
Orchestration and Scheduling of Resources in

Softwarized Networks

Hyame Alameddine

A Thesis
In

The Concordia Institute
For

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of
Doctor of Philosophy (Information and Systems Engineering) at

Concordia University
Montréal, Québec, Canada

February 2019

©Hyame Alameddine, 2019

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Hyame Alameddine

Entitled: Orchestration and Scheduling of Resources in Softwarized Net-

works
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Abdel R. Sebak

External Examiner

Dr. Jelena Mǐsić

External to Program

Dr. Ivan Contreras

Examiner

Dr. Jia Yuan Yu

Examiner

Dr. Roch Glitho

Thesis Supervisor

Dr. Chadi Assi

Approved
Dr. Chadi Assi, Graduate Program Director

March 7, 2019

Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

ABSTRACT

Orchestration and Scheduling of Resources in Softwarized Networks

Hyame Alameddine, Ph.D.

Concordia University, 2019

The Fifth Generation (5G) era is touted as the next generation of mobile networks

that will unleash new services and network capabilities, opening up a whole new line

of businesses recognized by a top-notch Quality of Service (QoS) and Quality of Ex-

perience (QoE) empowered by many recent advancements in network softwarization

and providing an innovative on-demand service provisioning on a shared underly-

ing network infrastructure. 5G networks will support the immerse explosion of the

Internet of Things (IoT) incurring an expected growth of billions of connected IoT de-

vices by 2020, providing a wide range of services spanning from low-cost sensor-based

metering services to low-latency communication services touching health, education

and automotive sectors among others. Mobile operators are striving to find a cost-

effective network solution that will enable them to continuously and automatically

upgrade their networks based on their ever growing customers demands in the quest

of fulfilling the new rising opportunities of offering novel services empowered by the

many emerging IoT devices. Thus, departing from the shortfalls of legacy hardware

(i.e., high cost, difficult management and update, etc.) and learning from the differ-

ent advantages of virtualization technologies which enabled the sharing of computing

resources in a cloud environment, mobile operators started to leverage the idea of

network softwarization through several emerging technologies. Network Function Vir-

tualization (NFV) promises an ultimate Capital Expenditures (CAPEX) reduction

and high flexibility in resource provisioning and service delivery through replacing

hardware equipment by software. Software Defined Network (SDN) offers network

and mobile operators programmable traffic management and delivery. These tech-

nologies will enable the launch of Multi-Access Edge Computing (MEC) paradigm

that promises to complete the 5G networks requirements in providing low-latency

services by bringing the computing resources to the edge of the network, in close

iii

vicinity of the users, hence, assisting the limited capabilities of their IoT devices in

delivering their needed services. By leveraging network softwarization, these technolo-

gies will initiate a tremendous re-design of current networks that will be transformed

to self-managed, software-based networks exploiting multiple benefits ranging from

flexibility, programmability, automation, elasticity among others.

This dissertation attempts to elaborate and address key challenges related to en-

abling the re-design of current networks to support a smooth integration of the NFV

and MEC technologies. This thesis provides a profound understanding and novel

contributions in resource and service provisioning and scheduling towards enabling

efficient resource and network utilization of the underlying infrastructure by lever-

aging several optimization and game theoretic techniques. In particular, we first,

investigate the interplay existing between network function mapping, traffic routing

and Network Service (NS) scheduling in NFV-based networks and present a Col-

umn Generation (CG) decomposition method to solve the problem with considerable

runtime improvement over mathematical-based formulations. Given the increasing

interest in providing low-latency services and the correlation existing between this

objective and the goal of network operators in maximizing their network admissibil-

ity through efficiently utilizing their network resources, we revisit the latter problem

and tackle it under different assumptions and objectives. Given its complexity, we

present a novel game theoretic approach that is able to provide a bounded solution

of the problem. Further, we extend our work to the network edge where we promote

network elasticity and alleviate virtualization technologies by addressing the problem

of task offloading and scheduling along with the IoT application resource allocation

problem. Given the complexity of the problem, we propose a Logic-Based Benders

(LBBD) decomposition method to efficiently solve it to optimality.

iv

Acknowledgments

The knowledge, the hard work and the completion of my Ph.D. degree towards the

completion of this thesis would not have been possible without the motivation, the

support and the continuous guidance of a great mentor and supervisor, Dr. Chadi

Assi. Thank you Dr. Assi for your valuable time, your unconditional availability

whenever needed, and for your challenging and fruitful discussions. It is a pleasure

working with you.

My deepest appreciation to Dr. Samir Sebbah for his time, patience, guidance

and enlightening discussions on the application of many optimization techniques.

I am grateful for Dr. Sara Ayoubi, Dr. Sanaa Sharafeddine, Dr. Ali Ghrayeb,

Dr. Mosaddek Hossain Kamal Tushar and Dr. Long Qu for all the enlightening

discussions, comments and valuable collaboration on the projects that I completed

throughout my Ph.D.

I would like to thank my committee members Dr. Roch Glitho, Dr. Jia Yuan Yu,

Dr. Ivan Contreras, Dr. Brigitte Jaumard for their time, their valuable feedback and

constructive comments. I would like to extend my appreciation for Dr. Jelena Misic

for accepting to serve as my external examiner.

Many thanks for Dr. Daniel Migault, Dr. Stere Preda, Dr. Makan Pourzandi

and all Ericsson security team whom I had a great pleasure to meet and work with.

Thank you for all your kindness, support and for making my internship at Ericsson

of a great value.

I dedicate this thesis to my beloved father, Assem Alameddine, who despite not

having the chance to continue his education, worked hard to raise and educate his

children. Thank you father for always being there for me unconditionally, believing

in my potentials, pushing me to always advance in my education and my career. I

love you and I hope that this achievement pays but little of all what you have given

me.

v

I am deeply indebted to my mother, Nahed Alameddine. Nothing would have

been possible without your endless care and guidance, mother. Thank you for all

your support at all times. I love you.

I would like to express my extreme gratitude to my aunt, Hyame Alameddine, who

passed away several years ago and to my uncle, Bassem Alameddine. I am grateful for

all your efforts in educating and guiding me. I would not have been the person I am

now without you. To my sister Ranime Alameddine, my brothers; Bassem, Karim

and Hadi Alameddine, my cousin Zakia Alameddine and her husband Mr. Fawaz

Osmani and to my entire family, nothing is more valuable than having you in my life.

Thank you for handling my craziness all these years.

Last but not least, I would like to thank the Montreal Operations Research Student

Chapter family and everyone who contributed to its success. It has been a great

enriching experience working with you. I would like to specially thank my friend

Carlos Zetina for his unconditional commitment, confidence, motivation and great

ideas.

I am grateful to all my friends and my colleagues who encouraged me during my

hard times, advised me when I needed it the most, laughed with me and engraved

unforgettable memories. I am blessed to have you.

Finally, I would like to thank Concordia University and PERSWADE, a CREATE

program of NSERC, Canada for their financial support which made my Ph.D. work

possible.

vi

To those who conquer, believe and never give up on their dreams ...

vii

Table of Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xvi

Chapter 1 Introduction 1

1.1 Overview . 1

1.2 Vision of future 5G networks . 3

1.3 Enabling Technologies . 4

1.3.1 Cloud and Multi-access Edge Computing 5

1.3.2 Network Function Virtualization 5

1.3.3 Software Defined Networking 7

1.3.4 The Key Technologies Interaction 8

1.4 Challenges and Contributions . 9

1.4.1 The Interplay Between Network Function Mapping and Schedul-

ing . 10

1.4.2 Enabling Low-Latency Services in Softwarized Networks . . . 11

1.4.3 Low-Latency IoT Services in Multi-access Edge Computing . . 12

1.5 Thesis Outline . 13

viii

Chapter 2 Network Function Virtualization: Overview, Challenges

and Literature Review 14

2.1 Overview and Definitions . 14

2.2 NFV Architecture . 17

2.2.1 NFV-Management and Orchestration Framework 18

2.3 Challenges in NFV . 20

2.3.1 The VNF Placement Problem 22

2.3.2 The NF Mapping Problem . 23

2.3.3 The Traffic Routing Problem 23

2.3.4 The NS Scheduling Problem 24

2.4 Literature Review . 25

2.4.1 VNF Placement and Traffic Routing problem 25

2.4.2 NS Scheduling Problem . 29

2.5 Conclusion . 30

Chapter 3 On the Interplay Between Network Function Mapping

and Scheduling in VNF-Based Networks 31

3.1 Introduction . 32

3.1.1 Novel Contributions . 33

3.2 Motivation and Challenges . 34

3.2.1 Problem Description . 34

3.2.2 Mapping, Routing and Scheduling Problems 36

3.2.3 Traffic Routing Impacts the NS Schedule 39

3.2.4 NF Mapping Impacts the NS Schedule 40

3.3 SFCS - A Mixed Integer Linear Program (SFCS-MILP) 41

3.3.1 Problem Definition . 41

3.3.2 Problem Formulation . 42

3.3.3 Problem Complexity . 49

3.4 SFCS - A Column Generation Approach 49

3.4.1 Decomposition Strategy . 50

3.4.2 Master Problem . 51

3.4.3 Pricing Sub-Problem . 52

3.4.4 Column Generation Algorithm (SFCS-CG) 57

ix

3.4.5 Diversification Approach (SFCS-CGD) 59

3.5 Online Column Generation (online-CG) 61

3.6 Numerical Evaluation . 61

3.6.1 SFCS-MILP vs CG . 62

3.6.2 Online CG . 65

3.7 Conclusion . 70

Chapter 4 Enabling Low-Latency Services in Softwarized Networks 71

4.1 Introduction . 72

4.1.1 Novel Contributions . 73

4.2 System Model . 74

4.2.1 Ultra-Low Latency Network Slice 74

4.2.2 Problem Description . 76

4.3 LASS - A Mixed Integer Linear Program 77

4.3.1 Problem Definition . 77

4.3.2 Problem Formulation . 78

4.3.3 Variations of the LASS problem 86

4.3.4 Problem Complexity . 87

4.4 LASS- A Game Theoretic Approach (LASS-Game) 88

4.4.1 Exploring Mapping, Routing and Scheduling Solutions 88

4.4.2 LASS-Game Formulation . 92

4.4.3 Processing and Transmission Policies 96

4.4.4 Expected Utility and Nash Equilibrium 99

4.4.5 Price of Anarchy . 102

4.4.6 Best Response Algorithm . 105

4.5 Performance Evaluation . 107

4.5.1 Offline Scheduling . 108

4.5.2 Online Batch Scheduling . 112

4.6 Conclusion . 116

Chapter 5 Low-Latency IoT Services in Multi-access Edge Comput-

ing 118

5.1 Introduction . 119

x

5.1.1 Overview . 119

5.1.2 Edge Computing Related Concepts 120

5.1.3 Motivation and Challenges . 122

5.1.4 Novel Contributions . 124

5.2 Literature review . 125

5.2.1 Joint Task Offloading and Resource Allocation 125

5.2.2 Task Scheduling . 127

5.3 System Model . 128

5.3.1 UEs Computation Tasks . 130

5.3.2 Experienced Delays . 131

5.4 DTOS - A Mixed Integer Linear Program (DTOS-MILP) 133

5.4.1 Problem Definition . 133

5.4.2 Problem Formulation . 134

5.4.3 DTOS Complexity . 140

5.5 DTOS-LBBD: A Logic-Based Benders Decomposition 141

5.5.1 LBBD in a Nutshell . 141

5.5.2 DTOS Decomposition Strategy 142

5.5.3 Master Problem (MP) . 144

5.5.4 The Sub-Problem (SP) . 149

5.5.5 Benders’ Cut . 151

5.6 Performance Evaluation . 157

5.6.1 Experimental Setup . 157

5.6.2 DTOS-MILP vs. DTOS-LBBD 158

5.6.3 Evaluation of DTOS-LBBD 159

5.7 Conclusion . 165

Chapter 6 Conclusion and Future Research Directions 167

6.1 Conclusion . 167

6.2 Future Research Directions . 170

6.2.1 Online Resource Allocation and Scheduling in MEC 170

6.2.2 Scalable Resource Allocation in MEC 171

6.2.3 Reliability Guarantees for Ultra-low Latency Services in MEC 171

xi

Bibliography 172

Appendix A Optimization and Game Theoretic Techniques 188

A.1 Optimization Methods . 188

A.1.1 Linear and Non Linear Programs 189

A.1.2 Integer Linear Programs . 190

A.1.3 Column Generation . 191

A.1.4 Logic-Based Benders Decomposition 193

A.2 Game Theory . 194

A.2.1 Overview . 194

A.2.2 Extensive-Form Games . 195

Appendix B Linearization of SFCS Problem 201

Appendix C Linearization of the LASS Problem 203

Appendix D Formulation Details of the DTOS Problem 205

D.1 DTOS-MILP . 205

D.1.1 Constraints Reformulation . 205

D.1.2 Linearization Details . 206

D.2 DTOS-LBBD . 208

D.2.1 Constraints Reformulation . 208

D.2.2 Linearization Details . 208

xii

List of Figures

2.1 NFV architectural framework [1]. 18

2.2 PNF versus VNF based network challenges and opportunities. 20

3.1 Physical network topology and NSs used to illustrate the motivational

examples. 35

3.2 NF mapping and shortest path routing causing scheduling delays. . . 37

3.3 Impact of traffic routing on the NSs schedules. 39

3.4 Impact of NF mapping on the NSs schedules. 40

3.5 Representation of the columns passed to the MP. 50

3.6 Column generation flow chart. 58

3.7 Impact of diversification. 66

3.8 Impact of the network resources (VNFs, bandwidth) and batch size

variation. 68

4.1 Ultra-low latency network slice running on top of a physical infrastruc-

ture. 75

4.2 Illustrative example showing the virtual graph H ′
s1
(N ′

s1
, E ′

s1
) of NS s1.

Each node n′ ∈ N ′
s1

is represented by a tuple < f, afn′s1
, tfn′s1

, pfn′s1
>

respectively denoting the VNF which n′ represents, the arrival time

of the traffic of s1 to n′, its start processing time and its process-

ing delay. Similarly, each link e′ ∈ E ′
s1

is represented by a tuple

< Le′s1 , ae′s1 , te′s1 , de′s1 > respectively indicating the set of physical

links to which e′ is mapped, the arrival time, the start transmission

time and the transmission delay of the traffic of s1 on e′. 90

4.3 LASS-Game flowchart (player 3 is playing). 106

4.4 Offline scheduling numerical evaluation. 110

4.5 Online batch scheduling numerical evaluation. 113

5.1 System Model. 129

xiii

5.2 DTOS-LBBD flowchart. 143

5.3 Benders’ cut insights. 152

5.4 DTOS-LBBD convergence. 160

5.5 Admission rate per varying number of UEs. 162

5.6 Admission rate per varying number of MEC servers. 163

5.7 Admission rate per varying edge-to-edge delay. 164

A.1 Extensive-form game decision tree. 197

A.2 Representation of backward induction reasoning. 199

xiv

List of Tables

3.1 Parameters of the SFCS-MILP. 42

3.2 Decision variables of the SFCS-MILP. 43

3.3 Parameters of the MP. 51

3.4 Decision variables of the MP. 51

3.5 Decision variables of the pricing SP. 53

3.6 Optimality gap comparison. 63

3.7 Execution Time (ms) comparison. 65

4.1 Parameters of the LASS-MaxAdmission. 78

4.2 Decision variables of the LASS-MaxAdmission. 79

4.3 Notations of the LASS-Game. 94

4.4 Execution time (ms) per number of NSs. 109

5.1 Parameters of the DTOS-MILP. 135

5.2 Decision variables of the DTOS-MILP. 135

5.3 Parameters of the MP. 144

5.4 Decision variables of the MP. 144

5.5 Parameters of the SP. 149

5.6 Decision variables of the SP. 149

5.7 Latency requirements of different industry verticals [2, 3]. 157

5.8 DTOS-MILP versus DTOS-LBBD. 158

5.9 DTOS-LBBD execution time (ms). 161

xv

List of Abbreviations

2G Second Generation

3G Third Generation

4G Fourth Generation

5G Fifth Generation

AP Access Point

BILP Binary Integer Linear Program

CAPEX Capital Expenditures

CG Column Generation

CPU Central Processing Unit

DTOS Dynamic Task Offloading and Scheduling

DTOS-LBBD Dynamic Task Offloading and Scheduling - A Logic-Based Benders

Decomposition

DTOS-MILP Dynamic Task Offloading and Scheduling - A Mixed Integer Linear

Program

EM Element Management

eNB Evolved Node B

ETSI European Telecommunications Standards Institute

IDS Intrusion Detection System

ILP Integer Linear Program

IoT Internet of Things

IT Information Technology

xvi

ITS Intelligent Transportation System

LASS Latency-Aware Service Scheduling

LASS-Game Latency-Aware Service Scheduling - A Game theoretic approach

LASS-Game-RandomPath Latency-Aware Service Scheduling Game under a random

path

LASS-Game-RelaxedDeadline Latency-Aware Service Scheduling Game with network

services of Relaxed Deadlines

LASS-Game-SuperTightDeadline Latency-Aware Service Scheduling Game with net-

work services of Super Tight Deadlines

LASS-Game-TightDeadline Latency-Aware Service Scheduling Game with network

services of Tight Deadlines

LASS-MaxAdmission Latency-Aware Service Scheduling under a Maximum Admis-

sion objective

LASS-MinMaxCT Latency-Aware Service Scheduling under the objective of Mini-

mizing the Maximum Completion Time

LASS-MinSumCT Latency-Aware Service Scheduling under the objective of Mini-

mizing the Sum of Completion Times

LBBD Logic-Based Benders Decomposition

LP Linear Program

LTE Long-Term Evolution

MCC Mobile Cloud Computing

MEC Multi-access Edge Computing

MILP Mixed Integer Linear Program

MP Master Problem

NAT Network Address Translation

NF Network Function

NF-FG Network Function Forwarding Graph

NFV Network Function Virtualization

xvii

NFV-MANO Network Function Virtualization Management and Orchestration

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NLP Non-Linear Program

NS Network Service

Online-CG Online Column Generation

OPEX Operational Expenditures

PNF Physical Network Function

PoA Price of Anarchy

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RC Reduced Cost

RMP Restricted Master Problem

SA Sequential Algorithm

SCeNB Small Cell Evolved Node B

SDN Software Defined Networking

SFCS Service Function Chaining Scheduling

SFCS-CG Service Function Chaining Scheduling - Column Generation

SFCS-CGD Service Function Chaining Scheduling - Column Generation with Di-

versification

SFCS-MILP Service Function Chaining Scheduling - Mixed Integer Linear Program

SP Sub-Problem

TS Tabu-Search

TS-NFMS Tabu-Search for Network Function Mapping and Scheduling

TSP Telecommunication Service Provider

UE User Equipment

xviii

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNE Virtual Network Embedding

VNF Virtual Network Function

VNFM Virtual Network Function Manager

WAN Wide Area Network

xix

Chapter 1

Introduction

1.1 Overview

Over the past few years, we have experienced a highly connected lifestyle that tremen-

dously affected our daily activities. There was a time when owning a cell phone was

only to talk, to send a message or to surf the web. With the Information Technology

(IT) revolution, the cell phone was transformed to a smart phone enabling access to

a wide range of applications. In fact, the first smart phone was IBM’s Simon which

was launched in 1994 during the era of the Second Generation (2G) networks which

enabled text messaging in addition to a minor support of data [4]. IBM’s Simon

came pre-loaded with several applications such as address book, calculator, calendar,

mail, notepad, and sketch pad [5]. The evolution of smart phones to include more

sophisticated types of applications such as maps, games, weather, enhanced browsers

(i.e., Safari) [5] was aligned with the launch and the development of the Third Gen-

eration (3G) networks which provided higher data rates and improved Quality of

Service (QoS). Throughout the life of 3G networks, many advanced smart devices

(i.e., tablets, smart televisions, laptops, etc.) gained momentum as they included

new features enabling computation and data intensive applications, that are no more

1

built-in within the device, but are rather downloaded through the Internet [5]. For

instance, 3G networks enabled video chatting applications including audio and video

files transfers [4]. With the proliferation of different types of applications and ser-

vices with 3G networks, mobile users required enhanced QoS which led to the launch

of the Fourth Generation (4G) networks which we are using today. 4G networks

were designed to provide higher data rates enabling a better support of multimedia

messaging service, video chatting and video streaming, etc. [4].

4G networks gave birth to a wide new range of services in different sectors such

as health, automotive, entertainment and social sectors [6]. The rapid expansion of

services is accompanied with the development, innovation and proliferation of elec-

tronic devices which are transformed to become smart, that is, they can be connected

to other devices or networks for data exchange while being capable of performing au-

tonomous computing (i.e., without the direct command of the user (i.e., autonomously

collect information through sensors and send it through a network)) [7]. For exam-

ple, smart watches which are enabled with health activity tracking capabilities, smart

speakers with voice-controlled assistant responding to user questions and commands,

smart health devices for measuring blood and oxygen levels, etc. These smart con-

nected devices form an interconnected network of objects, known today as the Internet

of Things (IoT) [7]. IoT is an emerging paradigm that has been recently gaining the

interest of telecommunication network operators especially after Cisco predicted in

2011 an ultimate growth of the number of IoT devices to reach 50 billion by 2020

[8]. In addition, Cisco presented the IoT as the first real evolution of the Internet

given that it will lead to a revolutionary set of applications that will change our lives

by improving the way we live, learn, work and entertain ourselves [8]. In fact, IoT

devices can collect and exchange data through their deployed sensors which can sense

temperature, pressure, vibration, light, humidity and stress. This data can then be

2

processed and turned into valuable information which, combined with other sources

of information can provide knowledge and wisdom that allow us to become proactive,

hence bringing tangible value to our lives [8]. Clearly, IoT is carrying new challenges

to the mobile network operators as their mobile network infrastructure needs to be

updated to cope with the ever increasing number of IoT devices and the big data

volume they need to exchange over their infrastructure. In addition, the new innova-

tive services seeing the light today through the applications deployed on IoT devices

are raising the bar of the QoS and the corresponding Quality of Experience (QoE)

requirements of their users [6]. For instance, the emerging autonomous and assisted

driving services require ultra-low latency and high reliability [2].

In order to meet the continuous data and service requirements, telecommunication

network operators have been constantly upgrading and expanding their mobile net-

work infrastructure by adding expensive legacy equipments that are hard to manage,

to maintain and to configure which have been incurring high Capital Expenditures

(CAPEX) and Operational Expenditures (OPEX) [6, 9]. Due to the high compe-

tition among themselves and the falling prices, they were, however, experiencing a

low return on investment [6, 9]. Hence, telecommunication network operators have

been forced to find new ways to reduce their investment costs while increasing their

revenues along with meeting the QoS and QoE requirements of their mobile users.

Towards this end, the telecommunication industry is entering a new phase of the

evolutionary era of the Fifth Generation (5G) networks.

1.2 Vision of future 5G networks

The beyond 2020 mobile communications systems also known as 5G networks [10]

emerges from the need of network operators to satisfy their consumers’ demands of

3

faster, safer and smarter wireless networks [11]. The continuous increase of IoT de-

vices and applications of varying QoS requirements generating huge amount of data

urges the need for more sophisticated networks that are highly scalable and which

can provide high throughput, low latency in data delivery and high reliability guaran-

tees [11]. The International Telecommunication Union classifies services which need

to be supported by 5G networks into three different categories. The first category

regroups mobile broadband services such as audio and video streaming which ad-

dresses human-centric use cases and provides access to multi-media content, services

and data with end-users peak data rates reaching 10 Gbps [12]. The second category

targets Machine Type Communications (MTC) which depicts use cases of large num-

ber of connected devices communicating with each other with low-volume, non-delay

sensitive data such as those present in smart homes and smart cities. The third cat-

egory gathers ultra low-latency (i.e., 1 ms) and high reliable (i.e., 99.999%) services

such as those related to transportation safety, remote medical surgery and virtual

reality [11, 12, 13, 14]. Satisfying the variable requirements of these three categories

goes beyond ensuring high data rates, ultra-low latency and high reliability to also

guaranteeing better coverage, providing higher spectrum and improved security. 5G

networks should be highly scalable, agile, elastic, programmable and cost-efficient

[10, 11]. Such characteristics cannot be incorporated to current networks due to their

traditional usage of specific-purpose hardware equipment which are neither elastic

nor can be easily upgraded with new functions [10].

1.3 Enabling Technologies

In light of the presented 5G vision and the limitations of current networks in fulfilling

the 5G requirements, many recent technologies have been gaining the interest of both

industry and academia alike as they will enable the launch of 5G networks.

4

1.3.1 Cloud and Multi-access Edge Computing

The on going advances in cloud computing that consists of enabling on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications and services) will highly assist network operators in

reaching their 5G networks vision [9, 11]. In fact, cloud computing gained momen-

tum due to its capability in providing scalability, on-demand resource allocation,

pay-as-you-use flexible pricing model and reduced management effort enabling an

easy provisioning of applications and services [15]. Given its benefits and their need

to reduce the burden of large amount of traffic generated by the emerging IoT devices

on their core networks, in addition to providing the connectivity of these devices to the

cloud through the Internet while satisfying their low-latency requirements, network

operators extended the centralized cloud computing towards providing a distributed

cloud access at the edge of the network known as Multi-access Edge Computing

(MEC) [14, 15, 16]. By providing computing and storage resources at the edge of

the network in close vicinity of the user, MEC allows IoT devices to overcome their

limited computing resources and short battery life which prevent them from satisfying

the latency requirements of their computation intensive applications [14, 17]. MEC

offers these IoT devices the option to delegate their processing operations to edge

servers by offloading their tasks to be processed by the required applications hosted

at the edge of the network [14, 17].

1.3.2 Network Function Virtualization

The advanced virtualization techniques (e.g., use of Virtual Machines (VMs) or con-

tainers) explored in the cloud constitute a main enabler for the emerging Network

5

Function Virtualization (NFV) technology which will pave the way towards facilitat-

ing the re-design of current networks to become agile, flexible and scalable [9, 10].

By decoupling the physical network equipment from the functions running on top of

them, NFV promises to solve the limitations of specific-purpose hardware also known

as “middleboxes” by enabling their deployment as softwares in the network [6, 9].

These middleboxes represent different types of Network Functions (NFs) which of-

fer a wide spectrum of crucial functionalities ranging from traffic shaping (e.g., rate

limiters, load balancers), security (e.g, firewalls, Intrusion Detection System (IDS)),

Network Address Translation (NAT) and network performance (Wide Area Network

(WAN) optimizer, caches, proxies) [18]. Several studies report the rapid growth of the

number of NFs. For instance, a study done by Sherry et al. shows that the number of

different middleboxes is comparable to the number of routers in an enterprise network

[19]. Today, introducing new NFs require the purchase of vendor-specific hardware

appliances that can be deployed at fixed locations in the network in addition to spe-

cialized personnel to manage and maintain them [9, 20]. NFV suggests replacing these

middleboxes by softwares known as Virtual Network Functions (VNFs) that can be

deployed on general-purpose hardware platforms (e.g., physical servers, switches) on

top of VMs or containers [6, 9, 18]. This provides the flexibility of their deployment

on-demand at different network locations without the need for purchasing and in-

stalling any new hardware, which leads to an efficient utilization of resources and to

an expense reduction [9, 18].

Some NFs can work independently to perform a certain task without any interac-

tion with other NFs [18]. This is the case of a network monitor function responsible

of traffic measurements and monitoring which help in efficiently managing network

resources [18]. However, other NFs are supposed to be chained together in a certain

6

order to describe a defined Network Service (NS). This chain of NFs can be repre-

sented by a NF Forwarding Graph (NF-FG). A NF-FG is graph composed of logical

links connecting NF nodes designed to describe how traffic flows between these NFs

[21]. For instance, in order to provide a security service, the network administrator

may decide to process all HTTP requests by an ordered chain of NFs composed of a

firewall− > IDS− > proxy [18, 20]. Enforcing the chaining policy, that is, ensuring

the ordered processing of the traffic by the specified NFs in the NF-FG is usually per-

formed manually by modifying the forwarding tables entries of the routers which is a

cumbersome and error prone process [22]. While such manual configuration of routing

tables may be efficient in the case where the NFs are hardware middleboxes given

that the locations of these latter rarely change due to the very high cost incurred by

such operation, it is impractical in the case where NFs are implemented as VNFs [22].

In fact, an important advantage that VNFs bring is the option of their re-location

in the network, in addition to the possibility of their instant deployment based on

varying network conditions. In these cases, the routing tables need to be continuously

updated and maintained which implies the necessity for a new technology, Software

Defined Networking (SDN), that helps in their automatic configuration [6].

1.3.3 Software Defined Networking

SDN is an emerging paradigm that is designed to simplify network management by of-

fering an architecture that provides flexible routing by separating the network control

logic (the control plane) from the underlying routers and switches (the data plane)

responsible of forwarding the traffic according to the decisions made by the control

plane [6, 9, 23]. Decoupling the control functionality from the network device allows

network operators to eliminate the operations related to configuring each network

7

device separately using vendor-specific commands in order to enforce the desired net-

work policy. In addition, they will be relieved from handling the possible faults that

can be endured from this manual configuration. SDN moves the control logic to an

external logically centralized entity called SDN controller. Instructed by network ap-

plications about the desired network policy (e.g., a routing application decides on

the path of a flow), the control plane installs the appropriate forwarding rules in all

forwarding devices’ routing tables [23]. SDN provides a logically centralized network

management through its controller that maintains a global view of the network. Such

global view of the network helps in delivering network agility to dynamically adjust to

varying network conditions [9]. Further, SDN is identified for enabling programmable

networks where network configurations can be automated and new service policies

can be dynamically enforced [9, 23].

1.3.4 The Key Technologies Interaction

The combination of cloud computing, NFV, SDN and MEC will play an important

role in the design and implementation of 5G networks. By exploiting virtualization

techniques, cloud computing offers on-demand resource pooling which provides bet-

ter resource utilization of the underlying infrastructure [9, 11]. This will highly assist

5G networks in handling increasing traffic demands. Further, the cloud will offer

the physical and virtual resources that can be used to host VNFs, hence, enabling

the rapid deployment of new services [9]. NFV will free current networks from their

dependency on specific-purpose hardware by replacing them by VNFs that can be au-

tomatically and instantly instantiated and scaled on-demand, and managed through

a common interface. Thus, NFV will unleash the power of current networks due to

the flexibility, manageability and cost-efficiency benefits that it brings [9, 10, 11].

NFV will help in the rapid integration of SDN in current networks given that the

8

SDN controller can be deployed in the form of a VNF [9]. Further, SDN will assist

NFV in enforcing the desired chaining policy between different VNFs that need to

communicate together in order to deliver a NS. SDN will transform current networks

into programmable ones that can dynamically adapt to changing network conditions

[9, 11]. Finally, all these technologies can be incorporated at the edge of the network

to deliver edge computing capabilities that will provide ultra-low latency services to

the emerging IoT devices through the MEC.

1.4 Challenges and Contributions

A successful integration of all the aforementioned technologies, to promote the desired

QoS and QoE foreseen in 5G networks, requires an efficient strategy that can capture

the dependency between the physical network infrastructure resources and the virtual

resources deployed on top of them while maintaining the decoupling aspect of these

latter that has been introduced by NFV. Further, such strategy should be adaptive

to address the different requirements of the targeted 5G services (i.e., mobile broad-

band services, MTC, ultra-low latency high reliable services). Finally this strategy

should deliver the promised advantages of the different used technologies including

flexibility, manageability and programmability. Developing such a strategy is contin-

gent to solving multiple challenges in a NFV-based network. These challenges can be

summarized as follows:

1. The VNF placement problem: As VNFs are softwares that can run on-top of

VMs or containers deployed on general-purpose hardware, a decision on the

placement of these VNFs in the network is a must, that is, which general-

purpose hardware will host which VNF instance.

2. The NF mapping problem: NFs can be chained together to form a NS. Since

9

multiple services may require the same type of NF and given that many instances

(VNFs) of the same NF can be deployed in the network, a decision on which

VNF instance will process the traffic of which NS is important in order to ensure

efficient resource utilization.

3. The traffic routing problem: For an efficient service provisioning, the chaining

policy of the different NFs composing the service needs to be enforced. This

requires determining the route of the traffic of the mentioned service between

the different VNF instances destined to process it. Such route can be specified

with the help of SDN. It should account for a specific bandwidth allocation on

the routing path in order to provide guaranteed performance.

4. The NS scheduling problem: As VNFs can be shared between the traffic of

many NSs, an efficient scheduling of the processing of the traffic of these NSs

on each of the shared VNFs is to be determined. Such scheduling should also

be compliant with the NF-FG of each NS.

This thesis aims at providing a deep understanding of the aforementioned challenges

and their interdependency while proposing several novel approaches that efficiently

address them under different network designs and assumptions. We present our main

contributions in the following.

1.4.1 The Interplay Between Network Function Mapping and

Scheduling

In order to deliver a NS, one needs to first place the VNFs composing the service in

the network. Given the VNFs placed in the network, one can then decide on those

that will process the traffic of the mentioned service, and then determine the route,

compliant with the NF-FG, that should be taken by the traffic. Finally, the schedule

10

of the service on each of the VNFs processing its traffic can be decided. While such

sequential approach provides a legitimate solution of the aforementioned challenges,

we notice that it does not take advantage of the interplay that exists between them.

Hence, we explore, study and evaluate the interplay that exists between the NF

mapping, traffic routing and service scheduling problems and highlight the benefits of

jointly addressing them. Thus, we first mathematically formulate this joint problem

and then propose a novel Column Generation (CG) approach to solve it with the

objective of minimizing the total schedule length of the services. Our CG provides

a Linear Program (LP) lower bound on the optimal Integer Linear Program (ILP)

solution and an ILP upper bound. Further, we capture the offline and online aspects

of the problem and we show through extensive numerical evaluation that jointly

addressing the NF mapping, traffic routing and service scheduling provides an efficient

resource utilization.

1.4.2 Enabling Low-Latency Services in Softwarized Networks

While the CG approach previously developed can serve as a benchmark algorithm

due to its limited scalability, and since 5G networks focus on delivering ultra-low la-

tency services, we revisit the joint NF mapping, traffic routing and service scheduling

problem while addressing services with stringent deadlines. The targeted objective

is to maximize the number of admitted services, that is, those that are able to meet

their latency requirements. We mathematically formulate the problem and propose

a novel game theoretic approach to solve it. The proposed approach provides a dis-

tributed decision model where each NS is free to decide on its own NF mapping,

traffic routing and service scheduling solution. However, the coherence of the sched-

ule of the different NSs is captured by a centralized controller that prevents them

from contending for the same resources (i.e., VNFs) simultaneously. We evaluate our

11

proposed approach in an offline and online settings under different system parameters

and routing schemes while highlighting the impact on the admission rate. We show

that our approach is scalable and that the price of anarchy of the game is upper

bounded by 1
2
(3 +

√
5).

1.4.3 Low-Latency IoT Services in Multi-access Edge Com-

puting

As MEC aims at providing ultra-low latency services while making use of advance-

ment in NFV, we extend our work to the network edge. Thus, we address the joint

problem of task offloading and scheduling in MEC. While the task offloading resem-

bles to the NF mapping problem as it aims at deciding which IoT application, that

can be addressed as a VNF [24], will process the task of which IoT device; the task

scheduling problem consists of determining the order in which each task should be

processed on the shared application while meeting its latency requirement. Unlike

our previous work where we considered that the processing resources allocated to

each VNF are pre-determined, we assume, in this work, that the computing resources

of the different deployed applications need to be determined with the objective of

maximizing the number of served tasks. Addressing the joint task offloading and

scheduling problem under undefined IoT applications computing resources brings an-

other level of complexity to the problem due to the direct impact of the computing

resources allocated to the application on the processing time of the task by this latter.

However, jointly deciding on the task scheduling along with the computing resource

allocation of the IoT applications is highly interesting as it promotes the elasticity

aspect provided by the different virtualization techniques and allow the automatic

accommodation of resources to the variable traffic size and requirements. Hence,

12

we mathematically formulate the problem and propose a Logic-Based Benders De-

composition (LBBD) approach to solve it. LBBD provides the optimal solution of

the problem. Through extensive performance evaluation, we explore valuable perfor-

mance trends to highlight the impact of task offloading and scheduling in meeting the

diverse QoE requirements aligned with 5G vision.

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 discusses in details the NFV

technology and its main challenges while providing a thorough review of the state-of-

the-art. Chapter 3 explores the interplay that exists between the NF mapping, traffic

routing and service scheduling problems and presents a CG approach to jointly solve

them. Chapter 4 targets low-latency services and presents a game theoretic approach

to solve the aforementioned joint problem under different assumptions. Chapter 5

builds on top of the previous work by targeting the task offloading and scheduling

of low-latency services. It overviews edge computing concepts and presents a LBBD

approach to solve the problem. Finally, Chapter 6 concludes the thesis and highlights

potential research problems for future consideration.

This thesis relies on several optimization and game theoretic techniques. Thus,

for a quick review and completeness, we present in Appendix A a brief introduction

and overview on the different techniques that are used in this manuscript.

Notations which are used throughout the thesis are independent from one chapter

to another. Hence, some symbols may appear in different chapters and serve different

purpose.

13

Chapter 2

Network Function Virtualization:

Overview, Challenges and

Literature Review

This chapter presents an overview of the NFV technology while explaining and

defining different related keywords and concepts that will be used throughout this

manuscript. It presents and explains the different elements composing the NFV ar-

chitectural framework. Nonetheless, this chapter also discusses different challenges in

NFV, mainly the VNF placement, the NF mapping, the traffic routing and the NS

scheduling problems which are tackled throughout this thesis. Further, it analyses

the relationship between the aforementioned problems and reviews the works in the

literature.

