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Abstract 
 

Transit Network Complexity in the Context of Transit Itinerary Inference 

 with Travel Survey Data and GTFS 

 

Marshall Davey 
 

Researchers and planners have taken great interest in the rich data-resource that smartphone and 

GPS travel surveys can now produce. The interpretation of this data has become a popular topic 

with methods such as transit itinerary inference (TII) from travel survey data and GTFS 

emerging as useful tools in the field of travel behavior analysis. This exploratory research 

develops metrics to quantify a characteristic of GTFS data that complicates the overlay 

processing of travel survey GPS points and bus route geometries in TII: the spatiotemporal 

overlap of bus routes in the GTFS record. Accurate route inference is difficult in regions where 

rider data coincides with overlapping routes and various TII approaches have been tested to 

address this challenge. In this research, detecting overlap, and quantifying the degree of overlap 

on road links is achieved in 5 study regions through the application of two proposed measures: 

The Overlapping Routes on Links (OROL) index, and the Probability of Passage (POP) score. 

The latter’s output is seen as one way to improve route matching rates in TII. These measures 

build off the traditional Line Overlapping Index (LOI) and improve upon it by providing 

previously unobtainable road-link level detail; the OROL index, in fact, represents a spatially 

precise decomposition of the LOI. To ensure accurate analysis between networks, an additional 

novel procedure is developed that converts GTFS data into a simplified stand-in road network 

representation, thus providing a base layer for disaggregate network measures, and replacing the 

need for additional road network sources entirely.  
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1 Introduction 

Observing how riders move about in a transit system is a crucial first step for making any 

informed decisions about expanding or changing service. Given the great expense of transit 

operations and the long-term scope of their operations, planners need to implement the best 

possible solutions for the specific needs of the citizens on a limited budget. Maximizing the 

benefit of new routing and infrastructure requires not only knowledge of how the existing 

network is being used, but also projections of how alterations or extensions to it will impact the 

usage of the system and the community at large. The planning of public transit systems in 

particular has the power to empower or hinder communities with regards to access to 

employment, education, food and health services, and social and cultural events.  

Once transit systems are in place, methods of observing and measuring their effectiveness are 

of the utmost importance for tailoring the service and correcting any oversights. Historically, 

network usage statistics are gathered via rider counting and phone interviews which are then 

used to create Origin-Destination (OD) cost matrices. OD cost matrices are used to calculate the 

least cost path between points and are an indispensable tool for planning the layout of transit 

routes. Unfortunately, the high cost of conducting rider surveys and processing the data leaves 

transit agencies with little choice than to conduct the studies at intervals several years apart. 

Luckily, advances in GPS smartphone technologies and the ubiquity of smartphones in North 

America is opening new avenues in the study of transportation systems. 

Transportation planning is a field that has benefited greatly from advances in mobile, and 

GPS technologies. In particular, the collection and processing of data from smartphone travel 

surveys is a topic that is gaining traction in both private and public sectors (Nitsche, Widhalm, 

Breuss, & Maurer, 2012; Shen & Stopher, 2014; Zahabi, Ajzachi, & Patterson, 2017). When 

combined with GIS technologies, this type of survey data can provide detailed descriptions of 

how users move in a transit network, and even allow for the inference of respondent transit 

itineraries (Zahabi et al., 2017). 

In addition to new sources of transportation demand side data, supply side data provided by 

public transportation agencies is also facilitating research efforts. The now popular General 

Transit Feed Specification (GTFS) is a data format transit agencies use to publish their routing 

and scheduling information and has become a de facto standard as more and more agencies 
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choose to make the data public via open-data portals online (Hadas, 2013). Combining this freely 

available GTFS data with rider GPS data provides researchers and planners with the data they 

need to not only observe respondent transit itineraries, but to do so with a previously impossible 

level of precision. 

Thanks to these developing technologies and data sources, new ways of interpreting and 

inferring information from the collected data are also being developed. The observation and 

inference of several trip characteristics from GPS data is being explored and increasingly reliable 

methods for inferring details such as origin and destination, travel mode, vehicle type, direction, 

and even trip purpose are emerging in the literature (6, 21–25, 28). Recent work in this area has 

begun to examine methods for inferring the transit itineraries of travelers. As such, “transit 

itinerary inference” (TII) aims to completely describe each segment of a rider’s trip using 

spatiotemporal data collected from a variety of sources (Thiagarajan et al., 2010; Zahabi et al., 

2017).  

Transit itinerary inference has begun to be explored relatively recently, primarily with the aid 

of vehicle location technologies and with transit fare-card (smartcard) data (Gordon, 

Koutsopoulos, Wilson, & Attanucci, 2013; Nassir, Khani, Lee, Noh, & Hickman, 2011). More 

recently, methods to infer transit itinerary combining smartphone travel survey data and GTFS 

have emerged (1). One such approach is the TII algorithm developed by Zahabi et al. in which an 

iterative process examines GPS points and their coincidence with GTFS records, direction of 

travel, and even instances where GPS signals are not present in order to infer a rider’s full 

itinerary (Zahabi et al., 2017). The inference of this information is accomplished over several 

steps: first, transit trips are extracted from the smartphone travel survey data by filtering GPS 

data to reveal patterns of mobility vs. immobility. Next, once a series of GPS points are 

identified as a trip and grouped together, these trips are overlaid with GTFS scheduling and 

routing data to determine a collection of candidate transit routes whose path in the road network 

matches that of the rider. A trip breaker algorithm then breaks the trips into sub-segments 

according to where the collections of candidate routes change. Afterwards, each sub-segment is 

compared to each other to determine which routes are common to all sub-segments. Finally, it is 

only when a route belonging to all the matches also coincides with a route belonging to the 

boarding stop that the algorithm assigns that route to that trip.  



 

3 
 

This GIS-based, algorithmic approach was able to reliably infer transit route details for 87% 

of the distance travelled by transit in the pilot study region of Montreal. The remaining 13% of 

transit distance occurred in areas with route overlap and represents “route ambiguity” within the 

network (Zahabi et al., 2017) . 

Figure 1 provides an example of transit route ambiguity. The figure shows a schematic 

representation of an intersection (avenue du Mont-Royal/avenue du Parc in Montreal, Canada), 

along with three transit lines (shown in color), and the GPS points that represent travel survey 

data. All three of the transit lines travel northward along Parc. North of Parc, two of the transit 

lines continue north, while the other (route 129) deviates to travel along another street (Cote Ste. 

Catherine). The transit network is ambiguous for all the GPS points in this example. Transit 

Itinerary Inference work amounts to reducing network ambiguity by controlling for time of day 

as well as by following the location data of a user across time (Thiagarajan et al., 2010; Zahabi et 

al., 2017). Although transit itinerary is inherently a function of transit route ambiguity, there are 

no adequate indicators able to measure this characteristic for transit networks. This thesis 

proposes two methods that build on the traditional Line Overlapping Index (described below) to 

better describe the degree to which networks are characterized by overlap, or ambiguity. 

 

                 

Figure 1: Transit network ambiguity 
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A different route inference method, developed by Carrel et al., begins with a similar GIS 

approach to identify candidate routes, but then employs an undirected tree, graph-theory 

approach to match an entire trip vector to one common route (Carrel, Lau, Mishalani, Sengupta, 

& Walker, 2015). This procedure forgoes the segmenting approach described in the previous 

method that could be said to contribute to the issue of route ambiguity (since ‘ambiguity’ results 

when a route number match cannot be found amongst all trip sub-segments) and yet the authors 

acknowledge that route overlap as a hindering factor in their procedure. This method examines 

GPS rider data gathered from survey devices, the GTFS record, and Active Vehicle Location 

(AVL) data to construct a 3-dimensional (latitude, longitude, time) search box around the rider’s 

trip points. From this, all transit routes that pass through the box are recorded. Next, Dynamic 

Time Warping is used to calculate similarity between the GPS trace and route locations, and 

finally a distance threshold is applied to select candidate routes. Via these methods the team was 

able to correctly infer 93% of the 103 sample transit trips recorded in their survey of San 

Francisco (Carrel et al., 2015).  

While the authors do not explore the cause of the remaining 7% of undescribed trips, they 

mention the occurrence of multiple route matches hindering the route inference process. In this 

study the authors match rider trajectories to AVL data and only use GTFS to verify if busses 

were running on time. I believe the fact that this procedure examines AVL data (which provides 

the actual location of vehicles during service runs), and yet still runs into problems of 

overlapping routes underscores that this challenge is inherent to transit itinerary inference 

processes regardless of whether the static or real-time GTFS records are used. Even while 

relying on Active Vehicle Location data bus routes will still converge for transfers as well as at 

termini at given times in their schedules, effectively increasing the number of candidate route 

matches.  

The motivation for this research is to address the issue of route overlap by developing 

measures that can locate and quantify the occurrence of route overlap in GTFS datasets that meet 

the minimum condition of having a geographically faithful shapes.txt file. The networks 

examined in this study belong to the following Canadian cities, presented in descending order of 

metropolitan population: Toronto, Montreal, Vancouver, Calgary, and Edmonton.  

While the TII developed by Zahabi et al. performed relatively well in the pilot study region 

of Montreal, it is an open question as to whether it would perform as well in other cities. In the 
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absence of validated trip data from the other study regions to test the relationship between route 

attribution accuracy and network shape, this research will develop a ranking of the study regions 

according to how well a TII route matching procedure is expected to work in each network.  

In order to develop the ranking of cities, two existing metrics will be employed alongside the 

measures developed in this research. Of the two existing metrics, only one of them is calculated 

using spatial data, while the other relies solely on timetable information. The two extant 

measures employed in this study are: 1) the Active Routes count: tabulates and reports the 

number of transit routes active for each hour of the day; 2) the Line-Overlapping Index, which 

provides one dimensionless score for the whole network representing the degree to which routes 

converge onto common paths. And finally, the two novel metrics proposed in this research are 

the Overlapping Routes on Links measure (OROL) that examines each road link with active 

routes and produces a total route overlap count for each link, and the Probability of Passage 

score (POP) that expands upon the OROL measure by also tabulating the departures of each 

route present on a link and calculating a departure ratio for each route (the POP score). The 

spatial layers that result from the OROL and POP methodologies are then used to measure 

network statistics such as total length of overlapping routes, the ratio of overlapping routes to 

total network distance (OROL %), as well as portion lengths of overlap once the road links are 

filtered using POP scores (more on this in the methodology section). 

While the OROL methodology was developed with a different goal in mind than the LOI, it 

was interesting to discover during this research that the OROL methodology offers a new 

pathway to producing LOI scores, doing so in a spatially disaggregate manner thanks to the 

availability of spatially disaggregate data and GIS. In effect, the OROL calculation presents a 

methodology to decompose the single LOI value measured for a network into degree of overlap 

categories. Each overlap category can then be located and measured in the network to produce a 

more detailed accounting of overlap.  

In order to calculate OROL and POP scores, a road-network shapefile is required so that each 

road link can be examined for the correspondence of bus routes. Initial tests of this process raised 

concerns over the accuracy of length measures derived from publicly available road files. After 

encountering files from different sources with varying topographical rules, or worse yet, files 

from OpenStreetMap that have sidewalks and bike paths coded as roads, the idea of generating 

road-networks directly from the GTFS itself was proposed. The use of the GTFS data to create a 
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“road-free” network will be described in the methodology section of this thesis as it was a crucial 

development in the design of these measures. The GTFS-to-roads section further below also 

includes more detailed examples of network encoding configurations that lead to the mis-

attribution of routes and erroneous length calculations (see Figure 8 page 36). 

 Thanks to this novel GTFS-to-roads approach, a quasi-road network file with consistent 

topological rules can be generated quickly for each city in the study group. In addition to 

consistent topology, these resultant layers also make GIS processing more efficient by 

eliminating any road links from the analysis that do not have active routes for a given test period.  

As such, this paper contributes to the current literature by developing two spatially fine (link 

by link) measures of transit overlap that are comparable across transit networks and can be 

derived exclusively with the use of GTFS data. The link by link nature of these measures and the 

availability of the resultant length values are improvements over the classic Line Overlapping 

index that provides a single dimensionless score for the entire network (Derrible & Kennedy, 

2011; Musso & Vuchic, 1988). Likewise, the spatially disaggregate GIS layers that are produced 

throughout the procedures are useful for encoding any link-level statistic encountered while 

analyzing different types of networks and represent a contribution this research brings to the field 

of network analysis.  

What follows in the literature review is a re-cap of the current state of overlap analysis in the 

context of network complexity as well as a collection of classical transit indicators that can be 

calculated using only the GTFS dataset of a transit system. 
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2 Literature Review 

With the increased accuracy of Transit Itinerary Inference procedures established as the 

motivating factor behind this study, the literature review will now turn to the development of 

transit measures.  

Developing measures that quantify and locate the overlap of transit routes in static GTFS 

records is the primary goal of this research, and as such, experiments testing route matching rates 

in TII processes fall outside the scope of this research. With this in mind, the research focuses 

primarily on the development of measures, the development of a GIS network spatial 

disaggregation methodology, and the testing of the accuracy of each developed measure’s 

outputs. To situate this work in the growing body of literature, the following review focuses on 

the measure of transit networks, the development of these measures, and how modern data-sets 

facilitate and even motivate such efforts.  

