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Highlights

• A new Paired Explicit Runge-Kutta (P-ERK) scheme is introduced.
• This approach allows different RK schemes to be used in stiff/non-stiff regions.
• P-ERK families are optimized and used for the Euler and Navier-Stokes equations.
• Results demonstrate up to 5x speedup relative to classical Runge-Kutta methods.
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Abstract

In this paper we introduce a family of explicit Runge-Kutta methods, referred to as Paired Explicit
Runge-Kutta (P-ERK) schemes, that are suitable for the solution of stiff systems of equations. The
P-ERK approach allows Runge-Kutta schemes with a large number of derivative evaluations and large
region of absolute stability to be used in the stiff parts of a domain, while schemes with relatively few
derivative evaluations are used in non-stiff parts to reduce computational cost. Importantly, different
P-ERK schemes with different numbers of derivative evaluations can be chosen based on local stiffness
requirements and seamlessly paired with one another. We then verify that P-ERK schemes obtain
their designed order of accuracy using the Euler equations with arbitrary combinations of schemes.
We then demonstrate that P-ERK schemes can achieve speedup factors of approximately five for
simulations using the Navier-Stokes equations including laminar and turbulent flow over an SD7003
airfoil. These results demonstrate that P-ERK schemes can significantly accelerate the solution of stiff
systems of equations when using an explicit approach, and that they maintain accuracy with respect to
conventional Runge-Kutta methods and available reference data.
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1 Introduction

A wide-range of practical applications require the solution of locally-stiff systems of equations. For
example, the convection-diffusion equation, reaction-diffusion equation, Navier-Stokes equations, Cahn-
Hilliard equation, and the Euler equations at low Mach numbers or when resolving shocks, amongst
others. The solution of such systems using an explicit approach, such as the popular explicit Runge-Kutta
(RK) methods, often proves impractical [1, 2]. Numerical stiffness necessitates that prohibitively small
time steps be taken to maintain stability, even if only a part of the computational domain is stiff [1, 3].
Implicit schemes are often used to overcome this limitation. However, this approach requires the storage
and computationally expensive solution of a global system of linear or non-linear equations [1, 3]. Recent
work on Implicit-Explicit (IMEX) RK schemes has shown particular promise using an implicit method
for the stiff part of the domain and an explicit method for the non-stiff part [4, 5, 6, 7, 8]. However, this
significantly increases the complexity of a solver and still requires the solution of a reduced local system
of linear or non-linear equations. Hence, the solution of stiff systems of equations remains a particularly
challenging problem in computational sciences and engineering [3]. While explicit methods have the
disadvantage of being only conditionally stable, they also have several appealing properties. Explicit
methods are often preferred due to their simplicity of implementation, scalability, and suitability for
modern many-core hardware architectures. Hence, any approach that can alleviate the stability constraints
of explicit methods would allow them to be applied to stiff systems of equations more efficiently, reducing
the computational cost of solving such problems.

Previous research on the suitability of explicit RK methods for stiff systems of equations has focused
on optimizing their region of absolute stability for increasingly large numbers of stages. For example,
Allampalli et al. developed fourth-order high-accuracy large-step explicit Runge–Kutta (HALE-RK)
schemes for computational aeroacoustics [9], Toulorge and Desmet created optimal explicit RK schemes
for wave propagation problems [10], Diehl et al. studied low-storage methods for Maxwell’s equations [11],
Niegemann and Diehl created low-storage RK methods with optimized stability regions [12], Bernardini
and Pirozzoli provided a strategy for optimizing schemes for wave propagation [13], Parsani et al. created
optimal schemes for high-order discretizations of wave propagation problems [14], and Kubatko et al.
optimized RK methods for discontinuous Galerkin (DG) spatial discretizations [15]. Furthermore, van
Der Houwen and Sommeijer introduced large stage count explicit schemes with favourable internal
stability properties [16] and Medovikov [17], Abdulle and Medovikov [18], Abdulle [19], and Abdulle
and Vilmart [20] proposed explicit orthogonal Runge-Kutta Chebyshev (ROCK) methods for systems
with large negative real eigenvalues, such as those encountered with parabolic systems, and a partitioned
implicit–explicit orthogonal Runge–Kutta (PIROCK) method for advection-diffusion-reaction problems.
Later, Martín-Vaquero and Janssen proposed explicit methods with up to 320 stages for parabolic
problems [21], O’Sullivan introduced factorized Runge-Kutta-Chebyshev (FRKC) methods with large
stage counts that are internally stable via a sequencing algorithm to limit internal amplification and
Runge-Kutta-Gegenbauer schemes for mixed hyperbolic-parabolic problems [22, 23, 24], and Verwer et
al. used Runge-Kutta-Chebyshev (RKC) schemes for advection-diffusion-reaction problems including
extended imaginary stability regions for the advective part [25]. Hence, significant effort has been put into
the optimization of Runge-Kutta stability polynomials and their efficient application to various systems of
equations. Recently, it has been shown that the stability region of RK methods can be readily optimized
for a large number of stages [26]. However, the computational efficiency advantage of each additional
stage typically diminishes for large numbers of stages for advection dominated problems [15]. Another
approach to adapt explicit RK methods for stiff systems of equations are multirate timestepping methods.
These methods allow different schemes with different time step sizes to be used in different parts of the
domain. For example, Constantinescu and Sandu introduced two second-order multirate methods [27],
Seny et al. used multirate methods for geophysical flows [28], and Schlegel et al. introduced a recursive
multirate scheme for advection equations [29]. However, the approaches of Constantinescu and Sandu [27]
and Schlegel et al. [29] include only two different schemes being paired, they can require additional
interface schemes, and the stability polynomials of these schemes are constrained by the underlying
classical RK methods from which they are built.
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Building on these previous studies, in this work we propose a general formulation for second-order
schemes for the solution of locally-stiff systems of equations referred to as Paired Explicit Runge-Kutta
(P-ERK) schemes. Although P-ERK schemes are similar to multirate schemes, their formulation is not
based on an extension of classical methods using different time step sizes. Instead, they use a general
formulation that describes families of schemes. These schemes are then chosen by optimizing their
stability polynomials for a given spatial discretization. These new schemes have arbitrarily large numbers
of stages and any number of schemes with the same number of stages but different stability polynomials
can be paired. These P-ERK schemes can require significantly fewer derivative evaluations in the non-stiff
parts of the domain compared to the stiff part, when contrasted against previous methods [27]. In the stiff
parts a scheme with a large number of stage derivative evaluations and large region of absolute stability is
used. In the non-stiff part, where stability constraints are not as prohibitive, a scheme with a small number
of stage derivative evaluations is used to reduce computational cost. We will demonstrate that any number
of these schemes can be paired together based on local stiffness criteria. We will then demonstrate the
utility of P-ERK schemes when paired with high-order unstructured spatial discretizations. Finally, we
explore their application to the Euler and Navier-Stokes equations, evaluating accuracy and performance
relative to classical RK methods.

