
Intuitionistic Databases and Cylindric Algebra

Ali Moallemi

A thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

February 2019

© Ali Moallemi, 2019

Abstract
Intuitionistic Databases and Cylindric Algebra

Ali Moallemi, Ph.D.

Concordia University, 2019

The goal of this thesis is to introduce a logical view of databases based on four-valued

logic, to revisit the foundations of the relational model and unearth universal nulls,

and to handle finitely representable cases of infinite databases. In order to achieve

this, we develop an intuitionistic relevance-logic based semantics that allows us to

handle Full First Order queries similar to monotone First Order queries.

Universal Null represents all the possible values in the Domain. Next, we fully

investigate the relational model and universal nulls, showing that they can be treated

on par with the usual existential nulls. To do so, we show that a suitable finite

representation mechanism, called Star-Cylinders, handling universal nulls can be de-

veloped based on the Cylindric Set Algebra of Henkin, Monk and Tarski. We provide

a finitary version of the Cylindric Set Algebra, called Star Cylindric Algebra, and

show that our star-cylinders are closed under this algebra.

Moreover, we show that any First Order Relational Calculus query over databases

containing universal nulls can be translated into an equivalent expression in our star

cylindric algebra, and vice versa. All star cylindric algebra expressions can be evalu-

ated in time polynomial in the size of the database. Furthermore, the representation

mechanism is then extended to Naive Star-Cylinders, which are star-cylinders allow-

ing existential nulls in addition to universal nulls.

Beside the theory part, we also provide a practical approach for four-valued

databases. We show that the four-valued database instances can be stored as a

pair of two-valued instances. These two-valued instances store positive and negative

iii

information independently, in format of current databases. This procedure is called

decomposition. Decomposed instances can losslessly be merged to form the initial

four-valued instance. In a similar way, we show that four-valued queries can be de-

composed to two-valued queries and can be executed against decomposed instances

to obtain the four-valued result, after merging them back.

Later, we show how these results can be extended to Datalog and we show that

there is no need for any syntactical notion of stratification or non-monotonic rea-

soning, when the intuitionistic logic is implemented. This is followed by presenting

the complexity results. For positive queries (with universal quantification), the well

known naive evaluation technique can still be applied on the existential nulls, thereby

allowing polynomial time evaluation of certain answers on databases containing both

universal and existential nulls. If precise answers are required, certain answer evalu-

ation with universal and existential nulls remains in coNP. Note that the problem is

coNP-hard, already for positive existential queries and databases with only existential

nulls. If inequalities ¬(xi ≈ xj) are allowed, reasoning over existential databases is

known to be Πp
2-complete, and it remains in Πp

2 when universal nulls and full first

order queries are allowed. Finally, we discuss related and future works.

iv

Acknowledgments

First and foremost I want to thank my advisor Dr. Gösta Grahne. It has been an

honor to be his Ph.D. student. He has taught me, both how to work professionally in

academia and how to be a better human being. I appreciate all his contributions of

time, ideas, and funding to make my Ph.D. experience productive and pleasant. The

joy and enthusiasm he has for her research was contagious and motivational for me,

even during tough times in the Ph.D. pursuit.

I also wish to express my sincere gratitude to Dr. Lata Narayanan, Dr. Jamal

Bentahar and Dr. Robert Raphael for serving on my doctoral research committee, for

their availability and interest in the work, for their valuable comments and feedbacks

at different stages of this thesis.

The members of the database research lab have contributed immensely to my

personal and professional time at Concordia. The group has been a source of friend-

ships as well as good advice and collaboration. I have had the pleasure to work with

or alongside of Adrian Onet, Shahab Harrafi, Iraj Hedayati, Zahra Asadi, Wei Han,

Aminata Kane, Rahmah Brnawy, and Ali Alizadeh Mansouri.

Lastly, I would like to thank my family for all their unconditional love and encour-

agement. Words cannot express how grateful and appreciative I am of my parents

who raised me with a love of science and supported me in all my pursuits, and for

their efforts to provide me with the best possible education.

This research was supported in part by Natural Sciences and Engineering Research

Council (NSERC) of Canada and Concordia University.

v

Contents

List of Figures ix

1 Introduction 1

1.1 The Relational Model . 2

1.2 Data Exchange in the Relational Model 4

1.2.1 The Application Area . 6

1.3 Problem Statement . 7

1.4 Belnap’s Logic . 10

1.4.1 Belnap’s Logic in literature . 12

1.4.2 Implementation of Four Valued logic 13

1.5 Universal Nulls . 13

1.6 Application of Universal Nulls . 15

1.6.1 Algebra for Universal Nulls . 17

1.7 Thesis Structure . 19

1.8 Contribution . 20

2 Preliminaries 22

2.1 Relational Model . 22

2.1.1 Language . 22

2.1.2 Instances . 23

2.1.3 Queries and answers . 23

vi

2.1.4 Dependencies and Data Exchange 27

2.2 Incomplete Information. 28

3 Cylindric Set Algebra and Star Cylindric Algebra 31

3.1 Cylindric Set Algebra . 31

3.2 Cylindric Set Algebra and FO . 35

3.2.1 Equivalence of CA and FO . 35

3.3 Star Cylinders and Star Cylindric Algebra 48

3.3.1 Star Cylinders . 48

3.3.2 Positive Star Cylindric Algebra 50

3.3.3 Adding Negation . 55

3.3.4 Equivalenvce of CA and SCA . 59

3.4 Stored Databases and Query Evaluation 60

3.4.1 Universal Nulls (u-databases) . 60

3.4.2 Adding Existential Nulls . 62

3.4.3 Mixing Existential and Universal Nulls 64

3.4.4 Naive Evaluation of Existential Nulls 66

Stored databases with universal and existential nulls (ue-databases) 67

4 Query Evaluation in Four 69

4.1 Four Valued Logic . 69

4.1.1 Four-valued instances. 69

4.1.2 Queries and Answers . 71

4.2 Decomposition . 72

4.3 Adding Universal Nulls . 77

4.4 Algebraic Evaluation . 80

4.5 Implication in Four-Valued Databases 83

4.5.1 Tuple-Generating Dependecies 86

4.6 Chasing with Infinite Domain . 92

vii

5 Complexity 95

5.1 General Complexity . 95

5.2 Membership Problem . 97

5.3 Containment Problem . 98

6 Related and Future Work 100

6.1 Related Work . 100

6.2 Future Work . 102

Bibliography 104

viii

List of Figures

1 Data Exchange and Target Dependencies 6

2 Methodology . 10

3 Outer Cylindrification Operator . 33

4 Inner Cylindrification Operator . 34

5 Commutative Diagram of FO, CA and SCA 61

6 Decomposition Diagram of four-valued Instances 73

7 Commutative diagram of query decomposition 76

8 Truth Order . 84

9 Information Order . 84

ix

1 Introduction

The central notion of this thesis, the Intuitionistic Databases, is a solution to a com-

mon and rather persistent problems in databases. In database theory and application,

inconsistent and unknown information are the main source of confusion. The problem

arises, for instance when data is collected from different sources. Data integration

or in a more general term, information integration involves synthesizing information

across heterogeneous and often distributed data sources.

In data integration, mappings and database rules specify how the information

from different source schemas is to be integrated in the target schema. There are

three fundamental problems to address as the consequence of data integration. (i)

Integrated information can lead to contradictory information about the same fact or

facts. This causes the inconsistency in target database. (ii) Incomplete information

which caused by lack of information on attributes, which are considered as Null values.

There is another type of incomplete information where for a given tuple in a database,

there is no information indicating to prove or disprove that the tuple belongs to the

database instance. These cases are considered as Unknown facts. (iii) The Negation

problem. Negation in current databases is considered as the lack of true information

about the fact. However, we show that this is sometimes not sufficient and there is a

need for constructive proofs for negative facts as well as for positive facts. These three

crucial problems lead us toward the intuitionistic databases, inspired by Intuitionistic-

Relevance Logic.

In this chapter, we review the required concepts and structures. The relational

1

model is explained as the basic structure of databases. Next, in this chapter we go

through data exchange, and information integration, followed by some examples in

order to demonstrate the problems to tackle in this field. The intuitionistic logic and

four-valued logic introduced by N. Belnap [11] is our desired framework that we apply

to relational databases. In order to implement it, we cover the Cylindric Algebra and

the notion of universal nulls. Finally, we need the Star Cylindric Algebra in order to

tame infinite databases in finite tables.

1.1 The Relational Model

The relational model introduced by Codd [15] is based on the mathematical notion

of a relation. This structure stores data in one or more relations (or tables) of rows

and columns. Each row in a relation indicates a tuple (or fact) in the database.

Columns in a relation are considered as attributes of the facts. Relational databases

are designed to store sets of tuples with the same attributes. Each set of tuples with

the same attributes is called a relation, and a set of relations form a database. A

database schema describes the structure of instances in terms of relation and attribute

names.

To access the information in the database, applications use queries. Formally, a

query is a mathematical expression which filters and restructures the desired tuples

and returns them as its answer. First Order Logic and datalog (queries with recursion)

are considered in this research.

SQL (Structured Query Languages) is a query language specifically useful for

relational databases due to their structured and fixed schema. SQL is based upon

the domain-independent relational calculus and which makes SQL a declarative query

language. Being a declarative query language, SQL lets user to express the filtered

data to retrieve. However, in order to speed up the process of answering queries, it is

important to have a plan for query execution. Relational Algebra provides the means

2

to specifically plan the steps required to handle data in order to answer a query, which

makes Relational Algebra a procedural query language.

Codd’s theorem states that the domain-independent relational calculus and rela-

tional algebra are equivalent. This implies that, they have the same expressive power.

Therefore, the database engine can have query execution plans for each individual op-

erator, which makes the DBMS fast on query execution. As a result, SQL became

the most dominant query language for the last few decades since it was introduced

by Codd.

Example 1. Assume that a company wants to store information of its employees in

a relational database. Relation EMP (a1, a2) states that a1 is the employee’s ID, and

a2 is his name. Relation SAL(a1, a2) states that a1 is the employee’s ID, and a2 is

his salary in dollars. The following tables show an instance. The table in the left

represents facts in EMP relation. The first fact expresses the employee named Bob

with ID 123. The second tuple states the information about the employee named Josh

with ID 124. The table in the right represents facts in SAL relation. The first fact

shows the employee with ID 123 has a contract for 60k dollars. The second tuple

states the information about the employee with ID 124 who is paid 80k dollars.

EmployeeID EmployeeName

123 Bob

124 Josh

EmployeeID EmployeeSalary

123 60000

124 80000

Now assume, one is interested to acquire the name of employees with salary more

than 70k. In SQL syntax, it would be,

SELECT EmployeeNAME

FROM EMP, SAL

3

WHERE EMP.EmployeeID = SAL.EmployeeID

AND SAL.EmployeeSalary > 70000;

This query will return ”Josh” as its answer as expected.

Equivalently, it can be written as

{x2.∃x1∃x3(EMP (x1, x2) ∧ SAL(x1, x3) ∧ (x3 > 70000))}

in Relational Calculus, and

Q ∶= πEmployeeNAME(σEmployeeSalary>70000(EMP&(EMP.EmployeeID=SAL.EmployeeID)SAL))

in Relational Algebra.

Ever since relational databases were introduced, they have been extremely pop-

ular and many different applications and problems over this data structure were

introduced. One of the basic problems in relational databases is the relational data

transformation problem, which is called Data Exchange.

1.2 Data Exchange in the Relational Model

There are a number of important transformation problems including data integration,

data exchange, peer data exchange, peer-to-peer data sharing, schema integration,

schema evolution and data repair. In this research we will consider one of data

transformation processes that has gained lots of attention in the last few years, that

is, the relational data exchange.

Relational data exchange was widely studied since this model of exchange was

proposed in 2003 by Fagin, Kolaitis, Miller and Popa [23]. The model proposed

by Fagin et al. considers the transformation of instances structured on a schema,

called source schema, into new instances structured on a distinct schema, called tar-

get schema. This transformation is driven by some constraints that the transformed

4

instance must satisfy relative to the source instance. Most of the time these con-

straints are called schema mappings and are expressed using some logical formalism.

The problem of data exchange was extended to nested, XML, and DTDs schemas of

semi-structured data. However, our focus is toward relational data exchange, because

of the properties of relational model.

To be more precise about data exchange, in distributed information processing

environments a connection is from a source database to a target database. This pro-

cess is called schema mapping that guides the middle-ware in restructuring the data

from the source database to fit the requirements of the target database and tar-

get dependencies, specifying the set of constraints that needs to be satisfied by the

target instance. Since its inception by Fagin et al. in [23], the field of relational

data exchange, and specifically schema mapping has been intensely investigated,

[25, 26, 55, 21, 24, 27, 10, 9, 22, 47, 45, 46], and many functionalities are mature

for technology transfer.

Figure 1 is a graphical representation of the data exchange problem, where S and

T represent the source and target schemas, the input source instance is represented

by I, Σst the set of source-to-target dependencies, Σt the set target dependencies,

and next J is the target instance that needs to be computed. Such target instance

J is called a solution for the data exchange problem. Then, user can inquire query q

against the target database instance J , and the answer q(J) will be returned to the

user.

5

S

I

Σst

J

T
Σt

User

q

q(J)

Figure 1: Data Exchange and Target Dependencies

1.2.1 The Application Area

In terms of applications, the problem of data exchange poses one of the major chal-

lenges in distributed information processing environments. In the last decade, the

number of data exchange applications has increased. Many of today’s data-centric

applications rely on schema mappings, specially, the web data and the growth of

data communication in between companies and research institutes, due to inevitable

collaboration required to analysis big data, made data exchange certain to happen.

Despite numerous works in data exchange, there are still fundamental problems

left unsolved or ill-treated. Problems such as how a data base should deal with

inconsistency and incomplete information, or even the very the basic problem of how

to interpret negation. In particular, one might ask what are the certain negative

answers to a query, similar to certain (positive) answers.

6

1.3 Problem Statement

Incompleteness in databases led to the notion of certain answers. In presence of

incomplete information in some attribute values, null values are used to represent

the missing values. As a result, the concept of possible worlds arises by considering

all possible instances that can be obtained from assigning different values to the

nulls. Therefore, certain answers are considered as the answers common in all possible

worlds. In fact, certain answers is a the set of answers to a query against an incomplete

database instance which are surely true. To be able to represent the incomplete

database instances, naive tables were introduced. In [49] naive tables allow variables in

the relational databases, in addition to constants. Therefore, the unknown attribute

values can be also represented in relational databases.

These problems have been shown to admit efficient implementation, based on

a property colloquially called the naive evaluation property. The property roughly

says that the incompleteness of some domain values can be ignored, as long as these

values are distinguished from each other, and from the ”ordinary” domain values that

denote named and known objects. The price to pay is that we have to restrict the

schema mappings and target queries to be monotone. Most attempts to include non-

monotone features, such as negation (¬), soon run into intractability barriers, due to

the underlying issues of incomplete information. For a comparison between different

closed world semantics the reader should consult [60].

In the case of incomplete information, a database misses some information. It

is easy to store missing or incomplete information, by simply using a symbol, say

�, considered as constant different from constants in the domain of database. The

difficulty arises when queries are applied to an incomplete database. For instance,

suppose the query asks for all employees that their information are gathered from

source S1, while the database is as following:

7

EmployeeID EmployeeName Source

111 Alex �1

123 Bob S1

123 Josh S2

124 Max �1

Should ”Alex” be included in the answers, as it is not ruled out that his information

came from S1? His unknown source of information could very well be S1. It seems

that ”Alex”’s information might come from S1. Similarly, for the case of Max.

Furthermore, let there be another query, asking for employees whose data come

from the same source. Although it is not clear that where the information for Alex

and Max come from, it is clear that they are coming from the same source, so they

are associated with the same null, namely �1. Moreover, adding negation to queries

leads to intractable query evaluation [32].

The next problem that comes with information integration is the inconsistency

problem. An inconsistent database has conflicting facts. Inconsistency can arise from

collecting information from multiple sources with conflicting facts, or just from the

uncertain nature of the available data. Inconsistency in databases is often captured as

violation of integrity constraints, such as key functional dependencies. For example,

lets have a key functional dependency,

EmployeeID→ EmployeeName

which says that, having an employee ID, the name of employee can be uniquely

retrieved. Assume we have the following database:

EmployeeID EmployeeName Source

123 Bob S1

123 Josh S2

8

Here, we have two EmployeeNames associated with a single EmployeeID, which def-

initely conflicts the key functional dependency.

Researchers, in order to resolve the inconsistency in the databases suggested the

data repair solution [3, 8, 6]. Data repair is the transformation process applied to

an inconsistent database instance such that the resulting instance is consistent and

it differs “minimally” from the initial instance. The “certain consistent answer” is

obtained by query posed on each maximal consistent subsets of the database (there

might be an exponential number of such subsets). This approach is computationally

intractable in general. Even in the case queries can be answered efficiently, unique

repairs are not guaranteed, and it might lead to loss of information. As Fitting [30]

(page 10) puts it: “if we have inconsistent information about ducks, it is possible that

our information about decimals can still be trusted”. Intuitively, it seems plausible

that you might throw out too much information (the decimals along with the ducks)

in the repair approach. Therefore, there is a need for more investigation to handle

the problem in a more convenient way.

Based on Annotated Predicate Calculus of [53], Arenas et. al. [7] presented a

semantic framework for studying the problem of query answering in databases that are

inconsistent with integrity constraints. Later, [31] used rewriting for query answering

which is restricted to subclasses of conjunctive queries with existential quantifier in

presence of key constraints.

There is a need to resolve these problems, the four-valued logic, and its translation

is proposed this theses. The goal is to be able to (i) distinguish Unknown facts from

False facts, (ii) to store inconsistency in databases, (iii) deal with negation in queries

in most natural way.

In order to overcomer these difficulties this research implements the four valued

Belnap logic, on top of currently existing database management systems. Databases

and queries are decomposed from Four-valued into a pair of Two-valued, separately.

These leads to universal quantifier in negative part of queries and universal nulls in

9

decomposed databases. Cylindric algebra and star-cylinders are used and modified

to cope with universal quantifier, and universal null over an infinite database. Star-

cylinders provide a finite representation of an infinite database, which is a finite

databases compactly expressing an infinite database. Finally, result are composed

back into four-valued.

Figure 2: Methodology

Unknown facts and unknown values are discussed in the next section, where Bel-

nap’s four-valued relevance logic is explained.

1.4 Belnap’s Logic

In presence of incomplete and inconsistent tuples, the Boolean logic with only true and

false as truth values is not sufficient to express the database. In this spirit, we propose

to use Nuel Belnap’s four-valued relevance logic R [11] as foundation for negation in

10

databases. Belnap’s logic also is paraconsistent, meaning that “if we have inconsistent

information about ducks, it is possible that our information about decimals can still

be trusted” (see Fitting [30], page 10). Therefore it can cope with inconsistency in

the most natural way. Beside inconsistency in database, there is a possibility for

unknown facts. Unknown facts are those that there is no solid evidences for their

truth which makes them neither true nor false. Similarly, for the case of unknown

information, the four valued logic can express unknown facts.

As an interesting fact, within the Intuitionistic Logic the law of excluded middle

does not hold. Therefore, the statement (A ∨ ¬A) is not a tautology. These features

allow us to efficiently manage inconsistency, lack of information and incompleteness,

which is not in general possible in the repair-approach of [8] or in traditional data

exchange [40].

In the 1970’s Nuel Belnap [11] extended Kleene’s strong three-valued logic [54]

with a fourth truth-value “inconsistent.” Unlike the commonly known two-valued

logic, with only true and false as truth values, the four-valued logic has two more

truth values, namely, Unknown and Inconsistent. The unknown fact represents the

situation where there is no information about the given fact. The inconsistent truth

value declares that there are contradictory information about the same fact, that is

from some sources it is admitted to be true while other sources state that the fact

is false. This leads to inconsistency stemming from contradictory information from

different sources.

Furthermore, the four-valued logic provides the structure for implementation of

relevance logic. In the relevance logic, a constructive proof is required for a fact to be

true as well as being false. In contrast, in two-valued logic, under the Closed World

Assumption (CWA), which is widely used in databases, there is a need of reasoning

for a fact to be true, while lack of enough evidences to prove the fact makes it false.

In constructive logic, in presence of negation or disjunction, lack of proof for negative

facts is not sufficient to infer that the fact is false. Also, in case of dealing with

11

incomplete information, it becomes problematic, since current approaches become

computationally intractable.

In relevance logic true and false are not complementary. Since sources are inte-

grated independently, there are cases where contradictory information is aggregated

or there is no information. This makes the relevance logic a perfect suit for the Data

Exchange Problem. Therefore, there are statements, which are not true, nor false,

or in some cases, deduced to obtain both truth values. Thus, a need for extra truth

values is essential. This leads us to choose four-valued logic as an excellent nominee

for this approach.

In four-valued approach, the negative information can be explicitly specified within

the logic and stored in the negative part of the database. This makes the extra-

logical notion of closed worlds semantics unnecessary. In fact, a database is allowed

to have closed, partially closed or open relations. Therefore, we show in this research

that Belnap’s four-valued logic can be adapted to relational databases, and that it

allows for efficient treatment of not only incomplete information but also offers a new,

efficient approach to inconsistency management. This is in contrast to the hitherto

used inherently intractable repair-approach introduced by Arenas et al. [8].

1.4.1 Belnap’s Logic in literature

As mentioned above, the four-valued logic was defined by Nuel Belnap in 1977 [11].

It subsequently generated a lot of attention in the AI and Non-Monotonic Reasoning

communities, as a consequence of Matt Ginsberg’s generalization of Belnap’s four-

valued truth-space into so called Bilatticies [34]. Follow ups are too numerous to

survey here, but the work of Melvin Fitting (see e.g. [28, 29, 30]) offers a systematic

overview. The adaptation of Belnap’s logic to data exchange was described in [39],

where the notion of negative answer was defined. Negative answers was also the topic

of Libkin’s paper [56]. Guagliardo and Libkin [58, 42] have also made efforts to show

that SQL can be made consistent with Kleene’s three-valued logic, thereby providing

12

means to clean up the SQL NULL-mess. The four-valued logic offers in addition a

sound and efficient inconsistency management [17].

Part of this work was presented in [39] which proposes an intuitionistic data

exchange framework, in order to resolve this problem. The proposed framework

considers the positive and negative information as independent. In this framework, a

piece of data is considered to be true, if there is a constructive proof (based on existing

information) showing its truth, and is considered as false, if there is a constructive

proof (based on existing information) showing its falsity.

