v̄t









]

. (2.42)
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Using the definition of relative errors in (2.19), one concludes that:









x0
t

x̄t









=









x0
t

zt









+









0dx×dx

ζt









,









s0t

s̄t









=









e0t + x0
t

et + zt









,









u0
t

ūt









= L̄t









x0
t

zt









+









0dx×dx

L̆tζt









,









v0t

v̄t









= L̄t









s0t

s̄t









. (2.43)

It is implied from (2.42) and (2.43) that:

∆J=E

[

T
∑

t=1

(









x0
t

zt









+









0dx×dx

ζt









)ᵀQ̄t(









x0
t

zt









+









0dx×dx

ζt









)
]

+ E

[

T
∑

t=1

(L̄t









x0
t

zt









+









0dx×dx

L̆tζt









)ᵀR̄t(L̄t









x0
t

zt









+









0dx×dx

L̆tζt









)
]

− E

[

T
∑

t=1









e0t + x0
t

et + zt









ᵀ

(Q̄t + L̄ᵀ
t R̄tL̄t)









e0t + x0
t

et + zt









]

. (2.44)
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Expand (2.44) as follows:

∆J =E

[

T
∑

t=1









x0
t

zt









ᵀ

Q̄t









x0
t

zt









]

+ 2E
[

T
∑

t=1









x0
t

zt









ᵀ

Q̄t









0dx×dx

ζt









]

+ E

[

T
∑

t=1









0dx×dx

ζt









ᵀ

Q̄t









0dx×dx

ζt









]

+ E

[

T
∑

t=1









x0
t

zt









ᵀ

L̄ᵀ
t R̄tL̄t









x0
t

zt









]

+ 2E
[

T
∑

t=1









0dx×dx

L̆tζt









ᵀ

R̄tL̄t









x0
t

zt









]

+ E

[

T
∑

t=1









0dx×dx

L̆tζt









ᵀ

R̄t









0dx×dx

L̆tζt









]

− E

[

T
∑

t=1









e0t

et









ᵀ

(Q̄t + L̄ᵀ
t R̄tL̄t)









e0t

et









]

− 2E
[

T
∑

t=1









e0t

et









ᵀ

(Q̄t + L̄ᵀ
t R̄tL̄t)









x0
t

zt









]

− E

[

T
∑

t=1









x0
t

zt









ᵀ

(Q̄t + L̄ᵀ
t R̄tL̄t)









x0
t

zt









]

. (2.45)

The second, fifth and eighth terms in the right side of (2.45) are zero from Lemma 2.2,

on noting that x0
t and zt are completely known under the information structures (2.3)

and (2.4). This completes the proof. �
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Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then,

∆J = Tr

































0dx×dx 0dx×dx 0dx×dx

0dx×dx var(x̄1) var(x̄1)

0dx×dx var(x̄1) var(x̄1)

















M̃1

















+
T−1
∑

t=1

Tr

































0dx×dx 0dx×dx 0dx×dx

0dx×dx var(w̄t) var(w̄t)

0dx×dx var(w̄t) var(w̄t)

















M̃t+1

















, (2.46)

where M̃T = Q̃T , and M̃t is the solution of the following Lyapunov equation for any

t ∈ NT−1 :

M̃t = ÃT
t M̃t+1Ãt + Q̃t. (2.47)

Proof. According to Lemma 2.4, the performance discrepancy ∆J is a quadratic function

of the relative errors, and from Lemma 2.1, the relative errors have linear dynamics.

Therefore, ∆J can be regarded as the quadratic cost of an uncontrolled linear system

(where there is no control action). Thus, from the standard results in linear systems [28],

∆J can be expressed by the Lyaponuv equation (2.47) and the covariance matrices of
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the initial relative errors and noises w̄t, t ∈ NT−1 as:

E
[

[e01 e1 − µx ζ1 − µx]
ᵀ[e01 e1 − µx ζ1 − µx]

]

=

















0dx×dx 0dx×dx 0dx×dx

0dx×dx var(x̄1) var(x̄1)

0dx×dx var(x̄1) var(x̄1)

















, (2.48)

and

E
[

[0dx×dx w̄t w̄t]
ᵀ[0dx×dx w̄t w̄t]

]

=

















0dx×dx 0dx×dx 0dx×dx

0dx×dx var(w̄t) var(w̄t)

0dx×dx var(w̄t) var(w̄t)

















. (2.49)

�

Theorem 2.2. Let Assumptions 2.1, 2.2 and 2.3 hold. Then, the strategies proposed

in (2.17) and (2.18) are ε(n)-optimal solutions for Problem 2.1 such that

|JT (g
∗

ε )− J∗

T | ≤ ε(n) ∈ O(
1

n
). (2.50)
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Proof. According to Assumption 2.2,

var(x̄1) = var(
1

n

n
∑

i=1

xi
1) =

n
∑

x

n2
=

∑

x

n
,

var(w̄t) = var(
1

n

n
∑

i=1

wi
t) =

n
∑

w

n2
=

∑

w

n
. (2.51)

In addition, from Assumption 2.3, matrices Ãt and Q̃t given by Lemmas 2.1 and 2.4

are independent of the number of followers n, and so is M̃t. Therefore, the performance

discrepancy in (2.46) converges to zero at rate O( 1
n
) according to (2.51). � �

Corollary 2.1. For the special case of a leaderless multi-agent network, let x0
t+1 = x0

t =

x̄1, t ∈ NT . Then, according to Theorem 2.2, strategy (2.18) steers all the followers

to the initial mean x̄1 as n grows to infinity. In addition, if the initial mean x̄1 is not

known, it can be replaced by its expectation, i.e., x0
t+1 = x0

t = µx, t ∈ NT , and the

resultant strategy (2.18) steers all the followers to the initial mean consensus as n grows

to infinity, due to the strong law of large numbers.

