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ABSTRACT 

Optimization of tapered composite beams for vibration 

F. Daniel F. Duarte

A study on the optimization of tapered composite beams for vibration is conducted. Designers of 

tapered rotating structural components such as wind mill, helicopter or turbine blades are 

increasingly considering composite materials as an option to create lighter structures without 

compromising structural stiffness and to significantly increase their efficiency. In the design of 

composite material structures, a challenge arises due to a large number of design variables, 

therefore numerical optimization is required for a better design. Given this, the purpose of this 

study is to propose an optimization methodology for the design of a tapered beam, considering 

the vibration constrains present in rotating components. This is achieved by coupling a numerical 

model which considers the bending modes of vibration, with an optimization algorithm, both 

coded in MATLAB. Five optimization algorithms, heuristic and deterministic, are coded and 

compared and the most efficient method is selected. Because the ply orientation angles can 

assume an infinite number of possible angles, or follow the regular 0 / ±45 / 90 degrees 

approach, four possible tuning approaches are defined. The beam is optimized for the following 

design cases of boundary conditions and design requirements: the presence or absence of a 

tensile axial force, the presence or absence of a taper, three taper configurations, four proposed 

structural tuning approaches and four boundary conditions. Two of these structural tuning 

approaches are compared for its influence in the dynamic behavior of the structural component 

and in achieving better values of in-plane and out-of-plane stresses. The results demonstrate the 

Genetic Algorithm is an efficient method for optimization, a design analysis is an important step 
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in optimization, and an appropriate tuning approach can improve the overall efficiency of the 

optimized structure. 
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CHAPTER 1 – Motivation, introduction, literature survey, thesis objectives and layout   

With the advent of numerical models such as Finite Element Method (FEM), product 

development processes of many industries greatly benefit by substituting physical prototyping by 

numerical simulations. With this, the development phases of several products gained increased 

speed to evaluate a possible design configuration. In order to test a greater number of design 

variations, numerical optimization methods are applied to work in conjunction with numerical 

models. 

Numerical optimization algorithms are defined by a set of mathematical procedures applied to a 

solution or a population of solutions inside a given mathematical space, aiming to maximize or 

minimize a particular objective value. Usual design practices operated by a designer are limited 

in the number of possible variations and therefore also in the overall achieved efficiency. An 

optimization algorithm however, can generate a greater number of design variations where each 

design configuration is evaluated with greater speed by the related mathematical model. In the 

design of composite material components, numerical optimization has also proven to provide 

very good results, since as an orthotropic material, it has a larger number of design variables than 

a related isotropic component: ply orientation angles, ply thickness, among others. In the design 

of tapered laminates, there are also different possible taper configurations, which significantly 

increase the design space. The large number of variables of composite material structures 

generates a larger optimization space when compared to similar isotropic components, which is a 

substantial challenge for design practices supported by regular FEM analysis. Composite 

material components designed by numerical optimization algorithms coupled with FEM models 

have proven in several studies to provide superior results and to be a feasible option, especially 

for systems where efficiency is an important factor [1],[2],[3],[4]. 
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1.1 Motivation 

In several industries, a single digit of efficiency increase can represent large financial amounts or 

greater shares of the market. A study shows that each kilogram of material in the structure of the 

aircraft A330, costs 2000 US$/ kg in fuel consumption on lifetime, according Kaufmanna 2008 

[5] and in the case of a satellite, US$ 36,000 US$ per kg per GEO (Geosynchronous Orbit) 

mission according Koelle [6], 2002. By substituting aeronautical alloys by composite materials, 

an important aircraft manufacturer achieved double digit performance increase [7].  

The objective of this optimization study is to generate optimized design configurations for 

vibration of a tapered composite material beam, which is a rotating structural component present 

in wind turbines, gas turbine, or helicopter blades. The beam has to have limited deformations in 

the main vibration modes, in order to assure aerodynamic and structural efficiency. For this 

purpose, one possible criterion for optimization is to move the natural frequencies further from 

the operational frequencies of the blade in order to avoid resonance, while maximizing the band 

of operational frequencies free from resonance. 

There are several optimization algorithms available in scientific literature, and selecting the best 

algorithm for a given task is a significant challenge, for selecting the appropriate algorithm can 

significantly improve the overall results of the optimization study. This study presents some of 

the most popular optimization methods, and describes an algorithm selection methodology 

applied to the present design case.  In this study several leading edge optimization algorithms are 

studied, coded and have their efficiency compared in terms of its speed and accuracy of 

achieving improve designs. The best method is then selected and applied to optimize the beam 

with several design variations, loading cases and boundary conditions. 
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1.2 Introduction 

The numerical model hereby applied has been created in a previous study conducted by Fazili 

[8], which considers the out-of-plane bending modes of vibration of a tapered composite beam, 

with two degrees of freedom at each node: displacement and rotation. This model provides the 

natural frequencies of the beam for a set of ply orientation angles and three taper configurations. 

The Hierarchical Finite Element Method (HFEM) formulation was used by Fazili and has 

generated improved results when compared with Conventional Finite Element Method (CFEM) 

for the numerical analysis of composite material laminates, [8]. It should be noted that Fazili’s 

model was created following the formulation for tapered composite material laminates, derived 

by Lin [9]. 

To ease discussions, a brief introduction to the methodologies of analysis and design 

optimization is presented, and a comprehensive literature survey is herein provided. Several 

optimization algorithms were researched, and significant scientific publications related are listed. 

These algorithms have proven its efficiency in optimizing complex engineering systems with 

broad optimization space.  

 

1.2.1 Composite materials 

Composite material stands for the combination of two or more different materials that together 

achieve improved quality, as structural stiffness or strength, wear resistance, heat insulation, and 

other characteristics. In this study the term composite material is used exclusively referring to the 

combination of advanced graphite fibers with polymeric resin. This combination of materials is 

used often in the aerospace, automotive and other industries to have more efficient structures to 

respond to both static and dynamic loads in addition to their lightweight characteristics. 
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These advanced composite materials have proven to offer superior qualities in several 

engineering applications, due to their high strength-density ratio. 

 

1.2.2 Internally tapered composite beams 

In the case of a generic cantilever beam with distributed or concentrated loads, the flexural stress 

increases toward the fixed end.  This type of beam is used often in airplane wings or rotating 

blades where tension is evidently greater near the hub and decreases along the length.  

 

Figure 1.1 - A schematic of composite tapered beam representation 

 

Given this, tapered sections offer superior results than non-tapered components, allowing a more 

efficient stress distribution along its geometry by gradually increasing the cross-section area of 

the beam as the internal loads are more demanding, therefore granting the component a more 
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adapted design. An example of tapered beam showing in details the ply drops, segmented plies 

and resin pockets is displayed in Figure 1.1.  

With the advancement of automated manufacturing technologies of composite structures, the 

creation of more complex structural components, such as tapered composite beams, are 

facilitated. 

 

1.2.3 Beam optimization for vibration 

In many mechanical engineering applications, cantilever beams are required to withstand several 

static and dynamic loads. One important criterion for the design of rotating structural 

components, is that the forcing frequency of the system is not the same or close to the natural 

frequencies, when in operation or in any relevant transient frequency. In the case the operational 

driving frequency and resonant frequencies of the structure match or are close enough, resonance 

occurs, which can lead to the excessive vibrations. Another similar phenomenon occurs with 

structural components under aerodynamic load like airplane wings or rotating blades. These 

loads can vary due to the deformation of the airfoil shape, which in turn modify the aerodynamic 

loads. This phenomenon can happen in a resonant way called flutter, which must be prevented by 

an aeroelastic analysis during design. Current design practices require a window free from 

resonance between the natural frequencies of the structure and the operational forcing 

frequencies. In the case of rotating blades, the forcing frequency will be related to the downwash 

near the supporting structure, which will depend on the number of blades and the rotation speed. 

For any rotating structure, the natural frequencies vary due to gyroscopic forces. Campbell 

proposed in 1924 a method to analyze the spectrum of natural frequencies along the rotation 

speed of the forcing frequency, which was applied to the development of gas turbine blades. A 
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thorough blade design requires the analysis of the main vibration modes, with maximum stresses 

and stationary deformation verification. In most cases the optimization of a structural component 

subjected to dynamic loads aims to reduce the overall weight of the structure while maintaining 

safe and efficient operational conditions. More specifically, the optimization for vibration is 

intended to assure that the natural frequencies of the structure are further located from the 

forcing frequency related to the downwash of the blades, or any other forcing frequency present 

in the system operation. This present work is focused on the analysis and optimization for 

vibrations in out-of-plane bending modes with two degrees of freedom: deflection and rotation. 

A tapered beam is considered and is optimized for vibration by defining the ply orientation 

angles which will maximize the band free from natural frequencies, while centering the band 

with the blade passing frequency. 

 

1.2.4 Finite element method  

Many systems and processes can be represented by mathematical models which simulate its 

natural behavior with significant accuracy. A mathematical model can be analytical or numerical. 

An analytical model is defined by the derivation of the governing equations of the studied system 

or process, up to its overall representation, generally with more complex or larger equations than 

a generic FEM, with much fewer or even one single element. A numerical model is a term used 

to define those models where the domain is subdivided into several sub-domains, where each 

subdomain can be represented by simplified equations also called interpolation functions. 

Analytical models are more difficult to obtain, however have faster calculation, while numerical 
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models in its turn have fast and robust methods for its generation, while requiring more 

processing time on its evaluation. 

Among the numerical methods, there are different variations: Finite Difference Method (FDM), 

Conventional Finite Element Method (FEM or CFEM) and Finite Volume Method (FVM). The 

oldest is FDM which basically approximates the PDE by the expansion of Taylor Series on each 

sub domain.  In order to facilitate the analysis of more complex geometries, boundary conditions 

and non-linarites, CFEM was created. HFEM is a variation of CFEM which has proved to give 

more precise results for laminate analysis with singularities such as resin pockets generated in 

taper configurations, by adding trigonometric terms in the interpolation function [8]. 

Non-linearities such as the presence of a resin pocket following the segmented ply, can cause 

larger errors in conventional interpolation functions, where these interpolation functions are 

represented by a polynomial in the FEM method. The addition of trigonometric terms to the 

interpolation function, as in the HFEM, has proven in previous studies to give enhanced 

precision, and HFEM is the method applied in this work. 

  

1.2.5 Optimization algorithms 

There are several types of optimization algorithms applied to design, yet for the present design 

task are considered basically two main differentiated categories, which are determinist 

algorithms and heuristic algorithms. Deterministic optimization methods started in the 17th 

century, together with the advent of Newton’s mechanics laws and differential calculus. One of 

the most basic deterministic algorithm is called Hill Climb (HC) and it can be compared to a 

blind person trying to find the highest point of a delimited region, by evaluating the most 
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inclined direction at each step. Global optimization algorithms are a type of heuristic methods 

which work with a population of solution and generates a subsequent population by combining 

the best evaluated points inside a delimited mathematical space. Both deterministic and global 

optimization methods improve the overall performance of the solution, or population of 

solutions, until it reaches a threshold and the optimization is completed. Hybrid algorithms use a 

combination of global algorithms and gradient methods. 

 

1.2.6 Previous contributions 

This study is conducted as a continuation of two previous research projects. These projects have 

generated the composite tapered beam formulation, created the numerical model in MATLAB 

with the HFEM methodology, and performed several analyses of its dynamic behavior in the 

bending modes of vibration. 

These are the main contributions of the related research: 

I.  Lin [9] , in 2004 generated a study with the following results: 

a. Formulation of a thickness-tapered beam to be applied to FEM and HFEM 

methodologies. 

b. Created the numerical models in MATLAB and compared the results of FEM and 

HFEM methodologies. 

c. Studied the free vibration response of tapered beams with different taper angles. 

d. Studied the free vibration response with axial force, using both classical laminate 

theory and first-order shear deformation theory. 
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II. Fazili  [8], in 2013: 

a. Created a tapered beam model in MATLAB for the three main taper 

configurations using HFEM methodology. 

b. Performed an analysis on the effect of the number of elements in the tapered beam 

model. 

c. Studied free and the forced vibration response of symmetric thickness-tapered and 

width-tapered laminated composite beams. 

d. Determined the natural frequencies, mode shapes and forced vibration response of 

different types of internally-tapered composite beams. 

e. Compared the HFEM results with Rayleigh-Ritz results. 

 

1.3 Literature survey 

This section provides an up-to-date survey report with the state-of-the-art of topics related to this 

study, as available in the main scientific journals and communities. Some of the latest and most 

significant studies related to this work are herein listed.  

 

1.3.1 Tapered composite beams and hierarchical finite element method 

Surprisingly not much work has been developed for tapered composite beam until present time. 

He, Hoa and Ganesan [10] provides an extensive review on laminated composite structures. 

Ganesan and Zabihollah  [11], [12] studied the vibration of tapered composite beams using a 

high-order finite element that allows better results than conventional FEM, as it better conforms 

with the discontinuities at ply drop-off locations. The stiffness coefficients are determined based 

on stress-strain transformation. A formulation was developed for undamped vibration and they 
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performed a parametric study. Lin [9] defined the bending stiffness coefficients for the four main 

taper configurations for composite laminates, studied the dynamic behavior of thickness-tapered 

composite beam, and also conducted a parametric study of tapered composite beams. Ahmed 

[13] performed experimental and numerical studies of tapered composite beams and compared 

conventional and high-order finite elements, in the analysis of tapered composite laminates, 

describing the response under several configurations and boundary conditions, and performed a 

parametric analysis. Vijay [14] investigated the free and forced vibration response and buckling 

response of tapered composite beams with a parametric analysis of width ratio, taper 

configuration and several boundary conditions and laminate configurations. Fazili [8] studied the 

response of tapered composite beams with several boundary conditions as simply-supported, 

clamped-clamped, clamped-free and free-clamped beams using hierarchical finite element 

method, considering beams thickness-tapered, width-tapered, and width-and-thickness tapered. 

Salajegheh [15] studied the dynamic response of tapered composite beams with rigid and elastic 

supports, conducted an extensive parametric study, compared results from both usual and 

advanced finite element methods, and also studied the response of forced vibration. Khedeir and 

Reddy [16] have studied the free vibration of laminate with arbitrary boundary conditions. 

Abarcar [17] have analyzed the vibration of cantilever beam providing natural frequencies and 

mode shapes for several fiber orientations. Babu [18] has studied the dynamic characterization of 

thickness-tapered composite laminated plates. Ghaffari, Zabihollah and Saeedi [19] studied the 

damage detection based on natural frequencies variations of non-uniform thickness laminated 

composite beams. Roy and Ganesan [20] verified the influence of different types of thickness 

profiles on dynamic response of tapered composite beams, with different boundary conditions, 

and compared the results with non-tapered beam. Gupta and Rao [21] analyzed the eigenvalues 
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of stiffness and mass matrix of Timoshenko beam with taper and twisted profiles. Hodges [22] 

performed a free vibration analysis of composite beams to predict the natural frequencies and 

modes by both numerical and analytical methods. Houmat [23] has used a polynomial with 

added trigonometric terms, or so-called hierarchical finite element method to analyze 

Timoshenko beams and compared the results with regular FEM. Çalim [24] investigated the 

effects of taper angle and ply orientation of composite beams on their dynamic behavior using 

Timoshenko beam theory. Javirad and Nazari [25] proposed a novel stochastic method and 

applied to the optimization of a composite laminate structure. Also Javirad and Nazari [26] 

applied a hybrid method of Simulated Annealing (SA) with Particle Swarm Optimization (PSO) 

to improve PSO optimization of laminate, defining improved configurations of ply orientation 

angles and layer thickness of composite material structures. 