The research presented in this paper contributes to a growing body of literature that 

examines useful ways in which GTFS data can be leveraged in the domain of transit network 

analysis. What follows below is a brief history of the development of transit indicators 

punctuated by the arrival of GTFS in 2005. From there, the review will cover how GTFS has 

been used in conjunction with these older metrics, as well as how it permits for the relatively 

easy calculation of Network and Graph theory approaches to network measures. Finally, the 

review concludes with current measures of network overlap that pertain to transit itinerary 

inference with a special focus on the way each expresses route ambiguity.  

2.1 Classic transit indicators 
Transit Level of Service (LOS) indicators have long been a topic of interest to city and 

transit planners alike. Given that many transit agencies are publicly funded, the ability to 

accurately measure and report the functioning of a transit system is key in order to ensure that 

public funds are used efficiently. Historically, the development of such indicators has typically 

been driven by governmental or industry bodies with some of the first indicators ever proposed  

resulting from studies commissioned by governmental bodies like the Pennsylvania Department 

of Transport in 1973, and even earlier than that, the Public Administration Service in 1958, based 

in Chicago (Allen & DiCesare, 1976).  

There exist different classes of indicators; some are designed to be used by administrators 

making budgetary decisions, others by transportation engineers, and others still that are intended 



 

8 
 

to inform riders about the agencies offerings (Fielding, Glauthier, & Lave, 1978). There are 

efficiency indicators, and effectiveness indicators, as well as Level of Service indicators and 

even Transit Hygiene indicators – this final type is perhaps the most conceptual of the group as it 

pertains to the level of satisfaction of using the service (Alter, 1976). Since a user’s level of 

satisfaction with the service is a subjective matter, the factors impacting Transit Hygiene are 

typically measured quantitatively and don’t lend themselves to being tabulated from tables or 

maps. Such indicators are important to transit planners for understanding why ridership may be 

low when the LOS and financial indicators all report that the system is running efficiently and 

affordably (Alter, 1976).  

Some of the most popular and pertinent transit indicators stem from a seminal work titled 

“Evaluation of Public Transit Services: The Level-of-Service Concept” authored by Colin H 

Alter et al. in 1976.  The paper proposed a set of basic indicators designed to give governmental 

administrators the information they needed to properly manage public transit services (Alter, 

1976). Table 1, shows some of the basic indicators proposed in their paper: 

 

Introduced by / Source Examines Indicator Calculation 

Transit Service Evaluation: 

Preliminary Identification 

of Variables 

Characterizing Levels of 

Service, William G Allen, 

et al. 1976 

Routes 

Route Density route-km / square km 

Route Distribution vehicle km/ service area pop 

Route Coverage (area) route km * 0.4km / square km 

Route Coverage 

(population) 
route km * 0.4km / 

population 

vehicle use (distance) 
daily vehicle km / scheduled 

# of vehicles 

vehicle use (time) 
daily vehicle hours / 

scheduled # of vehicles 

Frequency Headway average time between busses 

Capacity 
Vehicle seat capacity population / total seats 

route capacity max # of passengers / hour 

Non-user 

related 
Route Congestion 

# of busses on any street 

segment / hour 
Table 1: Early transit indicators 

 It is interesting to note that 7 out of the 10 listed measures can be calculated with GTFS 

even though these measures were proposed 29 years before the GTFS format was created. This 

helps demonstrate how the network information required to provide accurate schedule planning 

and location services is the same type of data required to calculate various network statistics. We 
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cannot say that the data stored in GTFS was created as such to facilitate the calculation of these 

indices, but rather the data required by both researchers and itinerary systems are one and the 

same.  

2.2 GTFS 
The General Transit Feed Specification (formerly known as the Google Transit Feed 

Specification) is a standardized data-format that transit agencies employ to disseminate their time 

tables and routing information to scheduling and itinerary platforms such as Google Maps 

(Antrim et al., 2013). The datasets are published in open data portals hosted by transit agencies 

and the classic GTFS format is referred to as a static record. This is in contrast to GTFS-r which 

is a real-time reporting service that can track vehicle locations through online Application 

Programming Interfaces (web API). Contained in a collection of .csv files, a static GTFS dataset 

contains the location of all the agency’s stops and routes, stored as latitude and longitude points, 

the complete timetables of all lines, and additional information for trips such as wheelchair 

accessibility or special service schedule exclusions.    

Prior to digital GTFS datasets the primary means of disseminating this information was 

via printed maps and schedules, rendering compiling and analyzing this information an arduous 

task. GTFS presents increased accessibility to this data as the new format encompasses all of the 

required data in the common .csv format.  In addition to saving the time of manually compiling 

schedules, the task of calculating the spatial characteristics and relationships of the network is 

also easily accomplished thanks to Geographic Information Systems (GIS) software.   

Historically, the calculation of even the simplest network characteristics such as route 

lengths, coverage areas, and stop densities presented a labor-intensive process. The field of 

transit network analysis, and the creation of indices to conduct the analysis, has been opened 

wide to researchers thanks to this new concise source of network information. 

Much of the current research applying GTFS to network analysis has examined how to 

recreate classic indicators used since the beginning of transit analysis, and others still rely on 

outside sources of information such as GIS road network files and census level demographic data 

(Antrim et al., 2013).  

It is expected that different indicators require different data, some of which is more 

readily available than others; therefore, it follows that the data available to researchers is often a 

major consideration in choosing an indicator for the purpose of a study. It is in this regard that 
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GTFS data represents a great source of information for researchers. GTFS is especially handy to 

researchers since the data comes packaged in a common scale and resolution, and was compiled 

under one common context (Hadas, 2013). This is in contrast to data gathered via traditional 

sources that often vary in many characteristics. The fact that most transit agencies using GTFS 

make the data publicly available also contributes greatly to its utility for researchers. 

The GTFS data format originated in 2005 due to a joint effort between the TriMet transit 

agency of Portland, OR. and Google to bring transit planning software to the citizens via Google 

Maps platform (J. C. Wong, 2013) ; as such, the data contained in the files is only intended to 

drive transit itinerary software. This limits the possible types of analysis to service level 

evaluation and topographical analysis of the network (Catala, Downing, & Hayward, 2011). 

Since the data does not reflect any rider or performance levels of the system, efficiency and 

hygiene indicators are not possible. Even though GTFS was not specifically intended to be a data 

source for researchers and planners, the pursuit of GTFS transit indices has been a popular topic. 

As with the early transit indicators, governmental and industry bodies remain a strong driving 

force in the development of GTFS indicators. What follows is a list of measures possible with 

GTFS datasets proposed by the National Center for Transit Research, FL.: 

 

Source Type metric 

National Center for Transit 

Research, University of 

South Florida for the 

Florida Department of 

Transportation 

Service 

Evaluation 

metrics 

service area 

service coverage 

time and distance 

calculations 

route and service 

directness 

stop location and 

spacing optimization 

service frequency 

span of service 

Table 2: Classic metrics that can be calculated with GTFS 

The Transportation Research Board (a branch of the National Academy of Science, 

Engineering, and Medicine) has outlined several useful metrics in their Transit Capacity and 

Quality of Service Manual. The manual is produced with the support of the U.S. Department of 

Transportation and is intended as a guideline of best practices for planners. What follows is a 
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brief description of some of the indicators proposed in the manual authored by the Transportation 

Research Board that only need GTFS data to be calculated (Table 3 adjacent) (Group, 2013).  

While the manual makes no specific mention of GTFS in regards to these metrics, they 

can all be calculated using the information stored in a GTFS dataset. 

 

Source Metric Measure Note 

 

 

 

 

 

Transit 

Capacity 

and 

Quality of Service 

Manual 

 

Daily Average 

Headway 

measures the time 

between arrivals at 

each stop for each 

line 

 

 

 

 

Route Length and 

Stop Density 

 

 

looks at the 

relationship between 

average route length 

and number of stops 

especially helpful in 

identifying routes 

with unique attributes 

such as exceptionally 

long stretches 

representative of 

commuter lines, or 

exceptionally dense 

lines typical of urban 

cores 

 

 

Hours of Service 

looks at scheduling 

and routing to 

provide availability 

measures at the route 

segment and corridor 

resolution 

 

Table 3: Capacity and Quality of Service Indicators form the Transit Capacity and Quality of 

Service Manual 

 

2.3 Network and Graph Approaches to Network Quantification 

While Network and Graph theory approaches have lent their utility to transportation 

network analysis since the 1950s (Allen & DiCesare, 1976), the relatively recent advent of the 

GTFS data format and GIS software has done much to advance new methods in the domain of 

transit network design and analysis (J. Wong, 2013).  

Network and Graph theory have been applied to a host of indicators in the context of 

quantifying and describing transit networks. These approaches are best suited to travel time and 

accessibility indicators. Previous work by Yuval Hadas in 2013 applied graph methods to GTFS 
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data in a paper in which they measured four network indices. Their paper outlined connectivity, 

coverage, accessibility indicators as well as a route overlap indicator, all of which are listed in 

the table below (Hadas, 2013).  

One of the most important contributions to Graph theory applications to transit network 

analysis comes from Vuchic and Musso who, in their 1988 and 1991 publications, outlined a 

collection of transit metrics that are suited to graph analysis in the context of transit networks. 

Divided into network size and form as well as network topology indicators, some of these 

measures have been carried forward into recent work that uses GTFS data (Derrible & Kennedy, 

2011; Musso & Vuchic, 1988). The indicators that can be computed using GTFS data have been 

included in the table below.  

Recent work from Polytechnique Montréal, Quebec also took a graph-theoretical approach to 

developing transit metrics that use GTFS data. In their work, Fortin et al. calculate indicators at 

the stop and route level of analysis (listed below). The authors decided to omit network level 

analysis from their study since in the graph theory approach the network level results would be a 

summary of the route and stop level results (Fortin, Morency, & Trépanier, 2016). 

Source Metric Measure Note 

 

 

Innovative GTFS 

Data Application for 

Transit Network 

Analysis Using a 

Graph-Oriented 

Method 

(Fortin, P. 2016) 

Active pairs of stops Connectivity Stop level analysis  

Extent of stop 

service 

Connectivity and 

frequency 

Stop level analysis 

 

 

 

Service speed 

 

 

 

Average speed on 

each road link 

Route level analysis, 

helpful for revealing 

changes in service at 

different times of the 

day due to 

hypothetical 

disturbances to the 

road network 

 

 

 

Vuchic and Musso 

(1988,1991,2005) 

 

 

 

Number of stations 

on line 

 

 

 

 

 

 

 

 

 

Number of inter-

station spacings on 

line 

 

Length of line  

Number of transfer 

stations 

Used to express 

connectivity 
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Vuchic and Musso 

Continued  

(1988,1991,2005) 

 

Summarized in 

Applications of 

Graph Theory and 

Network Science to 

Transit Network 

Design (Derrible, S. 

et al. 2011) 

Number of lines in 

network 

Network size and 

form 

 

 

 

 

 

 

 

 

Network size and 

form 

 

Number of stations 

in network 

 

Number of inter-

station spacings 

 

Route length of 

network 

 

Number of Circles Also known as 

cyclicity  

Number of station to 

station travel paths  

 

Average inter-

station spacing 

 

 

 

 

 

Network topology 

 

 

  

 

Line overlapping 

index 

Provides one score 

for entire network 

Network complexity  

Network 

connectivity 

 

Directness of 

Service 

 

 

 

 

Assessing Public 

transport systems 

connectivity based 

on Google Transit 

data (Yuval Hadas, 

2013) 

Coverage level 

indicator 

  

Network speed 

indicator 

  

 

 

Intersection 

coverage indicator 

 Same as coverage 

level indicator but 

emphasizes flow at 

the intersection level 

allowing for node 

analysis 

Stop transfer 

potential 

  

Route Overlap 

Indicator 

Measures the 

overlapping extent 

of pairs of routes 

Used to measure 

efficiency of 

transfers 

Table 4: Graph and Network Theory Indicators Possible with GTFS 

 

2.4 Measuring Network Overlap 

It is important to note that three principal “overlap” indicators exist in the context of network 

and transit analysis. The Line Overlapping index (Derrible & Kennedy, 2011; Musso & Vuchic, 
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1988), a “transit overlap” measure (actually a sub-component of a Robustness indicator) (Liao & 

van Wee, 2017), and the Route Overlap indicator (Hadas, 2013). What follows below is a brief 

description of each measure and their applicability to the problem of route overlap in the GTFS 

record.  

 Of the three established indices, the Line Overlapping Index (LOI) introduced by V. Vuchic 

and R. Musso provides an accurate depiction of route overlap in the GTFS record, however as 

will be described below, the single numerical value the calculation produces sheds little light on 

the varying degrees and locations of overlap in the network. First published in their book 

Characteristics of Metro Networks and Methodology for their Evaluation in 1988, the LOI 

measure expresses the degree to which rail vehicles share common tracks (15). The measure was 

originally intended to communicate the degree of complexity in planning and scheduling as 

networks with many routes that share paths (rail or road) are more susceptible to disturbance 

since only one line sharing the rails or roadway needs to fail to disrupt all other vehicles on that 

shared portion. A network with few routes, but a high LOI will be more susceptible to network 

wide disruptions than another network with the same number of routes but a lower LOI.  

Although the measure was designed for rail networks, the concept of overlap and the nature 

of its spatial calculations lend themselves to bus network analysis for the purpose of this study. 