2.4 Numerical Examples

Example 2.1. Consider a multi-agent network with one leader and 1000 followers, where

the initial state of the leader is x0
1 = 6 and the initial states of the followers are chosen

as uniformly distributed random variables in the interval [0, 4]. Let the dynamics of the
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leader and followers be described by (2.1) and (2.2), respectively, where

A0

t = 1, B0

t = 0.8, At = 1, Bt = 0.9, (2.52)

D0

t = 0.1, Dt = 0.05, Et = 0.15, T = 40, (2.53)

w0

t ∼ N (0, 0.02), wi
t ∼ N (0, 0.05) ∀i ∈ N1000. (2.54)

The network objective is to minimize the cost function (2.5), where

Q0

t = 1, R0

t = 200, Ft = 20, (2.55)

Qt = 2, Pt = 5, Rt = 100, Ht = 1. (2.56)

The leader solves the Riccati equation (2.12) to obtain gains L̄1,1
t and L̄1,2

t , t ∈ NT ,

and determines its control action according to strategy (2.17) using its local state x0
t as

well as zt. It is to be noted that zt is obtained at any time t in terms of x0
t−1 and zt−1

using (2.16). In addition, for any i ∈ Nn, follower i solves two Riccati equations (2.11)

and (2.12) to find L̆t, L̄
2,1
t and L̄2,2

t , and then computes its control action based on (2.18)

using its local state xi
t, the state of the leader x

0
t , and variable zt. The results are depicted

in Figure 2.1, where the thick curve represents the state of the leader, and thin curves

are the states of the followers (to avoid a cluttered figure, only 100 followers are chosen,

randomly, to display their states). It can be observed from this figure that the states

of all agents (which are, in fact, the position of the agents) are convergent under the
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Figure 2.1: Trajectories of the leader and 100 randomly selected followers in Example 2.1

proposed control strategy, as expected, and hence consensus is achieved asymptotically.

The next example demonstrates the efficacy of the results obtained in this work,

for the special case of leaderless multi-agent networks.

Example 2.2. Consider a multi-agent system consisting of 100 agents that are to track

a constant reference trajectory x0
1 = 3. The following parameters are used in the simu-

lation:

A0

t = 1, B0

t = 0, D0

t = 0, At = 1, Bt = 0.5, (2.57)

Dt = 0.05, Et = 0, Q0

t = 0, R0

t = 0, (2.58)

Qt = 0.1, Pt = 20, Rt = 100, Ht = 0.5, Ft = 60, (2.59)

T = 40, wi
t ∼ N (0, 0.02) ∀i ∈ N100. (2.60)
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Figure 2.2: Trajectories of the followers in Example 2.2.

Similar to Example 2.1, each follower computes its control action according to (2.18). It

is to be noted that in the leaderless case, the agents do not communicate as discussed

in Remark 2.3. The results are given in Figure 2.2, analogously to Figure 2.1, and show

that consensus is achieved as the states of all followers converge to the same value.

To compare the effect of different cost function parameters, a numerical example

is presented

Example 2.3. Consider a multi-agent system with one leader and 100 followers. Assume

that the state of the leader is a vector in R
2 and that its initial is [0 1]ᵀ. The state of

every follower, on the other hand, is a scalar, with the initial state of each one chosen

as a uniformly distributed random variable in the interval [−1, 1]. The objective of

the followers is to track the first element of the leader’s state while minimizing the

performance index (2.5) with the following parameters:
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Q0

t = 0.1×









1 0

0 1









, R0

t = 10−10 ×









1 0

0 1









, Ft = 500, (2.61)

Qt = 0.1, Pt = 50, Rt = 100, Ht = 10. (2.62)

The dynamics of the leader and followers are described by (2.1) and (2.2), respec-

tively, with the following matrices:

A0

t =









0.9969 0.0785

−0.0785 0.9969









, B0

t =









0 0

0 0









, At = 1, Bt = 0.1, (2.63)

D0

t =









0

0









, Dt = 0.01, Et = 0.02, T = 100, (2.64)

w0

t ∼ N (0, 0.00), wi
t ∼ N (0, 0.01) ∀i ∈ N100. (2.65)

The results are presented in three sets of figures. The simulations are performed by

considering constant parameters in the cost function with two different values for one

of the parameters H, P and F in each figure for a better comparison of the collective

behavior of followers, their tendency to move towards their collective average, and the

speed of convergence of the followers’ states to the leader’s state.
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Figure 2.3: Trajectories of the leader and followers in Example 2.3 with two different values of
H : (a)H = 10, and (b)H = 200.
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Figure 2.4: Trajectories of the leader and followers in Example 2.3 with two different values of
P : (a)P = 1, and (b)P = 50.
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Figure 2.5: Trajectories of the leader and followers in Example 2.3 with two different values of
F : (a)F = 50, and (b)F = 500.
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2.5 Conclusions