 

1.3.2 Beam vibration analysis and beam optimization for vibration 

Many authors contributed to this field. Niordison [27] provides an overview in different cases of 

cantilever beams optimization for vibration, where the objective is the maximization of the first 

fundamental frequencies. He specifies that tapering the beam is an effective way to maximize the 

lower natural frequencies. Mabie and Rogers [28] conducted a study of the dynamic response of 

tapered beams under different boundary conditions, comparing the results to non-tapered beams. 

Khan, Thornton and Willmert [29] present two optimal criterion techniques for the minimum 

weight of structural systems subjected to natural frequencies limitations. Gupta and Rao [21] 

describe a procedure to obtain stiffness and mass matrices for a twisted beam with varied cross-

section, in order to calculate the natural frequencies. Carrera [30] presented the free vibration 

analysis of beam with arbitrary cross sections, using hierarchical finite element. Rakesh, 1989, 
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[31] provides an overview on wave propagation on many laminated beams and plates under 

several boundary conditions and geometries, using both analytical and numerical analyses. 

Nixon [32] proposes a methodology to design minimal weight composite rotor blades, first the 

blade is designed, followed by a design correction to assure the natural frequencies are not close 

to the operational frequencies. Bassiouni [33] investigated theoretically and experimentally the 

dynamic behavior of laminated composite beams. First using FEM methodology, and then 

comparing with experimental values. Chen and Bian [34] proposed a new approach for the 

dynamic analysis of laminated beams combining the state method and the differential quadrature 

method. Grandhi [35] reviewed several surveys and papers in structural optimization with 

dynamic frequency constrains, with references to composite structures, and beams. Jun [36] 

proposed a finite element method for general laminated composite beam, based on the first-order 

shear deformation theory. Hajianmaleki and Qatu [37] gave a review on straight and curved 

composite beams, commenting on research done between 1989 to 2012, related to composite 

beam vibration analysis. Fatmi and Ghazouani [38] describe a new high order composite beam 

theory that can be viewed as an extension of Saint-Venant's theory. Khdeir and Reddy [16] 

derived the analytical solutions of refined beam theories to study the free vibration of cross-ply 

rectangular beam with arbitrary conditions. Machado and Cortínez [39] investigated the 

influence of initial in-plane deformations generated by the actions of external loadings as well 

the effect of shear flexibility on the dynamic behavior of bisymmetric thin-walled composite 

beams. Song and Librescu [40] focused on the formulation of thin and thick-walled laminated 

composite beams free vibration theory. Banerjee [41] demonstrated exact expressions for the 

frequency equations and mode shapes of composite Timoshenko beams with cantilever boundary 
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conditions. Koshmatka and Friedman [42] modeled analytically the free vibration characteristics 

of advanced composite turbo propellers. 

 

1.3.3 Finite element method for structural analysis and global optimization 

Cook [43] and Bathe [44] provided a comprehensive reference for FEM with several examples. 

Goldberg [45] describe the functionality of the Genetic Algorithm methodology. Koza [46] 

applied the GA to genetic programming, adaptive systems and other topics which can be applied 

to structure optimization. Mitchel [47] also gave a good reference for the same methodology, 

with a comprehensive survey on interesting related work developed. Kennedy [48] described a 

global optimization methodology called Particle Swarm Optimization, based on how animals 

move in flocks, as seen in nature. Marini and Walczak [49] provide a tutorial in the subject. 

Ghiasi, et al [50] described several optimization methods that can be applied to define the staking 

sequence of a composite material laminate with constant and variable stiffness. These methods 

include gradient-based, direct search, and also heuristic optimization and specialized design 

optimization algorithms. Nik, et al [51] generated a surrogated-based multi-objective 

optimization of a composite laminate with curvilinear fibers. Hajela [52] applied parallel genetic 

algorithm in the multidisciplinary optimization of a rotor blade. Irisarri [53] have searched for 

optimum design of tapered  laminate composite structures using staking sequence tables. Also he 

optimized the ply drop order of laminates with variable stiffness using a gradient based method 

[1]. Keller [4] performed an optimization of ply angles in a composite laminated structure using 

a hybrid evolutionary algorithm. Coello [54] applies a GA-based optimization algorithm for the 

design of a robot arm. Zehnder and Ermanni [2] describe a methodology for the global 

optimization of composite structures. Hansel [55] uses a genetic topology optimization for 
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weight reduction of composite structures. Ghiasi, Fayazbakhsh, Pasini and Lessard [56] describe 

several optimization processes to define optimum stacking sequence of composite structures, 

proposing techniques such as multi-level optimization, hybrid methods and topology 

optimization. Adeli [57] applied GA for the optimization of truss structures. Nagendra [58], 

Todoroki [59] and Narayana [60] applied GA to the optimization of composite structures. 

Almeida and Awruch [3] applied genetic algorithm and finite element analysis to the 

optimization of composite laminated structures. Scollen and Hargraves [61] have compiled 

several optimization studies applying Simulate Annealing optimization in diversified scientific 

fields. Esfandiari [62] provides a tutorials and a sample for the bisection method. Arora [63] 

provides a description of gradient-based optimization applied to structures. Yang [64] describes 

several optimization methods including the Bisection Method, Simulated Annealing and Particle 

Swarm Optimization. 

 

1.4 Thesis objectives 

As previously stated the usual design optimization of structural components subjected to 

rotation, like a helicopter, windmill or gas turbine blades must assure stresses do not surpass 

maximum values and the deformations are inside allowed limits. This deformation limit 

considers the maximum allowed values for the main modes of vibration of the blade. In addition, 

it is necessary to assure the natural frequencies of the component, in all the main vibration 

modes, are further from the operational frequencies of the system in order to avoid resonance, 

which can cause excessive vibrations. All these constrain must be considered during a thorough 

optimization design task. The present study is focused in the beam design optimization for 
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vibration, considering solely the out-of-plane bending modes of vibration of a composite 

material tapered beam. 

Lin [9] generated a study on the formulation of a thickness-tapered beam to be applied to 

numerical models and compared the results of FEM and HFEM methodologies. Fazili [8] applied 

this study to create a numerical model in MATLAB for the tapered beam using HFEM 

methodology. He also performed a study defining the necessary number of elements of the 

HFEM model to achieve required precision for analysis with minimal computation cost. This 

HFEM model is here applied to work in conjunction with the optimization algorithm to generate 

near-optimum solutions for the component. 

This thesis has the objective to contribute to the advance of scientific knowledge by listing and 

describing several optimization algorithms commonly applied in optimization studies, and 

providing the basic guide lines of each algorithm to facilitate its coding in further applications. In 

addition, is demonstrated a procedure for the design analysis of a tapered composite material 

beam, and an optimization process applied in the design of a composite material structure is also 

showcased. 

 

In order to study the optimization of tapered composite beams for vibration, the defined 

objectives of the thesis are: 

i. Study, test and describe the process to optimize a composite structure for vibration by 

coupling a HFEM numerical model of a tapered composite beam with a selected 

optimization algorithm, both coded in MATALB.  

ii. Research, test and describe several heuristic and gradient-based optimization algorithms 

for single objective optimization (SOO). 
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iii. Suggest an algorithm selection methodology, and apply the most suited for the particular 

design task. 

iv. Generate optimized design configurations for the tapered composite beam, for several 

tuning approaches with different degrees of freedom. Achieve optimized results, 

considering: 

 Four boundary conditions 

  Two loading cases: pre-stressed and a free-vibration 

 The three main taper configurations and a non-tapered beam 

 Possible and viable laminated structure tuning approaches 

v. Generate a design analysis of the structural component, to evaluate the influence of the 

main design variables in the overall dynamic behavior of the laminates. 

vi. Use ANSYS software to measure maximum stresses in the laminates with optimized 

design configurations. Evaluate near-optimum designs related to the two main tuning 

approaches, in terms of in plane and out-of-plane stresses. 

vii. Summarize study achievements and propose future works. 

 

1.5 Thesis layout  

Chapter one has an introduction to the subject of this study, the methodologies applied in this 

work and its overall application in the optimization of tapered composite beams. This first 

chapter also describes a literature survey with many important scientific research papers related 

to this topic, giving an overview of the state-of-the-art of the research field. 

Chapter two conducts a review of the numerical model formulation for the tapered composite 

beam. The optimization for vibration problem is defined, in terms of design criteria and 
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optimization objective. A visual representation of the optimized laminate is proposed, and 

several structural tuning approaches are considered for each optimization experiment. Also 

several optimization algorithms are described, having their efficiency compared. 

In chapter three, a design analysis is performed and the main design parameters are evaluated 

and compared in their influence on the natural frequencies of the tapered beam. The influence of 

ply angle orientation along the thickness of the beam, beam length and the presence of a tensile 

axial load are some of the analyzed parameters. 

Chapter four displays the optimization results for free vibration and pre-stressed vibration for 

two selected tuning approaches, and the in-plane and out-of-plane stresses are evaluated with 

ANSYS software. These stresses are evaluated from two main tuning approach samples, and are 

compared to evaluate the influence of each tuning approach in the efficiency of the designed 

structure. 

In chapter five a conclusion is presented, the main results are evaluated and summarized, and 

future works are suggested. 
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CHAPTER 2 – Numerical model formulation and optimization algorithms 

The tapered composite material laminate in general has intrinsic characteristics that differentiate 

it from regular isotropic tapered structures. One of the most important is the possibility to orient 

the fibers along a preferred or principal stress direction. Once there is a discontinuity in one of 

the plies of the laminate due to the taper, a resin rich region may form which is referred to as a 

resin pocket. The resin pockets can be placed in different positions of the thickness or length of 

the laminate according each to taper configuration. These design variables: ply orientation angle 

and the resin pocket locations, can be adjusted during the optimization process to tailor the 

dynamic behavior of the beam. 

 

2.1. Numerical model formulation 

As mentioned, to each taper configuration the beam formulation is presented by Lin [9], and the 

numerical models have been created by Fazili [8] in MATLAB, following the hierarchical finite 

element method (HFEM) formulation, for each of the main taper configurations. These models 

are adapted in the present work to have non-tapered laminate elements at the extremities of the 

tapered beam as illustrated at figure 2.1. 

 

 

Figure 2.1 – A thickness tapered beam with non-tapered sections 



 
 

19 
 

2.1.1. Tapered composite beam free vibration formulation   

In order to increase the thickness of the laminate while maintaining the original number of plies 

in the numerical model, each ply is substituted by a unitary ply-up of four plies with 0.125 mm 

each. This adaptation is necessary in order to evaluate a structure with larger dimensions while 

maintaining the numerical model’s main characteristics. With this, each ply in the numerical 

model is here represented by a ply-up of four plies with identical ply orientation angles, giving a 

total of 0.5 mm of thickness per unitary ply-up. The beam’s numerical model evaluates a total of 

thirty-six ply-ups with 0.5 mm thickness each, at one extremity of the beam, with a total of 

twelve ply-ups at the opposite extremity. For the sake of simplification, each ply-up of 0.5 mm 

with identical orientation angles is hereby referred to as a regular ply. The number of plies of the 

laminate decreases along the length, as the beam is tapered thickness-wise. As the laminate is 

symmetric and balanced to the horizontal plane, only nine ply orientation angles are considered 

as optimization variables. The equations of motion of the laminate follows the classical laminate 

theory and cylindrical bending theory. 

 

2.1.2. Tapered laminate formulation 

As the stresses and deformations considered are only of out-of-plane bending modes, the 

stiffness matrix of the laminate model will depend solely on the bending stiffness coefficient 

   . There are four possible taper configurations, as illustrated at figure 2.2.  

Configuration A stands for a resin core in taper geometry, overlaid with continuous plies. 

Because the internal resin core of the taper configuration A do not offers good mechanical 

properties for the structure, this taper configuration is considered only as a theoretical model. 
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Figure 2.2 – The four laminate taper configurations 

 

The formulation for configuration A is given by eq. (2.1): 
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(2.1) 

The variable     represents a generic bending stiffness coefficient of composite plates, in the 

fourth quadrant of the ABD matrix, and  ̅    is the transformed reduced stiffness of the 

    layer, as described by Hyer [65]. The variables   and   are the coefficients related to the 

direction indexes, referring to each one of the global coordinate axis. As the laminate is 

symmetric on the horizontal plane, only the top half is considered in the calculation. The 

variables N and R define the half layer numbers of plies on the left end and right end, and   

stands for the height of each ply interface, measured from the center line.  
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The formulation for the taper configuration B is given by equation (2.2), where the core is 

constituted by horizontal ply layups in staircase format, with ply layups on the external side of 

the core. In this configuration, resin pockets are located at intermediate heights along the beam.  
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(2.2) 

The height of the horizontal plies decreases linearly along the   axis at each ply-drop, due to the 

staircase geometry. This variation is included in the formulation by the variable  , which defines 

the index of each ply-drop on the beam, along the direction of the   axis. Configuration C is 

defined by the center line position of small resin pockets after each ply drop along the beam, and 

its     coefficient is given by eq. (2.3). 
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Taper configuration D shows the interlaying of continuous and segmented ply layers in defined 

intervals of ply drop along the beam. In this configuration, resin pockets are located both at 

center and near external plies, see eq. (2.4). 
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(2.4) 

As the HFEM model has two non-tapered elements, the formulation for plain laminate is 

included. According to Hyer [65] it is defined as: 
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(2.5) 

A more detailed calculation of the bending stiffness coefficient is given at the appendix C. 

 

2.1.3. Equations of motion for composite laminate 

The derivation of the equations of motion for the tapered laminated follows the classical laminate 

theory which defines the stresses due to pure bending deformations. The beam has a total of 18 

mm in the higher thickness, with a total of 1 m length. This gives a thickness-length ratio of 

1.8%, which is lower than the limit of 10% for a slender beams classification. With this, the 

modeled beams can be considered as a slender beam, in which is the error due to the transversal 

shear stresses and deformations are of low amplitude, which are not required to be calculated. 

After deriving the equations of kinetic and potential energies, the Hamilton principle is applied 

and the equation of motion for a composite laminated beam is defined: 
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(2.6) 

Here the variable    ( ) is the bending stiffness coefficient along the center line of the beam and 

  is the vertical displacement.    represents the compressive axial force if present,  ( ) is the 

width of the beam along the length,   is the density of the laminate and   represents the natural 

frequencies of the system. Another form to express the bending stiffness coefficient for 

cylindrical bending, according to Hyer [65] is: 

   ( )  ∫     
   

   

    

 

 
(2.7) 

The variable   stands for total thickness of the beam, and     is the coefficient of transformed 

reduced stiffness. The deflection is in the z direction can be given as: 

 (   )   ( )     
 
(2.8) 

 

2.1.4. Conventional finite element model 

Based on the formulation for tapered composite beam, and the equations of motion for 

cylindrical bending of composite laminate derived by Lin [9], a numerical model following the 

HFEM concept in MATLAB was created by Fazili [8] for the three main selected taper 

configurations B, C and D. In this study, the ideal number of elements for best performance of 
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the model of the tapered beam is defined as six elements, following the HFEM formulation. This 

model has been adapted to have two non-tapered sections at each extremity of the beam. 

The HFEM model in this study is divided into eight elements joined horizontally. This follows 

the same element-sizing configuration from previous study, where six elements are joined 

horizontally for the tapered section of the beam, and one extra element is added at each extremity 

of the model at each non-tapered section. Each element has two nodes, and each node has two 

degrees of freedom, deflection   and rotation θ, as displayed at figure 2.3. The beam dimensions 

are presented at figure 2.4, where the taper angle ɸ is calculated as 0.458 degrees. 