This manuscript is organized as follows. In Chapter 2 we introduce a general Butcher tableau for
second-order P-ERK schemes with an arbitrary number of stages and derivative evaluations. In Chapter 3
we discuss the stability polynomial of these new families, and how they can be efficiently optimized for a
given spatial discretization. In Chapter 4 we present an example application using optimal schemes for the
high-order Flux Reconstruction approach constructed using von Neumann analysis techniques [30, 31].
In Chapter 5 we present verification of the approach and an assessment of performance for simulations
using the Euler and Navier-Stokes equations. Finally, in Chapter 6 we present conclusions and topics for
future work.

2 A New Family of Schemes

2.1 Background

A general RK method RKs,e,p having s-stages, of order p, and requiring e derivative evaluations, can be
represented compactly in matrix-vector form using a Butcher tableau [3]

c A
b (1)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1,1 a1,2 . . . a1,s
a2,1 a2,2 . . . a2,s

...
...

. . .
...

as,1 as,2 . . . as,s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2)

and

ci =

s∑
j=1

ai, j, (3)

s∑
i=1

bi = 1. (4)

For explicit schemes we also require
ai, j = 0, j ≥ i, (5)

which ensures A is strictly lower triangular. An explicit RK method can always be expressed as [2, 26]

un+1 = Pe,p(z)un, (6)
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where Pe,p(z) is the schemes stability polynomial, e is the number of derivatives evaluated, p is the order
of accuracy, z is a point in the complex plane, un is the current solution at timestep n, and un+1 is the
solution at the next timestep. We are able to investigate the stability properties of an explicit RK scheme
by taking z = ωΔt, where ω is an eigenvalue of the system of equations being solved and Δt is the time
step size. The resulting scheme will be linearly stable for this eigenvalue provided |Pe,p(z)|≤ 1, where |·| is
the complex modulus. The stability polynomial of an explicit RK method can be determined directly from
the Butcher tableau [1, 2]

Pe,p(z) = 1 + zbT (I − zA)−1 e, (7)

and via Cramer’s rule [1, 2]

Pe,p(z) =
det
(
I − zA + zebT

)
det (I − zA)

, (8)

where e is a vector of ones. The region of absolute stability S of an explicit RK method is the set in the
complex plane where this condition holds, that is [26],

S =
{
z ∈ C : |Pe,p(z)|≤ 1

}
, (9)

and the linear stability condition is
Δtω ⊆ S . (10)

It is known that there exist no unconditionally stable explicit RK methods [2]. Hence, for a given spatial
discretization there exists a maximum time-step size, denoted by Δtmax, beyond which an explicit RK
discretization will become unstable. Due to this stability restriction, explicit methods often require a
prohibitively large number of time-steps be taken when solving stiff systems of equations.

2.2 The Butcher Tableau

In this work we explore a new family of second-order P-ERK schemes. This family is designed such that
different RK schemes with the same number of stages can be used for the stiff and non-stiff regions of a
locally-stiff system of equations. In the non-stiff region a scheme with relatively few derivative evaluations
is used to minimize computational cost. In the stiff regions a scheme with a large number of derivative
evaluations is used. These additional derivatives are exploited to improve the region of absolute stability,
allowing for a larger global time-step to be used. As will be shown, any number of schemes with the same
number of stages from this family can be paired to conform to local stiffness requirements while reducing
computational cost.

The Butcher tableau for a member of the new P-ERKs,e,2 family is created starting from a general
explicit RK scheme having the constraints [2]

ai, j = 0, j ≥ i, (11)

and correspondingly
c1 = 0. (12)

This gives the following Butcher tableau

c A
b =

0 0
c2 a2,1 0
c3 a3,1 a3,2 0

c4 a4,1 a4,2 a4,3
. . .

...
...

...
...

. . . 0
cs as,1 as,2 as,3 . . . as,s−1 0

b1 b2 b3 . . . bs−1 bs

(13)
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One disadvantage of such a scheme is that it requires a large amount of memory to store s stage derivatives.
To avoid increasing memory consumption relative to conventional Runge-Kutta methods we can alleviate
storage requirements by setting

ai, j = 0, j > 1, i > j + 1, (14)

bi = 0, i < s, (15)

bs = 1. (16)

This yields the following general Butcher tableau

c A
b =

0 0
c2 a2,1 0
c3 a3,1 a3,2 0

c4 a4,1 0 a4,3
. . .

...
...

...
...

. . . 0
cs as,1 0 0 . . . as,s−1 0

0 0 0 . . . 0 bs

(17)

This tableau has the unique property that it requires only two stage derivatives be stored simultaneously,
regardless of the total number of stages. This greatly reduces memory requirements. Furthermore, such a
scheme will be second-order accurate provided [2]

cs =
1
2

. (18)

We then choose the remaining c coefficients to be equidistant between the first and last stages

ci =
i − 1

2(s − 1)
, (19)

noting that these could be optimized in future studies to improve some non-linear properties of the scheme,
for example, its Strong Stability Preserving (SSP) behaviour. Also, noting that

ci =

s∑
j=1

ai, j, (20)

the general tableau simplifies to just one unknown ai, j value per stage

c A
b =

0 0
c2 a2,1 0
c3 c3 − a3,2 a3,2 0

c4 c4 − a4,3 0 a4,3
. . .

...
...

...
...