A mean-field approach to the decentralized control of a leader-follower multi-agent net-

work with a single leader is presented in this chapter, where the states of the leader

and followers are coupled in the dynamics and cost. A near-optimal strategy for a non-

classical information structure is proposed such that the strategy is obtained by solving

two decoupled Riccati equations, where the dimension of the matrices in these equations

is independent of the number of followers. This means that the proposed method is not

only distributed, it is also scalable. It is shown that the proposed solution converges to

the optimal strategy at a rate inversely proportional to the number of followers. The ef-

fectiveness of the results is verified by simulation, for different multi-agent settings with

1000 and 100 followers. As suggestions for future research directions, one can extend

the results to the case of infinite horizon, multiple leaders, heterogeneous followers, and

weighted cost functions, under standard assumptions in mean-field teams [12]. The ap-

proach is robust in the sense that the failure of a small number of followers has negligible

impact on the mean-field for a network of sufficiently large population.
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Chapter 3

Minimax Control in Linear

Quadratic Mean-Field Teams for a

Leader-Follower Network

This chapter investigates a soft-constrained minimax control problem of a leader-follower

network. The network consists of one leader and an arbitrary number of followers that

wish to reach consensus with minimum energy consumption in the presence of external

disturbances. The leader and followers are coupled in the dynamics and cost function.

Three non-classical information structures are considered: mean-field sharing, partial

mean-field sharing and intermittent mean-field sharing, where the mean field refers to

the aggregate state of the followers. In the mean-field sharing, every follower observes
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its local state, the state of the leader and the mean field; in the partial mean-field

sharing, every follower observes its local state and the state of the leader, and in the

intermittent mean-field sharing, the information structure switches between the above

two structures. A social welfare cost function is defined, and it is shown that a unique

saddle-point strategy exists which minimizes the worst-case value of the cost function

under the mean-field sharing information structure. The solution is obtained by two

scalable Riccati equations, which depend on a prescribed attenuation parameter, serving

as a robustness factor. For the partial mean-field sharing and intermittent mean-field

sharing information structures, an approximate saddle-point strategy is proposed, and

its converges to the optimal saddle-point is established. Two numerical examples are

provided to demonstrate the efficacy of the obtained results.

This chapter is based on following publication:

M. Baharloo, J. Arabneydi, and A. G. Aghdam, “Minimax Control in Linear Quadratic

Mean-Field Teams for a Leader-Follower Network,” submitted to IEEE Control Systems

Letters.

3.1 Introduction

Recently, there has been an increasing interest in the applications of networked control

systems in various engineering problems such as sensor networks [31], swarm robotics [32],

unmanned aerial vehicles (UAVs) [22] and flocking [24], to name only a few. In this type
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of system, it is desired to achieve a global objective (such as consensus or flocking) using

local control laws with limited information exchange. Many problems arise in real-world

applications that are often neglected in the literature for simplicity. For instance, multi-

agent networks are often subject to external disturbances, which means that a practical

control strategy needs to be robust in the presence of unwanted disturbances.

Different robust control design techniques are introduced in the literature such as

H∞-control [33], risk-sensitive control [34] and minimax control [35], each of which has its

own strengths and weaknesses. For example, risk-sensitive control utilizes a risk factor

in order to capture the randomness of a market, that suits applications with stochastic

disturbances and noises. Minimax control approach, on the other hand, models the

external disturbances as an adversarial player attempting to maximize the cost of the

system. In general, there are two types of formulations for the minimax control problem:

(a) hard-constrained formulation, where an upper bound is set on the disturbance, and

(b) soft-constrained one that penalizes the disturbance by a negative quadratic cost

function [36].

There are two main challenges concerning a minimax control setting in the leader-

follower problem. The first one is the computational complexity of the problem, that

increases as the number of followers increases (i.e., curse of dimensionality). The sec-

ond challenge is the fact that it is not always feasible to assume that the states of all

followers are available, specially when the number of followers is large. In this case, a
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decentralized information structure is more desirable, however, it leads to a discrepancy

in the followers’ information. To address the above challenges, mean-field models are

introduced in the literature to provide a tractable approximate solution.

The authors in [37], study a minimax mean-field type control problem in the con-

text of social networks with a large number of homogeneous players. The proposed

solution is an approximate robust mean-field equilibrium that is formulated as two cou-

pled forward-backward partial differential equations (i.e., the Hamilton-Jacobi-Isaacs

and Fokker-Planck-Kolmogorov equations). In [38], a minimax mean-field game problem

is considered, and an approximate robust Nash equilibrium is obtained using two cou-

pled forward-backward stochastic differential equations. In the minimax control problem

with social cost function [39], the variational derivation and person-by-person optimality

principle are employed to derive an approximate saddle-point in terms of two coupled

forward-backward stochastic differential equations. The authors in [40] consider a leader-

follower setting and propose an approximate robust Nash equilibrium. The method is

to first solve a minimax control problem for the leader, irrespective of followers, and

then solve a minimax control problem for the followers that wish to track a convex

combination of the mean-field and the state of the leader in the presence of external

disturbances.

In this chapter, a minimax control problem is investigated for a leader-follower

network with an arbitrary number of followers. Unlike the above articles that provide
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an approximate solution under partial mean-field sharing information structure, we ex-

plicitly obtain the unique saddle-point strategy under mean-field sharing information

structure and propose an approximate solution under partial mean-field sharing. The

salient feature of the proposed solutions is that they are identified by two scalable Riccati

equations that are not in the form of forward-backward coupled equations.

The remainder of the chapter is organized as follows. The problem is defined and

formulated in Section 3.2. The main results are subsequently presented in Section 3.3

along with the required assumptions. In Section 3.4, two numerical examples are demon-

strated, and finally in Section 3.5 some concluding remarks are provided.