 

 

 

Figure 2.3 –Degrees of freedom of a single element 
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Figure 2.4 – HFEM tapered beam model dimensions 

 

In order to understand the HFEM concept, the conventional finite element method (CFEM) is 

presented. Assuming the deflection of the beam along the axis   is approximated to a third 

degree polynomial, we can define, 

 ( )             
     

  
(2.9) 

Another form to express this polynomial is, 

  ,  -, - 
(2.10) 

where, 
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and, 
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We can define the notation for the angle at each node as, 

  ,  -, - 
(2.13) 
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(2.14) 

With the boundary coordinates  ( )     and    ( )    , where    is the length of each element. 
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Where, 
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From a given local displacement * +, is possible to quantify the displacement of each node in 

global coordinates, defined by the variable  , 

* +  ,  -
  * + 

(2.17) 

Where, 
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(2.18) 

If we call    an interpolation function matrix, we can defined it as, 

,  -  ,  -,  -
   

(2.19) 

Combining equations (2.10) and (2.19), the global displacement is given by, 

  ,  -* + 
(2.20) 

Using the following notation, 
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And applying equations (2.20) to (2.22) into equation (2.6), we have the governing equation of 

motion of the laminated composite beam as, 
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(2.23) 

Equations (2.23) is the classical harmonic equation, from which we define the rigidity or 

stiffness , - and mass , - matrices as, 
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In equation (2.26) the term (         ) can be defined as, 

∫     
   

    

          

 
(2.26) 

From this equation,    is the density of the ply,    is the resin density,    is the equivalent ply 

height, and    is the resin height, which are used to calculate the mass distribution along the 

beam length. A detailed formulation for     and    along the   axis is given at the appendix C. 

From equations 2.25 and 2.26, we generate the global mass , - and stiffness , - matrices, with 

the assembling algorithm [8]. The equation (2.23) becomes a generic eigenvalue problem, which 

will give the natural frequencies as the eigenvalues of the system  , and the eigenvectors as the 

vibration modes * +, 

[, -    , -]* +    
(2.27) 

2.1.5. Hierarchical finite element method 

In the hierarchical finite element method (HFEM), the approximation function  ( ) has the 

same polynomial from CFEM, added with a set of trigonometric functions, which in this case are 

sinusoidal functions, as we can see in equation (2.28). 
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In the equation (2.29),     stands for each element length, and N is the number of hierarchical 

terms. The function can also be expressed as: 
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As performed for the displacement   we can also define for  : 
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By defining the displacement matrix * +, we have: 
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(2.34) 

The HFEM requires a different procedure than CFEM to assemble the global mass , - and 

stiffness , - matrices, from local mass matrices , - and stiffness matrices, -, [8]. 

 

 

2.1.6. Finite element model for vibration analysis of the particular studied case 

Figure 2.5 presents the four cases of boundary conditions considered in this study. 

 

 

Figure 2.5- Boundary conditions applied to the tapered beam 
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The beam at Figure 2.4 has 36 layers with a symmetric configuration to the horizontal plane, 

each layer with 0.5 mm of thickness, giving a total of 18 mm of thickness ( ). The length (  ) is 

defined as 1 m and width is 0.1 m, and each extremity has a non-tapered segment of 0.125 m. 

The maximum taper slope is given by a decrease of the thickness from 36 layers worth a total 

thickness of 18 to 12 layers in the opposite edge, with 6 mm total thickness, as displayed in 

figure 2.4. The total length of the tapered section is 0.75 m. The material used in the composite 

laminate beam is the NCT-301 graphite-epoxy prepreg, its properties are given at Tables 2.1 and 

2.2, for ply and resin. 

 

Longitudinal modulus (  ) 0.1139e3 GPa 

Transverse modulus (  ) 0.7986e1 GPa 

   =    0.7986e1 GPa 

In-plane shear modulus (   ) 0.3138e1 GPa 

Major Poisson’s ratio (   ) 0.288 

Minor Poisson’s ratio (   ) 0.178 

Density of ply (  ) 0.1480e4 kg/m3 

 

Table 2.1 - Mechanical properties of ply [66] 

 

Elastic modulus (E) 0.3930e1 GPa 

Shear modulus (G) 0.1034e1 GPa 

Poisson’s ratio ( ) 0.37 

Density of resin ((  ) 0.1000 e4 kg/m3 
 

Table 2.2- Mechanical properties of resin [66] 
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At table 2.1,    is the extensional modulus in the direction one, which is the direction of the 

carbon fibers.    and    are the extensional modulus in the direction two and three, which are 

the directions related to the resin, as displayed at Figure 2.3. 

 

2.1.7. Case comparison 

To define some of the operational parameters of the blade as the rotating speed, dimensions, 

among other variables, the design case chosen for this work is similar to the fan blade of a 

commercial turbofan gas turbine. 

 

Figure 2.6 – A commercial turbofan gas turbine [67] 

 

Some design and operational parameters are defined for a rectangular and tapered beam, with 

approximate values of the commercial turbofan engine, as displayed at Table 2.3: 
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  Commercial turbofan blade Numerical model 

Fan rotating speed ~2700 RPM  ~2700 RPM  

Blade length ~1 m 1 m 

Blade maximum thickness ~20 mm 18 mm 

Blade width ~0.1 m 0.1 m 

Number of fan blades 20 20 

 

Table 2.3 – Commercial turbofan blade and tapered composite beam parameters 

With these specifications the design parameters of the HFEM tapered beam model are defined. 

Figure 2.7 shows the     calculated value for each taper configuration, with all ply orientation 

angles with the beam centerline equal to zero. The taper configurations B, C and D are 

represented by the curves with nomenclature TC-B, TC-C and TC-D. The non-tapered beam is 

represented by the curve TC-N, as seen at figure 2.6. 

Applying these values to the numerical model of the thickness tapered beam, the      coefficient 

is exemplified in figure 2.7 for all plies with zero degree for the ply orientation angles. 
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Figure 2.7 – Bending stiffness coefficient    vs X in the HFEM model 

 

At figure 2.7, is displayed the influence of each taper configuration in the bending stiffness of the 

beam along its length  . The      coefficient of taper configuration B shows much similarity 

with of taper configuration C, where configuration B, in blue line, has smaller drops along the 

slope, which are related to the resin pockets in the intermediate position of the beam. Because the 

resin pockets of taper configuration C are located near the center line of the laminate, it has 

lower influence in the overall bending stiffness coefficient. In this same figure, the     value of 

taper configuration D along the length represented by the yellow line shows greater drops in the 

curve, which are related to its larger resin pockets along its thickness. 

 

2.2. Optimization for vibration 

The objective of the present optimization work is to determine near-optimum design 

configurations for vibration of the tapered composite beam. To design a blade for a helicopter, a 

gas turbine or a windmill, it is necessary to follow some design requirements. In general, the 
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blade must be dynamically stable in all the modes of vibration, and stresses must not exceed 

allowable values. Also for helicopters, the stationary deformation of the blade must not exceed a 

maximum value for safety reasons. To assure the dynamic stability of the system, the structure in 

all the main vibration modes must be far from resonant frequencies during operation to avoid 

excessive vibrations. In this present study only the out-of-plane bending modes of vibration are 

considered by the HFEM model of the beam, and its related optimization for vibration is hereby 

described. 

In order to optimize a blade for out-of-plane bending modes of vibration, as in the case of a gas 

turbine, helicopter or windmill blades, is necessary to calculate the blade passing frequency. This 

frequency is related to the downwash from the blades reaching the supporting structure, which 

will be the forcing frequency of the system. The blade passing frequency    can be calculated 

as: 

 

          (2.35) 

 

At equation 2.35,    is the operational frequency and    is the number of blades of the rotor. In 

rotordynamical systems, the natural frequencies often depend on the rotation speed due to 

centrifugal and gyroscopic forces. Campbell [68] created a technic by plotting the system 

response as a function of the rotation speed, where the spectrum of each natural frequency 

together and the forcing frequency value are defined along the speed axis. When these curves 

intersect there is the chance of occurring resonance, as demonstrated in Figure 2.8.  
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Figure 2.8 – An example of application of the Campbell diagram [69] 

 

Due to simplifications in the numerical model, the natural frequencies are hereby considered 

independent of the rotation speed. 

 

2.2.1. Optimization problem definition 

During regular operation, it is required that the blade passing frequency will not match the blade 

or the system natural frequency. For this is necessary during the blade design, to assure a 

resonance-free band in the proximity of   . Also as a design requirement, this band must be 

maximized and also centered with   . Defining     and     as the closest natural frequencies of 

the beam to the passing frequency   , we have: 
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                  (2.36) 

 

    |       | (2.37) 

 

 
  ̅̅̅̅  |   (

       
 

)|  (2.38) 

 

where    is the resonance-free band amplitude to be maximized, and   ̅̅̅̅  is the error of the 

centerline of the band with the operational passing frequency   , as illustrated on figure 2.9: 

 

 

Figure 2.9 – Graphical representation of dw and   ̅̅̅̅  

 

2.2.2. Objective value definition  

In single objective optimizations it is required to define an objective value, by which each 

possible solution will be evaluated and ranked. In the present study the goal is to maximize the 

band amplitude   , and minimize the center line error of the band   ̅̅̅̅ . 
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The objective function is created following the weighted sum method [70] that accommodates 

distinct objective values into one. This objective value is here defined as    , an abbreviation of 

the term “fitness”, which is desired to be maximized: 

             ̅̅̅̅  (2.39) 

The coefficient of 10 multiplying the variable   ̅̅̅̅   has been defined by trial and error while 

testing the optimization algorithm. With this, the sorting procedure of the algorithm will 

prioritize the possible solutions with larger resonance-free band and low offset error with the 

blade passing frequency. 

 

2.3. Graphical representation of a symmetric and balanced laminate 

As a manufacturing restriction to avoid warpage, the laminate must be symmetric and balanced, 

[53] or an approximation of these characteristics. In the case of the tapered laminated beam, this 

means that its representation is: 

 

 ,                -    (2.40) 

While the vector that will define the laminate’s ply orientations angles, is here defined as the 

representative vector   ⃗⃗  ⃗ : 

   ⃗⃗  ⃗  ,            - (2.41) 
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As an example we can define a possible symmetric and balanced laminate as 

,                 -   . The ply layup representation is given in figure 2.10., where the 

colors represent: 

 

black Positive angles on top half of the laminate 

blue Negative angles on top half of the laminate 

red Positive angles on bottom half of the laminate 

green Negative angles on bottom half of the laminate 

Table 2.4 – Symmetric and balanced laminate color code 

 

The graphical representation of the laminate is here proposed, where the curves are defined by 

the points in the same quadrant. Following the same color code, the laminate is defined and 

displayed in Figure 2.10:  
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Figure 2.10 – Example of a possible symmetric and balanced laminate 
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The HFEM model of the tapered beam previously created has a total of 36 plies. Because the 

laminate is balanced and symmetric, the total of 36 ply orientation angles will be defined by the 

9 ply orientation angles of the representative vector    ⃗⃗  ⃗.  

For simplification, all the optimization results of the symmetric and balanced laminate will be 

represented only by the points in the upper right of the quadrant, which is also the representative 

vector. 

 

2.4. Composite material structural tuning approaches 

Current manufacturing practices in several industries often consider four possible ply orientation 

angles during design: 0 /  45 / 90 degrees. With the advancement of composite material 

manufacturing technology, a greater design space can be considered with other ply orientation 

angles. In order to define the ply orientation angles of the optimized laminate it is necessary to 

consider which structural tuning approach will be applied, as it defines the set of possible 

orientation angles of the laminate. 

 

2.4.1. Regular manufacturing approach (RMA) 

As mentioned, an usual approach in composite material manufacturing considers the 0 /  45 / 90 

degrees as possible orientation angles. This is a very practical approach to reduce the number of 

variables to simplify the design process and facilitate manufacturing. Increasing the number of 

possible ply orientation angles makes manufacturing and design more challenging for current 

technics. 
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2.4.2.  Polynomial approximation approach (PA) 

By reducing the number of possible ply orientation angles, design can be facilitated, however it 

discards several plausible configurations in having angles different of 0,  45 or 90 degrees. To 

solve this problems, another design option is hereby created and defined as polynomial 

approximation approach  (PA), in which the representative vector curve (equation 2.41) shown at 

the upper right quadrant of figure 2.10 is approximated by a polynomial. With recent 

developments in automated fiber placement technologies, PA becomes a feasible design 

approach for several applications with more advanced manufacturing technology. Together with 

the taper configurations for laminates, it offers a greater number of design configurations. This 

larger design space could represent a challenge for regular design procedures supported by FEM 

analysis due to the intricacy of the achieved solutions, however, for automated design tasks such 

numerical optimization it is a viable and a more interesting challenge, allowing development of 

more tailored solutions. 

 

2.4.3. Free ply orientation angle approach (FPOA) 

Another possible design / tuning approach is to consider any ply orientation angle between zero 

and ninety degrees. This approach greatly increases the number of possible design 

configurations, which is interesting for optimization. The downside however, is that it can 

generate large orientation angle gradients between each layer of the laminate, what can generate 

increased out-of-plane stress values. 

 
2.4.4. Polynomial approximation and regular manufacturing approach (PA&RMA) 

This methodology follows the same procedure as PA, as to approximating the orientation angle 

values to a polynomial curve at a first step, and then defining the ply orientation angles to its 
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closest values of the RMA, in 0 / ±45 / 90 degrees. With this, regular manufacturing practices are 

maintained, and the ply orientation angles along the thickness of the laminate are derived from 

the center line of the polynomial. 

 

2.5. Optimization algorithms 

There are many optimization algorithms available, each one with its advantages and 

disadvantages. In order to select the most appropriate method for the particular task, several 

algorithms are researched, coded in MATLAB and have its speed and accuracy measured and 

compared. The average convergion curves and speed are considered as the selecting criteria. The 

algorithm which has achieved the best solution in a feasible time is selected for the optimization 

task. 

 

2.6. Deterministic optimization algorithms 

Gradient based algorithms, or deterministic algorithms [63] are very well known in many 

numerical analysis R&D engineering centers. Some examples of gradient methods are: hill climb 

(or gradient descent), bisection method, Gauss–Newton algorithm, Newton–Raphson method, 

among others. Those methods were first developed in the 17th century at same time of the 

mechanics laws of physics and are greatly useful until now as it often delivers improvements at 

each iteration, until the algorithm reaches desired precision. The downside of gradient methods is 

that when it is not used in conjunction with a combinatorial analysis tool that efficiently explores 

the overall optimization space, it has the tendency to converge to local optimum points. 
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2.6.1. Hill climb method (HC) 

If we would consider the optimization space as a delimited geographic region with several hills 

and valleys, this method would be compared to a blind person, that at each step would sense 

which would be the steepest direction, in order to find the highest point. This method calculates 

the gradient of the function or model at the initial guess point, for each one of the design 

variables. 

Once the gradient is calculated, a step is given from the initial guess toward the gradient 

direction. If the position achieved is better than the previous, this position is recorded, and this 

procedure is repeated several times until the algorithm converges. For a maximization problem, 

we can define the hill climb method (HC) as: 

 
> (10) Define step value    and desired precision   ; 
 

> (20) Calculate gradient   ⃗⃗⃗⃗  ⃗ at initial point  ( ), for each variable: 

  ⃗⃗⃗⃗  ⃗( )    ⃗⃗⃗⃗  ⃗(          )   (|
  ⃗⃗⃗⃗  ⃗

   ⃗⃗ ⃗⃗ ⃗⃗  
|   ̂    |

  ⃗⃗⃗⃗  ⃗

   ⃗⃗ ⃗⃗⃗⃗  ⃗
|  ̂      |

  ⃗⃗⃗⃗  ⃗

   ⃗⃗ ⃗⃗ ⃗⃗  ⃗
|  ̂ ) 

 

> (30) calculate  (   )    ( )     ⃗⃗⃗⃗  ⃗    ;  
 
> (40) evaluate   ( (   )); 
 
> (50) calculate       ( (   ))    ( ( )), and define       ; 
 
> (60) If  ( ( ))    ( (   ))  &        , go to (30), else go to (70); 
 
> (70) converge algorithm, plot and save results; 
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2.6.2. Bisection method (BM) 

The most basic procedure to numerically find a root of an equation is the bisection method [71]. 