. . . 0
cs cs − as,s−1 0 0 . . . as,s−1 0

0 0 0 . . . 0 bs

(21)

where each ci is known explicitly through Equation (20). Hence, for every additional stage we add to
such a tableau, we add one additional unknown stage coefficient. Finally, to reduce the number of stage
derivative evaluations to e for a general P-ERKs,e,2 scheme we set

ai+1,i = 0, 2 ≤ i ≤ s − e + 1, (22)
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which gives a scheme that has e − 2 unknown Butcher tableau coefficients. Following this approach, an
example Butcher tableau for a P-ERK10,6,2 scheme is

c A
b =

0 0 0 0 0 0 0 0 0 0 0
1

18
1

18 0 0 0 0 0 0 0 0 0
1
9

1
9 0 0 0 0 0 0 0 0 0

1
6

1
6 0 0 0 0 0 0 0 0 0

2
9

2
9 0 0 0 0 0 0 0 0 0

5
18

5
18 0 0 0 0 0 0 0 0 0

1
3

1
3 − a7,6 0 0 0 0 a7,6 0 0 0 0

7
18

7
18 − a8,7 0 0 0 0 0 a8,7 0 0 0

4
9

4
9 − a9,8 0 0 0 0 0 0 a9,8 0 0

1
2

1
2 − a10,9 0 0 0 0 0 0 0 a10,9 0

0 0 0 0 0 0 0 0 0 1

(23)

and its corresponding stability polynomial determined from Equation (8) is

P6,2(z) = 1 + z +
z2

2
+

4a10,9z3

9
+

7a9,8a10,9z4

18
+

a8,7a9,8a10,9z5

3
+

5a7,6a8,7a9,8a10,9z6

18
. (24)

Hence, when provided any suitable stability polynomial Pe,2 we can determine the unknown P-ERKs,e,2
Butcher tableau coefficients via the general form of the schemes stability polynomial.

To summarize, we have created a general family of second-order P-ERK schemes that have s stages
and require e derivative evaluations. Importantly, we note that all such schemes having the same number of
stages share a common b and c. Hence, they can be paired in a similar manner to the IMEX approach [4].
This allows P-ERK schemes with different numbers of derivative evaluations and terms in their stability
polynomials to be used in different parts of the domain. Finally, a unique scheme can be determined by
providing a suitable stability polynomial for the system of equations to be solved.

3 The Stability Polynomial

In the previous section we introduced the second-order P-ERKs,e,2 family of schemes that have e − 2
unknown entries in their Butcher tableau and the same e − 2 unknown terms in their stability polynomials.
Hence, given a suitable stability polynomial we can solve for the e − 2 unknown ai, j coefficients directly,
which then completes the Butcher tableau. While it is possible to use existing stability polynomials, it
is often desirable to optimize the stability polynomial for a given spatial discretization to allow large
time steps to be taken. The stability polynomial Pe,p(z) of an e derivative evaluation order p explicit RK
method is a polynomial of degree e defined by monomial coefficients γ j according to [26]

Pe,p(z) =
e∑

j=0

γ jz
j. (25)

To be accurate to order p we require the stability polynomial coefficients to be the exponential function up
to terms of at least order p, that is

γ j =
1
j!

f or 0 ≤ j ≤ p. (26)

In the current study we only consider second-order P-ERKs,e,2 schemes. Applying the order of accuracy
constraints to the stability polynomial we obtain

Pe,2(z) = 1 + z +
z2

2
+

e∑
j=3

γ jz
j, (27)

which has e − 2 free parameters {γ3, . . . , γe}.
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For any explicit scheme we can determine the largest time-step Δtmax for which the stability constraint
of Equation (10) remains satisfied. Our objective is to determine the set of free parameters {γ3, . . . , γe}
that yield the largest possible value of Δtmax for a given spatial discretization. This can be cast as an
optimization problem to [26]

maximize
γ3,...,γe

Δt

subject to |Pe,2(Δtωδ)|−1 ≤ 0, ∀ωδ,
(28)

where ωδ is one from the set of all possible eigenvalues ωωωδ. We use Δtopt to denote the optimized
value of the maximum stable time step size Δtmax, and Popt to denote the corresponding optimal stability
polynomial. Finding the global optimum in Equation (30) can be particularly challenging as it is nonconvex
for e > 2 and there are typically several sub-optimal local minima [26].

Ketcheson and Ahmadia [26] proposed an alternate optimization approach, which seeks to first
determine how small the maximum modulus of Pe,p(Δtωδ) can be for a given Δt, which can be cast as
trying to

minimize
γp+1,γp+2,...,γe

max
ωδ ∈ωωωδ

(
|Pe,p(Δtωδ)|−1

)
. (29)

The solution to Equation (29) is denoted re,p(Δt,ωωωδ) and we note that |Pe,p(z)| is linear in γ j. Therefore,
Equation (29) is convex [26]. Ketcheson and Ahmadia [26] then reformulated the problem in Equation
(30) as

maximize
γp+1,γp+2,...,γe

Δt

subject to re,p(Δt,ωωωδ) ≤ 0.
(30)

This is an optimization problem in a single variable, and can be handled by the simple bisection method
outlined in Algorithm 1. The solution of Algorithm 1 yields the maximum possible linearly stable
time-step Δtopt, as well as the corresponding optimal stability polynomial Popt.

Algorithm 1: Finding Δtopt.

Select Δtmax

Δtmin = 0
while Δtmax − Δtmin > ε do
Δt = Δtmin+Δtmax

2
Solve Equation (29)
if re,s(Δt,ωωωδ) ≤ 0 then
Δtmin = Δt

else
Δtmax = Δt

end
end
return Δtopt = Δtmin

In the current study we converge the bisection method in Algorithm 2 to 10−12 using Matlab 2016a [32].
To solve the convex minimization problem in Equation (29) we used CVX, which is a Matlab-based
package for specifying and solving convex programs, using the “best” precision setting [33, 34]. Following
this approach we can generate an optimal stability polynomial for a given system of equations, which
uniquely determines the Butcher tableau.