3.2 Problem Formulation

3.2.1 Notation

Throughout this chapter, R and N denote, respectively, the sets of real and natural

numbers. For any k ∈ N, Nk denotes the finite set {1, . . . , k}, and x1:k is short-hand

notation for {x1, . . . , xk}. E(·) is the expectation of an event, Cov(·) is the covariance

matrix of a random vector, Tr(·) is the trace of a matrix, and I and 0 are, respectively,

identity and zero matrices.
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3.2.2 Model

Consider a multi-agent system consisting of one leader and n ∈ N homogeneous followers.

Let x0
t ∈ R

`x , u0
t ∈ R

`u , d0t ∈ R
`x and w0

t ∈ R
`x denote, respectively, the state, action,

disturbance and noise of the leader at time t ∈ N, where `x, `u ∈ N. Analogously, denote

by xi
t ∈ R

`x , ui
t ∈ R

`u , dit ∈ R
`x and wi

t ∈ R
`x , the state, action, disturbance and noise

of follower i ∈ Nn at time t ∈ N. In addition, define the aggregate state and aggregate

action of followers as follows:

x̄t :=
1

n

n
∑

i=1

xi
t, ūt :=

1

n

n
∑

i=1

ui
t. (3.1)

The dynamics of the leader at time t ∈ N is influenced by the aggregate state x̄t, the

disturbance signal d0t and noise w0
t , i.e.,

x0

t+1 = A0

tx
0

t +B0

t u
0

t + S0

t x̄t + d0t + w0

t , (3.2)

where A0
t , B

0
t and S0

t are matrices of appropriate dimensions. Furthermore, the dynamics

of follower i at time t is affected by the state of the leader x0
t , aggregate state x̄t, local

disturbance dit and local noise wi
t as shown below:

xi
t+1 = Atx

i
t +Btu

i
t + Stx̄t + Etx

0

t + dit + wi
t, i ∈ Nn, t ∈ N, (3.3)
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where At, Bt, St and Et are matrices of proper dimensions. Let T ∈ N denote the control

horizon, and assume that the primitive random variables

{x0

1, {x
i
1}i∈Nn

, w0

1, {w
i
1}i∈Nn

, . . . , w0

T , {w
i
T}i∈Nn

}

are mutually independent. In addition, it is assumed that the local noises of followers

and the noise of the leader have zero mean and finite covariance matrices.

3.2.3 Admissible strategies

To be consistent with the terminology of mean-field teams [12], the aggregate state of

followers is called mean field. It is to be noted that the term mean field has a slightly

different meaning in mean-field games, where it refers to the aggregate state of the

infinite population (as opposed to a finite population) of followers.

In this chapter, we consider three non-classical information structures: mean-field

sharing (MFS), partial mean-field sharing (PMFS) and intermittent mean-field sharing

(IMFS). In the MFS information structure, the leader has access to its local state as

well as the mean-field at any time t, i.e.,

u0

t = g0t (x
0

t , x̄t), (3.4)

where g0t : R2`x → R
`u . Furthermore, each follower i ∈ Nn has access to its local state
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as well as the state of the leader and the mean-field at time t, i.e.,

ui
t = git(x

i
t, x̄t, x

0

t ), (3.5)

where git : R
3`x → R

`u . In the PMFS information structure, the mean-field is not

observed, i.e.,

u0

t = g0t (x
0

t ), ui
t = git(x

i
t, x

0

t ), ∀i ∈ Nn. (3.6)

The third information structure is IMFS, defined as an intermittent version of MFS and

PMFS, i.e.,

u0

t = g0t (x
0

t , zt), ui
t = git(x

i
t, zt, x

0

t ), ∀i ∈ Nn, (3.7)

where zt := x̄t during the time when the information structure is MFS and zt := 0`x×1

during the time when the information structure is PMFS. In practice, IMFS information

structure is useful when the number of followers is neither that small (so that the mean-

field can be shared at each time instant) nor is very large (such that the strong law of

large numbers can be applied to the mean-field). In such a case, it is feasible to obtain

the mean-field intermittently such that at some time instants the information structure

is MFS while at some others it is PMFS.

The set of all control laws g := {g01:T , g
1
1:T , . . . , g

n
1:T} is called the strategy of the

network.
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3.2.4 Problem statement

Let the set d be defined as {d01:T , {d
i
1:T}i∈Nn

}, and γ > 0 be a given attenuation param-

eter. Then the cost function of the system is defined as follows:

Jγ
n(g,d) = E(

T
∑

t=1

[ 1

n

n
∑

i=1

[

(xi
t)

ᵀQtx
i
t + (ui

t)
ᵀRtu

i
t − γ2(dit)

ᵀdit
]

+ (x0

t )
ᵀQ0

tx
0

t + (u0

t )
ᵀR0

tu
0

t − γ2(d0t )
ᵀd0t

+ (x̄t − x0

t )
ᵀFt(x̄t − x0

t ) + x̄ᵀ
tPtx̄t + ūᵀ

tHtūt

]

]

), (3.8)

where Qt, Q
0
t , Rt, R

0
t , Ft, Pt and Ht are symmetric matrices of appropriate dimensions.

Note that the value of γ determines the relative importance of reaching consensus and

rejecting disturbance.