1.4.2 Implementation of Four Valued logic
Later, in chapter 4 we show that four-valued databases can be losslessly decomposed

into a positive and negative parts, and that any First Order (FO) query can be

decomposed as a pair of Positive1 First Order (FO+) queries evaluated on the de-

composed database. Decomposition is designed to take care of positive and negative

information independently. These later lead to positive and negative databases, be-

ing queried with positive and negative queries. The positive part of query returns

information which have a constructive proof to be true. The negative part of query

provides constructive proof of falsity of a fact. This is in contrast with complementing

the positive database to obtain negative part of database. Querying and storing the

negative information however requires the use of Universal Nulls, in addition to the

usual well-known existential nulls. The concept of universal null directs us to next

section, where we introduce it.

1.5 Universal Nulls
Recall that an existential null in a tuple in a relation represents an existentially

quantified variable in an atomic sentence. This corresponds to the intuition “value

exists, but is unknown.” A universal null, on the other hand, does not represent
1A positive FO-formula does not use negation, but universal quantification is allowed.

13

anything unknown, but stands for all values of the domain. In other words, a universal

null represents a universally quantified variable.

Universal nulls were first studied in the early days of database theory by Biskup

in [13]. This was a follow-up on his earlier paper on existential nulls [12]. The

problem with Biskup’s approach, as noted by himself, was that the semantics for

his algebra worked only for individual operators, not for compound expressions (i.e.

queries). This was remedied in the foundational paper [49] by Imielinski and Lipski,

as far as existential nulls were concerned. Universal nulls next came up in [50], where

Imielinski and Lipski showed that Codd’s Relational Algebra could be embedded in

CA, the Cylindric Set Algebra of Henkin, Monk, and Tarski [43, 44]. As a side remark,

Imielinski and Lipski suggested that the semantics of their ”∗” symbol could be seen

as modeling the universal null of Biskup. In this research we follow their suggestion2,

and fully develop a finitary representation mechanism for databases with universal

nulls, as well as an accompanying finitary algebra. We show that any FO (First Order

/ Domain Relational Calculus) query can be translated into an equivalent expression

in a finitary version of CA, and that such algebraic expressions can be evaluated

”naively” by the rules “∗ = ∗” and “∗ = a” for any constant “a.” Our finitary version

is called Star Cylindric Algebra (SCA) and operates on finite relations containing

constants and universal nulls “∗.” These relations are called Star-Cylinders and they

are finite representations of a subclass of the infinite cylinders of Henkin, Monk, and

Tarski.

Interestingly, the class of star-cylinders is closed under first order querying, mean-

ing that the infinite result of an FO-query on an infinite instance represented by a

finite sequence of finite star-cylinders can be represented by a finite star-cylinder.3

This is achieved by showing that the class of star-cylinders are closed under our star

cylindric algebra, and that SCA as a query language is equivalent in expressive power
2We note that Sundarmurthy et. al. [62] very recently have proposed a construct related to our

universal nulls, and studied ways on placing constraints on them.
3Consequently there is no need to require calculus queries to be “domain independent.”

14

with FO.

1.6 Application of Universal Nulls

In this section, we discuss the application of the universal nulls. We start the intro-

duction of it with the following example.

Example 2. Consider binary relations F (ollows) and H(obbies), where F (x, y) means

that user x follows user y on a social media site, and H(x, z) means that z is a hobby

of user x. Let the database be the following.

F

Alice Chris

∗ Alice

Bob ∗

Chris Bob

David Bob

H

Alice Movies

Alice Music

Bob Basketball

This is to be interpreted as expressing the facts that Alice follows Chris and Chris

and David follow Bob. Alice is a journalist who would like to give access to everyone

to articles she shares on the social media site. Therefore, everyone can follow Alice.

Bob is the site administrator, and is granted the access to all files anyone shares on

the site. Consequently, Bob follows everyone. “Everyone” in this context means all

current and possible future users. The query below, in domain relational calculus,

asks for the interests of people who are followed by everyone:

x4 . ∃x2∃x3∀x1(F (x1, x2) ∧H(x3, x4) ∧ (x2 ≈ x3)). (1)

The answer to our example query is {(Movies), (Music)}. Note that star-nulls also

can be part of an answer. For instance, the query x1, x2 . F (x1, x2) would return all

the tuples in F . ◂

15

Another area of applications of “*”-nulls relates to intuitionistic, or constructive

database logic. In the constructive four-valued approach of [39] and the three-valued

approach of [33, 57] the proposition A ∨ ¬A is not a tautology. In order for A ∨ ¬A

to be true, we need either a constructive proof of A or a constructive proof of ¬A.

Therefore both [39] and [57] assume that the database I has a theory of the negative

information, i.e. that I = (I+, I−), where I+ contains the positive information and I−

the negative information. The papers [39] and [57] then show how to transform an

FO-query ϕ(x̄) to a pair of queries (ϕ+(x̄), ϕ−(x̄)) such that ϕ+(x̄) returns the tuples

ā for which ϕ(ā) is true in (I+, I−), and ϕ−(x̄) returns the tuples ā for which ϕ(ā)

is true in (I−, I+) (i.e. ϕ(ā) is false in I). It turns out that databases containing

“*”-nulls are suitable for storing I−.

Example 3. Suppose that the instance in Example 2 represents I+, and that all

negative information we have deduced about the H(obbies) relation, is that we know

Alice doesn’t play Volleyball, that Bob only has Basketball as hobby, and that Chris

has no hobby at all. This negative information about the relation H is represented by

the table H− below. Note that H− is part of I−.

H−

Alice Volleyball

Bob ∗ (except Basketball)

Chris ∗

Suppose the query ϕ asks for people who have a hobby, that is ϕ = x1 .∃x2H(x1, x2).

Then ϕ+ = ϕ, and ϕ− = x1 .∀x2H(x1, x2). Evaluating ϕ+ on I+ returns {(Alice),

(Bob)}, and evaluating ϕ− on I− returns {(Chris)}. Note that there is no closed-

world assumption as the negative facts are explicit. Thus it is unknown whether

David has a hobby or not. ◂

16

1.6.1 Algebra for Universal Nulls

Our algebra is based on cylindric set algebra of Henkin, Monk, and Tarski [43, 44]

which —as an algebraization of first order logic— is an algebra on sets of valuations of

variables in an FO-formula. A valuation ν of variables {x1, x2, . . .} can be represented

as a tuple ν, where ν(i) = ν(xi). The set of all valuations can then be represented

by a relation C of such tuples. In particular, if the FO-formula only involves a finite

number n of variables, then the representing relation C has arity n. Note however that

C has an infinite number of tuples, since the domain of the variables (such as the users

of a social media site) should be assumed unbounded. The idea of using countably

infinite domain, called universe in logic, is inspired from the domain of Second

Order dependencies discussed in [26] by Fagin et al. Second Order dependencies

involve existentially quantified function symbols, and in order to prevent unnecessary

combinatorial traps a sufficiently large domain is needed. The same assumption is

also needed for existential nulls that we introduce later.

One of the basic connections between FO and cylindric set algebra is that, given

any interpretation I and FO-formula ϕ, the set of valuations ν under which ϕ is true

in I can be represented as such a relation C[43, 44]. Moreover, each logical connec-

tive and quantifier corresponds to an operator in the cylindric set algebra. Naturally

disjunction corresponds to union, conjunction to intersection, and negation to com-

plement. More interestingly, existential quantification on variable xi corresponds to

cylindrification ci on column i, where

ci(C) = {ν ∶ ν(i/a) ∈ C, for some a ∈ D},

and ν(i/a) denotes the valuation (tuple) ν′, where ν′(i) = a and ν′(j) = ν(j) for

i ≠ j. The algebraic counterpart of universal quantification can be derived from

17

cylindrification and complement, or be defined directly as inner cylindrification

c

i(C) = {ν ∶ ν(i/a) ∈ C, for all a ∈ D}.

In addition, in order to represent equality, the cylindric set algebra also contains

constant relations dij representing the equality xi ≈ xj. That is, dij is the set of all

valuations ν, such that ν(i) = ν(j).

The objects C and dij of [43, 44] are of course infinitary4. In this paper we

therefore develop a finitary representation mechanism, namely relations containing

universal nulls “∗” and certain equality literals. We denote these finitary constructs

Ċ and ḋij, respectively. These objects are called Star Tables when they represent

the records stored in the database. When used as run-time constructs in algebraic

query evaluation, they will be called Star-Cylinders. Example 2 showed star-tables

in a database. The run-time variable binding pattern of the query (1), as well as its

algebraic evaluation is shown in the star-cylinders in Example 4 below.

Example 4. Continuing Example 2, in that database the atoms F (x1, x2) and H(x3, x4)

of query (1) are represented by star-tables ĊF and ĊH , and the equality atom is rep-

resented by the star-diagonal ḋ23. Note that these are positional relations, the ”at-

tributes” x1, x2, x3, x4 are added for illustrative purposes only.

ĊF

x1 x2 x3 x4

Alice Chris ∗ ∗

∗ Alice ∗ ∗

Bob ∗ ∗ ∗

Chris Bob ∗ ∗

ĊH

x1 x2 x3 x4

∗ ∗ Alice Movies

∗ ∗ Alice Music

∗ ∗ Bob Basketball

4General Cylinders can also have infinitely many dimensions

18

ḋ23

x1 x2 x3 x4

∗ ∗ ∗ ∗ 2=3

The algebraic translation of query (1) is the expression

ċ2(ċ3(˙c1((ĊF ⩀ ĊH) ⩀ ḋ23))). (2)

The intersection of ĊF and ĊH is carried out as star-intersection ⩀, where for instance

{(a,∗,∗)} ⩀ {(∗, b,∗)} = {(a, b,∗)}. The final result will contains the following two

tuples,

ċ2(ċ3(˙c1((ĊF ⩀ ĊH) ⩀ ḋ23)))

x1 x2 x3 x4

∗ ∗ ∗ Movies

∗ ∗ ∗ Music

The system can now return the answer, i.e. the values of column 4 in cylinder

ċ2(ċ3(˙c1((ĊF ⩀ĊH)⩀ ḋ23))). Note that columns where all rows are “∗” do not actually

have to be materialized at any stage. Negation requires some additional details that

will be introduced in Section 3.3.3. ◂

1.7 Thesis Structure

The rest of this research thesis is organized as follows. The next chapter introduces

the notions used throughout the thesis. Chapter 3 describes FO-queries and cylin-

dric set algebra and in this chapter we show that the language of FO-queries and

CA-expressions have the same expressive power. This was of course only the starting

point of [43, 44], and we reprove it here for benefit of the reader. Next, we intro-

duce the Cylindric Star-tables and the Cylindric Star algebra. Finally, we conclude

19

this section showing the equivalence of our star cylindric algebras and cylindric set

algebras of Henkin, Monk and Tarski [43, 44]. It is followed by Chapter 4, which

demonstrates the concept of four valued intuitionistic databases and queries. In that

chapter we explains how databases are stored and queried with a decomposition and

composition procedure. Later, we show how this concept can be extended to the

Data Exchange Problem. In Chapter 5 the computational complexity is investigated

in details. Finally in the last chapter, future work and conclusion are discussed.

1.8 Contribution

This dissertation covers the results published by the author in [39, 36, 37, 38]. The

aim is to develop a clean and sound modeling of four-valued databases with universal

nulls, and furthermore show that the model can be seamlessly extended to incorpo-

rate the existential nulls of Imielinski and Lipski [49]. We show that FO and our SCA

are equivalent in expressive power when it comes to querying databases containing

universal nulls, and that SCA queries can be evaluated (semi) naively. The equiva-

lence is established in three steps: In Section 3.2 we show the equivalence between

FO and cylindric set algebra over infinitary databases. This was of course only the

starting point of [43, 44], and we recast the result here in terms of database theory.5

In Section 3.3 we introduce our finitary star cylindric algebra. Section 3.3.1 devel-

ops the machinery for the positive case, where there is no negation in the query or

database. This is then extended to include negation in Section 3.3.3. By these two

sections we show that certain infinitary cylinders can be finitely represented as star-

cylinders, and that our finitary star cylindric algebra on finite star-cylinders mirrors

the cylindric set algebra on the infinite cylinders they represent. In Section 3.4 we

tie these two results together, delivering the promised SCA evaluation of FO queries

on databases containing universal nulls. In Section 3.4.2 we seamlessly extend our
5Van Den Bussche [18] has recently referred to [43, 44] in similar terms.

20

framework to also handle existential nulls, and show that naive evaluation can still

be used for positive queries (allowing universal quantification, but not negation) on

databases containing both universal and existential nulls.

Later, in Section 4.2 we show how four-valued databases can be decomposed

into positive and negative two-valued instances. Similarly, we show that four-valued

queries have corresponding two-valued decomposed queries that can be used to eval-

uate positive and negative query answers. In Section 4.3 we add universal nulls

into four-valued database using Star-Tables. Furthermore, we show how to evaluate

queries in the presence of universal nulls in Section 4.4. In Section 4.5 and Section 4.6

we focus on implication in data exchange in order to show that how to evaluate tuple

generating dependencies in four-valued logic.

Chapter 5 then shows that all SCA expressions can be evaluated in time polyno-

mial in the size of the database when only universal nulls are present. We also show

that when both universal and existential nulls are present, the certain answer to any

negation-free (allowing inner cylindrification, i.e. universal quantification) SCA-query

can be evaluated naively in polynomial time. When negation is present it has long

been known that the problem is coNP-complete for databases containing existential

nulls. We show that the problem remains coNP-complete when universal nulls are al-

lowed in addition to the existential ones. For databases containing existential nulls it

has been known that database containment and view containment are coNP-complete

and Πp
2-complete, respectively. We also show that the addition of universal nulls does

not increase these complexities.

21

2 Preliminaries

There is a rich set of notations which have been used through this research. In

this chapter, we explain the mathematical notations which is going to be utilized in

this dissertation, in order to make this research more tangible and comprehensive

for readers. We will introduce the basic framework of Relational Databases, Query

Languages, the concepts of Data Exchange, Implication, and Incomplete Information

along with the Naive Evaluation of queries with Existential Nulls.

2.1 Relational Model

Throughout this thesis we assume a fixed schema R = {R1, . . . ,Rm,≈}, where each Rp,

p ∈ {1, . . . ,m}, is a relational symbol with an associated positive integer ar(Rp), called

the arity of Rp. The symbol ≈ represents equality relation. The equality relation is a

binary constant relation with equal values in the first and second positions.

2.1.1 Language

Our calculus is the standard domain relational calculus. Let {x1, x2, . . .} be a count-

ably in finite set of variables. We define the set of FO-formulas ϕ (over R) in the

usual way: Rp(xi1 , . . . , xiar(Rp)
) and xi ≈ xj are atomic formulas, and these are closed

under ∧,∨,¬,∃xi and ∀xi; in a well- formed manner possibly using parenthesis’s for

disambiguation. Let ϕ be an FO-formula. We denote by vars(ϕ) the set of variables

in ϕ, by f ree(ϕ) the set of free variables in ϕ, and by sub(ϕ) the set of subformulas

22

of ϕ (for formal definitions, see [1]). If ϕ has n variables we say that ϕ is an FOn-

formula. If an FOn-formula ϕ does not have any free variables, it is called a sentence.

In order to keep the notation manageable, we don’t allow constants in the calculus,

but that the extension to constants is straightforward. Also, we assume without loss

of generality that each variable occurs only once in the formula, except in equality

literals. Also, we assume that a formula with n variables uses variables x1, . . . , xn.

2.1.2 Instances

Let D = {a1, a2, . . .} be a countably infinite domain. An instance I (over R) is a

mapping that assigns a possibly infinite subset RI
p of Dar(Rp) to each relation symbol

Rp, and ≈I = {(a, a) ∶ a ∈ D}. 1 It will be convenient for our purposes to adopt

the algebraic approach [51] to the semantics of FO. When then identify a relation RI
p

with its characteristic function, i.e. as a mapping we have Rp(ā)I ∈ {true, false} for

each ā ∈ Dar(Rp). The mapping I is then extended to a homomorphism sending FO-

sentences into the usual two-valued Boolean Algebra ({true, false},∧,∨,¬, true, false),

by defining, recursively,

(ϕ ∧ ψ)I = ϕI ∧ ψI

(ϕ ∨ ψ)I = ϕI ∨ ψI

(¬ϕ)I = ¬(ϕI)

(∃xϕ(x))I = ∨a∈D ϕ(a)I

(∀xϕ(x))I = ∧a∈D ϕ(a)I

2.1.3 Queries and answers

Queries are expressed as FO-formulas, and answers in terms of the tuples of constants

substituting the free variables in the formula. We arrive at the following definition.
1Note that our instances are infinite model-theoretic ones. The set of tuples actually recorded in

the database will be called the stored database (to be defined in Chapter 3.4).

23

Definition 1. Let ϕ be an FOn-formula with f ree(ϕ) = {xi1 , . . . , xik}, k ≤ n. A valu-

ation ν is a mapping from f ree(ϕ) to D. Let I be an instance. The answer to ϕ on

I is defined as:

ϕI = {(ν(xi1), . . . , ν(xik)) ∶ ϕ(ν(xi1), . . . , ν(xik))I = true}

This is the standard definition of answers where we are only interested in the “true

answer” of the query. Later, in Section 4.1 we shall extend this notion to also include

false, inconsistent, and unknown answers.

Example 5. Let the database schema be R(E,≈), where E is a binary relation rep-

resenting edges in graph G = (V,E). Then the formula

ϕ(x1, x4) = ∃x2, x3 (E(x1, x2) ∧E(x3, x4) ∧ (x2 ≈ x3))

is an FO4-formula over Schema R(E,≈). Answers to ϕ are nodes of distance two in

graph G. Let I be an instance over schema R(E,≈) such that

EI = {(1,2), (2,3), (3,4)}

and

≈I= {(1,1), (2,2), . . .}

Let ν be a valuation such that ν(x1) = 1, ν(x2) = 2, ν(x3) = 2 and ν(x4) = 3. Then

EI(ν(x1), ν(x2)) = EI(1,2) = true. Similarly, EI(ν1(x3), ν(x4)) = EI(2,3) = true and

(x2 ≈ x3)I =≈I (2,2) = true as ν(x2) = ν(x3). Finally, we have

(ν(x1), ν(x4)) = (1,3) ∈ ϕI .

24

Conjunctive Queries and Unions of Conjunctive Queries

The class of Conjunctive Queries (CQ) is a is the class of queries where the expression

ϕ is of the form

ϕ(x̄) = ∃ȳ R1(x̄1) ∧R2(x̄2) ∧ . . . ∧Rm(x̄m),

where x̄ is a sequence of free variables in ϕ, and each x̄i’s are sequence of variables

formed from variables in x̄ȳ. The class of Unions of Conjunctive Queries (UCQ) is a

class of queries, defined as

ϕ(x̄) = {x̄ ∶ ϕ1(x̄) ∨ ϕ2(x̄) ∨ . . . ∨ ϕk(x̄)}

and each ϕi is a CQ query, as it is clear from its definition all ϕi’s are of the same arity.

A literal is an atom (equality atom) or its negation, that is Rp(x̄i), ¬Rp(x̄i), (xi ≈ xj),

or ¬(xi ≈ xj) (one can see that negation of equality atom represents inequality atom).

A CQ query with negation, is a CQ query built on literals in contrast to CQ queries

where just atoms (and equality atoms) are allowed. The class of CQ queries with

negation is denoted by CQ¬. Similarly, UCQ with negation is the class of Unions of

CQ¬ queries and denoted UCQ¬.

First Order Queries

By definition, an FO-query is a first order formula built from atomic FO-formulae.

When writing ϕ(x̄) it means that x̄ is exactly free variables in ϕ. If x̄ = ϵ, the

expression denotes a Boolean FO-query. We shall often for an atom Rp of arity k in

ϕ, for notational convenience write Rp(x̄) instead of Rp(xi1 , . . . , xik).

Example 6. Consider binary relation F (ollows) from Example 2, where F (x1, x2)

means that user x1 follows user x2 on a social media site. Let the database be the

following.

25

F

Alice Chris

∗ Alice

Bob ∗

Chris Bob

David Bob

Now, assume social media administrator decides to recommend users A and B to

follow each other. Conditions below are to be considered:

1. if users A and B are not following each other,

2. if both users A and B follow a person C,

3. if C is not followed by everyone (in order to prevent every possible pair of users

to be suggested,) and

4. exclude Bob as admin of network from suggestion rules.

Expression ϕ is an FO-query , looking for pair of users in the domain not currently

in F (ollow) (condition 1), who both are following a user (condition 2), whom is not

followed by everyone (condition 3). It will also exclude Bob from suggestion list, who

is following everyone as administrator (condition 4).

ϕ(x1, x2) =¬F (x1, x2) ∧ ¬(Bob ≈ x2) ∧ ∃x3, x4(F (x1, x3) ∧ F (x2, x4) ∧ (x3 ≈ x4)∧

¬(∀x5F (x5, x3)) ∧ ¬(∀x6F (x6, x4)))

then, ϕI = {(Chris,David)}.

26

2.1.4 Dependencies and Data Exchange

In various database application, dependencies are the sets of constraints to be satisfied

over the database schema. These constraints can be in form of primary-key, foreign-

key or functional dependencies, and can be represented by FO-logic. Dependencies

also can be utilized to transfer data stored under one database schema, called the

source schema to another database schema, called the target schema. The process

of mapping data from source to target schema is called data exchange and a set

of dependencies is considered as the schema mapping. A dependency is a logical

implication rule and is formulated as the sentence

∀x̄(ϕ→ ψ),

where x̄ consists of all variables in ϕ and the variables in ψ consists of some (or none)

of the variables in x̄ plus possibly some existentially quantified variables.

Example 7. Consider binary relation F (ollows) from Example 6. Let A(dmin) be

a unary relation, where A(x1) describes that x1 is an administrator in the social

medium. Then, the rule

∀x1(∀x2F (x1, x2) → A(x1))

is a tuple generating dependency (tgd), which can be used to populate the A(dmin)

relation. Now, let assume that the social medium is required to have only one admin-

istrator in the network. Thus, the rule

∀x1x2(A(x1) ∧A(x2) → (x1 ≈ x2))

is an equality generating dependency (egd) which ensures that there is only one user

taking the role of administration in the social medium.