4 Application to High-Order Unstructured Methods

One particularly appealing application of P-ERK schemes is the solution of stiff systems of equations using
high-order unstructured spatial discretizations, such as Discontinuous Galerkin (DG) [35, 36], Spectral
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Difference (SD) [37, 38], and Flux Reconstruction (FR) [30, 31]. These schemes use an element-wise
degree k polynomial representation of the solution and typically achieve an order of accuracy of k + 1.
They are also suitable for complex geometries utilizing mixed-element unstructured meshes. However, it
is well known that higher-order variants of these schemes have stricter stability constraints per degree
of freedom than conventional lower-order Finite Volume (FV) or Finite Difference (FD) methods [30].
Hence, they typically require small time-steps to maintain stability. In this section we focus on the FR
approach, since it can recover both DG and SD methods [30]. Our objective is to demonstrate that we
can generate semi-discrete eigenspectraωωωδ via Von Neumann analysis for advection dominated problems
using the FR approach. These eigenspectra can then be used to generate optimal stability polynomials for
various numbers of derivative evaluations and solution polynomial degrees, which in turn can be used to
generate corresponding P-ERK schemes.

4.1 Flux Reconstruction

The FR approach, first introduced by Huynh [30], later described using our notation in [39, 40, 41] and
included here for completeness, is used to spatially discretize a 1D hyperbolic conservation law of the
form

∂u

∂t
+
∂ f

∂x
= 0, (31)

in a domain Ω, where u = u(x, t) is the solution with a given initial distribution u(x, 0) = u0, t is time,
f = f (u) is the flux, and x is the spatial coordinate.

We start by splitting the domain Ω into a mesh composed of elements

Ω =

Ne⋃
n=1

Ωn,
Ne⋂

n=1

Ωn = ∅, (32)

where Ωn is one of Ne elements in the domain. For simplicity, each element Ωn is mapped to a reference
element I via the linear mapping

ξ = Γn(x) = 2
(

x − xn

xn+1 − xn

)
− 1, (33)

where xn is the mesh node corresponding to the left face of Ωn, Γn is the mapping function, and ξ is the
location in reference space. This mapping can be inverted according to

x = Γ−1
n (ξ) =

(
1 − ξ

2

)
xn +

(
1 + ξ

2

)
xn+1, (34)

which is also linear. This allows us to construct the transformed solution in computational space according
to

ûδn = ûδn(ξ, t) = uδn
(
Γ−1

n (ξ), t
)

, (35)

and a transformed flux in computational space according to

f̂ δn = f̂ δn (ξ, t) =
f δn
(
Γ−1

n (ξ), t
)

hn
. (36)

The system of equations in computational space can then be written as

∂ûδn
∂t
+
∂ f̂ δn
∂ξ
= 0. (37)

Following Huynh [30], the solution within each element is represented by a degree k polynomial,
which is allowed to be discontinuous at the interface between elements. This polynomial is supported by

8



nodal basis functions generated at k + 1 solution points. Therefore, the solution within each element in
computational space can be approximated as

ûδn =

k∑
l=0

ûδn,lφ̂l, (38)

where ûδn = ûδn(ξ, t) is the polynomial representation of the solution within an element, ûδ
n,l = ûδ

n,l(t) is
the value of the solution at solution point l, and φ̂l = φ̂l(ξ) is its corresponding nodal basis function in
reference space. For the one-dimensional case these basis functions are the Lagrange polynomials

φ̂l(ξ) =
k∏

m=0,m�l

ξ − ξm
ξl − ξm . (39)

A polynomial representation of the discontinuous flux function f̂ δDn = f̂ δDn (x, t) can be constructed using
the same polynomial basis as the solution according to

f̂ δDn =

k∑
l=0

f̂ δn,lφ̂l, (40)

where the superscript D denotes that this flux, like the solution, is allowed to be discontinuous at the
interface between elements and f̂ δ

n,l = f̂ δ
n,l(t) is the flux evaluated at the solution points. This discontinuous

flux is then corrected to be C0 continuous by

f̂ δCn =
(

f̂ CL
n − f̂ δDn,L

)
gL +

(
f̂ CR
n − f̂ δDn,R

)
gR, (41)

where gL = gL(ξ) and gR = gR(ξ) are correction functions, f̂ δD
n,L = f̂ δDn (−1, t), and f̂ δD

n,R = f̂ δDn (1, t). The
terms f̂ CL

n = f̂ CL
n (u−L , u+L) and f̂ CR

n = f̂ CR
n (u−R, u+R) are common interface fluxes computed at the flux points

between elements by an appropriate Riemann solver using the interpolated values u−L , u+L , u−R, and u+R of
the solution from the adjoining elements at the left (L) and right (R) interfaces. The correction functions
are degree k + 1 polynomials with the constraints

gL(−1) = 1, gL(1) = 0, (42)

gR(−1) = 0, gR(1) = 1. (43)

The gradient of the continuous flux function can then be found according to

∂ f̂ δn
∂ξ
=
∂ f̂ δDn

∂ξ
+
∂ f̂ δCn

∂ξ
=

k∑
l=0

f̂ δn,l
∂φ̂l

∂ξ
+
(

f̂ CL
n − f̂ δDn,L

) ∂gL

∂ξ
+
(

f̂ CR
n − f̂ δDn,R

) ∂gR

∂ξ
, (44)

which is of degree k and in the same polynomial space as ûδn.
The behaviour of an FR scheme depends on the choice of correction functions gL and gR for the left

and right hand boundaries, respectively. Huynh [30] originally introduced several correction functions
including one that recovered a collocation-based nodal DG scheme, one that recovered an energy-stable
SD scheme, and one that recovered a so-called g2 scheme. Vincent et al. [39, 42] later introduced a
single-parameter family of energy-stable flux reconstruction schemes, whose semi-discrete dispersion and
dissipation behaviour has previously been studied.

4.2 Von Neumann Analysis

To determine the stability constraints of an FR scheme we perform Von Neumann analysis following
Huynh [30], Vincent et al [39], and Vermeire et al. [40, 41]. A full description of the approach is included
here for completeness. For this study, we consider the linear advection equation with fully upwind fluxes
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at element interfaces, which has similar behaviour to multidimensional advection dominated problems
using the Euler and Navier-Stokes equations.