2.1 Overview and Definitions

Traditionally, provisioning a NS requires network operators to deploy proprietary

devices and equipment for each NF defined as part of the NS. These NFs, also known

14

as components of the NS, usually have strict chaining or ordering requirements which

should be reflected when deploying them in the network. They have many drawbacks

from which we mention limited flexibility, high cost, manual deployment and chaining,

in addition to frequent hardware upgrades. The dependence of network operators on

these specialized hardware, that we refer to by middleboxes resulted in high CAPEX

and OPEX. Furthermore, the emergence of new services requires Telecommunication

Service Providers (TSPs) to continuously purchase, store and operate new physical

equipment which demand highly trained and skilled personnel that can manage and

operate these vendor-specific hardware [9, 20].

These limitations forced TSPs to look for new ways to solve the aforementioned

challenges in order to be able to flexibly and automatically adapt to changing users

demands. Hence, NFV was proposed as a promising solution to solve these challenges.

Seven companies (AT&T, BT, Deutsche Telekom, Orange, Telecom Italia, Telefonica

and Verizon) selected the European Telecommunications Standards Institute (ETSI)

to be the main party responsible of addressing NFV specification and challenges [9].

NFV leverages virtualization technologies such as VMs and containers to change

the way NSs are designed, deployed and managed [9, 20, 25]. NFV consists of deploy-

ing NFs as VNFs instead of Physical Network Functions (PNFs). NFs, VNFs, and

PNFs can be distinguished as follows:

1. NF

A NF is a functional block within a network infrastructure that has well-defined

external interfaces and well-defined functional behavior [21]. Examples of NFs

include firewalls, IDS, load balancer, etc.

2. VNF

A VNF is an implementation of a NF that can be deployed on a virtual resource

such as a VM or a container. Note that while VMs and containers represent

15

a virtualized computation environment that behaves like a physical server or

computer (i.e., has a processor, a memory, etc.); VMs run their own operat-

ing systems while containers are more light weight as they do not require a

duplication of the operating system [9, 21].

3. PNF

A PNF is an implementation of a NF via a tightly coupled software and hard-

ware system [21]. In the rest of this manuscript we will use middlebox and PNF

interchangeably.

A NS is an offering provided by the TSP to its end users [9]. It is composed of

one or more NFs, which combined, determine a certain functionality [9, 21]. The

NFs composing the NS are chained in a specified order, that is, the traffic of the

NS should be sequentially processed by an ordered chain of NFs [9, 20, 21]. Such

chaining of NFs is represented by a NF-FG. Violation of the ordered processing of

the traffic determined by the NF-FG may lead to its erroneous processing causing

degraded performance and security breaches [20]. For instance, if a cache processed

the traffic prior to a firewall, the cache may be compromised by malicious external

traffic putting all the network at risk [20]. For more clarity, we define a NS and a

NF-FG as follows:

1. NS

A NS is a composition of NF(s) defined by its functional and behavioral spec-

ification. The end-to-end NS behavior is the result of the combination of the

individual NFs behaviors and their ordered chaining [21].

2. NF-FG

A NF-FG is a graph of logical links connecting NF nodes for the purpose of

describing traffic flow between these NFs [21].

16

Note that, in the remaining of this manuscript, we use “NF” to refer to the functions

requested by the NS in its NF-FG; whereas, we use “VNF” to depict the softwares

that are actually deployed in the physical network.

NSs determined in NFV can be different from current existing NSs as they can

be defined by a chained set of virtualized (VNF) and/or non-virtualized (PNF) NFs

which will require interoperability among legacy and NFV-based network domains

[26]. Thus, in the following, we present a NFV architectural framework that supports

the diversity of NFs and standardizes their deployment, management and orchestra-

tion.

2.2 NFV Architecture

ETSI presents a NFV architecture (Fig.2.1) composed of three different administrative

domains:

1. Network Function Virtualization Infrastructure (NFVI)

The NFVI regroups virtualized and non-virtualized resources encompassing dif-

ferent software (i.e., VMs) and hardware resources such as commercial-of-the-

shelf computing hardware, storage and network (i.e., nodes and links) that

enables the deployment and the connectivity of different VNFs [9, 26, 27].

2. VNF

A VNF is the software implementation of a NF and run on top of the NFVI

[26].

3. NFV Management and Orchestration (NFV-MANO)

The NFV-MANO framework is responsible of the orchestration and life cycle

management of NSs including all relevant functions ranging from the deploy-

ment of VNFs and the provisioning of their infrastructure resources provided

17

2. VNF Manager (VNFM)

The life cycle management of one or more VNFs, including the instantiation,

software update, scaling and termination of VNF instances, is attributed to

a VNFM. The VNFM collects virtualized resource performance measurements

and fault information from the VIM to take some decisions related to scaling

the resources provisioned for a VNF for example. Further, it coordinates and

interacts with the Element Management (EM) to perform some management

operations such as fault, configuration, performance, accounting, and security

[1]. The EM has some overlapping functionalities with the VNFM, however,

the EM interacts with the VNFs through proprietary methods. It can play the

role of a proxy by exposing the VNF management functions to the VNFM [1].

3. NFV Orchestrator (NFVO)

The NFVO performs resource orchestration. That is, it plays an important role

in the orchestration (allocation/de-allocation) and management of the NFVI

resources across multiple VIMs. It manages the instantiation of VNFMs and

coordinates with them to decide on the instantiation of VNFs. The NFVO ful-

fills another major functionality related to the service orchestration that yields

determining the interconnection of VNFs to provide a NS [1, 27]. Hence, the

NFVO is responsible of the NS life cycle management including its update,

scaling, performance and termination [27].

Finally, it is worth noting that the NFV-MANO framework encompasses a set of

reference points to enable the communication among different NFV functional blocks

as well as well the coordination with traditional network management systems such

as operations support system and business/billing support systems to allow the man-

agement of both VNFs as well as functions running on legacy equipment (PNFs)

[9].

19

move them to other locations in order to adapt to traffic demands, one can note that

enforcing the chaining policy in a PNF-based network can be at the cost of network

resource consumption.

The use of VNFs can solve this problem given that they offer the flexibility to be

deployed anywhere in the network and even collocated on the same physical server as

shown in Fig.2.2.b. In this case, the traffic will not have to traverse the same route

multiple times as in the case of PNFs (Fig.2.2.a), thus, significantly reducing the

bandwidth consumed. It is clear from this example, that the usage of VNFs provides

the flexibility of jointly optimizing their placement and the traffic route with respect

to the NF-FG as they can be deployed anywhere in the network. Such optimization

promotes efficient resource utilization which can lead to an increase in the TSPs

revenues as they will be able to serve an increasing amount of traffic.

In the example shown in Fig.2.2, one VNF instance of each NF was deployed in

the network, however, in the case where many VNFs of the same NF were provisioned

in the network, the challenge becomes to choose which of these VNFs will process the

traffic of the NS.

Further, given that the traffic of many NSs can be processed by the same VN-

F/PNF, the load on these latter may increase and surpass their capacity. In this

case, the NS may be rejected from the network when it is destined to be processed

by a PNF, however, in a VNF-based network, a new VNF instance can be instantly

provisioned and the traffic of the NS can be redirected to be processed on the new

deployed instance. Finally, it is worth noting that when many NSs are sharing the

same VNF, the processing of their traffic should be scheduled on it.

Hence, in order to reach the desired benefits of NFV, many challenges that we

elucidate in the following need to be tackled.

21

2.3.1 The VNF Placement Problem

As VNFs can be deployed on VMs running on commodity hardware (e.g., physical

servers, switches) which have finite amount of memory, compute and storage capacity,

efficient resource utilization should be performed in order to achieve the economies of

scale [9, 28]. While each VNF can be hosted on a dedicated VM, the authors of [9, 28]

argue that such approach may result in a high VM footprint that can be avoided by

allowing multiple VNFs to share the same VM. Hence, decisions about where to place

each VNF should be made while guaranteeing that their computing requirements are

met and while accounting for several objectives such as load balancing, energy saving,

CAPEX and OPEX, etc. [9, 22, 25].

The VNF placement problem is similar to the Virtual Network Embedding (VNE)

problem that consists of allocating virtual resources to both nodes and links in the

substrate network [22, 28, 29]. However, unlike the case of VNE where the virtual

network topology is given [30], a NS is composed of a set of VNFs with precedence

constraints. In addition, the computing and network resources required are mostly

static in VNE whereas they are variable in a NS and depend on the traffic load

and the order of the VNFs in the chain [22]. For instance, some VNFs perform

data compression/decompression (e.g., video streaming compression) and hence the

bandwidth requirements between VNFs in the chain may vary [22, 31]. Thus, given a

set of requested NSs, the VNF placement problem seeks at determining the number

[25] and the placement of VNFs in the network while satisfying their computing

requirements and optimizing a specific objective (i.e., minimize resources consumption

[32], maximize the number of admitted requests [33], minimize OPEX [25], etc.).

The VNF placement problem has been proven to be NP-Hard [22, 25, 33, 34] and

hence, many heuristics and optimization techniques have been proposed to solve it

[25, 33, 34, 35, 36].

22

2.3.2 The NF Mapping Problem

Given a set of VNFs provisioned in the network, the NF mapping problem also referred

to as the assignment problem [37] consists of mapping the NFs of a NF-FG of a given

NS to the VNFs deployed in the network [25, 38]. NFs should be mapped to VNFs

instances of the same type (i.e., firewall, proxy, etc.) while respecting their processing

capacity [25]. The NF mapping problem defines which deployed VNF instances will

be in charge of processing the traffic of each NS [37].

The NF mapping problem is NP-Hard as explained in [30]. It is usually jointly ad-

dressed with several other problems such as the VNF placement problem [25, 39], the

scheduling problem [38], while considering several objectives ranging from minimizing

the resources consumption[30] and the OPEX [25].

2.3.3 The Traffic Routing Problem

Given that the traffic of a NS needs to be processed by a chain of VNFs in a defined

order, techniques to steer the traffic through them should be applied. In traditional

communication networks where NFs are implemented in the form of middleboxes,

changes on the traffic flow path is made so that it can traverse through the specified

ordered chain of middleboxes [32]. This is usually done by manually crafting routing

tables which is an error prone process [40, 41]. It is also difficult for network operators

to continuously and manually adjust network configuration in response to changing

network conditions [9].

To overcome these challenges, SDN has been employed to dynamically adjust to

network traffic flow based on changing demands. Hence, SDN provides automatic

network configuration through an SDN controller that dictates the overall network

behavior [23]. Above the technicality of enforcing the service chaining policy, the

23

selected routing path should account for the bandwidth that needs to be guaranteed

for the transmission of the traffic [39] in addition to the latency requirements of the

NS [9, 37]. Hence, the traffic routing problem consists of determining the routing

path that interconnects the placed VNFs [37].

The traffic routing problem is NP-Hard [34] and is usually addressed in conjunction

with the VNF placement problem [25, 36, 37, 39] given the interplay that exists

between them. For instance, a shortest path may be selected in case of limited

network bandwidth and sufficient VMs whereas a longer route may be chosen to

promote the reuse of VNFs given their limited number/computing resources, while

tolerating more bandwidth consumption [39].

2.3.4 The NS Scheduling Problem

NFs of different NSs may be mapped to the same deployed VNF. Hence, their traffic

will be sharing the same computing resources assigned to the VM on which the VNF

is deployed. For such sharing to be possible, scheduling techniques should be applied

[9]. Standard operating system schedulers do not make decisions that account for

chain level information (e.g. order of NFs) [42]. Determining how to dynamically

schedule NFs is crucial to achieve high performance of the NSs [42].

Hence, the NS scheduling problem consists of determining the processing time

slots on each VNF of the various NSs sharing the same VNF subject to their chaining

and latency requirements [31, 38, 43]. In other words, the NS scheduling problem aims

at deciding on the allocation of the VNFs computing resources (i.e, CPU schedule

allocation) to the traffic of a given NS.

The NS scheduling problem can be formulated as a Resource Constrained Project

Scheduling Problem (RCPSP) known as NP-hard [43, 44]. Few works in the literature

addressed this problem by formulating it with the objective of minimizing the schedule

24

length needed to serve all the NSs [31, 43]. Heuristics and meta-heuristics have been

also proposed to solve this problem [31, 38].

In the following, we present a detailed review of the literature works that tackled

the above challenges.

2.4 Literature Review

We will first present a literature review of the works that addressed the VNF place-

ment and traffic routing problems as they are greatly tighten together and implicitly

consider the NF mapping problem. We will then overview the works done on the NS

scheduling problem.

2.4.1 VNF Placement and Traffic Routing problem

Many studies tackle the VNF placement and traffic routing problems jointly using dif-

ferent techniques which vary between algorithmic solutions, optimization techniques

and game theoretic approaches.

2.4.1.1 Algorithmic Approaches

The early work of PACE [36] seeks at presenting a policy-aware application cloud em-

bedding approach that guarantees applications isolation in the cloud. Such isolation

induces no sharing of any NFs, routing and forwarding tables and no communica-

tion between VMs of different applications. To this end, they propose a flow security

graph to abstract each application’s requirements including network bandwidth, com-

puting resources and reliability requirements. Using the defined flow security graph,

and the given number of VNFs to deploy, they address the VNF placement problem

and traffic routing problems disjointly while overlooking the ordering of the required

25

NFs. The authors of [36] provide an online algorithm to solve the VNF placement

problem. They account for the obtained VNF placement solution to solve the traf-

fic routing problem. Their objective is dictated by maximizing the benefits of the

allocated requests. PACE strategy in preventing the sharing of VNFs between mul-

tiple applications in order to provide their isolation results in an inefficient resource

utilization and over-provisioning of VNFs.

The work in [32] solves the VNF placement problem by taking into consideration

the chaining policy depicted in the NF-FG. The authors of [32] argue that the traffic

steering technique, used to enforce chaining policy, may cause forwarding loops, con-

gestion and overload of middleboxes. Traffic steering refers to directing the traffic so

that it traverses through the specified ordered set of middleboxes. To overcome these

shortcomings, the authors of [32] propose placing the VNFs on the path of each flow,

rather than modifying the flow path in order to enforce the chaining policy. Their

VNF placement solution considers deploying one VNF instance in the network path

of each flow for each required NF. They argue that VNFs can be either deployed on

VMs or processed on a router or a switch. Hence, they provide a mathematical for-

mulation of the VNF placement problem with the objective of minimizing hardware

resource consumption. They seek at deploying the minimum number of VNFs by

considering sharing them among different flows. Given the complexity of the VNF

placement problem, they develop an algorithm to solve it. The work in [32] overlooks

guaranteeing bandwidth for the communication between these VNFs.

Bari et al. [25] solve the VNF placement and traffic steering problems jointly.

They provide an ILP formulation that accounts for the ordering of NFs defined in

the NF-FG with the objective of minimizing the OPEX (i.e., VNF deployment cost,

energy cost, traffic forwarding cost, etc.) and resource fragmentation cost. The

work in [25] argues that minimizing the resource fragmentation that represents the

26

percentage of idle resources of active servers and links can increase the admission of

more traffic. Given the computational complexity of the joint problem, they propose

a dynamic programming based heuristic to solve it.

The authors of [37, 45] account for the end-to-end delay of the NS. In fact, the

work in [37] argues that the VNF placement and traffic routing solution should keep

the NSs end-to-end delays comparable to those observed in traditional middlebox-

based networks. Thus, the authors propose an ILP formulation for the joint VNF

placement, NF mapping and traffic routing problem while considering that the total

end-to-end latencies between VNFs, in addition to the delay incurred by the packets

processing on the VNFs should be less or equal than a maximum allowable delay. With

the objective of reducing the number of deployed VNFs and given the complexity

of the problem, they propose a heuristic to solve it. Similarly, the authors of [45]

mathematically formulate the same problem with the objective of minimizing the

VNF placement and chaining of NSs including the cost of deploying the VNFs, the

cost of using the servers and the cost of communication (i.e., bandwidth). They

accounted for QoS guarantees which they enforce by ensuring that the processing

and transmission delays of the traffic of a NS fall within a maximum allowed latency.

Given the complexity of the problem, they propose a cost-efficient centrality-based

VNF placement and chaining algorithm to solve it.

2.4.1.2 Optimization Techniques

The work in [33] addresses the joint VNF placement, NF mapping and traffic routing

problem with the objective of maximizing the number of admitted traffic flows. The

authors of [33] mathematically formulate the problem and propose a cut and solve

based approach that provides the optimal solution of the problem. Similarly, the

27

authors of [46, 47] use a decomposition technique to jointly solve the VNF place-

ment, NF mapping and traffic routing problems by employing a column generation

approach with the objective of minimizing the bandwidth consumed. Addis et al.

[35] study the joint problem of VNF placement and traffic routing optimization while

considering the bit-rate variations at each VNF due to specific operations (compres-

sion/decompression). They mathematically formulate the joint problem with a dual

objective of minimizing the maximal link utilization and the allocated computing

resources. They propose a math-heuristic approach to solve it where they first solve

the problem by optimizing the link utilization, then they account for the obtained

solution to optimize the allocated computing resources.

2.4.1.3 Game Theoretic Approaches

Few works in NFV used the game theoretic technique to address some of the challenges

faced by this technology. For instance, the work in [48] formulates the joint problem

of VNF placement and traffic routing as an ILP and presented a game theoretic

approach to solve it. The authors consider that each NS is a player which chooses

the placement of its VNFs and the shortest path to route its traffic with the aim of

minimizing its own operating cost. Salvatore et al. [49] solve the VNF placement

problem while accounting for the communication latencies between servers that can

host VNFs through proposing a congestion game where forwarding graphs act as

players. The authors of [50] formulate the VNF placement problem as a partitioning

game where the VNFs corresponding to the NF-FG are the players. Each VNF has

to choose a partition (i.e., VM) to be placed on with the objective of minimizing its

allocation/moving cost. The work in [51] presents a mixed strategy non-cooperative

game where each NS is a player which has to choose a provisioning scheme for its

NF-FG from those provided by the broker and which maximizes its profit and meet

28

its QoS requirements (i.e., latency).

2.4.2 NS Scheduling Problem

The NS scheduling problem received little attention. It was mainly introduced in

[38, 52]. Riera et al. [52] formulate the NS scheduling problem as a flexible job-shop

problem with the objective of minimizing the makespan.

The work in [38] formulate the online NF mapping and scheduling problems and

presented different algorithmic solutions to solve it. Mijumbi et al. develop the

greedy fast processing algorithm which consists of mapping NFs to the nodes that

offer the best processing times. They propose the greedy best availability which maps

NFs to nodes whose current function queue has the earliest completion time. The

authors develop the greedy least loaded algorithm that maps NFs to the node with

highest available buffer capacity. Finally, they propose a Tabu-Search (TS) based

meta-heuristic that starts by an initial solution which performs a random placement

of VNFs of a NS to candidate VMs. Each VNF is then scheduled on the VM where

it has been placed. This initial solution is improved by a tabu move that consists of

moving the VNF with the biggest preceding time gap from one VM to another. A

preceding time gap is defined as the time between the completion of a preceding VNF

and the start of processing of the current VNF.

Following these two works, Qu et al. [31] formulate the NS scheduling problem as

Mixed ILP (MILP) and develop a genetic algorithm to solve it. They consider that the

bit-rate demand of each flow can change along the NF-FG due to some specific NFs

operations (e.g., compression/decompression). Thus, while minimizing the makespan,

they explore the benefits of dynamic bandwidth allocation and bit-rate variation for

the communication between the VNFs in improving the network performance. None

of the above works on the NS scheduling problem study the impact of traffic routing

29

on scheduling delays.

The scheduling problem in NFV has been addressed in different context. For

instance, queuing theory has been used by [53] to solve the VNF placement and

scheduling problem. The authors of [53] consider a single queue for each VM running

different types of VNFs. Each VNF can process a maximum number of requests at

a time. kulkarni et al. [42] propose NFVnice, a NF scheduling and NS chain man-

agement framework that provides fair resource scheduling capabilities by providing

a preemptive schedule for NFs sharing the same Central Processing Unit (CPU) re-

sources. The proposed framework achieves backpressure for NS chain-level congestion

control by avoiding unnecessary packet processing early in the NF-FG if it might be

dropped later on. This is the case where an overload is detected by an upstream VNF

which is supposed to process the determined packet. In [54], the authors solve the

multi-flow scheduling problem in the context of SDN where switch tables need to be

modified to adapt to network updates. With the objective of reducing the update

time, the work in [54] formulates the network update problem and proposed a linear

based polynomial-time algorithm to solve it.

2.5 Conclusion

In this chapter, we presented and defined several concepts and keywords related to

NFV. We explored the NFV-MANO framework. In addition, we explained through

a concrete example the difference between a PNF-based network and a VNF-based

network in the quest of highlighting the benefits brought by NFV. We also identi-

fied, explained and reviewed major challenges in NFV which are the VNF placement

problem, the NF mapping problem, the traffic routing problem and the NS scheduling

problem.

30

Chapter 3

On the Interplay Between Network

Function Mapping and Scheduling

in VNF-Based Networks
1

The short time to market of NSs that NFV promises should be leveraged by an

efficient utilization of TSPs’ networks. This is motivated by a smart processing of NSs

through their required NF-FGs, which is not a trivial task as it requires solving three

inter-related problems; the NF mapping problem, the traffic routing problem and the

NS scheduling problem. This chapter highlights the interplay that exists between

the three aforementioned problems and proposes a novel primal-dual decomposition

using CG that solves exactly a relaxed version of the joint problem and can serve as

a benchmark approach. A numerical evaluation of the discussed method is presented

and shows that CG can attain optimal solutions substantially faster than the initial

MILP designed for this problem. Finally, this chapter underlines several engineering

insights for improving the network performance.

1This chapter has been published in IEEE Transactions on Network and Service Management
[55].

31

3.1 Introduction

Introducing NFV to current networks is a daunting task as it requires overcoming

several technical challenges when deploying and managing VNFs. Among their in-

terests in increasing their revenues, TSPs are advised to promise a certain level of

QoS depicted by a guaranteed network performance and NS response time [25, 56].

Hence, in order to fulfill these requirements, they need to implement a cost-effective

VNF allocation policy able to ensure efficient utilization of their network resources.

Such policy should respect the chaining of NFs demanded by a NS and represented

in its NF-FG. Satisfying such chaining is of paramount importance in preventing

the erroneous processing of the NS traffic and the violation of its performance and

security.

With the continuous change of the requirements of emerging NSs and the in-

creasing size of networks, automated NF mapping, traffic routing and NS scheduling

constitute fundamental elements for enforcing such cost-effective VNF allocation pol-

icy. Thus, in this chapter, we build our work on top of the studies done in [38, 31],

while exploring the cross-layer interaction that exists between the NF mapping, traf-

fic routing and NS scheduling problems. We jointly solve these three problems and

refer to them by the Service Function Chaining Scheduling problem (SFCS). Not only

do we consider transmission and processing delays but also we guarantee bandwidth

to route the traffic between the VNFs. Through several motivational examples, we

expose the combinatorial complexity of the problem given the large number of sched-

ules and routing paths possible for a determined NF mapping corresponding to a NS.

Due to the large solution space that requires an efficient technique to explore and

enumerate possible feasible solutions, we investigate and present a novel primal-dual

decomposition approach using CG [57, 58]. To the best of our knowledge we are the

32

first to solve the SFCS problem using this technique.

3.1.1 Novel Contributions

The contributions of this chapter can be summarized as follows:

1. We study and present several motivational examples that highlight the interplay

which exists between the NF mapping and NS scheduling problems on one hand,

and the traffic routing and NS scheduling challenges on the other hand.

2. We define and formulate the SFCS as a MILP (SFCS-MILP) able to provide the

optimal mapping, routing and scheduling of the requested NSs while minimizing

the total schedule length.

3. Given the complexity of the problem, we explore and introduce a cross-layer

strategy to solve the SFCS problem by applying a primal-dual decomposition

using CG(SFCS-CG) [57, 58, 59, 60]. We divide the problem into a Master

Problem (MP) and multi-pricing Sub-Problems (SPs). Each pricing SP defines

a feasible column for a given NS. Here, a NS column holds the NF mapping,

the traffic routing and the NS scheduling decisions. The MP selects a column

for each NS while making sure that the resources capacity constraints are not

violated. The MP tries to choose the subset of columns that reduces the schedule

length of all the NSs.

4. CG provides an LP lower bound on the optimal ILP solution of the SFCS-

MILP formulation and an ILP upper bound. In order to improve the gap that

exists between the LP lower bound and the ILP upper bound. We apply several

diversification techniques able to explore the solution space and feed the master

model with additional columns.

33

5. We develop an online CG approach where the CG algorithm is run periodically

on a batch of NSs. We show that by reducing the schedule length of all the

NSs, network operators will be able to serve more traffic in a shorter period of

time, hence efficiently utilizing their resources and increasing their revenues.

6. Our numerical evaluation shows that our SFCS-CG approach is much more

scalable than our SFCS-MILP formulation.

The remainder of this chapter is organized as follows: Section 3.2 exploits the inter-

play that exists between the NF mapping, the traffic routing and the NS scheduling

problems and explains their impact on the resource utilization. Section 3.3 provides

a definition and a formulation of the SFCS problem. Section 3.4 explains our CG ap-

proach. We expose our online CG algorithm in Section 3.5. Our numerical evaluation

is presented in Section 3.6. We conclude in Section 3.7.

3.2 Motivation and Challenges

3.2.1 Problem Description

VNFs are software modules that run on VMs hosted on commodity hardware [9, 28,

56]. Thus, they require certain physical resources (i.e. CPU, RAM, storage, etc.)

and have some processing capacity [28]. The problem of determining the number

and the placement of VNFs in the physical network while satisfying their resource

requirements is the VNF placement problem and is related to the VNE problem

[29]. The VNF placement and the VNE problems have been widely studied in the

literature [18, 25, 29, 32, 36] and are outside the scope of this contribution. In fact,

studying the interplay that exists between the VNF placement problem along with the

mapping, routing and scheduling problems is interesting. For instance, one may want

34

links (l ∈ L) of uniform capacity cl = 30Mbps. These servers are hosting VNFs of

different types (i.e., f1, ..., f7) as shown in Fig.3.1.a. Here, f1, ..., f7 can represent

a firewall, a proxy server, a cache, etc. The VNFs hosted in the network may have

different processing capacities. The processing time P f
s required to process the traffic

of a NS s on a VNF f is calculated using Eq.(3.1) where ws is the traffic size of NS

s and pf depicts the processing capacity of VNF f . For the sake of simplicity, we

assume in our following motivational examples that all VNFs have the same processing

capacity pf = 24Mbps.

P f
s =

ws

pf
(3.1)

We explore the mapping, routing and scheduling of two NSs S1 and S2 having differ-

ent computing and network requirements. Here, we consider that each NS requests a

set of NFs of defined types in the form of a NF-FG. We represent the required NF-FG

as a virtual network where the virtual nodes depicting the NFs are connected by vir-

tual links. For instance, S1 (Fig.3.1.b) requests a chain of two NFs; n1 of type f2 and

n2 of type f4 which are connected by a virtual link denoted by e1. The processing

time of the traffic of S1 on each VNF is calculated based on Eq.(3.1). Similarly, the

network requirements of NS S2 are depicted in Fig.3.1.c. Further, we assume that

time is divided into slots (i.e., t1, t2, t3, etc.), each representing a duration of one

second. In addition, we calculate the transmission delay Ds of the traffic of a NS

s on each physical link on which it is routed by applying Eq.(3.2) where bs depicts

the bandwidth to be guaranteed for s and ws is the traffic size of the NS as specified

earlier.

Ds =
ws

bs
(3.2)

3.2.2 Mapping, Routing and Scheduling Problems

Satisfying a NS requires:

36

is not being used and has an available bandwidth (cl = 30Mbps) ≥ (bs1 = 16Mbps),

the virtual link e1 of S1 can be mapped/routed through this shortest path (l1).

Ds1 = 3 time slots (Eq.(3.2)) are needed for the transmission of all the traffic of

S1 which arrives to f4 hosted on PS2 at t5 when its processing starts on this latter

and lasts for P f4
s1 = 2 time slots. Hence, the completion time of S1 is t7. The traffic

of S2 gets processed on f2 hosted on PS1 for one time slot (t2) (P f2
s2 = 1 time slot)

(Fig.3.2.b). We choose the shortest path (link l1) to transmit the traffic of S2 from

PS1 to PS2 so it can get processed on f6 where n′
2 is mapped. Even though the

traffic of S2 is ready to be transmitted at t3, it has to wait for 2 time slots (t3 and

t4) to be able to get routed through l1 (Fig.3.2.b). The reason behind this is that the

bandwidth bs2 = 24Mbps required by S2 cannot be guaranteed on l1 at time slots

t3 and t4. In fact, the available bandwidth on l1 at t3 and t4 is bwl1 = cl − bs1 =

30− 16 = 14Mbps, since the traffic of S1 is being routed through l1 at a guaranteed

bandwidth bs1 = 16Mbps. Hence, bwl1 ≤ bs2, which would delay the transmission of

the traffic of S2 for 2 time slots until the bandwidth used by S1 on l1 is released.

Thus, the transmission of the traffic of S2 starts at t5 and lasts for one time slot

before it gets processed by f6 hosted on PS2. The completion time of S2 is thus t7

(Fig.3.2.b).

Here, we observe that S1 achieves its shortest schedule as it is using the shortest

path route with no waiting delay for its traffic processing and transmission. However,

we depict that the decisions of mapping the NFs n1 and n
′
1 of S1 and S2 respectively

to the same VNF f2 hosted on PS1 and routing their traffic through the same shortest

path (link l1) affected and delayed the schedule of S2 and under-utilized the network

resources as we will explain in the next paragraphs.

38

PS4 and PS2 and able to guarantee the bandwidth bs2 = 24Mbps required by S2.

Given this mapping and routing, the traffic of S2 can start processing on f2 hosted

on PS4 at t0 for P f2
s2 = 1 time slot, starts transmission at t1 for Ds2 = 1 time slot,

then gets processed by f6 hosted on PS2 at t2 (Fig.3.4.b). Thus, with this mapping

and routing, S2 achieves its shortest schedule that gets completed at t3.

A different mapping of the NFs of S2 allowed better utilization of idle network

resources (f2 hosted on PS4 and l5) and decreased the completion time of S2. This

highlights the interplay that exists between NF mapping and NS scheduling. Further,

it is important to note that reducing the completion time of a NS is in the best interest

of network operators which will have their network resources freed sooner, and thus

can be reused by other NSs. Hence, they can admit and process more requests.

3.3 SFCS - A Mixed Integer Linear Program (SFCS-

MILP)

Solving the SFCS problem entails considering collectively the NF mapping, traffic

routing, and NS scheduling problems due to the interplay that exists between them

(Section 3.2). In the following, we define and present a mathematical formulation for

the SFCS problem.

3.3.1 Problem Definition

Let G(K,L) be a physical network of set K of nodes (i.e, servers, switches, etc.)

hosting VNFs and a set L of physical links connecting them. Given a set S of NSs,

each NS requests its traffic to be processed by a chain of NFs in a defined order and

transmitted from one function to another at a guaranteed bandwidth. Satisfying these

NSs requires providing an efficient NF mapping, traffic routing and NS scheduling of

41

Physical network inputs

G(K,L) Physical network of set K of nodes and a set L of physical links
connecting them.

F Set of VNF instances running on VMs hosted on the physical servers
k ∈ Kp.

T Set of types of all VNFs f ∈ F .
tf ∈ Z+ Type of a VNF instance f ∈ F (tf ∈ T)
cij ∈ Z+ Capacity of a physical link (ij) ∈ L.
xkf ∈ {0, 1} VNF instance f ∈ F is hosted on the physical server k ∈ Kp (1) or

not (0).

NS inputs

S Set of NS requests.
Hs(Ns, Es) A directed graph representing the NF-FG of a NS s ∈ S.
bs ∈ Z+ Bandwidth demanded by NS s ∈ S.
ws ∈ Z+ Traffic demand of NS s ∈ S.
mns ∈ Z+ Type of a NF n ∈ Ns of NS s ∈ S.
pns ∈ Z+ Processing time of the traffic of NS s ∈ S on the NF n ∈ Ns.
∆ Set of time slots δ ∈ ∆.

Table 3.1: Parameters of the SFCS-MILP.

the traffic of each of those NSs. The most beneficial schedule is the one that satisfies

all the NSs while minimizing their total schedule length. Hence, we define the SFCS

problem as follows:

Definition 3.1. Given a physical network G(K,L) hosting and running different

types of VNFs, a set S of NS requests, each demanding the processing of its traffic

by a chain of NFs as specified in its NF-FG; find the optimal mapping, routing and

scheduling of the traffic of these NSs such that their total schedule length is minimized.

3.3.2 Problem Formulation

Table 3.1 delineates the parameters used in the formulation of the SFCS-MILP prob-

lem presented below. We define the decision variable % ∈ N+ to represent the schedule

length that depicts the time needed to complete the processing of the traffic of all

42

Decision variables of the SFCS-MILP

% ∈ N+ Schedule length of all the NSs.
yfδns ∈ {0, 1} Specifies that the traffic of NS s started processing at time slot δ

on VNF f ∈ F to which NF n is mapped (1) and (0) otherwise.
zfδns ∈ {0, 1} Specifies that the traffic of NS s is processing at time slot δ on VNF

f ∈ F to which NF n is mapped (1) and (0) otherwise.
qkns ∈ {0, 1} Determines that NF n of NS s ∈ S is mapped to a VNF hosted on

server k (1) and (0) otherwise.
hkns ∈ {0, 1} Indicates that NFs n, (n + 1) of NS s ∈ S are mapped to VNFs

hosted on the same server k (1) and (0) otherwise.
θδes ∈ {0, 1} Designates that a NF o(e) ∈ Ns of NS s begins the transmission of

the traffic to its successor NF d(e) at time slot δ ∈ ∆ on the virtual
link e (1) and (0) otherwise.

θ̂δes ∈ {0, 1} Indicates that the virtual link e is being used for traffic transmis-
sion between the NFs o(e), d(e) of NS s at time slot δ (1) and (0)
otherwise.

leij ∈ {0, 1} Denotes that the virtual link e of NS s is routed through the link
(ij) ∈ L (1) and (0) otherwise.

Table 3.2: Decision variables of the SFCS-MILP.

the NSs. Our objective (Eq.3.3) seeks at minimizing the schedule length needed to

process all the NSs.

Minimize % (3.3)

This objective is subject to several constraints. Thus, we define a new decision vari-

able yfδns ∈ {0, 1} which specifies that the traffic of NS s ∈ S started processing at

time slot δ ∈ ∆ on VNF f ∈ F to which NF n ∈ Ns is mapped.

yfδns =

1 if traffic of NS s started processing at δ on VNF f to which NF n is mapped,

0 otherwise.

We introduce the decision variable zfδns ∈ {0, 1} to specify that the traffic of NS s ∈ S

is processing at time slot δ ∈ ∆ on VNF f ∈ F to which NF n ∈ Ns is mapped.

43

zfδns =

1 if traffic of NS s is processing at δ on VNF f to which NF n is mapped,

0 otherwise.

qkns ∈ {0, 1} is a new decision variable which depicts that the NF n ∈ Ns of NS s ∈ S

is mapped to a VNF instance hosted on a physical server k ∈ Kp (1) (or not, 0).

qkns =

1 if NF n is mapped to a VNF hosted on server k,

0 otherwise.

Further, we declare the hkns ∈ {0, 1} as a new decision variable to indicate that NFs

n, (n+ 1) ∈ Ns of NS s ∈ S are mapped to VNFs hosted on the same physical server

k ∈ Kp (1) (or not, 0).

hkns =

1 if NFs n, (n+ 1) of NS s are mapped to VNFs hosted on the same server k,

0 otherwise.

We also define the variable θδes ∈ {0, 1} to designate that a NF o(e) ∈ Ns of NS s ∈ S

begins the transmission of the traffic to its successor NF d(e) ∈ Ns at time slot δ ∈ ∆

on the virtual link e ∈ Es (1) (or not, 0).

θδes =

1 if NF o(e) of NS s started the transmission of the traffic to NF d(e) at time

slot δ on virtual link e,

0 otherwise.

The variable θ̂δes ∈ {0, 1} indicates that the virtual link e ∈ Es is used for traffic

transmission between the NFs o(e), d(e) ∈ Ns of NS s ∈ S at time slot δ ∈ ∆ (1) (or

44

not, 0).

θ̂δes =

1 if NF o(e) of NS s is transmitting the traffic to NF d(e) at time slot δ

on virtual link e,

0 otherwise.

We declare leij ∈ {0, 1} to denote that the virtual link e ∈ Es of NS s ∈ S is routed

through the physical link (ij) ∈ L (1) (or not, (0)).

leij =

1 if virtual link e is routed through physical link (ij),

0 otherwise.

1. NF mapping constraints

We first start by determining the NF mapping constraints. Thus, we define

Eq.(3.4) to ensure that each NF n of NS s should be mapped to exactly one

VNF instance f .
∑

f∈F

∑

δ∈∆

yfδns = 1 ∀n∈Ns
∀s∈S (3.4)

Eq.(3.5) guarantees that a NF n of NS s is mapped to a VNF instance f of the

same type.
∑

f∈F

∑

δ∈∆

yfδnstf = mns
∀n∈Ns
∀s∈S (3.5)

2. NS scheduling constraints

To ensure a correct and feasible scheduling of NSs, we prevent in Eq.(3.6) the

transmission of the traffic of a NS s between two consecutive NFs o(e) and d(e)

45

if its processing on o(e) has not been completed.

θδ
′e

s ≤ 1−
∑

f∈F

yfδ
o(e)s

∀δ,δ′∈∆; δ′<δ+po(e)s
∀e∈Es
∀s∈S

(3.6)

We define Eq.(3.7) to ensure that the traffic of a NS s cannot be processed by

a NF d(e) if it was not transmitted to it by its predecessor NF o(e).