27

In practice, φ(x̄) and ψ(x̄) are conjunction of atoms while bound variables in φ

are universally quantified and bound variables in ψ are existentially quantified. In

this thesis we will show that the more expressive classes of rules, with negation and

universal quantifier, can be tamed using intuitionistic logic.

2.2 Incomplete Information.

Incomplete information arises in relational databases, when a fact (tuple) has to be

inserted in a relation, and values for some required attributes (columns) are missing.

These missing values are known as Existential Nulls. Equivalently, an existential null

in a tuple in a relation R represents an existentially quantified variable in an atomic

sentence R(..). This corresponds to the intuition “value exists, but is unknown.”

For instance, recall from Section 1.3 in an employee database, that the source of

one employee might be missing, as might also the employee ID of another employee.

There are numerous reasons for such missing information, e.g. the insertion was done

through a view, or the incomplete tuple originated from another database that does

not record these fields.

It is easy to store missing or incomplete information, by simply using a set of

symbol, say �1,�2, . . ., different from ordinary values. As an illustration,now consider

the following employee database:

EmployeeID EmployeeName Source

�1 Bob S1

123 Josh S2

111 Alex �2

In the table above, Bob’s employee ID is unknown as is Alex’s source. The second

and third tuples have complete information in the first column. So far the picture is

quite uncomplicated. The difficulties arise when queries are applied to an incomplete

database.

28

Example 8. Suppose the relation is decomposed into R(EmployeeID,EmployeeName)

and S(EmployeeID,Source). Now, joining back R and S, at least the original rela-

tion should be recovered. However, it is not clear how to join the R-tuple (�1, Bob)

with the S-tuple (�2, S1). Nevertheless, whatever Bob’s employee ID is, the null-value

in the R-tuple must clearly be the same as the null-value in the S-tuple, as they both

represent Bob’s unknown employee ID. Therefore, the tuple (�1, Bob, S1) should cer-

tainly be in the result of the join. This example show why we need labeled (naive)

nulls.

Naive tables and Naive Evaluation

Let N = {�1,�2, . . .} be a countable infinite set of existential nulls. An instance I

where the relations are over D ∪ N, is in the literature variably called a naive table

[49, 33] or a generalized instance [27]. In either case, such an instance is taken to

represent an incomplete instance, i.e. a (possibly) infinite set of instances. In this

research we follow the model-theoretic approach of [27]. The elements in D represent

known objects, whereas elements in N represent generic objects. Each generic object

could turn out to be equal to one of the known objects, to another generic object, or

represent an object different from all other objects. We extend our notation to include

univ(I), the universe of instance I. So far we have assumed that univ(I) = D, but

in this section we allow instances whose universe is any set between D and D∪N. We

are lead to the following definitions.

Definition 2. Let h be a mapping on D ∪ N that is identity on D, and let I and J

be instances (over R), such that h(univ(I)) = univ(J). We say that h is a possible

world homomorphism from I to J , if h(RI
p) ⊆ RJ

p for all p, and h(≈I) = ≈J . This is

denoted I →h J .

Definition 3. Let I be an instance with D ⊆ univ(I) ⊆ D ∪ N. Then the set of

29

instances represented by I is

Rep(I) = {J ∶ ∃h s.t. I →h J}.

We can now formulate the (standard) notion of a certain answer to a query.2 By

FO+ below we mean the set of all FO-formulas not using negation.

Definition 4. Let I be an incomplete instance and ϕ an FO+-formula. The certain

answer to ϕ on I is

Cert(ϕ, I) = ⋂
J∈Rep(I)

ϕJ .

The naive evaluation of a query in a relational database, evaluates the query

on a naive table, with marked null values. In naive evaluation, query considers each

marked null value, different from any other constant in the instance, and also different

from any other null value with a different mark. So, a null value is only equal to itself.

Naive evaluation was used to drop the tuples which have null values from the answer,

but we will keep those tuples as well. Since, removing tuples with null from the final

answer will lose information in case of using nested queries (composition of queries),

we are interested in keeping the tuples with null values.

2Here we of course assume that valuations have range univ(J), and that other details are adjusted
accordingly.

30

3 Cylindric Set Algebra and Star

Cylindric Algebra

We start this chapter by the formal definition of cylindric set algebra in Section 3.1.

We follow this by showing the equivalence of cylindric set algebra and first order

logic in Section 3.2. Since cylinders can be infinite, we want a finite mechanism

to represent (at least some) infinite cylinders, and we want the mechanism to be

closed under queries. This mechanism is called the Star Cylindric Algebra and we

finish this section by showing that star cylindric algebra and cylindric set algebra are

equivalent. In Section 3.3 and Section 3.3.3, our representation mechanism comes in

two variations, depending on whether negation is allowed or not. We first consider

the positive (no negation) case. Section 3.4 is dedicated to describing how to store

Star-Cylinders in database and its query evaluation.

3.1 Cylindric Set Algebra

As noted in [50] the relational algebra is really a disguised version of the Cylindric Set

Algebra (CA) of Henkin, Monk, and Tarski [43, 44]. We shall therefore work directly

with the cylindric set algebra instead of Codd’s Relational Algebra. Apart from the

conceptual clarity, the cylindric set algebra will also allow us to smoothly introduce

the promised universal nulls.

Let n be a fixed positive integer. The basic building block of the cylindric set

31

algebra is an n-dimensional cylinder C ⊆ Dn. Note that a cylinder is essentially an

infinite n-ary relation. They will however be called cylinders, in order to distinguish

them from instances. The rows in a cylinder will represent run-time variable valua-

tions, whereas tuples in instances represent facts about the real world. We also have

special cylinders called diagonals, of the form

dij = {t ∈ Dn ∶ t(i) = t(j)},

representing the equality xi ≈ xj. We can now define the cylindric set algebra.

Definition 5. Let C and C ′ be infinite n-dimensional cylinders. The Cylindric Set

Algebra consists of the following operators.

1. Union: C ⋃ C ′. Set theoretic union.

2. Complement: C = Dn ∖C.

3. Outer cylindrification: ci(C) = {t ∈ Dn ∶ t(i/a) ∈ C, for some a ∈ D}.

The operation ci is called outer cylindrification on the i:th dimension, and will corre-

spond to existential quantification of variable xi.

32

Figure 3: Outer Cylindrification Operator

Figure 3 illustrates the geometric intuition behind the name Outer Cylindrifica-

tion, avid readers can see [43] for more information. Intersection is considered a

derived operator, and we also introduce the following derived operators:

4. Inner cylindrification: c

i(C) = ci(C), corresponding to universal quantification.

Note that

c

i(C) = {t ∈ Dn ∶ t(i/a) ∈ C, for all a ∈ D}.

33

Figure 4: Inner Cylindrification Operator

Figure 4 illustrates the geometric intuition behind the name Inner Cylindrifi-

cation.

5. Substitution: sji(C) = ci(dij ∩ C) if i ≠ j, and sii(C) = C.

6. Swapping: If i, j ≠ k, and C is a k-full cylinder1, then zij(C) = ski (sij(s
j
k(C)).

In other words, zij(C) interchanges the values of dimensions i and j. We also

define zi1,i2j1,j2
(C) = zi1j1(z

i2
j2
(C)), and recursively zi1,...,ikj1,...,jk

(C) = zi1j1(z
i2,...,ik
j2,...,jk

(C)).

We also need the notion of cylindric set algebra expressions. Here in Definition 6

the formal defintion of CA-expressions is given.
1Cylinder C is k-full if ck(C) = C. A cylinder with this property is called dimension comple-

mented in [43, 44]. In a k-full cylinder C the dimension k can be used to temporarily store the
content of another dimension. This allows the definition of the swapping operators in terms of the
substitution operators, which in turn are defined through intersection, diagonal, and outer cylindri-
fication. Following [43, 44] we therefore do not need to define swapping or substitution as primitives,
which would require corresponding renaming operators in the language for FO.

34

Definition 6. Let C = (C1, . . . ,Cm, dij)i,j ∈ {1,...,n} be a sequence of infinite n-dimensional

cylinders and diagonals. The set of CAn-expressions (over C) is obtained by closing

the atomic expressions Cp and dij under union, intersection, complement, and inner

and outer cylindrifications. Then E(C), the value of expression E on sequence C is

defined in the usual way, e.g. Cp(C) = Cp, dij(C) = dij, ci(E)(C) = ci(E(C)) etc.

Example 9. Let D = {a1, a2, . . .} be a countably infinite domain. Let C = (CG, dij)i,j ∈ {1,...,4}
be a sequence of infinite 4-dimensional cylinder and diagonals. Let CG(C) = CG×D×D

where, G is the graph in example 5. Let E be a CA4-expression of form

E = z4
2(c2,3(CG(C) ∩ z1,2

3,4(CG(C)) ∩ d23)).

Clearly, E expresses the same query as ϕ in example 5.

3.2 Cylindric Set Algebra and FO

Here in this section, we start with a fundamental requirement of this research which is

the pivot building block to show that the cylindric set algebra can be used to evaluate

the first order queries, when it comes to infinite domain. To reach this point, we show

that CA and FO have the same expressive power.

3.2.1 Equivalence of CA and FO

In the next two theorems we will restate, in the context of the relational model the

correspondence between domain relational calculus and cylindric set algebra as query

languages on instances [43, 44]. An expression E in cylindric set algebra of dimension

n will be called a CAn-expression. When translating an FOn-formula, to be used as a

query on an instance I over R, to an CAn-expression we first need to extend all k-ary

relations in I to n-ary by filling the n−k last columns in all possible ways. Formally,

this is expressed as follows:

35

Definition 7. The horizontal n-expansion of an infinite k-ary relation R is

hn(R) = R ×Dn−k.

The equality relation ≈I= {(a, a) ∶ a ∈ D} is expanded into diagonals dij for i, j ∈

{1 . . . , n}, where

dij = ⋃
(a,a)∈≈I

D
i−1 × {a} ×Dj−i−1 × {a} ×Dn−j,

and for an instance I = (RI
1, . . . ,R

I
m,≈I), we have

hn(I) = (hn(RI
1), . . . ,hn(RI

m), dij)i,j.

Once an instance is expanded it becomes a sequence C = (C1, . . . ,Cm, dij)i,j of n-

dimensional cylinders and diagonals, on which cylindric set algebra Expressions can

be applied. ◂

The main technical difficulty in the translation from FOn to CAn is the correlation

of the variables in the FOn-sentence ϕ with the columns in the expanded relations in

the instance. This can be achieved using the swapping operator zij. Every atom Rp

in ϕ will correspond to a CAn-expression Cp = hn(RI
p). However, for every occurrence

of an atom Rp(xi1 , . . . , xik) in ϕ we need to interchange the columns 1, . . . , k with

columns i1, . . . , ik. This is achieved by the expression z1,...,k
i1,...,ik

(Cp).

The entire FOn-formula ϕ with f ree(ϕ) = {xi1 , . . . , xik} will then correspond to

the CAn-expression Eϕ = zi1,...,ik1,...,k (Fϕ), where Fϕ is defined recursively as follows:

• If ϕ = Rp(xi1 , . . . , xik) where k = ar(Rp), then Fϕ = z1,...,k
i1,...,ik

(Cp).

• If ϕ = xi ≈ xj, then Fϕ = dij.

• If ϕ = ψ ∨ χ, then Fϕ = Fψ⋃Fχ, if ϕ = ψ ∧ χ, then Fϕ = Fψ⋂Fχ, and if ϕ = ¬ψ,

then Fϕ = Fψ.

• If ϕ = ∃xiψ, then Fϕ = ci(Fψ).

36

• If ϕ = ∀xiψ, then Fϕ = c

i(Fψ).

For an example, let us reformulate the FO4-query ϕ from (1) as

x4 . ∃x2∃x3∀x1 (R1(x1, x2) ∧R2(x3, x4) ∧ (x2 ≈ x3)). (3)

When translating ϕ the relation RI
1 is first expanded to C1 = RI

1 × D × D, and RI
2 is

expanded to C2 = RI
2×D×D. In order to correlate the variables in ϕ with the columns in

the expanded databases, we do the shifts z1,2
1,2(C1) and z1,2

3,4(C2). The equality (x2 ≈ x3)

was expanded to the diagonal d23 = {t ∈ Dn ∶ t(2) = t(3)} so here the variables are

already correlated. After this the conjunctions are replaced with intersections and

the quantifiers with cylindrifications. Finally, the column corresponding to the free

variable x4 in ϕ (whose bindings will constitute the answer) is shifted to column 1.

The final CAn-expression will then be evaluated against I as Eϕ(h4(I)) =

z4
1(c23(c

1(z1,2
1,2(RI

1 ×D2) ⋂ z1,2
3,4(RI

2 ×D2) ⋂ d23))). (4)

We now have Eϕ(h4(I)) = h4(ϕI).

Before we get to the proofs of the main two theorems in this section, we need

some technical prerequisites which we borrow directly from [43]. Next proposition

demonstrates the properties of the swapping operator in CA.

Proposition 1. [43]. Let C be an n-dimensional cylinder, and i, j ∈ {1, . . . , n}. Then

1. zij(C) = zji(C).

2. zij(z
j
i(C)) = C.

3. ci(zij(C)) = zij(cj(C)).

4. If i ≠ j then zij(C ∖C ′) = zij(C) ∖ zij(C ′).

5. If ci(C) = C and cj(C) = C then zij(C) = C.

37

We also need the following proposition before we start the main results.

Proposition 2. Let i, j, k be pairwise distinct positive integers, such that {i, j, k} ∩

{1,2,3} = ∅, and let C be an n-dimensional cylinder that is 2-full2 and k-full. Then

zi,k1,2(z
3,2,1
k,j,i (C)) = z1,2,3

1,j,2(C).

Proof 1.

zi,k1,2(z
3,2,1
k,j,i (C)) = zi,k,3,2,11,2,k,j,i(C) = zi,3,2,2,11,2,k,j,i(C) = zi,3,2,11,2,j,i(C) = zi,1,3,21,i,2,j(C) = zi,1,3,2i,1,2,j(C) = z1,3,2

1,2,j(C).

The second equality follows from Theorem 1.5.18 in [43], the third equality holds since

c2(C) = C and ck(C) = C, the fourth since {1, i}∩{2,3, j} = ∅. The last two equalities

follow from Theorem 1.5.17 and 1.5.13 in [43], respectively.

We are now ready for the main proofs. The following fundamental result follows

from [43, 44]. Here we restate these results and proof the main theorems with our

notation and semantics, in order to provide a complete resource in this dissertation

for readers.

Theorem 3. For all FOn-formulas ϕ, there is a CAn expression Eϕ, such that

Eϕ(hn(I)) = hn(ϕI),

for all instances I.

Proof 2. We prove the stronger claim: For all FOn-formulas ϕ, for all ψ ∈ sub(ϕ),

with f ree(ψ) = {xi1 , . . . , xik}, there is an CAn expression Eψ, such that

zi1,...,ik1,...,k (Eψ(hn(I))) = hn(ψI),

2Cylinder C is i-full if ci(C) = C.

38

for all instances I. The main claim follows since ϕ ∈ sub(ϕ), and the outermost

sequence of swappings can be considered part of the final expression Eϕ. In all cases

below we assume wlog3 that k < n so that the k + 1 : st column can be used in the

necessary swappings.

• ψ = Rp(xi1 , . . . , xik), where k = ar(Rp). We let Eψ = zk,...,1ik,...,i1
(Cp). We have

zi1,...,ik1,...,k (Eψ(hn(I))) =

zi1,...,ik1,...,k (z
k,...,1
ik,...,i1

(Cp(hn(I))) =

By Proposition 1 (2)

Cp(hn(I)) =

hn(RI
p) =

hn(ψI).

• ψ = xi ≈ xj. We assume wlog that n > 2 so that swaps can be performed. We let

Eψ = dij. We then have
3If k = n we can introduce an additional variable xn+1 and the conjunct ∃xn+1(xn+1 ≈ xn+1)

which would assure that the n + 1:st dimension is full. Alternatively, we could introduce swapping
as a primitive in the algebra. This however would require a corresponding renaming operator in the
FO-formulas, see [43].

39

zi,j1,2(Eψ(hn(I))) =

zi,j1,2(dij) =

zi,j1,2({t ∈ Dn ∶ t(i) = t(j)}) =

{t ∈ Dn ∶ t(1) = t(2)} =

{(a, a) ∶ a ∈ D} ×Dn−2 =

hn({(a, a) ∶ a ∈ D}) =

hn((xi ≈ xj)I) =

hn(ψI).

• ψ = ¬ ξ, with f ree(ξ) = {xi1 , . . . , xik}. We assume wlog that k < n. Then

Eψ = Eξ, and the inductive hypothesis is

zi1,...,ik1,...,k (Eξ(hn(I))) = hn(ξI)

We have

zi1,...,ik1,...,k (Eψ(hn(I))) =

zi1,...,ik1,...,k (Eξ(hn(I))) =

zi1,...,ik1,...,k (Dn ∖Eξ(hn(I))) =

By Proposition 1 (2)

40

zi1,...,ik1,...,k (Dn ∖ (z
k,...,1
ik,...,i1

(zi1,...,ik1,...,k (Eξ(hn(I)))))) =

zi1,...,ik1,...,k (Dn ∖ (z
k,...,1
ik,...,i1

(hn(ξI)))) =

By Proposition 1 (5)

zi1,...,ik1,...,k (z
k,...,1
ik,...,i1

(Dn) ∖ (zk,...,1ik,...,i1
(zn(ξI)))) =

By Proposition 1 (4)

zi1,...,ik1,...,k (z
k,...,1
ik,...,i1

(Dn ∖ hn(ξI)))) =

By Proposition 1 (2)

Dn ∖ hn(ξI) =

hn((¬ ξ)I) =

hn(ψI).

• ψ = ξ ∧ χ, with f ree(ψ) = {xi1 , . . . , xik}, f ree(ξ) = {xr1 , . . . , xrp}, f ree(χ) =

{xs1 , . . . , xsq}, f ree(ψ) = f ree(ξ) ∪ f ree(χ), and4 f ree(ξ) ∩ f ree(χ) = ∅. Now

Eψ = Eξ⋂Eχ. The inductive hypothesis is

zr1,...,rp

1,...,p (Eξ(hn(I))) = hn(ξI). =

zs1,...,sq

1,...,q (Eχ(hn(I))) = hn(χI).

We have

4The last assumption is needed in steps annotated by †

41

zi1,...,ik1,...,k (Eψ(hn(I)))z
i1,...,ik
1,...,k (Eξ⋂Eχ (hn(I))) =

zi1,...,ik1,...,k (Eξ(hn(I)) ⋂ Eχ(hn(I))) =

By Proposition 1 (2)

zi1,...,ik1,...,k (z
p,...,1
rp,...,r1(z

r1,...,rp

1,...,p (Eξ(hn(I)))) ⋂ zq,...,1sq ,...,s1(z
s1,...,sq

1,...,q (Eχ(hn(I))))) =

zi1,...,ik1,...,k (z
p,...,1
rp,...,r1(hn(ξI)) ⋂ zq,...,1sq ,...,s1(hn(χI))) =

zi1,...,ik1,...,k (

zp,...,1rp,...,r1(hn({ν(xr1), . . . , ν(xrp) ∶ I ⊧ν ξ})) ⋂

zq,...,1sq ,...,s1(hn({ν(xs1), . . . , ν(xsq) ∶ I ⊧ν χ}))

) = †

By Proposition 1 (5)

zi1,...,ik1,...,k (

z p+q,..., p+1, p,...,1
sq ,...,s1,rp,...,r1 (hn({ν(xrp), . . . , ν(xr1) ∶ I ⊧ν ξ})) ⋂

zq+p,...,q+1,q,...,1
rp,...,r1,sq ,...,s1 (hn({ν(xs1), . . . , ν(xsq) ∶ I ⊧ν χ}))

) = †

zi1,...,ik1,...,k (z
k,...,1
ik,...,i1

(hn({ν(xi1), . . . , ν(xik) ∶ I ⊧ν ξ ∧ χ}))) =

By Proposition 1 (2)

hn({ν(xi1), . . . , ν(xik) ∶ I ⊧ν ξ ∧ χ} =

hn((ξ ∧ χ)I) =

hn(ψI).

42

• ψ = ∃xijξ, with f ree(ξ) = {xi1 , . . . , xij , . . . , xik}. Let

{i′1, . . . , i′k−1} = {i1, . . . , ij, . . . , ik} ∖ {ij}

{r1, . . . , rn−k} = {1, . . . , n} ∖ {i1, . . . , ij, . . . , ik}

{r′1, . . . , r′n−k+1} = {r1, . . . , rn−k} ∪ {ij}

We assume wlog that k < n. Let Eψ = cij(Eξ). The inductive hypothesis is

zi1,...,ik1,...,k (Eξ(hn(I))) = hn(ξI).

We have

zi
′

1,...,i
′

k−1
1,...,k−1 (Eψ(hn(I))) =

zi
′

1,...,i
′

k−1
1,...,k−1 (cij(Eξ(hn(I)))) =

By Prop. 1 (3)

zi
′

1,...,i
′

k−1
1,...,k−1 (cij(z

k,...,1
ik,...,i1

(zi1,...,ik1,...,k (Eξ(hn(I)))))) =

zi
′

1,...,i
′

k−1
1,...,k−1 (cij(z

k,...,1
ik,...,i1

(hn(ξI)))) =

By Prop. 1 (3)

zi
′

1,...,i
′

k−1
1,...,k−1 (z

k,...,1
ik,...,i1

(cj(hn(ξI)))) =

zi1,...,ij−1,ij+1,...,ik
1,...,j−1,j,...,k−1 (z

k,...,j,j−1,...,1
ik,...,ij ,ij−1,...,i1

(cj(hn(ξI)))) =

zi1,...,ij−1
1,...,j−1 ○ zij+1,...,ik

j,...,k−1 (z
k,...,j+1,j
ik,...,ij+1,ij

○ (zj−1,...,1
ij−1,...,i1

cj(hn(ξI)))) =

By Prop. 2

z1,...,j−1,ij ,j,...,k−1
1,...,j−1,j,j+1,...,k (cj(hn(ξI))) =

By Prop. 1 (3)

cij(z
1,...,j−1,ij ,j,...,k−1
1,...,j−1,j,j+1,...,k (hn(ξI))) =

43

cij(z
1,...,j−1,ij ,j,...,k−1
1,...,j−1,j,j+1,...,k (hn({(ν(xi1), . . . , ν(xij), . . . , ν(xik)) ∶ I ⊧ν ξ}))) =

cij(z
1,...,j−1,ij ,j,...,k−1
1,...,j−1,j,j+1,...,k (

{(ν(xi1), . . . , ν(xij), . . . , ν(xik), ν(xr1), . . . , ν(xrn−k
)) ∶ I ⊧ν ξ})) =

cij({(ν(xi′1), . . . , ν(xi′k−1
), ν(xr′1), . . . , ν(xij), . . . , . . . , ν(xr′n−k+1

)) ∶ I ⊧ν ξ}) =

⋃a∈D{(ν(xi′1), . . . , ν(xi′k), ν(xr′1), . . . , ν(xij), . . . ν(xr′n−k+1
),) ∶ I ⊧ν

(ij/a)
ξ} =

{(ν(xi′1), . . . , ν(xi′k), ν(xr′1), . . . , ν(xij), . . . , ν(xr′n−k+1
)) ∶ I ⊧ν ∃xijξ} =

hn({(ν(xi′1), . . . , ν(xi′k−1
)) ∶ I ⊧ν ∃xijξ}) =

hn(ξI).