We follow the notation of Vincent et al. [39] for Von Neumann analysis of a general linear advection
equation

∂u

∂t
+
∂u

∂x
= 0, (45)

which admits plane wave solutions of the form

u = eI(θx−ωt), (46)

provided the temporal frequency ω = ω(θ) satisfies the dispersion relation where θ is the wave number
and I =

√−1. Specifically, we consider a mesh where all elements have constant width h = 1. The flux
reconstruction scheme can then be cast in matrix-vector form for any element as

∂ûδ

∂t
= −2Dûδ −

(
f̂ CL − 2lT ûδ

)
gξL, (47)

where ûδ is the vector of solution point values, gξL is the gradient of the correction function evaluated at
the solution points,

l[k] = φ̂ j,k(−1), (48)

is the boundary extrapolation operator, and D is the nodal gradient operator.
We seek Bloch wave type solution to Equation (47) of the form

ûδ = e
I
(
nθ
δ−ωδt

)
v̂δ, (49)

where θ
δ

is a prescribed baseline wavenumber within the range −π ≤ θ ≤ π and ωδ is the resulting
temporal frequency of the scheme. The upwind interface flux can then be written as

f̂ CL = 2rT e
I
(
nθ
δ−θδ−ωδt

)
v̂δ, (50)

where
r[l] = φ̂n,l(1). (51)

By substituting Equation (49) and Equation (50) into Equation (47) we obtain

Qv̂δ = ωδv̂δ, (52)

where
Q = −2I

[
D + gξL

(
rT e−Iθ

δ − lT
)]

. (53)

Equation (52) is a classical eigenvalue problem, where v̂ is one of k + 1 valid eigenvectors with an
associated eigenvalue ωδ. The operator Q is a function of θ

δ
, and it follows that so too are v̂δ and ωδ. In

order for a fully discrete scheme to remain stable, all of the eigenvalues ωδ from the spatial discretization
must be contained within the region of absolute stability of the temporal discretization for all permissible
values of θ

δ
for a given Δt. Example semi-discrete eigenspectra for solution polynomials of degree k = 1

to k = 8 are shown in Figure 1. The increasing spectral radius in these results demonstrates increasing
numerical stiffness as the degree of the solution polynomial is increased when using the FR approach.
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Figure 1. Example eigenspectra for the FR approach with the DG correction function and solution
polynomials of degree k = 1 to k = 8.

4.3 Optimal Stability Polynomials

Using Equation (52) we can generate semi-discrete eigenspectra for the FR approach using a degree k

scheme. These eigenspectra can then be used in Algorithm 1 to generate optimal stability polynomials.
Using these optimal stability polynomials, we can then solve for the unknown Butcher tableau coefficients
of a P-ERK scheme. A plot of Δtopt for to e = 2 to e = 16 derivative evaluations is shown in Figure 2, and
contours of an optimal stability polynomial and eigenspectra scaled by Δtopt for k = 6 and e = 16 are
shown in Figure 3. These results demonstrate that adding additional derivative evaluations and terms to the
stability polynomial consistently increases the allowable time step size, that this increase in approximately
linear for large numbers of stages, and that this procedure creates a stability polynomial that approximates
the shape of the semi discrete eigenspectra when scaled by Δtopt. Also, we see that even with their
corresponding optimal stability polynomials, the higher-order FR discretizations remain stiffer than their
lower-order variants with smaller values of Δtopt. Finally, since the P2,2 stability polynomial has no free
parameters to be optimized, its performance in terms of Δtopt for the higher-order schemes is poor. Hence,
we have demonstrated that we can generate optimal stability polynomials for FR discretizations using
Algorithm 1. These stability polynomials can then be used to directly generate Butcher tableaus for
families of P-ERKs,e,2 schemes. For example, the optimal stability polynomial for k = 6 and e = 6 is

Popt = 1 + z +
z2

2
+ 0.1540265893599148z3 + 0.0287139292526216z4

+0.0030119509086084z5 + 0.0001374933831987z6.
(54)

Comparing this with the general P-ERK10,6,2 stability polynomial provided in Equation (24), we can
directly solve for the unknown Butcher tableau coefficients using Equation (24), generating the P-ERK10,6,2
scheme that has been optimized for a solution polynomial of degree k = 6. Optimal stability polynomials,
values of Δtopt, and complete Butcher tableaus are provided for solution polynomials of degree k = 1 to
k = 8 and P-ERK schemes of up to 16 stages are provided as Electronic Supplementary Material with this
manuscript.

5 Numerical Results

5.1 Isentropic Vortex Advection

For verification of P-ERK schemes we consider the propagation of an isentropic vortex through a periodic
domain using the Euler equations. While not significantly stiff, this problem has an exact analytical
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solution making it useful for verification purposes. This exact solution is simply the propagation of the
initial isentropic vortex with the mean flow. The initial flow field is specified as [43, 44]

ρ =

[
1 − S 2M2(γ − 1)e2 f

8π2

] 1
γ−1

,

u =
S ye f

2πR
,

v = 1 − S xe f

2πR
,

p =
ργ

γM2 ,

(55)

where ρ is the density, u and v are the velocity components, p is the pressure, f = (1 − x2 − y2)/2R2,
S = 13.5 is the strength of the vortex, M = 0.4 is the free-stream Mach number, R = 1.5 is the
characteristic vortex radius, and γ = 1.4. A plot of the initial density distribution is shown in Figure 4a.

We used a 20 × 20 two-dimensional domain with periodic boundary conditions on all four edges. The
mesh was composed of 80× 80 quadrilateral elements and the solution was represented using k = 6 degree
polynomials on each element to minimize spatial error. The solution and flux points were located at Gauss
points and Rusanov fluxes were used at the interfaces between elements. We run one set of simulations
for the classical RK2,2 scheme, one for each of the P-ERK10,2,2 through P-ERK10,10,2 schemes optimized
for k = 6, as well as an additional simulation using a random distribution of these P-ERK schemes in the
domain as shown in Figure 4b. Each simulation was run to a final time of t = 20 using four different time
step sizes for a total of 44 simulations. To evaluate the accuracy of each scheme we considered the L2
norm of the density error at the end of each simulation in a 4 × 4 region at the center of the domain. This
L2 error is defined as

σ =

√∫ 2

−2

∫ 2

−2
(ρδ(x) − ρe(x))2 dx, (56)

where ρδ(x) is the final numerical solution and ρe(x) is the exact analytical solution, which is identical to
the initial condition. To get a good approximation of the true L2 error we used a fifteenth-order quadrature
rule within each element.