Similar to the goals of this study, the LOI helps answer the question “how much of this network 

has overlap?” However, as we will see in the Results and Discussion section further below, the 

numerical result does not always present an intuitive impression of the network.  

The LOI score works by calculating the ratio of the sum of all route lengths over the 

geometric union length of the network. That is to say, the geometric union only counts the 

lengths of overlapping regions once, while the sum all of route lengths includes those lengths for 

each instance of overlap. This produces a dimensionless indicator with a minimum value of 1.0 

that is comparable from network to network regardless of size or configuration (full formulation 

provided in methodology section) (Musso & Vuchic, 1988). While this value is useful for 

comparing the amount of overlap experienced over a time series, or from one network to another, 

the dimensionless, spatially aggregate result is of no particular use to TII practitioners examining 

a given network. For example, an LOI increase from 1.46 to 1.56 from one time-window to the 

next represents an increase in overlapping length within in the network, but this increase cannot 

account for where the changes happened or if the changes will have any particular impact on TII 
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procedures. Links with 3 or more overlapping routes may have experienced a net decrease in 

length, while links with two or more may have experienced an increase in overall length; these 

sorts of changes in the network cannot be expressed using the LOI index alone. 

The second existing measure of overlap, developed in network measurement research 

conducted by Liao and van Wee explored the notion of “transit overlap” as the availability of 

route options between origin-destination pairs. In their work, transit overlap is just one factor in 

the formulation of their network robustness measure and thus is not included in the collection of 

indices listed in the tables above. Their research describes the robustness of a transit system as its 

ability to recover from disturbances such as infrastructure failure and motor vehicle break down. 

In order for the system to recover quickly travelers must be presented with multiple options to 

complete a trip (Liao & van Wee, 2017). A network that contains many options to get from 

origin to destination (high transit overlap) is said to be robust, and the number of route options 

between origin and destination pairs represent the amount of overlap within that network. It is 

interesting to note how this measure is almost the inverse phenomenon of that examined by the 

LOI. I.e.: The conceptualization of the LOI is concerned with disruptions on the network 

hindering routes (a disruption affects many lines due to overlap), while the transit overlap 

calculation is concerned with the ability of the network to circumvent disruptions (the disruption 

has little affect because of overlap).  

Since the concept of overlap presented by Liao and van Wee focuses on something altogether 

different than what hinders TII route matching, it will not be considered for the study. 

Similar to the Line Overlapping Index, the Route Overlap indicator comes very close to 

providing a measure of route overlap on roadways in the GTFS record, but its pair-wise route 

comparison method results in simplified overlap reporting that does not quantify the degree of 

overlap on roadways.  

 Developed by Yuval Hadas and published in 2013, the Route Overlap indicator is intended 

to measure the efficiency of transfers within the network by revealing pairs of routes that have 

overlapping sections. The analysis compares two routes at a time to verify if they have 

overlapping portions and is mainly used to determine how easy it is for riders to transfer between 

lines. For example, a transfer that requires the riders to cross a street is said to not overlap, 

whereas routes that use a common stop facilitate transfers. A small degree of overlap will make 

transfers more efficient, while a large degree of overlap might indicate inefficient planning and 
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could mean the service is not efficiently covering the road network. The output of this analysis is 

a percentage of overlap between each pair of connecting routes from which a matrix can be 

constructed revealing all connecting routes in the network. While the handling of the spatial data 

is similar to what is needed to quantify overlap on road links, the methodology and results do not 

provide network level insight into the nature of overlap occurring in the network.  

For my research, the Line Overlapping Index from Vuchic and Musso will serve as a 

reference point against which my Overlapping Routes on Links metric will be compared. The 

research contained in this thesis diverges from previous work in that it examines a way of 

measuring the network that relies solely on GTFS data. Additionally, by handling the data in a 

spatially disaggregate manner, overlap can be identified and tabulated on a link-by-link basis in 

the network, thus providing a fine scale examination of network overlap previously unachieved. 
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3 Methodology 

This section describes in detail the programing environment constructed for the analysis 

as well as the step-by-step procedures for the calculation of each measure. The section closes 

with a procedural outline of the GTFS-to-Roads procedure that creates a stand-in road layer from 

the geometries contained in the GTFS shapes.txt file. This final contribution is crucial in carrying 

out the Overlapping Routes on Links and Probability of Passage calculations.  

The indices proposed in this section are intended to provide: 1) a precise depiction of the 

spatiotemporal overlap of bus routes in a static GTFS dataset, 2) an idea of how well a TII 

algorithm will perform in a given network if functioning by overlapping GTFS route shapes with 

a rider’s GPS record, and 3) a GIS toolkit for detecting overlap and pre-processing GTFS data to 

serve as new input layers in TII processes.  

Throughout the GIS procedures scripted to conduct this research many spatial layers are 

generated containing various network statistics; the geometric union for each sample period, 

route length and road-link length details, link centroid locations, complete route lists stored in 

arrays for each link, departure counts for each route on links, as well as global statistics such as 

total network length, convex hull area, and coverage areas calculated by buffering route shapes at 

different buffer sizes. Even though the final Overlapping Routes on Links (OROL) result 

presented in this research is a single numerical value similar to the Line Overlapping index, the 

methodology that brings us this result provides more information about each network than the 

previous comparable measures of overlap. Just as the final OROL network layers serve as the 

input for the POP methodology, it is proposed that the POP output layers can replace the use of 

GTFS routing data in TII procedures. Each of these layers, which present a more nuanced 

‘snapshot’ view of the network than GTFS can provide, contains the necessary information to 

conduct travel survey route matching procedures. It is even possible to conduct a Route Overlap 

analysis as proposed by Liao and van Wee., but thanks to the OROL and POP output layers, it 

can be conducted in one network-wide sweep rather than on a pair-wise basis.  

3.1 Required data and programming environment considerations 

GIS analysis was performed using the PostGIS and PostGIS_topology libraries operating 

in a PostgreSQL relational database. Python scripts control the overall procedure via the 

Psycopg2 Python library; queries are fed to the database, and data and messages are retrieved 
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from Postgres. QGIS was used for visualization and 2D map making via a connection to the 

database server, while 3D maps were created in ArcScene, an extension of ArcMap Desktop. 

The following Python libraries are referenced by the scripts: gdal, psycopg2, os, shapely, time, 

and sys.  

The only data required to conduct this analysis is the static GTFS dataset of a transit 

agency, real-time GTFS records are not suitable for this analysis in its current form. Once the 

GTFS zip files of a study region have been collected, the dataset must be geographically 

validated. In short, a GTFS dataset is geographically faithful if the route shapes follow the shape 

of the road network. The non-geographically faithful datasets on the other hand have bus routes 

represented as the shortest Euclidean distance between stops. This is a crucial aspect of the data 

requirements of this research as the final expression of the metrics is a percentage of distance 

measures.  

In order to confirm the shape of the routing data provided, the “shapes.txt” GTFS file 

must be converted into a linestring layer by connecting each consecutive lat/lon point while 

grouping them by shape id number. This is accomplished with a Python script that loads the data 

into a database and then executes a PostGIS function to create the new linestring geometry. Once 

this new spatial layer is created it can then be displayed in QGIS and compared to a street 

network file obtained through the built-in OpenStreetMap tool. If the routes are confirmed to 

follow the shape of the underlying roads, the GTFS dataset is suitable for the methods developed 

in this research (see figure 2 below). In the absence of OpenStreetMap data, the suitability of the 

shapes file can still be determined by observing each resultant route linestring for the presence of 

curves, as well as the coincidence of multiple routes that follow the same curves. Conversely if 

the linestring layer displays abrupt changes in heading between points, and there are no curved 

edges in the network, it was likely generated from a non-geographically faithful GTFS record.  
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Figure 2: Geographically Faithful GTFS bus routes in Montreal 

 

To isolate the shapes of active routes at different times of the day for the OROL and POP 

calculations, a route selection table is generated for every 15-minute window in the weekday 

service schedule. The reader may notice further below that windows can run past the 24-hour 

clock with departures and overlap values being recorded for the 25th, 26th, and even the 29th 

“hour” of a day. These timestamp values are used to depict when a given day’s service schedule 

extends past midnight into the next morning. For example, a route operating every half-hour late 

on a Saturday night may continue with 30-minute headways until 2:00 or 3:00 am, even if, 

technically speaking, the Sunday service schedule headways are 60 minutes. Thus, “27” hours 

represents 3 hours past midnight and a departure at 28:00 is understood by the rider as departing 

at 4:00am. The values above 24 are not visible to riders as they are only intended to help sort 

GTFS records. For the OROL and POP calculations, the total range of hour values is retrieved 

from the stop_times table and then routes are selected for 15-minute subdivisions in each hour.  

For the study region of Montreal this resulted in the generation of 104 route selection 

tables. The 15-minute subdivision was selected to improve the accuracy of the process since 

larger time windows could lead to the misrepresentation of the network. For example, if two 

routes leave the same first stop at the top of the hour, and one departs every 15 minutes, and the 

other only departs once per hour, using time windows of one hour will simply report that two 
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routes are present on that first link. 15-minute increments on the other hand will report 2 routes 

for the first window, and then only one route for the remaining windows of that hour. 15 minutes 

was also the time increment employed by the TII experiment applied to the Montreal survey data 

(Zahabi et al., 2017). In the context of matching travel survey GPS traces to GTFS data, it was 

assumed for this study that GPS data recorded on bus lines running behind schedule would not 

run more than 15 minutes late. In other words, if a rider alights a bus at 16 minutes past the hour, 

and the route has departures every 15 minutes, it is assumed the rider has alighted the bus which 

departed at 15 minutes past the hour, and not the 1st departure that happens to be running 

extremely late. Applying this methodology to route matching on trips running exceptionally 

behind schedule can lead to the miss attribution of routes, however this type of error is expected 

to be less common than the mis-counting of active routes that would occur as described above if 

the sampling window were prolonged.  
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3.2 Study Region  

 

Figure 3: Side by side comparison of study region networks at 1:350,000 scale 
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This research examines 5 distinct study regions consisting of Canada’s most populous 

census Metropolitan Areas: Toronto, Montreal, Vancouver, Calgary, and Edmonton (see figure 3 

above). While the research initially set out to examine overlap in several more transit networks, 

the requirement that all GTFS datasets be geographically faithful reduced the sample set to 

Canada’s top 5 most populous cities. Other, smaller transit agencies in Canada were discovered 

to meet the GTFS requirement but were omitted from the study due to having population and 

modal transit share values much lower than those of Montreal that serves as the study’s reference 

point.  

 
Figure 4: City Population and Average Daily Riders 2016 

Figure 4 provides a comparison of city population vs average number of daily riders: 

Edmonton and Toronto have a daily ridership that is roughly 1/2 of the city population, 

Montreal’s ridership is roughly 3/4 of the city population value, and Vancouver’s is roughly 1/3. 

It should be noted that daily rider count values do not explicitly represent the portion of the local 

population using public transit system as many people living outside of the population count 

zones travel into the city each day and contribute to these numbers. The term ‘city population’ is 

used flexibly in this study to denote the population statistics that most closely coincide with the 
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areas serviced by the transit network. For example, the population of Montreal’s census 

metropolitan area (CMA) is roughly double that of the Island of Montreal, yet the largest transit 

agency primarily services the island of Montreal only. For this reason, only the STM network 

was chosen to represent Montreal and the population and area values are representative of its 

corresponding coverage, not a particular jurisdictional area. Each of the study regions are 

handled in a similar manner to provide an accurate view of each network rather than each city. 

Similarly, for Toronto, the coverage of the TTC’s network coincides closely with the city limits 

and not the CMA’s boundaries. The only study region whose network closely matches the CMA 

area is Vancouver whose Translink network services almost the entire CMA. Even though 

figures 5 and 6 below report Vancouver’s city area as almost 3 times larger than the coverage 

area derived from buffers placed around route shapes, the single agency successfully services the 

entire region. It turns out the extremely high CMA area value results from the particular 

geography of the area which include a large bay, inlets, and rivers.   

 
Figure 5: City area vs coverage area of network expanded with 800 meter buffers and number of 

bus routes 

To quantify the coverage area of each network, four different area values were compiled. 

Buffers were created around the route line shapes with both 400-meter and 800-meter radii. The 

choice to build buffers around lines instead of stops was made to reflect the nature of this study 

which focuses on line features and not the point features found in the GTFS record. Next the 
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convex hull area of each network is calculated by forming a polygon that encloses all edges of 

the network, much like stretching a rubber band around all the map features. Finally, city area 

values were determined form various combinations of census border files. Figure 6 below 

provides the surface area values for each study region and compares the area of the city based on 

its jurisdictional boundaries vs. the buffer areas, and final the convex hull area of its bus 

network.  

 
Figure 6: City area, Convex hull area, 800meter coverage area, 400meter coverage area for the 5 

study regions 

These values are provided to help introduce the reader to each network and give context 

to the results of each metric. Since route overlap is similar in concept to density, coverage area 

information is useful for forming hypotheses and assumptions. For example, the assumption can 

be made that a network with many routes but small coverage area should theoretically experience 

more overlap than a network that covers a very large area with fewer routes. The methods 

developed in this research will provide quantitative measures that can address exactly this type of 

assumption. 
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It is interesting to note in figure 5 that Vancouver has a comparable number of routes as 

Montreal, yet according to figure 4 it has a much lower daily rider count. One might surmise that 

this represents low efficiency in route planning or simply low ridership for Vancouver. Figure 6 

then reveals that according to each coverage area calculation, the service area of Vancouver’s 

Translink network is significantly larger than Montreal’s, essentially stating that Vancouver 

covers more ground with its routes than Montreal. It is also known that Montreal has many “out 

of city” daily riders that enter the network, thus influencing the daily rider count. In short, route 

counts and coverage areas alone do not tell the whole story and cannot be used by themselves for 

making accurate predictions regarding overlap in networks.  