In order to complete the equivalence of CAn expressions and FOn formulas, we need

to show that, for every CAn expression there is an FOn formula which is equivalent

to it. The following theorem will take care of this case.

Theorem 4. For every CAn expression E there is an FOn formula ϕE, such that

ϕIE = E(hn(I)),

for all instances I.

Proof 3. We do a structural induction

44

• E = Cp. Then ϕE = Rp(x1, . . . , xk) ∧ ⩕r ∈ {k+1,...,n}(xr ≈ xr), where k = ar(Rp).

Clearly

ϕIE =

{(ν(x1), . . . , ν(xk), ν(xk+1), . . . , ν(xn)) ∶ I ⊧ν Rp(x1, . . . , xk)} =

RI
p ×Dn−k =

Cp(hn(I)) =

E(hn(I)).

• E = dij. Then ϕE = (xi ≈ xj) ∧ ⩕r ∈ {1,...,n}∖{i,j}(xr ≈ xr). We have

ϕIE =

{(ν(x1), . . . , ν(xi), . . . , ν(xj), . . . , ν(xn)) ∶ I ⊧ν (xi ≈ xj)} =

{t ∈ Dn ∶ t(i) = t(j)} =

dij =

E(hn(I)).

• E = F1 ⋂ F2. Then ϕE = ϕF1 ∧ ϕF2, and the inductive hypothesis is

ϕIF1
= F1(hn(I))

ϕIF2
= F2(hn(I))

Then,

45

ϕIE =

(ϕF1 ∧ ψF2)I =

{(ν(x1), . . . , ν(xn)) ∶ I ⊧ν ϕF1∧ ψF2} =

{(ν(x1), . . . , ν(xn)) ∶ I ⊧ν ϕF1} ∩

{(ν(x1), . . . , ν(xn)) ∶ I ⊧ν ξF2} =

ϕIF1
∩ ξIF2

=

F1(hn(I)) ⋂ F2(hn(I)) =

F1⋂ F2 (hn(I)) =

E(hn(I)).

• E = F , where Then ϕE = ¬ϕF , and the inductive hypothesis is ϕIF = F (hn(I)).

We have

ϕIE =

¬ϕIF =

ϕIF =

F (hn(I)) =

E(hn(I)).

• E = ci(F), Then ϕE = (∃xiϕF) ∧ (xi ≈ xi). The inductive hypothesis is ϕIF =

F (hn(I)).

We have

46

ϕIE =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xiϕF) ∧ (xi ≈ xi)} =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xiϕF)} ∩

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (xi ≈ xi)} =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xiϕF)} ∩ Dn =

{(ν(x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν (∃xiϕF)} =

⋃a∈D {(ν((x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν
(i/a)

ϕF} =

ci({(ν((x1), . . . , ν(xi), . . . , ν(xn)) ∶ I ⊧ν ϕF}) =

ci(ϕIF) =

ci(F (hn(I))) =

E (hn(I)).

47

In this section, we showed that CA and FO are equivalent. This result is use-

ful in theory however, working with infinite cylinders is not possible when it comes

to implementation in databases. This leads us toward the next section where, we

demonstrate a finite structure that can represent infinite cylinders and we develop an

algebra which is closed under this structure, called Star Cylindric Algebra denoted

SCA. Finally we show that CA and SCA are equivalent which leads to equivalence of

FO and SCA as a consequence.

3.3 Star Cylinders and Star Cylindric Algebra

First in this section we present Star-Cylinders and show that they express some

infinite cylinders in a finite manner. Next we define positive algebra over star-cylinders

which we call Positive Star Cylindric Algebra denoted SCA+. Finally we extend our

algebra to full algebra for star-cylinders which we simply call Star Cylindric Algebra

denoted SCA.

3.3.1 Star Cylinders

We define an n-dimensional (Positive) Star-Cylinder Ċ to be a finite set of n-ary

star-tuples, the latter being elements of (D ∪ {∗})n × ℘(Θn), where Θn denotes the

set of all equalities of the form i = j, with i, j ∈ {1, . . . , n}, as well as the logical

constant false. Also, ℘(.) denotes the powerset operation. Star-tuples will be denoted

ṫ, u̇, . . ., where a star-tuple such as ṫ = (a,∗, c,∗,∗,{(4 = 5)}), is meant to represent

the set of all “ordinary” tuples (a, x, c, y, y) where x, y ∈ D. It will be convenient to

assume that all our star-cylinders are in the following normal form.

Definition 8. An n-dimensional star-cylinder Ċ is said to be in normal form if

ṫ(n + 1) /⊧ false, and ṫ(n + 1) ⊧ (i = j) if and only if (i = j) ∈ ṫ(n + 1) and ṫ(i) = ṫ(j),

for all star-tuples ṫ ∈ Ċ and i, j ∈ {1, . . . , n}.

48

The symbol ⊧ above stands for standard logical implication. It is easily seen

that maintaining star-cylinders in normal form can be done efficiently in polynomial

time. We shall therefore assume without loss of generality that all star-cylinders and

star-tuples are in normal form. We next define the notion of dominance, where a

dominating star-tuple represents a superset of the ordinary tuples represented by the

dominated star-tuple. First we define a relation ⪯ ⊆ (D ∪ {∗})2 by a ⪯ a, ∗ ⪯ ∗, and

a ⪯ ∗, for all a ∈ D.

Definition 9. Let ṫ and u̇ be n-dimensional star-tuples. We say that u̇ dominates ṫ,

denoted ṫ ⪯ u̇, if ṫ(i) ⪯ u̇(i) for all i ∈ {1, . . . , n}, and u̇(n + 1) ⊆ ṫ(n + 1).

Definition 10. We extend the order ⪯ to include ”ordinary” n-ary tuples t ∈ Dn

by identifying (a1, . . . , an) with star-tuple (a1, . . . , an, θ), where θ contains (i = j) iff

ai = aj. Let Ċ be an n-dimensional star-cylinder. We can now define the meaning of

Ċ to be the set [[Ċ]] of all ordinary tuples it represents, where

[[Ċ]] = {t ∈ Dn ∶ t ⪯ u̇ for some u̇ ∈ Ċ}.

We lift the order to n-dimensional star-cylinders Ċ and Ḋ, by stipulating that Ċ ⪯ Ḋ,

if for all star-tuples ṫ ∈ Ċ there is a star-tuple u̇ ∈ Ḋ, such that ṫ ⪯ u̇.

Domination in star-cylinders is translatable to inclusion of ordinary cylinders. The

following lemma expresses this correspondence.

Lemma 1. Let Ċ and Ḋ be n-dimensional (positive) star-cylinders. Then

[[Ċ]] ⊆ [[Ḋ]] iff Ċ ⪯ Ḋ.

Proof 4. We first show that [[{ṫ}]] ⊆ [[Ḋ]] if and only if there is a star-tuple u̇ ∈ Ḋ,

such that ṫ ⪯ u̇.5 For a proof, we note that if ṫ ⪯ u̇ for some u̇ ∈ Ḋ, then [[{ṫ}]] ⊆ [[Ḋ]].
5Note here the normal form requirement ṫ(n+1) /⊧ false, since ṫ(n+1) ⊧ false means that [[{ṫ}]] = ∅,

while there is no star-tuple u̇ , such that ṫ ⪯ u̇ and u̇(n + 1) /⊧ false.

49

For the other direction, assume that [[{ṫ}]] ⊆ [[Ḋ]]. Let A ⊆ D be the finite set of

constants appearing in ṫ or Ḋ. Construct the tuple t ∈ (A ∪ {∗})n, where t(i) = ṫ(i)

if ṫ(i) ∈ A, and t(i) = ai if ṫ(i) = ∗. Here ai is a unique value in the set D ∖ A.

If ṫ(n + 1) contains an equality (i = j) we choose ai = aj. Then t ∈ [[{ṫ}]] ⊆ [[Ḋ]],

so there must be a tuple u̇ ∈ Ḋ, such that t ⪯ u̇. It remains to show that ṫ ⪯ u̇. If

t(i) = a for some a ∈ A, then ṫ(i) = a, and since t ⪯ u̇ it follows that ṫ(i) ⪯ u̇(i).

If t(i) = ai ∉ A then ṫ(i) = ∗, and therefore t(i/b) ∈ [[{ṫ}]] ⊆ [[Ḋ]], for any b in the

infinite set D∖A. Consequently it must be that u̇(i) = ∗, and thus ṫ(i) ⪯ u̇(i). This is

true for all i ∈ {1, . . . , n}. Finally, if (i = j) ∈ u̇(n + 1), we have two cases: If t(i) ∈ A

then ṫ(i) = ṫ(j), and if t(i) ∉ A then (i = j) ∈ ṫ(n + 1). In summary, we have shown

that ṫ ⪯ u̇.

We now return to the proof of the claim of the lemma. The if-direction follows

directly from definitions. For the only-if direction, assume that [[Ċ]] ⊆ [[Ḋ]]. To see

that Ċ ⪯ Ḋ let ṫ ∈ Ċ. Then [[{ṫ}]] ⊆ [[Ċ]] ⊆ [[Ḋ]]. We have just shown above that this

implies that there is a u̇ ∈ Ḋ such that ṫ ⪯ u̇, meaning that Ċ ⪯ Ḋ.

3.3.2 Positive Star Cylindric Algebra

Next we redefine the positive cylindric set algebra operators so that [[Ċ ○̇ Ḋ]] =

[[Ċ]] ○ [[Ḋ]] or ○([[Ḋ]]) = [[○̇(Ḋ)]], for each positive cylindric algebra operator ○, its

redefinition ○̇, and star-cylinders Ċ and Ḋ. We first define the meet ṫ⋏u̇ of star-tuples

ṫ and u̇ :

Definition 11. Let ṫ and u̇ be n-ary star-tuples. The n-ary star-tuple ṫ⋏u̇ is defined as

follows: If ṫ(j), u̇(j) ∈ D for some j and ṫ(j) ≠ u̇(j), then ṫ⋏u̇ (i) = ∗ for i ∈ {1, . . . , n},

50

and ṫ⋏u̇ (n + 1) = {false}.6 Otherwise, for i ∈ {1, . . . , n}

ṫ⋏u̇ (i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṫ(i) if ṫ(i) ∈ D

u̇(i) if u̇(i) ∈ D

∗ if ṫ(i) = u̇(i) = ∗

ṫ⋏u̇ (n + 1) = ṫ(n + 1) ∪ u̇(n + 1).

For an example, let ṫ = (a,∗,∗,∗,∗,{(3 = 4)}) and u̇ = (∗, b,∗,∗,∗,{(4 = 5)}).

Then we have ṫ ⋏ u̇ = (a, b,∗,∗,∗,{(3 = 4), (4 = 5), (3 = 5)}). Note that7 ṫ ⋏ u̇ ⪯ ṫ, and

ṫ ⋏ u̇ ⪯ u̇, and if for a star-tuple v̇, we have v̇ ⪯ ṫ and v̇ ⪯ u̇, then v̇ ⪯ ṫ⋏u̇.

Definition 12. The n-dimensional positive cylindric star-algebra consists of the fol-

lowing operators.

1. Star-diagonal: ḋij = {(
n

³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ∗, . . . ,∗, (i = j))}

2. Star-union: Ċ ⊍ Ḋ = {ṫ ∶ ṫ ∈ Ċ or ṫ ∈ Ḋ}

3. Star-intersection: Ċ ⩀ Ḋ = {ṫ ⋏ u̇ ∶ ṫ ∈ Ċ and u̇ ∈ Ḋ}

4. Outer cylindrification: Let i ∈ {1, . . . , n}, let Ċ be an n-dimensional star-

cylinder, and ṫ ∈ Ċ. Then

ċi(ṫ)(j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṫ(j) if j ≠ i

∗ if j = i

for j ∈ {1, . . . , n}, and

ċi(ṫ)(n + 1) = {(j = k) ∈ ṫ(n + 1) ∶ j, k ≠ i}.

We then let ċi(Ċ) = {ċi(ṫ) ∶ ṫ ∈ Ċ}.
6Here ∗ can be replaced by any arbitrary constant a in D, but for consistency we prefer to use ∗.
7Assuming the normal form requirement ṫ⋏u̇ (n + 1) /⊧ false.

51

5. Inner cylindrification: Let Ċ be an n-dimensional cylinder and i ∈ {1, . . . , n}.

Then

˙ci(Ċ) = {ṫ ∈ Ċ ∶ ṫ(i) = ∗, and (i = j) ∉ ṫ(n + 1) for any j}.

We illustrate the positive cylindric star-algebra with the following small example.

Example 10. Let Ċ1 = {(a,∗,∗,∗,∗,{(3 = 4)})}, Ċ2 = {(∗, b,∗,∗,∗,{(4 = 5)})}, and

Ċ3 = {(a, b,∗,∗,∗,{(4 = 5)})}. Consider the expression ˙c3((ċ1,4(Ċ1⩀ Ċ2))⊍ Ċ3). Then

we have the following.

Ċ1 ⩀ Ċ2 = {(a, b,∗,∗,∗,{(3 = 4), (4 = 5), (3 = 5)})}

ċ1,4(Ċ1 ⩀ Ċ2) = {(∗, b,∗,∗,∗,{(3 = 5)})}

(ċ1,4(Ċ1 ⩀ Ċ2)) ⊍C3 = {(∗, b,∗,∗,∗,{(3 = 5)}), (a, b,∗,∗,∗,{(4 = 5)})}

˙c3((c1,4(Ċ1 ⩀ Ċ2)) ⊍C3) = {(a, b,∗,∗,∗,{(4 = 5)})}

Next we show that the cylindric star-algebra has the promised property.

Theorem 5. Let Ċ and Ḋ be n-dimensional star-cylinders and ḋij an n-dimensional

star-diagonal. Then the following statements hold.

1. [[ḋij]] = dij.

2. [[Ċ ⊍ Ḋ]] = [[Ċ]] ⋃ [[Ḋ]].

3. [[Ċ ⩀ Ḋ]] = [[Ċ]] ⋂ [[Ḋ]].

4. [[ċi(Ċ)]] = ci([[Ċ]]),

5. [[˙ci(Ċ)]] = c

i([[Ċ]]),

52

Proof 5. 1. t ∈ [[ḋij]] iff t ⪯ (∗, . . . ,∗, (i = j)) iff t ∈ {t ∈ Dn ∶ t(i) = t(j)} iff

t ∈ dij.

2. t ∈ [[Ċ ⊍ Ḋ]] iff ∃u̇ ∈ Ċ ∶ t ⪯ u̇ or ∃v̇ ∈ Ḋ ∶ t ⪯ v̇ iff t ∈ [[Ċ]] or t ∈ [[Ḋ]] iff

t ∈ [[Ċ]] ⋃ [[Ḋ]].

3. Let t ∈ [[Ċ ⩀ Ḋ]]. Then there is a star-tuple ṫ ∈ Ċ ⩀ Ḋ such that t ⪯ ṫ, which

again means that there are star-tuples u̇ ∈ Ċ and v̇ ∈ Ḋ, such that ṫ = u̇ ⋏ v̇.

As a consequence t ⪯ u̇ and t ⪯ v̇, which implies t ∈ [[Ċ]] and t ∈ [[Ḋ]], that is,

t ∈ [[Ċ]] ⋂ [[Ḋ]]. The proof for the other direction is similar.

4. Let t ∈ [[ċi(Ċ)]]. Then there is a star-tuple ṫ ∈ ċi(Ċ) such that t ⪯ ṫ. This in

turn means that there is a star-tuple u̇ ∈ Ċ such that either u̇ = ṫ(i/a) for some

a ∈ D, or u̇(i) = ∗ and u̇ = ṫ, except possibly u̇(n + 1) ⊧ θ where θ is a set of

equalities involving column i, and ṫ(n + 1) does not have any conditions on i.

Case 1. u̇ = ṫ(i/a) for some a ∈ D. Then ṫ(i/a) ∈ Ċ which means that there is

a tuple u ∈ [[Ċ]] such that u ⪯ ṫ(i/a). Since [[Ċ]] ⊆ ci([[Ċ]]), it follows that

u ∈ ci([[Ċ]]). Suppose u ≠ t. Then u(j) ≠ t(j) for some j ∈ {1 . . . , n}.

If j = i, then t = u(j/t(j)) ∈ cj([[Ċ]]) = ci([[Ċ]]).

If j ≠ i and ṫ(j) = ∗ it means that u̇(j) = ∗, and thus t = u(j/t(j)) ∈ [[Ċ]], which

in turn entails that t ∈ ci([[Ċ]]). Otherwise, if ṫ(j) ≠ ∗, then ṫ(j) ∈ D, which

means that u̇(j) ∈ D, and u(j) = t(j) after all.

Case 2. u̇(i) = ∗ and (possibly) u̇(n + 1) contains a set of equalities say θ,

involving column i, and ṫ(n + 1) does not have any conditions on i.

Suppose first that t ⊧ θ. Then t ⪯ u̇, and consequently t ∈ [[Ċ]] ⊆ ci([[Ċ]]).

Suppose then that t /⊧ θ. If t violates an equality (i = j) ∈ θ it must be that

ṫ(j) = u̇(j) = ∗, and ṫ and u̇ have the same conditions on column j. Let u be a

tuple such that u ⪯ u̇. Then t(i/u(i)) ∈ [[Ċ]], and hence t ∈ ci([[Ċ]]).

53

For the other direction, let t ∈ ci([[Ċ]]). Then there is a tuple u ∈ [[Ċ]], such

that t(i/u(i)) = u. Hence there is a star-tuple u̇ ∈ Ċ, such that u ⪯ u̇ and

t(i/u(i)) ⪯ u̇. If t /⪯ u̇ it is because t(i) violates some condition in u̇(n + 1).

Since all conditions involving column i are deleted in ċi(Ċ), it follows that

ċi(Ċ) must contain a star-tuple v̇ obtained by outer cylindrification of u̇. Then

clearly t ⪯ v̇ and t ⊧ v̇(n + 1). Consequently t ∈ [[ċi(Ċ)]].

5. Let t ∈ [[˙ci(Ċ)]]. Then there is a star-tuple ṫ ∈ ˙ci(Ċ), such that t ⪯ ṫ. Clearly,

ṫ ∈ ˙ci(Ċ) means that ṫ ∈ Ċ where by definition ṫ(i) = ∗, and (i = j) ∉ ṫ(n +

1) for any j. As a consequence t(i/a) ⪯ ṫ for all a ∈ D. This implies that

t(i/a) ∈ [[Ċ]] for all a ∈ D, and thus t ∈ c

i([[Ċ]]).

For the other direction, let t ∈ c

i([[Ċ]]) ⊆ [[Ċ]]. This means that t(i/a) ∈ [[Ċ]] for

all a ∈ D. That is, there exists a star-tuple ṫ ∈ Ċ, such that t ⪯ ṫ. Also, t(i/a) ⪯ ṫ

for all a ∈ D, since there otherwise has to be an infinite number of star-tuples

in in the finite star-cylinder Ċ. Thus it must be that ṫ(i) = ∗, and (i = j) ∉

ṫ(n + 1) for any j. Consequently, ṫ ∈ ˙ci(Ċ) and t ∈ [[˙ci(Ċ)]].In order to show the equivalence of positive star cylindric algebra and positive

cylindric set algebra we need the concept of algebra expressions.

Definition 13. Let Ċ = (Ċ1, . . . , Ċm, ḋij)i,j be a sequence of n-dimensional star-

cylinders and star-diagonals. We define the set of Positive Star Cylindric Algebra Ex-

pressions SCA+
n and values of expressions as in Definition 6, noting that Ċp(Ċ) = Ċp,

and ḋij(Ċ) = ḋij.

In the following CA+
n denotes the set of all n-dimensional positive cylindric algebra

expressions. We now have from Theorem 5

Corollary 1. For every SCA+
n-expression Ė and the corresponding CA+

n expression

E, it holds that
[[Ė(Ċ)]] = E([[Ċ]])

for every sequence of n-dimensional star-cylinders and star-diagonals Ċ.

54

3.3.3 Adding Negation

From here on we also allow conditions of the form (i ≠ j), (i ≠ a), for a ∈ D in star-

cylinders, which then will be called extended star-cylinders. Conditions of the form

(i = j), (i ≠ j) or (i ≠ a) will be called literals8, usually denoted ℓ. In other words,

in an extended n-dimensional star-cylinder each (extended) star-tuple ṫ has a (finite)

set of literals in position n + 1.

Example 11. In Example 17 we were interested in the negative information as well

as positive information. The instance from Example 17 can be formally represented

as the extended star-cylinder below.

H−

Alice Volleyball {true}

Bob ∗ {(2 ≠ Basketball)}

Chris ∗ {true}

We next extend Definitions 8, 9, 10, 11, and 12 to apply to extended star-cylinders.

Lemma 1 will be replaced by Lemma 3.