∑

f∈F

yfδ
′

d(e)s ≤ 1− θδes
∀δ,δ′∈∆; δ′<δ+ws

bs
∀e∈Es
∀s∈S

(3.7)

Further, Eq.(3.8) prevents a NF (n + 1) to start processing the traffic of a NS

s before its predecessor NF n finishes its execution.

∑

f∈F

yfδ
′

(n+1)s ≤ 1−
∑

f∈F

yfδns
∀δ,δ′∈∆; δ′<δ+pns

∀n,(n+1)∈Ns

∀s∈S
(3.8)

Eq.(3.9) guarantees that VNF f processes the traffic of NS s during all the

processing period.
∑

δ∈∆

zfδns = pns
∑

δ∈∆

yfδns
∀n∈Ns
∀s∈S
∀f∈F

(3.9)

Eq.(3.10) sets the processing period of the traffic of NS s on VNF f . That is,

Eq.(3.10) ensures the consecutive processing of the traffic of NS s by VNF f

(prevents preemption).

zfδ
′

ns ≥ yfδns

∀δ,δ′∈∆; δ≤δ′<δ+pns

∀n∈Ns
∀s∈S
∀f∈F

(3.10)

We define Eq.(3.11) to ensure that a VNF f cannot process the traffic of more

than one NS at a certain time slot δ.

∑

s∈S

∑

n∈Ns:mns=tf

zfδns ≤ 1 ∀δ∈∆
∀f∈F (3.11)

46

To determine the schedule length, we define Eq.(3.12) to ensure that the latter

is greater or equal to the completion time of each of the NSs.

% ≥
∑

f∈F

∑

δ∈∆

yfδ|Ns|s
(δ + p|Ns|s) ∀s ∈ S (3.12)

Eq.(3.13) determines the physical server k hosting the VNF on which a NF n

of NS s is mapped.

qkns =
∑

f∈F

∑

δ∈∆

yfδnsx
k
f

∀n∈Ns
∀s∈S
∀k∈Kp

(3.13)

To be able to track if two consecutive NFs n and (n+1) of a NS s are mapped

to VNFs hosted on the same physical server k, we define Eq.(3.14).

hkns = qknsq
k
(n+1)s

∀k∈Kp

∀n,(n+1)∈Ns

∀s∈S
(3.14)

Eq.(3.15) prevents the start of the transmission of traffic of a NS s between two

consecutive NFs o(e) and d(e) if they are mapped to VNFs hosted on the same

physical server.
∑

δ∈∆

θδes = 1−
∑

k∈Kp

hko(e)s
∀e∈Es
∀s∈S (3.15)

Eq.(3.16) specifies that the virtual link e is used to transmit traffic of NS s

during all the required transmission time (ws

bs
) between NFs o(e) and d(e) only

if the transmission is required (i.e, NFs o(e) and d(e) are mapped to VNFs

hosted on different physical servers).

∑

δ∈∆

θ̂δes =
ws

bs

∑

δ∈∆

θδes
∀e∈Es
∀s∈S (3.16)

Eq.(3.17) ensures that the virtual link e is occupied throughout the transmission

47

period (ws

bs
) starting at time slot δ (when the transmission begins).

∑

δ′∈[δ, δ+ws
bs

−1]

θ̂δ
′e

s ≥ ws

bs
θδes

∀e∈Es
∀s∈S
∀δ∈∆

(3.17)

3. Traffic routing constraints

To solve the traffic routing problem, we dictate Eq.(3.18) to guarantee that the

physical links capacity is not violated.

∑

s∈S

∑

e∈Es

leij θ̂
δe
s bs ≤ cij

∀δ∈∆
∀(ij)∈L (3.18)

Specifying the route of the traffic of a NS s is done through Eq.(3.19) which

represents the flow conservation constraints. Eq.(3.19) determines the physical

links ((ij) ∈ L) of the network through which the virtual links (e ∈ Es) of a NS

s are routed.
∑

j:(i,j)∈L

leij −
∑

j:(j,i)∈L

leji = qio(e)s − qid(e)s
∀e∈Es
∀s∈S
∀i∈Kp

(3.19)

Finally, Eq.(3.20) prevents the routing of a virtual link e of a NS s through a

physical link (ij) ∈ L if o(e) and d(e) are mapped to VNFs hosted on the same

physical server.

leij ≤ 1−
∑

k∈Kp

hko(e)s
∀e∈Es
∀s∈S

∀(ij)∈L
(3.20)

It is worth noting that Eq.(3.14) and Eq.(3.18) are non linear and can be easily

linearized as explained in Appendix B. The SFCS is a MILP that we denote by

SFCS-MILP which is complex to solve. Next, we discuss the complexity of the SFCS

problem.

48

3.3.3 Problem Complexity

The SFCS-MILP formulation is complex and the model is clearly hard to solve even

for a small network (Section 3.6). The complexity of the SFCS problem can be

highlighted through the complexity of the different problems it solves. In fact, each

of the NF mapping, the traffic routing and the NS scheduling problems has been

proven as NP-Hard (Section 2.3). Hence, the SFCS problem is NP-Hard and is of

combinatorial nature. Due to its large solutions space, we present a CG approach to

solve it.

3.4 SFCS - A Column Generation Approach

Column generation is a very powerful method used for solving large-scale optimization

problems [58, 60]. Based on a primal-dual decomposition technique, CG solves very

large linear programs by considering a small subset of the variables at once. The

principle of the decomposition lies on two separate problems; the Master problem that

operates on a set of general constraints and the Pricing sub-problem which considers

a specific set of constraints [59]. Both problems keep on exchanging information

until an optimal criteria (or a stopping condition) is met. More precisely, the MP

is initialized with a subset of feasible solutions that we refer to by “columns” and

which satisfy all of its constraints. When solved, the MP passes a revised set of cost

coefficients (or prices) associated with its dual optimal solution to the pricing SP.

These prices are used by the pricing SP to generate a new column that improves the

solution of the MP. Only few columns are needed by the MP to obtain the LP optimal

solution of the problem, which distinguishes the CG technique from an exhaustive

enumeration approach that may be computationally impossible [57]. The LP optimal

solution obtained by CG is a lower bound for the ILP optimal solution of the initial

49

MP inputs

rδcfs ∈ {0, 1} Specifies that VNF f is processing the traffic of NS s of a column
c ∈ C at time slot δ (1) and (0) otherwise.

oδc(ij)s ∈ N+ Bandwidth used by NS s in column c ∈ C on the physical link
(ij) ∈ L at time slot δ.

vcs ∈ N+ Completion time of NS s in column c ∈ C.
cij ∈∈ Z+ Capacity of physical link (ij) ∈ L (as in Section 3.3).

Table 3.3: Parameters of the MP.

Decision variables of the MP

% ∈ N+ Minimum schedule length needed to process all the NSs s ∈ S.
λcs ∈ [0− 1] Indicates that column c ∈ C of NS s ∈ S is selected or not.

Table 3.4: Decision variables of the MP.

constraints are not violated. The MP and the SP formulations are discussed in the

following.

3.4.2 Master Problem

Table 3.3 delineates the parameters of the MP which can be formulated as explained

in the following. The objective (Eq.(3.21)) of the MP consists of minimizing the

schedule length needed to process all the NSs which is represented by the decision

variable % ∈ N+ to represent the minimum schedule length needed to process all the

NSs s ∈ S.

Minimize % (3.21)

The objective of the MP is subject to several constraints. Thus, we define λcs ∈ {0, 1}

as a new decision variable which indicates that column c ∈ C of NS s is selected (1)

and (0) otherwise. Given that the MP should be a LP, the integrality of its decision

variable λcs should be relaxed (i.e, λcs ∈ [0− 1]). The decision variables of the MP are

summarized in Table 3.4. We define Eq.(3.22) to ensure that one column for each NS

51

is selected.

αs :
∑

c∈C

λcs ≥ 1 ∀s ∈ S (3.22)

Eq.(3.23) guarantees that a VNF cannot process the traffic of more than one NS at

each time slot.

βδ
f :

∑

c∈C

∑

s∈S

rδcfsλ
c
s ≤ 1 ∀δ∈∆

∀f∈F (3.23)

We assert that the links capacity is not violated through Eq.(3.24).

γδij :
∑

c∈C

∑

s∈S

oδc(ij)sλ
c
s ≤ cij

∀δ∈∆
∀(ij)∈L (3.24)

We declare Eq.(3.25) to specify that the schedule length needed to process all the

NSs is greater or equal to the completion time of each of them.

φc
s : % ≥

∑

c∈C

vcsλ
c
s ∀s ∈ S (3.25)

αs, β
δ
f , γ

δ
ij, φ

c
s are the dual variables associated with Eqs.(3.22), (3.23), (3.24), (3.25)

respectively.

3.4.3 Pricing Sub-Problem

Since the pricing SP solves the SFCS problem for a single NS, its formulation is similar

to the SFCS-MILP (Section 3.3). Hence, almost the same parameters and decision

variables used in the SFCS-MILP are used in the pricing SP, except that we remove

the subscript s (representing a NS s ∈ S) from their abbreviations given that each

pricing SP is related to a single NS.

The dual variables αs, β
δ
f , γ

δ
ij, φ

c
s associated with the constraints of the MP are as

explained in Section (3.4.2). These variables represent the cost coefficients that will

guide the pricing SP to generate a column for one NS which will improve the solution

52

Decision variables of the pricing SP

rδf ∈ {0, 1} specifies that VNF f is processing the traffic of NS s at time slot δ
(1) and (0) otherwise.

oδij ∈ Z+ Bandwidth used by NS s ∈ S on the physical link (ij) at time slot
δ.

v ∈ N+ Completion time of NS s.
yfδn , zfδn , hkn,
qkn, θ

δe, θ̂δe, leij

Refer to Table 3.2.

Table 3.5: Decision variables of the pricing SP.

of the MP. The remaining parameters are listed in Table 3.1.

We define the decision variable rδf ∈ {0, 1} to specify that VNF f ∈ F is processing

the traffic of NS s ∈ S at time slot δ ∈ ∆ (1) and (0) otherwise.

rδf =

1 if VNF is processing the traffic of NS s at time slot δ,

0 otherwise.

We declare as well the decision variable oδij ∈ Z+ to represent the amount of bandwidth

used by NS s ∈ S on the physical link (ij) ∈ L at time slot δ ∈ ∆. v ∈ N+ is also a

new defined decision variable that delineates the completion time of NS s ∈ S. Other

decision variables such as yfδn , zfδn , hkn, q
k
n, θ

δe, θ̂δe, leij are as defined in Table 3.2.

Table 3.5 summarizes the SP decision variables.

The objective of the pricing SP is to minimize the Reduced Cost (RC) depicted in

Eq.(3.26). Based on the dual variables α, βδ
f , γ

δ
ij and φ representing the prices pro-

vided by the master model, the RC will guide the pricing to generate a new column

that will minimize the completion time v of the NS by φ while using the available re-

sources (VNFs and bandwidth available at certain time slots) in the network depicted

53

by the values of βδ
f , γ

δ
ij.

RC = − α−
∑

δ∈∆

∑

f∈F

rδfβ
δ
f −

∑

δ∈∆

∑

(ij)∈L

oδijγ
δ
ij + φv (3.26)

This objective is subject to several constraints. We start by introducing the NF

mapping constraints.

1. NF mapping constraints

A NF n of a NS s should be mapped to exactly one VNF instance f as specified

in Eq.(3.27).
∑

f∈F

∑

δ∈∆

yfδn = 1 ∀n ∈ N (3.27)

Further, a NF n of a NS s should be mapped to a VNF instance f of the same

type Eq.(3.28).
∑

f∈F

∑

δ∈∆

yfδn tf = mn ∀n ∈ N (3.28)

2. NS scheduling constraints

A valid NS scheduling entails preventing the transmission of the traffic between

two consecutive NFs, o(e) and d(e), if its processing on o(e) has not been com-

pleted (Eq.(3.29)).

θδ
′e ≤ 1−

∑

f∈F

yfδ
o(e)

∀δ,δ′∈∆; δ′<δ+po(e)
∀e∈E

(3.29)

In addition, the traffic cannot be processed by a NF d(e) if it was not transmitted

to it by its predecessor NF o(e) (Eq.(3.30)).

∑

f∈F

yfδ
′

d(e) ≤ 1− θδe ∀δ,δ′∈∆; δ′<δ+w
b

∀e∈E
(3.30)

We defined Eq.(3.31) to prevent a NF (n + 1) to start processing the traffic of

54

the NS before its predecessor NF n finishes its execution.

∑

f∈F

yfδ
′

(n+1) ≤ 1−
∑

f∈F

yfδn
∀δ,δ′∈∆; δ′<δ+pn

∀n,(n+1)∈N (3.31)

Eq.(3.32) ensures that the VNF f is processing the traffic of the NS during all

the processing period.

∑

δ∈∆

zfδn = pn
∑

δ∈∆

yfδn
∀n∈N
∀f∈F (3.32)

To determine the processing period of the traffic of a NS on a VNF f , we define

Eq.(3.33).

zfδ
′

n ≥ yfδn
∀δ,δ′∈∆; δ≤δ′<δ+pn

∀n∈N
∀f∈F

(3.33)

Eq.(3.34) helps in determining the physical server k hosting the VNF to which

a NF n is mapped.

qkn =
∑

f∈F

∑

δ∈∆

yfδn x
k
f

∀n∈N
∀k∈Kp

(3.34)

We add Eq.(3.35) to specify if two consecutive NFs n and (n + 1) are mapped

to VNFs hosted on the same physical server k ∈ Kp.

hkn = qknq
k
(n+1)

∀k∈Kp

∀n,(n+1)∈N (3.35)

Eq.(3.36) prevents the start of the transmission of the traffic between two con-

secutive NFs o(e) and d(e) if they are mapped to VNFs hosted on the same

physical server.
∑

δ∈∆

θδe = 1−
∑

k∈Kp

hko(e) ∀e ∈ E (3.36)

We use Eq.(3.37) to specify that the virtual link e is used to transmit the traffic

during all the required transmission time (w
b
) between NFs o(e) and d(e) if the

55

transmission is possible (i.e, NFs o(e) and d(e) are mapped to VNFs hosted on

different physical servers).

∑

δ∈∆

θ̂δe =
w

b

∑

δ∈∆

θδe ∀e ∈ E (3.37)

Eq.(3.38) ensures that the virtual link e is occupied throughout the transmission

period (w
b
) starting at time slot δ (when the transmission begins).

∑

δ′∈[δ,δ+w
b
−1]

θ̂δ
′e ≥ w

b
θδe ∀e∈E

∀δ∈∆ (3.38)

3. Traffic routing constraints

For a valid traffic routing, we need to guarantee that the physical links capacity

is not violated (Eq.(3.39)).

oδij ≤ cij
∀δ∈∆

∀(ij)∈L (3.39)

To specify the route of the traffic of a NS, we add the flow conservation con-

straint which determines the physical links ((ij) ∈ L) of the network through

which the virtual link e ∈ E is routed (Eq.(3.40)).

∑

j:(i,j)∈L

leij −
∑

j:(j,i)∈L

leji = qio(e) − qid(e)
∀e∈E
∀i∈Kp

(3.40)

Eq.(3.41) prevents the routing of a virtual link e through a physical link (ij) ∈ L

if o(e) and d(e) are hosted on the same physical server.

leij ≤ 1−
∑

k∈Kp

hko(e)
∀e∈E

∀(ij)∈L (3.41)

Finally, it is worth noting that the values of v, oδij and rδf are represented by

56

Eqs.(3.42), (3.43) and (3.44) respectively.

v =
∑

f∈F

∑

δ∈∆

yfδ|Ns|
(δ + p|N |) (3.42)

oδij =
∑

e∈E

leij θ̂
δeb ∀(ij)∈L

∀δ∈∆ (3.43)

rδf =
∑

n∈N :mn=tf

zfδn
∀f∈F
∀δ∈∆ (3.44)

Eq.(3.35) and Eq.(3.43) are non linear and can be linearized as explained for Eq.(3.14)

and Eq.(3.18) respectively in Appendix B.

3.4.4 Column Generation Algorithm (SFCS-CG)

The CG technique warm starts the LP MP by initializing it with a basic feasible

solution represented by a set of columns constituting the initial basis. In order to

generate this solution, we develop a heuristic that loops over all the NSs, map the

NFs of each of them to VNFs chosen randomly from the set of VNFs of the same

type existing in the network, route each of their traffic through the shortest path

connecting each pair of VNFs to which the NFs are mapped and finally schedule the

NSs sequentially starting from time slot 0. More precisely, the processing of the traffic

of each NS starts when the traffic of its previous one has completed its processing

through the requested NF-FG.

Using this initial basis, the LP MP is run to optimality. Its dual values are then

sent to the pricing SP of each NS where they are used to generate a column holding

the NF mapping, the traffic route and the schedule of the NS it represents. Here,

we benefit from the independency that exists between the pricing SPs by performing

their parallel processing using threads. Thus, each pricing SP will be processed by

a thread which will provide gains in the total execution time of our CG approach.

57

the RCs of all the pricing SPs are negative [66]. At the end of the CG algorithm, an

LP optimal solution of the SFCS problem, that we denote by ρ∗LP , is reached. Fig.3.6

explores the steps of the CG algorithm.

Since we are interested in obtaining an ILP solution, we solve the MP (using the

same columns generated by the pricing SPs at all the iterations) one last time without

relaxing its integer variables (λcs ∈ {0, 1}) and we denote by ρ̂∗ILP its ILP objective

value. Clearly, ρ∗LP ≤ ρ∗ILP ≤ ρ̂∗ILP where ρ∗ILP is the ILP optimal objective value

obtained by solving the SFCS-MILP.

3.4.5 Diversification Approach (SFCS-CGD)

When solved as ILP, the MP provides an upper bound on the ILP optimal solution

of the SFCS problem obtained by solving the SFCS-MILP. Our numerical evaluation

on small networks (Section 3.6.1) shows a gap between ρ∗ILP and ρ̂∗ILP where ρ∗ILP and

ρ̂∗ILP are as defined in Section 3.4.4. Such gap is due to solving the MP as ILP with

only a subset of columns; those generated by the pricing SPs. In order to improve

ρ̂∗ILP , we apply a diversification technique that consists of adding additional columns

that may be beneficial to the MP (Fig.3.6).

To generate these diversification columns, we develop a heuristic as follows. Given

a NS, and the number of columns to generate for this NS, the heuristic will map the

NFs to VNFs chosen at random from the list of VNFs of the same type existing in the

network. It will route the traffic between these VNFs using the shortest path. As for

the NS schedule, the heuristic will choose different time slots to start the NS schedule

for each column. For instance, for the first column (column 0), the NS schedule will

start at time slot 0. This will give a lower bound on the minimum completion time

of the NS, that will be used to decide on the start of the NS schedule in the other

columns to generate. Let minCompletionT ime represent this completion time and

59

let j be the ID of the column we are generating (i.e, j = 0 for column 0, j = 1

for column 1, etc.). We use the following three options to decide on the start time

(startT imeSlot) of the schedule of the NS in each column:

1. Start the schedule of the NS in the next column at its completion time slot in the

previous one. That is, startT imeSlot = minCompletionT ime ∗ j (∀j, j 6= 0).

2. Start the schedule of the NS in the next column by adding the column id to

the minCompletionT ime. That is, startT imeSlot = minCompletionT ime+ j

(∀j, j 6= 0).

3. Start the NS schedule at a random time slot within the time line (∆ in Table

3.1).

The solution provided by the generated column should be feasible in the sense that

the NS should complete its processing in the specified time line (∆ in Table 3.1) if

it started processing its traffic at startT imeSlot. We will refer to this latter state-

ment as feasibleColumnCondition. Thus, we alternate between options 1, 2 and 3

respectively when deciding on the startT imeSlot in the sense that if startT imeSlot

generated using option 1 does not respect the feasibleColumnCondition, we use

option 2 to generate it. Similarly, if startT imeSlot generated using option 2 does

not respect the feasibleColumnCondition, we keep on generating it randomly using

option 3 until we get a value able to provide a feasible column. Using these three

options will allow us to obtain several solutions for the same NS where some of them

may have overlapping schedules and others may not. This method is beneficial and

is able to improve the value of ρ̂∗ILP as we will show in Section 3.6.

60

3.5 Online Column Generation (online-CG)

Solving the SFCS problem in an offline mode where all the NSs are known a priori

is not practical due to the difficulty of the problem; further, in practice, the traffic is

dynamic with random arrival and departure of the NSs. In this section, we present

an online CG approach that solves the SFCS problem for dynamic traffic arrival.

During our study (i.e., Section 3.2), we have shown that the NF mapping, traffic

routing and scheduling of a NS affects the SFCS solution of another one. We have also

emphasized on the importance of reducing the total schedule length in contributing to

a better utilization of resources. Given these motivations, solving the SFCS problem

upon the arrival of a single NS is not of the best interest of the network operator

as it will provide him with a local optimal solution for that specific NS, which may

negatively affect the solution of future NSs and delay their processing.

To overcome this issue and provide the operator with a solution that addresses the

online arrival of NSs while efficiently utilizing the network resources, we develop an

online CG heuristic designed to run periodically on a batch of NSs. Given a batch of

NSs arriving within a time interval, the online algorithm applies our CG approach on

the NSs it holds. Batches generated at distinct periods can be of different size (hold

different number of NSs). Our online CG algorithm is designed to apply one of both

CG techniques, SFCS-CG or SFCS-CGD. In case of employing the diversification

technique (SFCS-CGD), the number of diversification columns needs to be specified.

3.6 Numerical Evaluation

We carry out an extensive empirical study to evaluate the performance of our CG

approach (SFCS-CG and CFCS-CGD) against the SFCS-MILP. Further, we explore

the engineering impact of the SFCS problem on the network by pursuing numerical

61

evaluation of our online CG algorithm (Section 3.5). During our numerical study,

we use sets of NSs randomly generated, and demanding varying NFs ([3-5] NFs).

The generated NSs are of varying traffic demands ([500-1500] Mbits) and bandwidth

requirements ([300-500] Mbps). In addition, we consider a mesh network topology

interconnecting the physical machines. We assume that each physical machine either

represents a single server or a server rack and that the network can host as many

servers as each rack can support. However, our work can be applied to any other

topology, since the constraints of the presented formulations (SFCS-MILP, SFCS-

CG and SFCS-CGD) are independent from the network topology. All our numerical

evaluations are conducted using Cplex version 12.4 to solve the optimization problems

on an Intel core i7-4790 CPU at 3.60 GHZ with 16 GB RAM.

3.6.1 SFCS-MILP vs CG

We consider a small test mesh network consisting of 4 physical servers hosting 5

VNFs placed at random. Each server is connected to a switch and the switches

are interconnected by 5 links of 500 Mbps each. We use this network to run the

SFCS-MILP and obtain reference results to compare with those acquired using our

CG approach. To evaluate the performance of our proposed CG method, we also

adopt a sequential methodology (using a sequential algorithm (SA)) in solving the

mapping, routing and scheduling problems. In particular, rather than solving the

three problems jointly, we first map (at random) the demanded NFs for each NS into

VNFs of the same type in the network; then, we route the traffic along the shortest

path (using Dijkstra algorithm) between each pair of the mapped functions. Finally,

we solve the scheduling problem; here, once the routes of the NS are determined and

the NF mapping is decided, we invoke a MILP to optimally solve the scheduling of

the NSs on the corresponding functions with the objective always being minimizing

62

the total schedule length of all the NSs. In addition, to the best of our knowledge,

the only similar work that addressed a scheduling problem is that of [38]; hence, we

compare our work with the best algorithm of [38] (a TS meta-heuristic). We should

note that [38] only schedule functions once the NFs are mapped to VNFs and does

not route the traffic in the network. We hence add the routing problem to make the

comparison more realistic. We consider that all the NSs are known a priori (offline

mode) and we run our tests over sets of NSs of different size.

SFCS-MILP SFCS-CG SFCS-CGD TS SA
Nb. of NSs ILP Objective LP Objective ILP Objective Nb. of iterations ILP Objective Schedule Length Schedule Length

3 16 16 16 10 16 22 19
6 22 21.4 36 19 36 41 38
9 24 22.092 65 25 36 49 53
12 35 26.576 65 40 63 61 63

Table 3.6: Optimality gap comparison.

1. Optimality gap

Based on Table 3.6, one can clearly confirm that the SFCS-CG LP objective is

a lower bound for the SFCS-MILP ILP objective and that the SFCS-CG ILP

solution is an upper bound for it. When the number of NSs is small (3 NSs), both

CG methods (SFCS-CG and SFCS-CGD) find the optimal solution (schedule

length = 16 time slots) that the SFCS-MILP provides while the TS and SA

algorithms fail to do so. However, when the number of NSs becomes larger, the

optimality gap between the ILP objective value provided by the SFCS-CG and

the SFCS-MILP increases (gap of 63% for 9 NSs). By adding 3 diversification

columns for each NS in the set, our SFCS-CGD technique was able to decrease

this gap by 29.74% for 9 NSs without incurring any valuable increase in the CG

runtime (Table 3.7). Further, it is clear that our SFCS-CGD outperforms the

SA and the TS algorithm in terms of optimality gap. However, it is important

to note that even though the TS performed better than the SFCS-CGD for 12

NSs, we argue that the solution of the SFCS-CGD can be further improved by

63

increasing the number of diversification columns used. Finally, one can note

that with the increase of the number of NSs, the amount of resources (VNFs

and bandwidth) available in the network decreases as they will be occupied by

the traffic of some NSs whereas others will suffer from certain delays, waiting

for some resources to be freed. This contributes to the increase of the schedule

length with the increase of the number of NSs (Table 3.6).

2. Execution time

In order to study the scalability of the SFCS-MILP model, we compare its ex-

ecution time against our CG approach, the TS and the SA algorithms. Table

3.7 shows that when the number of NSs is small (3 NSs), all the five methods

were able to find a solution in less than 10 seconds. However, as the number

of NSs increases, the SFCS-MILP becomes much harder to solve and its run-

time increases exponentially. For instance, when the number of NSs is 12, the

execution time of the SFCS-MILP reaches 25 hours whereas our CG method

returned a solution in less than 33 minutes which shows that the CG technique

is much more scalable than the SFCS-MILP. Even though the execution times

of the SFCS-CG and the SFCS-CGD increase when the number of NSs becomes

larger, such increase is at slower pace than the SFCS-MILP which clearly shows

that the CG method is much more scalable than the SFCS-MILP. As for the

SA algorithm, its runtime mainly reflects the execution time of its scheduling

model and shows that it is slightly more scalable than the CG approach as its

model only performs the NS scheduling and is simpler than the pricing SP of

the CG which solves the mapping, routing and scheduling problems. Finally,

Table 3.7 depicts that the TS algorithm only needs few milliseconds to provide

a solution and is the fastest as it does not involve solving any formulation.

3. Impacts of diversification

64

Nb. of NSs SFCS-MILP SFCS-CG SFCS-CGD TS SA

3 1 362 6 146 5 459 4 5 291
6 168 879 79 213 78 410 4 40 695
9 11 121 471 280 209 276 422 3 162 327
12 91 285 122 1 935 455 1 977 515 3 1 068 856

Table 3.7: Execution Time (ms) comparison.

In the previous paragraph, we have shown that by applying our SFCS-CGD

approach with 3 columns per NS, the optimality gap has decreased by 29.74%

(for a set of 9 NSs). To further explore the benefits of our diversification tech-

nique, we investigate in Fig.3.7.a the impact of varying the number of columns

on improving the optimality gap between the ILP solution obtained by the

SFCS-MILP formulation and our CG approach. Thus, we vary the number of

diversification columns on 5 sets of 6 NSs each and present the average objec-

tive value in Fig.3.7.a with 95% confidence interval. Our numerical evaluation

shows that by increasing the number of diversification columns, the optimality

gap decreases from ρ∗ILP = 23.4 to reach an objective value ρ̂∗ILP = 19.6 which

is only 1.6 time slots away from the optimal value provided by the SFCS-MILP,

that is after adding 180 diversification columns per NS. Note that the large

number of diversification columns needed to reach the optimal solution only

costs a fraction of second in the execution time of the master model as ILP as

shown in Fig.3.7.b.

3.6.2 Online CG

In the rest of our numerical evaluation, we focus on evaluating the performance of

the online CG method. Hence, in order to show the impact of varying the network

resources on reducing the total schedule length, we either vary the number of VNFs

deployed in the network or the capacity of the links interconnecting the switches.

65

3.7.a Impact of diversification on the objective value.

3.7.b Impact of diversification on the execution time.

Figure 3.7: Impact of diversification.

We consider a mesh network of 8 physical servers, each connected to a switch. The

switches are interconnected by 8 links. Hence, We run our online CG algorithm

by considering 25 NSs randomly generated as described earlier, following a Poisson

arrival with a rate of 5 NSs per time slot. We fix the period length to 10 time slots

66

which will allow the division of the 25 NSs into batches of different size. Our results,

depicted in Fig.3.8, are averaged over 5 sets and presented with 95% confidence

interval. We represent by Online-CG the online CG algorithm run without applying

any diversification technique. We also characterize by online-CGD our online CG

heuristic applied by adding 3 diversification columns for each NS in the batch. We

further exploit the execution time of our online-CG and online-CGD by comparing it

to the TS and SA heuristics.

1. Varying the capacity of the physical links

Some NSs may suffer from waiting delays due to insufficient bandwidth available

on their routes. Hence, increasing the links capacity allow to reduce the waiting

time of these NSs which will reduce their completion time and hence decrease

the total schedule length. This will eventually affect the state of the network

(occupied/free resources) at a certain time slot and thus, impact the schedule

of the NSs in future batches. While considering 8 VNFs randomly deployed in

the network, we show in Fig.3.8.a that increasing the links capacity decrease

the schedule length of the 25 NSs averaged over 5 sets from 278.2 to 132 time

slots with the online-CGD (gain of 52.55%). Note that, the increase in the

objective value of the online-CGD when the capacity of the links becomes 650

Mbps can be explained by the fact that the ILP objective value obtained by

the CG is an upper bound on the SFCS-MILP optimal value. In addition, it

is clear that our diversification technique is able to reduce the gap between

the ILP solution provided by CG and the optimal value given by the SFCS-

MILP. Further, Fig.3.8.a affirms our initial statement about the decrease of the

schedule length with the increase of the bandwidth in the network.

2. Varying the number of VNFs

67

3.8.a Varying the network bandwidth.

3.8.b Varying the number of VNFs in the network.

3.8.c Varying the batch size.

Figure 3.8: Impact of the network resources (VNFs, bandwidth) and batch size vari-
ation.

68

Many NSs may have some of their NFs mapped to the same VNFs. Since

each VNF can process the traffic of one NS at a time, the traffic of the others

have to wait till the processing of the traffic of the previous NS is completed.

Thus, adding VNFs in the network can reduce the waiting time of the NSs

by providing their NFs the possibility to be mapped to other available VNFs.

Hence, we vary the number of VNFs randomly deployed in the network which

have links of capacity equal to 500 Mbps connecting the switches. Fig.3.8.b

depicts the decrease in the schedule length from 314.4 to 194.6 time slots while

increasing the number of VNFs from 4 to 20 VNFs. Thus, providing a gain of

38% in reducing the schedule length with the Online-CGD approach. Further,

the online-CGD algorithm was able to enhance the online-CG solution by an

average of 7.43%.

3. Varying the batch size

In order to evaluate the scalability of our CG methods in the online case, we

simulate the same network of 8 physical servers and consider that some of its

resources (VNFs, bandwidth) are occupied by a certain number of NSs. We

consider the arrival of a batch of NSs and evaluate the execution time needed

by our online-CG and online-CGD to provide a solution for each of the NSs in

the batch. We consider batches of 1, 2, 3 and 4 NSs each. Our averaged results

depicted in Fig.3.8.c show that the runtime of our online-CG and online-CGD

increases with the size of the batch. However, one can note that it remains

within the order of seconds even for a batch of 4 NSs. Hence, our CG methods

can be easily used as benchmark algorithms.

69

3.7 Conclusion

In this chapter, we have presented a cross-layer strategy that solves three inter-related

problems jointly; the NF mapping problem, the traffic routing problem and the NS

scheduling problem. To the best of our knowledge, this is the first attempt that tackles

these three problems jointly while considering bandwidth guarantees requirements for

the requested NSs.

We have mathematically formulated the SFCS problem and highlighted its com-

plexity. Given its complexity, we have presented a primal-dual decomposition ap-

proach that solves the SFCS problem using CG. To the best of our knowledge, we

are the first to apply the CG technique to find a solution for this problem. Our CG

technique is able to provide an LP lower bound and an ILP upper bound to the ILP

optimal solution obtained by the SFCS-MILP. Using a diversification technique, we

have shown through numerical evaluation that our SFCS-CGD method can decrease

the gap between the CG ILP objective and the SFCS-MILP optimal objective value

and can eventually reach it by increasing the number of diversification columns. In

addition, we have compared our CG methods to a sequential method (SA) and to the

TS developed in [38] and showed that our primal-dual decomposition outperforms

them in terms of objective value. Further, we have shown that our CG approach is

much more scalable than the SFCS-MILP. In addition, we have explored the impact

of provisioning more network resources (VNFs, bandwidth) in decreasing the total

schedule length of the NSs.

Finally, the major advantage of this work is revealed by its ability to serve as a

benchmark for evaluating the performance of any low complexity method for solving

the SFCS problem on larger network instances, where no known exact solutions can

be found.

70

Chapter 4

Enabling Low-Latency Services in

Softwarized Networks
1

To support diverse business verticals (i.e., manufacturing, health care, etc.) with

varying QoS requirements (e.g., ultra-low latency, ultra-reliability, etc.), 5G mobile

networks are envisioned to encourage agility, programmability and elasticity through

enabling a software-based architecture promoted by network slicing. Network slicing

is a new paradigm consisting of partitioning the underlying network infrastructure

into different logical network slices, each dedicated to address the requirements of a

group of NSs. Motivated by these challenges, we revisit in this chapter the same joint

problem of NF mapping, traffic routing and NS scheduling by accounting for strict

latency requirements of different NSs in addition to determined buffer capacities of

VNFs. After mathematically formulating the problem and given its complexity, we

present a novel game theoretic approach to solve it, that yields much more scalable

that the CG technique that we proposed in the previous chapter. Finally, we highlight

through numerical evaluation the efficiency of the proposed method under different

system parameters, in addition to presenting several insights related to the use of

1This chapter has been submitted to IEEE Transactions on Cloud Computing [67].

71

different routing methods.

4.1 Introduction

A wide variety of new use cases and business models in the areas of health care,

manufacturing, transport and entertainment industries are being introduced today

with the emergence of IoT devices [2]. Assistant driving, traffic safety, smart park-

ing, remote surgery, tactile Internet and many more applications are currently being

developed and envisioned to be introduced with the launch of 5G networks [2, 11].

While current networks are far from meeting the 5G requirements given their limited

scalability and elasticity, network slicing emerged as a new paradigm to enable the

accommodation of heterogeneous NSs sharing the same infrastructure [68, 69]. Net-

work slicing consists of partitioning a common network infrastructure into multiple

virtual logical networks or slices, each designed to support a group of NSs with similar

requirements [69]. Thus, one or more network slice can be specifically designed to ac-

commodate each of the 5G vertical industries. For instance, slices guaranteeing high

data rate (peak data rate of 10 Gbps) are dedicated for mobile broadband services

(i.e. audio/video streaming, etc.), others designed to achieve stringent throughput,

latency (less than 1 ms) and reliability demands, are designed for ultra-reliable and

ultra-low latency services (i.e. remote medical surgery, virtual reality, etc.), while

slices transmitting a relatively low volume of non delay-sensitive data can accom-

modate the machine type communication services (i.e., smart home and cities, etc.)

[11].

The partitioning of a shared infrastructure into slices is enabled by the latest

virtualization technologies such as NFV and SDN. In fact, each network slice consists

of a set of VNFs that run on top of a partially shared infrastructure composed of

generic hardware resources such as NFVI resources [9] in addition to some dedicated

72

hardware such as network elements in the Radio Access Network (RAN) [69].

Processing the traffic of a NS by a chain of NFs requires mapping these NFs

to VNFs of the same type (i.e., cache, proxy, etc.) already deployed in the net-

work, routing the traffic through the physical path and scheduling its processing by

these VNFs. Thus, we consider an ultra-low latency network slice to achieve the re-

quirements of NSs with stringent deadlines by jointly addressing the aforementioned

challenges through a game theoretic approach. The proposed game theoretic tech-

nique solves this joint problem under a hybrid strategy which captures the centralized

aspect of the problem in providing a coherent schedule between the NSs while lever-

aging the decentralization of the mapping, routing and scheduling decisions to be

taken by each NS with the guidance of a centralized controller.

4.1.1 Novel Contributions

Our contributions are summarized as follows:

1. While accounting for the interplay between the NF mapping, traffic routing and

NS scheduling, we formulate the joint problem composed of the aforementioned

problems as a MILP and refer to it by the Latency-Aware Service Scheduling

(LASS) problem.

2. Owing to its complexity, we model the LASS problem as a non-cooperative

extensive-form game where the NSs act as the players of the game. To the best

of our knowledge, we are the first to address this problem as a mixed strategy

game (LASS-Game) which provides NSs the freedom to decide on their own

mapping, routing and scheduling solution while orchestrating their schedules

through a centralized controller.

3. We show that the LASS-Game admits a mixed strategy Nash equilibrium. We

73

provide an upper bound on its price of anarchy and we develop a best response

algorithm to find an approximate equilibrium.

4. We evaluate through extensive simulations our game theoretic approach under

different system parameters and using different routing methods.