It consists in repeatedly dividing the interval where the root is located by evaluating its middle 

position. 

As it consistently gives an improved answer, it is a simple, yet very robust optimization tool. 

This method applied in finding roots of an equation (i.e. a polynomial) is not as fast as other 

gradient methods, nevertheless it always converges, differently than other methods that may 

diverge depending on the function. It can be applied to find the maximum or minimum values of 

a given function.  

This algorithm can be used in conjunction with the hill climb method. Once the local optimum is 

reached by hill climb, the bisection method can refine the solution by subdividing the step 

interval where the solution is expected to be located. The bisection method for a maximization 

problem can be expressed as follow: 
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> (10) define initial parameters: 

 Number of maximum bisection steps     ;  

 Initial bisection step length    

 bisection iteration    ;  

  ( )     ; 

 

> (20) define:  {
     ( )    ( ) 

     ( )    ( ) 
 

 
> (30) If   (  )   ( ( )), then  ( )       and go to (50), else go to (40); 
 
> (40) if   (  )   ( ( )), then  ( )       and go to (50), else go to (60); 
 
> (50)   (   )   ( ); 
 
> (60)      , and bisection step is defined as   ( )    (   )     ;  
 
> (70) if         converge algorithm, plot and save results; else go to (20); 
 

 

 

2.7. Global optimization algorithms 

In many engineering optimization tasks, often the optimization space is broad, represented by a 

large number of variables. As the number of variables increases, the size of the design space 

expands exponentially. With this the option to discretize it and evaluate all possible 

combinations, becomes expensive in terms of number of evaluations. Making use of gradient 

methods to find optimum values in these cases is not the best alternative also, as it might have an 

early convergion to local optimums closer to the initial guess, and the derivate calculation 

becomes more expensive as the number of design variables increase. Another alternative to this 

problem is to apply a global optimization algorithm (GOA), which are population based 
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methods. As most of the global optimization methods, it starts with an initial random population, 

and generates at each iteration a population with better performance by following simple 

governing rules defined by the method. Due to its gradient-free intrinsic characteristic, it has the 

same evaluating speed in problems with many or few of variables, differently from gradient 

based optimization. 

 

2.7.1. Random method (RND) 

The most basic global optimization method is the random method, also denominated Monte 

Carlo algorithm, which consists in creating a random population at each iteration, and storing the 

best recorded positions. It does not have a very efficient exploration capacity as it does not 

concentrate in more promising areas of the optimization space. Nevertheless, it provides a 

population of solutions with equal density distribution in the optimization space, which can be in 

sequence explored in conjunction with a precise local optimum method like HC. 

The algorithm starts with the iteration index   equal to one, and an initial population with 

random distribution  ( ) is generated and each individual solution is evaluated according the 

single objective value. In sequence, a second population denominated  ( ) is also generated 

with random distribution inside the optimization space, and evaluated. 

The populations  ( ) and  ( ) are added creating population  ( ). In sequence, population 

 ( ) is sorted according the objective value and the best individuals are selected, generating 

 (   ). The iteration index is increase by one and this process is repeated until the algorithm 

reaches the maximum number of generations. 

 

 



 
 

48 
 

 

  
> (10) Iteration step     ; 
 
> (20) Generate initial population   ( ) with random distribution; 
 
> (30) Evaluate   ( ) according the single objective value; 
 
> (40) Generate population  ( ) with random distribution; 
 
> (50) Evaluate   ( ) according the single objective value; 
 
> (60) Generate population   ( )   ( ) ⋃   ( ). Sort and select  ( ), generating  (   ); 
 
> (70)       ; 
 
> (80) If         then plot and save results, else go to (40); 

 

 

2.7.2. Simulated annealing method (SA) 

Created by Kirkpatrick in 1983 [72], Simulated Annealing is a GOA that mimics the 

metallurgical process of annealing, where liquid metal has its temperature slowly decreased until 

solid state. In this slow-cooling process, the atoms have the possibility to travel inside the cast 

and find lower-energy positions. This process is a crystallization process, which allows the metal 

to become stronger and more durable for several applications.  

With simple coding this algorithm is a viable option for a global exploration method with fast 

implementation. The simulated annealing method description is given: 
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> (10) define initial parameters: 

 Define   ,   ,    and     ;  

 Iteration step     ; 

 
> (20) Generate initial population   ( ), of particles   of possible solutions, with random distribution; 
 
> (30) Evaluate   ( ) according the single objective value; 
 

> (40) Calculate temperature  ( ), and define translation amplitude ‖   ⃗⃗⃗⃗ ⃗⃗ ( )‖and direction    ̂( ): 

 

{

 ( )       
    

‖   ⃗⃗⃗⃗ ⃗⃗ ( )‖      ( )

     ̂( )          ⃗⃗             ⃗⃗⃗              ⃗⃗⃗⃗  

 

 
Where     is a random value between 0 and 1, 
 
then calculate the translation vector for each point as: 
 

  ⃗⃗ ⃗⃗   ( )  ‖   ⃗⃗⃗⃗ ⃗⃗ ( )‖     ̂( ) 

 

> (50) for each particle  , assign the new position   ⃗⃗⃗  (   )    ⃗⃗⃗  ( )    ⃗⃗ ⃗⃗   ( ), generating the 
population  ( ); 
 
> (60) Evaluate  ( ) according the single objective value; 
 
> (70) Generate population   ( )   ( ) ⋃   ( ). Sort and select  ( ), generating  (   ); 
 
> (80)         
 
> (90) If         then plot and save results, else go to (40); 

 

 

In the numerical algorithm, an initial population  ( ) of solution with random distribution in the 

optimization space is created and evaluated, where      To each solution it is added a 

translation or variation vector   ⃗⃗ ⃗⃗  ( ), with random direction defined by the variable    ̂( ) and 
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step length ‖   ⃗⃗⃗⃗⃗⃗ ( )‖ proportional to the system temperature. The system temperature  ( ) is 

calculated at each iteration, which has a logarithm decrease along the generations. By adding a 

translation vector   ⃗⃗ ⃗⃗  ( ) to each individual solution of  ( ), the population  ( ) is generated, 

being then also evaluated. These two populations are added to generate the population  ( ), 

which is sorted according the main objective value and the best individual solutions are selected 

generating population  (   ). This process is repeated until the maximum number of 

generations is reached. 

 

2.7.3. Genetic Algorithm (GA) 

Originally created by J.H. Holland in 1975 [73], this algorithm mimics the theory of evolution 

stated by Charles Darwin, particularly applied to organisms that reproduce by mating. It states 

that beneficial mutations tend to accumulate in living organisms along the generations, thus 

generating its evolution.  

As other GOAs, it starts with an initial population  ( ) of solution randomly distributed in the 

optimization space, where      At each iteration, population  ( ) is generated though the 

genetic operators of mutation and crossover, and then is evaluated by the objective value. These 

two populations are added to generate population  ( ) which is then sorted and the best 

individual solutions are selected to create the generation  (   ). This process is repeated 

consecutively until the maximum number of generations is reached. 

The term “fitness” is commonly used in the field of optimization where GA is applied. It is 

related to the objective value, which is to be maximized or minimized, according to the 

optimization requirements. It can be defined as equal to the objective value for a maximization 

problem, else the negative or inverse of the objective value in minimization problems. In the 
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algorithm, the problem variables are sequentially set in a vector called chromosome. In the 

permutation process or “cross-over”, each pair of vectors or chromosomes has their values 

exchanged, to generate a new pair of solution, as in the biologic process of mating. The mutation 

process consists in a “copy error” of the chromosome, which error has its probability of 

occurrence and maximum amplitude as pre-defined parameters. Goldberg [45] provides a 

comprehensible tutorial for the algorithm. 

 

 
INITIAL VECTORS 

 VECTOR 1 0.35007 0.8991 0.81963 0.27797 0.70852 0.70475 0.22668 

VECTOR 2 0.04014 0.70203 0.13485 0.35682 0.41615 0.43146 0.27032 

        
 

PERMUTATED VECTORS 
   VECTOR 3 0.35007 0.70203 0.81963 0.27797 0.41615 0.70475 0.27032 

VECTOR 4 0.04014 0.8991 0.13485 0.35682 0.70852 0.43146 0.22668 

 

Table 2.5 – Permutation representation 

 

 
 INITIAL VECTOR 

     VECTOR 1 0.04014 0.70203 0.13485 0.35682 0.41615 0.43146 0.27032 

        
 

MUTATED VECTOR 
     VECTOR 2 0.04014 0.70203 0.13485 0.35682 0.75294 0.43146 0.27032 

 

Table 2.6 – Mutation representation 

 

After the recombination, all possible solutions are sorted and selected according to its fitness, 

and again recombined, until the algorithm converges. From literature references, there are three 

possible processes of pair selection in the GA algorithm, in which only one can be applied: 
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 Random selection: a simple randomly pair selection from the population of solutions. 

 Roulette wheel selection: in this pair selection process, each individual solution has the 

probability to be selected proportional to its objective value. If we call the fitness of each 

solution as      , we can define the probability of selection of each individual solution    

as: 

 

     
    

∑     
 
   

 
(2.42) 

 Tournament selection: in this selection process, an arbitrary number of solutions are 

randomly selected from the population, and the pair of solutions with greater fitness is 

chosen. 
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An overall description of the Genetic Algorithm is as follow: 

 
> (10) Define initial GA operation parameters: 
 

 Mutated / Permutated population ratio; 
 

 Mutation probability per bit; 
 

 Maximum mutation amplitude, in percentage of maximum delta value of each bit; 
 

 Maximum number of iterations     ; 
 

 Quantity of selected solutions  ( ); 
 

 Quantity of recombined solutions  ( ); 
 
> (20) Define iteration step     , and generate initial population of solutions  ( )  with random 
distribution; 
 
> (30) Evaluate   ( )  according the single objective value; 
 
> (40) Generate recombined population of solution  ( ), applying crossover and mutation operators 
at   ( ); 
 
> (50) Evaluate  ( ) according the single objective value; 
 
> (60) Generate population   ( )   ( ) ⋃   ( ); 
 
> (70) Sort  ( ) by the single objective value; 
 
> (80) Sort and select  by objective value  ( ), generating  (   ) and define       ; 
 
> (90) if        then converge algorithm and go to (100), else go to (40); 
 
> (100) plot results and save; 
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2.7.4. Particle swarm method (PSM) 

This method created by Kennedy and Eberhart, in 1995 [48], is based in the flocking behavior of 

birds and schooling of fish, as observed in nature.  

It also starts with an initial population  ( ) with random distribution in the optimization space, 

with    . The movement of each candidate solution in the design space is defined by a 

vectorial summation of the best individual position recorded by each individual solution   ( ), 

the best global position recorded at each generation  ( ), and a vector with random direction.  

All these vectors are multiplied by a coefficient with random value before being added, giving to 

each of the particles (or each candidate solution) a roaming and a converging direction in the 

optimization space. Each individual solution has the particle position, which has a roaming 

characteristic in the optimization space, and also the best recorded value. This procedure is 

repeated until the algorithm reaches the maximum number of steps. Marini and Walczak [49] 

give a clear overview of the method. 
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A simplified description of the Particle Swarm Method (PSM) is: 

 
> (10) Define   , and set     ; 
 
> (20) Generate initial population   ( ), of possible solutions (particles)  , with random distribution; 
 
> (30) Evaluate   ( ) according the single objective value; 
 
> (40) for each particle  , assign the particle or individual best recorded position,   ( ) as its initial 
position; 
 
> (50) for each particle  , assign the individual speed,     ; 
 
> (60) For population   ( ), save the global best solution of the population  ( ) ; 
 
> (70) To each particle  , assign new speed   ⃗⃗⃗  (   ) according three components: inertia, global best 
and individual best: 
 
       (    )

 , where   is the inertia value; 

                ⃗⃗⃗  (   )     ⃗⃗⃗  ( )            .  ⃗⃗  ⃗( )    ⃗⃗  ⃗( )/        .  ( )    ⃗⃗  ⃗( )/ ; 

              Where     is a random number between 0 and 1; 
 
 

> (80) To each particle  , assign new particle position    ⃗⃗  ⃗(   ), defining new swarm position  ⃗ (   ) 
  

  ⃗⃗  ⃗(   )     ⃗⃗  ⃗( )    ⃗⃗⃗  (   )  
 
 
> (90)       ; 
 

> (100) Evaluate particle population  ⃗ ( ) according the single objective value; 
 

> (110) Update individual particle best position   ⃗⃗  ⃗( ) and global best position   ( ); 
 
> (120) If         then plot and save results, else go to (70); 
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2.8. Hybrid algorithm 

In order to improve the algorithm efficiency, global optimization algorithms (GOA) and 

gradient-based methods can be used together as a hybrid method. With this is possible to 

evaluate global optimum regions of the design space and also perform localized optimization in 

the more promising regions. The hybrid method here applied also starts with a population with 

random distribution in the optimization space denominated  ( ), where      To generate the 

population   ( ), a GOA is applied to  ( ) which is also evaluated by the single objective 

value. Subsequently a gradient method is applied to   ( ) to generate   ( ). Because the 

gradient method also evaluates the population, no further evaluation is required. These three 

populations are added to generate  ( ), which is sorted and have the best individuals selected to 

create population  (   ). The variable    is increased by one, and this process is repeated 

until the algorithm reaches the maximum number of iterations. 

 
>(10) Iteration step     ; 
 
>(20) Generate initial population   ( ) with random distribution; 
 
>(30) Evaluate   ( ) according the single objective value; 
 

>(40) Apply a GOA to  ( ) to generate population of solution   ( ); 
 

>(50) Evaluate    ( ) according the single objective value; 
 

>(60) Apply a gradient method to   ( ) to generate   ( ); 
 
>(70) Generate population   ( )   ( ) ⋃  ( ) ⋃  ( ); 
 
>(80) Sort  ( ) and select best values to generate population of solutions  (   ); 
 
>(90)        
 
>(100) If         then plot and save results, else go to (40); 
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2.9. Algorithms selection 

It is an important consideration, to note that the main characteristics of the optimization space 

vary according to its function. As mentioned, a good analogy is to compare an optimization 

space to a delimited geographic region with hills and valleys, where the algorithm seeks to find 

the overall maximum height. In this analogy, depending on the functions which generates it, 

some optimization spaces would have several hills and valleys, others would have less height 

variation, while others could present discontinuities as cliffs, which would not be appropriate for 

gradient-based optimization methods. Therefore, each algorithm can show different values of 

efficiency for each objective function, as each function can generate an optimization space with 

different characteristics. 

In order to select the best algorithm for the particular optimization task, the methods are tested 

for its efficiency in achieving the best solution and speed of convergion. For this purpose, the 

average convergion curve is calculated from 30 optimizations. The sample size of 30 is defined 

based on previous scientific publications of optimization studies where the average curve is also 

evaluated from this sample size.  

Because the heuristics methods and the hybrid method have stochastic variables along its 

procedure, fluctuations related to the objective value achieved are expected at each optimization 

run.  

Therefore the algorithm with greater average for the final objective value should be considered 

as the one with best response for the particular task. Also, it is desirable the method would reach 

this value as fast as possible to reduce computation time.  

For this purpose the test problem is defined as the maximization of the     value (eq.2.39) for 

the beam with the following configuration: 
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 fixed-fixed boundary condition 

 taper configuration B 

 free-vibration 

 polynomial approximation (PA) tuning approach 

 Blade passing frequency    equal to 5600 rd/s 

 

With this the optimization is performed with five different algorithms, and the average 

convergion curve is displayed in figure 2.11. 

 

 

Figure 2.11 – 30 Average convergion curve comparison 
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The hybrid method chosen is RND+HC, and the conversion curves comparison of the algorithms 

are displayed in figure 2.11. 