Definition 14. (Replaces Definition 8). An extended n-dimensional star-cylinder

Ċ is said to be in normal form, if ṫ(n + 1) /⊧ false, and ṫ(n + 1) ⊧ ℓ if and only if

ℓ ∈ ṫ(n + 1), and

1. (i = j) ∈ ṫ(n + 1) if and only if t(i) = t(j),

2. (i ≠ j) ∈ ṫ(n+1) if and only if t(i) ≠ t(j), or (i ≠ j) ∈ ṫ(n+1) and t(i) = t(j) = ∗,

3. (i ≠ a) ∈ ṫ(n + 1) entails t(i) ≠ a,

for all star-tuples ṫ ∈ Ċ and i, j ∈ {1, . . . , n}.
8false is also a literal

55

In the proof of Theorem 18 in Section 6 we show that maintaining extended star-

cylinders in normal form can be done in polynomial time. We therefore assume in

the sequel that all extended star-cylinders and -tuples are in normal form. Keeping

the extended notion of normal form in mind, it is easy to see that Definition 9 of

dominance ṫ ⪯ u̇ suits extended star-tuples ṫ and u̇ as well. Definition 10 remains

unchanged, provided we identify an ”ordinary” tuple (a1, . . . , an) with the extended

star-tuple (a1, . . . , an, θ), where (i = j) ∈ θ iff ai = aj and (i ≠ j) ∈ θ iff ai ≠ aj. Defi-

nition 11 also applies as such to extended star-tuples. For the outer cylindrification

in Definition 12 we now stipulate that ċi(ṫ)(n+ 1) contains all and only those literals

from ṫ(n + 1) that do not involve dimension i. It is an easy exercise to verify that

the proofs of parts 1 – 4 of Theorem 5 remain valid in the presence of literals. Fi-

nally, inner cylindrification will be redefined below, along with the definition of the

complement operator. Before that we introduce the notion of a sieve-cylinder.

Definition 15. Let Ċ be a sequence of n-dimensional extended star-cylinders and

A ⊆ D be the set of constants appearing therein. For t ∈ (A ∪ {∗})n, define the sets

St = {i ∶ t(i) = ∗} and SSt = {(i, j) ∶ t(i) = t(j) = ∗}. For each tuple t ∈ (A∪{∗})n and

each subset SS′t of SSt, form the star-tuple ṫ with ṫ(i) = t(i) for i ∈ {1, . . . , n}, and

ṫ(n + 1) =

⋃
i∈St

{(i ≠ a) ∶ a ∈ A} ⋃
(i,j) ∈SS′t

{(i = j)} ⋃
(i,j) ∈SSt∖SS′t

{(i ≠ j)}.

Ȧ is the extended star-cylinder of all such star-tuples ṫ, and is called the sieve of Ċ.

The sieve Ȧ has some useful properties stated in the next two lemmas. These

properties allow us to test containmnent [[Ċ]] ⊆ [[Ḋ]] and to define negation and

inner cylindrification on a tuple-by-tuple basis using the partial order ⪯.

Lemma 2. Let Ċ be an n-dimensional star-cylinder and Ȧ = {ṫ1, . . . , ṫm} its sieve.

Then
1. [[Ȧ]] = Dn and {[[{ṫ1}]], . . . , [[{ṫm}]]} is a partition of [[Ȧ]].
2. If ṫ ⋏ u̇ ∈ Ċ ⩀ Ȧ and ṫ ⋏ u̇ ≠ ṫ∅, then ṫ ⋏ u̇ = u̇.

56

Proof 6. To see that [[Ȧ]] = Dn, let t be an arbitrary tuple in Dn. By construction,

there are star-tuples ṫ ∈ Ȧ such that ṫ(i) = t(i) if t(i) ∈ A, and ṫ(i) = ∗ if t(i) ∈ D ∖A.

Since there is the subset SS′t = {(i, j) ∶ t(i) = t(j), and t(i) ∈ D ∖A} we see that for

one of these ṫ-tuples it holds that t ⪯ ṫ. The fact that [[{ṫi}]] ∩ [[{ṫj}]] = ∅ whenever

i ≠ j follows from the fact that if there were a tuple t in the intersection, it would

have to agree with ṫi and ṫj on all columns with values in A. But the SS′t set used for

ṫi would be different than the one used for ṫj, which means that we cannot have both

t ⪯ ṫi and t ⪯ ṫj.

For part 2, let ṫ⋏ u̇ ∈ Ċ ⩀ Ȧ and ṫ⋏ u̇ ≠ ṫ∅. We claim that u̇ ⪯ ṫ, which would imply

ṫ ⋏ u̇ = u̇. Since ṫ ⋏ u̇ ≠ ṫ∅ there is a tuple t ∈ [[{ṫ ⋏ u̇}]]. For each i ∈ {1, . . . , n},

consider u̇(i). If u̇(i) = a ∈ A, then t(i) = a, which means that ṫ(i) = a or ṫ(i) = ∗.

Consequently u̇(i) ⪯ ṫ(i). If u̇(i) = ∗ then t(i) ∈ D ∖ A, since (i ≠ a) ∈ u̇(n + 1) for

all a ∈ D ∖A. Since t(i) ⪯ ṫ(i), and ṫ(i) ∈ A ∪ {∗}, it follows that ṫ(i) = ∗. Then let

(i = j) ∈ ṫ(n+ 1). Since ṫ⋏ u̇ (n+ 1) is satisfiable, and u̇(n+ 1) contains either (i = j)

or (i ≠ j), it follows that (i = j) ∈ u̇(n + 1). We have now shown that u̇ ⪯ ṫ.

Lemma 3. Let Ċ and Ḋ be n-dimensional extended star-cylinders and Ȧ their (com-

mon) sieve. Then

[[Ċ]] ⊆ [[Ḋ]] iff Ċ ⩀ Ȧ ⪯ Ḋ ⩀ Ȧ.

Proof 7. For the if-direction, let t ∈ [[Ċ]] = [[Ċ ⩀ Ȧ]]. Then there is a star-tuple

ṫ ∈ Ċ ⩀ Ȧ, such that t ⪯ ṫ. Since Ċ ⩀ Ȧ ⪯ Ḋ ⩀ Ȧ there is a star tuple u̇ ∈ Ḋ ⩀ Ȧ such

that ṫ ⪯ u̇. Thus t ∈ [[Ḋ ⩀ Ȧ]] = [[Ḋ]].

For the only-if direction, let ṫ1 ⋏ u̇1 ∈ Ċ ⩀ Ȧ, and t ⪯ ṫ1 and t ⪯ u̇1. Then t ∈ [[Ċ]] ⊆

[[Ḋ]] = [[Ḋ ⩀ Ȧ]], so there are star-tuples ṫ2 ∈ Ḋ and u̇2 ∈ Ȧ such that t ⪯ ṫ2 and

t ⪯ u̇2. From Lemma 2 it follows that u̇1 = u̇2, and thus ṫ1 ⋏ u̇1 = u̇1 = u̇2 = ṫ2 ⋏ u̇2.

Consequently ṫ1 ⋏ u̇1 ⪯ ṫ2 ⋏ u̇2.

We can now define the desired operations.

57

Definition 16. Let Ȧ be the sieve of Ċ and Ċ be an extended star-cylinder in Ċ.

Then

1. ¬̇ Ċ = {ṫ ∈ Ȧ ∶ {ṫ} ⩀ Ċ = {ṫ∅}}. and

2. ˆc

i(Ċ) = {ṫ ∈ Ċ ⩀ Ȧ ∶ (ċi({ṫ}) ⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ)}.

Example 12. Let Ċ = {(a,∗,{})}. Then Ȧ is shown in the extended star-cylinder

below, and ¬̇ Ċ consists of the first, second, and fourth tuples of Ȧ.

Ȧ

∗ ∗ {(1 ≠ a), (2 ≠ a), (1 = 2)}

∗ ∗ {(1 ≠ a), (2 ≠ a), (1 ≠ 2)}

a ∗ {(2 ≠ a)}

∗ a {(1 ≠ a)}

a a {}

Now, let Ċ = {(a,∗,{(2 ≠ a)}), (a, a,{})}. Then Ȧ is as above, and ˆc

2(Ċ) = Ċ as the

reader easily can verify.

We can now verify that the new operators work as expected.

Theorem 6. Let Ċ be an extended star-cylinder. Then

1. [[¬̇ Ċ]] = [[Ċ]]

2. [[ˆc

i(Ċ)]] = c

i([[Ċ]]).

Proof 8. For part 1, it is easy to see that [[¬̇ Ċ]] ∩ [[Ċ]] = ∅ which implies [[¬̇ Ċ]] ⊆

[[Ċ]]. For a proof of the other direction of part 1, for each tuple t ∈ [[Ċ]], we construct

the star-tuple ṫ, where ṫ(i) = t(i) if t(i) ∈ A, and ṫ(i) = ∗ if t(i) /∈ A. We then choose

a subset SS′t of SSt where (i, j) ∈ SS+ if and only if t(i) = t(j). We insert in ṫ(n+ 1)

the condition (i = j) for each (i, j) ∈ SS′t, and (i ≠ j) for each (i, j) ∈ SSt ∖ SS′t,

Then clearly t ∈ [[{ṫ}]] and ṫ ∈ Ȧ. It remains to show that ṫ ∈ ¬̇ Ċ. Towards a

58

contradiction, suppose that there is a star-tuple u̇ ∈ Ċ such that ṫ ⋏ u̇ ≠ ṫ∅. In other

words, ṫ(n + 1) ∪ u̇(n + 1) is satisfiable. Thus, whenever ṫ(i) ∈ D, we must have

u̇(i) = ṫ(i) = t(i) ∈ A. Furthermore, for each (i, j) ∈ SSt there is a literal involving i

and j in ṫ(n + 1). Therefore u̇(n + 1) can consist of only a subset of these literals. It

follows that t ⪯ ṫ ⪯ u̇ ∈ Ċ, meaning that t ∈ [[Ċ]], contradicting our initial assumption.

For part 2 of the theorem, let t ∈ [[ˆc

i(Ċ)]]. Then t ∈ [[{ṫ ∈ Ȧ ∶ (ċi({ṫ}) ⩀ Ȧ) ⪯

(Ċ ⩀ Ȧ)}]]. Therefore there is a star tuple ṫ ∈ Ȧ such that, t ⪯ ṫ and (ċi({ṫ}) ⩀ Ȧ) ⪯

(Ċ ⩀ Ȧ). Lemma 3 then gives us [[ċi({ṫ})]] ⊆ [[Ċ]], and Theorem 5, part 4 (which

still holds for extended star-cylinders) tell us that [[ċi({ṫ})]] = ci([[{ṫ}]]) which

implies [[ċi({ṫ})]] ⊆ [[Ċ]]. By the definition of inner cylindrification in CA, the last

containment implies that [[{ṫ}]] ⊆ c

i([[Ċ]]). Consequently t ∈ c

i([[Ċ]]).

For the other direction, let t ∈ c

i([[Ċ]]), which implies ci({t}) ⊆ [[Ċ]]. Then

there is a star-tuple ṫ ∈ Ċ ⩀ Ȧ, such that ci({t}) ⊆ ci([[{ṫ}]]) ⊆ [[Ċ]]. Consequently,

[[ċi(ṫ)]] ⊆ [[Ċ]], which by Lemma 3 proves that (ċi({ṫ}) ⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ). Moreover,

the first part of Lemma 3 implies that t ∈ [[{ṫ ∈ Ȧ ∶ (ċi({ṫ}) ⩀ Ȧ) ⪯ (Ċ ⩀ Ȧ)}]].

3.3.4 Equivalenvce of CA and SCA

Now, we can conclude our main result in this section. Here, we will prove that SCA

and CA are equivalent and this implies that SCA, CA and FO are equivalent.

Corollary 2. For every corresponding pair of SCAn-expression Ė and CAn-expression E,

it holds that

[[Ė(Ċ)]] = E([[Ċ]])

for every sequence of n-dimensional extended star-cylinders and star-diagonals Ċ.

Proof 9. This is a direct consequence of Theorem 5 and Theorem 6.

59

3.4 Stored Databases and Query Evaluation

We now show how to use the cylindric star-algebra to evaluate FO-queries on stored

databases containing universal nulls.

3.4.1 Universal Nulls (u-databases)

Let k be a positive integer. Then a k-ary star-relation Ṙ is a finite set of star-tuples

of arity k. In other words, a k-ary star-relation is a star-cylinder of dimension k. A

sequence Ṙ of star-relations (over schema R) is called a stored database. Examples

2 and 11 show stored databases. Everything that is defined for star-cylinders applies

to k-ary star-relations. The exception is that no operators from the cylindric star-

algebra are applied to star-relations. To do that, we first need to expand the stored

database Ṙ.

Definition 17. Let ṫ be a k-ary star-tuple, and n ≥ k. Then ḣn(ṫ), the n-expansion

of ṫ, is the n-ary star-tuple u̇, where

u̇(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṫ(i) if i ∈ {1, . . . , k}

∗ if i ∈ {k + 1, . . . , n}

ṫ(k + 1) if i = n + 1,

For a stored relation Ṙ and stored database Ṙ we have

ḣn(Ṙ) = {ḣn(ṫ) ∶ ṫ ∈ Ṙ}

ḣn(Ṙ) = (ḣn(Ṙ1), . . . , ḣn(Ṙm), ḋij)i,j.

In other words, ḣn(Ṙ) is the sequence of star-cylinders obtained by moving the

conditions in column k + 1 to column n+ 1, and filling columns k + 1, . . . , n with ”*”’s

in each k-ary relation. Examples 2 and 4 illustrate the expansion of star-relations.

60

On the other hand, a k-ary star-relation Ṙ can also be viewed as a finite repre-

sentative of the infinite relation [[Ṙ]] = {t ∈ Dk ∶ t ⪯ ṫ for some ṫ ∈ Ṙ}, and the stored

database Ṙ a finite representative of the infinite instance I(Ṙ), as in the following

definition.

Definition 18. Let Ṙ = (Ṙ1, . . . , Ṙm) be a stored database. Then the instance defined

by Ṙ is
I(Ṙ) = ([[Ṙ1]], . . . , [[Ṙm]],{(a, a) ∶ a ∈ D}).

The instance and expansion of Ṙ are related as follows.

Lemma 4. [[ḣn(Ṙ)]] = hn(I(Ṙ)).

Proof 10. Follows directly from the definitions of hn, ḣn and [[]].

We are now ready for our main result.

Theorem 7. For every FOn-formula ϕ there is an (extended) SCAn expression Ėϕ,

such that for every stored database Ṙ

hn(ϕI(Ṙ)) = [[Ėϕ(ḣn(Ṙ))]].

Proof 11. hn(ϕI(Ṙ)) = Eϕ(hn(I(Ṙ)) = Eϕ([[ḣn(Ṙ)]]) = [[Ėϕ(ḣn(Ṙ))]].

The first equality follows from Theorem 3, the second from Lemma 4, and the third

from Corollaries 1 and 2.

Figure 5 Shows the result of Theorems 3, 4, 5 and 6. Clearly, Theorem 7 is the

consequence of these theorems.

Figure 5: Commutative Diagram of FO, CA and SCA

61

3.4.2 Adding Existential Nulls

In this thesis we follow the model-theoretic approach of [27]. The elements in D

represent known objects, whereas elements in N represent generic objects. Each

generic object could turn out to be equal to one of the known objects, to another

generic object, or represent an object different from all other objects. We extend our

notation to include univ(I), the universe of instance I. So far we have assumed that

univ(I) = D, but in this section we allow instances whose universe is any set between

D and D ∪N. We are lead to the following definitions.

Definition 19. Let h be a mapping on D ∪N that is identity on D, and let I and J

be instances (over R), such that h(univ(I)) = univ(J). We say that h is a possible

world homomorphism from I to J , if h(RI
p) ⊆ RJ

p for all p, and h(≈I) = ≈J . This is

denoted I →h J .

Definition 20. Let I be an instance with D ⊆ univ(I) ⊆ D ∪ N. Then the set of

instances represented by I is

Rep(I) = {J ∶ ∃h s.t. I →h J}.

We can now formulate the (standard) notion of a certain answer to a query.9 By

FO+ below we mean the set of all FO-formulas not using negation.

Definition 21. Let I be an incomplete instance and ϕ an FO+-formula. The certain

answer to ϕ on I is

Cert(ϕ, I) = ⋂
J∈Rep(I)

ϕJ .

We now extend positive n-dimensional cylinders to be subsets of (D ∪ N)n, and

use the notation univ(C) and univ(C) with the obvious meanings. This also applies

to the notation C →h D, and Rep(C). Cylinders C with D ⊆ univ(C) ⊆ D ∪ N will
9Here we of course assume that valuations have range univ(J), and that other details are adjusted

accordingly.

62

be called naive cylinders. The operators of the positive cylindric set algebra CA+

remain the same, except D is substituted with univ(C) or univ(C), i.e. we use naive

evaluation. For instance, the outer cylindrification now becomes

ci(C) = {t ∈ univ(C)n ∶ t(i/x) ∈ C, for some x ∈ univ(C)}.

The crucial property of the positive cylindric set algebra is the following.

Theorem 8. Let E be an expression in CA+
n, and C and D sequences of n-dimensional

naive cylinders and diagonals. If C→h D for some possible world homomorphism h,

then E(C) →h E(D).

Proof 12. Suppose C →h D. We show by induction on the structure of E that

E(C) →h E(D).

• For E = Ci and E = dij the claim follows directly from the definition of a possible

world homomorphism.

• Let t ∈ h(F ⋃G (C)) = h(F (C) ∪ G(C)) = h(F (C)) ∪ h(G(C)). Then

there is a tuple s in F (C) or in G(C) such that t = h(s). If s is in, say,

F (C), then, since F (C) →h F (D) and F (D) ⊆ F ⋃G (D), it follows that

t = h(s) ∈ F ⋃G (D).

• Let t ∈ h(F ⋂G (C)) = h(F (C) ∩ G(C)). Then there is a tuple s in F (C) and

a tuple s′ in G(C) such that t = h(s) = h(s′). Thus h(s) ∈ h(F (C)) ⊆ F (D),

and h(s′) ∈ h(G(C)) ⊆ G(D). Consequently t = h(s) = h(s′) ∈ F (D) ∩ G(D) =

F ⋂G (D).

• Let t ∈ h(ci(F (C))). Then there is an s ∈ ci(F (C)), such that t = h(s). Further-

more, s(i/x) ∈ F (C) for some x ∈ univ(C). Then h(s(i/x)) = h(s)(i/h(x)) ∈

h(F (C)), for h(x) ∈ h(univ(C)) = univ(D), This means that t = h(s) ∈

ci(F (D)).

63

• Let t ∈ h(c

i(F (C))). Then there is an s ∈ c

i(F (C)), such that t = h(s). Fur-

thermore, s(i/x) ∈ F (C) for all x ∈ univ(C). Then h(s(i/x)) = h(s)(i/h(x)) =

t(i/h(x)) ∈ h(F (C)) for all x ∈ univ(C). In other words, t(i/y) ∈ h(F (C)) ⊆

F (D) for all y ∈ h(univ(C)) = univ(D). Thus t ∈ c

i(F (D))

Also, for an n-dimensional naive cylinder C, we denote the subset C ∩Dn by C↓.

We now have our main ”naive evaluation” theorem.

Theorem 9. Let C be a sequence of n-dimensional naive cylinders and diagonals,

and let E be an expression in CA+
n. Then

E(C)↓ = ⋂
D ∈Rep(C)

E(D).

Proof 13. Let t ∈ E(C)↓ ⊆ E(C), and D ∈ Rep(C). Since C→h D for some possible

world homomorphism h, by Theorem 8, h(t) ∈ E(D). Since t is all constants, h(t) = t

for all h. In other words, t ∈ E(D), for all D ∈ Rep(C).

For the ⊇-direction, let t ∈ ⋂D ∈Rep(C)E(D). Then t ∈ Dn, and for all possible

world homomorphisms h it holds that t ∈ E(h(C)). Since identity is a valid h, it

follows that t ∈ E(C), and since t is all constants we have t ∈ E(C)↓.

3.4.3 Mixing Existential and Universal Nulls

We want to achieve a representation mechanism able to handle both universal nulls

and naive existential nulls. To this end we need the following definition.

Definition 22. A naive n-dimensional (positive) star-cylinder is a finite subset C̈ of

(D ∪N ∪ {∗})n × ℘(Θn). A naive diagonal is defined as d̈ij = {(x,x) ∶ x ∈ univ(C̈)}.

A sequence of n-dimensional star-cylinders and diagonals is denoted C̈.

After this we extend Definitions 8, 9, and 11 in Section 3 from star-cylinders to

naive star-cylinders, by replacing D with univ(C̈) or univ(C̈) everywhere. Theorem 8

64

will still hold, but Corollary 1 only holds in the weakened form as Corollary 3 below.

First we need two lemmas and a definition.

Lemma 5. Suppose all possible world homomorphisms h are extended by letting

h(∗) = ∗. Let C̈ be an n-dimensional naive star-cylinder. Then

h([[C̈]]) = [[h(C̈)]],

for all possible world homomorphisms h.

Proof 14. Let t ∈ h([[C̈]]). Then there exists a tuple u ∈ [[C̈]], such that t = h(u).

Also there exists a naive star-tuple ü ∈ [[C̈]], such that u ⪯ ü. Now it is sufficient to

show that t ⪯ h(ü), for all i ∈ {1,2, . . . , n}.

If ü(i) ∈ D, then u(i) = ü(i). Also, homomorphisms are identity on constants and

therefore h(u(i)) = u(i), which implies t(i) = u(i).

If ü(i) = ∗, then u(i) ∈ univ(C̈). As a result h(u(i)) ∈ univ(h(C̈)), which implies

t(i) ⪯ ∗ = h(ü(i)), since homomorphisms map stars to themselves.

If ü(i) ∈ N, then u(i) = ü(i), which implies t(i) = h(u(i)) = h(ü(i)).

For the other direction, let t ∈ [[h(C̈)]]. Then there exists a tuple ẗ ∈ h(C̈) and a

tuple ü ∈ C̈, such that t ⪯ ẗ and ẗ = h(ü). Consequently, t ⪯ h(ü). We show that we

can find a tuple u ∈ [[ü]] such that h(u) = t.

If ü(i) ∈ D, then u(i) = ü(i). Since h is the identity on constants h(ü(i)) = ü(i),

which implies t(i) = u(i).

If ü(i) = ∗, then h(ü(i)) = ∗. As h is onto univ(h(C̈)), it follows that there is a

value ü(i) ∈ univ(C̈), such that h(u(i)) = t(i).

If ü(i) ∈ N, then u(i) = ü(i), which implies t(i) = h(ü(i)) = h(u(i)).