The rest of this chapter is organized as follows: Section 4.2 discusses the system model

and motivates the problem. Section 4.3 defines and formulates the LASS problem.

Section 4.4 presents the LASS-Game. Section 4.5 depicts our numerical evaluation.

We conclude in Section 4.6.

4.2 System Model

4.2.1 Ultra-Low Latency Network Slice

A network slice is a virtual network running on top of a physical network designed

to address the specific requirements of the services it targets in terms of latency,

reliability, security, availability and speed [69]. We consider in this work, an ultra-

low latency network slice to address the specific requirements of ultra-low latency

NSs. For instance, NSs of autonomous driving cars require a NF-FG composed of

authentication, video encoding and screen rendering functions that should be available

in the network slice hosting these NSs. Hence, we consider a network slice running

such type of NFs and designed to support such low-latency requirements. Fig.4.1

depicts such an ultra-low latency slice composed of virtual nodes representing the

forwarding devices in addition to the VNFs dedicated for it and running on top of

the physical infrastructure. Thus, we define a network slice as a virtual network

depicted by a connected graph V (F,C) of a set F of VNFs of different types and a

set C of links connecting them [70]. Each link (ij) ∈ C has a capacity denoted by

74

Figure 4.1: Ultra-low latency network slice running on top of a physical infrastructure.

cij. For simplicity and without loss of generality, we consider that the VNFs in F

are dedicated to the ultra-low latency slice and are not shared by any other slice.

However, they can be shared by many NSs processed by that same slice. Further,

given that VNFs are software components that run on VMs hosted on commodity

hardware in the NFVI [9, 28, 56], they require certain computing resources (i.e., CPU,

RAM, storage, etc.), have a defined processing capacity that we denote by pf and a

buffer capacity that we depict by φf [28]. For simplicity, we assume that each VM is

dedicated to exactly one VNF and that VNFs cannot share the same VM resources

[38].

Finally, it is worth noting that in this chapter, we consider that the VNFs dedi-

cated for the network slice are already placed in the physical network and are guar-

anteed their required computing (i.e, CPU, memory) and network (i.e. bandwidth)

resources.

75

4.2.2 Problem Description

We consider a NFV-based physical network virtualized into several network slices.

We account for ultra-low latency NSs, each requesting its traffic to be processed by a

chain of NFs with a specified delay constraint. Each of these NSs requires a certain

amount of bandwidth to be guaranteed for the transmission of its traffic between the

NFs composing its NF-FG. Satisfying it, demands:

1. Determining the VNFs that will process its traffic with respect to its NF-FG.

More precisely, determining the mapping of each NF demanded by the NS to a

VNF deployed in the network slice.

2. Routing the traffic between the VNFs on which the NFs are mapped while

guaranteeing the needed bandwidth and respecting the order of NFs in the NF-

FG. The transmission delays= (ds) between each two consecutive VNFs in the

chain of a NS s can be calculated as in Eq.(4.1) where bs depicts the bandwidth

to be guaranteed for s and ws represents its traffic size.

ds =
ws

bs
(4.1)

3. Deciding on the NS schedule which entails determining the time slots at which

its traffic get processed on each of the VNFs. Such scheduling is important as

it satisfies the NS latency requirement given that different NSs can share the

same VNF. Note that we assume that each VNF can process the traffic of at

most one NS at a certain time slot (i.e., no sharing). The processing time pfs

required to process the traffic of a NS s on a VNF f is calculated using Eq.(4.2)

76

where ws and pf are as defined earlier.

pfs =
ws

pf
(4.2)

4.3 LASS - A Mixed Integer Linear Program

4.3.1 Problem Definition

We consider a physical network G(K,L) of a setK of nodes (K = Kp∪Kn, Kp denotes

the set of physical servers, Kn represents the set of physical forwarding devices (i.e.,

routers/switches)) and L is a set of physical links connecting them. A set F of VNFs

are deployed in G(K,L), each is of a specified type tf ∈ T and has a buffer capacity

φf and a processing capacity pf . Without loss of generality, we consider that VNFs

of the same type have a uniform processing capacity. We use xkf ∈ {0, 1} to specify

that the VNF f ∈ F is hosted on physical server k ∈ Kp (1) or not (0).

We consider a set S of ultra-low latency NSs where each NS requests its traffic

to be processed by one or a chain of NFs in a determined order within a specified

deadline and transmitted from one NF to another at a guaranteed bandwidth. Hence,

we represent each NS s ∈ S by a tuple (Hs(Ns, Es), ws, bs, us) where Hs(Ns, Es)

represents the forwarding graph of the NS, Ns is the set of NFs requested by the NS

and Es depicts the set of virtual links connecting them (Fig.4.2.b). Each NF n ∈ Ns

is of specified type denoted by mns. The processing time of the traffic demands ws is

denoted by pns and can be calculated based on Eq.(4.2) given that the NF n ∈ Ns will

be mapped to a VNF of the same type. bs represents the bandwidth to be guaranteed

for the communication between the NFs n ∈ Ns (bs is an attribute of each of the

virtual links e ∈ Es) and us is the deadline of the NS s ∈ S (in terms of time slots).

We represent the transmission delay of the traffic of NS s ∈ S on a virtual link e ∈ Es

77

by ds (Eq.(4.1)). We designate the time line (set of time slots) by ∆. Hence, we

define the LASS problem with the objective of maximizing the number of admitted

NSs as follows, and we refer to it by LASS-MaxAdmission.

Definition 4.1. Given G(K,L) hosting and running different types of VNFs, a set

S of NSs, each demanding to be processed by a chain of NFs, find their optimal NF

mapping, traffic routing and scheduling which maximize the number of admitted ones

while respecting their deadlines.

4.3.2 Problem Formulation

Physical network inputs

G(K,L) Physical network.
F Set of VNFs hosted in G(K,L).
tf ∈ Z+ Type of a VNF instance f ∈ F (tf ∈ T)
φf ∈ Z+ Capacity of the buffer of a VNF instance f ∈ F .
pf ∈ Z+ Processing capacity of a VNF instance f ∈ F .
xkf ∈ {0, 1} VNF instance f ∈ F is hosted on the physical server k ∈ Kp (1) or

not (0).
cij ∈ Z+ Capacity of a physical link (ij) ∈ L.

NS inputs

S Set of NSs.
Hs(Ns, Es) NF-FG of a NS s ∈ S constituted by a set Ns of NFs and a set Es

of virtual links connecting them.
bs ∈ Z+ Bandwidth demanded by NS s ∈ S.
ws ∈ Z+ Traffic demands of NS s ∈ S.
us ∈ Z+ Deadline of NS s ∈ S.
mns ∈ Z+ Type of a NF n ∈ Ns of NS s ∈ S.
pns ∈ Z+ Processing time of the traffic of NS s ∈ S on the NF n ∈ Ns.
∆ Set of time slots δ ∈ ∆ (time line).

Table 4.1: Parameters of the LASS-MaxAdmission.

Table 4.1 delineates the parameters used in the formulation of the LASS-MaxAdmission

problem presented below. We define the decision variable as ∈ {0, 1} to determine if

78

Decision variables of the LASS-MaxAdmission

as ∈ {0, 1} Determines that a NS s ∈ S is admitted to the network (1) and (0)
otherwise.

yfδns ∈ {0, 1} Specifies that the traffic of NS s started processing at time slot δ
on VNF f ∈ F to which NF n is mapped (1) and (0) otherwise.

ψfδ
s ∈ {0, 1} Denotes that the traffic of NS s is queued at δ in the buffer of the

VNF f (1) and (0) otherwise.
qkns ∈ {0, 1} Determines that NF n of NS s ∈ S is mapped to a VNF hosted on

server k (1) and (0) otherwise.
hkns ∈ {0, 1} Indicates that NFs n, (n + 1) of NS s ∈ S are mapped to VNFs

hosted on the same server k (1) and (0) otherwise.
θδes ∈ {0, 1} Designates that a NF o(e) ∈ Ns of NS s begins the transmission of

the traffic to its successor NF d(e) at time slot δ on the virtual link
e (1) and (0) otherwise.

θ̂δes ∈ {0, 1} Indicates that the virtual link e is being used for traffic transmission
between the NFs o(e) and d(e) of NS s at time slot δ (1) and (0)
otherwise.

leij ∈ {0, 1} Denotes that the virtual link e of NS s is routed through the physical
link (ij) ∈ L (1) and (0) otherwise.

Table 4.2: Decision variables of the LASS-MaxAdmission.

a NS s ∈ S is admitted to the network. A NS is admitted to the network if it can be

scheduled within its deadline.

as =

1 if NS s is admitted to the network,

0 otherwise.

Our objective is to maximize the number of admitted NSs.

Maximize
∑

s∈S

as (4.3)

This objective is subject to several constraints. Thus, we define a new variable yfδns ∈

{0, 1} to specify that the traffic of NS s started processing at time slot δ ∈ ∆ on the

79

VNF f ∈ F to which NF n ∈ Ns is mapped (1) and (0) otherwise.

yfδns =

1 if NF n of NS s started processing on VNF f at δ,

0 otherwise.

We define ψfδ
s ∈ {0, 1} to denote that the traffic of NS s is queued at δ ∈ ∆ in the

buffer of the VNF f .

ψfδ
s =

1 if the traffic of s is queued at δ in the buffer of f,

0 otherwise.

In addition, we define the variable qkns ∈ {0, 1} to depict that the NF n ∈ Ns of NS s

is mapped to a VNF instance hosted on physical server k ∈ Kp.

qkns =

1 if NF n of s is mapped to VNF f hosted on k,

0 otherwise.

hkns ∈ {0, 1} is another decision variable which indicates that NFs n, (n + 1) ∈ Ns of

NS s are mapped to VNFs hosted on the same physical server k ∈ Kp.

hkns =

1 if NFs n and (n+ 1) of NS s are hosted on k,

0 otherwise.

In order to handle the routing and transmission delays, we declare θδes ∈ {0, 1} to

designate that a NF o(e) ∈ Ns of NS s ∈ S begins the transmission of the traffic to

its successor NF d(e) ∈ Ns at time slot δ ∈ ∆ on the virtual link e ∈ Es (1) (or not,

80

0).

θδes =

1 if NF o(e) started the transmission of the traffic of

s to NF d(e) at time slot δ,

0 otherwise.

We also declare θ̂δes ∈ {0, 1} to indicate that the virtual link e ∈ Es is being used for

the transmission of the traffic between the NFs o(e) and d(e) at time slot δ ∈ ∆ (1)

(or not, 0).

θ̂δes =

1 if e is transmitting the traffic of s at time slot δ,

0 otherwise.

Further, we denote by leij ∈ {0, 1}, a decision variable that depicts that the virtual

link e ∈ Es of NS s ∈ S is routed through the physical link (ij) ∈ L (1) (or not, (0)).

leij =

1 if e is routed through the physical link (ij) ∈ L,

0 otherwise.

Table 4.2 summarizes the LASS-MaxAdmission decision variables.

1. NF mapping constraints

For a NS s to be admitted to the network, each of its NFs n ∈ Ns has to be

mapped to exactly one VNF f ∈ F (Eq.(4.4)).

∑

f∈F

∑

δ∈∆

yfδns = as
∀n∈Ns
∀s∈S (4.4)

Such mapping should guarantee that the requested NF n and the VNF f to

81

which it is mapped are of the same type (Eq.(4.5)).

∑

f∈F

∑

δ∈∆

yfδnstf = asmns
∀n∈Ns
∀s∈S (4.5)

2. NS scheduling constraints

Further, we define Eq.(4.6) to ensure that a VNF f ∈ F is processing the traffic

of NS s during all the processing period of this latter and prevents it from

processing the traffic of another NS s′ during the same period.

∑

s′∈S:s′6=s

∑

n′∈Ns′

yfδ
′

n′s′ ≤ 1− yfδns

∀n∈Ns
∀s∈S
∀f∈F

∀δ,δ′∈∆;δ≤δ′<δ+pns

(4.6)

Given that the traffic of a NS s should be processed by the NFs in the requested

order depicted in its NF-FG, we define Eq.(4.7) to prevent a NF (n+1) to start

processing the traffic of s before its predecessor NF n finishes its execution.

∑

f∈F

yfδ
′

(n+1)s ≤ 1−
∑

f∈F

yfδns
∀δ,δ′∈∆; δ′<δ+pns

∀n,(n+1)∈Ns

∀s∈S
(4.7)

Further, such processing of the traffic cannot start on NF (n+ 1) before being

transmitted to it by its predecessor NF n. Hence, transmission delays should

be taken into account in the schedule in the case where NFs n and (n+ 1) are

mapped to VNFs running on different physical servers. Thus, we first determine

the physical server hosting the VNF f to which the NF n of NS s is mapped

(Eq.(4.8)).

qkns =
∑

f∈F

∑

δ∈∆

yfδnsx
k
f

∀n∈Ns
∀s∈S
∀k∈Kp

(4.8)

Given the above information, we specify if the two consecutive NFs n and (n+1)

of the NS s are mapped to VNFs hosted on the same physical server k ∈ Kp

82

(Eq.(4.9)).

hkns = qknsq
k
(n+1)s

∀k∈Kp

∀n,(n+1)∈Ns

∀s∈S
(4.9)

Using the value of hkns, we determine Eq.(4.10) to prevent the start of the

transmission of traffic of a NS s between two consecutive NFs o(e) and d(e) if

they are mapped to VNFs hosted on the same physical server or if the NS is

not admitted.
∑

δ∈∆

θδes = (1−
∑

k∈Kp

hko(e)s)as
∀e∈Es
∀s∈S (4.10)

In addition, we guarantee that the transmission of traffic of a NS s between

two consecutive NFs o(e) and d(e) can only start when its processing on o(e) is

completed (Eq.(4.11)).

θδ
′e

s ≤ 1−
∑

f∈F

yfδ
o(e)s

∀δ,δ′∈∆; δ′<δ+po(e)s
∀e∈Es
∀s∈S

(4.11)

Similarly, the processing of the traffic of a NS s cannot start on NF d(e) before

its transmission to it is finalized (Eq.(4.12)).

∑

f∈F

yfδ
′

d(e)s ≤ 1− θδes
∀δ,δ′∈∆; δ′<δ+ws

bs
∀e∈Es
∀s∈S

(4.12)

We account for the transmission delays while ensuring that the virtual link e is

used to transmit traffic of a NS s during all the required transmission time (ws

bs
)

(Eq.(4.13)).
∑

δ∈∆

θ̂δes =
ws

bs

∑

δ∈∆

θδes
∀e∈Es
∀s∈S (4.13)

Eq.(4.14) ensures that the virtual link e is occupied during all the transmission

83

period ([δ, δ + ws

bs
− 1]).

∑

δ′∈[δ, δ+ws
bs

−1]

θ̂δ
′e

s ≥ ws

bs
θδes

∀e∈Es
∀s∈S
∀δ∈∆

(4.14)

To account for each VNF buffer capacity, we define Eq.(4.15) to specify that

the traffic of a NS s is queued in the buffer of VNF f during all the waiting time

between the end of its transmission to f and the beginning of its processing by

f .
∑

δ∈∆:δ′+ws
bs

≤δ<δ′′

ψfδ
s ≥ δ′′yfδ

′′

d(e)s − (δ′ +
ws

bs
)θδ

′e
s

∀δ′,δ′′∈∆:δ′≤δ′′

∀e∈Es
∀s∈S

(4.15)

We define Eq.(4.16) to determine that the traffic of NS s cannot be queued in

the buffer of VNF f at any time slot after the beginning of its processing on f .

ψfδ
s ≤ 1−

∑

n∈Ns

yfδ
′

ns

∀δ,δ′∈∆:δ≥δ′

∀f∈F
∀s∈S

(4.16)

Further, Eq.(4.17) guarantees that the traffic of NS s cannot be queued in the

buffer of VNF f before the end of its transmission to f .

ψfδ
s ≤ 1− θδ

′e
s

∑

δ′′∈∆

yfδ
′′

d(e)s

∀δ,δ′∈∆:δ<δ′+ws
bs

∀e∈Es
∀f∈F
∀s∈S

(4.17)

We determine Eq.(4.18) to guarantee that the traffic of a NS s cannot be waiting

in the buffer of a VNF f which is not used by s, that is, non of the NFs n ∈ Ns

is mapped to f .

ψfδ
s ≤

∑

n∈Ns

∑

δ′∈∆

yfδ
′

ns

∀δ∈∆
∀f∈F
∀s∈S

(4.18)

84

Eq.(4.19) ensures that the buffer capacity is respected.

∑

s∈S

ψfδ
s ws ≤ φf

∀δ∈∆
∀f∈F (4.19)

We guarantee that a NS s meets its deadline by ensuring that the processing

of its traffic by the last NF (|Ns|) in its NF-FG is finalized before its deadline

(Eq.(4.20)).
∑

f∈F

∑

δ∈∆

yfδ|Ns|s
(δ + p|Ns|s) ≤ us ∀s ∈ S (4.20)

3. Traffic routing constraints

The traffic routing is handled by Eq.(4.21) which represents the flow conserva-

tion constraint.

∑

j:(i,j)∈L

leij −
∑

j:(j,i)∈L

leji = qio(e)s − qid(e)s
∀e∈Es
∀s∈S
∀i∈Kp

(4.21)

However, we prevent through Eq.(4.22) the routing of a virtual link e of a NS

s through a physical link (ij) ∈ L if o(e) and d(e) are mapped to VNFs hosted

on the same physical server.

leij ≤ 1−
∑

k∈Kp

hko(e)s
∀e∈Es
∀s∈S

∀(ij)∈L
(4.22)

In addition, we define Eq.(4.23) to guarantee that the physical links capacity is

not violated.
∑

s∈S

∑

e∈Es

leij θ̂
δe
s bs ≤ cij

∀δ∈∆
∀(ij)∈L (4.23)

Eq.(4.24) is defined to prevent the routing of a virtual link e of a NS s through

85

a physical link (ij) ∈ L if s is not admitted.

leij ≤ as
∀e∈Es
∀s∈S

∀(ij)∈L
(4.24)

Eqs.(4.9), (4.10), (4.17) and (4.23) are non linear and can be easily linearized as

explained in Appendix C.

4.3.3 Variations of the LASS problem

In order to highlight the interaction between the scheduling of different NSs, and

the impact of the schedule of one on another, we consider different variations of the

LASS problem by varying the objective function and removing the latency constraint

(Eq.(4.20)). Thus, in the following, we present two other formulations of the LASS

problem where the parameters and the decision variables are respectively defined in

Table 4.1 and Table 4.2. Additional decision variables are depicted below.

4.3.3.1 LASS - Minimize the Maximum Completion Time (LASS-MinMaxCT)

We define the LASS problem under the objective of minimizing the maximum com-

pletion time of the NSs, that is minimizing the schedule length of all the scheduled

NSs. Thus, we declare a new decision variable % ∈ N+ which represents the maximum

completion time of all the scheduled NSs. The objective is presented by Eq.(4.25).

Minimize % (4.25)

This objective is subject to several constraints depicted by Eq.(4.4) to Eq.(4.19),

Eq.(4.21) to Eq.(4.23) and Eq.(4.26) where Eq.(4.26) ensures that the maximum

completion time of all NSs, is greater or equal to the completion time of each of

86

them.

% ≥
∑

f∈F

∑

δ∈∆

yfδ|Ns|s
(δ + p|Ns|s) ∀s ∈ S (4.26)

Note that we drop the decision variable as and replace it by 1 in Eq.(4.4), Eq.(4.5)

and Eq.(4.10).

4.3.3.2 LASS - Minimize the Sum of Completion Times (LASS-MinSumCT)

We reformulate the LASS problem under the objective of minimizing the sum of

completion times of all the NSs (Eq.4.27).

Minimize
∑

s∈S

∑

f∈F

∑

δ∈∆

yfδ|Ns|s
(δ + p|Ns|s) (4.27)

This objective is subject to several constraints presented in Eq.(4.4) to Eq.(4.19),

Eq.(4.21) to Eq.(4.23) and Eq.(4.26). Note that we drop the decision variable as and

replace it by 1 in Eq.(4.4), Eq.(4.5) and Eq.(4.10).

4.3.4 Problem Complexity

The LASS-MaxAdmission, the LASS-MinMaxCT and the LASS-MinSumCT are MLIPs

which are complex to solve. They are NP-Hard since they solve three NP-Hard prob-

lems which are the NF mapping problem [25], the traffic routing problem [34] and

the NS scheduling problem [71]. These programs detail the multiple constraints that

should be respected to provide a feasible solution for the LASS problem. While they

can be used as benchmark methods to compare against given that they provide an

optimal solution of the problem, it is impractical to use them in real deployments

of networks of realistic size due to their non scalability (as we will show in Section

4.5). Thus, in the following, we propose a more scalable approach to solve the LASS

problem with respect to its presented constraints. We use a game theoretic technique

87

that can provide some performance guarantees on the quality of the solution.

4.4 LASS- A Game Theoretic Approach (LASS-

Game)

To overcome the complexity of centralized approaches (i.e., LASS-MaxAdmission,

LASS-MinMaxCT, LASS-MinSumCT), we seek at delegating the mapping, routing

and scheduling decisions to each NS, hence departing from the centralization of the

decision making process. Thus, we present the LASS-Game: Latency-Aware Schedul-

ing Game, a game-theoretic approach to solve the LASS problem.

4.4.1 Exploring Mapping, Routing and Scheduling Solutions

Giving each NS the freedom to decide on its mapping, routing and scheduling solution

requires providing the NS with a procedure to explore the possible solutions of its

LASS problem. Such a procedure consists of building a connected virtual graph of

all the aforementioned possibilities. To this end, each NS s ∈ S builds its own virtual

directed network H ′
s(N

′
s, E

′
s) where N ′

s is a set of nodes and E ′
s is a set of edges

connecting them.

Given G(K,L), the set F of VNFs it is hosting in addition to the NF-FG of s

depicted by Hs(Ns, Es); for each NF n ∈ Ns, the NS identifies all the VNFs in F of

the same type as n and to which n can be mapped. For each of those VNFs, the NS s

creates a node n′ ∈ N ′
s representing them. Each node n′ ∈ N ′

s will be identified by a

tuple < f, afn′s, t
f
n′s, p

f
n′s > where f ∈ F is the VNF instance which n′ represents, afn′s

is the arrival time of the traffic of the NS s to n′, tfn′s denotes the start processing time

of the traffic of s by n′, pfn′s is the processing delay of the traffic of s on n′ (Eq.(4.2)).

The created nodes in N ′
s are interconnected by directed virtual links e′ ∈ E ′

s showing

88

the NFs ordering required by the NS NF-FG. Each virtual link e′ ∈ E ′
s represents

the physical route between the VNFs depicted by the connected nodes n′ ∈ N ′
s. For

simplicity, we consider that the shortest path between each two consecutive NFs in

the NF-FG is used to route the traffic of the NS. Thus, we identify each virtual link

e′ ∈ E ′
s by a tuple < Le′s, ae′s, te′s, de′s > where Le′s depicts the set of physical links to

which e′ is mapped, that is, the shortest path route between the source o(e′) and the

destination d(e′) NFs of e′. ae′s is the arrival time of the traffic of s to the virtual link

e′ ∈ Es, te′s denotes the start transmission time of the traffic on e′ and de′s depicts

the transmission delay on e′ (Eq.(4.1)). It is worth noting that the arrival time to a

node n′ is calculated as the sum of the start transmission time and the transmission

delay on its precedent virtual link (Eq.(4.28)). Similarly, the arrival time on a virtual

link e′ is calculated as the sum of the start processing time and the processing delay

on its precedent NF (Eq.(4.29)).

afn′s = te′s + de′s where n
′ = d(e′) (4.28)

ae′s = tf(n′−1)s + pf(n′−1)s where (n′ − 1) = o(e′) (4.29)

Note 4.1. If a NF n ∈ Ns can be mapped to a certain number g of VNF instances,

then g nodes will be added to N ′
s, each representing a VNF instance. Given that the

arrival and start processing times can differ on each of the g nodes, the arrival time

to the next NF in the chain will also differ. Thus, if the successor NF (n + 1) ∈ Ns

can be mapped to a certain number x of VNF instances, we create g ∗ x nodes ∈ N ′
s

where each of the g nodes is connected to each of the x nodes.

Further, to ensure the connectivity of its graph, each NS adds a virtual source

and destination nodes where the source node is connected by links with transmission

89

s1 requiring the NF-FG Hs1(Ns1 , Es1) as depicted in Fig.4.2.b where n1 is of type f1,

n2 of type f2 and n3 is of type f7. The processing time of the traffic of s1 on each NF

is calculated based on Eq.(4.2). Similarly, the transmission delay between the NFs

is calculated based on Eq.(4.1). Further, we assume that time is divided into slots

(i.e., t1, t2, t3, etc.), each representing a duration of one second. To build the virtual

network H ′
s1
(N ′

s1
, E ′

s1
) of NS s1, we start by identifying the VNFs of the same type of

NF n1 ∈ Ns1 to which it can be mapped. That is, VNF f1 hosted on physical server

PS1 which we will refer to by fPS1
1 . Thus, we create a node n′

1 ∈ N ′
s1

to represent

fPS1
1 . Similarly, n2 is of type f2 and can be mapped to either fPS1

2 or fPS4
2 . Thus, we

add n′
2 and n′

3 to N ′
s1

to represent fPS1
2 and fPS4

2 respectively and we connect n′
1 to

each of them with a directed link showing the same order required in the NF-FG. n3

is of type f7 and can be mapped to fPS3
7 . Given that n2 can be mapped to two VNFs

(fPS1
2 or fPS4

2), based on note 4.1, two nodes n′
4 and n

′
5 (both representing fPS3

7) are

created for its successor NF n3 connected to n′
2 and n

′
3 respectively (Fig.4.2.c). Finally,

two nodes S and D are added to the graph H ′
s1
(N ′

s1
, E ′

s1
), respectively representing

a virtual source and destination, are respectively connected to nodes depicting the

first and last NF in the NF-FG. Each virtual link e′ ∈ E ′
s is mapped to the shortest

path route between its source and destination nodes. For instance, e′3 is mapped to l4,

hence, Le′3s1
= l4. However, virtual links connected to S and D are not mapped to any

physical links (Le′1s1
= Le′6s1

= Le′7s1
= {∅}) and no transmission delays are considered

on those links (de′1s1 = de′6s1 = de′7s1 = 0). Similarly, virtual links connecting nodes

(NFs) mapped to VNFs hosted on the same server are not mapped to any physical

links, nor traffic transmission is needed on those links. Hence, Le′2s1
= {∅} and

de′2s1 = 0.

After building its virtual graph H ′
s(N

′
s, E

′
s), each NS s populates its nodes and

links with their proper information (i.e., arrival time, start processing/transmission

91

time, etc.) as explained above. NS s considers that it is the only NS in the network

and that its traffic can be served by each VNF and transmitted by each physical link

as soon as it reaches them. Thus, the traffic of s does not need to wait in the buffer of

the VNF nor wait to be transmitted through the physical links to which the virtual

links e′ ∈ E ′
s are mapped. Hence, afn′s = tfn′s ∀n′ ∈ N ′

s and ae′s = te′s ∀e′ ∈ E ′
s in

H ′
s(N

′
s, E

′
s) (Fig.4.2.c). Each path p ∈ Ps where Ps is the set of paths in H

′
s(N

′
s, E

′
s) is

a solution for the LASS problem of s. Hence, the updated graph H ′
s(N

′
s, E

′
s) reveals

all the possible mapping, routing and scheduling solutions of s.

The assumption made by the NS s to populate its virtual graph (i.e., s is the

only NS in the network), is not always accurate as many NSs are usually sharing

the computing and network resources (i.e. VNFs, physical links bandwidths) of the

physical network G(K,L). Hence, in order to ensure a valid sharing of these resources

where each VNF processes the traffic of one NS at a time and the physical links

capacity constraints are respected, each NS needs to know the time at which it can be

served by each VNF/physical link in the network based on the load on these resources.

Thus, a centralized controller is needed to ensure that each NS is exploring feasible

scheduling solutions. Hence, in the following we present the LASS-Game that defines

the interaction between the NSs and a centralized controller in order to determine a

valid solution for the LASS-problem.

4.4.2 LASS-Game Formulation

The LASS-Game is defined to allow each NS to determine a solution for its LASS

problem through providing it with the needed network information in order to guide

its exploration of all its possible mapping, routing and scheduling solutions. LASS-

Game will help each NS s, to build and update its virtual graph H ′
s(N

′
s, E

′
s) (Section

4.4.1) based on the congestion on the shared resources (i.e., VNFs, physical links) in

92

G(K,L) that it requires. Guiding each NS in exploring its possible schedules is of

paramount importance for determining a feasible and coherent solution for the LASS

problem between all NSs. Thus, we formulate the LASS-Game as a non-cooperative

extensive-form game. In contrast to strategic form games where players play simulta-

neously, extensive-form games are used to model the sequential interactions between

players [72] which yield suitable to represent and solve the LASS problem as it will

allow the NSs to choose their mapping, routing and scheduling solution based on some

insights about their opponents solutions, as we will explain in this section. Hence, we

define the LASS-Game by the tuple a(S,K(V, ρ), I, A,X, γ) where:

1. S: represents the set of players in the game. We assume that each NS s ∈ S

acts as a player. Thus, in the following we use NS and player interchangeably.

2. K(V, ρ): is a decision tree where V = {v0}
⋃
D

⋃
T consists of a set V of nodes

depicted by a root node v0, a set D of decision or strategic nodes and a set T

of terminal nodes. ρ is an immediate predecessor function ρ : V → D.

3. I =
⋃S

s=0 Is: represents the information set of the game which includes the

information that the players have at the time when they must take action. It

is composed of the information sets Is of each player s. Is includes the physical

network topology, the possible start processing time of the traffic of NS s on

each VNF to which its NFs n ∈ Ns can be mapped, in addition to the start

transmission time of the traffic of s on each determined route between each two

chosen consecutive VNFs and the player’s actions, payoffs, moves and strategies.

4. A =
⋃S

s=0As: is the set of actions available during the game and consists of

subsets of each player’s actions As available for its information set Is ∈ I. As

includes the possible mapping, routing and scheduling solutions of s.

93

5. X : is the probabilities set which includes the probability xas of each of the

actions a ∈ A for each player s ∈ S.

6. γ = (γs)s∈S : T → NS is a payoff function.

Table 4.3 summarizes all the notations used in the LASS-Game.

Game notations

a(S,K(V, ρ), I, A,X, γ) S: set of players.
K(V, ρ): decision tree of V = {v0}

⋃
D

⋃
T nodes and

precedent function ρ.
I =

⋃S

s=0 Is: Set of all players information sets (Is).

A =
⋃S

s=0As: Set of all players action sets (As).
X: Probability set of all the players actions.
γ = (γs)s∈S : T → NS: payoff function.
Player specific notations

H ′
s(N

′
s, E

′
s) Virtual graph of player s ∈ S.

N ′
s: set of nodes representing the NFs requested by s.

E ′
s: set of virtual links connecting the nodes in N ′

s.

< f, afn′s, t
f
n′s, p

f
n′s > Tuple representing a node n′ ∈ N ′

s.
f : VNF instance which the node n′ represents.
afn′s: Arrival time of the traffic of s to n′.

tfn′s: Start processing time of the traffic of s by n′.

pfn′s: Processing delay of the traffic of s on n′.
< Le′s, ae′s, te′s, de′s > Tuple representing a virtual link e′ ∈ E ′

s.
Le′s: Set of physical links to which the virtual link e′ is
mapped.
ae′s: Arrival time of the traffic of s to the virtual link
e′ ∈ Es.
te′s: Start transmission time of the traffic of s on e′.
de′s: Transmission delay of the traffic of s on e′.

Ps Set of paths in H ′
s(N

′
s, E

′
s).

σs : As(i) → [0, 1] Mixed strategy of player s.
γs Payoff of s ∈ S.
γas Completion time of the schedule of player s ∈ S when

playing action a ∈ As.
xas ∈ [0, 1] Probability of player s for playing action a ∈ As.

Table 4.3: Notations of the LASS-Game.

94

The choice of an extensive-form game allows the modeling of the consecutive in-

teractions between players where one player cannot play before acquiring some infor-

mation reflecting the updated status of the network (i.e., network topology, available

VNFs, etc.) based on the moves of its precedent players. In fact, in LASS-Game,

players play sequentially one after the other in order to decide on the mapping, rout-

ing and scheduling of their traffic through the NFs of their NF-FGs. Thus, at each

stage of the game, each player (in the sequence) needs to choose a move from all the

possible ones. It is in the best interest of each NS to get the best possible QoS and

hence, complete the processing of its traffic along its NF-FG before its deadline us.

Each player will therefore act selfishly by trying to maximize its benefits, by choosing

a move that will minimize its completion time.

To be able to decide on a move, each player needs to explore the different set

of actions (As) it can take. Here, each action depicts a decision to apply a certain

mapping of its NFs, a routing of its traffic through its NF-FG and a schedule for

the processing/transmission of its traffic. Thus, each path p ∈ Ps in H ′
s(N

′
s, E

′
s)

represents an action a ∈ As. Hence, to build and update its virtual graph, the player

needs some locally available information. These information include the physical

network G(K,L) topology, the locations and the type of the hosted VNFs f ∈ F . In

addition, the player requires some information computed based on the moves of its

opponents such as an estimate of its start processing time on each of the VNFs its NFs

can be mapped to, and its start transmission time on the physical routes depicting

each of the virtual links e′ ∈ E ′
s. Thus, instead of allowing the sharing of the moves

and information of the players between each other, a centralized controller is used to

retain the information set I representing the complete history of all players’ actions,

payoffs, moves and strategies. Hence, the controller will compute and communicate

to each player its start processing time on each of the VNFs its NFs can be mapped

95

to, and its start transmission time on each of the physical routes its virtual links

are mapped to. Such computation is based on a defined processing and transmission

policies that we will elucidate in the following. Once a player becomes aware of its

new start processing/transmission times, it updates its virtual graph, chooses its next

move based on a mixed strategy approach and communicates it to the controller. NSs

will repeatedly update and share their moves with the controller until the game ends.

4.4.3 Processing and Transmission Policies

The sharing of the physical network resources, mainly the deployed VNFs and the

physical links capacity, requires some resource allocation policies in order to arrange

and organize such sharing. Such organization consists of ensuring that each VNF is

processing the traffic of one NS at each time slot and that the physical links capacity

is respected. With the knowledge of the information set I, the centralized controller

organizes the sharing of resources by applying a processing and transmission schedul-

ing policies in order to communicate to each player currently playing, the earliest

start processing/transmission time it can get to its required VNFs/physical routes.

Thus, before choosing its move, each player s needs first to identify all the possible

schedule lengths it can achieve given its objective in minimizing its completion time

and meeting its deadline us. Hence, s needs to update its virtual graph H ′
s(N

′
s, E

′
s).

Thus, it forwards to the controller its tentative arrival time afn′
s
and processing time

pfn′
s
on each VNF represented by a node n′ ∈ N ′

s as well as its deadline us. With the

knowledge of the list of players requesting the processing of their traffic by a certain

VNF, the controller determines and communicates to each of them their start pro-

cessing time on that VNF. In fact, the controller maintains an ordered list of arrival

times, deadlines, and processing times for all the virtual nodes n′ ∈ N ′
s constituting

these moves. Let zn′s ∈ {0, 1} depicts that node n′ ∈ N ′
s is part of the move of

96

player s (1) and (0) otherwise. The ordered list retained by the controller can then

be represented by Eq.(4.30).

{

(afn′s, us, p
f
n′s)|

∀f∈F
∀n′∈N ′

s:zn′s=1
∀s∈S

}

(4.30)

1. Processing policy

For each VNF f ∈ F , the controller orders the players (i, j ∈ S) requesting it

based on the following processing policy:

afn′i < afn′′j (4.31)

ui < uj; when afn′i = afn′′j (4.32)

pfn′i < pfn′′j; when ui = uj (4.33)

i < j; when pfn′i = pfn′′j (4.34)

Upon receiving a request from a player i to use a VNF f , the controller de-

termines the position k of the player in its ordered list of that VNF. Hence, it

calculates the player i’s start processing time according to Eq.(4.35).

tfn′i = tf
n′′(k−1) + pf

n′′(k−1) (4.35)

Note that if, upon the arrival of the traffic of s to the VNF f , the buffer of

f did not have enough capacity to store the traffic of s, that is, φδ
f < ws at

δ = afn′s, where φδ
f is the available buffer capacity of f at δ; the controller

updates the arrival time of the traffic of s to VNF f as in Eq.(4.36) before

applying the processing policy (Eq.(4.31) to Eq.(4.34)) in order to compute the

start processing time of the traffic of s on f . Eq.(4.36) updates the arrival time

97

of the traffic of s to VNF f to be equal βf
ns depicting the time slot at which the

buffer of f has enough capacity to store the traffic of s.

afn′s = βf
ns (4.36)

Similarly, in order to get its start transmission time on a virtual link e′ ∈ E ′
s,

player s communicates to the controller its tentative arrival time ae′s, deadline

us, transmission time de′s in addition to the physical route Le′s to which e′ is

mapped. With the knowledge of all the players moves, the controller maintains

an ordered list (Eq.(4.37)) of all the arrival times, deadlines, and transmission

delays on the virtual links mapped to a specified physical link l ∈ L. zle′s ∈ {0, 1}

in Eq.(4.37) depicts that e′ is part of the move of player s and is mapped to the

physical link l ∈ (Le′s ⊂ L) (1) and (0) otherwise.