The best algorithm is the Random method combined with Hill Climb (RND+HC), followed by 

the Genetic Algorithm (GA), for the present numerical model and selected sub-space of 

optimization. Figure 2.12 and table 2.5 displays the optimized objective value according to each 

method, where GA, SA and RND+HC have achieved similar results. 

 

 

Figure 2.12 – Objective value achieved by each method  
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Table 2.7 quantify precisely the results of figure 2.12, where is possible to verify the 

optimization algorithm GA achieved better performance than SA. 

 

GA 93.590 

PSM 23.382 

SA 91.458 

RND 65.302 

RND+HC 94.808 

 

Table 2.7 – Final objective value per optimization algorithm 

 

The particle swarm method (PSM) achieved the lowest value, even lower than the random 

method (RND), which is used as a reference. This can be caused by the coefficients of the PSM 

not being properly adjusted. The RND method did not achieve good results due to the fact that at 

each iteration it is created another population of random position in the optimization space, 

without any procedure to work and improve the already optimized solutions. Simulated 

annealing (SA) performs a mutation of each improved solution, achieving a good level of 

efficiency among the algorithms, yet among the GOAs it has achieved the second best value. 

Genetic algorithm (GA) also improves the best solutions by applying the operators of mutation 

and permutation, what demonstrated to provide good results. RND+HC is the best method, yet is 

very time consuming due to the gradient calculation at each iteration. Therefore the selected 

method for the present optimization study is the Genetic Algorithm with random selection of the 

chromosome pair. 
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As mentioned, these efficiency values can vary for different optimization problems or objective 

function.  Also by changing the set of operational coefficients of each method, these methods can 

perform with different accuracy and speed. A complete evaluation of each algorithm efficiency 

would require the test of several objective functions and sets of operational parameters of these 

methods. 
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CHAPTER 3 – Design analysis of tapered and non-tapered composite beams 

In order to better understand the influence of several variables in the dynamic response of a 

composite tapered beam, the natural frequencies are calculated and displayed as a function of the 

following variables: 

 Ply orientation angles – The orientation angle of the fibers can modify the rigidity of the 

beam in a given direction, and therefore the structure’s natural frequencies. In the design 

of a composite material structure, the deformations must be limited in all the main modes 

of vibration, and the influence of the fibers orientation in the dynamic behavior of the 

structure must be considered in order to evaluate or generate a possible design 

configuration. 

 Boundary conditions – There are several applications for rotating structural 

components, which have varied boundary conditions. Some blades like the fan blade of a 

turbo fan engine are built in the clamped-free (CF) boundary condition, while other 

compressor blades are built with the clamped-clamped (CC) boundary condition. In order 

to consider several rotating beam designs, the four main boundary conditions previously 

mentioned are considered in the design analysis. 

 Thickness-taper configuration – It is possible to generate a large number of taper 

configurations, by selecting the position of the ply drops along the thickness and the 

length of the beam. The three main configurations mentioned in chapter 2 are applied as a 

design variable. 

 Beam length – By modifying the length of a rotating structural component, the natural 

frequencies related to the bending mode of vibration also are modified. The amount by 
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which the length variable influences the dynamic behavior of a tapered composite 

material beam is here evaluated. 

 Tensile axial loading – A rotating beam can be deformed by centrifugal force or carry 

other structural components in its extremity. These are an example where the effect of an 

axial loading must be considered during project. 

By verifying how these variables influence in the dynamic behavior of the tapered beam, it is 

expected to gain an insight and understanding of a possible tapered beam design configuration. 

 

3.1. Design analysis nomenclature and laminate sections  

Having defined the beam geometry, taper configuration and the number of layers, the bending 

stiffness coefficient     of the symmetric and balanced laminate will depend solely on the ply 

orientation angles. These angles are defined by the herein named representative vector   ⃗⃗  ⃗   eq. 

(2.41), as seen in chapter 2. In order to differentiate three main sections of the half thickness 

laminate, the representative vector can also be defined as, 

   ⃗⃗  ⃗  ,           - (3.1) 

When with identical angles, the same vector is defined as, 

   ⃗⃗  ⃗  ,  - (3.2) 

These laminate sections can be independently varied from 0 to 90 degrees to evaluate their 

influence on the dynamic behavior of the beam. The positions of each of these sections in the 

laminate are indicated in fig 3.1. 
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Specifically, Figure 3.1 represents the upper half thickness of a laminate, where the internal, 

intermediate and external sections of the laminate are respectively denominated by the variables 

α, β and γ, according to equation 3.1. In the case the orientation angles of all plies of the laminate 

are defined by the same angle, this angle is denominated λ. These variables are used to identify 

the portions of the plies under analysis in the plots. 

 

 

 

                              Figure 3.1 – Ply sections of the laminate       

 

 

 



 
 

65 
 

In order to identify the numerical optimization results, some abbreviations are applied: 

TC-B Taper configuration B 

TC-C Taper configuration C 

TC-D Taper configuration D 

TC-N Non-tapered beam 

SS Simple-supported boundary condition 

CC Clamped-clamped boundary condition 

CF Clamped-free boundary condition 

FC Free-clamped boundary condition 

    to    Natural frequencies 1 to 8 

 

Table 3.1 – Abbreviations for data analysis 

 

To compare the tapered beam efficiency for several design cases, a regular non-tapered 

composite material beam with same dimensions is used as a reference for the dynamic response. 

The mechanical properties applied in this design analysis for the optimization study are the same 

as those provided at Tables 2.1 and 2.2. 

 

3.2. Design analysis – first three natural frequencies of a cantilever beam 

Figure 3.2 shows the influence of the ply orientation angles on the first three natural frequencies 

of the clamped-free tapered laminate, for each one of the main taper configurations and a non-

tapered laminate with same dimension. 
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Figure 3.2a – First natural frequency vs λ – clamped-free boundary condition  

Figure 3.2b – Second natural frequency vs λ – clamped-free boundary condition  

Figure 3.2c – Third natural frequency vs λ – clamped-free boundary condition  
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Figure 3.2a shows that the non-tapered beam has lower fundamental frequencies than the tapered 

configurations, and this difference is reduced as the λ orientation angle increases. Interestingly, 

the non-tapered beam presents higher values for the second and third natural frequencies. This 

occurs due to the fact that the higher mass in the extremity of the non-tapered beam causes to 

decrease the values for the fundamental frequency, yet the higher bending stiffness of the non-

tapered beam increases the natural frequencies values for the second and third natural 

frequencies. 

For the tapered beams, it is noted the taper configuration D has lower fundamental frequency 

than configurations B and C, where configuration B and C show very similar values. This is a 

consequence of the presence of greater resin pockets in the configuration D along its thickness 

which reduces the overall rigidity of the structure. 

Due to the fact that resin pockets have lower deformation resistance, it decreases the overall 

bending stiffness coefficient of the beam and reduces the fundamental natural frequency value. 

Observing the results for second and third natural frequencies in Figs. 3.2b and 3.2c, it is noted 

that there is not much difference between the tapered configurations. In addition, both tapered 

and non-tapered configurations have lower natural frequencies for higher angles. 
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Figure 3.3a – First natural frequency vs L – clamped-free boundary condition 

Figure 3.3b – Second natural frequency vs L – clamped-free boundary condition 

Figure 3.3c – Third natural frequency vs L – clamped-free boundary condition 
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In figure 3.3a to figure 3.3c the first three natural frequencies of a cantilever beam are evaluated 

along a variation on the length of the beam, while the ply orientation angles   remain at the 

default value of 45 degrees. 

In an overall analysis the frequencies are higher for lower beam lengths and this is equally 

observed for the tapered and non-tapered configurations. 

Also, it is noted in figure 3.3a, that the curves of fundamental frequencies are higher for the 

tapered configurations B and C than the taper configuration D. 

In figure 3.3b and at figure 3.3c, the second and third natural frequency curves are higher for the 

non-tapered configurations, while all tapered configurations present similar values. This is 

caused by the fact that the non-tapered beam has higher overall bending stiffness coefficient. It is 

noted the non-tapered beam has higher mass also, which reduces the fundamental natural 

frequency values, yet for second and third bending modes, the natural frequencies of the non-

tapered beam are increased, and are also more influenced by the higher stiffness generated by the 

greater thickness of the non-tapered configuration. 

It is observed configurations B and C have higher natural frequency values than configuration D. 
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Figure 3.4a – First natural frequency vs Fx – clamped-free boundary condition 

Figure 3.4b – Second natural frequency vs Fx – clamped-free boundary condition 

Figure 3.4c – Third natural frequency vs Fx – clamped-free boundary condition 
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The effect of an axial tensile force on the natural frequencies of tapered and non-tapered 

laminates is displayed in figure 3.4, with the ply orientation angles of all the plies   assuming the 

default value of 45 degrees. In an overall analysis it is possible to infer that a tensile axial force 

increases the natural frequencies of the beam. It is possible to note that tapered laminates are 

more influenced by a tensile axial force than a non-tapered laminate, due to the fact that in a 

tapered geometry the cross-section area decreases along the length, causing greater strain to same 

load values, These strain values increase the rigidity of the structure, which increase the natural 

frequencies. The fundamental frequency values are greater for tapered beams, while the second 

and the third natural frequencies are greater for non-tapered laminates, in most of these evaluated 

cases. 

As stated by Niordson and Grandhi [27], [74], we can verify that by tapering a cantilever beam 

the fundamental frequencies are maximized. In the cases evaluated, is possible to infer that the 

second natural frequency is generally minimized for the tapered beams – with the exception of 

some cases in the pre-stressed configuration. This is an important design study that must be 

considered for cantilever components with axial loading that operate with blade passing 

frequencies greater than the fundamental frequency. The third natural frequencies are lower for 

the tapered configurations in all mentioned design configurations. 
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3.3. Design analysis - four boundary conditions of a tapered beam 

Figure 3.5 displays the effect in all the natural frequencies under 7000 rad/s, for a given ply 

orientation angle, with all ply orientation angles of the laminate varying from 0 to 90 degrees. 

This angle is represented by the variable  , where the natural frequencies are measured for the 

three taper configurations and the four boundary conditions, for a free-vibration condition and a 

default beam length of 1 m. 

In an overall evaluation of the figures, the dynamic behavior of the tapered beam does not differ 

much from each taper configuration, and an angle increase demonstrates to significantly decrease 

all the natural frequencies. This decrease shows to be more significant to the higher natural 

frequencies, especially in the region between 30 and 60 degrees.  

It is possible to note that the in the higher the natural frequencies, there is a greater reduction 

generated from a ply orientation angle increase. 

It is also possible to understand from the plots at figures 3.5 that a variation in the boundary 

condition significantly modifies the natural frequencies values, while a taper configuration 

variation does not change the natural frequencies in a macro scale. 
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Figure 3.5 – Natural frequencies vs   angle variation 
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The effect of the length of a tapered beam in the natural frequencies is shown in figure 3.6, 

where it is seen that the natural frequencies are higher for smaller beam lengths. Also for this 

design analysis, it can be seen that a taper configuration variation does not modify in a macro 

scale the natural frequencies, while the boundary condition does significantly change these 

values. 

For the taper configuration D, in the boundary condition clamped-clamped (CC), clamped-free 

(CF) and free-clamped (FC), is possible to note in the top right part of the curves, the presence of 

an extra natural frequency, which is not seen in the other taper configurations B and C for the 

same boundary conditions. This greater number of natural frequencies up to 7000 rd/s for greater 

beam lengths indicates the taper configuration D presents a greater number of vibration modes 

for the same design configuration, if compared with the other taper configurations, which 

indicates it has lower bending stiffness coefficient. This hypothesis is possible to confirm due to 

the fact the taper configuration D has a larger volumes of resin in its structure, which does 

reduces the overall bending stiffness of the structure. Interestingly taper configuration B and C 

show very similar results in a macro scale analysis. 

These curves demonstrate the beam length variation follows the same principle of the harmonic 

pendulum equation, in which the natural frequency is reduced for greater values of length. 
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Figure 3.6 – Natural frequencies vs length L 
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The effect of a tensile axial force in the tapered beam is displayed at figure 3.7. It is 

demonstrated it has the overall effect of increasing the natural frequencies, due to the fact that a 

tensile loading modifies the rigidity of the structure, which changes also its natural frequencies. 

It is understood from the curves the boundary conditions do significantly modify the natural 

frequency values, while a variation in the taper configuration do not have much influence in the 

overall dynamic behavior of the beam. 

When comparing the natural frequencies from taper configuration D with configuration B and C, 

however, is possible to see it has lower values for same loading and boundary condition. This 

can also be referred to the fact of larger resin pockets which reduces the bending stiffness 

coefficient, reducing also all the natural frequencies. 

In an overall analysis, the natural frequencies related to the bending modes of vibration seem to 

linearly rise with an axial tensile load. 
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Figure 3.7 – Natural frequencies vs tensile axial force Fx 
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3.4. Design analysis – 3D analysis curves of a cantilever beam 

Due to the fact that many tapered beams applications as windmill blades, helicopter blades and 

others, are in the clamped-free boundary condition, this is the focus of the 3D design analysis. In 

order to compare the effect of some design variables, 3D curves of the first and second natural 

frequencies are generated, varying several design variables. Figure 3.8 shows the influence of the 

ply orientation angles on the intermediate and external layers of the laminate      eq. (3.1). 

Any ply orientation angle not mentioned in the plots remains with the default angle of forty five 

degrees. If we consider the curve related to the first natural frequency (   ) of the taper 

configuration B, is possible to note that when   and   assume values near 90 degrees, the natural 

frequencies are lower than when both coefficients assume values near zero degrees. This can be 

understood due to the fact that when the fibers of the external and intermediate layers are aligned 

with the main axis of the beam, the coefficient     has greater values, what increases the natural 

frequencies of the structure. Also is possible to note that when   is increased there is a lower 

frequency rise than when   is increased, what leads to the assumption the external plies of the 

laminate represented by the variable   have more contribution in the dynamic behavior of the 

beam than the intermediate plies of the laminate represented by the variable  . The same pattern 

is observed in all the plots of figure 3.8, where some differences are observed between each taper 

configuration. For the first natural frequency, in the region where   and   have the value of zero-

degrees, taper configuration B displays a natural frequency around 190 rd/s, taper configuration 

C around 200 rd/s and taper configuration D around 170 rd/s, from what we understand the taper 

configurations does have an influence in the natural frequencies. Taper configuration C again 

displays higher values due to its resin pockets being located in the horizontal plane of symmetry. 
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Figure 3.8 – Clamped-free tapered beams – first and second natural frequencies vs β vs γ 
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Figure 3.9 – Clamped-free  tapered beams – first and second natural frequencies vs λ vs L 
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Figure 3.9 compares the effect on the first and second natural frequencies with a variation of the 

ply orientation angle for all the layers of the laminate, which angle is represented by the variable 

 , along with the effect of a length variation L, varying from 1 meter to 1.25 meters. It is shown 

in the curves that both variables are important in the dynamic behavior of the beam in the given 

intervals, and the natural frequencies significantly decrease for greater lengths and higher ply 

orientation angles. 

It is possible to note at any of the curves from figure 3.9, that at the point where   assumes the 

value of 90 degrees and L is equal to 1.25 m, the natural frequencies have a lower value. From 

this point, a decrease of ply orientation angles   toward zero-degrees contributes to increase the 

natural frequency more than when decreasing the length to 1 m. From this is possible to 

understand the given length variation has less influence in the dynamic behavior of the structure 

than the variation of the ply orientation angle from 90 to 0 degrees. 