Definition 23. Let I and J be sets of instances. We say that I and J are co-initial,

denoted I ∼ J , if for each instance J ∈ J there is an instance I ∈ I, and a possible

world homomorphism h, such that I →h J , and vice-versa.

65

In the context of naive star-cylinders Corollary 1 will be weakened as follows.

Corollary 3. For every SCA+
n-expression Ė and the corresponding CAn-expression

E, it holds that

Rep([[Ė(C̈)]]) ∼ E(Rep([[C̈]])),

for every sequence of n-dimensional naive star-cylinders and star-diagonals C̈.

Proof 15. We have Rep([[Ė(C̈)]]) ∼ Rep(E([[C̈]])) from Corollary 1. It remains

to show that Rep(E([[C̈]]) ∼ E(Rep([[C̈]])). Let’s denote [[C̈]] by C. We’ll show

that Rep(E(C)) ∼ E(Rep(C)).

Let D ∈ E(Rep(C)), meaning that D = E(C′) for some C′ ∈ Rep(C). Then

there is a possible world homomorphism h such that C→h C′. Theorem 8 then yields

E(C) →h E(C′), and since E(C) ∈ Rep(E(C)) one direction of Definition 23 is

satisfied.

Then let D ∈ Rep(E(C)). Then there is a possible world homeomorphism h, such

that E(C) →h D. Since E(C) ∈ E(Rep(C)), it means that the vice-versa direction

is also satisfied.

3.4.4 Naive Evaluation of Existential Nulls

We extend Definition 20 from infinite instances to sequences of naive star-cylinders

as follows.

Definition 24. Let C̈ be a sequence of n-dimensional naive star-cylinders and di-

agonals with univ(C̈) = D ∪ N. Then the (infinite) set of (infinite) n-dimensional

cylinders represented by C̈ is

Rep([[C̈]]) = {D ∶ [[C̈]]→h D}.

For a naive star-cylinder C̈ we let C̈↓ = C̈ ∩ (D ∪ {∗})n. We note that obviously

[[C̈↓]] = ([[C̈]])↓, and that if Rep(C̈) ∼ Rep(D̈) then C̈↓ = D̈↓. We now have the

main result of this section.

66

Theorem 10. For every SCA+-expression Ė and the corresponding CA+-expression

E, it holds that

[[Ė(C̈)↓]] = ⋂
D∈Rep([[C̈]])

E(D).

for every sequence C̈ of naive star-cylinders and diagonals.

Proof 16. [[Ė(C̈)↓]] = [[Ė(C̈)]]↓ = (E([[C̈]]))↓ = ⋂C∈Rep([[C̈]])E(C). The second

equality follows from Corollary 3, the third from Theorem 9.

Stored databases with universal and existential nulls (ue-databases)

We extend the Definitions 17 and 18 of Section 3.4 from stored databases to naive

stored databases (ue-databases) by substituting D with D ∪N everywhere. Lemma 4

then becomes

Lemma 6. Let C̈ be a stored ue-database with universe D ∪ N. Then [[ḣn(R̈)]] =

hn(I(R̈)).

We first note that Theorem 7 in the ue-setting becomes

Theorem 11. For every FO+
n-formula ϕ there is an SCA+

n expression Ėϕ, such that

[[Ėϕ(ḣn(R̈))]] = hn(ϕI(R̈))

for every stored ue-database R̈

We also have

Theorem 12. For every FO+
n-formula ϕ there is a CA+

n expression Ėϕ, such that

Rep([[Ėϕ(ḣn(R̈))]]) ∼ {hn(ϕJ) ∶ J ∈ Rep([[R̈]])}

for every stored ue-database R̈

We have now arrived our main theorem for ue-databases.

67

Theorem 13. For every FO+
n-formula ϕ there is an SCA+

n expression Ėϕ, such that

[[Ėϕ(ḣn(R̈))↓]] = ⋂
J∈Rep([[R̈]])

hn(ϕJ)

for every stored ue-database R̈

Proof 17. We have {hn(ϕJ) ∶ J ∈ Rep([[R̈]])} ∼ Rep([[Ėϕ(ḣn(R̈))]]) by Theorem

12. Hence

⋂J∈Rep([[R̈]]) hn(ϕJ) = ⋂ Rep([[Ėϕ(ḣn(R̈))]]) = ([[Ėϕ(ḧn(R̈))]])↓ = [[Ėϕ(ḣn(R̈))↓]].

68

4 Query Evaluation in Four

This chapter starts with the formal definition of four-valued databases and follows

by showing that how the four-valued queries can be Evaluated against four-valued

Databases. To reach this goal, we first explain how four-valued instances can be

loosely decomposed into a pair of two-valued instances separately representing the

positive and negative information. These two-valued instances are equipped with the

traditional Open World Assumption . Next we show how to decompose the four-

valued queries into two-valued queries regarding positive and negative information.

We conclude this section by showing how to evaluate queries and aggregate informa-

tion back into the four-valued database. Later, in Section 4.5 and Section 4.5.1 we

focus on implication in data exchange in order to show that how to evaluate tuple

generating dependencies in four-valued logic.

4.1 Four Valued Logic

This section introduces Belnap’s four-valued logic [11] in the context of databases.

We first formally define our database model.

4.1.1 Four-valued instances.

We now extend the hitherto used classical two-valued instances to four-valued ones,

according to Belnap’s logic. The Boolean part of Belnap’s four-valued logic is charac-

terized by the following truth-tables. In the sequel we shall denote an operator, such

69

as ∧, by ∧
4 or ∧2, to emphasize the context. Note that Belnap’s logic is an extension of

Kleene’s strong three-valued logic, which again is an extension of classical two-valued

logic.

∧
4 true false ⊺ �

true true false ⊺ �

false false false false false

⊺ ⊺ false ⊺ false

� � false false �

∨
4 true false ⊺ �

true true true true true

false true false ⊺ �

⊺ true ⊺ ⊺ true

� true � true �

¬
4

true false

false true

⊺ ⊺

� �

We thus arrive at a Boolean algebra

({true, false,�,⊺},∧,∨,¬, true, false,⊺,�) (5)

The role of the designated elements true, false,⊺,� will become clear later below.

Definition 25. A four-valued instance I is a mapping from atoms Rp(ā) (and equality

atoms ai ≈ aj) to {true, false,�,⊺}, i.e. Rp(ā)I ∈ {true, false,�,⊺}. The mapping I is

then extended to a homomorphism from FO-sentences to the algebra 5 by recursively

defining

(ϕ ∧ ψ)I = ϕI ∧4 ψI

(ϕ ∨ ψ)I = ϕI ∨4 ψI

(¬ϕ)I = ¬
4(ϕI)

(∃xϕ(x))I = ∨
4
a∈D ϕ(a)I

(∀xϕ(x))I = ∧
4
a∈D ϕ(a)I

70

4.1.2 Queries and Answers

Queries are expressed in FO and interpreted on four-valued databases. Let ϕ(x̄) be an

FO-formula with free variables x̄. The result of applying query ϕ(x̄) to a four-valued

instance I will yield the following four types of answers:

true(ϕ, I) = {v(x̄) ∶ ϕ(v(x̄))I = true} The true answer

false(ϕ, I) = {v(x̄) ∶ ϕ(v(x̄))I = false} The false answer

inc(ϕ, I) = {v(x̄) ∶ ϕ(v(x̄))I = ⊺} The inconsistent answer

unk(ϕ, I) = {v(x̄) ∶ ϕ(v(x̄))I = �} The unknown answer

Example 13. Consider binary relations F (ollows) and H(obbies), where F (x1, x2)

means that user x1 follows user x2 on a social media site, and H(x1, x3) means that

x3 is a hobby of user x1. Let the database instance I be the following.

F F I

Alex Bob true

Bob Alex ⊺

Bob Alice true

H HI

Alex Movie ⊺

Alex Music true

Alice Music true

Bob Movies false

Facts given in I state that Alex follows Bob, but not himself. There is no information

as to whether Bob follows himself or not, while there is contradictory information

about Bob following Alex. Unequivocally Bob follows Alice. All other possible facts

about the Follows relation are unknown. Thus for instance F I(Alice,Alex) = �. The

facts about relation H are interpreted similarly. Let the query ask for people who are

following someone who does not have Movies as hobby. This is formulated in FO as

ϕ(x1), where

ϕ(x1) = ∃x2F (x1, x2) ∧ ¬H(x2,Movies).

71

Then, assuming that D consists of the values in the instance only, ϕ(x1) will be

evaluated as follows.

ϕ(Alex)I =

⋁4
a∈D (F (Alex, a)I ∧4(¬4(H(a,Movies)I)))

= (F (Alex,Alex)I ∧4 (¬4(H(Alex,Movies)I)))

∨
4 (F (Alex,Bob)I ∧4(¬4(H(Bob,Movies)I)))

∨
4 (F (Alex,Alice)I ∧4(¬4(H(Alice,Movies)I)))

= (�∧4(¬4
⊺)) ∨4 (true∧4(¬4 false)) ∨4 (�∧4(¬4

�))

= (� ∧
4
⊺) ∨4 (true ∧

4 true) ∨4 (�∧4
�)

= true ∨
4 true ∨

4
� = true

Similarly for Bob and Alice,

ϕ(Bob)I = ∨4
a∈D (F (Bob, a)I ∧4 (¬4H(a,Movies)I)) = ⊺

ϕ(Alice)I = ∨4
a∈D (F (Alice, a)I ∧4 (¬4H(a,Movies)I)) = �

We thus have true(ϕ, I) = {(Alex)}, false(ϕ, I) = {}, inc(ϕ, I) = {(Bob)}, and unk(ϕ, I) =

{(Alice)}.

4.2 Decomposition

It turns out that any four-valued instance I can be losslessly represented as a pair

I± = (I+, I−) where I+ and I− are two-valued instances. More precisely, for each

relation symbol R and sequence of constants ā ∈ Dar(R),

RI+(ā) = true iff RI(ā) ∈ {true,⊺}, and RI−(ā) = true iff RI(ā) ∈ {false,⊺}.

Conversely, given a pair of two-valued instances (I+, I−), we can construct a four-

valued instance I+⊗ I−, where

72

RI+⊗ I−(ā) = true if RI+(ā) = true and RI−(ā) = false;

RI+⊗ I−(ā) = false if RI+(ā) = false and RI−(ā) = true;

RI+⊗ I−(ā) = ⊺ if RI+(ā) = true and RI−(ā) = true;

RI+⊗ I−(ā) = � if RI+(ā) = false and RI−(ā) = false.

Also, ≈I+= {(a, a) ∶ a ∈ D}, and ≈I−= {(a, b) ∶ a, b ∈ D, a ≠ b}. The following lemma

follows directly from the definitions and verifies that I± indeed is a lossless decompo-

sition of I.

Lemma 7. Let I be a four-valued instance, and I± = (I+, I−) its decomposition. Then

I+⊗ I− = I.

Figure 6 graphically describes the procedure of decomposing a four-valued instance

into, positive and negative two-valued instances. Also, it shows that from decomposed

two-valued instances, by applying ⊗ operation defined here, the initial four-valued

instance is obtained.

Figure 6: Decomposition Diagram of four-valued Instances

73

Example 14. Consider binary relations F (ollows) and H(obbies) from Example 13.

By applying the decomposition to relations F I and HI , the two-valued relation F I+

is populated with tuples (ai, aj) ∈ D2, where F I(ai, aj) ∈ {true,⊺}, and relation HI+

is populated with tuples (ai, aj) ∈ D2, where HI(ai, aj) ∈ {true,⊺}. Similarly, F I− is

populated with tuples (ai, aj) ∈ D2, where F I(ai, aj) ∈ {false,⊺}, and HI− is populated

with tuples (ai, aj) ∈ D2, where HI(ai, aj) ∈ {false,⊺}. Note that unknown tuples are

not stored in the decomposition. The following four tables represents the two-valued

decomposition of relations F I and M I into F I+, F I−, HI+ and HI−.

F I+

Alex Bob

Bob Alex

Bob Alice

F I−

Bob Alex

HI+

Alex Music

Alex Movies

Alice Music

HI−

Alex Movies

Bob Movies

The above are the relations actually stored in the database, and FO-queries on

the four-valued instance will be decomposed and executed against these two-valued

relations. In the following ∧
2 and ∨

2 denote the classical two-valued operators. Of

course, when restricted to {true, false}, two- and four-valued conjunction and disjunc-

tion agree.

Before we define the FO-formula decomposition, we note that ± and ⊗ can be

seen as mappings from {true, false,⊺,�} to {true, false} × {true, false}, an the other

way around, respectively. In other words, true± = (true, false) and true ⊗ false = true;

false± = (false, true) and false ⊗ true = false; ⊺± = (true, true) and true ⊗ true = ⊺; �± =

(false, false) and false⊗ false = �. Then next lemma is a straightforward consequence

of these definitions.

74

Lemma 8. Let p, q ∈ {true, false,⊺,�}. Suppose p± = (p+, p−), and q± = (q+, q−). Then

p ∧
4 q = (p+ ∧2 q+) ⊗ (p− ∨2 q−)

p ∨
4 q = (p+ ∨2 q+) ⊗ (p− ∧2 q−)

¬
4 p = p− ⊗ p+

The next definition describes the decomposition to be used in the evaluation FO-

formulas on decomposed four-valued databases. We emphasize the fact that the

decomposed formulas do not use negation.

Definition 26. Let ϕ be an FO-sentence, I a four-valued instance, and I± = (I+, I−)

its decomposition. Then ϕI
± = (ϕI+, ϕI−) is defined recursively as follows:

ϕ ϕI
+

ϕI
−

R(ā) R(ā)I+ R(ā)I−

¬ψ ψI
−

ψI
+

ai ≈ aj (ai ≈ aj)I
+ (ai ≈ aj)I

−

ψ ∧ ξ ψI
+

∧
2 ξI

+

ψI
−

∨
2 ξI

−

ψ ∨ ξ ψI
+

∨
2 ξI

+

ψI
−

∧
2 ξI

−

∃x ψ(x) ∨
2
a∈Dψ

I+(a) ∧
2
a∈Dψ

I−(a)

∀xψ(x) ∧
2
a∈Dψ

I+(a) ∨
2
a∈Dψ

I−(a)

We can now verify the desired property of the decomposition of instances and

FO-formulas.

Theorem 14. Let ϕ be an FO-sentence, I a four-valued instance, and I± = (I+, I−)

its decomposition. Then

ϕI = ϕI+⊗ ϕI
−

.

Proof 18. We do a structural induction on ϕ. If ϕ equals R(ā) or ai ≈ aj the claim

follows directly from Lemma 7. For the inductive step, if ϕ = ψ ∧ ξ, we have

ϕI = (ψ ∧ ξ)I = ψI ∧4 ξI ,

75

where we assume that ψI = ψI+⊗ ψI
−, and ξI = ξI+⊗ ξI

−. By Lemma 8 we then have

ψI ∧4 ξI = (ψI+∧2 ξI
+) ⊗ (ψI−∨2 ξI

−).

Definition 26 now tells us that

(ψI+∧2 ξI
+) ⊗ (ψI−∨2 ξI

−) = ϕI+⊗ ϕI
−

,

showing that indeed ϕI = ϕI+⊗ ϕI
−.

For the next case of the inductive step, suppose ϕ = ¬ψ, where the assumption is

that ψI = ψI+⊗ ψI
−. We have

ϕI = (¬ψ)I = ¬4(ψI) = ¬4(ψI+⊗ ψI
−) = ψI−⊗ ψI

+= ϕI+⊗ ϕI
−

.

The case for disjunction is similar that of conjunction, and since the quantifiers

∀ and ∃ are defined in terms of ∧4 and ∨
4 the result holds in these cases also.

Figure 7: Commutative diagram of query decomposition

Figure 7 illustrates the procedure of decomposing the four-valued queries and four-

valued instances. As it is shown in Theorem 14, from decomposition by applying ⊗

76

operation, the evaluation of four-valued query against the initial four-valued instance

can be obtained.

Corollary 4. Let ϕ be an FO-sentence, I a four-valued instance, and I± = (I+, I−)

its decomposition. Then

true(ϕ, I) = ϕI
+ ∖ ϕI

−

false(ϕ, I) = ϕI
− ∖ ϕI

+

inc(ϕ, I) = ϕI
+ ∩ ϕI

−

unk(ϕ, I) = (ϕI+ ∪ ϕI−)

Example 15. Let ϕ(x) be the query ∃y F (x, y) ∧ ¬H(y,Movies). from Example 13.

Then (ϕI+, ϕI−) is evaluated as follows

ϕI
+(Alex) = ∨2

a∈D (F I+(Alex, a) ∧2 HI−(a,Movies)) = true

ϕI
−(Alex) = ∧2

a∈D (F I−(Alex, a) ∨2 HI+(a,Movies)) = false

Similarly

ϕI
+(Bob) = true and ϕI−(Bob) = true

ϕI
+(Alice) = false and ϕI−(Alice) = false

The evaluation of each of there two-valued queries leads to the following results:

ϕI
+

Alex

Bob

ϕI
−

Bob

The final answers can now be composed according to Corollary 4, yielding true(ϕ, I) =

{(Alex)}, false(ϕ, I) = {}, inc(ϕ, I) = {(Bob)}, and unk(ϕ, I) = {(Alice)}.

4.3 Adding Universal Nulls

In this and the next section we assume that the domain D is unbounded (countably

infinite). We show how the Star Tables introduced in Section 3.3 can be used to

77

compactly store the two-valued positive and negative parts of a four-valued database.

Since in the negative part we want to be able to record potentially infinite sets of

facts, we need Universal Nulls “∗.” We then show how the Star Cylindric Algebra

described in Section 3.3 can conveniently be used to evaluate, on the two-valued

positive-negative star-tables, the FO+-queries resulting from the decomposition of an

FO-query posed on the four-valued database. The following example represents the

positive part of a database, and only true tuples are shown.

Example 16. Consider binary relations F (ollows) and H(obbies) from Examples 13

and 14. This time, let the database be the following.

F I+

Alice Chris

* Alice

Bob *

Chris Bob

HI+

Alice Movies

Alice Music

Bob Movies

This is to be interpreted as expressing the facts that Alice follows Chris and Chris

follows Bob. Alice is a journalist who would like to give access to everyone to articles

she shares on the social media site. Therefore, everyone can follow Alice. Bob is the

site administrator, and is granted the access to all files anyone shares on the site.

Consequently, Bob follows everyone. “Everyone” in this context means all current

and possible future users. The query below, in domain relational calculus, asks for the

interests of people who are followed by everyone:

ϕ(x4) = ∃x2∃x3∀x1(F (x1, x2) ∧H(x3, x4) ∧ (x2 ≈ x3)) (6)

The answer to our example query is {(Movies), (Music)}. Note that star-nulls also

can be part of an answer. For instance, the query ϕ(x1, x2) = F (x1, x2) would return

all the tuples in F I+.

78

Example 17. Continuing Example 16, suppose all negative information we have

acquired about the H(obbies) relation, is that we know Alice doesn’t play Volleyball,

that Bob only has Movies as hobby, and that Chris has no hobby at all. This negative

information about the relation H is represented by the table HI− below.

HI−

Alice Volleyball

Bob * 2 ≠ Movies

Chris *

Note that the second tuple has a conditions that says the symbol * in the second

column represents all domain values except “Movies.” Suppose the query ϕ asks for

people who have a hobby, that is

ϕ(x1) = ∃x2H(x1, x2).

Then the positive part is evaluated as

ϕI
+(Chris) = ∨a∈DHI+(Chris, a) =

HI+(Chris, Movies)∨HI+(Chris, Music)∨

HI+(Chris, Movies)∨HI+(Chris, ..)∨⋯ =

false∨ false∨ false∨ false∨⋯ = false.

ϕI
+(Alice) = ∨a∈DHI+(Alice, a) =

HI+(Alice, Movies)∨HI+(Alice, Music)∨

HI+(Alice, Movies)∨HI+(Alice, ..)∨⋯ =

false∨ true∨ false∨ false∨⋯ = true.

ϕI
+(Bob) = ∨a∈DHI+(Bob, a) =

HI+(Bob, Movies)∨HI+(Bob, Music)∨

HI+(Bob, Movies)∨HI+(Bob, ..)∨⋯ =

false∨ false∨ true∨ false∨⋯ = true.

79

The negative part is evaluated as

ϕI
−(Chris) = ∧

a∈D
HI−(Chris, a) = true∧ true∧ true∧⋯ = true.

Note that HI−(Bob,Movies) = false, which yields ϕI−(Bob) = false. Likewise ϕI−(Alice) =

false. To summarize, true(ϕ, I) = {(Alice), (Bob)}, false(ϕ, I) = {(Chris)}, inc(ϕ, I) =

{}. For all other possible users the result is unknown.

4.4 Algebraic Evaluation

Recall from Section 3.2 that the n-dimensional Star Cylindric Algebra consists of

operators star union ⊍, star intersection ⩀, outer ċi and inner ˙ci cylindrifications on

dimension i, diagonals ḋij, as well as complement. Complement will however not be

used in this context, as FO-formulas are evaluated in the four-valued semantics by

decomposing them into positive and negative parts, neither of which uses negation.

The star-algebra acts as an evaluation mechanism, and an FO-formula ϕ with n

variables is translated into an equivalent n-dimensional star algebra expression Eϕ.

At run-time, all star-tables will be expanded to have arity n by filling empty columns

with “∗.” These run-time tables are called Star-Cylinders, and denoted Ċ, Ċ ′ etc.

Example 18. Continuing Example 16, in that database the atoms F (x1, x2) and

H(x3, x4) of query (6) are represented by star-tables ĊF and ĊH , and the equality atom

is represented by the diagonal cylinder d23. Note that these are positional relations,

the “attributes” x1, x2, x3, and x4 are added for illustrative purposes only.