{

(ae′s, us, de′s)| ∀e′∈E′
s:z

l
e′s

=1

∀s∈S

}

(4.37)

2. Transmission Policy

For each physical link l ∈ L, the controller orders the players (i, j) requesting

it based on the following transmission policy:

ae′i < ae′′j (4.38)

ui < uj; when ae′i = ae′′j (4.39)

de′i < de′′j; when ui = uj (4.40)

i < j; when de′i = de′′j (4.41)

98

Upon the receipt from a player i a request of its updated start transmission time on

a physical route Le′i to which e′ is mapped, the controller evaluates if all the physical

links l ∈ Le′i have enough bandwidth to guarantee to s between ae′i and ae′i + de′i.

If any of the aforementioned physical links cannot guarantee the required bandwidth

of i from the time of its arrival to the link e′ until it is completely transmitted, then,

the controller applies the transmission policy on each physical link l ∈ Le′i (Eq.(4.38)

to Eq.(4.41)). This policy determines the earliest start transmission time of i on e′

(te′i) at which all the links l ∈ Le′i have enough bandwidth for the traffic of i. Hence,

it calculates the player i’s start transmission time according to Eq.(4.42) where tle′i

is the possible start transmission time of the traffic of i on l, computed based on the

transmission policy, and cδl represents the bandwidth available on l at time slot δ and

bi is the bandwidth demands of NS i.

te′i = max tle′i : (cδl ≥ bi
∀ tl

e′i
≤δ<tl

e′i
+de′i

∀ l∈Le′i
) (4.42)

4.4.4 Expected Utility and Nash Equilibrium

After updating its virtual graph based on the updated start processing/transmission

times acquired from the controller, identifying its action set As and the possible

completion times it can achieve, a player s has to decide on its strategy. We consider

that the game is played under a mixed strategy where at each iteration, the player

s needs to decide on its mixed strategy through a probability distribution over its

actions, using its updated virtual graph at that iteration.

Given the set of actions As of a player s, let σs : As(i) → [0, 1] denotes the

probability distribution (mixed strategy) over As written in terms of the actions

available at each of its information sets i ∈ Is [73]. Therefore, in a mixed strategy σs

of a player s, each action a ∈ As is played with probability xas ∈ [0, 1]. The mixed

99

strategy game is modeled as follows:

max γs(x) = max −
∑

a∈As

xas
∑

σ−s

γσ−s
as

∏

As′∈σ−s

xa′s′

 ∀s∈S (4.43)

subject to:
∑

a∈As

xas = 1 ∀s ∈ S (4.44)

where γs(x) is the expected utility of player s ∈ S, σ−s represents the mixed strategy

profiles of the opponents of s, γσ−s
as is the completion time of player s when selecting

action a ∈ As as its strategy given those of its opponents (σ−s) and xa′s′ is the

probability of player s′ ∈ S\{s} for selecting action a′ ∈ As′ as its strategy. Note

that the completion time of an action a ∈ As(i) can be determined as the finish

processing time on the last node in the path p ∈ Ps (in the virtual graph H ′
s(N

′
s, E

′
s)

of s) associated with a and can be calculated as the sum of the start processing time

and the processing delay on that node. Eq.(4.43) consists of maximizing the utility

(schedule length) of player s. Eq.(4.44) ensures that the probabilities over all the

player’s actions add to 1.

Theorem 4.1. The LASS-Game admits a sub-game perfect Nash equilibrium and has

at least one mixed strategy Nash equilibrium.

Proof. Based on the definition of the LASS-Game in Section 4.4.2, LASS-Game is an

extensive-form game where players play sequentially under a mixed strategy with the

objective of maximizing their payoff through minimizing their schedule lengths, or in

other words, the completion times of their mapping, routing and scheduling solution

(Eq.(4.43)). In addition, the LASS-Game is a finite game given that it considers a fi-

nite set S of players, where each player s ∈ S has a finite set of actions As which yields

the set of paths Ps in its virtual graph H ′
s(N

′
s, E

′
s). Thus, each player admits a finite

100

set of strategies. Further, the LASS-Game is played for a finite number of iterations.

Furthermore, it is a game with perfect information as all the players are perfectly in-

formed of all the preceding moves and the game structure (a(S,K(V, ρ), I, A,X, γ)).

In fact, while at the beginning of the game, each of the players s ∈ S builds its

virtual graph without the knowledge of the congestion level on the VNFs and on the

physical links it requires from the physical network; in subsequent iterations, each of

the players is communicated with its start processing/transmission time on each of

its requested resources. Such start processing/transmission time is computed by a

central controller which is perfectly informed of all the information set I, the actions,

the moves and the payoffs of the players, in addition to the status of the network

G(K,L). Hence, we have shown that the LASS-Game is a finite, extensive-form

game with perfect information, thus, it admits a sub-game perfect Nash equilibrium

(Kuhn’s theorem) [72, 74]. Finally, the LASS-Game posses an equivalent normal-

form strategic game, and hence based on Nash theorem [72], it has at least one mixed

strategy Nash equilibrium.

In order to determine the sub-game Nash equilibrium, backward induction is car-

ried out [75, 72]. It consists of starting at the end of the game tree K(V, ρ), and

reasoning backward up the tree by solving for the optimal behavior at each node. In

other words, it identifies the equilibrium in the bottom most tree, and adopt these

as one moves up the tree. Thus, Eq.(4.45) is used at each node of the game tree to

determine the path to the root, and hence, to specify the sub-game Nash equilibrium

where no player has an incentive to deviate and change its strategy anymore as it will

not increase its payoff. Note that in Eq.(4.45), σ∗
s is the best mixed strategy of s and

σ∗
−s illustrates the optimal strategies of its opponents.

γs(σ
∗
s , σ

∗
−s) ≥ γs(σs, σ

∗
−s) ∀s ∈ S (4.45)

101

4.4.5 Price of Anarchy

Players of the LASS-Game behave selfishly with the objective of achieving the lowest

schedule length in order to meet their deadlines and get admitted to the network.

Such selfish behavior can lead to sub-optimal solutions provided by the LASS-Game in

comparison to a central approach such as a MILP method (e.g., LASS-MaxAdmission

(Section 4.3)). This is because the optimal solution provided by a MILP does not

account for maximizing the benefit of each NS, but rather guarantees the best social

welfare. Hence, in order to evaluate the performance of the LASS-Game solution,

we determine the Price of Anarchy of the LASS-Game (PoA(a)) by considering the

latency experienced by each player on each of the resources it requires (i.e., VNFs,

physical links). Hence, the PoA(a) is defined as the ratio of the latency experienced

by all the players at the Nash equilibrium (ζeq) over the optimal latency (ζopt) obtained

by a central method (Eq.(4.46)).

PoA(a) =
ζeq
ζopt

(4.46)

Thus, we evaluate the upper bound of the PoA(a) by showing that the LASS-Game

is a congestion game where each player s ∈ S admits a linear latency function of the

form gs(y) = asy + os where as and os are non negative real numbers.

Theorem 4.2. The price of anarchy of the LASS-Game PoA(a) is upper bounded by

1
2
(3 +

√
5).

Proof. We first show that every player s ∈ S admits a linear latency function depicting

the latency it experiences at each VNF f , that we denote by ζfs, and at each virtual

link e′ (i.e, set of physical links to which the virtual link e′ is mapped), which we

represent by ζe′s, that it requires at the equilibrium.

Defining ζe′s: Let E ′ = ∪s∈SE
′
s be the set of virtual links of all the players’ virtual

102

graphs (H ′
s(N

′
s, E

′
s)) (Section 4.4.1). We define (l) = {s|l ∈ L} to be the set of

players, using at the equilibrium, a virtual link e′ ∈ E ′ mapped to a physical link

l ∈ L. The load on l ∈ L is depicted by αl =
∑

s∈(l) bs where bs is the bandwidth

required by s. Let µe′s ∈ {0, 1} denotes that the virtual link e′ ∈ E ′
s is selected to

route the traffic of s at the Nash equilibrium (1) and (0) otherwise. The expected

latency experienced by player s on e′ at the equilibrium can then be determined based

on Eq.(4.47), where gl(αl) = alαl + ol is a linear latency function of the load on the

physical link l ∈ L and al and ol are real numbers.

ζe′s = E[
∑

l∈Le′s

gl(αl)|µe′s = 1] =
∑

l∈Le′s

E[gl(αl + (1− µe′s)bs)] (4.47)

Defining ζfs: Let N ′ = ∪s∈SN
′
s be the set of virtual nodes of all the players’

virtual graphs (H ′
s(N

′
s, E

′
s)). As each of the virtual nodes in N ′ is mapped to exactly

one VNF f ∈ F , we define (f) = {s|f ∈ F} to be the set of players using, at the

equilibrium, the VNF f ∈ F . The load on f ∈ F is depicted by αf = |(f)|pf where

pf is the processing capacity of f that is guaranteed to s. Let µfs ∈ {0, 1} denotes

that the VNF f ∈ F is selected to process the traffic of s at the Nash equilibrium (1)

and (0) otherwise. The expected latency experienced by player s on f at the Nash

equilibrium can then be determined based on Eq.(4.48), where gf (αf) = afαf + of

is a linear latency function of the load on the VNF f ∈ F and af and of are real

numbers.

ζfs = E[gf (αf)|µfs = 1] = E[gf (αf + (1− µfs)pf)] (4.48)

Let Fs ⊂ F be the set of VNFs which will process the traffic of s at the equilibrium.

Let E ′′
s ⊂ E ′

s be the set of virtual links mapped to the physical links that will route

the traffic of s at the Nash equilibrium. The latency function of player s at the Nash

equilibrium that we denote by ζs, can then be written as in Eq.(4.49) where ζe′′s and

103

ζfs are as defined earlier. It is linear as it is the sum of two linear functions (ζe′′s and

ζfs).

ζs =
∑

f∈Fs

ζfs +
∑

e′′∈E′′
s

ζe′′s (4.49)

Similarly, the optimal latency function of player s denoted by ζ∗s can be defined by

Eq.(4.50) where ζf∗s and ζe′′∗s respectively represent the optimal latencies experienced

by s on VNF f and on the physical route to which e′′ is mapped. ζe′′∗s and ζf∗s can

be respectively defined based on Eq.(4.47) and Eq.(4.48) by replacing e′ by e′′∗ and

Le′s by Le′′∗s in Eq.(4.47) and replacing f by f ∗ ∈ F ∗
s in Eq.(4.48); where e′′∗ ∈ E ′′∗

s

denotes an optimal virtual link and f ∗ ∈ F ∗
s represents a VNF selected to process the

traffic of s at the optimal solution.

ζ∗s =
∑

f∗∈F ∗
s

ζf∗s +
∑

e′′∗∈E′′∗
s

ζe′′∗s (4.50)

Given that in the LASS-Game, each player acts selfishly to minimize its schedule

length, the latency it experiences at the Nash equilibrium is always less than that

experienced at the optimal solution where all players collaborate towards achieving

the social welfare as denoted in Eq.(4.51).

ζs ≤ ζ∗s (4.51)

Hence, following the derivation in [76], it can be shown that the PoA(a) can be

represented by Eq.(4.52).

PoA(a) =

∑

ε∈L∪F aεE[α
2
ε] + oεE[αε]

∑

ε∈L∪F (aεα
∗
ε + oε)α∗

ε

(4.52)

We have proved that the LASS-Game admits a mixed strategy Nash equilibrium

(Theorem 4.1) and a player specific linear latency function (Eq.(4.49)), hence, its

104

PoA(a) is upper bounded by 1
2
(3 +

√
5) as explained in [76, 77]. Thus, Eq.(4.53)

holds which completes the proof.

PoA(a) =

∑

ε∈L∪F aεE[α
2
ε] + oεE[αε]

∑

ε∈L∪F (aεα
∗
ε + oε)α∗

ε

≤ 1

2
(3 +

√
5) (4.53)

4.4.6 Best Response Algorithm

The existence of a mixed strategy Nash equilibrium (Theorem 4.1) is an interesting

and important result. Reaching such equilibrium requires calculating the probability

distribution σs for each player s ∈ S through solving the LP depicted by Eqs.((4.43),

(4.44)). The complexity of this LP grows with the number of players and the number

of possible actions to be taken by each player (number of nodes in K(V, ρ)). In fact,

it requires the knowledge of the completion time (γσ−s
as) of player s when selecting

an action a in response to the actions of its opponents. With a high number of

players, possible mapping, routing and scheduling solutions for each; the combination

of actions taken by the players can be very large, and hence the calculation of all the

possible values of γσ−s
as is hard. This, in fact, makes the problem of calculating the

mixed strategy Nash equilibrium hard to solve through the LP (Eqs.((4.43), (4.44)).

Thus, in the following, we propose a time-efficient algorithm to find approximate

equilibrium solutions by simplifying the calculation of the probability distribution of

each player and the selection of its strategy. Fig.4.3 details the steps of the best

response algorithm.

At the beginning of the game, each player s ∈ S builds its virtual directed graph

(H ′
s(N

′
s, E

′
s)) by considering that any requested VNF/physical link can be guaranteed

directly to it with no waiting delays. The players start by playing sequentially one

105

(1) Send arrival

times to VNFs/links

Repeat

Controller

Player3

Player1

Player s

Player2

Update ordered lists

of players on each VNF/

physical link

...

All players

build their

virtual graphs

Calculate start

processing/transmission

times

(processing/transmission policies)

(2) Send start processing/transmission

times on the requested VNFs/links

(3) Send move

(4) Send new start

Processing/transmission times

(4) Send new start

processing/transmission times

Update current move

Information

Update current move

Information

Is maximum

iteration

reached?

NO

YES

Update virtual graph

Choose move

Figure 4.3: LASS-Game flowchart (player 3 is playing).

after the other. Each player s ∈ S updates the weights of the nodes and virtual

links in its virtual graph H ′
s(N

′
s, E

′
s) with the help of the controller and based on

the processing and transmission policies as explained in Section 4.4.2 and Section

4.4.3. Once its virtual graph is updated, NS s chooses a move and shares it with the

controller.

In order to choose its move, NS s needs to calculate its probability distribution

as explained in Section 4.4.4. Given the complexity and non-scalability of the LP

depicted by Eqs.((4.43), (4.44)) designated for this purpose, we develop a heuristic

approach to be applied by each player in order to calculate its probability distribution

(σs). Motivated by the fact that each player aims at minimizing its completion time,

higher probability should be assigned to the actions depicting the lowest completion

time. Further, given that Eq.(4.44) should be respected, each player will define the

probabilities by dividing the completion time of each action over the sum of com-

pletion times of all the available ones (γas∑
a∈As

γas
). The player will then order the

106

calculated probabilities in a descending manner and respectively assign them to the

actions ordered in ascending form of their completion times. Using randomness and

based on the defined probability distribution, the player s will then choose its move

and sends it to the controller. Upon receiving the move of s, the controller updates

the ordered list of the players on each VNF and each physical link, and thus, com-

putes and communicates the new start processing/transmission times of the players

who already played before s on each of their requested VNFs and links. These latter

update the nodes and physical links information (arrival, start processing/transmis-

sion time) in their selected move accordingly. This update is of high importance in

order to maintain a valid and coherent schedule for all the players at each iteration

where only one player can use a VNF at a time and the physical links capacity should

remain respected. The best response algorithm is terminated after a maximum num-

ber of iterations is reached. The number of iterations can be accordingly fine-tuned

to provide a trade-off between the solution quality and the computation time. At the

end of the game, players that were able to meet their deadlines can be identified by

simply comparing their deadlines to their payoffs.

4.5 Performance Evaluation

We evaluate the performance of our LASS-MaxAdmission (Section 4.3) against our

game theoretic approach LASS-Game (Section 4.4), the LASS-MinSumCT and the

LASS-MinMaxCT (Section 4.3). In addition, we compare our proposed methods

against the state of the art Tabu-Search for NF Mapping and Scheduling (TS-NFMS)

[38]. To have a valid comparison, we add a shortest path routing to the TS-NFMS.

Even though these methods have different objectives, it is interesting to compare

them in order to understand the behavior of our hybrid approach (LASS-Game)

107

against other centralized solutions which affect the schedule length of the NSs dif-

ferently. Throughout our numerical study, we consider network slices of different

sizes where the VNFs are randomly placed and have varying processing ([300-500]

processing units) and buffer ([4000-6000] units) capacities. We use sets of NSs ran-

domly generated of varying traffic ([500-1500] units) and bandwidth requirements

([300-500] bandwidth units) and demanding each varying number of NFs ([3-5] NFs).

We account for different deadline settings for the generated NSs; superTightDeadline,

tightDeadline and relaxedDeadline to be respectively equal to 4/3, 3/2 and 2 of the

sum of their processing and transmission delays without considering any waiting de-

lays. All our numerical evaluations are averaged over 5 sets and presented with 95%

confidence interval. They are conducted using Cplex version 12.4 to solve the MILPs

on an Intel core i7-4790 CPU at 3.60 GHZ with 16 GB RAM.

4.5.1 Offline Scheduling

4.5.1.1 LASS-Game vs Centralized Methods

We first evaluate the LASS-Game against the other mentioned methods under an

offline scenario where the NSs are known a priori. Hence, we consider a slice hosted in

a small test mesh network consisting of 4 physical servers hosting 7 VNFs of 5 different

types. Each server is connected to a switch and the switches are interconnected by

5 links of 1000 bandwidth units each. We run our tests over sets of NSs of different

size. Their deadlines are generated based on the superTightDeadline setting.

1. Execution Time

In order to study the scalability of our proposed methods, we compare their

execution times. Table 4.4 shows that when the number of NSs is small (2 NSs),

all methods were able to find a solution in around 1 second. However, as the

number of NSs increases, the LASS-MaxAdmission, the LASS-MinMaxCT and

108

the LASS-MinSumCT become much harder to solve and their runtime increases

exponentially to reach around 0.85 minutes, 6 and 42 hours respectively for

20 NSs. Further, it is important to note that LASS-Game is more scalable

than the MILPs as it does not invoke any execution of complex mathematical

formulation. However, its runtime remains higher than that of the TS-NFMS.

While the TS-NFMS is a meta-heuristic which, similarly to the LASS-Game can

invoke multiple iterations to reach a good solution, we notice that it remains

more scalable than the LASS-Game as the latter requires building and updating

the players virtual graphs at each iteration which is time consuming. However,

one advantage of the LASS-Game in comparison to TS-NFMS is that the quality

of the solution it provides is guaranteed and bounded (Section 4.4.5) which is

shown by the higher admission rate it offers as we highlight in the following.

Number
of NSs

LASS-
MaxAdmission

LASS-
MinSumCT

LASS-
MinMaxCT

LASS-Game TS-
NFMS

2 1201.4 912.6 869.2 41.2 8.6
5 5811.4 4632.6 6232.4 322.6 4.2
10 18113 185015.4 663246 5949.4 5.4
15 29806 5725331.4 5346004 10070.8 7.4
20 51147.4 151764394.8 21320066.4 14312.4 69.8

Table 4.4: Execution time (ms) per number of NSs.

2. Admission Rate

The admission rate is an important metric that depicts the quality of the pre-

sented mapping routing and scheduling solution as it has a direct impact on

the revenue generated by the service provider. A higher admission rate yields

a higher revenue. Even though the presented methods have different objec-

tives, we observe that it is interesting to compare them in terms of admission

rate. Note that NSs admitted by LASS-MinSumCT, LASS-MinMaxCT are eas-

ily identified by comparing their deadlines to their completion times provided

by these MILPs. Thus, we present the admission rate of the various proposed

109

methods in Fig.4.4.a as we vary the number of NSs.

4.4.a Admission rate per number of NSs. 4.4.b Admission rate per number of iterations.

Figure 4.4: Offline scheduling numerical evaluation.

The increase in the number of NSs increases the sharing of the VNFs. Hence,

many NSs will suffer from extra waiting delays to be served by these shared

VNFs which will lead to an increase in their completion time and hence, the

risk of missing their deadlines. This explains the fact that the admission rate

decreases with the increase of the number of NSs using the five presented meth-

ods in Fig.4.4.a. It is clear from Fig.4.4.a that LASS-MaxAdmission outper-

forms the other methods in terms of admission rate which is expected given

its objective. Even though LASS-MinSumCT, LASS-MinMaxCT, LASS-Game

and TS-NFMS do not aim at maximizing the number of admitted NSs, we

notice, however, that LASS-MinSumCT depicts an average of 12.26% of gap,

the LASS-Game delineates a gap of 20.2% while the TS-NFMS presents a gap

of 28.86% in comparison to the optimal admission rate provided by LASS-

MaxAdmssion. LASS-MinMaxCT presents the worst admission rate in com-

parison to all the other methods with an average gap of 43.73% in comparison

to LASS-MaxAdmssion. This is related to the fact that LASS-MinMaxCT will

force some NSs to sacrifice some of their desired resources (VNFs, bandwidth

110

and time slots) to others with higher completion times. This will increase the

probability of some NSs to miss their deadlines at the expense of minimizing the

high completion times of other NSs. In contrast to LASS-Game where players

play sequentially and selfishly to reserve the VNFs which will minimize their

completion time without any consideration of the impact of their choice on the

other players’ (NSs) completion times and incurred delays, LASS-MinSumCT is

a centralized solution where the NSs will cooperatively adjust their completion

times such that their sum is minimized. Hence, the chance of a NS to meet its

deadline is higher in LASS-MinSumCT which explains the reason behind having

LASS-MinSumCT outperforms LASS-Game by an average of 7.93%. Further,

even though the LASS-Game and the TS-NFMS both aim at minimizing the

schedule length of each of the NSs, we notice that the LASS-Game outperforms

the TS-NFMS in terms of admission rate by 8.66% given that the TS-NFMS

considers reducing the flow time 2 through migrating the VNF with the highest

flow time, while the LASS-Game explores different mapping options for all the

NFs in the forwarding graph of the NS. In addition, we notice that as the num-

ber of NSs increases (15, 20 NSs), the LASS-Game presents an admission rate

similar to that provided by TS-NFMS as it becomes harder to reach the equi-

librium. However, our tests show that the LASS-Game can always outperform

the TS-NFMS as we increase its number of iterations.

3. Stability of the LASS-Game

In order to study the stability of the LASS-Game, we present in Fig.4.4.b the

average maximum admission rate provided by this method as we increase the

number of iterations. Here, we consider 25 VNFs of 7 different types deployed in

a network of 20 physical servers and 20 links connecting them of 2000 bandwidth

2Flow time: Time between the completion of the processing of the traffic by a preceding function
and the start of its processing by the current one.

111

units each.We account for 10 NSs having super tight deadlines. Clearly, as we

increase the number of iterations, the maximum admission rate increases given

that the NSs are able to explore a wider pool of actions as they are provided by

new information sets. Hence, they will be able to choose better strategies which

will improve their completion time. However, we notice that after 600 iterations

(Fig.4.4.b), LASS-Game starts to converge around the best solution in terms

of admission rate to stabilizes at 43%. We note that the number of iterations

does not highly affect the admission rate (i.e., 20.9% of admission rate increase

between 25 and 600 iterations), however, our studies show that the execution

time of the game increases with the number of iterations. Hence, there exists a

trade-off between the quality of the solution and the computation time needed

to obtain it.

4.5.2 Online Batch Scheduling

Given that in practice, the traffic is dynamic with random arrival and departure of

the NSs, we study in this section the performance of the LASS-Game by considering

an online batch scheduling where the evaluated methods are run periodically on a

batch of NSs. Thus, in the following, we consider sets of NSs randomly generated as

described earlier, following a Poisson arrival of varying rate. We fix the period length

to 5 time slots which will allow the division of each set of NSs into batches of different

size.

1. Varying the arrival rate

We consider a network slice hosted on the same small test mesh network of

4 physical servers and 7 links of 1000 bandwidth units described in Section

4.5.1. We account for sets of 10 NSs of super tight deadlines. We evaluate in

Fig.4.5.a the admission rate provided by the different methods under varying

112

4.5.a Admission rate per varying arrival rate. 4.5.b Admission rate per varying VNF number.

4.5.c Admission rate per varying links capacity. 4.5.d Average bandwidth utilization per time
slot.

4.5.e Average bandwidth utilization per link.

Figure 4.5: Online batch scheduling numerical evaluation.

arrival rate. Fig.4.5.a shows that as we increase the arrival rate, the admission

rate decreases given that the number of NSs in each batch will increase. The

113

increase of the number of NSs in a batch contributes to extra waiting delays

given that more congestion will be experienced on the shared resources (i.e.,

VNFs, physical links). Hence, many of the NSs will miss their deadlines and

get rejected from the network. However, we notice that at an arrival rate 8, the

admission rate of all the methods increased in comparison to that observed at

rate 6. Such increase shows that as the number of NSs in a batch increases, the

utilization of the resources becomes more optimized and hence these resources

can be freed earlier to be used by the NSs of the next batch, which positively

impacts the admission rate. Finally, we note that the LASS-Game performed

better than LASS-MinSumCT at rate 8 as the set of NSs that were admitted

by the LASS-Game in the first few batches are different from those admitted by

LASS-MinSumCT and achieved different schedule lengths. This, in fact varied

the network state (i.e., occupied/available resources) between the batches in

each of the two methods and resulted in a better resource utilization provided

by the LASS-Game which leads to a higher admission.

In the remainder of our numerical evaluation, we consider a slice hosted on

a larger mesh network of 20 physical servers hosting 25 VNFs (unless stated

otherwise) of 7 different types. Each server is connected to a switch and the

switches are interconnected by 25 links of 2000 bandwidth units (unless stated

otherwise) each. We consider 40 NSs of tight deadlines following a Poisson

distribution of an arrival rate of 5.

2. Varying the number of VNFs

NSs sharing the same VNFs suffer from waiting delays since each VNF can

process the traffic of one NS at a time. Thus, increasing the number of VNFs

in the network slice will increase the strategy pool of the players as they will

be provided with more mapping options for their NFs. Given their interest in

114

reducing their completion times, NSs attempt to map their NFs to the least

loaded VNFs able to provide them with the earliest service time. This re-

duces the sharing of VNFs and lead to an increase in the admission rate as

depicted in Fig.4.5.b. Fig.4.5.b also shows the admission rate increase with

the relaxation of the NSs deadlines. Such increase is expected given that the

NSs can tolerate more waiting delays with the increase of their deadlines. Note

that, LASS-Game-SuperTightDeadline, LASS-Game-TightDeadline and LASS-

Game-RelaxedDeadline correspond to tests on NSs generated with super tight,

tight and relaxed deadlines respectively.

3. Varying the capacity of the physical links

Fig.4.5.c depicts the increase in the admission rate as the capacity of the physical

links increases. In fact, increasing the links capacity allows more NSs to share

the same link at the same time which will reduce their schedule lengths and

hence, allow them to meet their deadlines. Fig.4.5.c also shows that the LASS-

Game outperforms the TS-NFMS by an average of 17.65% in terms of admission

rate given that it allows each NS to explore more NF mapping possibilities

and hence, more diverse physical routes, thus, reducing the number of NSs

contending for the same resources which will decrease the waiting delays they

experience.

4. Evaluating the bandwidth utilization

As the LASS-Game applies the shortest path route to transmit the traffic of the

NSs between each two consecutive VNFs, we study the impact of the routing

path on the network bandwidth utilization by evaluating the LASS-Game under

a random path (LASS-Game-RandomPath) routing approach. Hence, we first

compare the total average bandwidth utilized in the network at each time slot

115

during the period between time slots [10-100]. Fig.4.5.d depicts that the LASS-

Game-RandomPath utilizes more bandwidth than the LASS-Game given that

the random path route often requires the traffic to pass through a higher number

of physical links which will increase the consumed bandwidth. In addition,

Fig.4.5.d shows that the bandwidth utilization varies between the time slots as

some NSs arrive to the network while others leave it, respectively consuming

and releasing the network bandwidth. Further, we present in Fig.4.5.e the

average bandwidth utilized on each physical link in the network during the same

aforementioned period. Fig.4.5.e shows that 14 links experience more than 10%

of bandwidth utilization with the LASS-Game-RandomPath in comparison to

only 4 links in LASS-Game.

4.6 Conclusion

We studied in this chapter the LASS problem to provide a mapping, routing and

scheduling solution for ultra-low latency NSs requiring their traffic to be processed

by a chain of NFs within a guaranteed end-to-end delay. We formulate this problem

as a MILP under different objectives (i.e., maximize the admitted NSs, minimize

the sum of completion times of all NSs, minimize the maximum completion time of

the NSs). Given its complexity, we proposed a novel game theoretic approach, the

LASS-Game to orchestrate the traffic processing and transmission schedules of the

NSs. To the best of our knowledge, our non-cooperative extensive-form game based

on a mixed strategy selection is the first hybrid approach to solve this problem. Our

numerical evaluation shows that the LASS-Game is much more scalable than the

presented MILP methods as it is able to provide a solution in the order of seconds

while outperforming the LASS-MinMaxCT by 23% in terms of admission rate and

being 5.7% away from the admission rate provided by the LASS-MinSumCT method.

116

Our studies also depict that LASS-Game is able to provide a good quality solution

in very few iterations, hence, realizing a trade-off between the quality of the solution

and the computation time.

117

Chapter 5

Low-Latency IoT Services in

Multi-access Edge Computing
1

The promise of 5G networks in enabling ultra-low latency services is faced by some

challenges related to few shortcomings of IoT devices. The limited battery, comput-

ing, and storage capacities of IoT devices restrict their capability to locally process

and compute the tasks of their running IoT applications enabling such services. Thus,

to overcome these limitations, the MEC paradigm has been proposed to facilitate

the access to advanced computing capabilities at the edge of the network, in close

proximity to these end devices, thereby enabling a rich variety of latency sensitive

services demanded by various emerging industry verticals. IoT devices, being highly

ubiquitous and connected, can offload their computational tasks to be processed by

applications hosted on MEC servers. Thus, given the heterogeneous requirements

of the offloaded tasks (computing, latency requirements, etc.) and the importance

of efficient resource utilization of MEC capabilities, we extend in this chapter our

previous work to the network edge by studying the joint problem of deciding on the

1This chapter has been accepted for publication in IEEE Journal on Selected Areas in Commu-
nications - Special Issue on Network Softwarization & Enablers [78].

118

task offloading (tasks to application assignment) and scheduling (order of executing

them) strategy. Unlike our previous work where the computing resources of the VNFs

were pre-determined, we exploit in this work the scheduling problem under undeter-

mined computing resources of the IoT applications which makes the problem much

more interesting given the direct impact of the computing resources allocation on the

scheduling decisions.

5.1 Introduction

5.1.1 Overview

The expectations towards a premium QoE are widely increasing with the recent ad-

vancement of 5G networks, paving the way towards a broad new set of services such

as augmented/virtual reality, traffic safety, image and face recognition, etc. [14, 17].

Enabling proximity services with fast service delivery at anytime in crowded areas,

comes hand-in-hand with the goal of 5G systems in providing user-centric QoE that

includes but is not limited to ultra-low latency, ultra-high reliability and a support

of 1000 times higher data volumes [14, 79]. The need to support higher data volumes

is a result of the tremendous foreseen increase in the number of wearable IoT devices

and mobile User Equipments (UEs) (e.g., smart phones, tablets, smart speakers, etc.).

Although these UEs and IoT devices are being equipped with much more powerful

CPU and greater storage capacity, they still fall short in satisfying the emerging ap-

plications which require huge processing capabilities for their data in a relatively short

amount of time. Further, they suffer from limited battery life which restricts their

users from executing these highly demanding applications locally [14, 17]. Hence,

the idea of Mobile Cloud Computing (MCC) was introduced to allow mobile users to

exploit the centralized cloud computing resources which can be accessed through the

119

Internet, thus, expanding the battery life of their UEs by allowing them to offload

their tasks to be processed by the applications hosted in the cloud. However, MCC

incur extra delays due to the time needed to transfer the data from the UEs to cloud

servers which are far from the users [17].

Thus, in order to overcome the high latency incurred by the access to the central

cloud, the paradigm of distributed edge computing has been introduced to enable

access to computing resources deployed at the edge of the network, in close proximity

of the user [15, 16, 17].

5.1.2 Edge Computing Related Concepts

Different concepts promoting the computation at the edge have been gaining interest

in the past few years:

1. Cloudlet

Cloudlet was introduced in 2009 by Satyanarayanan et al. [80] who define

it as “a mobile user exploits VM technology to rapidly instantiate customized

service software on a nearby cloudlet and then uses that service over a wireless

local area network; the mobile device typically functions as a thin client with

respect to the service.” In fact, cloudlet depicts servers or cluster of servers

deployed at a single hop proximity of mobile UEs, thereby guaranteeing real-

time interactive responses [15]. These servers host a set of VMs responsible of

processing the tasks offloaded by different UEs [15]. Cloudlets, also known as

computing “hotspots”, are mostly enabled at business premises and accessed by

mobile UEs through WiFi Access Points (APs) which limit the support of the

UEs’ mobility that is constrained by the local WiFi coverage [17, 81]. In this

case, UEs may switch to mobile network to connect to a distant cloud which

contributes to a degraded performance [15, 17]. Note that, as cloudlets are part

120

of a three-tier hierarchy (i.e., mobile device - cloudlet - cloud), they can function

in a standalone mode with total isolation from the cloud or can be connected to

the latter [15]. They mainly target mobile offloading applications such as face

recognition, image processing, video streaming applications.[14, 15].

2. Fog computing

“Fog Computing is a highly virtualized platform that provides compute, storage,

and networking services between end devices and traditional cloud computing

data centers, typically, but not exclusively located at the edge of network.” is

the definition of Fog computing as introduced by CISCO in 2012 [82]. Fog

is an extension of the cloud computing paradigm from the core to the edge

of the network; hence, it supposes the interaction of fog nodes with the central

cloud [15]. Fog follows a multi-tiered architecture which deploys an intermediate

fog platform between the device and the main cloud. Fog nodes, encompass-

ing a large number of geographically wide spread edge nodes with processing

power and storage resources such as switches, edge routers, access points, per-

sonal computers, etc. are deployed at different network tiers [14, 15, 81]. Fog

computing is mainly identified to deliver new applications and services for IoT

devices [14, 15, 81]. However, content delivery networks can also benefit from

Fog computing [15, 81].

3. MEC

MEC was first introduced by ETSI in 2014 under the name of Mobile Edge

Computing to accelerate the advancements on edge computing in mobile net-

works and within the Radio Access Network (RAN). ETSI defined mobile edge

computing as follows: “Mobile edge computing provides IT and cloud computing

capabilities within the RAN in close proximity to mobile subscribers” [83]. The

definition was then slightly modified to “Edge Computing refers to a broad set

121

of techniques designed to move computing and storage out of the remote cloud

(public or private) and closer to the source of data” [84] to accommodate various

set of access technologies (e.g., WiFi, Long-Term Evolution(LTE), etc.) [85].

This definition motivated renaming mobile edge computing to multi-access edge

computing. MEC servers can be deployed at various locations at the network

edge such as the LTE macro base station (eNodeB) and function as standalone

entities with no reported interaction with the cloud [15, 81]. MEC will enable

a wide range of services and applications such as those related to IoT devices,

augmented reality, virtual reality, etc. [14, 85].

While MEC, Fog computing and cloudlet promote access to computing resources at

the edge of the network, they differ by the access technology used, the virtualiza-

tion technology they employ (i.e, cloudlet uses VM, while Fog computing and MEC

support VM and other virtualization technologies), the applications they target and

their interaction with the central cloud [15]. Beside these differences, the main bene-

fits of these edge computing paradigm rely in assisting UEs in processing the data of

computation intensive applications by providing them access to real-time distributed

computing with short response time [14, 85]. Further, they can help in analyzing

collected data from geographically distributed sensors to assist machine to machine

applications (e.g., vehicle to vehicle communication) in the quest of optimizing for

example network traffic [85]. Finally, they offer ultra-low latency services with high

bandwidth and real time access to radio and network analytics [14].

5.1.3 Motivation and Challenges

Giving UEs access to edge computing resources in order to process their tasks requires

a careful allocation of these resources to the UEs. Given that the resources and the

computation abilities of edge clouds are relatively constrained when compared to the

122

MCC, edge clouds can be backed by a remote cloud via the Internet. For instance,

edge clouds can at anytime offload their demanding tasks to MCC servers through

the Internet whenever they are overloaded. Further, multiple edge servers can collab-

orate and offload their tasks to each others (e.g., via a backhaul network) to provide

mobile users with better service through balancing their workloads and sharing their

resources [86]. For instance, a nearby edge server can choose to offload a task of a

connected UE to another edge server, if it does not host the required application to

process it, or if its deployed application instance is overloaded or cannot be allocated

enough computing resources to process the task within its delay requirement. Hence,

efficiently utilizing edge resources is necessary to guarantee its foreseen benefits which

are intimately associated with solving the following challenges:

1. The task offloading problem

The task offloading problem consists of determining the edge server to which

each task should be offloaded. More precisely, it consists of associating each

task to an application hosted on an edge server and able to process it.

2. The application resource allocation problem

The application resource allocation problem determines the computing resources

to be allocated to each application2 deployed on an edge server in order to

process its assigned tasks within their delay requirements.

3. The task scheduling problem

The task scheduling problem decides on the order in which each offloaded task

should be processed on the shared application while meeting its deadline.

While some work in the literature focused on determining the edge server to which

each task should be offloaded and the computing resources it needs to be allocated [87,

2An IoT application can be hosted on a VM or a container deployed at the edge. The amount of
resources of the VM/container is to be determined.

123

88, 89, 90, 91], others addressed the joint problem of task offloading and scheduling

either through stochastic optimization [92, 93] or using algorithmic solutions [86, 94,

95]. The methods used in existing works are approximate solutions which do not

explore the benefits that can be brought by enabling dynamic modifications of the

computing resources allocated to the shared IoT applications and their impact on the

scheduling of the offloaded tasks.