This underscores the importance of the choice of coverage area statistic as CMA values 

and census border files do not provide important context regarding the geography of each city. In 

addition to the inclusion of water bodies that transit can’t service, it was discovered that the 

Vancouver CMA extends Northward into the mountains where the population is sparse and 

altogether un-serviced by Translink. Vancouver’s North-East CMA boundary was observed to be 

up to 50Km away from the closest Translink route. For these reasons I believe it is important to 

test different area calculation methods to better understand how much ground is actually covered 

transit agencies in transit studies. 

These graphs and observations are also provided to help illustrate the difficulty 

encountered when determining the jurisdictional or geographic extent used when comparing 

transit networks in general. If Montreal’s full CMA population was provided in figure 4, for 

example, we would discover that the ratio of CMA population to daily ridership is more similar 

to that of Vancouver.  

For these above reasons, and to ensure reliable outputs from the SQL queries developed 

for this research, the decision was taken to examine one GTFS dataset per city and to not 

undergo the complex task of merging GTFS datasets within one study region - a task that often 

involves strenuous data management and conversions.  

3.3 Calculation of Indices 

The calculation methodology for each index is provided below. Where applicable, the 

mathematical formulation of a measure is provided. The section closes with a detailed description of the 

GTFS-to-roads procedure which generates stand-in road network layers from the GTFS route shapes. The 
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generation of these road layers is a crucial step in this methodology; any mention of links, link lengths, or 

centroids refers to information derived from these layers. 

 

3.3.1 Active Routes 

The Active Routes count is tabulated for each hour of the weekday service schedule and 

presents the total count of unique routes with at least one departure during each sample period.  It 

tabulates departures through the use of a python loop that iterates over time values. The loop first 

creates an SQL window of the trips.txt table to isolate trips that occur during the weekday 

service schedule, these trips are then grouped by shape_id to prevent duplicate counting. With 

the shapes of weekday service trips isolated, the query then examines the stop_times.txt for 

routes with departures that match trip ids and that fall within the given sample window. If a route 

has a departure from its first stop within the time window it is deemed “active.” While the results 

of this calculation do not directly relate to the ability of a TII process to reliably infer route 

information, it illustrates the variation in service levels throughout the day. As the resultant graph 

reveals further below, each city experiences a predictable increase in service during peak hours, 

but what is interesting to observe from the results of this calculation is how the difference in 

regular vs. peak hour service varies from city to city.  

3.3.2 Line Overlapping Index 

The Line Overlapping Index works by summing the total length of all the bus routes and 

then dividing this by total length of roadways covered by these routes. Alternatively stated, the 

denominator of the ratio is the total length of all routes, excluding lengths that overlap existing 

routes (the geometric union), while the numerator represents the total length of all routes as if 

stacked end-to-end. This produces a dimensionless score with a minimum value of 1.0, 

representing to what extent the coverage is duplicated by different routes. A hypothetical city 

that has only one bus route per road would have a value of 1.0. In terms of gauging the potential 

for ambiguous routing data, the hypothetical value of 1.0 would represent no route ambiguity 

possible during the inference process. In such cases rider itinerary could easily be inferred. 

Conversely, a city that has two routes on each road would yield a value of 2.0 and any GPS data 

collected in a survey would be considered ambiguous. Since a network with a score of 1.0 is 
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largely hypothetical, the results of this calculation for Montreal will serve as the baseline score 

for this study. The mathematical formulation for the Line Overlapping Index is as follows: 

 

R = Length of Network 

Ri = Length of route i 

Rk
m = Length of all overlapping segments, 

where k = number of overlapping lines, m is a road link 
identifier                                               

 

(1) 

Equation 1: Line Overlapping Index 

Using the active route selection methodology described above, the collection of routes for 

a given time window are manipulated in one query to produce the LOI ratio for each time frame. 

The length of the geometric union of the network is produced using the PostGIS functions 

ST_Length(ST_Union(ST_SnapToGrid(“geometry”, “snap value”))) where geometry is the 

collection of route shapes, and ST_SnapToGrid is used to align component edges to a common 

grid to avoid “non-noded intersection” topology errors. This error was encountered in many 

GTFS datasets and result from LineString features that cross each other, but with no node 

recorded at the point of intersection to denote the overlap of the two shapes (a common 

topological error). Different “snap values” were employed depending on the needs of the 

network, this value represents the resolution of the new grid the points are transcribed to. This 

geometric union length is then divided by the more easily obtained SUM(ST_Length(geometry)) 

which sums the total length of all routes.   

 

3.3.3 Overlapping Routes on Links (OROL) 

The Overlapping Routes on Links index (OROL) is the most calculation intensive index 

mentioned thus far, also different about this procedure is that it involves the comparison of two 
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spatial layers. It references both the GTFS data sets as well as a shape file that represents the 

road network. As will be described further below, this stand-in road layer is actually constructed 

from the GTFS data itself and therefore only the single data source is required.  

Using GIS intersection and buffering techniques, the OROL procedure examines each 

individual road link for the presence of overlap in the coincident GTFS record, calculates the 

sum length of overlapping routes, and writes this sum in a new table that contains the link id, link 

geometry, and total overlapping route count.  

Care had to be taken while handling the GTFS data to ensure that each active route shape 

is present in the analysis, but then to group all route counts by the route id of each shape. This 

aspect of the analysis was discovered to be of the utmost importance in accurately counting the 

routes present on a link since it was possible for one bus route to have two different paths 

(shapes) on the road network within the same sample window. Sometimes this was due to both 

directions of a route being listed with the same route_id, which is not always the case from 

agency to agency, or other times the same direction might have two different shapes during the 

15-minute sample period simply due to small differences in how the vehicles enter and exit bus 

termini. Failure to account for this discrepancy in GTFS records can lead to the over-estimation 

of overlap in the network. For example, the results may report a route count of 2 on a link, and 

then closer inspection reveals that both routes have the same headsign and direction id, meaning 

they are effectively the same route. 

The OROL scores are calculated for 15-minute periods over a full day of the weekday 

service schedule following the methodology of the TII research conducted in Montreal. This is to 

say that for every 15-minute period throughout the service schedule, an individual spatial layer 

displaying all of the routes with departures during that period is generated in the database. For 

the study region of Montreal this resulted in the creation of 104 “routes info” tables, each named 

with its time frame and transit agency abbreviation.  

Once the count of overlapping routes is tabulated for each link, we can then calculate the 

portion of the network that has overlapping routes (route count >= 2). The resultant percentage 

represents a theoretical maximum amount of ambiguous distance a TII may encounter during one 

sample period.  Using the validated trip data and route detection rate from the TII study in 

Montreal we can estimate the degree of success a TII will have in another network simply by 
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ranking each network according to its OROL percentage, a table containing these rankings is 

provided in the results section (Table 6: Ranked results, page 72).  

The calculation is performed as follows: first working on the stand-in road network layer, 

buffers 40cm in diameter are generated around the centroid of each road link and assigned the 

same ID number as its parent road-link. This relatively small buffer size of 40cm is capable of 

capturing all coincident links due to the nature of the stand-in road network that follows almost 

exactly the path of the bus routes. This small buffer size is also helpful for avoiding the overlap 

of buffers in complex areas such as merges and multilane intersections that can lead to the over 

estimation of overlap. 

Next, an intersection is performed between each active route layer and the buffers. This 

step records which bus routes pass through each of these buffers and writes the following 

information to a new table: buffer/link ID as the primary key, shape_id, route_id, direction_id, 

trip_id, and route_headsign. At this stage instances of overlap are represented by the repetition of 

link_ids in the first column. i.e.: a link id will appear in the table as many times as there are 

routes on it.  

Next, this table is analyzed and compiled into a new spatial table that contains one row 

per link_id.  Unique route ids (or headsigns depending on the structure of the GTFS) are counted 

on each link and this information is written to the new table as a route count value along with 

each link’s geometry.  

The percentage of the network consisting of links with 2 or more routes can now be 

calculated by summing the lengths of all links that meet the filter criteria, divided by the total 

network length. This percentage is calculated for each 15-minute examination period and written 

to a CSV file which is used to produce the graph of results. The mathematical formulation of the 

OROL score is provided below: 

𝑶𝑹𝑶𝑳 % =   
𝚺𝒊=𝟏

𝒏 𝑹𝒊 𝒘𝒉𝒆𝒓𝒆 𝒄𝒊>𝟏 

𝚺𝒊=𝟏
𝒏 𝑹𝒊

 * 100 

i = road link 

Ri = Length of link i 

Ci = route count on link 

(2) 

Equation 2: Overlapping Routes on Links Percentage 
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To further illustrate the difference in LOI and OROL calculations as well as the 

variability of the factors in each equation several network diagrams are present below in Figure 

7. The three factors presented: N, GU and OVR are all length values derived from the sample 

networks with N being the total network length, GU, the length of the geometric union and 

finally OVR being the length of all links with a route count above or equal to two. 

 In each sample network, the geometric-union of the network results in the same shape 

with the same length (700 units). For these examples it should be assumed that bus routes run in 

the same lane; they are depicted side-by-side for illustration only. The route count classes in the 

OROL output layers are color coded to depict how each road link is assigned a class of overlap. 

Comparing the first row of diagrams to the second row, we can see that increasing overlap length 

(OVR) increases both LOI and OROL. Comparing the second row to the third we see that 

increasing network length and having a higher maximum degree of overlap does not 

automatically change the OVR value. This is a good example of how the LOI communicates 

more about degree of overlap, whereas OROL is more concerned with amount of overlap. After 

examining several sample networks it was determined that each of the factors involved in these 

calculations, namely: N, GU, and OVR can all increase or decrease independently of each other 

depending on the particular network configuration.  

The comparison of sample networks and discussion of variables is included to help 

impress upon the reader the difference in how each measure communicates information about the 

network. If one can imagine the complex nature of the geometric relationships needed to 

describe transit networks at different times of the day, it is clear that the difference be LOI and 

OROL results, and the higher values for LOI themselves, do not lend themselves to intuitive 

conclusions.  
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Figure 7: Sample network diagrams depicting LOI and OROL calculations 
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It has been noted that when the maximum overlapping route count in the network is 2, the 

LOI and OROL calculations will return comparable values (i.e.: 1.46 and 0.46 respectively), an 

example of this is provided in the second row of networks in figure 7. However, as the maximum 

degree of overlap in the network increases above 2, the OROL percentage will remain fixed and 

the LOI value will increase (see 2nd and 3rd networks in figure 7).  

The difference in reported scores between LOI and OROL, when the maximum degree of 

overlap surpasses 2, results from the definition of overlap as coded into the OROL equation. In 

its intended and standard form, the OROL percentage defines any link with 2 or more routes as 

“ambiguous” since these are the areas which may obfuscate route matching processes during TII.  

If the OROL qualification for overlap is instead incrementally increased (route count 

>=2, route count >= 3… route count >= qmax), the sum of OROL percentages for each category 

of overlap will produce the same value as the LOI minus 1. In one sense, the OROL score of a 

network is a special case of LOI where the maximum degree of overlap never surpasses two. The 

relationship between LOI and OROL is expressed in equation 3 where q takes on the value of 

route count categories detected within the network. When the qualification for overlap is 

parameterized like this, the OROL methodology effectively presents a method for decomposing 

the LOI score into meaningful categories of overlap. 

 

𝑳𝑶𝑰 − 𝟏 =  ∑𝒒 =𝟐
𝒒𝒎𝒂𝒙𝑶𝑹𝑶𝑳𝒒  

𝒘𝒉𝒆𝒓𝒆 𝑶𝑹𝑶𝑳𝒒  =   
𝚺𝒊=𝟏

𝒏 𝑹𝒊 𝒘𝒉𝒆𝒓𝒆 𝒄𝒊≥ 𝒒 

𝚺𝒊=𝟏
𝒏 𝑹𝒊

  

q = overlap qualifier 
qmax = maximum overlapping route count value found in network 

i = road link 
Ri = Length of link i 

Ci = route count on link 

(3) 

Equation 3: OROL as the Decomposition of LOI 
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3.3.4 Probability of Passage Score (POP) 

The Probability of Passage score provides more information regarding the nature of each 

instance of overlap by examining how many departures each route has during the sample period.  

Expanding upon the layers generated during the OROL calculations, this procedure produces a 

POP value for each route present on a link which then allows for the calculation of the portion of 

network consisting of ambiguous links once the links have been filtered for POP values above a 

user determined threshold.  

The POP score of a route is the ratio of the sum of that route’s departures divided by the 

total number of departures on that link during a given sample period (Equation 4). For example, 

if a given road link has two routes present during the examination period, and route 1 has one 

departure, while route 2 has two departures, we can say the POP score for route 1 is 1/3 (0.33), 

and the POP score for route 2 is 2/3 (0.66). On this link the OROL score will simply report a 

route count of 2 which then gets classified as overlap. Here the POP score provides a more 

nuanced description of the link by allowing the user to assume that route 2 is more likely to have 

been used during this time period. 