80

ĊF

x1 x2 x3 x4

Alice Chris ∗ ∗

∗ Alice ∗ ∗

Bob ∗ ∗ ∗

Chris Bob ∗ ∗

ĊH

x1 x2 x3 x4

∗ ∗ Alice Movies

∗ ∗ Alice Music

∗ ∗ Bob Movies

ḋ23

x1 x2 x3 x4

∗ ∗ ∗ ∗ 2=3

Ċ ′

x1 x2 x3 x4

∗ Alice Alice Movies

∗ Alice Alice Music

Bob Alice Alice Movies

Bob Alice Alice Music

Bob Bob Bob Movies

Chris Bob Bob Movies

Ċ ′′

x1 x2 x3 x4

∗ Alice Alice Movies

∗ Alice Alice Music

Ċ ′′′

x1 x2 x3 x4

∗ ∗ ∗ Movies

∗ ∗ ∗ Music

81

The star union ⊍ is carried out as a set theoretic union of the star tuples in

the arguments. The star intersection is obtained by combining the star tuples in the

arguments, where for instance {(a,∗,∗)}⩀{(∗, b,∗)} = {(a, b,∗)}. The outer cylindri-

fication ci represents ∃xi and is obtained by replacing column i by an unconstrained

“∗.” Inner cylindrification c

i represents ∀xi and is carried out be selecting those star

tuples where column i contains an unconstrained “∗.” A detailed definition of the cylin-

dric star algebra can be found in [36]. The translation of query (6) is the cylindric

star-algebra expression

ċ2(ċ3(˙c1((ĊF ⩀ ĊH) ⩀ ḋ23))) (7)

The intersection of ĊF and ĊH is carried out as star-intersection ⩀. The result

will contain 12 tuples, and when these are star-intersected with d23, the diagonal

cylinder ḋ23 will act as a selection by columns 2 and 3 being equal. The result is

the left-most star-cylinder Ċ ′ = (ĊF ⩀ ĊH) ⩀ ḋ23 above. Applying the inner star-

cylindrification on column 1 results in Ċ ′′ in the middle above. Finally, applying

outer star-cylindrifications on columns 2 and 3 of star-cylinder Ċ ′′ yields the final

result Ċ ′′′ = ċ2(ċ3(c

1((ĊF ⩀ ĊH)⩀ ḋ23))) right-most above. The system can now return

the answer, i.e. the values of column 4 in cylinder Ċ ′′′. Note that columns where all

rows are “∗” do not actually have to be materialized at any stage.

Example 19. Consider the relation H(obbies) from Examples 13 and 17. This rela-

tion is then stored as the two star-tables ĊHI+ and ĊHI− below.

ĊHI+

x1 x2

Alice Movies

Alice Music

Bob Movies

ĊHI−

x1 x2

Alice Volleyball

Bob ∗ 2 ≠ Movies

Chris ∗

82

The query was asking for people who have a hobby, that is ϕ(x1) = ∃x2 H(x1, x2).

The positive part will be translated as c2(ĊHI+), and the negative part as c

2(ĊHI−).

c2(ĊHI+)

x1 x2

Alice ∗

Bob ∗

c

2(ĊHI−)

x1 x2

Chris ∗

The answers are true(ϕ, I) = {(Alice,∗,{}), (Bob,∗,{})} and false(ϕ, I) = {(Chris,∗,{})}.

The above translation is summarized in the next theorem.

Theorem 15. [36] For every query expressed as an FO formula ϕ, there is a star

cylindric algebra Expression Eϕ, such that

Eϕ(DB) = ϕDB,

for every database DB containing *-nulls. The converse is also true. Moreover,

star-databases are closed under star-algebra.

4.5 Implication in Four-Valued Databases

So far, we have extended the basic Boolean operations to the four-valued case. When

restricted to {true, false} the four-valued extension coincides with the two-valued case.

When it comes to the implication ϕ→ ψ, it will however no longer be equivalent with

¬ϕ ∨ψ. In order to arrive at the proper four-valued meaning of → we need to take a

closer look at Belnap’s logic [11].

As seen in Section 4.2, the truth-values true, false, ⊺, and � can losslessy be repre-

sented as pairs of classical truth values true and false, namely (true, false), (false, true),

(true, true), and (false, false), respectively. Indeed, Belnap [11] explains a sentence ϕ

83

assigned (true, false) as “the computer has been told that ϕ is true,” (false, true) as

“the computer has been told that ϕ is false,” (true, true) as “the computer has been

told that ϕ is true, and that ϕ is false,” and (false, false) as “the computer has not

been told anything about the truth of ϕ.” Belnap then proposes the following two

lattice diagrams:
(true, false)

❅
❅
❅ (true, true)

(false, true)
�

�
�

(false, false)
❅

❅
❅

�
�
�r

r
r

r

Figure 8: Truth Order

Figure 8 reflects the partial order ≤t of the four truth-values {true, false,⊺,�}, based on

false ≤t true with ⊺ and � in-between and incomparable between themselves. Figure 9

reflects the amount of information that ”the computer has been told.” Belnap regards

this structure as a Scott-type approximation lattice, and calls it the information

order, here denoted ≤i. The diagram shows that � ≤i false ≤i ⊺ and � ≤i true ≤i ⊺, with

true and false incomparable between themselves wrt ≤i.

(true, true)
❅

❅
❅ (false, true)

(false, false)
�

�
�

(true, false)
❅

❅
❅

�
�
�

r

r
r r

Figure 9: Information Order

The two partial orders can be lifted to four-valued instances I and J , by stipulating

that I ≤t J if RI(ā) ≤t RJ(ā) for all atomic sentences R(ā), and similarly for I ≤i J .

When interpreting the information content in a four-valued instance I = I+⊗ I− we

84

see that the instances I+ and I− are traditional model-theoretic instances “closed”

wrt ≤t, whereas I is ”open” wrt ≤i in that the information is open to increase as the

computer is told more. The propositional sentence ϕ → ψ can now be interpreted

as ”the computer knows about ψ at least what it knows about ϕ.” More formally,

I ⊧ ϕ → ψ if ϕI ≤i ψI . Note that implicational sentences are only given truth-values

true and false.

The next question is what the computer should do if I /⊧ ϕ → ψ. Belnap answers

the question by saying that the computer should “make minimal mutilations to its

information state so as to make ψ true.” Since information can only increase as the

computer is told more, the mutilation should be done in the ≤i order. More formally,

if I /⊧ ϕ → ψ, then the computer should find the ≤i-smallest instance J , such that

ϕI = ϕJ , I ≤i J , and ϕJ ≤i ψJ . When enforcing a tuple-generating dependency ϕ→ ψ

in classical two-valued instances, this is exactly what is done, except that ≤t is used

instead of ≤i. Of course, in a two-valued world, ”more” means more truth. The effect

of enforcing ϕ → ψ on a four-valued instance I resulting in instance J is described

by the table below. It is easy to see that a repeated application of this enforcement

rule will result in a least fixed point in the ≤i-order. For a set Σ of dependencies and

four-valued instance I, this least fixed point is denoted Chase4
Σ(I).

ϕI ψI ψJ

true � true

true false ⊺

⊺ � ⊺

⊺ true ⊺

⊺ false ⊺

false � false

false true ⊺

85

Next we show that the classical chase-procedure can be adapted to work on four-

valued instances using the decomposition approach. The idea is to convert an im-

plicational sentence ϕ → ψ into two sentences ϕ+→ ψ+ and ϕ−→ ψ−, according to

Definition 26, and then chase the two-valued decomposed instance I± with the con-

verted sentences.

4.5.1 Tuple-Generating Dependecies

We define (for now) a tuple generating dependency (tgd) as an implicational sentence

of the form

∀x̄ ((∃ȳ ϕ(x̄, ȳ)) → R(x̄)), (8)

where ϕ(x̄, ȳ) is an FO-sentence. Let Σ be a set of tgds and I a two-valued instance.

Then Chase2
Σ(I) is computed by repeatedly checking, for each tgd of the form (8) in

Σ, if there is a sequence ā, b̄ of constants such that ϕI(ā, b̄) /≤t RI(ā), in which case

RI(ā) is set to true. We can now conveniently compute Chase4
Σ(I) by combining

Chase2
ΣI+(I±) and Chase2

ΣI−(I±), where Chase2
ΣI+(I±) is computed by repeatedly

checking, for each ā ∈ D and each tgd, whether ϕI+(ā, b̄) /≤t RI+(ā). If this is the case

RI+(ā) is set to true. Similarly, Chase2
ΣI−(I±) is computed by checking if ϕI−(ā, b̄) /≤t

RI−(ā) and changing RI−(ā) to true when this is the case. We then have

Theorem 16. [39] Let Σ be a set of tgds and I a four-valued instance. Then

Chase4
Σ(I) = Chase2

ΣI+(I±) ⊗Chase2
ΣI−(I±).

Proof 19. Consider a four-valued instance I and a tgd of the form (8). The proof

of the theorem is based on the fact that ϕ(ā, b̄)I ≤i R(ā)I iff ϕ(ā, b̄)I+≤t R(ā)I
+ and

ϕ(ā, b̄)I−≤t R(ā)I
−

. The following tables show the correspondence of the procedure in

detail between instance I and both positive and negative instances I+, I−.

86

ϕI ψI ψJ

true � true

true false ⊺

⊺ � ⊺

⊺ true ⊺

⊺ false ⊺

false � false

false true ⊺

=
ϕI

+

ψI
+

ψJ
+

true false true

true false true

true false true

true true true

true false true

false false false

false true true

⊗

ϕI
−

ψI
−

ψJ
−

false false false

false true true

true false true

true false true

true true true

true false true

true false true

In this Section we abandon the technical requirement that vars(ϕi) = x1, x2, ...

and use x, y, z for easier reading.

Example 20. We show how to compute the transitive closure of a graph along with the

complement of the transitive closure. Let the graph have vertex set D = {a1, a2, a3, a4},

and edge set E. Below is a complete description of the graph, which we call the E-

graph. In the first E-graph below the dashed arrows represent true edges, and in the

second one the dotted arrows represent false edges.

a1 a2 a3 a4

a1 a2 a3 a4

The transitive closure of the graph is defined by the following set of tgds (leading

universal quantifiers are omitted).

E(x, y) → T (x, y)

∃z (E(x, z) ∧ T (z, y)) → T (x, y)

Following Fitting [29, 30] we merge all tgds with the same consequent by taking the

87

disjunction of their antecedents. The two tgds above will thus result in the dependency

(E(x, y) ∨ (∃z E(x, z) ∧ T (z, y))) → T (x, y)

For the graph T we start with T I(i, j) = �, for all vertices i, j. In the first round

we fire

EI+(a1, a2) ∨ ⋁
i∈{1,2,3,4}

(EI+(a1, ai) ∧ T I
+(ai, a2)) → T I

+(a1, a2)

EI+(a2, a3) ∨ ⋁
i∈{1,2,3,4}

(EI+(a2, ai) ∧ T I
+(ai, a3)) → T I

+(a2, a3)

EI+(a3, a4) ∨ ⋁
i∈{1,2,3,4}

(EI+(a3, ai) ∧ T I
+(ai, a4)) → T I

+(a3, a4)

EI−(a4, a1) ∧ ⋀
i∈{1,2,3,4}

(EI−(a4, ai) ∨ T I
−(ai, a1)) → T I

−(a4, a1)

EI−(a4, a2) ∧ ⋀
i∈{1,2,3,4}

(EI−(a4, ai) ∨ T I
−(ai, a2)) → T I

−(a4, a2)

EI−(a4, a3) ∧ ⋀
i∈{1,2,3,4}

(EI−(a4, ai) ∨ T I
−(ai, a3)) → T I

−(a4, a3)

EI−(a4, a4) ∧ ⋀
i∈{1,2,3,4}

(EI−(a4, ai) ∨ T I
−(ai, a4)) → T I

−(a4, a4)

The positive and negative T -edges over D = {a1, a2, a3, a4} resulting from the first

round are shown in the two graphs below.

a1 a2 a3 a4

a1 a2 a3 a4

88

In the second round we fire

EI+(a1, a3) ∨ ⋁
i∈{1,2,3,4}

(EI+(a1, ai) ∧ T I
+(ai, a3)) → T I

+(a1, a3)

EI+(a2, a4) ∨ ⋁
i∈{1,2,3,4}

(EI+(a2, ai) ∧ T I
+(ai, a4)) → T I

+(a2, a4)

EI−(a3, a1) ∧ ⋀
i∈{1,2,3,4}

(EI−(a3, ai) ∨ T I
−(ai, a1)) → T I

−(a3, a1)

EI−(a3, a2) ∧ ⋀
i∈{1,2,3,4}

(EI−(a3, ai) ∨ T I
−(ai, a2)) → T I

−(a3, a2)

EI−(a3, a3) ∧ ⋀
i∈{1,2,3,4}

(EI−(a3, ai) ∨ T I
−(ai, a3)) → T I

−(a3, a3)

EI−(a2, a1) ∧ ⋀
i∈{1,2,3,4}

(EI−(a2, ai) ∨ T I
−(ai, a1)) → T I

−(a2, a1)

EI−(a2, a2) ∧ ⋀
i∈{1,2,3,4}

(EI−(a2, ai) ∨ T I
−(ai, a2)) → T I

−(a2, a2)

The second round results in the positive and negative graphs below.

a1 a2 a3 a4

a1 a2 a3 a4

Finally, in the third round we fire

EI−(a1, a4) ∨ ⋁
i∈{1,2,3,4}

(EI+(a1, ai) ∧ T I
+(ai, a4)) → T I

+(a1, a4)

EI−(a1, a1) ∧ ⋀
i∈{1,2,3,4}

(EI−(a1, ai) ∨ T I
−(ai, a1)) → T I

−(a1, a1)

The first graph shows T , the transitive closure of E, and the second the complement

of the transitive closure. Note that there is no need for any syntactical notion of

stratification or non-monotonic reasoning.

89

a1 a2 a3 a4

a1 a2 a3 a4

Example 21. We recall the classical Win-Move program, where Win(x) means player

can win at vertex x, and Move(x, y) means there is a move from vertex x to vertex

y. The only rule of this game is

∃y (Move(x, y) ∧ ¬Win(y)) →Win(x).

That is, a player can win in state x whenever he can move to state y and y is not a

winning state. Below we show the relations MoveI
+ and MoveI

− over D = {a1, a2, a3}.

Initially we have Win(ai) = � for i ∈ {1,2,3}.

a1 a2 a3

a1 a2 a3

In the first round we fire

⋀
i∈{1,2,3,4}

(MoveI
−(a3, ai) ∨WinI

+(ai)) →WinI
−(a3).

As a result, WinI
−(a3) is set to true below.

90

a1 a2 a3

a1 a2 a3

In the second round we fire

⋁
i∈{1,2,3}

(MoveI
+(a2, ai) ∧WinI

−(ai)) → WinI
+(a2)

⋁
i∈{1,2,3}

(MoveI
+(a1, ai) ∧WinI

−(ai)) → WinI
+(a1)

⋀
i∈{1,2,3}

(MoveI
−(a1, ai) ∨WinI

+(ai)) → WinI
−(a1)

a1 a2 a3

a1 a2 a3

There are few interesting notes to be made about Example 21. Firstly, regardless

of the fact that Move(1,2) is inconsistent in the input graph, the chase could be

executed and at the end we have a model which satisfies all conditions. Secondly,

inconsistent initial information can lead to inconsistent results as well. Lastly, even

though we have inconsistent result for vertex a1 our results are consistent for vertices

a2 and a3 for which we are sure they are winning and loosing states, respectively.

Below the ⊗ composition of the positive and the negative graphs is visualized.

a1 a2 a3a1 a2 a3

91

4.6 Chasing with Infinite Domain

In the previous section we assumed that the domain (of vertices) was finite. When we

use star tables we however assumed that the domain is countably infinite. Returning

to the Win-Move example, suppose the domain of vertices is D = {a1, a2, a3. . . . , an, . . .},

and the initial graph have edges Move(a1, a2),Move(a2, a3), and Move(a1, a3). We

can store this, as well as the fact that there are no other move edges by the following

two star-tables.

MoveI
+

a1 a2

a2 a3

a1 a3

MoveI
−

∗ ∗ (1 ≠ a1 ∨ 2 ≠ a2) ∧ (1 ≠ a2 ∨ 2 ≠ a3) ∧ (1 ≠ a1 ∨ 2 ≠ a3)

Below we show the relations MoveI
+ and MoveI

− graphically. The vertex labeled *

represents all vertices in D∖{a1, a2, a3}. Initially we have WinI(ai) = � for all ai ∈ D.

a1 a2 a3 ∗

a1 a2 a3 ∗

In the first round we fire

⋀
i∈{1,2,3,...}

(MoveI
−(a3, ai) ∨WinI

+(ai)) →WinI
−(a3).

92

which is equivalent to

⋀
a∈{a1,a2,a3,∗}

(MoveI
−(a3, a) ∨WinI

+(a)) →WinI
−(a3).

As a result, WinI
−(a3) is set to true. Then we fire

⋀
a∈{a1,a2,a3,∗}

(MoveI
−(∗, a) ∨WinI

+(a)) →WinI
−(∗).

As a result, WinI
−(∗) is set to true below, as well.

a1 a2 a3 ∗

a1 a2 a3 ∗

In the second round we fire

⋁
a∈{a1,a2,a3,∗}

(MoveI
+(a2, a) ∧WinI

−(a)) → WinI
+(a2)

⋁
a∈{a1,a2,a3,∗}

(MoveI
+(a1, a) ∧WinI

−(a)) → WinI
+(a1)

⋀
a∈{a1,a2,a3,∗}

(MoveI
−(a1, a) ∨WinI

+(a)) → WinI
−(a1)

93

resulting in

a1 a2 a3 ∗

a1 a2 a3 ∗

As it can be seen, states a1 and a2 are winning states. States a1, a3, and ∗ are

non-winning states. Clearly, state a1 appear as winning and non-winning state, which

makes it an inconsistent state. However, having inconsistent vertices and moves does

not stop the four-valued chase from concluding consistent information about other

states. Moreover, having state ∗ as a non-winning state declares that the set of

states {a4, a5, a6, . . .} are all non-winning states. In summary, the relations WinI
+

and WinI
− contain the vertices a ∈ D for which WinI(a) = true and WinI(a) = false,

respectively. One should notice that inconsistency in the initial database can be

propagated by the chase. However, consistent information is still treated correctly.

The ⊗-composition of the positive and the negative graphs is illustrated below.

a1 a2 a3 ∗a1 a2 a3 ∗

94

5 Complexity

In this chapter we provide complexity results for Cylindric Star Algebra and Star

Cylinders. We start by defining the size of extended star-cylinders. Let Ċ be a

sequence of n-dimensional extended star-cylinders and diagonals. By ∣Ċ∣ we denote

the larger of the number of star-tuples in Ċ and the number of literals in the star-tuple

with the largest condition column n+ 1. The same notation also applies to sequences

of naive star-cylinders C̈.

5.1 General Complexity

First, we show that star-cylinders can be transformed into normal form in polynomial

time.

Theorem 17. Let Ċ be an n-dimensional extended star-cylinder. Then Ċ can in

polynomial time be transformed into a normal form star-cylinder Ċ ′ such that [[Ċ ′]] =

[[Ċ]].

Proof 20. The first requirement is that each extended star-tuple has a consistent and

logically closed set of literals. To achieve this, we associate with each ṫ ∈ Ċ a graph

with vertices {1, . . . , n}, with a blue edge {i, j} if (i = j) ∈ ṫ(n + 1), and a red edge

{i, j} if (i ≠ j) ∈ ṫ(n+1). Next, we compute the transitive closure of the graph wrt the

blue edges. To account for the inequality conditions, we further extend the graph by

repeatedly checking if there is a red edge {i, j} and a blue edge {j, k}, in which case

we add, unless already there, a red edge {i, k}. Then each connected component of

95

blue edges represents an equivalence class of dimensions with equal values in ṫ, unless

there is a pair {i, j} that has both a blue and a red edge, in which case ṫ(n+1) ⊧ false,

[[{ṫ}]] = ∅, and ṫ can be removed. We need to consider conditions of the form (i ≠ a)

in star-tuples ṫ as well. They will be handled similarly to the inequality conditions.

More precisely, for each (i ≠ a) we add a black self-loop labelled a to vertex i. If

there is a blue edge {i, j}, we recursively add an a-labelled self-loop to vertex j. In

the end, if there is a vertex i having an a-labelled self-loop while ṫ(i) = b ≠ a, we again

have ṫ(n + 1) ⊧ false, [[{ṫ}]] = ∅, and therefore remove star-tuple ṫ. All the above

graph-manipulation can clearly be performed in time polynomial in n.

We still need to verify that ṫ satisfies conditions (1) – (3) of Definition 14. If ṫ

violates a condition, it is easy to see that [[{ṫ}]] = ∅, so ṫ can be removed from Ċ. The

only exception is for condition (1), when ṫ(n+ 1) ⊧ (i = j), t(i) = ∗, and t(j) = a ∈ D.

In this case ṫ is retained, but with t(i) replaced by a. If t(j) = ∗ and t(i) = a then

t(j) is replaced with a.

The remaining star-tuples form the normalized star-cylinder Ċ ′, and [[Ċ ′]] = [[Ċ]]

by construction.

Next, we investigate the complexity of evaluating SCAâĂć-expressions over naive

star-cylinders and then we characterize various membership and containment prob-

lems. It turns out Ė(C̈) can be computed efficiently for SCAn-expressions Ė, even

though universal quantification and negation are allowed. First we need the following

general result.

Theorem 18. Let Ė be a fixed SCAn-expression, and Ċ a sequence of n-dimen-

sional extended star-cylinders and diagonals. Then there is a polynomial π, such that

∣Ė(Ċ)∣ = O(π(∣Ċ∣)). Moreover, Ė(Ċ) can be computed in time O(π(∣Ċ∣)), and if

negation is not used in Ė this applies to naive star-cylinders C̈ as well.

96

Proof 21. Since Ė is fixed it is sufficient to prove the first claim for each operator

separately. Note that since Ė is fixed, it follows that n is also fixed.

1. If Ė(Ċ) = Ċp(Ċ), then ∣Ė(Ċ)∣ = ∣Ċp∣ ≤ ∣Ċ∣ = O(π(∣Ċ∣)).

2. If Ė(Ċ) = ḋij(Ċ), then ∣Ė(Ċ)∣ = O(∣Ċ∣) × O(1) = O(π(∣Ċ∣)).

3. If Ė(Ċ) = Ċp(Ċ) ∪ Ċq(Ċ), then ∣Ė(Ċ)∣ ≤ ∣Ċ∣ = O(π(∣Ċ∣)).

4. If Ė(Ċ) = Ċp(Ċ) ⩀ Ċq(Ċ), then the number of tuples in Ė(Ċ) is at most ∣Ċ∣2,

and each tuple in the output can have a condition of length at most 2 ⋅ ∣Ċ∣. As

a result, ∣Ė(Ċ)∣ ≤ 2 ⋅ ∣Ċ∣3 = O(π(∣Ċ∣)).