Problem 3.1. Find the saddle-point strategy g under mean-field sharing information

structure such that

Jγ,∗
n = inf

g
sup
d

Jγ
n(g,d). (3.9)

Problem 3.2. Find an approximate saddle-point strategy gε under intermittent mean-

field sharing information structure such that

| sup
d

Jγ
n(gε,d)− Jγ,∗

n | ≤ ε(n), (3.10)

where ε(n) ≥ 0 and limn→∞ ε(n) = 0.
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Remark 3.1. Note that IMFS information structure can be considered as a generalization

of the PMFS information structure; thus, Problem 3.2 encompasses the problem of

finding a near-optimal solution with PMFS structure.

Remark 3.2. It is to be noted that a leaderless network can be considered as a special

case of the leader-follower system.

3.3 Main Results

Define the following matrices at any time t ∈ NT :

Āt :=









A0
t S0

t

Et At + St









, B̄t :=









B0
t 0`x×`u

0`x×`u Bt









, (3.11)

Q̄t :=









Q0
t+ Ft −Ft

−Ft Qt+Pt +Ft









, R̄t :=









R0
t 0`u×`u

0`u×`u Ht +Rt









. (3.12)

Assumption 3.1. For any time t ∈ NT , matrices Qt and Q̄t are positive semi-definite

and Rt and R̄t are positive definite.

It will be shown later that Problem 3.1 under Assumption 3.1 can be cast as a

strictly convex optimization problem with respect to the control actions of the leader and

followers, and a strictly concave optimization problem with respect to the disturbances.

Using the transformation technique introduced in [12], define the following variables:
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x̆i
t := xi

t − x̄t, ŭ
i
t := ui

t − ūt, d̆
i
t := dit − d̄t and w̆i

t := wi
t − w̄t, where d̄t :=

1

n

∑n

i=1
dit and

w̄t :=
1

n

∑n

i=1
wi

t. It follows from (3.3) that:

x̄t+1 = (At + St)x̄t +Btūt + Etx
0

t + d̄t + w̄t,

x̆i
t+1 = Atx̆

i
t +Btŭ

i
t + d̆it + w̆i

t. (3.13)

Note that 1

n

∑n

i=1
x̆i
t = 0`x×1,

1

n

∑n

i=1
ŭi
t = 0`u×1,

1

n

∑n

i=1
d̆it = 0`x×1 and 1

n

∑n

i=1
w̆i

t =

0`x×1.

Rewrite the cost function defined in (3.8) in terms of the new variables as:

Jγ
n(g,d)=E(

T
∑

t=1

[ 1

n

n
∑

i=1

(x̆i
t)

ᵀQtx̆
i
t + (ŭi

t)
ᵀRtŭ

i
t − γ2(d̆it)

ᵀd̆it

]

+









x0
t

x̄t









ᵀ

Q̄t









x0
t

x̄t









+









u0
t

ūt









ᵀ

R̄t









u0
t

ūt









− γ2









d0t

d̄t









ᵀ







d0t

d̄t









). (3.14)

At any time t, define the following augmented vectors:

xt :=[x̆1

t
ᵀ, . . . , x̆n

t
ᵀ, x0

t

ᵀ
, x̄t

ᵀ]ᵀ, (3.15.a)

ut :=[ŭ1

t
ᵀ, . . . , ŭn

t
ᵀ, u0

t

ᵀ
, ūt

ᵀ]ᵀ, (3.15.b)

dt :=[d̆1t
ᵀ, . . . , d̆nt

ᵀ, d0t
ᵀ
, d̄t

ᵀ
]ᵀ. (3.15.c)

Suppose for now that xt is known, and solve the corresponding Isaacs’ equation

according to [33, Theorem 3.2]. In particular, the cost-to-go function at terminal time
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T is:

VT (xT ) =
1

n

n
∑

i=1

(x̆i
T )

ᵀM̆T x̆
i
T +









x0
T

x̄T









ᵀ

M̄T









x0
T

x̄T









+
1

n

n
∑

i=1

c̆iT + c̄T , (3.16)

where M̆T := QT , M̄T := Q̄T , c̄T := 0 and c̆iT := 0, ∀i ∈ Nn. Suppose that the cost-to-go

function takes the following form at time t+ 1:

Vt+1(xt+1) =
1

n

n
∑

i=1

(x̆i
t+1)

ᵀM̆t+1x̆
i
t+1

+









x0
t+1

x̄t+1









ᵀ

M̄t+1









x0
t+1

x̄t+1









+
1

n

n
∑

i=1

c̆it+1 + c̄t+1, (3.17)

where


































































































M̆t := Qt + AtM̆t+1∆̆
−1
t Aᵀ

t ,

M̄t := Q̄t + ĀtM̄t+1∆̄
−1
t Āᵀ

t ,

∆̆t := I`x×`x +BtR
−1
t Bᵀ

t M̆t+1 − γ−2M̆t+1,

∆̄t := I2`x×2`x + B̄tR̄
−1
t B̄ᵀ

t M̄t+1 − γ−2M̄t+1,

c̆it := c̆it+1 + Tr(M̆t+1 Cov w̆
i
t),

c̄t := c̄t+1 + Tr(M̄t+1 Cov([w
0
t , w̄t])).