Another inference can also be made from the point where   is equal to zero-degrees and the 

length is 1.25 m, for any taper configuration or boundary condition of figure 3.9. A reduction of 

the length toward the value of 1 m has greater influence in increasing the natural frequencies, 

than when the length has the same length reduction while   is equal to 90 degrees. This is due to 

the fact that when the ply orientation angles are aligned with the beam main axis, the     value 

of the structure is increased, what contributes to higher natural frequencies. And with      

having greater values, a length variation has more influence in the dynamic behavior of the beam 

that when     has lower values. It is possible to note also that when   is in the zero-degree 

region and L is equal to 1.25 m, the natural frequencies for the taper configuration D are lower 

than for configurations B and C, which is also related to the presence of greater resin pockets at 

configuration D. 
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Figure 3.10 – Clamped-free  tapered beams – first and second natural frequencies vs λ vs Fx 
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The curves from figure 3.10 compare the influence of angle variation in all the plies of the 

laminate, represented by the variable  , with an axial tensile force    in the interval of 0 to 10 

kN. It is possible to see from all the curves at figure 3.10, that both variables are important in the 

determination of the natural frequencies. It is noted in all the curves for the first and second 

natural frequencies, however, that the variable representing the ply orientation angle   shows 

greater influence in all the considered configuration of the tapered beam, than the axial force    

in its given interval. 

In the same figure for the fundamental frequency of configuration D, in the point where   is 

equal to zero-degrees and     is equal to 10 kN, is possible to see this frequency is lower than the 

other taper configurations. This can be deduced again from the fact of greater resin pockets 

present at the taper configuration D, which reduces the stiffness of the beam. 

Also in all the curves it is noted there is a greater frequency increase when    goes from 0 to 10 

kN while   is equal to 90 degrees, than when it is equal to zero degrees. This is due to the fact 

that when the laminate has all ply orientation angles equal to 90 degrees, the structure has lower 

stiffness than when the ply orientation angles are equal to zero degrees. With this. the presence 

of a tensile axial force increases the stiffness of the structure in a greater amount when   is equal 

to 90 degrees than when it is equal to zero degrees, what is reflected in the natural frequencies. 

The extended results of all the design analysis performed in this study are presented in the 

Appendix A. 
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CHAPTER 4 - Optimization results 

The genetic algorithm demonstrated good conversion speed and accuracy in the convergion 

comparison test at chapter 2, and is the algorithm chosen in the optimization for vibration of the 

tapered beam and the non-tapered beam, for several design requirements and boundary 

conditions. The optimization algorithm aims to maximize the objective function stated at 

equation 2.39, by defining a set of ply orientation angles which will provide satisfactory dynamic 

response in the bending modes of vibration. 

Each optimization task must achieve a near-optimum design configuration following the 

respective manufacturing approach. This optimization design study aims to maximize a band free 

from resonance, and to maintain this band centered with the blade passing frequency, which is 

related to the operational frequency of the system. This optimization study considers the dynamic 

behavior of the laminated beam related to the bending modes of vibration only, and is a partial 

design requirement of a comprehensive blade design study. 

For the optimization study are considered the four structural tuning approaches described in 

chapter 2, and the presence and the absence of a tensile axial force. The design configurations for 

the optimizations displayed at table 4.2 are applied to all boundary conditions, taper 

configurations B, C and D, and a non-tapered beam. 

 

4.1. Selected design cases 

To identify the numerical optimization results, the nomenclature follows the table 3.1 with some 

added acronyms at table 4.1: 
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RMA Regular manufacturing approach 

PA Polynomial approximation approach 

FPOA Free ply orientation angle approach 

PA&RMA Polynomial approximation &regular manufacturing approach 
 

 
Table 4.1 – Nomenclature for manufacturing approaches 

 

The results are sub-divided as in the presence or absence of a constant axial tensile force    of 10 

kN tensioning the beam (pre-stressed or free vibration), and also by the four types of structural 

tuning approach, as displayed in table 4.2:  

 

  free vibration pre-stressed vibration 

FPOA Result group 1 Result group 2 

RMA Result group 3 Result group 4 

PA Result group 5 Result group 6 

PA&RMA Result group 7 Result group 8 
 

 
Table 4.2 – Result groups distribution 

 

Each result group is defined by the combination of the four boundary conditions and a total of 

three taper configurations and a non-tapered configuration. Table 4.3 shows the structure of each 

result group: 
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TC-B TC-C TC-D TC-N 

SS  OUTCOME SET 01  OUTCOME SET 05  OUTCOME SET 09  OUTCOME SET 13 

CC  OUTCOME SET 02  OUTCOME SET 06  OUTCOME SET 10  OUTCOME SET 14 

CF  OUTCOME SET 03 OUTCOME SET 07 OUTCOME SET 11  OUTCOME SET 15 

FC  OUTCOME SET 04  OUTCOME SET 08 OUTCOME SET 12  OUTCOME SET 16 
 

 
Table 4.3 – Result group structure 

 

Each outcome set consists of five consecutive optimizations for the same design requirements, 

giving as output five optimized representative vectors. The complete results of the optimizations 

are presented in the appendix B, for all the eight result groups. In this chapter only result groups 

5 to 8 for tapered beams are presented. 

 

4.2. Optimization results 

The beam is optimized for vibration by the described methodology, giving as output the ply 

orientation angles of the symmetric and balanced laminate defined by the upper right curve at 

fig. 2.10, which is the representative vector. To each result group the outcome set of five 

optimization curves are displayed according to its boundary condition and taper configuration. 

From all the optimization achieved according to table 4.2, the result groups related to PA and 

PA&RMA are chosen for an in depth analysis, which are result groups 5 to 8. These outputs are 

reviewed in what is related to its optimized design configuration and dynamic response 

characteristics.  
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4.2.1. Optimization results for PA 

The optimized solutions of the result groups 5 and 6 related to the PA structural tuning approach 

for free vibration and pre-stressed vibration, are presented in figures 4.1 and 4.2, respectively. 

The curves show the graphical representation of the optimized beam, showing the representative 

vector, which defines all ply orientation angles of the laminate. 

From these results is possible infer that several of the optimizations achieved similar near-

optimum configurations, due to the fact that the set of five repetitive optimizations converged for 

approximated curves for several cases. For the taper configuration simply-supported (SS) in 

figure 4.1, more specifically the optimization results for taper configurations B and C, the curves 

are mostly in the zero to fifty degrees’ region for all the laminates, with few exceptions, with 

some representative vectors near the zero-degree region. This accounts for greater values of     

which increases the overall natural frequency values.  For the taper configuration D, it is noted 

that all the curves diverge from the zero degree region in the external plies of the laminate γ (   

to   ). This same pattern is also seen in the pre-stressed results (fig. 4.2), for the simply-

supported boundary condition, demonstrating the structure with taper configuration D has 

different dynamic characteristics than the structures with taper configuration B and C. This same 

pattern seen in taper configuration D, of diverging from the zero-degree region in the external 

plies of the laminate, and also having different outcomes from taper configuration B and C, can 

be noted in all boundary conditions, at figures 4.1 and 4.2. 

For taper configuration B and C for the boundary condition clamped-clamped (CC) at figure 4.1 

it is noted some fluctuation in the internal layers of the laminate, with the intermediate layers 

with several ply orientation angles near the 90 degree region, and the external layers near the 
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zero-degree region. This is a particular design configuration which seems to describe most 

curves with same boundary condition and taper configurations, where the external plies show a 

greater contribution in the bending stiffness coefficient than the intermediate plies of the 

laminate, which demonstrated satisfactory results in the optimizations. 

It is interesting to note that for the boundary condition clamped-clamped (CC) for the taper 

configuration D, the intermediate and external layers fluctuate in the 50 degree region, 

differently than the average values observed for taper configuration B and C. This accounts for 

lower bending stiffness coefficient for taper configuration D than for taper configuration B and 

C. Due to the presence of large resin pockets the structure presented with taper configuration D 

presents also a different dynamic behavior, and achieved a tuned design configuration with 

different ply orientation angles. Because the band free from natural frequency maximized by the 

algorithm can be defined between any consecutive pair of natural frequencies (equation 2.37), 

the accentuated structural differences of taper configuration D can lead the optimization to 

achieve a design configuration maximizing the band free from natural frequencies with a 

different pair of natural frequencies, what would generate much dissimilarities in the 

optimizations outcomes from taper configurations B and C, even with similar design parameters. 

In figure 4.1, the results for clamped-free boundary condition (CF), for the taper configuration B 

and C, demonstrate that the ply orientation angles of the intermediate laminate section β (   to 

  ) are mostly defined in the range between forty and one hundred degrees, while the external 

laminates, γ section (   to   ), are mostly defined near the zero and fifty degree region. The 

same pattern is also seen in figure 4.2 for the pre-stressed results, for the same boundary 

condition and taper configuration.  
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Figure 4.1 – Tapered beam optimization results - result group 5 
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Figure 4.2 – Tapered beam optimization results - result group 6 



 
 

91 
 

From equations 2.2 to 2.5 is possible to infer that ply orientation angles near the ninety degrees 

region account for lower values of    , and lower angles account for higher values of    . It is 

noted that the orientation angles of internal plies in the α section (   to   ) are the plies with 

greater variance in all the optimization results. This is occasioned due to the fact that the internal 

plies of the laminate have lower contribution to the bending stiffness coefficient    , therefore, it 

assumes different values during optimization. For the clamped-free boundary condition (CF) and 

the taper configuration D, also in figure 4.1, the external plies γ (   to   ) assume values near to 

the 40 degrees region. This large difference from taper configurations B and C can be caused by 

the larger resin pockets in the taper configuration D, what greatly modifies the structural 

characteristics of the beam. 

In figure 4.1, and figure 4.2, are observed for the clamped-free boundary condition (CF) and 

taper configurations B and C similar results, while for taper configuration D the optimized values 

again are fairly different from configurations B and C. 

For the results of the free-clamped boundary condition (FC) of PA tuning approach, interestingly 

the results are similar, for pre-stressed and free vibration optimization results (figures 4.1 and 

4.2), with some slight differences accounted for the load presence. 

The results for the taper configuration D diverge from the region of zero-degree in the external 

plies of the beam, γ section (   to   ), for several of the boundary conditions, from what is 

possible to infer that the near optimum regions for this taper configuration are located near lower 

    values. For the result group 6 and 8 (figures 4.2 and 4.4) the beam is subjected to an axial 

tensile force of    equal to 100 kN/m. As the beam width is 0.1m, the total axial force    is 

equal to 10 kN. Comparing both structural tuning approaches with and without the presence of a 
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load, it is possible to note that the pre-stressed condition modifies the rigidity of the structure, 

which amounts for some differences between the ply orientation angles. 

In order to achieve solutions with greater precision it is possible to apply a more powerful 

algorithm like RND+HC. The downside of this algorithm, however, would be that this method is 

more time consuming. 

 

4.2.2. Optimization results for PA&RMA 

From result group 7, in figure 4.3, it is noted that in the simply-supported boundary condition 

(SS), all the ply orientation angles of the intermediate and external plies, sections β (   to   ) 

and γ (   to   ),  are lower than 90 degrees, while some curves have several angles in the zero 

degree region. This amounts to greater     values, reducing the structure flexibility, where a 

structure with greater rigidity has increased natural frequency values. Also for the same 

boundary condition, it is seen that some curves have converged to fairly similar values in the 

same set of results, from what is possible to understand that the optimization has reached to 

similar near-optimum location in several cases. These observations for the simply-supported 

boundary condition in the result group 7 also can be applied to result group 8, in figure 4.4, for 

the same boundary condition. At figure 4.3, for the result group 7, in the clamped-clamped 

boundary condition (CC) it is observed several design configurations, where for the taper 

configuration B, C and D the intermediate layers of the beams display ply orientation angles 

between zero and ninety degrees, while for the external layers of the beam it displays ply 

orientation angles between zero and forty five degrees. 
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Figure 4.3 – Tapered beam optimization results - result group 7 
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This observation can also be applied to the result group 8 at figure 4.4, where the only exception 

is for the taper configuration D where all angles are between zero and forty five degrees and the 

external layers are close to the zero-degree region. What can be interpreted from these results is 

that also for these cases, taper configuration D has a different structural characteristics, which 

also for the PA&RMA tuning approach displays distinct near-optimum design configurations 

with the same design functionality than the other taper configurations. 

For the clamped-free (CF) and free-clamped (FC) boundary conditions of result group 7 (figure 

4.3), is possible to observe that the external plies of the laminate have converged to the zero-

degrees region, in most cases, and also the same can be said for the curves of result group 8, with 

the same boundary conditions. From this it is possible to understand that for the given blade 

passing frequency    in the given optimization design space, the near-optimum values are near 

regions where the bending stiffness coefficient     has increased values, since the external layers 

of the laminate have increased contribution in the     coefficient. 

It is not very clear how the tensile axial force interacts in the optimized design for PA&RMA. It 

is possible to infer however, that for both free and pre-stressed vibration optimizations, the load 

condition does modify the optimized design configurations. Also is possible to infer that there 

are several achieved solutions with coincident near-optimum configurations. 
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Figure 4.4 – Tapered beam optimization results - result group 8 
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4.3. In-plane and out-of-plane stresses comparison   

From the previous optimizations groups analyzed, it is sampled results for the taper configuration 

B, and an in depth review is made to access the efficiency of the manufacturing approaches PA 

and PA&RMA in term of important internal stresses for laminated structure, as the in-plane and 

out-of-plane stresses. 

In order to evaluate the in-plane and out-of-plane stresses of the tapered beams optimized with 

the polynomial approximation and regular manufacturing approach (PA&RMA) and the 

polynomial approximation approach (PA), the beams are modeled using the ACP composite 

module of the software ANSYS v17. 

Figure 4.5a display the ANSYS model of the beam with taper configuration B, where the 

thickness is increased 20 times for visualization. Figure 4.5b displays the center line of each ply 

of the same beam, also with increased thickness. 

Figure 4.6a displays the beam with actual thickness dimension, and figure 4.6b displays the out-

of-plane stresses analysis of a single ply, showing the screen display of ANSYS, while acquiring 

the internal stresses of the tapered beam. The layers are considered as a single surface in the 

model of the ACP module, and in the structural module the element applied is the cubical 

element of 40 by 33.33 millimeters, with the same height as the thickness of the beam. 
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                   (a) 

 

                   (b) 

 

 

Figure 4.5a – Tapered beam with thickness increased 20x – model 

Figure 4.5b – Tapered beam with thickness increased 20x – ply centerline 
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                   (a) 

 

                   (b) 

 

 

Figure 4.6a – Tapered beam modeled in ANSYS 

Figure 4.6b – Single ply stress analysis 
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Figure 4.7 – Plot of selected samples from result group 5 – PA 

 

From result groups 5 (fig. 4.7) and 7 (fig. 4.8), three samples from each outcome set of taper 

configuration B are selected, for all the four boundary conditions, giving a total of twenty-four 

optimized beams sampled. These solutions are evaluated to determine the maximum in-plane 

stresses     and     , and out-of-plane stresses     and     , when one of the extremity of the 
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beam is subjected to a vertical displacement of the same magnitude as the higher thickness. 

These values and other details such as the overall fitness value and boundary condition of the 

selected samples of result group 5 are given in table 4.4, and those of the result group 7 are given 

in table 4.5. These stress values are evaluated by ANSYS from the optimized solutions for free 

vibration. 

In figure 4.7 the selected samples of result group 5 are related to the optimizations performed 

with the polynomial approximation approach (PA). In the same figure, for the boundary 

condition clamped-clamped (CC) it is noted that the curves are very similar, with ply orientation 

angles near seventy degrees in the intermediate layers of the laminate and angles near zero 

degrees in the external layers, with much similarity between the results. 

In table 4.5, for items 21, 22 and 23, which are the results for the CC boundary condition, we see 

that the fitness value (FIT) achieved in the optimizations are fairly similar also, in the range of 

2220 to 2250, which is significantly a high value among the samples. Interestingly, the fitness 

values are also close for the curves of the boundary conditions clamped-free (CF) and free-

clamped (FC), however the fitness value of these curves are not so close as those for the 

clamped-clamped (CC) boundary condition. This demonstrates that the optimization problem of 

the present study has multiple local optimum regions, which are represented by the different 

curves, which have often achieved similar near-optimum objective values. 