A summary of the density error for each temporal scheme and time step size including observed orders
of accuracy are provided in Table 1 and plotted in Figure 5. We observe that all schemes achieve their
designed order of accuracy of two, that schemes with more derivative evaluations have lower error for a
given time step size, and that these schemes still have a small accuracy advantage when compared per
derivative evaluation. Importantly, the simulation using a random distribution of P-ERK10,e,2 schemes also
achieves second-order accuracy with an intermediate level of error between that of the different schemes
used. These results demonstrate that the P-ERKs,e,2 families of schemes are able to achieve their designed
order of accuracy for non-linear systems of equations, either on their own or paired together in arbitrary
configurations. Hence, we have demonstrated that we are able to maintain accuracy while using different
P-ERKs,e,2 schemes in different parts of the domain.

5.2 Laminar SD7003 Airfoil

To evaluate the performance and accuracy of P-ERK schemes for the unsteady Navier-Stokes equations
we consider laminar flow over an SD7003 airfoil. We use a freestream Mach number of M = 0.2 where
M = U∞/c∞ where U∞ and c∞ are the freestream velocity and speed of sound, respectively. We use
an angle of attack α = 4◦, ratio of specific heats γ = 1.4, Prandtl number Pr = 0.71, and Reynolds
number Rec = 10, 000 where Rec = ρ∞U∞c/μ, c is the airfoil chord length, and μ is the constant viscosity.
This is a commonly used test case for the verification and validation of CFD solvers. Reference results
are available from Uranga et al. [45] using a high-order DG scheme and Lopez et al. [46] using the
FR approach. At this Reynolds number and angle of attack the flow is expected to be planar with little
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(a) Initial density distribution. (b) Random P-ERK10,e,2 distribution.

Figure 4. Initial density distribution, mesh, and random distribution of the P-ERK10,e,2 schemes for e = 2
(blue) to e = 10 (red) for the isentropic vortex advection test case.
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Figure 5. Convergence plots for the isentropic vortex test case.
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Table 1. Summary of density error and order of accuracy for the isentropic vortex test case using P-ERK
optimized for the solution polynomial of degree k = 6.

Scheme Δt σ Order

RK2,2 1.00 × 10−3 5.08 × 10−7

5.00 × 10−4 1.27 × 10−7 2.00
2.50 × 10−4 3.17 × 10−8 2.00
1.25 × 10−4 7.94 × 10−9 2.00

P-ERK10,2,2 1.00 × 10−3 5.08 × 10−7

5.00 × 10−4 1.27 × 10−7 2.00
2.50 × 10−4 3.17 × 10−8 2.00
1.25 × 10−4 7.94 × 10−9 2.00

P-ERK10,3,2 1.00 × 10−3 1.25 × 10−7

5.00 × 10−4 3.12 × 10−8 2.00
2.50 × 10−4 7.82 × 10−9 2.00
1.25 × 10−4 1.98 × 10−9 1.98

P-ERK10,4,2 2.00 × 10−3 2.98 × 10−7

1.00 × 10−3 7.45 × 10−8 2.00
5.00 × 10−4 1.86 × 10−8 2.00
2.50 × 10−4 4.67 × 10−9 2.00

P-ERK10,5,2 2.00 × 10−3 2.08 × 10−7

1.00 × 10−3 5.20 × 10−8 2.00
5.00 × 10−4 1.30 × 10−8 2.00
2.50 × 10−4 3.27 × 10−9 2.00

P-ERK10,6,2 4.00 × 10−3 6.20 × 10−7

2.00 × 10−3 1.55 × 10−7 2.00
1.00 × 10−3 3.87 × 10−8 2.00
5.00 × 10−4 9.69 × 10−9 2.00

P-ERK10,7,2 4.00 × 10−3 4.80 × 10−7

2.00 × 10−3 1.20 × 10−7 2.00
1.00 × 10−3 3.00 × 10−8 2.00
5.00 × 10−4 7.51 × 10−9 2.00

P-ERK10,8,2 4.00 × 10−3 3.83 × 10−7

2.00 × 10−3 9.59 × 10−8 2.00
1.00 × 10−3 2.39 × 10−8 2.00
5.00 × 10−4 6.00 × 10−9 2.00

P-ERK10,9,2 4.00 × 10−3 3.13 × 10−7

2.00 × 10−3 7.83 × 10−8 2.00
1.00 × 10−3 1.95 × 10−8 2.00
5.00 × 10−4 4.90 × 10−9 2.00

P-ERK10,10,2 4.00 × 10−3 2.61 × 10−7

2.00 × 10−3 6.53 × 10−8 2.00
1.00 × 10−3 1.63 × 10−8 2.00
5.00 × 10−4 4.09 × 10−9 2.00

Random 1.00 × 10−3 9.27 × 10−8

5.00 × 10−4 2.31 × 10−8 2.00
2.50 × 10−4 5.78 × 10−9 2.00
1.25 × 10−4 1.49 × 10−9 1.95
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variation in the span-wise direction [45]. Previous studies have demonstrated that a laminar separation
bubble forms on the suction side of the airfoil and an unsteady wake propagates downstream.

Since the flow is fundamentally planar, we use a two-dimensional mesh of size [−80, 100] × [−80, 80]
as shown in Figure 6a, which is as large as those used in previous studies [45]. The quadratically curved
mesh is composed of 18, 698 quadrilateral elements. The mesh is refined in the wake region to capture
the unsteady flow downstream of the airfoil. The mesh is also refined towards the surface of the airfoil
and thin boundary layer elements are used to capture the near-wall viscous features of the flow as shown
in Figure 6b. The solution is represented using Gauss points on each element and the interface fluxes
are computed using a Rusanov flux and the second method of Bassi and Rebay (BR2) with Gauss points
along each element edge [47]. The surface of the airfoil is modelled as no-slip adiabatic, and the far field
boundary condition is specified as Riemann invariant.