𝑷𝑶𝑷𝒓,𝒊 =
𝚺 𝒅𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆𝒔𝒓,𝒊

𝚺𝒓=𝟏
𝒏 𝒅𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆𝒔𝒊

 

r = transit route 

i = road link 

(4) 

Equation 4: POP score 

Table 5 below shows the POP analysis results for 3 links in a sample network. The first 

link (new_link_id 10) has two routes present, each with one departure during this time window. 

Each route therefore has a POP score of 0.5. This link is considered ambiguous since there is no 

clear “winner” between the routes. The next link in the table (new_link_id 11) has one route with 

one departure and a POP score of 1.0, this link is unambiguous. The final link has an OROL 

count of 2 with route 32 having 2 departures, and route 22 having 1 departure. This sample link 

provides the necessary conditions for the selection of the route that is more likely to pass during 

this time window. 
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Table 5: Sample of POP table showing 3 links with dep_ratio as POP score. 

Similar to how the OROL percentage represents the overlapping portion of the network, 

the POP % also reports overlap but only after links have been filtered according to a threshold 

POP limit: α (see equation 5) 

𝑷𝑶𝑷 % =
𝚺𝒊=𝟏

𝒏  𝑹𝒊 𝒘𝒉𝒆𝒓𝒆 𝑷𝑶𝑷𝒓,𝒊 <  𝜶

𝚺𝒊=𝟏
𝒏  𝑹𝒊

 

r = transit route 

i = road link 

α = probability of passage threshold 

Ri = Length of link i 

(5) 

Equation 5: POP percentage 

The advantage of the POP score is that thanks to the probability of passage scores the 

researcher can effectively reduce the amount of ambiguous links, and thus, the overall ambiguity 

of the network. Where the OROL scoring system reports ambiguous links as any link having two 

or more routes, the POP score allows the researcher to choose a threshold of probability with 

which to filter the network. For the above example, if the researcher decides that a link 

containing a route with a POP of 0.6 or higher should not be considered ambiguous, and instead 

we treat the route with the highest POP score to be the unambiguous “winner” of the link, we 

have effectively removed an ambiguous length of road from the TII’s input data.  

The end result of the POP procedure is a spatial layer that contains multiple entrees for 

links with overlapping routes, each with its own geometry as well as the POP score. This allows 

the researcher to set a POP threshold (α) determining which level of POP is sufficient for their 

needs, and then export multiple spatial layers representing different degrees of overlap in the 

network. 
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3.3.5 Generation of the Meta-Road-Layer 

 As mentioned above, finding reliable road network files proved problematic in early tests 

of these processes. Having consistent topological rules from one road network file to another is 

key in producing comparable results between different cities. For example, a bus route may turn 

off of a roadway while the road layer’s linestring feature continues straight, a GIS intersect 

procedure will flag this link as active along its entire length, thus exaggerating the length of the 

path actually travelled by the bus. To avoid such errors, a novel process was developed in which 

the routing information contained in the GTFS files will be used to generate a “quasi-road 

network file”.  Since the OROL and POP indices examine each link in a road layer for the 

presence of a bus route, it follows that these procedures need only examine links that actually 

have bus routes on them. Initial versions of the OROL procedures involved scanning each link in 

a road layer that spans the entire city. This approach was computationally intensive and as a 

result inefficient for studying multiple regions (initial tests would take close to 20 hours to 

complete analysis of a network).  Next, the pre-generation of a road layer via the intersection of 

bus routes and road features was attempted. It became apparent via initial trials that such GIS 

processes were also computationally demanding and obtaining road network files which matched 

the coverage of the transit network was also difficult. Road layer files that match the extent of 

the transit network were difficult to come by and early attempts involved stitching together 

different road files which sometimes had different attributes. Layers obtained from the 

OpenStreetMap project were discovered to have different topological rules from one city to 

another, and worse still, pedestrian and cycling paths were sometimes registered as roads which 

led the attribution of bus routes where no roads even existed.  

 Thus, the idea to use the geometries of the GTFS routes themselves to serve in the place 

of a road network file was proposed. By creating a stand-in road network file that contains only 

the links worthy of study the processing demands were greatly reduced, the topology of each 

study is guaranteed to be consistent as the topological rules are determined by the script that 

generates the layers, and furthermore, the research now only requires a single source of data. 

 Presented below in Figure 8 are road network examples depicting how inconsistent 

topology can contribute to erroneous length measurements:  
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Figure 8: Impacts of Road Segment Encoding 
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 The new “road network” file is produced as follows (a flow chart of this process is 

provided in Figure 10 on page 41): first, generate a geometric union of all the bus routes as 

described in the routes.txt and shapes.txt files. Next, the unioned geometry is converted to a 

GeoJSON format to facilitate reading the coordinates of each segment of the unioned feature.  

From here a custom script employs a loop that unpacks sequential pairs of coordinates and 

constructs individual linestrings from each pairing. These coordinate pairs represent the 

beginning and end points of straight segments of the original feature, as well as straight lines 

between points of inflection. With these pairs now isolated in a list, they can be joined together 

into linestrings according to their sequence. What results is a new linestring file that follows 

route shapes but with individual features between every intersection and/or point of inflection.  

For the sample region of Montreal, the above described process converted 624 bus route 

shapes into one multi-linestring feature, and then decomposes it into 188,564 individual 

linestring features.  

At this stage, however, there still exists many overlapping linestrings that will lead to 

incorrect route attribution, and worse still, incorrect length calculations when determining the 

percentage of overlap. In order to isolate the minimum amount of linestrings required to 

accurately describe the road network, a series of additional GIS and data management procedures 

are employed as described below.  

 First, perfectly overlapping links are filtered and all but one are deleted from the record. 

This reduces the link count from 188,564 down to 75,366. Next, links that perfectly overlap but 

have opposite start and end points are identified and all but one are deleted from the record. This 

is accomplished by identifying lines with intersecting centroids. The assumption is made that if 

two lines intersect and share a common centroid then only one of the lines is required. This 

assumption is reliable due to the way the script unpacks the coordinates from the GeoJSON 

format; instances of a shared centroid from lines with different headings are not possible after the 

initial script essentially breaks lines at each crossing point. This step reduces the count of 

linestring features from 75,366 to 64,673 for Montreal’s STM network. 

At this stage, the resulting linestrings provide the general shape of the road network 

occupied by routes, but there are still many overlapping or near-coincident lines where multiple 

routes share roadways. This is due to the topology of the route shapes as described in the 

shapes.txt coordinates. For example, two routes may travel down the same lane, yet the 
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components of each respective linestring may have nodes and vertices in different locations 

along each line, thus failing the previous checks. Another complication is when the route 

linestrings are not encoded in a common centerline of a lane. In some areas of high overlap, 

near-coincident links were found to be as little as 8mm apart from each other on the ground, 

many of these were also non-parallel, leading to multiple links crisscrossing each other down the 

roadway.  In order to present a clean depiction of the roadway the superfluous, crisscrossing 

links will have to be identified and removed from the record.   

In practice, converting these conflicting lines into one simplified representation is not as 

straightforward as identifying links that just overlap or touch. GIS tools from QGIS, GRASS, 

ArcMap, PostGIS, and PostGIS_topology were all put to the test in an effort to clean these 

redundant linestrings and it was discovered that there is no existing tool that can handle the 

variety of geometric relationships existing between all of these lines in the network. Simply 

eliminating one of the overlapping lines in every instance of overlap or contact is not guaranteed 

to leave behind a complete depiction of the road way. Determining which of the 64,673 line 

segments must be retained to produce a simplified network proved to be the biggest challenge of 

developing this procedure.  

The final class of superfluous links were discovered to occur most often in areas where 

shapes for multiple routes “zig-zag” back and forth over long distances down a single lane. 

These lines fail the filter criteria used to clean the network thus far.  For example, a one lane 

roadway may have 2 routes represented by a single shape along most of its length, only to have 

the path break off into parallel lines for a short duration (each reporting only one route present), 

and then converge back into one line that once again reports the correct route count of 2. 

Inspection of these areas using google satellite imagery revealed no reason for the bus shapes to 

diverge in this manner while travelling down a roadway. Visual inspection of these lines in QGIS 

revealed that the near identical lines were at most 18mm away from each other on the ground.  

The above described scenario of route count values suddenly changing on a long stretch 

of road was one of the main indicators that the overlap procedure was not producing correct 

results. Viewing the output layers in QGIS and applying contrasting colors to the route count 

categories allowed for easy inspection of an entire network to identify these zones. To further 

refine the link-deletion procedure sample geometries were extracted in these problematic 
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regions. By focusing on these problematic geometries such as in figure 9, the testing of new GIS 

procedures was expedited allowing for multiple approaches to be tested in a timely manner.  

 
Figure 9: Near Duplicate Links in the GTFS record are difficult to remove and produce errors in 

length calculations. 

Visible in Figure 9 is this last type of erroneous link; in this example the link highlighted 

in red coincides with two other, shorter links (approximately 8mm apart), whose centroids are 

visible in green. To address this last type of erroneous link, the most calculation intensive portion 

of the road generator process was developed with the aid of TRIP lab member Kyle 

Fitzsimmons. Referred to as the Route Flattening procedure, it begins by creating a table of all 

the nodes of all the links.  Next, using the ST_DBScan function built into PostGIS, nodes within 

a threshold distance of links are all assigned the ID number of the closest link (Birant & Kut, 

2007). The ST_DBScan algorithm functions by identifying groups of similar spatial elements 

using clustering techniques and was the only tool discovered that could address the varying 

geometric relationships of all these linestrings. The geometric relationships between these lines 

are essentially tossed aside by this technique as the ST_DBScan algorithm is only fed nodes, 

which are then categorized according to distance to the closest neighbouring linestring. This 

approach is fundamentally different than comparing and measuring linestrings against 

linestrings. After some testing, the search threshold distance of 30cm was chosen as the value 

least likely to negatively impact the output data.  

Next, the script identifies all links that pass through, or are within 30cm of more than two 

end nodes. When this type of link is identified, it gets split by the middle node and the new 
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section is assigned an identifier. If a link only touches two nodes it is a legitimate link and is 

classified as such. Once this step is completed, the network is then reconstructed to form the 

legitimate links and the first section of links that were subdivided at nodes. This final step brings 

the link count from 64,673 down to 63,453.  

The resultant layer is now an accurate representation of the roadways used by the transit 

service and consists of one single line feature located approximately on the center line of the 

physical road ways. Three lane boulevards and highways are also represented as one single line 

per direction. This improves processing time as any GIS procedure involving the road network is 

now only fed the specific underlying links needed for analysis rather than iterating every road 

segment in the city. This also completely does away with the error of the misattribution of routes 

to nearby road-file segments during intersection and buffering procedures.  

The full script of this procedure is available at https://github.com/TRIP-Lab/GTFS-to-

Roads-converter 
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Figure 10: Procedural outline of the GTFS to meta-road-layer procedure. 

.  

To validate this new network representation, the GTFS-to-Roads output is loaded overtop 

of the original bus route shapes in QGIS and each layer is given contrasting colors. Next, by 

visually scanning over the entire network “holes” in the output layer can be identified where the 

GTFS-to-Roads procedure removed too many links on a conflicting region. Observing these 

regions allowed for the fine-tuning of the script parameters that identify near-coincident links. 

Namely, the ST_DWithin search distance which identifies links that fall ‘within’ a defined 

search radius of nodes, and the clustering search distance parameter in the ST_ClustrDBScan 

which decides which nodes should be ‘clustered’ together as a coincident group. If each search 

radius is too large, useful road links are deleted leaving ‘holes’ in the network where stretches of 

valid roadways have been deleted. Using too small a search radius conversely results in the 

retention of erroneous links. With the exception of Toronto’s TTC, the ‘within’ search radius of 

30cm and a cluster grouping of 1meter reliably produced a clean and complete depiction of each 
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network: a relationship between networks believed to emerge due to the standardized topology of 

each resultant network. Toronto required a ‘within’ search distance of 40cm and the same cluster 

grouping distance of 1meter to specifically handle some conflicting lines where busses enter 

termini in the TTC network. 
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4 Results and Discussion  

The previous section established how the mathematical formulation of each measure has 

been adapted to GIS procedures and how the stand-in road layer is generated to facilitate the 

calculation of the Overlapping Routes on Links and POP scores. What follows below is a 

detailed examination of the results for each metric as well as the presentation of maps for each 

region revealing links categorized by the OROL procedure. Where possible, the results of 

multiple measures are compared to each other to offer further insight into what each measure can 

or cannot express about each network.  

 

4.1 Active Routes 

 
Figure 11: Number of active routes per hour of the day of the five study regions. 
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     The change in the number of active routes over the 24-hour service schedule follows a 

predictable pattern in each of the study regions with the exception of Toronto; service is greatly 

reduced in the early morning hours and both rush-hour periods of the day exhibit the most active 

routes of the day. Toronto’s results display the lowest amount of fluctuation over the daytime 

period. This phenomenon is also reflected in the OROL results graph further below. Upon closer 

inspection of Toronto’s service and coverage levels it was determined that the city’s broad 

surface area combined with a consistent rectilinear road network has led the network to consist 

of many routes that follow long, straight paths across this city. It is important to note that the 

count of active routes does not consider how many departures each route has for each hour. It is 

plausible that Toronto’s service levels may in fact increase during peak hours due to more 

frequent departures, while not having to add additional routes to the network like other agencies 

in the study. If this is indeed the case for how the TTC addresses peak hour ridership, it would 

follow that the degree of overlap measured via the OROL index will fluctuate very little since the 

road links occupied by these routes will change very little over the time series. The OROL 

results graph further below will shed more light on this hypothesis. 