In this work, we consider a MEC system model and we target the QoE require-

ments of the rising 5G services of different business verticals by presenting a complete

offloading scheme that accounts for a joint resource provisioning of IoT applications

as well as a fine grained task scheduling to meet the delay sensitive requirements of

these 5G services. We show that such computing resource provisioning directly affects

the scheduling decisions and impacts the number of tasks that can be admitted to the

network. We refer to this problem as the Dynamic Task Offloading and Scheduling

problem (DTOS). Addressing the latter is motivated by recent advancements on 5G

targeting ultra-low latency uses cases, in addition to the emerging trend of network

softwarization empowered by virtualization technologies that enable dynamic scaling

of resources.

5.1.4 Novel Contributions

The main contributions of this chapter can be disclosed as follows:

1. We mathematically define and formulate the DTOS problem as MILP (DTOS-

MILP).

2. Given its complexity, we explore the DTOS-LBBD, a LBBD approach to ef-

ficiently solve the DTOS problem. To the best of our knowledge, we are the

first to present a LBBD framework to solve this problem that is able to achieve

124

several order of magnitude of faster run times while providing the optimal solu-

tion. The DTOS-LBBD decomposes the DTOS problem into a master problem

that performs the task offloading and the resource allocation; and multiple sub-

problems, each addresses the scheduling of tasks that are offloaded to a single

IoT application.

3. Extensive numerical evaluations are carried out to examine the efficiency of the

DTOS-LBBD compared to the DTOS-MILP in terms of runtime. In addition,

valuable performance trends are explored to highlight the impact of task of-

floading and scheduling in meeting the diverse QoE requirements aligned with

5G vertical industries.

The remainder of this chapter is organized as follows. Section 5.2 highlights the

latest work in the literature tackling edge computing challenges. The system model

and the problem motivation are discussed in Section 5.3. Section 5.4 defines and

mathematically formulates the DTOS problem. Section 5.5 presents and explains the

various aspects of the DTOS-LBBD approach. Our numerical evaluation is depicted

in Section 5.6. We conclude in Section 5.7.

5.2 Literature review

5.2.1 Joint Task Offloading and Resource Allocation

Sun et al. [89] solved the latency-aware workload offloading problem by mathemati-

cally formulating the task offloading problem under the objective of minimizing the

average response time for mobile users and presenting an algorithmic approach to

solve it efficiently. While Sun et al. [89] did not discuss the presence of IoT applica-

tions and their allocated resources; the limited resource pool in MEC in comparison

125

to a centralized cloud computing motivated many work in the literature to jointly

address the resource allocation and task offloading problem in the quest to efficiently

utilize these resources [85].

The authors of [87] mathematically formulated the joint problem of task offloading

and resource allocation in MEC where they do not only account for the computing

resource allocation but also for the transmission power allocation of mobile users.

Given the NP-hardness of the problem, they decompose it into a task offloading

problem which they solve using a heuristic approach and a resource allocation problem

which they address through convex optimization techniques. While the work in [87]

accounted for the QoE of each mobile user which they characterized by their task

completion time and energy consumption, their work fall short in accounting for

tasks with strict delay requirement and overlook the sharing of computing resources

between multiple UEs. Unlike [87], the work of [88] focused on minimizing the cost

of the online resource allocation and task offloading in MEC under unpredictable

resource prices and user mobility. The authors of [88] provide an online optimization-

based algorithm to solve the resource allocation problem of mobile users at each time

slot by considering adapting their allocated resources based on the optimal solution

obtained at the previous one.

The work in [90, 91] accounted for mobile users requesting a determined type of

IoT applications. With the objective of minimizing the average response time in terms

of network and computing delays, the authors of [91] formulated and addressed the

problem of placing IoT applications of different types on existing MEC while deciding

on their computing resources and determining the tasks that will be offloaded to each

of them. In their work, they specified a maximum allowable computing delay for each

application. In contrast, Jia et al. [90] considered a NFV based MEC, where they

solved the task offloading problem for a set of mobile users requesting a specific type

126

of VNF within determined latency requirements. They solve this problem through

reducing it to a series of minimum weight maximum matching problem in auxiliary

bipartie graph. They further, address the dynamic changes of offloading request

patterns (i.e, task size, VNF type) over time, and develop a prediction mechanism to

release and/or create instances of VNFs. The work in [96] aimed at evaluating the

impact of edge computing and its enabling technologies on the response time. Thus,

the authors of [96] consider the special use case of a mobile gaming 3-D application and

evaluate the response delay incurred by offloading the tasks to be processed on edge

servers deployed at three different locations (local deployment, special-purpose cloud

infrastructure and commercial public cloud). Their experimental evaluation shows

that the location of edge servers and the virtualization technology used (i.e., container,

Virtual Machine (VM), bar metal) highly impact the latency experienced. Other

works on the task offloading and resource allocation problem have been reviewed in

[15, 16].

5.2.2 Task Scheduling

An efficient resource utilization entails a smart orchestration of resource sharing which

cannot be accomplished without a proficient scheduling of their utilization. Hence,

to maximize the revenue of the infrastructure owner, Katsalis et al. [93] devised

a Lyapunov optimization framework to address the VMs placement and scheduling

problem while accounting for the Service Level Agreement (SLA) for time-critical

services. Their scheduling approach considers the scheduling of the number and the

type (small, medium, large) of VMs to deploy at each time slot for each mobile ser-

vice operator based on the variability of its workload. Similarly, the authors of [92]

employed a Lyapunov function to decide on the offloading schedules of tasks while

stochastically maximizing the network utility under partial out-of-date network states

127

information without any consideration of the tasks delay requirements. The authors

of [94] jointly optimized the task offloading and scheduling problems along with the

transmit power allocation problem. They were interested in minimizing the weighted

sum of execution delays and service energy consumptions. They decomposed the

problem into a task offloading and scheduling problem which they solve using an al-

gorithmic approach with the objective of minimizing the makespan of all the jobs; and

a transmit power allocation problem which they address using convex optimization.

The work in [94] considers that all the jobs are sharing a single-CPU core at the edge

server and overlooks the deadline requirements of the tasks.

The task offloading and scheduling problem was investigated by Wang et al. [95]

as well, who presented an algorithmic solution to solve the problem while accounting

for the deadline requirement of the tasks and for the scheduling of their transmission

and computation. However, the authors of [95] did not account for different IoT

applications hosted at the edge nor solved the application resource allocation problem.

The authors of [86] addressed the task offloading problem while accounting for the

possibility of dispatching jobs to a remote cloud as well as to a MEC. In addition,

they presented a preemptive scheduling for the offloaded tasks with the objective of

minimizing their weighted response time using an online algorithm.

5.3 System Model

The tremendous move towards smart cities is gaining momentum with the develop-

ment of 5G networks. Smart cities will enable several services such as smart traffic

management, security, energy efficiency and smart health care which make use of

multiple IoT devices and applications. We consider a smart city Wide Area Net-

work (WAN) (Fig.5.1), composed of a set S of cellular base stations which can be

represented by either a macro cell (Evolved Node B (eNB)) or a small cell (Small

128

Figure 5.1: System Model.

Cell Evolved Node B (SCeNB)). For simplicity and without loss of generality, we will

represent by eNB any type of base station. In order to enable flexible routing and

communications among eNBs, we consider that the core cellular network is enabled

with SDN technology consisting of an SDN controller and openFlow switches [91].

The SDN controller benefit from a global view of the network and can be used to

provide some monitoring based information such as the latency experienced by a flow

when transmitted between two eNBs [97]. A subset of eNBs in S are mounted with

MEC servers to provide computation offloading services to the IoT users (i.e., UEs

such as tablets and wearable devices) (Fig.5.1). The MEC-enabled system that we

consider operates in a time-slotted structure, where we denote by δ ∈ ∆ a time slot.

Let M be a set of deployed MEC servers; each MEC server m ∈ M consists of a

pool of physical servers with an aggregated computing capacity cm specified in terms

of cycles/second or MHz. The MEC servers are hosting a set A of IoT applications of

129

multiple types (e.g., face recognition, video encoding, etc.) designated to process the

offloaded tasks of UEs. Each application a ∈ A is a software which can be deployed

on top of a VM or a container hosted on a MEC server m ∈ M . It is of specific

type that we depict by ta ∈ T where T is a set of IoT application types. Like any

other software, an application a ∈ A requires some minimum system specifications

to be able to operate efficiently. For simplicity and without loss of generality, we

represent the minimum system requirements of an application a by the minimum

processing capacity pamin, it requires to operate. However, each application can be

provisioned with some computing resources pa, that exceed its minimum requirement

pamin, in order to maximize the workload it can process within a time limit. The

processing capacity pa of an application is represented in terms of cycles/second and

is related to the virtual CPU (vCPU) resources (number of cores) assigned to the

VM/container on top of which the application is running [98]. Further, we assume

that these applications can be shared by many UEs but can process the task of one

UE at a time.

5.3.1 UEs Computation Tasks

We consider a set U of UEs requesting to offload their delay-sensitive tasks to be

processed by an IoT application a ∈ A of a suitable type deployed on an edge server

m ∈ M . In this work, we account for a static scenario where the set U of UEs

remains unchanged during the offloading period3. We consider that each UE u ∈ U

has one computation task at a time. Thus, in the following we use task and UE

interchangeably. We represent each task by a tuple < tu, µu, θu > where tu ∈ T

depicts the type of the IoT application required to process the task of UE u ∈ U . µu

represents the workload (cycles) required to accomplish the processing of the task of

3We leave the study of the dynamic scenario where mobile UEs arrive and depart dynamically
during an offloading period for future work.

130

UE u and can be obtained by profiling the task execution [99]. θu denotes the latency

requirements (i.e., deadline) in terms of time slots of the task of UE u. Note that, if

the latter was not processed within its deadline, it will be rejected from the network.

5.3.2 Experienced Delays

Processing the offloaded tasks with respect to their latency requirements entails de-

ciding on the MEC server to which each of the tasks should be offloaded, determining

the computation resources to allocate to the IoT applications that will process the

tasks, in addition to specifying the order in which the offloaded tasks should be pro-

cessed by each of these applications. Solving the three aforementioned challenges

highly impacts the admission of the tasks to the network as they directly affect some

of the delays they experience. In the following, we summarize the delays that an

offloaded task experiences.

1. Upload delay duup

The task uploading delay corresponds to the time required to transmit the task

from the UE u to the serving eNB. We assume that the serving eNB s ∈ S

of each UE u is the base station with the highest received signal quality. For

simplicity and without loss of generality, we assume that duup is predefined and

can be calculated based on the Signal to Interference plus Noise Ratio (SINR)

as explained in [87].

2. Edge-to-edge delay duee

Once the task of UE u is uploaded, it should be processed by an IoT application

a ∈ A of a suitable type, deployed on a MEC m ∈ M to which the task was

offloaded. It is of the best interest of u to have its task processed by the MEC

attached to its serving eNB to avoid any additional network delays. However,

the serving eNB may not be enabled with MEC capabilities (UE1 in Fig.5.1), or

131

the MEC server attached to it may not be able to process the task of u within

its deadline θu; that is, the MEC server m is not hosting an application instance

a of the same type of that required by u (ta! = tu); or the hosted application

instance a of the same type requested by u does not have enough processing

capacity pa to meet the task’s deadline; or a is overloaded and hence, the task

of UE u will have to experience long waiting delay in its buffer before being

processed as other tasks were scheduled on a before it (i.e, a can process the

task of one UE at a time). Thus, in any of these situations, the task of UE u can

be offloaded to another MEC server m′ that is able to process it with respect

to its QoE requirements. In this case, the serving eNB needs to transmit the

task to another eNB s ∈ S where m′ is hosted. Hence, we denote by duee, the

delay incurred for transmitting the task of a UE u from its serving eNB to the

eNB connected to the MEC server where the task of u will be processed. As

our SDN-based cellular core network can be used to establish a routing path

between two eNBs [89], the edge-to-edge delay duee can be measured by the SDN

controllers enabled with monitoring tools such as SLAM [97]. Thus, we define

in the following a matrix H with elements hmu to represent the value of duee for

each UE u ∈ U to each MEC server m ∈ M . Note that duee = hmu = 0, if the

MEC server m is attached to the serving eNB of u.

3. Waiting delay duwait

When the task of UE u reaches the MEC server m hosting the IoT application

a that can process it, it may experience some waiting delays, that we denote by

duwait, in the buffer of a. Such delay depends on the scheduling order and the

size of tasks assigned to a.

4. Processing delay duproc

132

Once the task of u starts processing on its assigned application a, it will expe-

rience some processing delay, that we depict by duproc. d
u
proc is the time taken by

a to execute the task of UE u and is inversely proportional to the computing

resources allocated to a as specified in Eq.(5.1) where µu and pa are as defined

above.

duproc =
µu

pa
(5.1)

5. Download delay dudown

Once the execution of the task of a UE u by IoT application a is finalized, the

output should be transmitted back to u. As the size of the output is usually

much smaller than the initial size of the task, we assume that the download delay

incurred by transferring the output to u is negligible [87]. Thus, we consider

that dudown = 0.

In the following, we address the joint problem of task offloading, application resource

allocation, and task scheduling and refer to it as the Dynamic Task Offloading and

Scheduling (DTOS) problem.

5.4 DTOS - A Mixed Integer Linear Program (DTOS-

MILP)

We define and mathematically formulate the DTOS problem as MILP.

5.4.1 Problem Definition

Let G(N,E) be a physical network consisting of a set of nodes N = R∪M ∪S where

R is a set of physical equipment (e.g., switches, routers, etc.) and M is a set of MEC

servers attached to a set S of eNB; E is a set of links connecting them. Let A be the

133

set of IoT applications of different types deployed on the MEC servers m ∈ M , and

let U be the set of UEs requesting to offload and process their latency-sensitive tasks

on these applications. The DTOS problem can be formally defined as follows:

Definition 5.1. Given a physical network G(N ;E), a set U of UEs, each UE re-

questing to offload and process a generated task on an IoT application of the same

type deployed on one of the MEC servers m ∈M ; determine the optimal assignment

of the tasks generated by UEs to the set of applications a ∈ A, provision computing re-

sources for each application a and schedule the processing of tasks assigned to each of

them in order to maximize the number of admitted tasks with respect to their latency

requirements.

5.4.2 Problem Formulation

Table 5.1 and Table 5.2 respectively delineate the parameters and the decision vari-

ables used in the formulation of the DTOS-MILP problem presented below.

We define the variable yaδu ∈ {0, 1} to determine that the IoT application a ∈ A

started processing the task of UE u ∈ U at time slot δ ∈ ∆.

yaδu =

1 if task of UE u started its processing on IoT application a at time slot δ,

0 otherwise.

Our objective is to maximize the number of admitted tasks (Eq.(5.2)). A task of a

UE u ∈ U is admitted if it can be processed by an IoT application a ∈ A within its

specified deadline θu.

Maximize
∑

u∈U

∑

a∈A

∑

δ∈∆

yaδu (5.2)

In order to meet our objective, several constraints that we elucidate in the following,

have to be respected. Towards defining these constraints, we declare:

134

Network inputs
G(N,E) Physical network of N nodes where N = R ∪M ∪ S and E links

connecting them.
S Set of eNBs.
M Set of MECs.
R Set of physical equipment.
A Set of IoT applications to be deployed on m ∈M .
T Set of IoT application types.
P Set of processing capacities which can be assigned to an IoT appli-

cation a ∈ A.
cm ∈ N+ Processing capacity of a MEC server m ∈M .
xam ∈ {0, 1} Specifies that a MEC server m ∈M is hosting the IoT application

a ∈ A (1), or not (0).
ta ∈ N+ Type of IoT application a ∈ A (ta ∈ T).
pamin ∈ N+ Minimum processing capacity required by the IoT application a ∈

A.
UEs inputs

U Set of UEs.
tu ∈ N+ Type of IoT application requested to process the task of UE u ∈ U

(tu ∈ T).
θu ∈ N+ Deadline of the task offloaded by UE u ∈ U .
µu ∈ N+ Number of cycles required to process the task of UE u ∈ U .
duup ∈ N+ Upload delay of the task of UE u ∈ U .
hmu ∈ N+ Edge-to-edge transmission delay of the task of a UE u ∈ U to a

MEC server m ∈M .
Other inputs

∆ Set of time slots (time line).
H Big integer number.

Table 5.1: Parameters of the DTOS-MILP.

Decision variables of DTOS-MILP
yaδu ∈ {0, 1} Determines that the IoT application a started processing the task

of UE u at time slot δ (1) and (0) otherwise.
pa ∈ R+ Specifies the processing capacity allocated to an IoT application a.
na ∈ {0, 1} Depicts that an IoT application a is used (1), or not (0).
sauu′ ∈ {0, 1} A of UE u started processing on IoT application a before the task

of UE u′ (1) and (0) otherwise.
zpa ∈ {0, 1} IoT application a is allocated the processing capacity p ∈ P (1)

and (0) otherwise.

Table 5.2: Decision variables of the DTOS-MILP.

135

pa ∈ R+ as a decision variable that determines the processing capacity allocated

to an IoT application a ∈ A.

We introduce the variable na ∈ {0, 1} to depict that an IoT application a ∈ A is

used, that is, it is processing at least one task (1), or not (0).

na =

1 if IoT application a is used,

0 otherwise.

Further, we declare sauu′ ∈ {0, 1} as a decision variable to indicate that task of UE

u ∈ U started processing on IoT application a ∈ A before the task of UE u′ ∈ U .

sauu′ =

1 if task of UE u started processing on application a before

the task of UE u′,

0 otherwise.

In order to maximize the number of admitted tasks, we need first to decide on the

computing resources to allocate to the deployed IoT applications. Hence, we define

Eq.(5.3) and Eq.(5.4) to specify that an IoT application a is used if at least one task

is scheduled to be processed on it, and to ensure that it is not used otherwise.

1. Application resource allocation constraints

na ≤
∑

u∈U

∑

δ∈∆

yaδu ∀a ∈ A (5.3)

Hna ≥
∑

u∈U

∑

δ∈∆

yaδu ∀a ∈ A (5.4)

Eq.(5.5) guarantees that a used IoT application a ∈ A is at least allocated the

136

minimum computing resources pamin it requires to operate.

pa ≥ nap
a
min ∀a ∈ A (5.5)

Eq.(5.6) guarantees that the maximum computing capacity that can be assigned

to an IoT application a ∈ A cannot exceed the capacity of the MEC server

m ∈M hosting it.

pa ≤ na

∑

m∈M

xamcm ∀a ∈ A (5.6)

Note that Eq.(5.5) and Eq.(5.6) ensure that an application a ∈ A will not be

allocated any computing resources if it is not used. Eq.(5.7) guarantees that

the capacity of a MEC server m ∈M is not violated.

∑

a∈A

xampa ≤ cm ∀m ∈M (5.7)

2. Task offloading constraints

A valid task offloading suggests that the task of a UE u ∈ U cannot be scheduled

on more than one application a ∈ A (Eq.(5.8)).

∑

a∈A

∑

δ∈∆

yaδu ≤ 1 ∀u ∈ U (5.8)

Further, the task of a UE u ∈ U , cannot be scheduled on an IoT application

a ∈ A which is of different type ta ∈ T than the requested one tu ∈ T (Eq.(5.9)).

∑

u∈U

∑

a∈A:(ta!=tu)

∑

δ∈∆

yaδu ≤ 0 (5.9)

3. Task scheduling constraints

In addition, Eq.(5.10) guarantees that an IoT application a ∈ A can at most

137

process one task in a time slot.

∑

u∈U

yaδu ≤ 1 ∀δ∈∆
∀a∈A (5.10)

As we assume a non-preemptive scheduling, we present Eq.(5.11) and Eq.(5.12)

to ensure that an IoT application a ∈ A processes the task of a UE u ∈ U

completely before starting a new task. Thus, an IoT application a cannot start

processing the task of UE u′ before finishing the processing of the task of a

UE u; that is only if u is scheduled before u′ on a (Eq.(5.11)). Similarly, an

IoT application a cannot start processing the task of a UE u before finishing

the processing of the task of u′; that is only if u′ is scheduled before u on a

(Eq.(5.12)).

∑

δ∈∆

yaδu′ δ ≥
∑

δ∈∆

yaδu δ + duproc −H(1− sauu′)
∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (5.11)

∑

δ∈∆

yaδu δ ≥
∑

δ∈∆

yaδu′ δ + du
′

proc −H(1− sau′u)
∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (5.12)

duproc in Eq.(5.11) and Eq.(5.12) determines the processing delay experienced by

the task of UE u on the IoT application processing it. It is calculated as in

Eq.(5.13).

duproc =
∑

a∈A

∑

δ∈∆

yaδu
µu

pa
∀u ∈ U (5.13)

Eq.(5.14) represents the precedence constraint of the schedule of the tasks of

UEs u and u′ on IoT application a ∈ A.

sauu′ + sau′u =
∑

δ∈∆

yaδu
∑

δ∈∆

yaδu′

∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (5.14)

An IoT application a cannot start processing the task of a UE u, unless the

138

task is uploaded and transmitted to the application (Eq.(5.15)).

∑

a∈A

∑

δ∈∆

yaδu d
u
up + duee ≤

∑

a∈A

∑

δ∈∆

yaδu δ ∀u ∈ U (5.15)

duee in Eq.(5.15) captures the edge-to-edge delay (Section 5.3) and is determined

as specified in Eq.(5.16).

duee =
∑

m∈M

∑

a∈A

∑

δ∈∆

yaδu x
a
mh

m
u ∀u ∈ U (5.16)

Finally, since we are addressing tasks with stringent deadlines, we need to ensure

that the total delay experienced by a task of UE u ∈ U should not exceed its

deadline as depicted in Eq.(5.17) where duproc is as defined in Eq.(5.13).

∑

a∈A

∑

δ∈∆

yaδu δ + duproc ≤ θu ∀u ∈ U (5.17)

Eqs.(5.11), (5.12), and (5.17) are non linear due to the non linearity of duproc

(Eq.(5.13)). Such non linearity is related to the division by the decision variable

pa which is multiplied by another decision variable yaδu . Hence, in order to

simplify its linearization, we reduce the search space by allowing pa to take at

most one specific value of a predefined set P instead of all the values in R+.

This is determined by Eq.(5.18).

∑

p∈P

zpa ≤ 1 ∀a ∈ A (5.18)

139

where zpa is a new decision variable defined as follows:

zpa =

1 if a is allocated the processing capacity p ∈ P ,

0 otherwise.

Thus, Eq.(5.13) can then be rewritten as in Eq.(5.19).

duproc =
∑

a∈A

∑

δ∈∆

yaδu
∑

p∈P

zpa
µu

p
∀u ∈ U (5.19)

Similarly, pa can be replaced by
∑

p∈P z
p
ap in constraints (5.5), (5.6) and (5.7) as

detailed in Appendix D.1.1. Finally, Eqs.(5.11), (5.12), (5.14) and (5.17) are non

linear and can be easily linearized as explained in Appendix D.1.2.

5.4.3 DTOS Complexity

DTOS is a MILP (DTOS-MILP) which is complex to solve. It is NP-hard given

that it is a combination of three NP-hard problems which are the task offloading

problem, the application resource allocation problem and the non-preemptive task

scheduling problem. In fact, the task offloading problem can be proven as NP-hard

via a reduction from the generalized assignment problem [100] while the application

resource allocation problem can be proven as NP-hard via a reduction from the two-

dimensional bin-packing problem [101] where the MEC servers are the bins and the

IoT applications are the objects to pack. Similarly, the task scheduling problem can

be proven as NP-hard via a reduction from the job-shop scheduling problem [102].

140

5.5 DTOS-LBBD: A Logic-Based Benders Decom-

position

Given the complexity of the DTOS problem, we devise in the following a LBBD

technique to solve it (DTOS-LBBD).

5.5.1 LBBD in a Nutshell

LBBD [103], is a row generation technique which follows the “no-good learning”

strategy. It consists of decomposing the problem into a MP representing a relaxation

of the original model and one or more SPs. The SP, also known as inference dual,

is an optimization over the secondary variables while fixing the primary variables to

values computed based on the solution of the MP. By assigning the primary variables

some trial values and solving the SP, the LBBD learns about the quality of other

trial solutions, which are then used to reduce the number of solutions that need to be

enumerated in order to find the optimal one. More precisely, the solution of the SP

is used to derive Benders’ cuts which are added to the MP in order to cut infeasible

solutions from its solution space. An infeasible solution or a non globally feasible

solution can be defined as follows:

Definition 5.2. An infeasible solution or a non globally feasible solution is a solution

provided by the MP that is not feasible to the SP (i.e., a solution that is unlikely to

satisfy the SP constraints).

Benders’ cuts are derived from the inference dual which can be defined as the

problem of inferring the tightest possible bound on the optimal value of the main

problem [103]. LBBD consists of iteratively solving the MP and the SPs, deriving

and adding Benders’ cuts from the SPs to the MP until the MP and the SPs solutions

141

converge.

5.5.2 DTOS Decomposition Strategy

The efficiency of LBBD relies on the decomposition approach and the strength of the

defined Benders’ cuts. Unfortunately, no standard scheme for generating Benders’

cuts exists for LBBD [104].Thus, designing an efficient LBBD with strong Benders’

cuts for the DTOS problem is challenging.

Hence, our DTOS-LBBD consists of dividing the DTOS problem into a MP which

solves the task offloading and the application resource allocation problems, and multi-

ple SPs to resolve the task scheduling problem. Jointly solving the task offloading and

the application resource allocation problems has a positive impact on the efficiency

of our DTOS-LBBD:

1. It overlooks the granularity of scheduling the tasks with respect to their latency

requirements. Instead, it considers assigning the tasks of UEs to IoT applica-

tions of suitable types while allocating each of these applications the minimum

processing capacity required to meet the deadline of each of the assigned tasks.

This, indeed, provides an upper bound on the number of tasks that can be

scheduled as the MP represents a relaxation of the original problem.

2. Since application schedules are independent from each other, our DTOS-LBBD

design allows us to benefit from a distributed scheduling scheme by devising

a scheduling problem for each used IoT application. Defining a SP per IoT

application may not be possible if the application resource provisioning is to be

solved as part of the LBBD SP due to the MEC servers capacity constraint which

controls the processing capacity allocated to its hosted applications. Finally,

a distributed scheduling enables the parallel execution of the SPs, and hence,

reduces the overall computation time of the DTOS-LBBD.

142

Solve the MP

Send Ua and pa

 to each SP

NO

Solve SP for a1

Solve SP for an

SPs scheduled all

assigned tasks?

✂MP =☎✁✟�✂SPa

...

✄✆✆ ✝✞✠✆✞✡☛☞

Cuts

YES

Figure 5.2: DTOS-LBBD flowchart.

As depicted in Fig.5.2, the DTOS-LBBD starts by solving the MP. The MP solution

yields an assignment of a subset of tasks of UEs to the hosted IoT applications and a

processing capacity allocated to each of these applications. For each used application

a ∈ A, a SP is defined and fed by the set of tasks of UEs assigned by the MP to a and

by the processing capacity pa allocated to a. Let ψMPa
be the total number of tasks

of UEs assigned to a by the MP. Further, let ψSPa
denote the maximum number of

tasks of UEs that can be scheduled within their delay requirements on a by the SP.

For every used application a ∈ A, if (ψMPa
> ψSPa

), a Benders’ cut is derived and

added to the MP to guide it towards determining a better value for pa and hence,

performing a better assignment of tasks that are likely to be all scheduled by the

SP. The MP problem is solved again after adding the Benders’ cuts inferred from all

143

the SPs. This process is repeated until
∑

a∈A ψMPa
=

∑

a∈A ψSPa
when the optimal

solution is reached.

5.5.3 Master Problem (MP)

The MP specific parameters are detailed in Table 5.3 while the remaining ones are as

specified in Table 5.1.

MP inputs
P a
u Set of processing capacities which each of them, if assigned to ap-

plication a ∈ A, enables the task of UE u to meet its deadline
(P a

u ⊂ P).
σa
u ∈ N+ Arrival time of task of UE u ∈ U to application a ∈ A.
σa
min ∈ N+ Minimum arrival time to application a ∈ A of all tasks of UE u ∈ U

that can be processed on it.
θamax ∈ N+ Maximum deadline of all the tasks of UEs u ∈ U that can be

processed on a ∈ A.

Table 5.3: Parameters of the MP.

Decision variables of the MP
qau ∈ {0, 1} Determines that the task of UE u is mapped to IoT application a

(1) and (0) otherwise.
na ∈ {0, 1} Specifies that an application a is used (1) and (0) otherwise.
βj
ua ∈ {0, 1} Depicts that the processing capacity j ∈ P a

u is selected to process
the task of UE u ∈ U on application a (1) and (0) otherwise.

pa∈R+ Specifies the processing capacity allocated to an application a ∈ A.
zpa ∈ {0, 1} Specifies that IoT application a is allocated the processing capacity

p ∈ P (1) and (0) otherwise.

Table 5.4: Decision variables of the MP.

We define the decision variable qau ∈ {0, 1} to determine that the task of UE u ∈ U

is mapped to IoT application a ∈ A.

qau =

1 if task of UE u is mapped to IoT application a,

0 otherwise.

144

The objective of the MP is to maximize the number of admitted tasks (Eq.(5.20)).

ψMP =Maximize
∑

u∈U

∑

a∈A

qau (5.20)

The MP is subject to several constraints; we start by defining a decision variable

na ∈ {0, 1} to specify that an application a ∈ A is used, that is, if a task of at least

one UE is assigned to it.

na =

1 if IoT application a is used,

0 otherwise.

We define pa∈R+ as a decision variable that specifies the processing capacity allocated

to an application a ∈ A.

Table 5.4 summarizes the decision variables of the MP.

1. MP basic constraints

The set of constraints includes Eq.(5.21) which depicts that the task of UE

u ∈ U can be processed by at most one IoT application a ∈ A.

∑

a∈A

qau ≤ 1 ∀u ∈ U (5.21)

Further, Eq.(5.22) is formulated to prevent the tasks of UEs to be processed on

IoT applications of different type.

∑

u∈U

∑

a∈A:ta!=tu

qau = 0 (5.22)

Eq.(5.23) and Eq.(5.24) specify that an IoT application a ∈ A is used if at least

145

one task is offloaded to be processed on it.

na ≤
∑

u∈U

qau ∀a ∈ A (5.23)

Hna ≥
∑

u∈U

qau ∀a ∈ A (5.24)

Eq.(5.25) guarantees that an IoT application a ∈ A, if used, should at least, be

allocated its minimum required processing capacity pamin.

pa ≥ nap
a
min ∀a ∈ A (5.25)

Eq.(5.26) guarantees that the maximum computing resources that can be al-

located to an IoT application a ∈ A cannot exceed those of the MEC server

hosting it.

pa ≤ na

∑

m∈M

xamcm ∀a ∈ A (5.26)

Eq.(5.25) and Eq.(5.26), guarantee that no computing resources can be assigned

to an unused IoT application a ∈ A. We define Eq.(5.27) to ensure that the

capacity of each MEC server m ∈M is respected.

∑

a∈A

xampa ≤ cm ∀m ∈M (5.27)

2. Strengthening the MP formulation

While the above MP formulation provides an upper bound on the optimal so-

lution (i.e., upper bound on the number of tasks that can be admitted) of the

DTOS problem, our experiments have shown that it is not sufficient to effi-

ciently solve big test instances. Therefore, we strengthen the MP formulation

by adding valid inequalities to further tighten the solution space. Thus, we first

146

add Eq.(5.28) to determine a lower bound on the processing resources to be

allocated to each application a ∈ A based on its assigned tasks. The minimum

processing resources needed to process all the assigned tasks to an application

a can be determined based on Eq.(5.1) by considering the maximum processing

time available to them on a, and which can be calculated by deducting the

earliest arrival time σa
min to a (i.e., σa

min = min σa
u ∀u ∈ U : (tu = ta) where

σa
u accounts for the upload and edge-to-edge delays of task of UE u to a) from

the maximum deadline θamax of all tasks of UEs requiring the same type of a.

pa ≥
∑

u∈U :(tu=ta)
µuq

a
u

θamax − σa
min

∀a ∈ A (5.28)

Similarly, pa can be lower bounded by the computing resources that, if allocated

to a, allows the task of UE u to meet its deadline on a. Thus, we determine such

computing resources set P a
u by a pre-processing scheme through first applying

Eq.(5.29) to calculate the minimum processing resources (puamin) required on a

to meet the deadline of the task of UE u. P a
u can then be determined by adding

all the processing capacities p ∈ P that exceeds puamin and do not surpass the ca-

pacity of the MEC server hosting a (P a
u = {p ∈ P : puamin ≤ p ≤ ∑

m∈M xamcm}).

puamin =
µu

θu − σa
u

∀u∈U
∀a∈A:(tu=ta) (5.29)

Hence, we define βj
ua ∈ {0, 1} as a new decision variable to determine the

processing capacity j ∈ P a
u which is selected to process the task of UE u ∈ U

on application a ∈ A.

βj
ua =

1 if j ∈ P a
u is used for processing the task of UE u on a,

0 otherwise.

147

We add the inequality depicted in Eq.(5.30) as a constraint in the MP to specify

that pa should be greater than or equal to the maximum processing resources

chosen to process any of the tasks of UEs u ∈ U assigned to it.

pa ≥
∑

j∈Pa
u

jβj
ua

∀u∈U
∀a∈A (5.30)

Eq.(5.31) is added to guarantee that one processing capacity is chosen for the

task of UE u ∈ U on application a ∈ A, if and only if, it is mapped to a.

∑

j∈Pa
u

βj
ua = qau

∀u∈U
∀a∈A (5.31)

As some tasks may experience high edge-to-edge delays if they were assigned to

an application a of the same type hosted on a certain MEC m, the minimum

processing capacity they require to meet their deadline on a may be very high

and surpasses the capacity cm of MEC m that can be provisioned to a (i.e, P a
u =

∅). Thus, the assignment of such tasks to these applications will always lead to

their rejection. Hence, we determine Eq.(5.32) to prune such assignments.

∑

u∈U :(Pa
u=∅)

∑

a∈A:tu=ta

qau = 0 (5.32)

Note that as in DTOS-MILP, we replace pa by
∑

p∈P z
p
ap in Eq.(5.25) to Eq.(5.28) and

Eq.(5.30) (as we explain in Appendix D.2.1) where zpa ∈ {0, 1} is a decision variable

(Table 5.4). We add Eq.(5.18) to guarantee that one processing capacity is allocated

to an application a ∈ A.

148

5.5.4 The Sub-Problem (SP)

Table 5.5 depicts the parameters of the SP model. The remaining parameters are as

specified in Table 5.1. The SP formulation is presented in the following.

SP inputs
a Used application a ∈ A for which the SP is defined.
pa Processing capacity of application a ∈ A.
Ua Subset of UEs u ∈ U ; which were assigned to application a based

on the solution provided by the MP.
σa
u ∈ N+ Arrival time of task of UE u ∈ U to application a ∈ A.

Table 5.5: Parameters of the SP.

Decision variables of the SP
αu ∈ {0, 1} Determines that the task of UE u ∈ Ua is admitted on application

a (1) and (0) otherwise.
yu ∈ N+ Determines the time slot at which the task of UE u ∈ Ua starts

processing on application a.
suu′ ∈ {0, 1} Indicates whether the task of UE u ∈ Ua started processing on

application a before the task of UE u′ ∈ Ua (1) and (0) otherwise.

Table 5.6: Decision variables of the SP.

We define αu ∈ {0, 1} as a decision variable which determines whether the task of

UE u ∈ Ua is admitted on application a; that is, it was able to be scheduled within

its latency requirements on a.

αu =

1 task of UE u ∈ Ua is admitted on a,

0 otherwise.

We define the decision variable yu ∈ N+ to determine the time slot at which the task

of UE u ∈ Ua starts processing on application a. Further, we declare suu′ ∈ {0, 1} as

a decision variable to indicate whether the task of UE u ∈ Ua started processing on

149

application a before the task of a UE u′ ∈ Ua.

suu′ =

1 task of UE u ∈ Ua started processing on

application a before the task of UE u′ ∈ Ua,

0 otherwise.

The decision variables of the SP are highlighted in Table 5.6. The objective of the

SP is to maximize the number of admitted tasks (Eq.(5.33)).

ψSPa
=Maximize

∑

u∈Ua

αu (5.33)

The SP is subject to several constraints. Eq.(5.34) is used to guarantee that the

task of UE u ∈ Ua cannot start processing on a before its arrival time, only if it is

admitted.

yu ≥ σa
uαu ∀u ∈ Ua (5.34)

Further, the application a should guarantee the consecutive processing of the task of

UE u ∈ Ua during all its required processing time. Hence, Eq.(5.35) and Eq.(5.36)

ensure that no two tasks can be scheduled on a at the same time.

yu ≥ yu′ + du
′

procαu′ −H(1− su′u) ∀u, u′ ∈ Ua : (u! = u′) (5.35)

yu′ ≥ yu + duprocαu −H(1− suu′) ∀u, u′ ∈ Ua : (u! = u′) (5.36)

duproc and d
u′

proc in Eq.(5.35) and Eq.(5.36) respectively determine the processing delays

of u and u′ calculated based on Eq.(5.1) where pa is the processing capacity assigned

by the MP to application a. Eq.(5.37) represents the precedence constraint of the

150

schedule of the tasks of UEs u and u′ on a.

suu′ + su′u = αuαu′ ∀u, u′ ∈ Ua : (u! = u′) (5.37)

Finally, Eq.(5.38) ensures that the total delay experienced by a task of UE u ∈ Ua

does not exceed its latency requirement.

yu + duprocαu ≤ θu ∀u ∈ Ua (5.38)

Note that, Eq.(5.37) is non linear and can be easily linearized as we explain in Ap-

pendix D.2.2.