(3.18)

It is now desired to show that (3.17) holds for time t as well. It follows from Isaacs’
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equation that:

Vt(xt) = sup
dt

inf
ut

(
1

n

n
∑

i=1

[

(x̆i
t)

ᵀQtx̆
i
t + (ŭi

t)
ᵀRtŭ

i
t − γ2(d̆it)

ᵀd̆it]

+









x0
t

x̄t









ᵀ

Q̄t









x0
t

x̄t









+









u0
t

ūt









ᵀ

R̄t









u0
t

ūt









−γ2









d0t

d̄t









ᵀ







d0t

d̄t









+ E
[

Vt+1(xt+1) | xt,ut,dt

]

). (3.19)

From (3.13), (3.17) and (3.19), one arrives at:

Vt(xt) = sup
dt

inf
ut

(
1

n

n
∑

i=1

[

(x̆i
t)

ᵀQtx̆
i
t + (ŭi

t)
ᵀRtŭ

i
t − γ2(d̆it)

ᵀd̆it]

+









x0
t

x̄t









ᵀ

Q̄t









x0
t

x̄t









+









u0
t

ūt









ᵀ

R̄t









u0
t

ūt









−γ2









d0t

d̄t









ᵀ







d0t

d̄t









+ E[
1

n

n
∑

i=1

[

(Atx̆
i
t +Btŭ

i
t + d̆it + w̆i

t)
ᵀM̆t+1

× (Atx̆
i
t +Btŭ

i
t + d̆it + w̆i

t)
]

+
1

n

n
∑

i=1

c̆it+1 + c̄t+1

+ (Āt









x0
t

x̄t









+ B̄t









u0
t

ūt









+









d0t

d̄t









+









w0
t

w̄t









)ᵀM̄t+1

× (Āt









x0
t

x̄t









+ B̄t









u0
t

ūt









+









d0t

d̄t









+









w0
t

w̄t









)]). (3.20)
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This yields:

Vt(xt)=sup
dt

inf
ut

(
1

n

n
∑

i=1

[

(x̆i
t)

ᵀQtx̆
i
t + (ŭi

t)
ᵀRtŭ

i
t − γ2(d̆it)

ᵀd̆it]

+









x0
t

x̄t









ᵀ

Q̄t









x0
t

x̄t









+









u0
t

ūt









ᵀ

R̄t









u0
t

ūt









−γ2









d0t

d̄t









ᵀ







d0t

d̄t









+
1

n

n
∑

i=1

[(Atx̆
i
t +Btŭ

i
t)

ᵀM̆t+1(Atx̆
i
t +Btŭ

i
t)+(d̆

i
t)

ᵀM̆t+1d̆
i
t

+ 2(d̆it)
ᵀM̆t+1(Atx̆

i
t+Btŭ

i
t) + 2w̆i

tM̆t+1(Atx̆
i
t +Btŭ

i
t + d̆it)

+ 2(d̆it)
ᵀM̆t+1w̆

i
t+Tr(M̆t+1 Cov(w̆

i
t))]+









d0t

d̄t









ᵀ

M̄t+1









d0t

d̄t









+ (Āt









x0
t

x̄t









+B̄t









u0
t

ūt









)ᵀM̄t+1(Āt









x0
t

x̄t









+ B̄t









u0
t

ūt









)

+ 2









d0t

d̄t









ᵀ

M̄t+1(Āt









x0
t

x̄t









+ B̄t









u0
t

ūt









) + c̄t+1

+ 2









w̆0
t

w̄t









ᵀ

M̄t+1(Āt









x0
t

x̄t









+ B̄t









u0
t

ūt









) +
1

n

n
∑

i=1

c̆it+1

+ 2









d0t

d̄t









ᵀ

M̄t+1









w̆0
t

w̄t









+ Tr(M̄t+1 Cov([w
0

t , w̄t]))). (3.21)

Given any disturbance vector dt, we now compute the gradient vector with respect to
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ut and set each component to zero in order to obtain the following n+ 1 equations:

2(ŭi
t)

ᵀRt + 2(ŭi
t)

ᵀBᵀ
t M̆t+1Bt + 2(x̆i

t)
ᵀAᵀ

t M̆t+1Bt

+ 2(d̆it)
ᵀM̆t+1Bt = 0, ∀i ∈ Nn, (3.22)

and

2









u0
t

ūt









ᵀ

R̄t + 2









u0
t

ūt









ᵀ

B̄ᵀ
t M̄t+1B̄t

+ 2









x0
t

x̄t









ᵀ

Āᵀ
t M̄t+1B̄t + 2









d0t

d̄t









ᵀ

M̄t+1B̄t = 0. (3.23)

Consequently, the optimal actions of the leader and followers can be obtained as follows:

ŭi∗
t = −(Rt + Bᵀ

t M̆t+1Bt)
−1(Bᵀ

t M̆t+1At)x̆
i
t − (Rt + Bᵀ

t M̆t+1Bt)
−1(Bᵀ

t M̆t+1)d̆
i
t, (3.24)

and









u0,∗
t

ū∗

t









= −(R̄t + B̄ᵀ
t M̄t+1B̄t)

−1(B̄ᵀ
t M̄t+1Āt)









x0
t

x̄t









− (R̄t + B̄ᵀ
t M̄t+1B̄t)

−1(B̄ᵀ
t M̄t+1)









d0t

d̄t









. (3.25)

It is observed that the Hessian matrix is diagonal, with matrices: Rt+Bᵀ
t M̆t+1Bt and R̄t+
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B̄ᵀ
t M̄t+1B̄t as its diagonal terms that are positive definite according to Assumption 3.1;

hence, the cost function is strictly convex in the newly defined control actions (3.15.b).