 Also of note in figure 11 is the labelling of Calgary and Edmonton that specifies these 

results are for “public transit only”. Initial results of the active routes count revealed extreme 

peak hour values for both Calgary and Edmonton, sometimes more than doubling the number of 

active routes from one hour to the next. Upon examining the routes tables, the transit agency 

websites, and eventually following up with the agencies themselves, it was discovered that these 

two agencies also provide school bus service to the local school boards. Posted below in figures 

12 and 13 are the active route count results for Calgary and Edmonton depicting the unfiltered 

data vs the count of public transit routes, excluding all known school routes. In the case of 

Calgary, the data was also filtered to include Bus Rapid Transit (BRT) routes since these 

vehicles run on roadways and can overlap with regular bus service routes.  

Likewise, for each of the measures calculated during this research these cities displayed a 

major difference in results when calculating the unfiltered data-feed vs the public transit routes 

only. This underscores the importance of inspecting and understanding the GTFS data of any 

given agency; it became obvious early in this research that the contents and data structure of the 

GTFS datasets can vary widely from one agency to another. Edmonton, for example, has every 

bus route recorded as “route id = 1” across its entire fleet, drastically diverging from the typical 
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use of this identifier. While GTFS is proposed as a standard, its main purpose is to facilitate 

itinerary calculations in scheduling applications such as Google Maps. Any research conducted 

comparing datasets should proceed with due diligence.  

 

Figure 12: Number of Active Routes over 24 hours in Calgary: full GTFS record vs public transit 

lines only 
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Figure 13: Number of Active Routes over 24 hours in Edmonton: full GTFS record vs Public 

transit lines only 

 

The active route count, by itself, communicates very little regarding the change in degree of 

overlap throughout the day but when contrasted with the following measures it can provide 

valuable insight as to how the form of the network evolves through the day. It should also be 

noted that the active routes count does not take coverage area into consideration so an increase or 

decrease in active routes may not be correlated to changes in service levels or coverage.  
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4.2 Line Overlapping Index 

 

Figure 14: Line Overlapping Index scores of the 5 study regions over 24 hours 

The resulting Line Overlapping Index graph (Figure 14) depicts the extent to which 

routes are covering common territory for each hour of the day, and therefore which hours of the 

day will be more likely to generate ambiguous trip data. Of note in these results is how only 

Calgary hits the base value of 1.0 at 2:00am, meaning all roads with routes were covered by only 

one route each, and none of those routes connect on the roadway for transfers (the recorded value 

was actually 0.9997… which is mathematically impossible for this equation and was therefore 

attributed to rounding errors encountered during the manipulation of coordinates). None of the 

other study regions hit the base value of 1.0 and the lowest reported values for each city occur in 

the early morning hours when the network is comprised mostly of night bus lines. Interestingly, 

Toronto’s highest LOI values occur during night service hours due to the overall coverage length 

of the network drastically shrinking while the transfer portions of the network remain relatively 

fixed. 
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Edmonton displays the highest values of all networks during the mid-day period; 

examination of their network revealed many routes that converge on common links such as 

arterials, collector roads and bridges in the downtown region in particular, thus resulting in high 

degrees of overlap. 

This index only examines the spatial correlation of the routes, meaning that similar to the 

active routes count, this measure does not consider the number of departures of each line. As 

such, this measure does not convey much information regarding the change of service levels or 

coverage area for the active routes. When compared to the active route count, when a time period 

experiences both an increase in active routes and increase in overlap index we can determine that 

portions of the new routes added to the network must be covering common territory. The GTFS 

shapes.txt was found to contain multiple linestring shapes for each transit route to represent the 

changes in their paths throughout the day. A route’s path on the roadway can change at different 

times of the day to accommodate different transfer locations, terminus ingress/egress points, or 

even detours to service high schools at the end of the school day. In absence of the active route 

count, an increase in the line overlap index may in fact only be the result of the alteration of the 

shapes of the routes. In regards what these results reveal about route attribution rates; Toronto for 

example would have a decreased route attribution accuracy for trips recorded at 5:00am as 

compared to trips recorded at 11:00am, provided that trips were recorded on all portions of the 

network equally. In short, a high the degree of overlap found via this calculation translates to 

lower route attribution accuracy for TII processes that compare trips segments to GTFS data.  

The presence of school bus routes in both the Edmonton and Calgary datasets impacted 

the LOI results with the largest difference occurring during morning peak hours. Amazingly, 

both networks achieve a LOI index above 2.0 meaning the total distance of all routes is more 

than double that of the actual roads covered by the routes. Calgary reaches a peak LOI of 2.13 

and Edmonton reaches 2.10, both at 8:00am. The LOI values for 8:00am once filtered for public 

transit only are 1.46 and 1.76 respectively. The school routes account for over 900Km of 

network coverage divided between 112 school routes in Calgary, and 760Km of coverage in 

Edmonton, serviced by 74 routes. 
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Figure 15: Line Overlapping Index: Edmonton ETS showing full GTFS dataset vs public transit 

only (school bus routes removed) 

 

Figure 16: Line Overlapping Index: Calgary CT showing full GTFS dataset vs public transit only 

(school bus routes removed) 

In the context of transit itinerary inference, higher LOI values translate to greater 

difficulty for TII procedures to match routes to GPS traces, but again, the spatially aggregate 

value only represents the theoretical maximum amount of overlap if trip data is recorded evenly 
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throughout the entire network which may never occur in practice. These findings underscore the 

importance of filtering the GTFS feed for routes that pertain to a given procedure. The unfiltered 

datasets for both Calgary and Edmonton could result in reduced route attribution rates for travel 

survey trips recorded in each network. In fact, it was these extreme values when contrasted with 

the other regions that began the search that brought the school routes to our attention.  
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4.3 Overlapping Routes on Links (OROL) 

 

Figure 17: Sample of OROL results for Montreal showing the component layers of the OROL 

process 

While the connection between LOI and OROL calculations is an interesting development 

in this research, the following discussion of OROL results will center on its standard form 

(overlap is any route count >=2) as this form directly addresses the problem of route overlap 

reducing route inference accuracy in TII.  

The above map presents the OROL results as stored in a spatial database layer. Each text 

box depicts how a given link is recorded in the table. The spatial layer has link ids as primary 

key, an array containing all overlapping route numbers, the length value of the link, and finally 

the OROL count. Depicted in yellow, the buffers which capture route information during 

intersection procedures are formed around link centroids. The actual size of these buffers is so 

small that they would not be visible at this scale. Presented below in figure 18 is the complete 

results for all study regions. The Y axis percentage values represent the portion of the network 

consisting of links with overlap (OROL >= 2) as is consistent with the above described 

methodology.  
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Figure 18: Overlapping-Routes-on-Links results: percentage of network length consisting of two or 

more overlapping routes 

The Overlapping Routes on Links score expresses the percentage of network length that 

consists of two or more overlapping routes. This calculation is different than the Line-

Overlapping index in three key ways: 1) it examines each individual road link and verifies the 

presence of routes, 2) it counts the amount of routes found on a link and records this value to a 

new column in the attribute record of the layer, and 3) it divides the entire coverage length into 

two categories – overlap: route count >=2, vs no overlap: route count = 1 (the route count limits 

can be set by the researcher). Each road link is categorized as either unambiguous, in the case of 

only one route present, or ambiguous, where two or more routes are present.  The ranking of 

networks according to LOI score is different than the ranking when examined with the OROL 

methodology due to the fact that the components of the Line-Overlapping calculation inherently 

include the distance represented by both categories of links; both the denominator and numerator 

contain the lengths of links with only one route. The OROL procedure however, separates the 

two categories of links and sums the distance belonging to each. 

Of note in these results are the relatively steady values for Toronto across the entire 

service schedule (Canada’s largest city by metropolitan population, and 2nd largest by 
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metropolitan surface area). This confirms the characteristic of the network that was first revealed 

with the Active Routes count and Line-Overlapping index; Toronto’s service coverage area 

(620km2) remains relatively fixed throughout the day in terms of number of routes and 

placement of the routes on the road network.  

For each network, with the exclusion of Toronto, the portion of the network with overlap 

(y axis) experiences an up and down pattern from one time window to the next. This pattern 

results from more routes departing at the top of the hour and at 30 minutes into the hour, than the 

number of departures happening at 15 and 45 minutes past the hour – or in other words, the 

majority of the routes run every half an hour, while less routes run every 15 minutes. This up and 

down pattern reveals the implications the choice of examination period has on the analysis. If the 

OROL score was calculated every 30 minutes instead of every 15, the network would 

demonstrate a higher level of overlap than what is experienced on the network in real life. In the 

interest of transit itinerary inference, the GTFS data should be examined on as fine a 

spatiotemporal scale as possible. 

Depicted below in figures 19 and 20, the OROL scores for Calgary and Edmonton were 

both impacted by the presence of school bus routes in the GTFS data. The time span of these 

graphs has been reduced to show only the differing portions. What these results reveal about the 

nature of the overlap is different than the LOI index in that when the LOI score increases above 

2.0 it means the total network length is at least twice that of the geometric union, intuitively this 

may seem like an overlap rate of 100% or more (2 routes found on each road), yet the overlap 

percentage at the time of peak LOI is only 48.69%, indicating less than half the roads have 

overlap.  

How is it possible for the total network length to be more than double the geometric 

union, while only experiencing overlap on 48.69% of the road length? Does this imply that the 

~50% of the network with overlap actually has 3 routes on all links? By comparing the filtered 

vs non-filtered LOI and OROL results we can begin to understand how these school bus routes 

are added to the network. The LOI value dropped from 2.13 to 1.49 after removing school 

busses, while the OROL % went from ~46% to ~36%. From these values I can draw the 

following conclusions: 1 ) a 10% increase in overlap distance means some of the bus routes were 

added to roads which previously only had one transit route present, 2) since adding bus routes to 

the network can only produce a zero, or positive change in GU, and the LOI has increased, this 
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implies N must have increased also, and by a larger degree than GU. Therefore, school routes 

added to the network must have greater lengths where the overlapping route count is 1. This is 

essentially a complex way of saying “new school bus routes were added to reach previously 

unserved regions, while portions of these routes will share roads with existing routes”. This 

situation is similar to the 3rd sample network example on page 28 where the degree of overlap 

increases while OVR length remains fixed.  

 

Figure 19: Overlapping-Routes-on-Links results: percentage of network length consisting of two or 

more overlapping routes for Calgary showing public transit service vs full service including school 

bus routes. 
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Figure 20: Overlapping-Routes-on-Links results: percentage of network length consisting of two or 

more overlapping routes for Edmonton showing public transit service vs full service including 

school bus routes. 

 The following four graphs present a summary of the information generated by OROL 

processing at the same time as demonstrating the analytical strength of the OROL approach to 

measuring overlap.  The graphs are presented in pairs: Network length proportions of each 

category of overlap at 8:00am (Figure 21) are contrasted by the absolute length values (Figure 

22) sampled at the same time, and then proportions vs actual lengths are again examined, but 

for the highest OROL% reported in each network, regardless of time period (Figures 23 & 24). 

 At 8:00am the network with the highest overlapping route value is Edmonton with 21 

routes on one road link, however Figure 22 shows that this road link is only 1.5 meters long. 

While this single 1.5m road link with 21 overlapping route shapes seems like the most complex 

link in this group of results, it should be noted that Calgary’s most complex link has 14 routes 

over a distance of 352 meters. This extended length of high overlap theoretically represents the 

collection of more rider GPS points in an ambiguous region of the network. Montreal has 16 

routes on one link, Vancouver: 15, and Toronto and Calgary are tied with 14 routes on one link.  

 Returning to the earlier discussion of Calgary’s high LOI values despite having the 

lowest active route counts; figure 21 shows how Calgary’s percentage of length with only 1 route 

present is equal to that of Montreal’s, however the absolute length of this category is actually 

much lower for Calgary than it is for Montreal.  Comparing the absolute lengths of categories 
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between Calgary and Montreal taken at the period of maximum overlap, we can see the 

categories of route count above or equal to two in Calgary have greater length than Montreal’s, 

thus producing for the high LOI scores.  

 
Figure 21: OROL Results: Network Length Proportions by Route Count 8:00am 
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Figure 22: OROL Results, network lengths by route count: 8:00am 

The graphs constructed from the maximum overlap values are presented to depict the 

theoretical “worst” arrangement of the network in regards to TII route matching. The time frame 

specified for each city represent the times at which a TII will have the most difficulty matching 

routes to GPS traces. Interestingly, Toronto’s most complex network arrangement occurs at 2am, 

basically stating that trips recorded during peak service hours can actually have greater route 

attribution rates than trips recorded at 2am. 
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Figure 23: OROL Results, network length proportions at period of maximum overlap 

 

Figure 24: OROL Results: Network Lengths at period of maximum overlap 

Presented below are the same Overlapping Routes on Links results as figure 18 on page 

52, divided into three time segments: morning peak hour evolution (figure 25), midday and 

evening evolution (figure 26), and finally end of service day devolution (figure 27). The time 

segments have been divided for legibility of the graphs and according to the general evolution of 

each network. One would expect a clear pattern of low early morning service, peak service at 

morning and evening rush hours, and comparatively reduced service mid-day and late at night, 
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yet all three metrics calculated thus far show that evening peak hour service level increases begin 

around 2pm.  