To assess the performance of the new family of RK schemes we compare them to the commonly
used classical RK3,3 scheme using solution polynomials of degree k = 1 to k = 4. This is the range of
polynomial degrees for which that majority of practical simulations using FR and DG are performed [45,
48, 49]. We choose to compare against RK3,3 since the classical RK2,2 is not commonly used in practice,
due to its aforementioned poor stability properties when using high polynomial degrees for the spatial
discretization. We first determine the maximum stable time-step size iteratively for each polynomial
degree with RK3,3, and compute its corresponding computational cost as wall clock time per tc, where
tc = c/U∞ is a non-dimensional convective time. We then find the maximum stable time-step size using
the optimal P-ERK16,16,2 scheme in the entire domain for each polynomial degree. We then split the
domain into successive regions of stiffness based on each elements minimum edge length such that the
maximum stable time step size is not reduced. P-ERK16,16,2 is used in the stiffest part and, as the minimum
element edge length increases, we use P-ERK16,12,2, P-ERK16,8,2, P-ERK16,4,2, P-ERK16,3,2, and finally
P-ERK16,2,2 for the largest elements in the domain. Using this approach we are able to use the same
maximum time-step size as P-ERK16,16,2 when it is used in the entire domain, but require significantly
fewer stage derivative evaluations for the majority of elements. The splitting between P-ERK schemes is
provided in Figure 7 showing that schemes with a large number of derivative evaluations are used for the
small boundary layer elements, whereas fewer derivative evaluations are required moving outwards from
the airfoil surface. Finally, each simulation is run to a final simulation time of 100tc with a time-step 75%
the size of the maximum found using the RK3,3 and P-ERK16,16,2 schemes, respectively.

The ratios of the maximum stable time step size achieved using P-ERK schemes relative to the RK3,3
scheme are shown in Table 2 for each polynomial degree. We find that P-ERK16,e,2 schemes can remain
stable while taking time steps up to 6.07 times larger than RK3,3. This increased time step size comes
at the relatively small cost of additional derivative evaluations for a small number of stiff elements in
the boundary layer region, as shown in Figure 7. As a result, we observe speedup factors of up to 4.98
relative to RK3,3. This demonstrates that these new P-ERK schemes can significantly accelerate solutions
of locally stiff systems of equations. Contours of vorticity shown in Figure 8 demonstrate that the P-ERK
schemes remain stable, regardless of the solution polynomial degree. Furthermore, there is no apparent
contamination of the solution at the interface between schemes. We observe that high-order solution
polynomials better resolve the unsteady wake behind the aerofoil. Quantitative results including time-
averaged lift (CL) and drag (CD) coefficients given in Table 2 are in excellent agreement with available
reference data [45, 46]. Importantly, we note that results obtained using the P-ERK schemes are nearly
identical to those obtained using RK3,3, suggesting that the observed speedup factors are obtained without
a significant impact on the accuracy. These results demonstrate that P-ERK schemes are a stable and
efficient time stepping approach for unsteady simulations using the Navier-Stokes equations. Furthermore,
they can be combined based on local numerical stiffness to achieve significant speedup factors compared
to conventional approaches, while maintaining stability and accuracy.

5.3 Turbulent SD7003 Airfoil

To demonstrate the utility of P-ERK schemes for Implicit Large Eddy Simulation (ILES) using the Navier-
Stokes equations at higher Reynolds numbers we consider transitional and turbulent flow over an SD7003
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(a) Domain and mesh. (b) Near-surface mesh.

Figure 6. The domain and near surface meshes for the laminar SD7003 airfoil simulations showing the
refined boundary layer region.

Figure 7. Splitting of the domain for the laminar SD7003 airfoil simulations into regions where P-
ERK16,16,2 (red), P-ERK16,12,2, P-ERK16,8,2 , P-ERK16,4,2, P-ERK16,3,2, and P-ERK16,2,2 (dark blue) are
used based on minimum element edge lengths.

Table 2. Performance and quantitative results for the SD7003 airfoil test case.

Polynomial Degree Scheme Δt Ratio Speedup Factor CL CD

k = 1 RK3,3 0.3162 0.0516
P-ERK16,e,2 5.85 4.98 0.3163 0.0516

k = 2 RK3,3 0.3893 0.0497
P-ERK16,e,2 5.84 4.24 0.3894 0.0497

k = 3 RK3,3 0.3841 0.0499
P-ERK16,e,2 6.07 4.33 0.3841 0.0499

k = 4 RK3,3 0.3849 0.0499
P-ERK16,e,2 5.76 3.41 0.3848 0.0499

Uranga et al. [45] 0.3755 0.0498
Lopez-Morales et al. [46] 0.3719 0.0494
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Figure 8. Coloured contours of velocity magnitude for the laminar SD7003 airfoil test cases.

18



airfoil. We use a freestream Mach number of M = 0.1, angle of attack α = 8◦, ratio of specific heats
γ = 1.4, Prandtl number Pr = 0.71, and Reynolds number Rec = 60, 000. This is a commonly used test
case for validation of LES solvers and multiple reference datasets are available for comparison [48, 50, 51].
At this Reynolds number and angle of attack a laminar separation bubble is expected to occur on the
suction side of the airfoil, with turbulent transition occurring partway along its length.

Since the flow is turbulent we use a three-dimensional mesh of size [−19, 20] × [−20, 20] × [0, 0.2] as
shown in Figure 9a, which is as large as those used in similar previous studies [45]. The quadratically
curved mesh is composed of 76, 464 hexahedral elements with six elements in the spanwise direction. The
mesh is refined in the wake region to capture the unsteady flow downstream of the airfoil. The mesh is also
refined towards the surface of the airfoil and thin boundary layer elements are used to capture the near-wall
viscous features of the flow, as shown in Figure 9b. Due to the relatively high Reynolds number, these
elements are significantly thinner than those in the laminar SD7003 test case. The solution is represented
using Gauss points on each element and the interface fluxes are computed using the Rusanov and BR2
schemes using Gauss points along each element face. The surface of the airfoil is modelled as no-slip
adiabatic, and the far field boundary condition is specified as Riemann invariant.