For the boundary condition simply-supported (SS) at figure 4.7, the three curves have similar ply 

orientation angles for the internal plies of the laminate, while one sample shows different values 

for the intermediate and external plies, assuming ply orientation angles near the zero-degree 

region to all plies of the laminate, which accounts for greater    values. 
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Figure 4.8 – Plot of selected samples from result group 7 – PA&RMA 

 

In table 4.5, for the simply-supported (SS) boundary condition, we see that the laminate with the 

external plies presenting orientation angles near the zero-degree region is the item 2, which has 

greater fitness value than the two other samples for the same boundary condition.  

The laminate represented by the item 2 in table 4.4 presents all the ply orientation angles of the 

representative vector equal or lower than five degrees.  
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Table 4.4 – Selected samples from result group 5 – PA 

 

In figure 4.8 and table 4.5, are presented the selected samples for the polynomial approximation 

and regular manufacturing approach (PA&RMA), without the presence of a tensile axial force.  
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For the boundary condition simply-supported (SS) we see from table 4.6 at items 1 and 4, that 

this tuning approach presented two curves with all the ply orientation angles equal to zero, with 

angles approximated to item 2 of table 4.4 of the PA tuning approach. This is a particular case 

that can help understand the effect on the in-plane and out-of-plane stresses, when a laminate 

presents a ply orientation angle gradient along the laminate thickness equal to zero, and all the 

fibers are oriented in the main stress direction. 

At figure 4.8 for the sample PA&RMA results, in the boundary conditions clamped-clamped 

(CC), clamped-free (CF) and free-clamped (FC), it is noted that the ply orientation angles of the 

representative vector vary from zero to ninety degrees in most of the plies, and only in the 

external plies of these laminates the angles are between zero and forty-five degrees, which 

accounts for increased bending stiffness coefficient of the beam from the external plies, which 

have greater contribution in the overall bending stiffness coefficient of the beam. Because the 

optimization objective considers only the maximization of the band free from natural frequencies 

near the blade passing frequency, the overall stiffness of the component is not an optimization 

objective. Yet, in an optimization study considering also maximum deformation under loading 

and vibration, maximum deformation amplitude should be an important design parameter. 

For the boundary condition clamped-free (CF) at figure 4.8 the plies are set with varied ply 

orientation angles between zero and ninety degrees in the internal and intermediate layer of the 

component, and follow a zero degree ply orientation angle in the external plies. These results 

show a pattern, which is related to a particular near-optimum configuration which maximizes the 

objective function. For the boundary condition free-clamped (FC) the same observations can be 

made, with the difference that it presents ply orientation angles between zero and forty five 

degrees in the external plies, differently from the PA tuning approach, which has all the external 
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plies near the zero degrees region. One possibility this occurs is because the PA&RMA tuning 

approach has less degrees of freedom than the PA approach, and overall approximations achieve 

different solutions with lower fitness value, as confirms the items 63, 64 and 65 from table 4.5 

and items 61, 62 and 63 from table 4.4. 

 

Table 4.5 – Selected samples from result group 7 – PA&RMA 
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From an overall analysis of tables 4.4 and 4.5, we note that the fitness values are greater for the 

result group 5, which is related to the structural tuning approach PA, than for the result group 7, 

related to the structural tuning approach PA&RMA. From this it is possible to infer that the best 

tuning approach for optimization for vibration, from these two cases and for this particular 

sample, is the PA tuning approach, giving greater length of band free from natural frequencies 

   and lower offset error   , which are the components of the fitness value, given by equation 

2.41. 

From table 4.5 it is noted that the laminates with all ply orientation angles equal or closer to zero 

degrees (item 3 from table 4.4 and items 1 and 3 from table 4.5), are the ones with lower values 

for    , however it shows large values for    . Considering that having the main stresses in the 

direction of the fibers is a good design practice, this can be considered as an efficient design 

solution. 

Figure 4.9 shows the maximum     stress value for the samples solutions, where it is noted some 

fluctuation for both manufacturing approaches for the results related to the simply-supported 

(SS) boundary condition, and similar values for the other boundary conditions. As these values 

do not show much difference, a better inference is further made with average values at table 4.7. 

At figure 4.10 it is noted     with similar and reduced values for the boundary conditions 

clamped-clamped (CC), clamped-free (CF) and free-clamped (FC) related to the PA tuning 

approach. This can indicate the high ply orientation angle gradient related to the PA&RMA 

tuning approach can cause great fluctuation in the internal stresses of the laminate, when 

compared with the PA tuning approach. From table 4.6, items 1 and 4 present an optimized 
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laminate with all orientation angles equal to zero-degrees, and at image 4.10 at boundary 

condition simply-supported (SS) these design configurations show lower values for    . 

 

Figure 4.9 –     values for optimized sample for various boundary conditions 
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Figure 4.10 –     values for optimized sample for various boundary conditions 
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From figure 4.9, it is noted that all the solutions for the boundary conditions CC, CF and FC 

show similar values for     for both tuning approaches. In figure 4.10, is possible to see that with 

the exception of the SS boundary condition, all samples of the PA tuning approach show similar 

values for     near to 0.1 MPa, while for the PA&RMA tuning approach there is greater 

variance. 

Interestingly, the maximum values for     and     in figures 4.11 and 4.12 show large variance 

among the boundary conditions, ranging from 0.03 to 0.05 MPa for    , and from 0.02 to 0.05 

MPa for     , for both tuning approaches. The samples with lower values for     are the items 1 

and 3 from table 4.6 and item 3 from table 4.5, which present ply orientation angles near or equal 

to zero-degrees, having     around 0.02 MPa, which are have lower values among the samples. 

The greater value of     of the present sample is related to the item 3 of table 4.5, with the 

boundary condition SS for the PA&RMA tuning approach. As there is much variance among the 

samples, more precise conclusions on the in-plane and out-of-plane stresses can be made with 

the evaluation of larger samples. 

The objective value that has been maximized by the optimization, which is also called fitness 

(   ) shows similar amplitude for each one of the 24 samples, as observed from figure 4.13. 

However, for several structural components that are required to be very efficient, even an 

efficiency increase in the amount of 2 or 3% can be meaningful for related applications. 

At figure 4.14 the fitness value achieved in the optimizations show much similarity in all 

boundary conditions, where the values related to the PA tuning approach show a slight increase. 

Yet the similarity of the achieved fitness between all the configurations shows the optimizations 

have produced solutions with the same level of efficiency. 
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Figure 4.11 –     values for optimized sample for various boundary conditions 
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Figure 4.12 –     values for optimized sample for various boundary conditions 

 



 
 

111 
 

Figure 4.13 – Fitness values for optimized sample for various boundary conditions 
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For the stress values of    , the PA tuning approach has presented some values with lower 

amplitude than for PA&RMA, which suggest that the tuning approach does influence the out-of-

plane stresses. 

For the out-of-plane stress     it is noted that both approaches present large variance, and some 

lower values for     are presented. 

From figure 4.14 the samples repeatedly achieved similar levels of efficiency by the optimization 

process, according to the     value, indicating that the optimization process is consistent, and 

although there are different possible solutions for the same optimization problem, the algorithm 

reached similar     values. 

Figure 4.14 presents all the samples result for PA and PA&RMA, in the same sequence order as 

in the tables 4.5 and 4.6. The stress values for     are very similar for both tuning approaches. 

For the stress values of    , the samples of the tuning approach PA showed an average value 

near to the 0.1 MPa region for most cases, which indicate     could be significantly lower for PA 

tuning approach. 

From figure 4.14 is also possible to note there is a large fluctuation among many maximum 

stresses, which indicate the variations of boundary conditions, and the multiple solutions for this 

optimization problem reflects also a large variation among the main stresses of the beam. In this 

figure is also possible to note a similar fitness distribution, with a slight increase in the average 

for the PA tuning approach. 
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Figure 4.14 – Overall values for optimized sample 
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Table 4.6 displays the overall average values of each analyzed tuning approach, from which 

values is possible to draw more significant conclusions. For the maximum in-plane stresses, the 

values for     are 7.5% lower for the PA tuning approach, and     presents almost the same 

value for the overall average. 

 

  PA PA&RMA 

    (MPa) 2.8861 3.1192 

    (MPa) 0.1185 0.1195 

    (MPa) 0.0345 0.0377 

    (MPa) 0.0325 0.0307 

FIT 2192.2208 2129.0708 

    (%) 92.53 100.00 

    (%) 99.16 100.00 

    (%) 91.54 100.00 

    (%) 100.00 94.64 

FIT (%) 100.00 97.12 

 

Table 4.6 – Average results for PA and PA&RMA approaches 

 

The same table also shows that for the maximum out-of-plane stresses, the samples of PA have 

values almost 10% lower for    , indicating that this tuning approach could be an option to 

significantly reduce important out-of-plane stresses values. However the PA&RMA presents     

values almost 5% lower also, and further conclusions would benefit from the inference of larger 

samples. In the overall optimization efficiency, the value     is 2.88% higher for PA tuning 

approach than PA&RMA, which indicates a greater design space, as present in the PA tuning 

approach, can increase in the efficiency of the solution achieved by numerical optimization 

procedures.  
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CHAPTER 5 – Conclusion  

In the present study several tasks related to the design analysis and numerical optimization of a 

tapered composite beam have been accomplished. 

Algorithms with important contributions in the field have been coded in MATLAB, and were 

tested for the present optimization task, having its accuracy and speed compared. 

The previous numerical models of the three taper configurations have been adapted for a 

different geometry, by the addition of non-tapered sections, and a design study was created 

displaying the influence of the main design variables in the dynamic behavior of the tapered 

composite beam. 

Several tuning approaches have been defined, and the beam has been optimized under several 

boundary conditions, tuning approaches and two loading cases. Two of these tuning approaches 

have been evaluated in terms of maximum in-plane and out-of-plane stresses by replicating the 

optimized structures in ANSYS. 

A summary of the accomplished tasks in the present work is presented: 

a. Research and coding of several optimization algorithms, heuristic and deterministic. An 

algorithm selection methodology was created and applied, and the most efficient 

optimization algorithm has been selected to the present study. 

b. Revision of the bending stiffness coefficient for the tapered laminate, equations of motion 

and HFEM methodology. Adaptation of the numerical model of the tapered beam to have 

non-tapered segments at each extremity, as displayed at figure 2.4. 
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c. A design analysis study of the tapered and non-tapered beam to determine the influence 

of the main design variables on the dynamic behavior of the component. 

d. Definition of several structural tuning approaches for laminated beams. 

e. Definition of a graphical representation of the ply orientation angles of a symmetric and 

balanced laminate. 

f. Numerical optimization of the tapered composite beam for vibration for several design 

configurations, considering: 

  Four tuning approaches:  

1. Regular manufacturing approach (RMA) 

2. Free ply orientation angle approach (FPOA) 

3.  Polynomial approximation (PA) 

4. Polynomial approximation and regular manufacturing approach 

(PA&RMA) 

 Four boundary condition: 

1. Clamped-clamped (CC) 

2. Simply-supported (SS) 

3. Clamped-free (CF) 

4. Free-clamped (FC) 

 Three taper configuration B,C and D, and a non-tapered beam. 

 Presence or absence of an axial tensile load. 

g. Evaluation of two sampled tuning approach’s efficiency in terms of average of maximum 

values of in-plane and out-of-plane stresses using ANSYS software. 
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The adapted numerical model of the tapered beam with non-tapered sections has been coded in 

the MATALB software. This model considers as input values the composite material 

coefficients, beam geometry, ply orientation angles, three main taper configurations, a non-

tapered configuration, and four possible boundary conditions, giving as output the natural 

frequencies of the beam. This model evaluates the bending modes of vibration only, with two 

degrees of freedom at each node: deflection and rotation. 

A design analysis study has been generated, to evaluate the effect of the design variables or 

loading on the natural frequencies. The variables considered are: length ( ), ply orientation angle 

variation in the intermediate and external sections of the laminate (  and  ) or in all plies of the 

laminate (λ), boundary conditions (BC), thickness taper configuration (TC) and axial tensile 

loading (  ). 

As the number of design variables is significantly greater for a laminated component than for an 

isotropic component, design procedures are challenged to efficiently and precisely adjust these 

variables, while the level of precision will depend on the capability of the manufacturing 

processes applied. Four possible structural tuning approaches have been proposed, and each one 

has been applied to the optimization as a design specification. 

In order to efficiently adjust the large number of design variables for near-optimal configurations 

for vibration, several optimization algorithms have been coded to work in conjunction with the 

numerical model of the composite tapered beam, which are divided into two categories: heuristic 

and deterministic. These algorithms have been tested and compared for their efficiency to 

achieve near-optimum solutions, and the selected algorithm for this optimization task is the 

genetic algorithm (GA).  
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Each design configuration has been optimized five times, and the main objective value     

reached similar values for several of these outcome sets. The optimization results for all the 

boundary conditions and taper configurations were grouped in eight result groups, which are 

defined by the structural tuning approach and presence or absence of a tensile axial force.  

Two of these result groups, 5 and 7, which are related to the PA and PA&RMA tuning approach 

under free-vibration, were sampled and used to evaluate in plane and out-of-plane stresses, and 

the efficiency of the two related tuning approaches in terms of these stresses: polynomial 

approximation (PA) and polynomial approximation and regular manufacturing approach 

(PA&RMA).  

After generating the optimized beams in ANSYS, the maximum in-plane stresses     and     , 

and the maximum out-of-plane stresses     and      were measured for a given deflection, 

providing significant insights about each related tuning approaches. 

 

 

The main conclusions of this study are: 

 The choice of the optimization algorithm does influence the overall outcome of the 

optimization, and an appropriate selection of the most efficient method has great 

importance in the efficiency of the overall optimization study. 

 Design analysis is an important phase in pre-design, to better interpret the achieved 

solutions, and to have a better understanding of the model’s behavior according to its 

variables. 
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o Each taper configuration presented a small difference in the dynamic behavior, 

which can be an option in tuning a tapered beam during the design process. 

o A tapered beam has the fundamental natural frequency increased when compared 

to a non-tapered beam. 

o A tensile axial loading proved to increase all the natural frequencies of the beam. 

o The external plies of the laminate have greater influence on the dynamic behavior 

related to the bending modes of vibration. 

 Gradient based algorithms have greater localized precision; however, have the tendency 

to converge to optimum regions close to the initial guess. 

 Global heuristic algorithms can explore the overall space efficiently, however are not as 

efficient to achieve localized and precise results as gradient methods. 

 Genetic algorithm has proven to be very fast for the present task, as other heuristic global 

optimization methods tested, because these methods do not require derivative calculation. 

Although GA does not have the same precision of a gradient method, it has provided 

fairly good results for the present study with great speed. 

 The selected structural tuning approach for a laminate can certainly influence the overall 

efficiency of the structural component. A larger design space, if properly evaluated, can 

potentially provide better optimization results. 

 The tuning approaches here denominated PA&RMA and PA were selected for an in 

depth analysis, and the related in-plane and out-of-plane stresses are compared. PA has 

presented a better overall average of the optimization objective value    , which variable 

for this study represents larger band free from natural frequencies and lower center-line 

offset error of the band with the blade passing frequency   . This can be considered as 
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an indication that a larger design space can potentially provide solutions with greater 

efficiency. 

 PA presented a significantly lower average for the maximum out-of-plane stress value 

   , than the tuning approach PA&RMA, which is an important indicator in the laminate 

design.  

 As consistent results have been achieved in the present work with numerical 

optimization, the automatic design approach for composite material structures has proven 

to be a feasible solution in generating efficient near-optimum structural configurations for 

components with large design space such as a tapered composite beam. 