Calgary’s CT network reports the highest values, close to 45% in the morning and 

evening peak service periods. These results were closely inspected and reproduced to ensure the 

methodology was correctly expressing the overlap. Due to the varying structures of GTFS data 

from one agency to the next the SQL queries for several processes had to be edited to avoid the 

miss counting of trips and routes. After some inspection it was discovered the extreme OROL 

values reported for Calgary result from the Bus Rapid Transit lines that run exclusively during 

rush-hour and which follow longs paths along boulevards that coincide with regular service 

routes.  

 

Figure 25: Overlapping-Routes-on-Links results: percentage of network length consisting of two or 

more overlapping routes 
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Figure 26: Overlapping-Routes-on-Links results: percentage of network length consisting of two or 

more overlapping routes 

 

 

Figure 27: Overlapping-Routes-on-Links results: percentage of network length consisting of two or 

more overlapping routes 
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Also of note in these results are the zero values reported for several cities in the early 

morning hours. It was observed from the Line-Overlapping index that at no point over its sample 

periods did the network hit a 1.0 level of overlap; indicating that during each hour there was at 

least some instances of overlap. Yet the OROL score on the other hand does in fact report 

periods where there is 0% of the network length consisting of overlapping routes. This curious 

result is a direct result of the choice of examination period duration combined with the long 

headway times between departures on night service bus lines. 

 In the cities that report a degree of line-overlap in the early morning hours, yet no 

percentage of overlapping routes via the OROL calculation, it was discovered that the long 

headway times between departures of connecting lines will cause the static GTFS record to 

report that the lines do not overlap or connect within the 15-minute window. In other words, for 

a night bus trip that involves transfers, the second line departs more than 15 minutes after the 

first line is occupying its route. When examined over sample periods of one hour the bus lines 

appear to overlap in space, but when examined with shorter sample periods the OROL score 

reveals that these routes do not in fact coincide in space.  

In the context of transit itinerary inference comparing smartphone travel survey data to 

the GTFS record, these results reveal the implications of time-window selection have on route 

attribution rates. Rider data compared to the one-hour window results will not result in reliable 

route inference in areas of overlap, while rider data compared to the 15-minute windows will be 

‘unambiguous’. These results underscore the importance of creating route comparison queries 

that attempt to match rider GPS points to the GTFS record on as fine a spatial and temporal scale 

as possible, a task that I have discovered to be resource intensive and often beyond the scope of 

projects that analyze large volumes of rider data. In order to facilitate such itinerary inference 

procedures with large volumes of rider data, it would be preferable to conduct a pre-screening of 

the GTFS data in order to reduce the level of route ambiguity found in the static GTFS record. 

The Probability of Passage score, discussed further below, allows for such reduction in route 

ambiguity by effectively producing new bus route layers that can substitute the GTFS layers 

used in the TII. 
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Figure 28: 3D depiction of OROL results showing 3 transit hubs in western Montreal 

In what is perhaps the clearest depiction of route overlap and how it changes with the 

form of the street network, figure 28 shows the route count as vertical elevation values for street 

shapes near three transit hubs located in Montreal’s West Island. In the foreground, the arterial 

road approaching Cote Vertu metro station collects more routes the closer it is to Cote Vertu 

metro station, depicting how routes converge on the approach to the terminus. In the distance, the 

highest overlap value on record for Montreal is visible as a peak at Fairview shopping center. 

This single road link, discovered to be only 41 meters long can have as many as 19 routes 

passing through it in a 15-minute period during rush hour. Finally, the highway interchange 

known as Dorval circle, that connects transit riders to Montreal’s international airport as well as 

a regional rail station, experiences a high degree of overlap where transit routes converge at a 

terminus. The ability to specifically locate instances of overlap within the network is an 

advantage this procedure contributes to the current body of literature over the existing Line-

overlapping method. Should a researcher need to refine the GTFS record in order to reduce 

overall overlap, the OROL procedure will reveal which areas should be addressed and modified 

or “cleaned”.  

What follows below are maps showing a portion of each network in the study group with 

the classes of ambiguous vs unambiguous clearly defined. Following the observations made 
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during the TII research conducted in Montreal, the results confirm that route ambiguity occurs 

most often in areas of high building density (downtown business districts) as well as on arterial 

and collector roads. The locations in the maps below were chosen to include the downtown district and 

to display several road links belonging to both classes (overlap vs no-overlap), the maps are included for 

reference only. 

 

 
Figure 29: Portion of Calgary (CT) resultant OROL map 
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Figure 30: Portion of Edmonton (ETS) resultant OROL map 

 

Figure 31: Portion of Montreal (STM) resultant OROL map 
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Figure 32: Portion of Toronto’s (TTC) resultant OROL map 

 

Figure 33: Portion of Vancouver’s (Translink) resultant OROL map 
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4.4 Probability of Passage Score (POP) 

The Probability of Passage score (POP score) expands upon the OROL methodology by 

looking at the collection of overlapping routes recorded on each link and determining which 

route is most likely to be present during the 15-minute window. A POP score is generated for 

each route recorded on a link and is expressed as the ratio of that route’s departure count over the 

total count of departures on that link. Once each route is assigned a POP score the network is 

filtered according to a POP threshold chosen by the user. Just as the OROL procedure produces a 

map with links categorized as ambiguous or un-ambiguous, the final step of the POP procedure 

allows for the same categorizing of links to be produced, but now rather than applying a Boolean 

categorization system, fuzzy logic can be introduced. A previously ambiguous link, now known 

to contain a route that passes 3 times more often than the others, can now be deemed 

unambiguous by the user by filtering for links with POP scores equal to or greater than that of 

the route in question. Thus, the POP methodology produces a more nuanced representation of the 

network by reducing the ambiguity level of the links flagged during the OROL process. 

The graph presented below (figure 34) presents the inverse values of the OROL scores 

for Montreal. That is to say, where the OROL graphs communicate ambiguity, the POP graphs 

instead focus on un-ambiguity. Figure 34 shows how the unambiguous portion of the network 

increases as lower POP threshold values (α) are selected. As should be expected, filtering for a 

POP threshold of 1.0 produces the same network attributes as the Boolean approach used in the 

OROL procedure. For all study regions filtering for a POP value of 0.9 produced the same 

network as filtering for 1.0, for this reason the 0.9 results have been omitted from the graph.  

With regards to TII procedures the graph demonstrates how pre-processing the GTFS 

data before employing for analysis can help overcome the hindrance of dense spatiotemporal 

routing information and effectively reduce the degree of overlap in the network. A theoretical 

result of 100% unambiguity across the entire schedule would allow for a TII procedure to 

correctly match routes to GPS survey trips with complete success. As is visible below, filtering 

the network for POP values equal to or above 0.5 produces the “cleanest” network depiction out 

of the alpha values selected for this graph.  

During the course of analysis, a range of alpha values from 0.1 to 1.0 were tested on the 

network, but after some consideration the decision was made to omit all values below 0.5 as the 

0.5 links may very well represent a 50/50 chance of the algorithm selecting the correct route.  
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The POP of a link can be 0.50 if there are two routes with an equal number of departures, 

producing the above mentioned 50/50 odds of correct route selection, or the POP of a route can 

also be 0.50 if it has two departures, and shares the link with two other routes with one departure 

each (given the route in question a POP of 2/4). In this instance the 2/4 route is still the clear 

winner on the link since it has the highest POP (and therefore the most passages). Identifying 

which of the above overlap scenarios results in a 0.5 POP score on a link, however, is a 

procedure that is missing from the methodology at this moment.  Identifying selecting winners 

based on POPs below this value become problematic as those values were found to occur most 

often on very crowded links. For example, a link exists in Montreal’s STM network that has a 

total of 13 routes passing through it, of which the “winning” route contributes 3, giving this route 

a POP of 0.23. While this route is the winner according to this procedure, it is theorized that a 

3/13 chance of correct route attribution will still hinder TII processes. When the temporal 

distribution of the 3 departures belonging to this route are considered, it seems even less likely 

that is the correct route based on the 3/13 ratio alone. One would assume that the 3 departures 

will be evenly spaced out during the 15 minute departure window, and given that this link is a 

single lane of road way, one can assume the other 10 departures are evenly spaced out over the 

entire 15 minute window. For the purpose of this example it should be noted that this link is at 

the exit of a terminus where routes for the western branch of Montreal’s bus network begin their 

routes. With the winning route’s 3 departures evenly distributed amongst the 10 others, the 

confidence in the selection of the winning route is diminished. For these above reasons the 

decision to limit a “trustworthy” POP score to a minimum of 0.5 was agreed upon and all future 

work employing such techniques should begin with network layers representing 0.5 and 0.6 POP 

scores to test their impact on TII procedures.     
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Figure 34: Unambiguous portion of Montreal’s STM network adjusted for different probability of 

passage scores (α) 

 

 

Figure 35: Demonstration POP scores reducing route ambiguity when compared to OROL layers 
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Figure 35 depicts the culmination of this research. By combining the OROL and POP 

output layers for Montreal during the 8:00-8:15am time window the map displays areas where 

POP processing has reduced the ambiguity of the network. The black lines represent road links 

that have deemed ambiguous with an OROL score >= 2, and the red lines show un-ambiguous 

links after having been filtered for POP scores >= 0.6. Where the two colors coincide represents 

roads where the ambiguity has been eliminated thanks to the POP score methodology. It should 

be noted that the complete route record as well as road way features are absent from this map for 

clarity, and only the two classes of links named above were included. 

Included below are graphs depicting the degree of overlap reduction for each of the 

remaining study regions. As expected, the POP methodology reduced route ambiguity in the 

output spatial layers for all networks. For most regions with the exception of Toronto the 

difference in the portion of unambiguous network between the 1.0, 0.8, and 0.7 values is 

minimal, and the 0.6 results show a larger reduction in ambiguity. 0.5 produces the cleanest 

depiction of the network, but as noted above, the success rate of a TII using 0.5 input layers is 

open for experimentation. 

 
Figure 36: Unambiguous portion of Toronto’s TTC network adjusted for different probability of 

passage scores (α) 
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Figure 37: Unambiguous portion of Vancouver’s Translink network adjusted for different 

probability of passage scores (α) 

 

 
Figure 38: Unambiguous portion of Edmonton’s ETS network adjusted for different probability of 

passage scores (α) 
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Figure 39: Unambiguous portion of Calgary’s CT network adjusted for different probability of 

passage scores (α) 

  

4.5 Ranked Results 

What follows below is a discussion of the results produced for each metric for each study 

region. Where applicable, extra graphs are provided to illustrate how the need to pre-filter the 

GTFS route types can impact the results of the analysis. Unique SQL route selection queries 

were scripted for Toronto, Calgary, and Edmonton to account for each agency’s particular GTFS 

encoding and contents. Since this analysis is only concerned with the overlap of routes on 

roadways, Toronto’s data was filtered to select all surface vehicles, i.e.: busses, bus rapid transit, 

and street cars. Similarly, underground metro systems were omitted from analysis since survey 

location data pertaining to metro trips can reliably be detected by trip breaking algorithms and/or 

itinerary inference procedures (Chen, Gong, Lawson, & Bialostozky, 2010; Zahabi et al., 2017). 

Calgary’s and Edmonton’s transit agencies both include school bus service in their GTFS 

datasets, coded with the same route type as regular bus vehicles (GTFS route type 3), the similar 

coding of these routes necessitates filtering the active routes lists using route id values to avoid 

the misrepresentation of the network. Without this pre-filtering of the data the results of each 

metric are exaggerated: Calgary’s active route count, for example, reported 60% more routes at 

peak service, and a LOI over 2.0. A LOI over 2.0 means the distance covered by overlapping 
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routes is at least equal to the length of the geometric union itself, this result was very surprising 

and spurred the investigation that revealed these alternate service types. Similarly, the inclusion 

of any metro route information will cause overlap to be counted on roads which may in fact have 

none as metro lines will be attributed to road links. Provided below is a summary of results with 

networks ordered from highest value to lowest. For each metric, the value reported below is the 

maximum value recorded over a full service schedule.  