By incorporating the optimal strategies (3.24) and (3.25) into (3.21), computing the

gradient vector with respect to dt and setting each component to zero, one arrives at

the following n+ 1 equations:

− M̆t+1Bt(Rt +Bᵀ
t M̆t+1Bt)

−1Bᵀ
t M̆t+1d̆

i
t

− M̆t+1Bt(Rt +Bᵀ
t M̆t+1Bt)

−1Bᵀ
t M̆t+1Atx̆

i
t

− γ2d̆it + M̆t+1d̆
i
t + M̆t+1Atx̆

i
t = 0, ∀i ∈ Nn, (3.26)

and

− M̄t+1B̄t(R̄t + B̄ᵀ
t M̄t+1B̄t)

−1B̄ᵀ
t M̄t+1









d0t

d̄t









− M̄t+1B̄t(R̄t + B̄ᵀ
t M̄t+1B̄t)

−1B̄ᵀ
t M̄t+1Āt









x0
t

x̄t









− γ2









d0t

d̄t









+ M̄t+1









d0t

d̄t









+ M̄t+1Āt









x0
t

x̄t









= 0. (3.27)

After some manipulations described in [41, page 248], the worst-case disturbances can

be obtained as:

d̆i∗t = γ−2M̆t+1∆̆
−1

t Atx̆
i
t, (3.28)

55



and








d0,∗t

d̄∗t









= γ−2M̄t+1∆̄
−1

t Āt









x0
t

x̄t









, (3.29)

where ∆̆t and ∆̄t are given by (3.18). In addition, we compute the Hessian matrix

which is diagonal with matrices: γ2I`x×`x − M̆t+1 and γ2I2`x×2`x − M̄t+1 on its diagonal.

Therefore, if these matrices are positive definite, it is concluded that the cost function

is strictly concave with respect to disturbances. The recursion (3.18) is finally obtained

by incorporating the worst-case disturbances (3.28) and (3.29) into the optimal strate-

gies (3.24) and (3.25) and comparing the expressions (3.17) and (3.19) at times t + 1

and t, respectively, which leads to the following theorem.

Theorem 3.1. Let Assumption 3.1 hold. Then:

1. Given any γ > 0, Problem 3.1 admits a unique feedback saddle-point solution

if matrices γ2I`x×`x − M̆t+1 and γ2I2`x×2`x − M̄t+1 are positive definite for every

t ∈ NT−1, where M̆t+1 and M̄t+1 are given by (3.18).

2. The saddle-point is described by:

u0

t = L̄1,1
t x0

t + L̄1,2
t x̄t, (3.30)

and for every follower:

ui
t = L̆tx

i
t + L̄2,1

t x0

t + (L̄2,2
t − L̆t)x̄t, i ∈ Nn, (3.31)
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where









L̄1,1
t L̄1,2

t

L̄2,1
t L̄2,2

t









:= −B̄tM̄t+1∆̄
−1
t Āt and L̆t := −BtM̆t+1∆̆

−1
t At.

3. The optimal cost function is given by:

Jγ,∗
n =

1

n

n
∑

i=1

[Tr(M̆1 Cov(x̆
i
1)) + c̆i1] + Tr(M̄1 Cov([x

0

1, x̄1])) + c̄1. (3.32)

3.3.1 Solution of Problem 3.2

We impose the following two assumptions on the model.

Assumption 3.2. The initial states and local noises of the followers are i.i.d. random

variables and independent of those of the leader.

Assumption 3.3. All matrices in the dynamics (3.2) and (3.3) and cost function (3.8)

as well as the covariance matrices are independent of the number of followers.

Let m̂1 be the expected value of the initial states of the followers, and m̂t denote

an estimate of the mean-field x̄t at time t such that if the information structure is PMFS

at time t:

m̂t+1 := (At + St + BtL̄
2,2
t )m̂t + (BtL̄

2,1
t + Et)x

0

t + d̄t, (3.33)

57



and if the information structure is MFS:

m̂t+1 := x̄t+1. (3.34)

Under Assumptions 3.2 and 3.3, it can be shown that m̂t+1 almost surely converges to

x̄t+1 at every time instant almost surely due the strong law of large numbers, on noting

that the dynamics of the mean-field under the saddle-point strategy is:

x̄t+1 = (At + St +BtL̄
2,2
t )x̄t + (BtL̄

2,1
t + Et)x

0

t + d̄t + w̄t. (3.35)

We now replace the mean-field x̄t in the saddle-point strategy of Theorem 3.1 with

the estimate m̂t (that is measurable with respect to IMFS information structure) to

construct the following approximate saddle-point strategy:

v0t = L̄1,1
t x0

t + L̄1,2
t m̂t, (3.36)

and for every follower:

vit = L̆tx
i
t + L̄2,1

t x0

t + (L̄2,2
t − L̆t)m̂t, i ∈ Nn. (3.37)

Since the dynamics (3.2) and (3.3), cost function (3.8) and the saddle-point strate-

gies (3.30), (3.31), (3.36) and (3.37) are bounded and continuous in x̄t, it results that

strategies (3.36) and (3.37) are approximate saddle-point strategies. The interested
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reader is referred to [16] for a detailed proof in the context of optimal control, which is

similar to a great extent to the convergence proof of minimax control problem considered

in this subsection, but note that the Riccati equations here are different and the relative

errors defined in [16] will have intermittent natures. However, these differences do not

add much complexity to the convergence proof because the Riccati equations (3.18) do

not depend on the number of followers according to Assumption 3.3. Hence, the rate of

convergence with respect to the number of followers is 1/n, similar to [16, Theorem 2].

Therefore, the following result is obtained.