5.5.5 Benders’ Cut

When a SP fails to schedule all the tasks of UEs assigned to application a by the

MP, a Benders’ cut has to be generated and added to the MP to prune such solution

and similar non feasible ones. In fact, the failure of the SP to schedule all of the

assigned tasks is a result of an allocation of the MP of low computing resources pa to

application a. Hence, a Benders’ cut can be added to guide the MP to either increase

the value of pa while keeping the same assignment of tasks, or to assign fewer tasks

on the application to match those that were able to be admitted by the SP. While

such cut is valid, we believe it is not strong enough as it only prunes the solutions

sent by the MP without considering any other similar infeasible ones.

In order to define a stronger Benders’ cut, we try to identify the solutions that are

likely to be provided by the MP and will be infeasible for the SP. Thus, we graphically

depict an application a as a bin of height h = pa and of width w = θamax−σa
min which

indicates the time horizon during which the tasks of UEs u ∈ Ua have to be scheduled

and processed on a (Fig.5.3.b). Each task u ∈ Ua can be seen as a rectangle of height

151

hu = j where j is the processing capacity assigned to it by the MP (j ∈ P a
u : βj

ua = 1)

and width wu = duproc representing the processing time of u on a when assigned the

processing capacity j. The scheduling problem can then be abstracted to a bin-

packing problem where a is the bin and the tasks are the objects to place in a. The

geometrical size of the task u ∈ Ua can increase by its height if we increase j (i.e.,

more processing capacity) or by its width if we decrease j (i.e., extend its completion

time) (Eq.(5.1)).

To elaborate, we consider the example shown in Fig.5.3 where we assume two tasks

u1 and u2, to be scheduled on application a1 (Fig.5.3.a). a1 can be presented as a bin,

and u1 and u2 are the objects to be placed in it (Fig.5.3.b and Fig.5.3.c). In Fig.5.3.b,

we assign the task u2 computing resources j = 6 cycles/time slot which yields a

processing delay of 10 time slots to finish at t11. Increasing the computing resources

to j = 8 cylces/time slot for the processing of task u2 decreases its processing time

to 8 time slots to finish at t9 (Fig.5.3.c). However, in both cases it was not possible

to admit u1 on a1 and satisfy its deadline.

Hence, with a processing capacity pa1 = 8 cylces/time slot assigned to application

a1, at most one of both tasks u1 or u2 can be admitted on a1 when assigned any com-

puting resources j ≤ pa1 . More precisely, varying the processing capacity j assigned

to u1 or u2 will result in the same infeasible solution. Thus, we conclude that, if the

set of tasks u ∈ Ua were not able to be scheduled by the SP with pa ∈ P , then for

sure they will not be admitted with any other value (p′a < pa) ∈ P . Therefore, we

define a cut (Eq.(5.39)) to prune such infeasible solutions where pa is the processing

capacity allocated to application a by the MP at the previous iteration, Ũa is the set

of tasks of UEs that were admitted by the SP on a and Ûa is the set of UEs whose

tasks were rejected by the SP. Note that Eq.(5.39) guides the MP towards assigning

to application a at most the same number of tasks |Ũa| that were admitted by the

153

SP from the set of tasks in (Ũa ∪ u′∈Ûa
). Such guidance is only applicable in the case

where the tasks in (Ũa ∪ u′
∈Ûa

) were assigned computing resources j ≤ pa. The cut

(Eq.(5.39)) is added for every task rejected by the SP. Fig.5.3.d depicts the cut that

needs to be added for the example in Fig.5.3.

∑

u∈Ũa

∑

j∈Pa
u :(j≤pa)

βj
ua

︸ ︷︷ ︸

Admitted tasks by SP

+
∑

j∈Pa
u′
:(j≤pa)

βj
u′a

︸ ︷︷ ︸

One rejected task by SP

≤ |Ũa|
︸︷︷︸

number of admitted tasks by SP

∀u′∈Ûa
∀a∈A

(5.39)

To guarantee that the DTOS-LBBD converges to an optimal solution, we need to

prove that Eq.(5.39) is a valid Benders’ cut [105]. A Benders’ cut is valid if it satisfies

the following two conditions [105]:

Condition 5.1. The cut must exclude the current MP solution if it is not globally

feasible.

Condition 5.2. The cut must not remove any global feasible solutions composed of

any combination of tasks that were selected by the MP at a previous iteration and

requiring a processing capacity j ≤ pa.

Chu and Xia [105] show that Condition 5.1 guarantees finite convergence if the

MP variables have finite domains, and that Condition 5.2 guarantees optimality since

the cuts never cut feasible solutions.

Theorem 5.1. Benders’cut in Eq.(5.39) is valid.

Proof. To prove the validity of our proposed cut, we need to show that Condition 5.1

and Condition 5.2 are satisfied.

We first prove that Condition 5.1 is satisfied. To show that Eq.(5.39) cuts off

infeasible solutions provided by the MP, we will show that Eq.(5.39) will not be

satisfied if the same set of tasks were admitted again by the MP on application a.

154

Thus, we let U
(i)
a be the set tasks which were admitted by the MP on application a at

iteration i, hence resulting in a MP solution which is globally infeasible (as found by

the SP). Further, let Ũ
(i)
a be the set tasks which were admitted by the SP at iteration

i (Ũ
(i)
a ⊂ U

(i)
a). This will result in the cut depicted in Eq.(5.40)

∑

u∈Ũ
(i)
a

∑

j∈Pa
u :(j≤p

(i)
a)

βj
ua +

∑

j∈Pa
u′
:(j≤p

(i)
a)

βj
u′a ≤ |Ũ (i)

a | ∀u′∈Û
(i)
a

∀a∈A
(5.40)

If at a subsequent iteration k > i, the same set of tasks Ua is admitted by the MP,

the left hand side in Eq.(5.40) will be equal to |Ũ (i)
a |+1 as shown in Eq.(5.41) where

β
j(k)
ua depicts the MP solution at iteration k.

∑

u∈Ũ
(i)
a

∑

j∈Pa
u :(j≤p

(i)
a)

βj(k)
ua

︸ ︷︷ ︸

|Ũ
(i)
a |

+
∑

j∈Pa
u′
:(j≤p

(i)
a)

β
j(k)
u′a

︸ ︷︷ ︸
1

= |Ũ (i)
a |+1 ∀u′∈Û

(i)
a

∀a∈A
(5.41)

The equality in Eq.(5.41) results from the following. Based on Eq.(5.31), a con-

straint of the MP that should be valid for its provided solution (β
j(k)
ua), we derive

that
∑

j∈Pa
u
β
j(k)
ua = 1. In addition, by accounting for the validity of Eq.(5.30), we

obtain
∑

j∈Pa
u :(j≤p

(i)
a)
β
j(k)
ua = 1. Hence,

∑

u∈Ũ
(i)
a

∑

j∈Pa
u :(j≤p

(i)
a)
β
j(k)
ua = |Ũ (i)

a |. Similarly,
∑

j∈Pa
u′
:(j≤p

(i)
a)
β
j(k)
u′a = 1. This explains the equality depicted in Eq.(5.41) which indeed

shows that the MP solution violates the cut presented in Eq.(5.40). This proves that

Condition 5.1 is satisfied.

Next, we prove that Condition 5.2 is satisfied. As we need to show that the cut

(Eq.(5.39)) does not cut any feasible solution, we will provide a proof by contradiction

where we consider a globally feasible solution W removed by the cut, and we show

that such solution can not be feasible; where the contradiction resides. Hence, we

first consider the legitimate infeasible solution I provided at iteration i and which

resulted in the cut shown in Eq.(5.42), where not all the tasks assigned by the MP

155

were admitted by the SP with a determined processing capacity p
(i)
a .

∑

u∈Ũ
(i)
a

∑

j∈Pa
u :(j≤p

(i)
a)

βj
ua +

∑

j∈Pa
u′
:(j≤p

(i)
a)

βj
u′a ≤ |Ũ (i)

a | ∀u′∈Û
(i)
a

∀a∈A
(5.42)

The cut in (Eq.(5.42)) is designed to remove any infeasible solution composed of a

subset of tasks from those in U
(i)
a for any processing capacity less or equal than p

(i)
a

assigned to application a, and should not remove any feasible solutions. To prove this

by contradiction, we consider a globally feasible solution W found at iteration w > i

that was removed by the cut (Eq.(5.42)). That is, in W , the tasks in Ũ
(i)
a admitted

in I in addition to one or more tasks in Û
(i)
a (that were rejected in I) are admitted

in W with a processing capacity p
(w)
a ≤ p

(i)
a . Therefore, the opposite of the cut in

Eq.(5.42) which is presented by Eq.(5.43) is valid for W .

∑

u∈Ũ
(i)
a

∑

j∈Pa
u :(j≤p

(i)
a)

βj(w)
ua +

∑

j∈Pa
u′
:(j≤p

(i)
a)

β
j(w)
u′a > |Ũ (i)

a | (5.43)

As the tasks inW are assigned a processing capacity p
(w)
a ≤ p

(i)
a , their processing time

on application a will increase in comparison to that observed with p
(i)
a , and hence the

total schedule length of all tasks will be greater or equal to that obtained with p
(i)
a .

As such solution W is feasible, any other solution where the tasks experience less

processing delay than that observed with p
(w)
a should also be feasible (i.e., tasks meet

their deadlines). For the tasks to experience less processing delays, they need to be

assigned a processing capacity higher than p
(w)
a which is the case of solution I which

is infeasible. Hence, W can not be feasible which completes the proof.

156

5.6 Performance Evaluation

We carry out an extensive empirical study to evaluate the performance of our DTOS-

LBBD approach against the DTOS-MILP. Further, we explore the engineering impact

of the DTOS problem under varying system parameters and QoE requirements. We

highlight the influence of the different problems solved (i.e., task offloading, applica-

tion resource allocation and task scheduling) on serving multiple vertical industries

while analyzing the effectiveness of our proposed DTOS-LBBD framework.

Industry Vertical Allowable latency (ms) Applied latency (θu)
(ms)

Tactile Internet 1 - 10 7
Factory Automation 0.25 - 10 10
Smart Grid 3 - 20 20
Intelligent transporta-
tion Systems (ITS)

10 - 100 50

Tele Surgery ≤ 250 110

Table 5.7: Latency requirements of different industry verticals [2, 3].

5.6.1 Experimental Setup

In our numerical study, we consider networks of different sizes with varying number

of MEC servers, each having a capacity of cm = 20 Ghz [87]. We account for |T |= 5

different types of varying number of IoT applications that belong to the same industry

vertical (unless stated otherwise). Each IoT application requires minimum computing

resources (pamin) randomly generated between [2− 5] Ghz. The IoT applications are

randomly placed on the MEC servers. We assume multiple UEs offloading tasks

belonging to different industry verticals and hence, are of varying QoE requirements.

Thus, we depict in Table 5.7 the different industry verticals accounted for in our

tests, and present the range of their latency requirements in addition to the ones

157

Execution Time (ms) Admission Rate (%)
Nb. of UEs (|U |) DTOS-MILP DTOS-LBBD DTOS-MILP DTOS-LBBD

5 922 56 92 92
10 2359 116.4 84 84
15 15512.6 1214 76 76
20 251218.4 10077.4 67 67
25 3014109.8 21602.6 62.4 62.4

Table 5.8: DTOS-MILP versus DTOS-LBBD.

used in our tests. We consider that the number of cycles (µu) demanded by UEs are

randomly generated between [20 − 100] cycles. The upload and edge-to-edge delays

of the offloaded tasks are randomly generated between [1 − 2] ms and [1 − 3] ms

[106] respectively. All our numerical evaluations are averaged over 5 sets. They are

conducted using Cplex version 12.4 to solve the MIPs on an Intel core i7-4790 CPU

at 3.60 GHZ with 16 GB RAM.

5.6.2 DTOS-MILP vs. DTOS-LBBD

We start by evaluating the performance of DTOS-LBBD against the DTOS-MILP in

terms of execution time as we vary the number of UEs’ offloaded tasks. Increasing

the number of offloaded tasks makes the problem harder to solve given the limited

computing resources. Hence, we also look at the the impact of such increase on the

admission rate. Thus, we consider a network composed of |M |= 3 MEC servers and

|A|= 15 IoT applications of |T |= 5 different types representing multiple industry

verticals. The deadlines of the offloaded tasks are randomly generated between [5 −

20] ms. Our results are presented in Table 5.8.

1. Admission Rate

LBBD is an exact method which is able to provide the optimal solution as

shown in Table 5.8, where the admission rates of the DTOS-MILP and DTOS-

LBBD are equal. The same table depicts that as the number of UEs increases

158

the admission rate decreases. Such decrease is expected as more tasks are

contending for the same amount of computing resources, hence, some of them

will be suffering from high waiting delays on some IoT applications, waiting for

them to be freed. This will negatively impact their experienced latency which

will lead to miss their deadlines and get rejected from the network.

2. Execution Time

We evaluate the scalability of the DTOS-LBBD against the DTOS-MILP. Our

results shown in Table 5.8 clearly depict that the DTOS-LBBD is much more

scalable than the DTOS-MILP. In fact, it is able to provide the optimal solution

on an average of 95% faster than the DTOS-MILP. This is because the LBBD

learns from the quality of the solution generated at each iteration to cut off

similar infeasible ones from the solution space. This will restrict the search

space as the number of iterations increases and hence, will help reaching the

optimal solution faster than the DTOS-MILP. In addition, the decomposition

of the problem into multiple SPs helps in reducing the execution time of DTOS-

LBBD especially that multiple scheduling SPs are run in parallel using threads.

5.6.3 Evaluation of DTOS-LBBD

We evaluate the performance of DTOS-LBBD under different system parameters

while studying the engineering impact of the DTOS problem.

1. DTOS-LBBD convergence

In order to evaluate the performance of DTOS-LBBD, we account for a single

test instance and we plot in Fig.5.4, the number of admitted tasks at each

iteration as determined by the MP and the SPs. We consider a network of

|M |= 10 MEC servers hosting |A|= 15 IoT applications. We account for |U |= 30

UEs’ tasks belonging to a factory automation industry vertical (θu = 10ms).

159

Fig.5.4 depicts that the objective of the MP represents an upper bound on

Figure 5.4: DTOS-LBBD convergence.

the optimal objective value while the number of tasks admitted by the SPs

represents a lower bound. As the number of iterations increases, the objective

value of the MP decreases given that more Benders’ cuts are added to it. In

contrast, the number of tasks admitted by the SPs varies between the iterations

depending on the requirements of the tasks (i.e., number of cycles, arrival time)

sent by the MP at each of them. However, it is important to note that the

optimal objective value always lies between the maximum lower bound and

the minimum upper bound attained so far. Further, the variance of the gap

existing between the upper and lower bound provides the option to terminate

the DTOS-LBBD at anytime based on the desired solution quality and runtime.

For instance, one may terminate the DTOS-LBBD at iteration 14 with a gap

of 9% between the upper and lower bound, scarifying little in the quality of the

solution while gaining about 75.4% in terms of runtime. If a better solution

quality is desired, one can stop the DTOS-LBBD at iteration 26 where the gap

160

reaches 4.5%; however, the gain in terms of computation time is about 53%.

2. Trade-off between optimality gap and runtime

To further emphasize the fact that the LBBD approach represents an anytime

algorithm that can be stopped at any iteration while providing a feasible so-

lution, we show in Table 5.9 an averaged runtime of the DTOS-LBBD using

the same network settings mentioned in the previous paragraph. The results

DTOS-LBBD Execution Time (ms)
Nb. of UEs (|U |) Optimal Solution Optimality Gap< 10% 10% <Optimality Gap< 20%

20 15474.8 2816.6 634.2
30 295859 30607 8085
40 1473334.6 516176.8 27890
50 1760259 419640.3333 38563.33333

Table 5.9: DTOS-LBBD execution time (ms).

reported in Table 5.9 depict the runtime of the DTOS-LBBD at the optimal

solution and at the first occurrence of an optimality gap which is either less

than 10% or between 10% and 20%. It is clear that for a determined number of

UEs, the runtime increases with the decrease of the optimality gap. In fact, the

runtime of DTOS-LBBD increases with the increase of the number of iterations.

In this case, more Benders’ cuts are added to the MP tightening its solution

space, hence, better locating the optimal solution which is likely to decrease the

gap between the upper bound provided by the MP and the lower bound given

by the SPs. Thus, stopping the DTOS-LBBD at a certain tolerable gap can

lead to high gains in terms of computation time. For instance, when |U |= 30,

97.26% of gain in runtime is depicted when the gap is between 10% and 20%,

while 89.65% is obtained with a gap less than 10%. Finally, it is worth noting

that as the number of UEs increases, the runtime of the DTOS-LBBD increases

as the size of the problem grows. Hence, the problem becomes harder to solve.

161

3. Impact of varying the number of UEs

We vary the number of UEs and evaluate its impact for different industry ver-

ticals. Thus, we consider a network of |U |= 10 MEC servers hosting |A|= 15

IoT applications.

7 10 20 50 110

Latency (ms)

0

20

40

60

80

100

120

A
d
m
is
si
on

R
at
e
(%

)

|U|=20

|U|=30

|U|=40

88%

74.66%

62.5%

100%100%
95.5%

100%100%100%

Tactile

Internet

Factory

Automation

ITSSmart Grid Tele Surgery

100%100%100%

63%

50%

40%

Figure 5.5: Admission rate per varying number of UEs.

Our results presented in Fig.5.5 show that as the number of UEs increases the

admission rate decreases for each vertical industry as more tasks are contend-

ing the same computing resources (IoT applications) which become overloaded

and hence, fail to meet the delay requirements of all the UEs requesting their

service. In fact, some tasks will suffer from extra waiting delays which will lead

them to miss their deadlines and thus, get rejected from the network. How-

ever, such waiting delays can be tolerated if the latency requirements increased.

For instance, one can note the tactile Internet vertical where the number of

UEs increased from |U |= 20 to |U |= 40 while the admission rate decreased by

23% as the limited computing resources failed to cope with such increase. In

162

contrast, for |U |= 20, the admission rate increased to 100% for less latency

sensitive tasks such as those belonging to Tele surgery industry. Further, as

Intelligent Transportation Systems (ITS) and Tele surgery vertical industries

possess relatively high delay requirements, the admission rate of UEs requiring

such types of services was not affected by the increase of the number of tasks

and was kept constant to 100%.

4. Impact of varying the number of MEC servers

We study in Fig.5.6 the impact of the increase of the computing resources for

different vertical industries on the admission rate. Hence, we consider a network

of varying number of MEC servers hosting |A|= 15 IoT applications. We ac-

count for |U |= 30 UEs offloading tasks of varying latency requirements. Fig.5.6

7 10 20 50 110

Latency (ms)

0

20

40

60

80

100

120

A
d
m
is
si
on

R
at
e
(%

)

|M|=3

|M|=4

|M|=5

100%

72%
78%

83.33%

100% 100% 100% 100% 100%

Tele SurgeryITS

52.66%

26.66%
30.66%34.66%

46%
40.66%

Tactile

Internet

Factory

Automation

Smart Grid

Figure 5.6: Admission rate per varying number of MEC servers.

shows that adding more MEC servers in the network increases the amount of

computing resources available. This allows the hosted IoT applications to be

provisioned more processing capacity, which will reduce the processing time of

the assigned tasks. Thus, as tasks will be processed faster by the applications,

others, waiting for the same resource to be freed will experience less waiting

163

delays, and hence, their chances in meeting their deadlines and be admitted to

the network will increase. In addition, one can note that for a fixed number of

MEC servers, the admission rate increases with the increase of the latency re-

quirements; as less-sensitive tasks can tolerate more waiting delay on the shared

IoT applications. For instance, with |M |= 3 MEC servers, the admission rate

increased by 73.34% as the deadline of the tasks increased from 7 ms for tactile

Internet to 110 ms for Tele surgery. Further, the 100% admission rate depicted

for ITS and Tele surgery vertical industries for the varying number of MEC

servers depicts that |M |= 3 MEC servers were enough to admit all the assigned

tasks given their relaxed latency demands.

5. Impact of varying the edge-to-edge delay

To explore the impact of the edge-to-edge delay on the admission rate, we

consider a network of |M |= 5 MEC servers hosting |A|= 15 IoT applica-

tions. We account for |U |= 25 UEs belonging to a smart grid industry vertical

(θu = 20 ms) and we fix the edge-to-edge delays for all the tasks to a defined

value. Our results presented in Fig.5.7 show that the edge-to-edge delay in-

0 2 4 6 8 10 12 14 16 18 20 22

Edge-to-Edge Delay (ms)

0

20

40

60

80

100

A
d
m
is
si
on

R
at
e
(%

)

DTOS-LBBD96% 95% 94% 91%
86%

68%

16%

Figure 5.7: Admission rate per varying edge-to-edge delay.

164

crease becomes prohibitive in allowing the admission of the tasks. In fact, it is

of the best interest of each task to be processed on a MEC server attached to

its serving eNB in order to overcome the edge-to-edge delay. However, as the

number of IoT applications is fixed in the network, some MEC servers may not

be hosting certain types, further, some of their deployed applications may be

overloaded. This will force the tasks served by eNBs attached to those MEC

servers to travel through the network to be processed on an IoT application

hosted on another MEC server. This will make these tasks suffer from high

edge-to-edge delay. With their latency-sensitive requirements, the mentioned

tasks will be left with very little processing time which the IoT application on

which they are assigned might fail to meet, hence, leading to their rejection

from the network.

5.7 Conclusion

In this chapter, we motivated and studied the DTOS problem which jointly addresses

the task offloading, application resource allocation in addition to the task schedul-

ing problems in a MEC network. We alleviate virtualization technologies capabilities

through determining the computing resources to be allocated to the IoT applications

based on the requirements of their scheduled tasks. To the best of our knowledge,

we are the first to study the task scheduling problem under undetermined IoT appli-

cations’ computing resources. Given the complexity of DTOS, we presented a novel

decomposition strategy implementing the LBBD technique. Our novel DTOS-LBBD

method decomposes the problem into a MP which solves the task offloading and appli-

cation resource allocation problems; and multiple SPs, each addressing the scheduling

of tasks on a single used IoT application. DTOS-LBBD is an exact method charac-

terized by an anytime algorithm providing the opportunity to be terminated at any

165

iteration, hence, realizing the trade-off between the solution quality and the com-

putation time. Through extensive simulations, we show that the DTOS-LBBD can

achieve more than 140 order of magnitude improvement in terms of runtime compared

to the DTOS-MILP and can serve as a benchmark algorithm to compare against other

methods. Further, we explored the interleaving dependence and implications of the

aforementioned DTOS problems on different vertical industries with variable latency

requirements.

166

Chapter 6

Conclusion and Future Research

Directions

This chapter concludes the presented thesis and highlights future research directions.

6.1 Conclusion

The concept of smart living has emerged in recent years and continue to gain sig-

nificant interest towards improving our quality of life through enabling innovative

services leveraged by advanced information and communication technologies. Ser-

vices ranging from smart health care, smart traffic management, self-driving cars,

smart city infrastructure management (i.e., electricity, water supply, etc.) continue

to evolve with the advancements of many IoT devices that are not limited to smart

phones and tablets but also include sensors, smart meters among others. Towards

supporting the heterogeneous QoS requirements of these emerging services enabled

by the increasing number of IoT devices, network operators and research communi-

ties continue their investigations and investments in optimizing their technological

infrastructure.

167

Throughout this thesis, we addressed several challenges related to providing effi-

cient network and service management empowered by the emerging trend of network

softwarization. Thus, we first highlighted the shortcomings of existing networks in

coping with the heterogeneous requirements of the new innovative services and pre-

sented the different promising technologies, mainly, 5G, NFV, SDN and MEC, that

will assist network operators in unleashing the power of their networks to support

these services.

We presented in chapter 2 the various challenges in NFV, mainly the NF mapping,

the traffic routing and the NS scheduling problems, that were the main focus of

this thesis. We reviewed the work in the literature addressing these problems and

highlighted the relationship existing between them. Motivated by the lessons learned

from the literature, we studied in chapter 3 the interleaving relationship between

these problems and we observed that the NF mapping and the traffic routing impact

the schedule of NSs. Indeed, we noticed that there exists a trade-off between the

resource utilization and the schedule length of the different NSs. Given this trade-off,

we jointly addressed the aforementioned problems with the objective of minimizing

the total schedule length of the different NSs. We mathematically formulated this

problem and presented a novel CG decomposition approach to efficiently solve it.

We concluded the chapter with different gap and performance analysis showing that

the proposed CG approach is much more scalable than the MILP formulation of the

problem and can serve as a benchmark algorithm for evaluating the performance of

any low complexity method addressing the same problem.

Driven by the ultra-low latency requirements of 5G services and the different ob-

servations and results obtained in Chapter 3, we revisited in Chapter 4 the same joint

problem of NF mapping, traffic routing and NS scheduling, however, we considered

the fixed deadlines of the different NSs. We evaluated the impact of such fixed latency

168

requirements on the admission of the NSs to the network by studying the mentioned

joint problem under different objectives; mainly, maximizing the number of admit-

ted NSs, minimizing the total schedule length and minimizing the sum of completion

times of the different scheduled NSs. While we presented different MILPs with these

objectives, we compared them against a novel game theoretic technique that we de-

veloped. Our game theoretic approach provides NSs the freedom to decide on their

own mapping, routing and scheduling solution while orchestrating their schedule de-

cisions through a centralized controller. We leveraged the relationship between the

three addressed problems by evaluating the proposed game theoretic approach under

two different traffic routing strategies (i.e., shortest path route, random route) and

show their direct impact on the network utilization.

With the emergence of the MEC paradigm enabled by network softwarization to-

wards fulfilling the special low-latency and high computational requirements of the

IoT applications, and given the high impact of NS scheduling on meeting the requested

response times, we apply our previous studies to a MEC enabled environment. Thus,

we tackle in Chapter 5 the joint task offloading and scheduling problem jointly with

the IoT application resource allocation problem. As the processing time of a task

is highly dependent on the computing resources allocated to the application execut-

ing it, and given that the processing time is an integral part of the task scheduling

problem and affects its admission to the network, we studied and evaluated the influ-

ence of the computing resources allocated to the IoT application on the scheduling

and offloading decisions. This study comes in line with the objective of network

softwarization in providing efficient network resource management by leveraging vir-

tualization technologies such as VMs and containers which allocated resources can

be automatically adjusted and scaled based on changing network demands. Hence,

we mathematically formulated the mentioned joint problem as a MILP. Given its

169

complexity, we presented a novel LBBD approach that solves it to optimality and

yields much more scalable than the presented MILP. The chapter is concluded with

valuable performance trends highlighting the impact of task offloading and scheduling

in meeting the diverse QoE requirements of different 5G vertical industries.

Finally, this thesis presented significant contributions in the area of network and

service management by tackling different challenges in NFV and MEC that play an

intrinsic role in enabling elastic, scalable and cost-efficient networks.

6.2 Future Research Directions

While we addressed several research challenges in NFV and MEC, there still exist

many future research directions that need to be tackled.

6.2.1 Online Resource Allocation and Scheduling in MEC

As the MEC computing resources are limited in comparison to those existing in a

centralized cloud, and given the main purpose of MEC in enabling ultra-low latency

services, efficient online resource allocation and scheduling play an important role in

meeting the promised advantages of MEC. While in Chapter 5 we tackled the joint

problem of task offloading and scheduling along with IoT resource allocation in an

offline scenario where tasks are considered to be known a priori and the comput-

ing resources to allocate to each IoT application, once decided remains unchanged;

we believe that it would be interesting to study the online aspect of the problem.

In an online setting where tasks arrive and depart from the MEC dynamically, the

load on each of the deployed IoT application changes over time, and hence, an effi-

cient resource utilization of MEC servers entails dynamically adapting the amount of

computing resources allocated to each IoT application in compliance to the latency

170

requirements of the already scheduled tasks on this application that are currently be-

ing processed or waiting to be executed; and the newly offloaded tasks at a subsequent

time.

6.2.2 Scalable Resource Allocation in MEC

One of the shortcomings of LBBD presented in Chapter 5 is its scalability. Thus,

carrying out the resource allocation and scheduling problem in MEC-enabled networks

through a scalable distributed approach is an interesting research direction that can

be pursued.

6.2.3 Reliability Guarantees for Ultra-low Latency Services

in MEC

While ultra-low latency is one of the main requirements of 5G services, high reliability

yields another important metric to be guaranteed. Thus, an interesting research

direction in the area of 5G and MEC, is to study the problem of reliability guarantee

of the offloaded tasks while respecting their latency requirements. Here, each MEC

server has a certain reliability that should be accounted for when selecting it to

process the offloaded task. Given that one MEC server may not be able to guarantee

the requested reliability, the task will need to be replicated [14] and offloaded to

multiple MEC servers which jointly can provide it with its demanded reliability.

171

Bibliography

[1] Rajendra Chayapathi, Syed F Hassan, and Paresh Shah. Network Functions

Virtualization (NFV) with a Touch of SDN. Addison-Wesley Professional, 2016.

[2] Maria A Lema, Andres Laya, Toktam Mahmoodi, Maria Cuevas, Joachim

Sachs, Jan Markendahl, and Mischa Dohler. Business case and technology

analysis for 5g low latency applications. IEEE Access, 5:5917–5935, 2017.

[3] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek, Gerhard

Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth, Jens Voigt, Ines

Riedel, et al. Latency critical iot applications in 5g: Perspective on the design

of radio interface and network architecture. IEEE Communications Magazine,

55(2):70–78, 2017.

[4] Lopa J Vora. Evolution of mobile generation technology: 1g to 5g and review

of upcoming wireless technology 5g. International Journal of Modern Trends

in Engineering and Research, 2(10):281–290, 2015.

[5] Nidhi Shah. The evolution of mobile apps – 1994 through 2016. https:

//arkenea.com/blog/evolution-of-mobile-apps/, 2018.

[6] Faqir Zarrar Yousaf, Michael Bredel, Sibylle Schaller, and Fabian Schneider.

Nfv and sdn-key technology enablers for 5g networks. IEEE Journal on Selected

Areas in Communications, 35(11):2468–2478, 2017.

172

[7] Manuel Silverio-Fernández, Suresh Renukappa, and Subashini Suresh. What

is a smart device?-a conceptualisation within the paradigm of the internet of

things. Visualization in Engineering, 6(1):3, 2018.

[8] Dave Evans. The internet of things: How the next evolution of the internet is

changing everything. CISCO white paper, 1(2011):1–11, 2011.

[9] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,

and Raouf Boutaba. Network function virtualization: State-of-the-art and re-

search challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262,

2016.

[10] Tarik Taleb, Adlen Ksentini, and Riku Jantti. ” anything as a service” for 5g

mobile systems. IEEE Network, 30(6):84–91, 2016.

[11] Ian F Akyildiz, Shuai Nie, Shih-Chun Lin, and Manoj Chandrasekaran. 5g

roadmap: 10 key enabling technologies. Computer Networks, 106:17–48, 2016.

[12] Imtiaz Parvez, Ali Rahmati, Ismail Guvenc, Arif I Sarwat, and Huaiyu Dai. A

survey on low latency towards 5g: Ran, core network and caching solutions.

IEEE Communications Surveys & Tutorials, 2018.

[13] M Series. Imt vision–framework and overall objectives of the future development

of imt for 2020 and beyond. Recommendation ITU, pages 2083–0, 2015.

[14] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta,

and Dario Sabella. On multi-access edge computing: A survey of the emerging

5g network edge cloud architecture and orchestration. IEEE Communications

Surveys & Tutorials, 19(3):1657–1681, 2017.

[15] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H Glitho, Monique J

173

Morrow, and Paul A Polakos. A comprehensive survey on fog computing: State-

of-the-art and research challenges. IEEE Communications Surveys & Tutorials,

20(1):416–464, 2017.

[16] Pawani Porambage, Jude Okwuibe, Madhusanka Liyanage, Mika Ylianttila,

and Tarik Taleb. Survey on multi-access edge computing for internet of things

realization. arXiv preprint arXiv:1805.06695, 2018.

[17] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architec-

ture and computation offloading. arXiv preprint arXiv:1702.05309, 2017.

[18] Xin Li and Chen Qian. A survey of network function placement. In Consumer

Communications & Networking Conference (CCNC), 2016 13th IEEE Annual,

pages 948–953. IEEE, 2016.

[19] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. A survey of enterprise

middlebox deployments. 2012.

[20] Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, and Xiang Zhang. Network

function virtualization in the multi-tenant cloud. IEEE Network, 29(3):42–47,

2015.

[21] NFVISG ETSI. Network functions virtualisation (nfv); terminology for main

concepts in nfv. Group Specification, 2014.

[22] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv: A com-

prehensive survey. IEEE Transactions on Network and Service Management,

13(3):518–532, 2016.

[23] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined network-

ing: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

174

[24] Attila Hegyi, Hannu Flinck, Istvan Ketyko, Pekka Kuure, Csaba Nemes, and

Lajos Pinter. Application orchestration in mobile edge cloud: placing of iot

applications to the edge. In Foundations and Applications of Self* Systems,

IEEE International Workshops on, pages 230–235. IEEE, 2016.

[25] Md Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf

Boutaba. On orchestrating virtual network functions. In Network and Service

Management (CNSM), 2015 11th International Conference on, pages 50–56.

IEEE, 2015.

[26] GSNFV ETSI. Network functions virtualisation (nfv): Architectural frame-

work. ETsI Gs NFV, 2(2):V1, 2013.

[27] Jrgen Quittek, P Bauskar, T BenMeriem, A Bennett, M Besson, and A Et.

Network functions virtualisation (nfv)-management and orchestration. ETSI

NFV ISG, White Paper, 2014.

[28] Rashid Mijumbi, Joan Serrat, Juan-luis Gorricho, Steven Latre, Marinos Char-

alambides, and Diego Lopez. Management and orchestration challenges in net-

work functions virtualization. IEEE Communications Magazine, 54(1):98–105,

2016.

[29] NM Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf

Boutaba. Virtual network embedding with coordinated node and link map-

ping. In INFOCOM 2009, IEEE, pages 783–791. IEEE, 2009.

[30] Maryam Jalalitabar, Guangchun Luo, Chenguang Kong, and Xiaojun Cao. Ser-

vice function graph design and mapping for nfv with priority dependence. In

Global Communications Conference (GLOBECOM), 2016 IEEE, pages 1–5.

IEEE, 2016.

175

[31] Long Qu, Chadi Assi, and Khaled Shaban. Delay-aware scheduling and re-

source optimization with network function virtualization. IEEE Transactions

on Communications, 64(9):3746–3758, 2016.

[32] Xin Li and Chen Qian. The virtual network function placement problem.

In Computer Communications Workshops (INFOCOM WKSHPS), 2015 IEEE

Conference on, pages 69–70. IEEE, 2015.

[33] Sara Ayoubi, Samir Sebbah, and Chadi Assi. A cut-and-solve based approach

for the vnf assignment problem. IEEE Transactions on Cloud Computing, 2017.

[34] Tachun Lin, Zhili Zhou, Massimo Tornatore, and Biswanath Mukherjee.

Demand-aware network function placement. Journal of Lightwave Technology,

34(11):2590–2600, 2016.

[35] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci. Virtual

network functions placement and routing optimization. In Cloud Networking

(CloudNet), 2015 IEEE 4th International Conference on, pages 171–177. IEEE,

2015.

[36] Li Erran Li, Vahid Liaghat, Hongze Zhao, MohammadTaghi Hajiaghayi, Dan

Li, Gordon Wilfong, Y Richard Yang, and Chuanxiong Guo. Pace: Policy-

aware application cloud embedding. In INFOCOM, 2013 Proceedings IEEE,

pages 638–646. IEEE, 2013.

[37] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Mar-

inho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing together the nfv

provisioning puzzle: Efficient placement and chaining of virtual network func-

tions. In Integrated Network Management (IM), 2015 IFIP/IEEE International

Symposium on, pages 98–106. IEEE, 2015.

176

[38] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,

and Steven Davy. Design and evaluation of algorithms for mapping and schedul-

ing of virtual network functions. In Network Softwarization (NetSoft), 2015 1st

IEEE Conference on, pages 1–9. IEEE, 2015.

[39] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. De-

ploying chains of virtual network functions: On the relation between link and

server usage. In Computer Communications, IEEE INFOCOM 2016-The 35th

Annual IEEE International Conference on, pages 1–9. IEEE, 2016.

[40] Xin Li, Haotian Wu, Don Gruenbacher, Caterina Scoglio, and Tricha Anjali. Ef-

ficient routing for middlebox policy enforcement in software-defined networking.

Computer Networks, 110:243–252, 2016.

[41] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl, Xi-

aoyang Gao, Ashok Anand, Theophilus Benson, Aditya Akella, and Vyas Sekar.

Stratos: A network-aware orchestration layer for middleboxes in the cloud.

Technical report, Technical Report, 2013.

[42] Sameer G Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ra-

makrishnan, Timothy Wood, Mayutan Arumaithurai, and Xiaoming Fu.

Nfvnice: Dynamic backpressure and scheduling for nfv service chains. In Pro-

ceedings of the Conference of the ACM Special Interest Group on Data Com-

munication, pages 71–84. ACM, 2017.

[43] Jordi Ferrer Riera, Xavier Hesselbach, Eduard Escalona, Joan A Garcia-Espin,

and Eduard Grasa. On the complex scheduling formulation of virtual network

functions over optical networks. In Transparent Optical Networks (ICTON),

2014 16th International Conference on, pages 1–5. IEEE, 2014.

177

[44] Christian Artigues, Sophie Demassey, and Emmanuel Neron. Resource-

constrained project scheduling: models, algorithms, extensions and applications.

John Wiley & Sons, 2013.

[45] Shohreh Ahvar, Hnin Pann Phyu, Sachham Man Buddhacharya, Ehsan Ah-

var, Noel Crespi, and Roch Glitho. Ccvp: Cost-efficient centrality-based vnf

placement and chaining algorithm for network service provisioning. In Network

Softwarization (NetSoft), 2017 IEEE Conference on, pages 1–9. IEEE, 2017.

