
An Empirical Evaluation Of Attention And Pointer
Networks For Paraphrase Generation

Varun Gupta

A Thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

July 2019

c© Varun Gupta, 2019

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Varun Gupta

Entitled: An Empirical Evaluation Of Attention And Pointer Networks For

Paraphrase Generation

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the Final Examining Committee:

Examiner
Dr. Ching Y. Suen

Examiner
Dr. Tristan Glatard

Supervisor
Dr. Adam Krzyżak

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2019
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

iii

Abstract

An Empirical Evaluation Of Attention And Pointer Networks For Paraphrase

Generation

by Varun GUPTA

In computer vision, one of the common practice to augment the image dataset is by

creating new images using geometric transformation, which preserves the similarity.

This data augmentation was one of the most significant factors to win the Image Net

competition in 2012 with vast neural networks. Similarly, in speech recognition, we

saw similar results by augmenting the signal by noise, slowing signal or accelerating

it, and spectrogram modification.

Unlike in computer vision and speech data, there haven not been many techniques

explored to augment data in natural language processing (NLP). The only technique

explored in text data is by lexical substitution, which only focuses on replacing

words by synonyms.

In this thesis, we investigate the use of different pointer networks with the sequence

to sequence models, which have shown excellent results in neural machine transla-

tion (NMT) and text simplification tasks, in generating similar sentences using a se-

quence to sequence model and of the paraphrase dataset (PPDB). The evaluation of

these paraphrases is carried out by augmenting the training dataset of IMDb movie

review dataset and comparing its performance with the baseline model. We show

how these paraphrases can affect downstream tasks. Furthermore, We train different

classifiers to create a stable baseline for evaluation on IMDb movie dataset. To our

best knowledge, this is the first study on generating paraphrases using these models

with the help of PPDB dataset and evaluating these paraphrases in the downstream

task.

iv

Acknowledgements
It is a pleasure to thank many people who made this thesis possible.

First of all, I would like to express my sincere gratitude to my supervisor Prof. Adam

Krzyżak, for giving me the chance to work under his supervision. His continuous as-

sistance, encouragement and brainstorming helped me throughout my thesis work.

Without him, it wouldn’t be possible to convert an idea into a thesis.

I also want to thank my thesis committee, Drs. T. Glatard, C. Y. Suen and A. Hanna

for reviewing my work and giving insightful comments.

My sincere thanks also go to Iulian Vlad Serban, a Ph.D. student from the University

of Montreal and CEO of Korbit.ai, who helped me a lot in giving right pointers and

giving me a chance to work with him on beautiful project Korbit which taught me a

lot of machine learning and NLP.

Last but not least, I would like to thank my family: my parents, grandparents, aunt,

brother, sister, and my girlfriend who supported me to study in Canada financially,

mentally and always kept me motivated in tough times.