 

Number of 

Active Routes 

 

Ranked Line Overlapping 

Index (max value over 24hr) 

Ranked OROL Index (max 

value of examination periods) 

Ranked ambiguous 

percentage POP < 0.6 

Vancouver 206 Edmonton 1.76 Calgary 43.28% Calgary 36.35% 

Montreal 194 Calgary 1.65 Edmonton 37.50% Edmonton 30.71% 

Edmonton 193 Toronto 1.54 Montreal 36.57% Montreal 26.99% 

Toronto 170 Vancouver 1.51 Vancouver 36.47% Vancouver 25.23% 

Calgary 162 Montreal 1.34 Toronto 29.14% Toronto 19.95% 

Table 6: Ranked results 

 

One might assume that the network with the most active routes would inherently contain 

the most overlap, yet the ranking of networks by active route count is different than the rankings 

according to overlap measures. As mentioned in the methodology, differences between study 

regions such as total network distance and the geography of each respective region produce 

network characteristics unique to each region and therefore an hypothesis such as the above 

cannot be assumed via active route counts alone. Figure 7 on page 21 reveals that Vancouver’s 

network coverage is vast compared to the other study regions. This additional context helps 

explain how Vancouver can have the highest active route count while having the second to 

lowest OROL and POP percentages (many routes, little overlap.) Conversely, Calgary’s second 

to highest LOI score indicates it contains more overlap than Vancouver, and this high degree of 

overlap is achieved despite having the lowest active route count of all the networks. This implies 

a greater degree of convergence exists between Calgary’s routes when compared to Vancouver’s; 

routes converge for greater portions of their distances, potentially allowing for more transfers 
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within the system. Calgary’s higher LOI score combined with lower route counts also suggests 

that its regions with overlap have higher degrees of overlap than the overlapping regions in 

Vancouver. The geographic distribution of each network backs up this assumption as with 

Vancouver we can observe long routes servicing periphery regions that overlap at the ends to 

facilitate transfers only. This is contrasted by the overlap experienced in Calgary’s downtown 

region where 5 bridges feed routes to the downtown core. It was observed in both Calgary and 

Edmonton that the presence of bridges close to the downtown core contributes to higher degrees 

of overlap since even if few routes service these areas, the bridges oblige routes to share 

roadways for distances longer than what would be planned to facilitate transfers alone. While 

Vancouver does have bridges near its downtown core, the majority of its network is laid out 

away from the downtown region causing the few bridges close to downtown to have little impact 

on the LOI score. The hypothesis that Calgary’s regions of overlap contain higher degrees of 

overlap than Vancouver’s can be tested using the results of the OROL procedure since the 

resultant layers allow for the count of categories of links according to degree of overlap.  

Comparing Calgary and Edmonton’s LOI ranking to their OROL rankings also reveals an 

interesting difference between their networks.  One should note how the rankings of Calgary and 

Edmonton are reversed when comparing the LOI to the OROL. Calgary reports a maximum 

overlapping length or 43.28% of its network, while Edmonton reports 37.5%. One might expect 

Calgary to have a higher LOI due to these results, yet it is in fact Edmonton that has the highest 

LOI. It is also interesting to note how Montreal’s ranking changes from LOI to OROL. Both of 

these occurrences are related to how each measure incorporates the length of links with 

overlapping routes. With the LOI, the numerator contains the lengths of both categories of links: 

with overlap, and without, meaning the component of the equation that handles the overlapping 

length will always be longer than the length of overlap recorded via OROL. The OROL 

formulation effectively separates the two categories of lengths with their sum being the total 

network length. Since Montreal reports an OROL of 36.57%, yet has the lowest LOI of the 

group, we can determine that the degree to which routes overlap must be lower in Montreal than 

in the other networks. In other words, while Montreal has a longer distance of overlapping routes 

than Vancouver and Toronto, the average number of routes per instance of overlap is lower than 

the cities with higher LOIs. 

Similarly, the change of rankings between Calgary and Edmonton indicates that Calgary 
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has a greater distance of links with overlap, but on average the number of overlapping routes in 

those areas is lower than the average overlap count in Edmonton. 

This illustrates a key difference between the LOI and OROL measures: LOI is concerned 

with degree of overlap averaged over the entire network, whereas OROL creates categories of 

links and allows for the calculation of length for each class. This is one of the key differences 

this approach brings to the current state of overlap measures.  

The unchanged ranking between the OROL and POP is an expected result as it 

demonstrates that POP processing lowered the percentage of overlap by almost an equal amount 

for each network. With the exception of Calgary, each network’s overlap was reduced by 

approximately 10%, Calgary’s reduction was approximately 7.5%. This follows suit with the 

initial conclusion that Calgary’s network must contain greater distances with higher degrees of 

overlap in comparison to the others: the smaller reduction in overlap compared to other networks 

indicates it has more links with a maximum POP score equal to or less than the 0.6 cut-off value 

employed in the study.  

What follows below are concluding sections that summarize the contributions this 

research presents to the literature, the limitations of these methods discovered by the author, and 

finally, a perspectives section that outlines where this research should continue in the future. 

      

5 Contributions 

While the motivation for this work came from the need to understand the cause of 

reduced route attribution rates in TII procedures, the research conducted focused only on the 

development and verification of overlap measures and not on the testing of TII procedures 

themselves.   

The necessity of consistent road layers between cities halted the research when erroneous 

results were discovered for each different type of road layers (OpenStreetMap, city Open data 

portals, DMTI Spatial inc). After hitting this procedural roadblock, efforts quickly turned to the 

development of the GTFS-to-roads procedure which occupied a large portion of the project’s 

timeframe. Due to the lack of topological tools to properly address the myriad of geometric 

relationships between all the route linestrings, the project took on a new direction, evolving into 
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an exercise in data-manipulation, GIS programming, and data verification procedures rather than 

a simple GIS overlap and counting procedure. 

The overarching goal of the research was to provide analysts with a remedy to the route 

overlap issue faced in TII procedures so planners and researchers can extract the maximum value 

from survey data. The challenges faced during the development of these remedies instead steered 

the research into a new direction, evolving into an exploratory research project aimed at 

developing new GIS data handling techniques aimed at measuring network complexity with 

particular applications to GTFS linestring data, and eventually to the development of new 

network overlap measures. 

It is still hoped that this research will go on to inform analysts how to increase the value 

retained from GPS survey datasets, which in turn will help planners make informed decisions 

once OD surveys are analyzed to recognize the needs of public transit users.  

This research contributes a spatially disaggregate approach to network analysis that 

examines the overlap of network attributes via GIS procedures with the proposed Overlapping 

Routes on Links Score. In addition, this research offers a methodology for pre-processing GTFS 

datasets in order to reduce the degree of overlap of routes in the GTFS record via the proposed 

Probability of Passage score. This latter contribution has applications for transit itinerary 

inference methods from travel survey data when compared to the GTFS record. To conduct the 

analysis a novel python/SQL procedure was developed that converts a GTFS shapes.txt file into 

a simplified and accurate linestring GIS feature layer, replacing the need for a street network 

layer. This procedure has applications for any GIS analysis that works on clusters of linestring 

sample features and requires a baseline layer against which to measure them. While the process 

greatly benefits GTFS and network analysis in particular, the input features must not specifically 

be a depiction of a network. 

The GTFS-to-roads procedure has been made publicly available via GitLab 

(https://github.com/TRIP-Lab/GTFS-to-Roads-converter) and offers a method of cleaning 

clusters of linestrings that is not readily available via the available open source GIS tools and 

software packages. In fact, developing this part of the procedure was the most time-consuming 

aspect of this research as no available GIS tools presented a reliable method of cleaning these 

linestring clusters. 
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An unexpected discovery during this research was how the OROL calculation can be 

repeated for different qualifications of overlap (2 or more routes, 3 or more routes, etc.) and the 

sum will equal the LOI score. The fact that a new overlap methodology can lead to the same 

scores enforces the conclusion that the developed methods are valid. The LOI index was 

developed at a time where network length calculations would be carried out using a scale-ruler 

and a paper map. The link-level analysis made possible by the OROL methodology would have 

been computationally inefficient if conducted during the 1980s. It is now thanks to modern GIS 

systems that this fine-scale view of the network can be generated.  

6 Limitations 

One limitation of the OROL methodology is related to how the SQL queries handle the 

bus route linestring shapes. In its current form, the GIS overlay procedure that intersects the 

active routes with road links recognizes a bus route’s location to be active across its entire length 

when a departure is recognized at its first stop. This query structure was chosen to facilitate 

looping through the time series values as dictated by SQL formatting, as well as to follow the 

methodology of the TII pilot study that validated the Montreal survey data. In the query’s current 

form, if two bus route shapes overlap far into their routes, in a location that may not actually be 

occupied by both busses at the same time due to each route requiring a different amount of time 

to reach that location, the current procedure will still recognize these routes as overlapping. Even 

if no overlap actually occurs on that road link at that time, the OROL procedure will report this 

as an instance of overlap. Different methods of addressing this short falling were attempted but it 

was determined that the computation resources required to refine the view of the network on 

such a scale were beyond the scope of this research. The most accurate querying procedure as 

conceived by the author is outlined in the meta-code below: 

 

For a given time window: 

 Identify stops with departures during this window. 

 For each stop: 

Intersect this stop with the nearest road link 

            Identify the road links between this stop and the proceeding stop 

            IF the proceeding stop has a departure within the same window: 
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Continue identifying consecutive links until another stop is reached and 

repeat IF statement. 

  Else the proceeding stop has a departure outside the time-window: 

Assign each link between stops an “active route” classifier and write route 

info to the link. 

Perform the regular OROL overlay and tabulating process to the above results. 

 

This approach was attempted and abandoned once the processing demands of this method 

were realized. The task of identifying active road links between stops requires the creation of far 

more spatial layers than the OROL method outlined in this paper. Each active route needs to be 

broken into a sub-set of linestrings existing only between stops, effectively chopping and 

rebuilding the route shapes into new layers for each time window. On a typical service schedule, 

using 15-minute increments, there are 104 time windows to examine. To give an example of how 

much spatial data this query will generate, if a given time frame has 100 active routes, and on 

average each route has 20 stops, the result of this sub set process would produce 100 x 19 

linestring shapes x 104 time windows, producing a total of 197,600 spatial layers (and/or SQL 

“windows”) simply to begin the analysis. After this step, buffers will need to be constructed 

around each stop to ensure intersection with each line string and then each of these 197,600 

layers would need to be intersected with the stops, of which Montreal has 9,194. Only after this 

step can the route intersection process begin as described in the methodology section, which 

itself generates even more spatial layers. After much discussion it was determined that using the 

first outlined method, where a route is “active” across its entire length at the moment of 

departure, would be the most feasible approach, and also preferable for this research since it 

follows the methodology of the TII experiment in Montreal.  

This approach was also abandoned due to the fact that the real time GTFS records 

(GTFS-r) provides a record of precise vehicle locations. Typically delivered in real-time via a 

web API, the GTFS-r data feed can be compiled into records representing a past date’s particular 

service. In regards to transit itinerary inference, obtaining the specific record of where each 

vehicle was on the given day a survey trip was recorded should greatly improve route attribution 

rates. I do not expect the GTFS-r data format to completely eliminate the challenge posed by 

route overlap however as research cited in the manuscript has already acknowledged overlap to 
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be a problem in Active Vehicle Location data. As will be discussed further below in the 

perspectives section, performing TII with real-time GTFS data is a domain of transportation 

research that deserves much attention from scholars in the field as its applications for producing 

OD survey matrices are vast.  

The limitations to the POP methodology are largely related to what has been described 

above. For example, when a given road link has a route with a POP of 0.5, and two other routes 

with POP scores of 0.25 each, the assumption that the first route has the highest probability of 

passage is based on the assumption that the bus is present on all related links at the moment of its 

departure. 

Even given this limitation, the research conducted for this thesis demonstrates that 

filtering the network for specific POP values can reduce the degree of overlap in the GTFS 

record and it is my belief that applying the POP methodology to GTFS-r data will continue to 

diminish its already lower degree of overlap. 

Although the limitation presented by this query structure results in an unrealistic 

depiction of network activity, it should be recognized that these processes are designed to reveal 

attributes present due to the way in which the GTFS data is structured and packaged. The 

measures are not intended to present a pure reflection of what happens on the roadway since the 

data does not permit for this. This aspect of the data handling underscores how GTFS is not a 

perfect data-structure for analysis in that the goal behind its construction is the reliable 

functioning of scheduling applications, not a precise depiction of the activities within the 

network.  This project began with what should have been a simple GIS overlay procedure to 

produce a total count of overlapping routes, but it quickly turned into a data-management 

problem as the clustered nature of the routing shapes hindered accurate analysis, and the query 

structuring allowed for only certain structures of output results. What these results ensure is that 

if a GTFS feed is compared to travel survey data on a route by route basis, and the input GTFS 

data is not processed in any way to facilitate processing, then the methods described hold strong.  

 

7 Perspectives 

While real-time GTFS (GTFS-r) seems to be the ideal data source for TII procedures not 

all agencies have equipped their fleets with location tracking devices, and at the time of writing 
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this over 1020 transit agencies are publishing static GTFS records. For this reason I believe static 

GTFS still represents a valuable data-source to researchers and methods built upon it should be 

explored further.  

Future research that may result of the findings shared in this thesis should include the 

application of the POP output feature layers to TII processes in order to validate the method’s 

impact on route attribution success rates in TII. If a correlation between network overlap and TII 

route attribution rates is to be developed additional validate survey trip data will need to be 

gathered for different regions. With the recent adoption of smartphone travel survey applications 

for as a method of conducting OD surveys, and some of this data making its way to the public, I 

hope that such work will be possible in the future.  

 To further explore the network density/overlap connection I feel that additional overlap 

indicators can be developed. I believe these indicators would benefit from integrating various 

surface area calculations and ridership counts at that such depictions of networks might even be 

able to portray rider congestion levels. By examining past real-time vehicle location records with 

ridership counts and even chip card alighting data I believe service models can be developed that 

will be able to predict rider congestion at stations as disturbances to the networks happen in real 

time. Agencies have long recognized the need to adjust their scheduling on an ad-hoc basis to 

accommodate changes they could not predict during the planning phase. Perhaps with the right 

overlay procedures and overlap measures statistical modelling will be able to produce better ad-

hoc scheduling and adjust service levels on the fly to better address rider congestion before it 

even develops. 
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