 

For future work related to composite structures and numerical optimization, the following topics 

are proposed: 

 

 The verification of structural efficiency and feasibility of different techniques in 

composite material manufacturing processes with increased design space, as the 

suggested tuning approach PA, and other possibilities in automatic or semi-automatic 

manufacturing processes, to work in conjunction with automated design procedures such 

as numerical optimization. 

 Optimization of tapered beams with objective values that include free and forced 

vibration, especially harmonic steady-state response, which optimization can be 

performed. 
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 Generation of greater array of resins and fibers, to be selected during automatic design 

procedures as numerical optimization. 

 Consideration of random variations in material and geometric properties of plies and 

laminates. 
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Appendix A – Design analysis results 

 

All the design analysis performed are presented in figures A.1 to figures A.33. 

 

A.1 Design analysis 2D plots 

Figures A.1 to figure A.6 display the natural frequencies up to 7000 rad/s, for the tapered and 

non-tapered beams. The abbreviation follows the acronyms stated at table 3.1 and figure 3.1. 



 
 

123 
 

 

Figure A.1 – Non-tapered beam – natural frequencies vs λ 
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Figure A.2 – Non-tapered beam – natural frequencies vs L 
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Figure A.3 – Non-tapered beam – natural frequencies vs Fx 
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Figure A.4 – Tapered beams – natural frequencies vs λ 
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Figure A.5 – Tapered beams – natural frequencies vs L 
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Figure A.6 – Tapered beams – natural frequencies vs Fx 
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A.2. Design analysis 2D plots – first three natural frequencies 

Figures A.7 to figures A.18 display the first three natural frequencies to both tapered and non-

tapered beams, for all the boundary conditions. The abbreviation applied follows the table 3.1 

and figure 3.1. 
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Figure A.7a – First natural frequency vs λ – simply-supported boundary condition  

Figure A.7b – Second natural frequency vs λ – simply-supported boundary condition  

Figure A.7c – Third natural frequency vs λ – simply-supported boundary condition  
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Figure A.8a – First natural frequency vs λ – fixed-fixed boundary condition 

Figure A.8b – Second natural frequency vs λ – fixed-fixed boundary condition 

Figure A.8c – Third natural frequency vs λ – fixed-fixed boundary condition 
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Figure A.9a – First natural frequency vs λ – clamped-free boundary condition 

Figure A.9b – Second natural frequency vs λ – clamped-free boundary condition 

Figure A.9c – Third natural frequency vs λ – clamped-free boundary condition 
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Figure A.10a – First natural frequency vs λ – free-clamped boundary condition 

Figure A.10b – Second natural frequency vs λ – free-clamped boundary condition 

Figure A.10c – Third natural frequency vs λ – free-clamped boundary condition 
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Figure A.11a – First natural frequency vs   – simply-supported boundary condition 

Figure A.11b – Second natural frequency vs   – simply-supported boundary condition 

Figure A.11c – Third natural frequency vs   – simply-supported boundary condition 
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Figure A.12a – First natural frequency vs L – fixed-fixed boundary condition 

Figure A.12b – Second natural frequency vs L – fixed-fixed boundary condition 

Figure A.12c – Third natural frequency vs L – fixed-fixed boundary condition 
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Figure A.13a – First natural frequency vs L – clamped-free boundary condition 

Figure A.13b – Second natural frequency vs L – clamped-free boundary condition 

Figure A.13c – Third natural frequency vs L – clamped-free boundary condition 
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Figure A.14a – First natural frequency vs L – free-clamped boundary condition 

Figure A.14b – Second natural frequency vs L – free-clamped boundary condition 

Figure A.14c – Third natural frequency vs L – free-clamped boundary condition 
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Figure A.15a – First natural frequency vs Fx – simply-supported boundary condition 

Figure A.15b – Second natural frequency vs Fx – simply-supported boundary condition 

Figure A.15c – Third natural frequency vs Fx – simply-supported boundary condition 
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Figure A.16a – First natural frequency vs Fx – fixed-fixed boundary condition 

Figure A.16b – Second natural frequency vs Fx – fixed-fixed boundary condition 

Figure A.16c – Third natural frequency vs Fx – fixed-fixed boundary condition 
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Figure A.17a – First natural frequency vs Fx – clamped-free boundary condition 

Figure A.17b – Second natural frequency vs Fx – clamped-free boundary condition 

Figure A.17c – Third natural frequency vs Fx – clamped-free boundary condition 
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Figure A.18a – First natural frequency vs Fx – free-clamped boundary condition 

Figure A.18b – Second natural frequency vs Fx – free-clamped boundary condition 

Figure A.18c – Third natural frequency vs Fx – free-clamped boundary condition 
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A.3. Design analysis 3D plots  

All design analysis with the 3D plots are displayed from figures A.19 to figure A.33. The figures 

A.19 to figure A.21 are related to the non-tapered beam first eight natural frequencies. Figures 

A.22 to figure A.33 are related to the first eight natural frequencies of the tapered beam. The 

abbreviation applied follows the table 3.1 and figure 3.1. 
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Figure A.19 – Non-tapered beam – natural frequencies vs β vs γ 
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Figure A.20 – Clamped-free non-tapered beam – natural frequencies vs λ vs L 
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Figure A.21 – Clamped-free non-tapered beam – natural frequencies vs λ vs Fx 
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Figure A.22 – Clamped-free tapered beams – first and second natural frequencies vs β vs γ 
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Figure A.23 – Clamped-free tapered beams – third and fourth natural frequencies vs β vs γ 
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Figure A.24 – Clamped-free tapered beams – fifth and sixth natural frequencies vs β vs γ 
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Figure A.25 – Clamped-free tapered beams – seventh and eighth natural frequencies vs β vs γ 
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Figure A.26 – Clamped-free tapered beams – first and second natural frequencies vs λ vs L 
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Figure A.27 – Clamped-free tapered beams – third and fourth natural frequencies vs λ vs L 
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Figure A.28 – Clamped-free tapered beams – fifth and sixth natural frequencies vs λ vs L 
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Figure A.29 – Clamped-free tapered beams – seventh and eighth natural frequencies vs λ vs L 
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Figure A.30 – Clamped-free tapered beams – first and second natural frequencies vs λ vs Fx 
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Figure A.31 – Clamped-free tapered beams – third and fourth natural frequencies vs λ vs Fx 
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Figure A.32 – Clamped-free tapered beams – fifth and sixth natural frequencies vs λ vs Fx 
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Figure A.33 – Clamped-free tapered beams – seventh and eight natural frequencies vs λ vs Fx 
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Appendix B – Optimization results 

 

The optimization results of all result groups are displayed from figure B.1 to figure B.16. 

 

B.1. Optimization results – representative vector 

The optimization results for the non-tapered and tapered configurations are presented at figures 

B.1 to B.16. The optimizations aim to maximize the single objective value eq. (2.39) and the 

results are subdivided in eight result groups according the structural tuning approach, and the 

presence or absence of a tensile force   , as displayed on table 4.2. 

Table 4.3 displays the optimization results by each result group, where each outcome set consists 

of five identical optimizations for the same blade passing frequency   . 

The nomenclature applied to each result group is defined on chapter 4, and follows tables 3.1 and 

4.1, and the tuning approaches are described on chapter 2. 
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Figure B.1 – Non-tapered beam optimization results - result group 1 
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Figure B.2 – Non-tapered beam optimization results - result group 2 
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Figure B.3 – Non-tapered beam optimization results - result group 3 
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Figure B.4 – Non-tapered beam optimization results - result group 4 
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Figure B.5 – Non-tapered beam optimization results - result group 5 
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Figure B.6 – Non-tapered beam optimization results - result group 6 
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Figure B.7 – Non-tapered beam optimization results - result group 7 
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Figure B.8 – Non-tapered beam optimization results - result group 8 
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Figure B.9 – Tapered beam optimization results - result group 1 
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Figure B.10 – Tapered beam optimization results - result group 2 
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Figure B.11 – Tapered beam optimization results - result group 3 
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Figure B.12 – Tapered beam optimization results - result group 4 
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Figure B.13 – Tapered beam optimization results - result group 5 
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Figure B.14 – Tapered beam optimization results - result group 6 
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Figure B.15 – Tapered beam optimization results - result group 7 
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Figure B.16 – Tapered beam optimization results - result group 8 
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B.2 Optimization results – outcome table 

Tables B.1 to B.8 display the partial values of optimization results as    (eq. 2.37),   ̅̅̅̅   (eq. 

2.38) and     (eq. 2.39), subdivided by each result group as defined in table 4.2. 
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Table B.1 - Optimization results - result group 1 
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Table B.2 - Optimization results - result group 2 



 
 

178 
 

 

Table B.3 - Optimization results - result group 3 
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Table B.4 - Optimization results - result group 4 
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Table B.5 - Optimization results - result group 5 
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Table B.6 - Optimization results - result group 6 
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Table B.7 - Optimization results - result group 7 
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Table B.8 - Optimization results - result group 8 
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Appendix C – Detailed     formulation for tapered laminates 

 

The detailed formulation of the bending stiffness coefficient     is presented for tapered 

laminates for the three main taper configurations: B, C and D. The     coefficient is evaluated 

for a tapered laminate, with non-symmetric geometry with the horizontal plane, as displayed at 

figures C.1, C.2 and C.3. For tapered laminates with symmetry to the horizontal plane, the     

value must be doubled. 

In order to define the taper slope, the total height variation due to the taper is defined as     

following the equation: 

     (   )  (C.1) 

 

Where   is the number of plies in the higher thickness,   is the number of plies in the lower 

thickness, and   is the total height of each ply thickness. With this the taper slope   can be 

defined as, 

 
  

 |   |

 
 

(C.2) 
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C.1. Detailed    ( ) formulation for taper configuration B 

For the taper configuration B, the formulation is presented. 

 

Figure C.1 – Taper configuration B with dimensions 

 

The value   represents the total length of the tapered section of the laminate, to which the 

bending stiffness coefficient is calculated. The value    defines the length of a single resin pocket 

in the taper configuration B and C. The coefficient    ( ) for the tapered laminate with 

configuration B can be defined as the summation of three components, as given by equation C.3, 

 

    ( )      ( )      ( )     ( ) 

 

(C.3) 

Where     ( ) stands for the component related to the external oblique plies,     ( ) represents 

the contribution of the segmented horizontal plies and   ( ) defines the contribution of the resin 

pocked in the bending stiffness coefficient, along the   axis. The contribution of the external 

oblique plies is calculated by the equation C.4, 
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    ( )  ∑ ,(     )  (   (   ) ) -

 

       

 ̅  

 
 

 

(C.4) 

The contribution of internal segmented plies can be defined as equation C.5, 

 
    ( )  ∑   ( )    ( )

     

   

 
(C.5) 

 

Where    and    are calculated following the formulation, 

 

 

  ( )  {
     *              (   )  +

     *             (   )  +  
 (C.6) 

 
  ( )  ∑ ,(  )  ((   ) )

 
-

     

   

 ̅  

 
 

(C.7) 

 

The contribution of the resin pockets to the bending stiffness is given by the equation (C.8), 

 
  ( )  ∑   ( )    ( )

   

   

 
(C.8) 

Where the value of   ( ) is defined as, 

 
  ( )  ,(   (   ) )

  ((     ) )
 
-
    
 

 
(C.9) 
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With this, the     coefficient is defined for the taper configuration B along the   axis. 

 

C.2. Detailed    ( ) formulation for taper configuration C  

 

Figure C.2 – Taper configuration C with dimensions 

 

The bending stiffness coefficient along the taper configuration C is defined by two components: 

 

    ( )      ( )     ( ) (C.10) 

 

Where     ( ) represents the components related to the oblique plies, and   ( ) represents the 

contribution of the resin pockets. The oblique plies contribution can be calculated for each resin 

pocket section along the horizontal axis, following the equation (C.11), 
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    ( )   ∑   ( )    ( )

   

   

 
(C.11) 

 

At figure C.2,    represents the total length of a single resin pocket. The value of the   ( ) 

function is defined by equation (C.12),  

 

 
  ( )  ∑ ,(     )  (   (   ) ) -

 

     

 ̅  

 
 

(C.12) 

 

The contribution of the resin pocket in the bending stiffness coefficient of the taper configuration 

C can be calculated as by equation (C.13), 

 

 
  ( )  ∑   ( )    ( )

   

   

 
(C.13) 

 

Where the coefficient    is defined along the   axis as,  

 

 
  ( )  (     )

 
    
 

 
(C.14) 

 



 
 

189 
 

C.3. Detailed    ( ) formulation for taper configuration D 

Due to the complexity of the formulation for taper configuration D, it will is given to the 

particular case of the taper with three resin pockets, where   assumes the value of 18 and   the 

value of 12 ply layers, and        . 

 

Figure C.3 – Taper configuration D with dimensions 

 

The    ( ) coefficient also is the result of three components, defined by: 

 

    ( )      ( )      ( )     ( ) (C.15) 

The contribution of the external oblique plies of the laminate      to the     coefficient along the 

  axis is evaluated following the equation, 
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    ( )  ∑   

 

   

  ( )    ( ) 
(C.16) 

 

Where the values of   ( ) and   ( ) are defined by, 

 

 
  ( )  {

     *   (   )         (   )(   )+

     *   (   )          (   )(   )+  
 

(C.17) 

 

The function   ( ) can be defined as, 

 

 
  ( )  ∑ ,(     )  (   (   ) ) -

 

     (   )

 ̅  

 
 

(C.18) 

 

The contribution of the second component     ( ), related to the segmented plies, is defined by 

the equation, 

 
    ( )  ∑   

 

   

  ( )    ( ) 
(C.19) 

 

Where the coefficient   ( ) can be calculated as, 
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  ( )  ∑ 0(  )  ((   ) )

 
1

      

   

 ̅  

 
 

(C.20) 

 

The third component on the    ( ) coefficient, related to the resin pocket, is defined by equation 

(C.21), 

 
  ( )  ∑  ( )    ( )

 

   

 
(C.21) 

 

Where the value of   ( ) can be defined as, 

 

 
  ( )  ∑ ,  

    
 -

   (   )  

     (   )  

    
 

 
(C.22) 

 

Where the coefficients    and    can be calculated from   ,    and   , following, 

 

 
{
   (      )         
                           

      (   )       
 

(C.23) 

 

From these equations,    and    are defined following equation (C.24), 
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{
                  
                

 (C.24) 

 

While the values of    are given from, 

 

 
{
                  
                

 (C.25) 

 

And the values of    are defined as, 

 

 
{
                
                

 (C.26) 

 

C.4. Formulation for    and   , for taper configuration B and C  

In the equation (2.23) from chapter 2, the equivalent height of resin and laminate is applied to 

evaluate the mass along the length of the taper. For this purpose,    and    are expressed as a 

function of  . 

For taper configuration B and C, we can define    as the total length of each resin pocket    as, 
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(C.27) 

 

Where the coefficient   represents the number of plies in the higher thickness, and   represents 

the number of plies in the lower thickness. The resin local position    is given by, 

 

       (    ) 

 

(C.28) 

In this equation,    (    ) represents the residual part of the division of   by   . Along the   

axis, the total height of the ply   ( ) and the resin   ( ) can be calculated following, 

 

   ( )        (C.29) 

 

   ( )          ( ) 

 

(C.30) 

C.5. Formulation for    and   , for taper configuration D  

For taper configuration D is defined the length of its related resin pocket   , 
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(C.31) 

 

In the same form as for the taper configuration B and C, we have for the taper configuration D, 

       (    ) (C.32) 

 

With this, the laminate equivalent height    and the resin equivalent height    can be defined 

by, 

 

   ( )         (C.33) 

 

   ( )          ( ) 

 

(C.34) 
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