[46] Gupta Abhishek, Jaumard Brigitte, Massimo Tornatore, Mukherjee Biswanath,

et al. Multiple service chain placement and routing in a network-enabled cloud.

In IEEE International Conference on Advanced Networks and Telecommunica-

tions Systems, pages 1–3, 2016.

[47] Abhishek Gupta, Brigittte Jaumard, Massimo Tornatore, and Biswanath

Mukherjee. Service chain (sc) mapping with multiple sc instances in a wide

area network. In GLOBECOM 2017-2017 IEEE Global Communications Con-

ference, pages 1–6. IEEE, 2017.

[48] Mathis Obadia, Jean-Louis Rougier, Luigi Iannone, Vania Conan, and Mathieu

Brouet. Revisiting nfv orchestration with routing games. In Network Function

Virtualization and Software Defined Networks (NFV-SDN), IEEE Conference

on, pages 107–113. IEEE, 2016.

[49] Salvatore D’Oro, Laura Galluccio, Sergio Palazzo, and Giovanni Schembra. Ex-

ploiting congestion games to achieve distributed service chaining in nfv net-

works. IEEE Journal on Selected Areas in Communications, 35(2):407–420,

2017.

[50] Aris Leivadeas, George Kesidis, Matthias Falkner, and Ioannis Lambadaris.

178

A graph partitioning game theoretical approach for the vnf service chaining

problem. IEEE Transactions on Network and Service Management, 14(4):890–

903, 2017.

[51] Xiaoliang Chen, Zuqing Zhu, Jiannan Guo, Sheng Kang, Roberto Proietti,

Alberto Castro, and SJB Yoo. Leveraging mixed-strategy gaming to realize

incentive-driven vnf service chain provisioning in broker-based elastic optical

inter-datacenter networks. IEEE/OSA Journal of Optical Communications and

Networking, 10(2):A232–A240, 2018.

[52] Jordi Ferrer Riera, Eduard Escalona, Josep Batalle, Eduard Grasa, and Joan A

Garcia-Espin. Virtual network function scheduling: Concept and challenges.

In Smart Communications in Network Technologies (SaCoNeT), 2014 Interna-

tional Conference on, pages 1–5. IEEE, 2014.

[53] Mark Shifrin, Erez Biton, and Omer Gurewitz. Optimal control of vnf de-

ployment and scheduling. In Science of Electrical Engineering (ICSEE), IEEE

International Conference on the, pages 1–5. IEEE, 2016.

[54] Yujie Liu, Yong Li, Marco Canini, Yue Wang, and Jian Yuan. Scheduling multi-

flow network updates in software-defined nfv systems. In Computer Communi-

cations Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, pages

548–553. IEEE, 2016.

[55] Hyame Assem Alameddine, Samir Sebbah, and Chadi Assi. On the interplay

between network function mapping and scheduling in vnf-based networks: A

column generation approach. IEEE Transactions on Network and Service Man-

agement, 14(4):860–874, 2017.

179

[56] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network func-

tion virtualization: Challenges and opportunities for innovations. IEEE Com-

munications Magazine, 53(2):90–97, 2015.

[57] Marco E Lübbecke and Jacques Desrosiers. Selected topics in column genera-

tion. Operations Research, 53(6):1007–1023, 2005.

[58] Hatem Ben Amor, Jacques Desrosiers, and José Manuel Valério de Carvalho.

Dual-optimal inequalities for stabilized column generation. Operations Re-

search, 54(3):454–463, 2006.

[59] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming

and network flows. John Wiley & Sons, 2011.

[60] Leon S Lasdon. Optimization theory for large systems. Courier Corporation,

2002.

[61] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards

predictable datacenter networks. In ACM SIGCOMM computer communication

review, volume 41, pages 242–253. ACM, 2011.

[62] Jeffrey C Mogul and Lucian Popa. What we talk about when we talk about

cloud network performance. ACM SIGCOMM Computer Communication Re-

view, 42(5):44–48, 2012.

[63] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Banerjee,

Joon-Myung Kang, and Puneet Sharma. Application-driven bandwidth guar-

antees in datacenters. In ACM SIGCOMM Computer Communication Review,

volume 44, pages 467–478. ACM, 2014.

[64] Hyame Assem Alameddine, Sara Ayoubi, and Chadi Assi. Offering resilient

and bandwidth guaranteed services in multi-tenant cloud networks: Harnessing

180

the sharing opportunities. In Teletraffic Congress (ITC 28), 2016 28th Inter-

national, volume 1, pages 1–9. IEEE, 2016.

[65] Hyame Assem Alameddine, Sara Ayoubi, and Chadi Assi. Protection plan

design for cloud tenants with bandwidth guarantees. In Design of Reliable

Communication Networks (DRCN), 2016 12th International Conference on the,

pages 115–122. IEEE, 2016.

[66] Dariush Ebrahimi, Samir Sebbah, and Chadi Assi. A column generation method

for constructing and scheduling multiple forwarding trees in wireless sensor

networks. IEEE Transactions on Wireless Communications, 15(9):6513–6523,

2016.

[67] Hyame Assem Alameddine, Mosaddek Hossain Kamal Tushar, and Chadi Assi.

Scheduling of low latency services in softwarized networks (under review). IEEE

Transactions on Cloud Computing, 2019.

[68] Dario Bega, Marco Gramaglia, Albert Banchs, Vincenzo Sciancalepore, Kon-

stantinos Samdanis, and Xavier Costa-Perez. Optimising 5g infrastructure mar-

kets: The business of network slicing. In INFOCOM 2017-IEEE Conference on

Computer Communications, IEEE, pages 1–9. IEEE, 2017.

[69] Peter Rost, Christian Mannweiler, Diomidis S Michalopoulos, Cinzia Sartori,

Vincenzo Sciancalepore, Nishanth Sastry, Oliver Holland, Shreya Tayade, Bin

Han, Dario Bega, et al. Network slicing to enable scalability and flexibility in

5g mobile networks. IEEE Communications Magazine, 55(5):72–79, 2017.

[70] Spyridon Vassilaras, Lazaros Gkatzikis, Nikolaos Liakopoulos, Ioannis N Sti-

akogiannakis, Meiyu Qi, Lei Shi, Liu Liu, Merouane Debbah, and Georgios S

181

Paschos. The algorithmic aspects of network slicing. IEEE Communications

Magazine, 55(8):112–119, 2017.

[71] Sönke Hartmann and Dirk Briskorn. A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of opera-

tional research, 207(1):1–14, 2010.

[72] Giacomo Bonanno. Game Theory. CreateSpace Independent Publishing Plat-

form, 2nd edition, 2015.

[73] Jim Ratliff. Strategies in extensive-form games. http:

//www.virtualperfection.com/gametheory/4.2.

StrategiesInExtensiveFormGames.1.0.pdf, 1997.

[74] Omer Tamus. Lecture notes on game theory”. http://tamuz.caltech.

edu/teaching/ss201b/lectures.pdf, 2018.

[75] Jonathan Levin. Extensive form games. https://web.stanford.edu/

˜jdlevin/Econ%20203/ExtensiveForm.pdf, 2002.

[76] Martin Gairing, Burkhard Monien, and Karsten Tiemann. Routing (un-) split-

table flow in games with player-specific linear latency functions. In Interna-

tional Colloquium on Automata, Languages, and Programming, pages 501–512.

Springer, 2006.

[77] Martin Gairing, Burkhard Monien, and Karsten Tiemann. Routing (un-) split-

table flow in games with player-specific affine latency functions. ACM Trans-

actions on Algorithms (TALG), 7(3):31, 2011.

[78] Hyame Assem Alameddine, Sannaa Sharafeddine, Samir Sebbah, Sara Ayoubi,

and Chadi Assi. Dynamic task offloading and scheduling for low-latency iot

182

services in multi-access edge computing. IEEE Journal on Selected Areas in

Communications - Special Issue on Network Softwarization & Enablers, 2019.

[79] 5G Infrastructure PPP Association et al. 5g vision-the 5g infrastructure pub-

lic private partnership: the next generation of communication networks and

services. White Paper, February, 2015.

[80] Mahadev Satyanarayanan, Victor Bahl, Ramón Caceres, and Nigel Davies. The

case for vm-based cloudlets in mobile computing. IEEE pervasive Computing,

2009.

[81] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang.

A survey on mobile edge networks: Convergence of computing, caching and

communications. IEEE Access, 5:6757–6779, 2017.

[82] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-

puting and its role in the internet of things. In Proceedings of the first edition

of the MCC workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[83] Milan Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al. Mobile-

edge computing introductory technical white paper. White Paper, Mobile-edge

Computing (MEC) industry initiative, 2014.

[84] Alex Reznik, Rohit Arora, Mark Cannon, Luca Cominardi, Walter Feather-

stone, Rui Frazao, Fabio Giust, Sami Kekki, Alice Li, Dario Sabella, et al. De-

veloping software for multi-access edge computing. ETSI, White Paper, (20),

2017.

[85] Hiroyuki Tanaka, Masahiro Yoshida, Koya Mori, and Noriyuki Takahashi.

Multi-access edge computing: A survey. Journal of Information Processing,

26:87–97, 2018.

183

[86] Haisheng Tan, Zhenhua Han, Xiang-Yang Li, and Francis CM Lau. Online job

dispatching and scheduling in edge-clouds. In INFOCOM 2017-IEEE Confer-

ence on Computer Communications, IEEE, pages 1–9. IEEE, 2017.

[87] Tuyen X Tran and Dario Pompili. Joint task offloading and resource al-

location for multi-server mobile-edge computing networks. arXiv preprint

arXiv:1705.00704, 2017.

[88] Lin Wang, Lei Jiao, Jun Li, and Max Mühlhäuser. Online resource allocation

for arbitrary user mobility in distributed edge clouds. In Distributed Computing

Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 1281–

1290. IEEE, 2017.

[89] Xiang Sun and Nirwan Ansari. Latency aware workload offloading in the

cloudlet network. IEEE Communications Letters, 21(7):1481–1484, 2017.

[90] Mike Jia, Weifa Liang, and Zichuan Xu. Qos-aware task offloading in distributed

cloudlets with virtual network function services. In Proceedings of the 20th ACM

International Conference on Modelling, Analysis and Simulation of Wireless

and Mobile Systems, pages 109–116. ACM, 2017.

[91] Qiang Fan and Nirwan Ansari. Application aware workload allocation for edge

computing-based iot. IEEE Internet of Things Journal, 5(3):2146–2153, 2018.

[92] Xinchen Lyu, Wei Ni, Hui Tian, Ren Ping Liu, Xin Wang, Georgios B Gian-

nakis, and Arogyaswami Paulraj. Optimal schedule of mobile edge computing

for internet of things using partial information. IEEE Journal on Selected Areas

in Communications, 35(11):2606–2615, 2017.

[93] Kostas Katsalis, Thanasis G Papaioannou, Navid Nikaein, and Leandros Tassi-

ulas. Sla-driven vm scheduling in mobile edge computing. In Cloud Computing

184

(CLOUD), 2016 IEEE 9th International Conference on, pages 750–757. IEEE,

2016.

[94] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Joint task offloading scheduling

and transmit power allocation for mobile-edge computing systems. In Wireless

Communications and Networking Conference (WCNC), 2017 IEEE, pages 1–6.

IEEE, 2017.

[95] Lin Wang, Lei Jiao, Dzmitry Kliazovich, and Pascal Bouvry. Reconciling task

assignment and scheduling in mobile edge clouds. In Network Protocols (ICNP),

2016 IEEE 24th International Conference on, pages 1–6. IEEE, 2016.

[96] Gopika Premsankar, Mario Di Francesco, and Tarik Taleb. Edge computing

for the internet of things: a case study. IEEE Internet of Things Journal,

5(2):1275–1284, 2018.

[97] Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu, Guofei Jiang,

and Harsha V Madhyastha. Software-defined latency monitoring in data center

networks. In International Conference on Passive and Active Network Measure-

ment, pages 360–372. Springer, 2015.

[98] Azure windows vm sizes - compute optimized. https://docs.microsoft.

com/fi-fi/azure/virtual-machines/windows/sizes-compute.

[99] Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji. Multi-user computation

partitioning for latency sensitive mobile cloud applications. IEEE Transactions

on Computers, 64(8):2253–2266, 2015.

[100] Mutsunori Yagiura and Toshihide Ibaraki. The generalized assignment problem

and its generalizations.

185

[101] David Pisinger and Mikkel Sigurd. Using decomposition techniques and con-

straint programming for solving the two-dimensional bin-packing problem. IN-

FORMS Journal on Computing, 19(1):36–51, 2007.

[102] Yu N Sotskov and Natalia V Shakhlevich. Np-hardness of shop-scheduling

problems with three jobs. Discrete Applied Mathematics, 59(3):237–266, 1995.

[103] John N Hooker and Greger Ottosson. Logic-based benders decomposition.

Mathematical Programming, 96(1):33–60, 2003.

[104] John N Hooker. Planning and scheduling by logic-based benders decomposition.

Operations Research, 55(3):588–602, 2007.

[105] Yingyi Chu and Quanshi Xia. Generating benders cuts for a general class of

integer programming problems. In International Conference on Integration of

Artificial Intelligence (AI) and Operations Research (OR) Techniques in Con-

straint Programming, pages 127–141. Springer, 2004.

[106] Ruozhou Yu, Guoliang Xue, and Xiang Zhang. Application provisioning in

fog computing-enabled internet-of-things: A network perspective. In IEEE

INFOCOM 2018-IEEE Conference on Computer Communications, pages 783–

791. IEEE, 2018.

[107] Stephen J. Wright. Optimization. https://www.britannica.com/

science/optimization, Oct 2016.

[108] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Re-

search. McGraw-Hill, New York, NY, USA, seventh edition, 2001.

[109] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In

Column generation, pages 1–32. Springer, 2005.

186

[110] Toby O Davies, Graeme Gange, and Peter J Stuckey. Automatic logic-based

benders decomposition with minizinc. In AAAI, pages 787–793, 2017.

[111] Vahid Roshanaei, Curtiss Luong, Dionne M Aleman, and David Urbach. Propa-

gating logic-based benders’ decomposition approaches for distributed operating

room scheduling. European Journal of Operational Research, 257(2):439–455,

2017.

[112] Theodore L Turocy. game theory. Bernhard von Stengel, London School of

Economics “Game Theory” CDAM Research Report (October 2001), 2001.

187

Appendix A

Optimization and Game Theoretic

Techniques

Multiple techniques including optimization and game theoretic methods are used

throughout this thesis and serve as tools to solve the tackled problems. Thus, for

completeness, we provide in the following a brief overview on the aforementioned

techniques. For a detailed overview, interested readers are referred to [59, 60] and to

[72] for more information and explanation about the different optimization and game

theoretic techniques respectively.

A.1 Optimization Methods

Optimization methods have been widely used to solve multiple problems in different

disciplines such as transportation, aviation, economics, etc. Mathematical program-

ming includes the study of the mathematical structure of an optimization problem,

the definition of methods to solve them and the implementation of these methods

using the computer [107].

Mathematical models allow the reformulation of an optimization problem in a

188

mathematical structure that is convenient for analysis [108]. Hence, an optimization

problem can be expressed as a mathematical model composed of an objective function

subject to several constraints expressed by a set of decision variables and parameters.

More precisely, quantifiable decisions that are to be taken in order to solve a desired

problem are expressed in terms of decision variables (i.e., x1, x2, ..., xn) whose values

are to be determined. These decision variables are used to express a mathematical

function that represents the desired measure of performance or profit of the problem

which is known as the objective function (i.e., P = 3x1 + 2x2 + ... + 5xn). Any

restrictions on the values that can be taken by the determined decision variables can

be expressed in terms of mathematical expressions (i.e., equations (3x1 + 5x4 ≤ 4))

known as constraints of the problem. Constants in the constraints and the objective

function represents the parameters of the problem [108]. Finally, the values of the

decision variables can be determined in order to maximize or to minimize the objective

function.

Multiple forms of mathematical programming models exist and are elucidated in

the following.

A.1.1 Linear and Non Linear Programs

Linear programming consists of optimizing (minimizing or maximizing) a linear func-

tion while satisfying a set of linear constraints. A minimization linear programming

problem can be stated as follows:

Minimize

n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = bi, i = 1...m

xj ≥ 0, j = 1...n

(A.1)

189

where x1, x2, ...xn depict the decision variables of the problem, cj, aij, bi are constants

that represent the parameters of the problem.
∑n

j=1 cjxj is the objective function,
∑n

j=1 aijxj = bi, i = 1...m are the functional constraints of the problem and xj ≥

0, j = 1...n, are the non-negativity constraints [108].

When the objective function and the constraints of the mathematical model are

non-linear, the problem is named Non-Linear Program (NLP).

While there exists several methods to solve LPs (i.e., Simplex method [108, 59]),

NLPs are more sophisticated to deal with. One efficient way to handle NLPs is to

transform them into LPs. In this thesis, we have linearized many of the non-linear

constraints of the presented mathematical models.

A.1.2 Integer Linear Programs

In the optimization problem (A.1), if all the decision variables are integers, the prob-

lem is called ILP. However, if only some of the variables are integers, the problem is

referred to as MILP. Nonetheless, if all the decision variables are binary, that is, they

are restricted to 0-1 values, the problem is then depicted as a Binary Linear Integer

Program (BILP) [108].

Given that ILPs have fewer solutions to be considered than LPs as some feasible

solutions (non-integer ones) are removed from the solution space, one may think that

these problems are easier to solve than LPs, which is not the case. In fact, ILPs are

usually harder to solve than LPs [108]. While IPs with a bounded feasible region

are guaranteed to have a finite number of feasible solutions, this number can grow

exponentially. For instance, a problem with n decision variables have 2n solutions to

be considered. Thus, adding one decision variable will double the number of possible

solutions [108]. Moreover, the existence of feasible (non-integer) solutions in the

solution space is a key for the efficiency of the Simplex method used to solve LPs

190

[108]. Thus, many methods are identified to solve ILPs. In this thesis, we used CG

[57] and LBBD [103] to address this kind of problems.

A.1.3 Column Generation

To solve ILPs with a bounded solution space and finite set of feasible solutions, one can

think of employing an enumeration procedure to identify the optimal solution [108].

However, as the number of possible solutions can be exponentially large, employing

an enumeration method does not yield an efficient approach to solve the problem.

Hence, another possible way to address the problem is to explore a clever enumeration

procedure that consists of enumerating a subset of solutions only.

CG is a primal-dual decomposition approach that adopts such strategy. In fact,

CG yields a classical technique that was mainly introduced to solve LPs, however, it

gained success when used to solve large scale integer programs [57]. Usually, ILPs are

well structured in the sense that subsets of their variables and constraints can appear

in independent groups or subsystems that are linked by a distinct set of variables

and/or constraints [57]. Decomposition paradigm seeks at algorithmically exploiting

this specific structure of the ILP by treating the linking variables/constraints at a su-

perior, coordinating level and independently solving each of the identified subsystems

at a subordinated level [57]. CG adopts such strategy by decomposing the problem

into a LP MP composed of a set of general constraints representing the predefined

superior level and an (integer) LP pricing SP composed of more specific constraints

and depicting the aforementioned subsystem [57, 59]. Deciding on such decomposi-

tion is not straight forward and depends on the structure of each problem. However,

it allows the MP and the SP to exchange information until an optimal LP solution

of the original problem is found [59]. More precisely, the MP passes revised cost

coefficients or prices to the SP in order to guide it through selecting a set of non-basic

191

variables which represents a column to be added to the MP [59].

In order to further explain the idea behind CG, we consider the following LP MP.

z?MP = min
∑

j∈J

cjλj

subject to
∑

j∈J

ajλj ≥ b

λj ≥ 0, ∀j ∈ J

(A.2)

Solving the MP (A.2) using the Simplex method [59] requires identifying at each

iteration of the latter a non-basic variable to enter the basis. That is, given a non-

negative vector φ of dual variables, we seek at finding a (j ∈ J) with the minimum

reduced cost (c̄j = cj − φtaj). Finding such variable is costly when |J | is huge. Thus,

CG consists of identifying a small subset J ′ ⊆ J of columns. Once J ′ is recognized,

the MP is solved over the available columns in J ′ ∈ J and it is called the Restricted

Master Problem (RMP) which yields easier to solve given that |J ′|≤ |J | [109]. Thus,

the RMP can be represented as follows:

z?RMP = min
∑

j∈J

cjλj

subject to
∑

j∈J

ajλj ≥ b

λj ≥ 0, ∀j ∈ J ′

(A.3)

The pricing SP helps in identifying the set |J ′| given the dual optimal solution of the

current RMP. Hence, let φ? be the dual optimal solution of the RMP at a certain

iteration. The objective of the pricing SP at that iteration can be defined as in

Eq.(A.4) where φ?t is the transposed of vector φ?, aj j ∈ J are given as elements of

192

a set A and the cost coefficient cj is computed from aj via a function c.

c? = min{c(a)− φ?ta| a ∈ A} (A.4)

After solving the pricing SP, the value of c? is evaluated. If c? ≥ 0, then there exists

no negative reduced cost c̄j, j ∈ J , thus, the RMP optimal solution obtained at the

considered iteration is also optimal for the MP and the CG terminates. However,

if c? < 0, the column derived from the SP optimal solution is added to the RMP

and the process of re-optimizing the latter is repeated. Note that to initiate the CG

method, an initial feasible solution to the RMP is required in order to ensure that

proper dual information is passed to the pricing SP [109].

A.1.4 Logic-Based Benders Decomposition

While CG yields a column generation technique, LBBD is identified as a row genera-

tion approach that can provide the ILP optimal solution of the original problem [103].

It can be applied on any type of problem as it exploits the logical relation between

its different components.

As any other decomposition approach, LBBD consists of decomposing the problem

into a MP and one or many SPs [103]. Unlike CG where the MP has to be a continuous

LP, the LBBD MP can take on any form (i.e., MILP). The idea behind LBBD relies in

generating cuts or constraints to gradually reduce the solution space of the relaxed MP

[103]. However, these cuts should not disregard any feasible solutions [103, 105]. As

the MP and the SP can take on any form, LBBD does not use the linear programming

dual to generate cuts, but instead, it introduces the concept of “inference dual” which

can be defined as an optimization problem that finds the best possible bound implied

by a set of MP variables. More precisely, the optimal solution of the MP is sent to the

193

SP which represents the inference dual. The SP verifies the feasibility of the provided

MP optimal solution. If the latter is not feasible to the SP, the SP generates a cut and

add it to the MP to eliminate this solution [103, 110]. LBBD is an iterative approach

that consists of solving the MP and the SP(s) at each iteration, adding Benders’ cuts

from the SP(s) to the MP until the MP converges to the SP solutions [111].

The difficulty of LBBD relies in choosing a relaxed MP. For instance, if the MP

does not include any important constraints, its provided solution might be too op-

timistic and the method converges slowly. Conversely, if the constraints are not

substantially relaxed, solving the MP becomes harder. In addition, designing effi-

cient cuts from the infeasible SP is not trivial and highly affects the performance of

the LBBD [110].

A.2 Game Theory

A.2.1 Overview

Game theory was first introduced to solve strategic problems in economics, then it

was extended to tackle several other fields such as computer science, biology, political

science and many others. It consists of modeling, studying and analyzing strategic

interactions between different entities called “players” where the latter take actions

that affect each others. The players are assumed to be rational and interested in

maximizing their outcomes [72]. While game theory is a formal study of decision-

making in a strategic situation, a game is a formal representation of such situation

[112]. Game theory is divided in two main branches:

1. Cooperative games

194

Cooperative games entail that players can communicate, cooperate, form coali-

tions and sign binding agreements. Cooperative games has been used for exam-

ple to analyze voting behavior [72].

2. Non-cooperative games

Non-cooperative games assume that players either cannot communicate or can

communicate but cannot sign binding agreements. As an example, interaction

between firms in competition which do not trust each others will not reach an

agreement concerning prices, production, etc. [72]. Non-cooperative games can

take on two different forms, a strategic form where players play simultaneously

and an extensive-form where players play sequentially one after the other [72,

112].

In this thesis, we are interested in extensive-form games which we used to address the

joint problem of NF mapping, traffic routing and NS scheduling (Chapter 4). Thus,

we present and explain in the following extensive-form games and their aspects.

A.2.2 Extensive-Form Games

A.2.2.1 Definition

Extensive-form games, also known as dynamic games, are used to model the sequential

interactions between different players (i.e., chess is an example of an extensive-form

game) [72]. They are classified into perfect and imperfect information games. In

perfect information games, players are aware of each others moves at any point in

time, however, in imperfect information games, player will have to make a decision

with only partial information about the previous moves of other players [72, 112]. In

this thesis, we are interested in perfect information games.

195

Thus, a finite extensive-form game with perfect information can be formally de-

fined as a tuple a(P,K(V, ρ), I, A, γ) where:

1. P : A finite set of players or decision-makers in the game.

2. K(V, ρ): Finite rooted decision tree where V = {v0}
⋃
D

⋃
T consists of a set

V of nodes depicted by a root node v0, a set D of decision or strategic nodes,

each assigned to a player, and a set T of terminal nodes. ρ is an immediate pre-

decessor function ρ : V → D. The decision tree provides a complete description

of how the game is played over time [112].

3. I: Information set of the game which includes the information (i.e., order of

the players in taking actions, previous actions, etc.) that players have at the

time when they must take action. I includes the information set of each player

in the game which is available at each node d ∈ D dedicated for that player

[72, 112, 75].

4. A: Set of actions available during the game.

5. γ = (γp)p∈P : T → NP is a payoff function that assigns payoffs to players as a

function of the terminal node reached. A payoff, also called utility, reflects the

desirability of a player to an outcome [112, 75].

As an example, we consider the decision tree depicted in Fig.A.1 which represents a

finite extensive-form game with perfect information of two players, player 1 and player

2, who decided to dissolve a business partnership which assets have been valued to

100 000$. Player 1 is the senior partner who can make an offer to divide the assets.

Thus, player 1 has two different actions representing the offers he/she can make,

which are a 50 − 50 or a 70 − 30 split of assets. Player 2, the junior partner, can

respond to player 1 offer by choosing one of two possible actions, accept or reject

player 1’s offer.

196

its pure strategies such that all probabilities over the player’s strategy set add

to 1. That is, a player may randomly select a strategy among its pure strategies

with a certain probability [72, 75]. In the example in Fig A.1, player 1 might

choose to play a mixed strategy with a probability q to play the offer 50 − 50

and a probability (1− q) to choose to offer 70− 30.

A.2.2.3 Nash Equilibrium

Usually, each player in the game is interested in maximizing its payoff. Hence, each

player will use the strategy that is the best response to the strategies selected by its

opponents. The equilibrium depicts that none of the players has incentive to deviate

from its selected strategy [72]. Note that a game in strategic form may not always have

a pure strategy Nash equilibrium in which each player makes a deterministic choice

of his strategies (i.e., coin flipping game). Thus, players may choose to randomly

select a strategy from their strategy set with a certain probability. Note that John

Nash showed that every finite game in strategic form has at least one mixed strategy

Nash equilibrium [112]. Further, it is worth noting that an extensive-form game can

be converted to a strategic form game.

Definition A.1. A strategy profile s? is a Nash equilibrium if for all p ∈ P and

strategy sp of player p it holds that:

γ(sp, s
?
−p) ≤ γ(s?p, s

?
−p) ∀p ∈ P (A.5)

where s?p is the best strategy played by player p in response to the best strategies of its

opponents (s?−p) [72, 74].

The equilibrium notion for extensive-form game is the Sub-game Perfect Nash

Equilibrium. A sub-game of an extensive-form game is a portion of the game that

198

choose to accept the offer as well. Hence, we mark the node d3 with the payoff vector

(70 000$, 30 000$). Considering the payoff vectors at node d2 and d3, player 1 (at node

d1) will select to make an offer of 70 − 30 split as it will maximize its payoff. Thus,

we conclude that player 1 will make an offer of 70 − 30 split which will be accepted

by player 2. Note that the choices selected by backward induction are highlighted by

doubling the corresponding edges (Fig.A.2).

200

Appendix B

Linearization of SFCS Problem

We present in the following the linearization details for the non linear constraints

(Eq.(3.14) and Eq.(3.18)) in the SFCS problem formulation (Chapter 3, Section 3.3).

Thus, to linearize Eq.(3.14) we replace it with the following equations:

hkns ≤ qkns
∀k∈Kp

∀n∈Ns
∀s∈S

(B.1)

hkns ≤ qk(n+1)s

∀k∈Kp

∀n,(n+1)∈Ns

∀s∈S
(B.2)

hkns ≥ qkns + qk(n+1)s − 1
∀k∈Kp

∀n,(n+1)∈Ns

∀s∈S
(B.3)

Eq.(3.18) can be linearized by declaring a new binary decision variable gsδeij ∈ {0, 1}

as follows:

gsδeij = leij θ̂
δe
s

∀δ∈∆
∀(ij)∈L
∀e∈Es
∀s∈S

(B.4)

Eq.(3.18) can then be replaced by the following set of equations:

gsδeij ≤ leij

∀δ∈∆
∀(ij)∈L
∀e∈Es
∀s∈S

(B.5)

201

gsδeij ≤ θ̂δes

∀δ∈∆
∀(ij)∈L
∀e∈Es
∀s∈S

(B.6)

gsδeij ≥ leij + θ̂δes − 1
∀δ∈∆

∀(ij)∈L
∀e∈Es
∀s∈S

(B.7)

∑

s∈S

∑

e∈Es

gsδeij bs ≤ cij
∀δ∈∆

∀(ij)∈L (B.8)

202

Appendix C

Linearization of the LASS Problem

In the following, we provide the linearization details for the non linear constraints in

LASS-MaxAdmission (Chapter 4 Section 4.3).

Hence, to linearize Eq.(4.9) we replace it with the following three equations:

hkns ≤ qkns
∀k∈Kp

∀n∈Ns
∀s∈S

(C.1)

hkns ≤ qk(n+1)s

∀k∈Kp

∀n,(n+1)∈Ns

∀s∈S
(C.2)

hkns ≥ qkns + qk(n+1)s − 1
∀k∈Kp

∀n,(n+1)∈Ns

∀s∈S
(C.3)

Eq.(4.10) is non linear and can be linearized by replacing it with the following

three equations:
∑

δ∈∆

θδes ≤ as
∀e∈Es
∀s∈S (C.4)

∑

δ∈∆

θδes ≤ 1−
∑

k∈Kp

hko(e)s
∀e∈Es
∀s∈S (C.5)

∑

δ∈∆

θδes ≥ as −
∑

k∈Kp

hko(e)s
∀e∈Es
∀s∈S (C.6)

Eq.(4.17) is non linear and can be linearized by declaring a new decision variable

203

rfδns ∈ {0, 1} such that:

rfδ
′

d(e)s = θδ
′e

s

∑

δ′′∈∆

yfδ
′′

d(e)s

∀f∈F
∀δ′∈∆
∀e∈Es
∀s∈S

(C.7)

Eq.(4.17) can then be replaced by the following equations:

rfδ
′

d(e)s ≤ θδ
′e

s

∀f∈F
∀δ′∈∆
∀e∈Es
∀s∈S

(C.8)

rfδ
′

d(e)s ≤
∑

δ′′∈∆

yfδ
′′

d(e)s

∀f∈F
∀δ′∈∆
∀e∈Es
∀s∈S

(C.9)

rfδ
′

d(e)s ≥ θδ
′e

s +
∑

δ′′∈∆

yfδ
′′

d(e)s − 1
∀f∈F
∀δ′∈∆
∀e∈Es
∀s∈S

(C.10)

ψfδ
s ≤ 1− rfδ

′

d(e)s

∀δ,δ′∈∆:δ<δ′+ws
bs

∀e∈Es
∀f∈F
∀s∈S

(C.11)

Eq.(4.23) is non linear and can be linearized by declaring a new binary decision

variable gsδeij ∈ {0, 1} as follows:

gsδeij = leij θ̂
δe
s

∀δ∈∆
∀(ij)∈L
∀e∈Es
∀s∈S

(C.12)

Eq.(4.23) can then be replaced by the following equations:

gsδeij ≤ leij

∀δ∈∆
∀(ij)∈L
∀e∈Es
∀s∈S

(C.13)

gsδeij ≤ θ̂δes

∀δ∈∆
∀(ij)∈L
∀e∈Es
∀s∈S

(C.14)

gsδeij ≥ leij + θ̂δes − 1
∀δ∈∆

∀(ij)∈L
∀e∈Es
∀s∈S

(C.15)

∑

s∈S

∑

e∈Es

gsδeij bs ≤ cij
∀δ∈∆

∀(ij)∈L (C.16)

204

Appendix D

Formulation Details of the DTOS

Problem

We provide, in the following, additional details about the DTOS-MILP (Section 5.4)

and DTOS-LBBD (Section 5.5) formulations presented in Chapter 5.

D.1 DTOS-MILP

D.1.1 Constraints Reformulation

As we replace pa by
∑

p∈P z
p
ap in constraints (5.5), (5.6) and (5.7), we show below

how these constraints can be rewritten after this change.

Eq.(5.5) can be rewritten as specified in Eq.(D.1).

∑

p∈P

zpap ≥ nap
a
min ∀a ∈ A (D.1)

205

Eq.(5.6) is rewritten as in Eq.(D.2).

∑

p∈P

zpap ≤ na

∑

m∈M

xamcm ∀a ∈ A (D.2)

Eq.(5.7) is reformulated as in Eq.(D.3).

∑

a∈A

xam
∑

p∈P

zpap ≤ cm ∀m∈M (D.3)

D.1.2 Linearization Details

We explain below the linearization details of the non linear constraints of the DTOS

problem. The non linearity of Eqs.(5.11), (5.12) and (5.17) is due to the term duproc

(Eq.(5.19)). Hence, Eq.(5.19) can be linearized by declaring a new decision variable

waδ
pu ∈ {0, 1} such that:

waδ
pu = yaδu z

p
a

∀p∈P
∀a∈A
∀δ∈∆
∀u∈U

(D.4)

Eq.(5.19) can then be replaced by the following equations:

waδ
pu ≤ yaδu

∀p∈P
∀a∈A
∀δ∈∆
∀u∈U

(D.5)

waδ
pu ≤ zpa

∀p∈P
∀a∈A
∀δ∈∆
∀u∈U

(D.6)

waδ
pu ≥ yaδu + zpa − 1

∀p∈P
∀a∈A
∀δ∈∆
∀u∈U

(D.7)

duproc =
∑

p∈P

∑

a∈A

∑

δ∈∆

waδ
pu

µu

p
∀u ∈ U (D.8)

206

Thus, Eq.(5.11) can be written in a linearized form by replacing duprocess by Eq.(D.8)

as depicted in Eq.(D.9).

∑

δ∈∆

yaδu′ δ ≥
∑

δ∈∆

yaδu δ +
∑

p∈P

∑

a∈A

∑

δ∈∆

waδ
pu

µu

p
−H(1− sauu′)

∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.9)

Similarly, Eq.(5.12) can be written in a linearized form as shown in Eq.(D.10).

∑

δ∈∆

yaδu δ ≥
∑

δ∈∆

yaδu′ δ +
∑

p∈P

∑

a∈A

∑

δ∈∆

waδ
pu′

µu′

p
−H(1− sau′u)

∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.10)

In a similar manner, Eq.(5.17) can be written in a linearized form as specified in

Eq.(D.11)
∑

a∈A

∑

δ∈∆

yaδu δ +
∑

p∈P

∑

a∈A

∑

δ∈∆

waδ
pu

µu

p
≤ θu ∀u ∈ U (D.11)

Eq.(5.14) is non linear and can be linearized by declaring a new decision variable

ρauu′ ∈ {0, 1} such that:

ρauu′ =
∑

δ∈∆

yaδu
∑

δ∈∆

yaδu′

∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.12)

Eq.(5.14) can then be replaced by the following equations:

ρauu′ ≤
∑

δ∈∆

yaδu
∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.13)

ρauu′ ≤
∑

δ∈∆

yaδu′

∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.14)

ρauu′ ≥
∑

δ∈∆

yaδu +
∑

δ∈∆

yaδu′ − 1 ∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.15)

sauu′ + sau′u = ρauu′

∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′) (D.16)

207

D.2 DTOS-LBBD

D.2.1 Constraints Reformulation

Given that we replace pa by
∑

p∈P z
p
ap in the formulation of the MP, Eq.(5.25),

Eq.(5.26), Eq.5.27, Eq.(5.28) and Eq.(5.30) can be respectively rewritten as in Eq.(D.1),

Eq.(D.2), Eq.(D.3), Eq.D.17 and Eq.D.18.

∑

p∈P

zpap ≥
∑

u∈U :(tu=ta)
µuq

a
u

θamax − σa
min

∀a ∈ A (D.17)

∑

p∈P

zpap ≥
∑

j∈Pa
u

jβj
ua

∀u∈U
∀a∈A (D.18)

D.2.2 Linearization Details

We explain in the following the linearization details of the non linear constraints of

the DTOS-LBBD SP.

Eq.(5.37) is non linear and can be linearized by declaring a new decision variable

%uu′ ∈ {0, 1} such that:

%uu′ = αu′αu ∀u, u′ ∈ Ua : (u! = u′) (D.19)

Eq.(5.37) can then be replaced by the following equations:

%uu′ ≤ αu′ ∀u, u′ ∈ Ua : (u! = u′) (D.20)

%uu′ ≤ αu ∀u, u′ ∈ Ua : (u! = u′) (D.21)

%uu′ ≥ αu + αu′ − 1 ∀u, u′ ∈ Ua : (u! = u′) (D.22)

208

suu′ + su′u = %uu′ ∀u, u′ ∈ Ua : (u! = u′) (D.23)

209