Similar to the laminar SD7003 case, we first determined the maximum stable time-step size iteratively
using both RK3,3 and P-ERK16,16,2, and the computational cost as wall clock time per convective time.
This was performed for solution polynomials of degree k = 1, k = 2, and k = 3, for which ILES has
previously been validated using the FR approach [49]. The boundary layer resolution gives y+ ≈ 0.77,
0.41, and 0.25 for solution polynomials of degree k = 1, 2, and 3, respectively, where y+ = uτy/ν, y is

the wall normal distance to the first solution point, ν is the kinematic viscosity, uτ =
√

C f /2U∞, and

C f ≈ 8.5 × 10−3 is the maximum skin friction coefficient in the turbulent region reported by Garmann et
al. [51]. We then split the domain into P-ERK16,16,2, P-ERK16,12,2, P-ERK16,8,2, P-ERK16,4,2, P-ERK16,3,2,
and P-ERK16,2,2 regions based on the minimum element edge lengths, as shown in Figure 10. This shows
that schemes with a high number of stage derivative evaluations are concentrated near the surface of the
airfoil, where the discretization is numerically stiff due to the thin boundary layer elements. In contrast,
schemes with fewer derivative evaluations are use in the wake and far field regions where the element
size is relatively large. Results in Table 3 show that the P-ERK schemes are able to take time steps up to
6.87 times larger than RK3,3, resulting in speedup factors of up to 4.60. This demonstrates that P-ERK
schemes can significantly accelerate the solution of unsteady turbulent flows.

The P-ERK simulations were then run to a final solution time of t = 40tc, and time-averaged statistics
were collected starting at t = 20tc including the average lift coefficient, average drag coefficient, separation
point xsep, and reattachment point xrea for all polynomial degrees. Contours of q-criterion coloured by
velocity magnitude in Figure 11 show that the P-ERK schemes remain stable for all polynomial degrees,
and are qualitatively consistent with previous studies [48, 50, 51]. Importantly, we do not observe any
degradation of the solution at the interfaces between the different P-ERK schemes. At this angle of attack
a small separation bubble is observed near the leading edge of the airfoil. The flow undergoes turbulent
transition partway along this separation bubble, and a turbulent wake propagates downstream with the
mean flow. Quantitative results provided in Table 3 demonstrate that CL, CD, xsep/c, and xrea/c converge
to the reference values under p-refinement, with the k = 3 simulation showning good agreement with
previous studies for all measured parameters. In addition, the time averaged pressure coefficient on the
surface of the airfoil shows good agreement with the reference datasets for the k = 3 simulation, as shown
in Figure 12. Hence, these results demonstrate the P-ERK schemes can be used for turbulent wall bounded
flows, achieving speedup factors of up to 4.60 while maintaining excellent agreement with the reference
datasets.

6 Conclusions

We have introduced a new family of Paired Explicit Runge-Kutta (P-ERK) schemes for the solution of stiff
systems of equations. The general formulation of P-ERK schemes allows methods with a large number
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(a) Domain and mesh. (b) Near-surface mesh.

Figure 9. The domain and near surface meshes for the turbulent SD7003 airfoil simulations showing the
refined boundary layer region.

Figure 10. Splitting of the domain for the turbulent SD7003 airfoil simulations into regions where
P-ERK16,16,2 (red), P-ERK16,12,2, P-ERK16,8,2 , P-ERK16,4,2, P-ERK16,3,2, and P-ERK16,2,2 (dark blue) are
used based on minimum element edge lengths.

Table 3. Performance and quantitative results for the SD7003 airfoil test case.

Polynomial Degree Δt Ratio Speedup Factor CL CD xsep/c xrea/c

k = 1 6.38 4.15 0.942 0.134 0.011 1.000
k = 2 6.87 4.60 0.959 0.042 0.035 0.277
k = 3 6.83 4.48 0.940 0.049 0.037 0.318

Garmann et al. [51] 0.969 0.039 0.023 0.259
Beck et al. [50] 0.932 0.050 0.030 0.336

Vermeire et al. [48] 0.941 0.049 0.045 0.315
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k = 3

Figure 11. Contours of q-criterion coloured by velocity magnitude for the turbulent SD7003 airfoil test
cases.
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Figure 12. Plot of pressure coefficient distribution for the turbulent SD7003 airfoil.
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of derivative evaluations and a large stability region to be used in the stiff parts of the domain, whereas
methods with relatively few derivative evaluations are used in the non-stiff parts to reduce computational
cost. Importantly, different methods with different numbers of derivative evaluations can be easily paired.
Furthermore, the general stability polynomial of these P-ERK schemes allows them to be easily optimized
for a given spatial discretization.

We then applied P-ERK schemes to solve the Euler equations and Navier-Stokes equations using a
high-order unstructured FR spatial discretization. Results from an isentropic vortex test case demonstrated
that P-ERK schemes with the same number of stages but different numbers of derivative evaluations can be
paired in arbitrary combinations while still obtaining their designed second-order accuracy. Simulations
using the Navier-Stokes equations demonstrated that significant speedup factors can be obtained relative
to classical RK methods. In the case of an SD7003 airfoil speedup factors of up to 4.98 were observed for
the laminar test case, while maintaining excellent agreement with reference data and identical simulations
run using a classical RK3,3 scheme. We then demonstrated that P-ERK schemes can be used for higher
Reynolds number turbulent flow over an SD7003 airfoil. Again, significant speedup factors of up to 4.60
were observed while maintaining agreement with available reference datasets.

It has been demonstrated that P-ERK schemes allow significantly larger time steps to be taken relative
to conventional explicit methods. Furthermore, by pairing several P-ERK schemes within a family, the
number of stage derivative evaluations can be tuned to the local numerical stiffness, reducing overall
computational cost. Future work will focus on generating higher-order P-ERK schemes and on their
application to increasingly stiff systems of equations. Furthermore, we will explore extensions of this
approach to systems of equations that have large negative real components, such as the diffusion equation
or low-Reynolds number application of the Navier-Stokes equations, and adaptive time-stepping for when
numerical stiffness is dependent on the local solution.
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