5. If Ė(Ċ) = ċi(Cp(Ċ)), then ∣Ė(Ċ)∣ ≤ ∣Ċp∣ ≤ ∣Ċ∣ = O(π(∣Ċ∣)).

6. For the case Ė(Ċ) = ˙ci(Cp(Ċ)) we note that ˙ci(Cp(Ċ)) ⊆ (Cp(Ċ) ⩀ Ȧ) ⊆ Ȧ.

We can construct the star-tuples in Ȧ by iterating over the star-tuples in Ċp

and using the constants in A. This means that ∣Ȧ∣ = (n × (∣A∣)) + (2n + ∣A∣) ≤

O(1) × O(∣Ċ∣) + O(1) × O(∣Ċ∣) = O(π(∣Ċ∣)). Note that n is the dimensionality

of Ċ and is a constant.

7. If Ė(Ċ) = ¬̇(Cp(Ċ)), then similar to the inner cylindrification we have ¬̇ Ċp ⊆ Ȧ

which implies ∣Ė(Ċ)∣ = O(π(∣Ċ∣)).

5.2 Membership Problem

In the membership problem, we ask if an ordinary tuple t belongs to the set specified

by a (naive) star-cylinder, of by a fixed expression Ė and a (naive) star-cylinder. In

other words, all results refer to data complexity.

Theorem 19. Let t ∈ Dn and C̈ a sequence of n-dimensional naive star-cylinders

and diagonals. The membership problems and their respective data complexities are

as follows.

97

1. t ?
∈ ⋂E(Rep([[C̈]])) is in polytime for positive E.

2. t ?
∈ ⋂E(Rep([[C̈]])) is coNP-complete for E where negation is allowed in equal-

ity atoms only.

Proof 22. 1. By Theorem 10, we have ⋂E(Rep([[C̈]])) = [[Ė(C̈)↓]], so to test

if t ∈ ⋂E(Rep([[C̈]])), we compute Ė(C̈)↓, and see if there is a star-tuple

ṫ ∈ Ė(C̈)↓, such that t ⪯ ṫ. By Theorem 18, Ė(C̈)↓ can be computed in polytime.

2. To check if t /∈ ⋂E(Rep([[C̈]])), it is sufficient to find a homomorphism h such

that t /∈ h([[C̈]]). We guess the homomorphism h, and check in polytime if

t /∈ h([[C̈]]). Thus t /∈ ⋂E(Rep([[C̈]])) is in NP, and t ∈ ⋂E(Rep([[C̈]])) is in

coNP. The lower bound follows from Theorem 5.2.2 in [2], where the complexity

of conditional tables are investigated in detail.

5.3 Containment Problem

The containment problem asks for containment of star-cylinders (naive star-cylinders),

or views over star-cylinders (naive star-cylinders). Regarding the sequences of n-

dimensional (naive) star-cylinders and CAn expressions, we have the following con-

tainment problem.

Theorem 20. Let Ċ and Ḋ (resp. C̈ and D̈) be sequences of n-dimensional (naive)

star-cylinders and diagonals. Then

1. E1([[Ċ]])
?
⊆ E2([[Ḋ]]) is in polytime for CAn expression E1 and E2.

2. Rep([[C̈]])
?
⊆ Rep([[D̈]]) is NP-complete.

3. E1(Rep([[C̈]]))
?
⊆ E2(Rep([[D̈]])) is Πp

2-complete for positive E1 and E2.

Proof 23.

98

1. By Lemma 3, we have [[Ė1(Ċ)]] ⊆ [[Ė2(Ḋ)]] if and only if Ė1(Ċ)⩀Ȧ ⪯ Ė2(Ḋ)⩀

Ȧ. The latter dominance is true if and only if for each star-tuple ṫ ∈ Ė1(Ċ) ⩀ Ȧ

there is a star-tuple u̇ ∈ Ė2(Ḋ) ⩀ Ȧ, such that ṫ ⪯ u̇. From Theorem 18 we know

that Ė1(Ċ) ⩀ Ȧ and Ė2(Ḋ) ⩀ Ȧ can be computed in polytime.

2. We first extend the domain of possible world homomorphisms by stipulating that

they are the identity on ∗. Then it is easy to see that Rep([[C̈]]) ⊆ Rep([[D̈]])

if and only if there exists a possible world homomorphism h such that D̈→h C̈.

This makes the problem NP-complete.

3. The lower bound follows from Theorem 4.2.2 in [2], For the upper bound we

observe that E1(Rep([[C̈]])) ⊆ E2(Rep([[D̈]]) iff for every C ∈ Rep([[C̈]]) there

exists a D ∈ Rep([[D̈]]) such that E1(C) = E2(D) iff for every possible world

homomorphism h on C̈ there exists a possible world homomorphism g on D̈

such that E1(h([[C̈]])) = E2(g([[D̈]])). By Corollary 1, this equality holds iff

[[Ė1(h(C̈))]] = [[Ė1(g(D̈))]]. By Lemma 3, the last equality holds iff E1(h([[C̈]]))⩀

Ȧ ⪯ E2(g([[D̈]]))⩀ Ȧ, and vice-versa. By Theorem 18, the star-cylinders in the

two dominances ⪯ can be computed in polynomial time.

99

6 Related and Future Work

6.1 Related Work

Cylindric Set Algebra gave rise to a whole subfield of Algebra, called Cylindric Alge-

bra. For a fairly recent overview, the reader is referred to [5]. Within database theory,

a simplified version of the star-cylinders and a corresponding Codd-style positive re-

lational algebra with evaluation rules “∗ = ∗” and “∗ = a” was sketched by Imielinski

and Lipski in [50]. Such cylinders correspond to the structures in diagonal-free Cylin-

dric Set Algebras [43, 44]. The exact FO-expressive power of these diagonal-free

star-cylinders is an open question. Nevertheless, using the techniques of this disser-

tation, it can be shown that naive existential nulls can be seamlessly incorporated in

diagonal-free star-cylinders.

In addition to the above and the work described in Section 1.6, Imielinski and

Lipski also showed in [50] that the fact that Codd’s Relational Algebra does not

have a finite axiomatization, and the fact that equivalence of expressions in it is

undecidable, follow from known results in Cylindric Algebra. This is of course true

for a host of general results in Mathematical Logic.

100

Yannakakis and Papadimitriou [63] formulated an algebraic version of dependency

theory using Codd’s Relational Algebra. Around the same time Cosmadakis [16] pro-

posed an interpretation of dependency theory in terms of equations over certain types

of expressions in Cylindric Set Algebra, and described a complete finite axiomatization

of his system. It was however later shown by Düntsch, Hodges, and Mikulas [48, 20],

again using known results from Cylindric Algebra, that Cosmadakis’s axiomatization

was incomplete, and that no finite complete axiomatization exists.

Interestingly, it turns out that one of the models for constraint databases in [52]

by Kanellakis, Kuper, and Revesz — the one where the constraints are equalities

over an infinite domain — is equivalent with our star-tables. Even though [52] de-

velops a bottom-up (recursive) evaluation mechanism for FO-queries, the mechanism

is goal-oriented and contrary to our star-cylinders, there is no algebra operating on

the constraint databases. We note however that the construction of the sieve Ȧ in

Section 3 is inspired by the constraint solving techniques of [52]. It therefore seems

that our star-cylinders and algebra can be made to handle inequality constraints on

dense linear orders as well as polynomial constraints over real-numbers, as is done in

[52]. We also note that our work is related to the orbit finite sets, treated in a general

computational framework in [14].

As noted in Section 1.6, the existential nulls have long been well understood.

According to [19] the fact that positive queries (no negation, but allowing universal

quantification) are preserved under onto-homomorphisms are folklore in the database

community. Using this monotonicity property, Libkin [33] has recently shown that

positive queries can be evaluated naively on finite existential databases I under a so

called weak closed world assumption, where Rep(I) consists of all complete instances

J , such that h(I) ⊆ J and J only involves constants that occur in I, and furthermore

h is onto from the finite universe of I to the finite universe of J . Our Theorem 9

generalizes Libkin’s result to infinite databases. In this context it is worth noting that

Lyndon’s Positivity Theorem [59] tells us that a first order formula is preserved under

101

onto-homomorphisms on all structures if and only if it is equivalent to a positive

formula. It has subsequently been shown that the only-if direction fails for finite

structures [4, 61]. Since our star-cylinders represent neither finite nor unrestricted

infinite structures, it would be interesting to know whether the only-if direction holds

for infinite structures represented by star-cylinders. If it does, it would mean that

our Theorem 9 would be optimal, meaning that if ϕ is not equivalent to a positive

formula, then naive evaluation does not work for ϕ on databases represented by naive

star-cylinders.

Furthermore, we note that Sundarmurthy et al. [62] have generalized the condi-

tional tables of [49, 35] by replacing the labeled nulls with a single null m that initially

represents all possible domain values. They then add constraints on the occurrences

of these m-values, allowing them to represent a finite or infinite subset of the domain,

and to equate distinct occurrences of m. Sundarmurthy et al. then show that their

m-tables are closed under positive (but not allowing universal quantification) queries

by developing a difference-free Codd-style relational algebra that m-tables are closed

under. Merging our approach with theirs could open up interesting possibilities.

6.2 Future Work

In this research dissertation we addressed the Intuitionistic Databases, along with

query evaluation and data exchange problem. This problem has been studied widely

but there are still many issues to be solved. As one the most fundamental problems,

the interpretation of negation and quring the databases in presence of negation has

been revisited. We proposed a four valued logical semantic as a clear semantic for

intuitionist logical view of databases. There are still further works to be done such as:

102

• Adding different forms of negation: A negation can be expressed in different

forms in intuitionistic logic. Also, in four valued logic we have the negation of

information, which is called conflation. Conflation and negation can be com-

bined. Therefore, it can add to expressive power of the language. These different

forms of negation can be interpreted in our approach, meaning that the decom-

position technique and algebraic evaluation can be applied to queries using

≤i-based operators. An application of this for data exchange with GAV-tgd’s

can be found in [41]. So, it would be interesting to consider the result of queries

after applying these form of negations.

• Extension to other problems: There are problems in theory of databases, such as

data repair and data recovery. These problems have a close connection with the

problem of data exchange. Therefore, we propose to extend the intuitionistic

semantics to these problems and hopefully there will be more accurate results

in comparison to currently existing approaches.

• Expressive power of star-cylinders: In this research we showed that FO, CA and

SCA have the same expressive power. However, the set of cylinders (Database

Instances) that can be expressed using star-cylinders has not been shown to

fit in any category. Our preliminary results characterize the ∗-representable

infinite instances in terms of orbit-finite sets. Showing what are the exact class

of instances and cylinders which can be losslessly expressed by star-cylinders is

still open.

• Chase Termination Problem: We already showed that tuple generating depen-

dencies in presence of negation with incomplete and inconsistent instances can

be evaluated with our intuitionistic logic based approach. It would be interest-

ing to know which class of dependencies are the upper bound for our approach

and how the chase termination conditions will be influenced by universal nulls.

103

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the representation

and querying of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187,

1991.

[3] Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent

databases: algorithms and complexity. In ICDT, pages 31–41, 2009.

[4] Miklos Ajtai and Yuri Gurevich. Monotone versus positive. J. ACM, 34(4):1004–

1015, October 1987.

[5] Hajnal Andréka, Miklós Ferenczi, and István Németi. Cylindric-like Algebras

and Algebraic Logic, volume 22. Springer Science & Business Media, 2014.

[6] Marcelo Arenas, Pablo Barceló, Ronald Fagin, and Leonid Libkin. Locally con-

sistent transformations and query answering in data exchange. In Proceedings of

the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, June 14-16, 2004, Paris, France, pages 229–240, 2004.

[7] Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer. Applications of anno-

tated predicate calculus to querying inconsistent databases. In International

Conference on Computational Logic, pages 926–941. Springer, 2000.

104

[8] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query

answers in inconsistent databases. In PODS, pages 68–79, 1999.

[9] Marcelo Arenas, Ronald Fagin, and Alan Nash. Composition with target con-

straints. In ICDT, pages 129–142, 2010.

[10] Marcelo Arenas, Jorge Pérez, and Cristian Riveros. The recovery of a schema

mapping: Bringing exchanged data back. ACM Trans. Database Syst., 34(4),

2009.

[11] Jr. Belnap, Nuel D. A useful four-valued logic. In J.M̃ichael Dunn and George

Epstein, editors, Modern Uses of Multiple-Valued Logic, volume 2 of Episteme,

pages 5–37. Springer Netherlands, 1977.

[12] Joachim Biskup. A foundation of codd’s relational maybe-operations. ACM

Trans. Database Syst., 8(4):608–636, 1983.

[13] Joachim Biskup. Extending the relational algebra for relations with maybe tuples

and existential and universal null values. Fundam. Inform., 7(1):129–150, 1984.

[14] Mikolaj Bojańczyk. Orbit-finite sets and their algorithms (invited talk). In 44th

International Colloquium on Automata, Languages, and Programming, ICALP

2017, July 10-14, 2017, Warsaw, Poland, pages 1:1–1:14, 2017.

[15] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, 1970.

[16] Stavros S. Cosmadakis. Database theory and cylindric lattices (extended ab-

stract). In 28th Annual Symposium on Foundations of Computer Science, Los

Angeles, California, USA, 27-29 October 1987, pages 411–420, 1987.

[17] C. J. Date. Database in depth - relational theory for practitioners. O’Reilly, 2005.

105

[18] Jan Van den Bussche. Applications of Alfred Tarski’s ideas in database theory. In

Laurent Fribourg, editor, Computer Science Logic, 15th International Workshop,

CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-

13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer Science, pages

20–37. Springer, 2001.

[19] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Pro-

ceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, PODS 2008, June 9-11, 2008, Vancouver,

BC, Canada, pages 149–158, 2008.

[20] Ivo Düntsch and Szabolcs Mikulás. Cylindric structures and dependencies in

relational databases. Theor. Comput. Sci., 269(1-2):451–468, 2001.

[21] Ronald Fagin. Inverting schema mappings. ACM Trans. Database Syst., 32(4),

2007.

[22] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. Probabilistic data

exchange. In ICDT, pages 76–88, 2010.

[23] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data

exchange: Semantics and query answering. In ICDT, pages 207–224, 2003.

[24] Ronald Fagin, Phokion G. Kolaitis, Alan Nash, and Lucian Popa. Towards a

theory of schema-mapping optimization. In PODS, pages 33–42, 2008.

[25] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting

to the core. In PODS, pages 90–101, 2003.

[26] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Com-

posing schema mappings: Second-order dependencies to the rescue. In PODS,

pages 83–94, 2004.

106

[27] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Reverse

data exchange: coping with nulls. In PODS, pages 23–32, 2009.

[28] Melvin Fitting. Bilattices and the semantics of logic programming. J. Log.

Program., 11(1&2):91–116, 1991.

[29] Melvin Fitting. Kleene’s logic, generalized. J. Log. Comput., 1(6):797–810, 1991.

[30] Melvin Fitting. The family of stable models. J. Log. Program., 17(2/3&4):197–

225, 1993.

[31] Ariel Fuxman and Renée J Miller. First-order query rewriting for inconsistent

databases. Journal of Computer and System Sciences, 73(4):610–635, 2007.

[32] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. When is naive eval-

uation possible? In PODS, pages 75–86, 2013.

[33] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. Näıve evaluation of

queries over incomplete databases. ACM Trans. Database Syst., 39(4):31:1–31:42,

December 2014.

[34] Matthew L. Ginsberg. Bilattices and modal operators. In Rohit Parikh, editor,

TARK, pages 273–287. Morgan Kaufmann, 1990.

[35] Gösta Grahne. The Problem of Incomplete Information in Relational Databases,

volume 554 of Lecture Notes in Computer Science. Springer, 1991.

[36] Gösta Grahne and Ali Moallemi. Universal (and existential) nulls. CoRR, Sub-

mitted to Journal, abs/1803.01445, 2018.

[37] Gösta Grahne and Ali Moallemi. Universal nulls (extended abstract). In Pro-

ceedings of the 12th Alberto Mendelzon International Workshop on Foundations

of Data Management, Cali, Colombia, May 21-25, 2018., 2018.

107

[38] Gösta Grahne and Ali Moallemi. A useful four-valued database logic. In Bipin C.

Desai, Sergio Flesca, Ester Zumpano, Elio Masciari, and Luciano Caroprese, edi-

tors, Proceedings of the 22nd International Database Engineering & Applications

Symposium, IDEAS 2018, Villa San Giovanni, Italy, June 18-20, 2018, pages

22–30. ACM, 2018.

[39] Gösta Grahne, Ali Moallemi, and Adrian Onet. Intuitionistic data exchange.

In Andrea Cal̀ı and Maria-Esther Vidal, editors, Proceedings of the 9th Alberto

Mendelzon International Workshop on Foundations of Data Management, Lima,

Peru, May 6 - 8, 2015., volume 1378 of CEUR Workshop Proceedings. CEUR-

WS.org, 2015.

[40] Gösta Grahne, Ali Moallemi, and Adrian Onet. Recovering exchanged data. In

Tova Milo and Diego Calvanese, editors, Proceedings of the 34th ACM Symposium

on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia,

May 31 - June 4, 2015, pages 105–116. ACM, 2015.

[41] Gösta Grahne, Nicolas Spyratos, and Daniel Stamate. Semantics and contain-

ment with internal and external conjunctions. In Database Theory - ICDT ’97,

6th International Conference, Delphi, Greece, January 8-10, 1997, Proceedings,

pages 71–82, 1997.

[42] Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL queries, its

validation, and applications. PVLDB, 11(1):27–39, 2017.

[43] Leon Henkin, J Donald Monk, and Alfred Tarski. Cylindric Algebras–Part

I,volume 64 of Studies in Logic and the Foundations of Mathematics. North-

Holland Publishing Company, 1971.

[44] Leon Henkin, J Donald Monk, and Alfred Tarski. Cylindric Algebras–Part II,

volume 115 of Studies in Logic and the Foundations of Mathematics. North-

Holland Publishing Company, 1985.

108

[45] André Hernich. Answering non-monotonic queries in relational data exchange.

Logical Methods in Computer Science, 7(3), 2011.

[46] André Hernich. Computing universal models under guarded tgds. In ICDT,

pages 222–235, 2012.

[47] André Hernich, Leonid Libkin, and Nicole Schweikardt. Closed world data ex-

change. ACM Trans. Database Syst., 36(2):14, 2011.

[48] Ian Hodkinson and Szabolcs Mikulás. Axiomatizability of reducts of algebras of

relations. Algebra Universalis, 43(2):127–156, 2000.

[49] Tomasz Imielinski and Witold Lipski. Incomplete information in relational

databases. J. ACM, 31(4):761–791, 1984.

[50] Tomasz Imielinski and Witold Lipski. The relational model of data and cylindric

algebras. J. Comput. Syst. Sci., 28(1):80–102, 1984.

[51] Thomas Jech. Boolean-valued models. Handbook of Boolean algebras (Edited by

JD Monk), North-Holland, 3:1197–1211, 1989.

[52] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages.

Journal of Computer and System Sciences, 51(1):26 – 52, 1995.

[53] Michael Kifer and Eliezer L Lozinskii. A logic for reasoning with inconsistency.

Journal of Automated reasoning, 9(2):179–215, 1992.

[54] Stephen Cole Kleene. Introduction to metamathematics. D. Van Norstrand, 1952.

[55] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata manage-

ment. In PODS, pages 61–75, 2005.

[56] Leonid Libkin. Negative knowledge for certain query answers. In Web Reasoning

and Rule Systems - 10th International Conference, 2016, pages 111–127, 2016.

109

[57] Leonid Libkin. Negative knowledge for certain query answers. In Magdalena

Ortiz and Stefan Schlobach, editors, Web Reasoning and Rule Systems - 10th

International Conference, RR 2016, Aberdeen, UK, September 9-11, 2016, Pro-

ceedings, volume 9898 of Lecture Notes in Computer Science, pages 111–127.

Springer, 2016.

[58] Leonid Libkin. Sql’s three-valued logic and certain answers. ACM Trans.

Database Syst., 41(1):1:1–1:28, 2016.

[59] Roger C. Lyndon. Properties preserved under homomorphism. Pacific J. Math.,

9(1):143–154, 1959.

[60] Adrian Onet. The chase procedure and its applications. PhD thesis, Concordia

University, 2012.

[61] Alexei P. Stolboushkin. Finitely monotone properties. In Proceedings of the 10th

Annual IEEE Symposium on Logic in Computer Science, LICS ’95, pages 324–,

Washington, DC, USA, 1995. IEEE Computer Society.

[62] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey F. Naughton,

and Val Tannen. m-tables: Representing missing data. In 20th International

Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy,

pages 21:1–21:20, 2017.

[63] Mihalis Yannakakis and Christos H. Papadimitriou. Algebraic dependencies. J.

Comput. Syst. Sci., 25(1):2–41, 1982.

110

	List of Figures
	Introduction
	The Relational Model
	Data Exchange in the Relational Model
	The Application Area

	Problem Statement
	Belnap's Logic
	Belnap's Logic in literature
	Implementation of Four Valued logic

	Universal Nulls
	Application of Universal Nulls
	Algebra for Universal Nulls

	Thesis Structure
	Contribution

	Preliminaries
	Relational Model
	Language
	Instances
	Queries and answers
	Dependencies and Data Exchange

	Incomplete Information.

	Cylindric Set Algebra and Star Cylindric Algebra
	Cylindric Set Algebra
	Cylindric Set Algebra and FO
	Equivalence of CA and FO

	Star Cylinders and Star Cylindric Algebra
	Star Cylinders
	Positive Star Cylindric Algebra
	Adding Negation
	Equivalenvce of CA and SCA

	Stored Databases and Query Evaluation
	Universal Nulls (u-databases)
	Adding Existential Nulls
	Mixing Existential and Universal Nulls
	Naive Evaluation of Existential Nulls
	Stored databases with universal and existential nulls (ue-databases)

	Query Evaluation in Four
	Four Valued Logic
	Four-valued instances.
	Queries and Answers

	Decomposition
	Adding Universal Nulls
	Algebraic Evaluation
	Implication in Four-Valued Databases
	Tuple-Generating Dependecies

	Chasing with Infinite Domain

	Complexity
	General Complexity
	Membership Problem
	Containment Problem

	Related and Future Work
	Related Work
	Future Work

	Bibliography