Theorem 3.2. Let Assumptions 3.1–3.3 hold. The strategy described by (3.36) and (3.37)

is an approximate saddle-point strategy for Problem 3.2.

3.4 Numerical Examples

In this section, two numerical examples are provided to illustrate the efficacy of the

obtained results.

Example 3.1. Consider a multi-agent network consisting of one leader and 100 identical

followers whose dynamics are described by equations (3.2) and (3.3), respectively, with
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the following numerical parameters:

A0

t = 0.85, B0

t = 0.15, At = 0.85, Bt = 0.85, (3.38)

S0

t = 0.03, St = 0.1, Et = 0.01, (3.39)

wi
t ∼ N (0, 0.3) ∀i ∈ Nn, T = 20. (3.40)

Let the initial state of the leader be x0
1 = 30 and the initial states of the followers be

chosen randomly (with uniform distribution) in the interval [0, 20]. The followers are

exposed to an external disturbance given by:

dit = 0.6sin(t), t ∈ N20, i ∈ N100. (3.41)

The objective of the leader and followers is to minimize the cost function (3.8) under

the worst-case disturbance, where at any time t ∈ N20:

Rt = 70, Qt = 8, Ft = 11, Pt = 0.4, (3.42)

R0

t = 50, Q0

t = 0.5, Ht = 0.1. (3.43)

Sample trajectories of the leader and followers are depicted in Figure 3.1. It is

shown that as the attenuation parameter γ increases, the fluctuations of the mean-field

decrease which means better disturbance rejection.

Example 3.2. Consider 100 followers with identical dynamics that wish to track a
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reference signal, which may be viewed as a virtual leader with constant state x0
t =

10, ∀t ∈ N30. The initial states of the followers are chosen randomly in the interval [0, 8]

with a uniform distribution. The dynamics of the leader and followers are expressed by

the following parameters:

A0

t = 1, B0

t = 0, At = 1, Bt = 1, (3.44)

S0

t = 0, St = 0.04, Et = 0.001, T = 30, (3.45)

wi
t ∼ N (0, 0.3), ∀i ∈ N100. (3.46)

The followers are exposed to local external disturbances given below:

dit = 0.4sin(t), i ∈ N100, t ∈ N30. (3.47)

The weight matrices in the cost function are given by:

Rt = 0.11, Qt = 0.01, Ft = 0.07, Pt = 0.001, (3.48)

R0

t = 10−4, Q0

t = 10−4, Ht = 1. (3.49)

In Figure 3.2, three sample trajectories of the states of followers are displayed for three

different values of the attenuation parameter. It is observed that as the attenuation

parameter increases, the disturbance is rejected more strongly at the cost of prolonging

the consensus process.
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increase with the number of followers. In addition, it was numerically verified that the

disturbance rejection property of the solution outweighs the consensus-reaching behavior

when the attenuation parameter is large.
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Chapter 4

Conclusions and Future Directions

In this thesis, the control of a leader-follower multi-agent network under non-classical

information structure in the presence of noise is studied, and high-performance decentral-

ized strategies are introduced to reach an agreement between the leader and followers.

The proposed strategies are, in fact, promising alternative solutions compared to the

existing techniques in the literature. In particular, using the law of large numbers in a

network of many identical agents, some of the existing problems concerning communi-

cation constraints and computational complexity in this type of networks are effectively

addressed.

In Chapter 2, it is desired that the leader and followers, which are assumed to

be homogeneous, reach a common value while minimizing a given performance index.

The dynamics of agents is coupled and dependent on the mean-field, and so is the cost
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function. In non-classical information structure, the agents have no access to the mean-

field. Thus, using mean-field approximation, near-optimal strategies are obtained for

the leader and every follower. It is shown that these solutions approach the optimal

ones when there is a large number of followers. The salient feathers of the proposed

strategies can be summarized as follows:

• A linear solution can be obtained under some realistic assumptions;

• not only is the solution suitable for a network with a large number of agents (as

it is scalable), but also it outperforms existing control strategies for multi-agent

systems, and

• convergence of the agents to consensus can be adjusted arbitrarily by proper choice

of parameters.

In Chapter 3, the network described in Chapter 2 with non-classical information

structure is assumed to be subject to external disturbances. The external disturbances

are considered as adversarial players, penalized in the cost function by negative quadratic

terms. It is shown that under some conditions, the problem has a unique saddle-point

solution, in which, the value of the cost function in the worst-case scenario (in terms

of disturbances) is minimized. When the mean-field is not available, a point in the

neighborhood of the above solution is obtained, which is shown to be sufficiently close

to the above solution when the number of followers is large enough. The main advantages
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of the results obtained in this chapter are given below:

• In contrast to the mean-field game solutions, the solution proposed here can be

obtained by solving two decoupled equations for each follower, and as a result, it

is scalable;

• the resultant strategies are linear functions of the agents’ states and mean-field

approximation;

• the trade off between the consensus-reaching and disturbance rejection perfor-

mances is discussed, and its dependency on the attenuation parameter in the cost

function is highlighted.

4.1 Future Research Directions

Some suggestions for future research in this area are outlined below:

• Extending the results to the infinite-horizon case, where some additional conditions

such as stabilizability and detectability are expected to be imposed;

• exploring more efficient topologies for information exchange between the agents

for the case where there are a large number of followers;

• considering a multi-agent system with more than one leader;

• investigating the problem for a network of heterogeneous followers, and
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• considering the case where the communication links are subject to change.
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