v

Contents

Acknowledgements iv

Contents v

1 Introduction 1

1.1 Motivation . 1

1.2 Applications . 2

1.3 Goal of the Thesis . 3

1.4 Contributions . 3

1.5 Thesis Structure . 4

2 Related Work 5

2.1 Paraphrase Theory . 5

2.2 Similarity Measures . 7

2.3 Paraphrase Generation . 9

2.3.1 Approaches to Paraphrase Generation 9

Bootstrapping . 10

Statistical Machine Translation (SMT) 11

Parsing . 13

Phrase-based Machine Translation 13

2.3.2 Creation of Paraphrase Dataset 14

2.4 DataSet . 15

2.4.1 The paraphrase database . 15

2.4.2 IMDb Dataset . 16

2.5 Recurrent Neural Networks . 16

2.6 Convolutional Neural Networks . 22

vi

2.7 Evaluation Metrics . 23

2.8 Summary . 27

3 Encoder-Decoder models for Paraphrase Generation 28

3.1 Encoder-Decoder RNNs for NLP . 28

3.2 Encoder-Decoder with Attention . 30

3.3 Encoder-Decoder with Pointer network 33

3.3.1 COPYNET Network . 34

3.3.2 Pointer Softmax Network . 37

3.4 Experiments . 39

3.4.1 Dataset . 39

3.4.2 Models . 40

3.5 Results and Analysis . 42

3.6 Summary . 46

4 Convolutional neural network for text classification 47

4.1 Convolution neural network for NLP 47

4.2 Experiments . 50

4.2.1 Dataset . 50

4.2.2 Model . 50

Recurrent Neural Network (RNN) 50

Bi-directional Long Short Term Memory (LSTM) 51

FastText Model . 52

4.3 Result and Analysis . 53

4.4 Summary . 56

5 Evaluation of generated paraphrases in downstream task 58

5.1 Experiments . 58

5.1.1 Dataset and Model . 58

5.2 Result and Analysis . 59

5.3 Summary . 64

6 Conclusions and Future Work 66

6.1 Summary . 66

vii

6.2 Contributions . 68

6.3 Future Work . 68

Bibliography 71

viii

List of Figures

2.1 Generating paraphrases of ”X is a city in Y” by bootstrapping [2], [33] 10

2.2 An example of bootstrapping approach used by Barzilay and Lee [4].

They proposed a strategy to produce paraphrases through the utiliza-

tion of monolingual parallel corpora, particularly from the news arti-

cles covering a similar occasion around the same time. The training

comprises of utilizing multi arrangement to create sentence-level re-

words from an un-annotated corpus . 11

2.3 SMT model . 12

2.4 An example of parsing based approach for generation of paraphrase . 13

2.5 An example of Phrase-based Machine Translation for generation of

paraphrase . 14

2.6 Here in left hand side is the diagram of RNN unit and on right hand

side is RNN in unrolled state. The weight vector Wh , Wy and Uh are

shared across all the time and are fine tuned using backpropogation

and hi is the the last output that is yt−1. In this graph we are trying to

predict yt which will be equal to xt+1 . 18

2.7 Different types of configuration in RNN. 19

2.8 LSTM . 20

2.9 GRU . 21

2.10 CNN model for image processing. [28] 23

ix

3.1 seq2seq model with xe as a input and ht as a hidden state of encoder

RNN. And for the decoder xd as a input, st as a hidden state and yt

as a output. Note that xd
t will be equal to yt−1. The ht represents

the context vector which will be last hidden unit from encoder and

given as a output to decoder. This context vector will be used while

generating the first word in decoder network. 30

3.2 Performance of encoder-decoder network as the sentence length in-

creases. 31

3.3 An illustration of the attention mechanism (RNNSearch) proposed by

Bahdanau, 2014. Instead of converting the entire input sequence into

a single context vector, we create a separate context vector for each

output (target) word. These vectors consist of the weighted sums of

encoder’s hidden states. 32

3.4 Architecture of COPYMET network. 35

3.5 Illustrations of the PS architecture. At each timestep, lt,ct and wt for

the words over the limited vocabulary (shortlist)is generated. zt is a

switching variable that will decides whether to use vocabulary word

or to copy a word from the source sequence. 38

3.6 Plot showing perplexity of seq2seq model with attention model on

PPDB training and test data set. 43

3.7 Plot showing perplexity of seq2seq model with pointer softmax (PS)

network model on PPDB training and validation data set. 44

3.8 Plot showing perplexity of seq2seq model with COPYNET pointer

network model on PPDB training and validation data set. 44

3.9 Plot showing perplexity of seq2seq model with pointer softmax net-

work model on PPDB training and validation data set. 45

4.1 An architecture of CNN model for text classification task. 48

x

4.2 Applying filter on feature map in CNN. Feature map is a matrix cre-

ated by converting words into word embedding, the length of this

feature map is equal to the number of total words in a sentence and

width of feature map is the length of word embedding of a single

word in a sentence. In pooling layer, we apply filter matrix of length

h (h=2 in image above) and width equal to the size of word embed-

ding to extract important features from the feature map. This step is

required to reduce computation later. 49

4.3 Single layer RNN model architecture for classification task. Here, hi is

the hidden state from previous encoding t− 1 step and si is the input

at time t. 51

4.4 Bi-directional LSTM model architecture for classification task 52

4.5 Fasttext model architecture for classification task 53

4.6 Training and validation accuracy wrt to number of epochs while train-

ing text classifier . 56

4.7 Receiver operating characteristic curve(ROC) of sentence classifier . . 56

5.1 Training and validation loss error curve for seq2seq model with atten-

tion mechanism only and trained under the supervision of PPDB. . . . 60

5.2 Training and validation loss error curve for seq2seq model with COPY-

NET as a pointer network trained under the supervision of PPDB. . . . 61

5.3 Training and validation loss error curve for seq2seq model with pointer-

softmax as a pointer network trained under the supervision of PPDB. . 62

5.4 Receiver operating characteristic curve (ROC) for model having dif-

ferent training dataset. Here, original training dataset is the original

training dataset which comes in IMDb movie review and consist of

25,000 samples, and consider as a baseline model for our experiment. 62

xi

List of Tables

3.1 Results of seq2seq with Attention model with different hyper param-

eters on PPDB test dataset. Smaller perplexity indicates better perfor-

mance . 42

3.2 Results of seq2seq with Pointer softmax model with different hyper

parameters on PPDB test dataset. Smaller perplexity indicates better

performance . 42

3.3 Results of seq2seq with COPYNET Pointer network with different hy-

per parameters on PPDB test dataset. Smaller perplexity indicates

better performance . 43

3.4 BLEU and METEOR score on test dataset of PPDB dataset with atten-

tion, COPYNET and Pointer softmax. The higher the scores indicate

better performance. 43

4.1 Confusion matrix for single layer RNN model. 54

4.2 Confusion matrix for bi-directional LSTM model. 54

4.3 Confusion matrix for FastText model. 55

4.4 Confusion matrix for CNN model. 55

4.5 Results of different models on sentence classification in NLP. 55

4.6 F1-score, Precision, Sensitivity and Specificity of different models on

sentence classification in NLP. 57

5.1 Confusion matrix of CNN Model trained on paraphrases generated

by seq2seq model using only attention mechanism. 60

5.2 Confusion matrix of CNN Model trained on paraphrases generated

by seq2seq model with COPYNET pointer network. 60

xii

5.3 Confusion matrix of CNN Model trained on paraphrases generated

by seq2seq model with Pointer Softmax pointer network. 61

5.4 Evaluation of performance of paraphrases generated by Encoder-Decoder

network in downstream task. 63

1

Chapter 1

Introduction

1.1 Motivation

Definition of paraphrase as given in Cambridge dictionary: Paraphrase is defined

as the repetition of something written or spoken using different words, often in a hu-

morous form or in a more straightforward and shorter form that makes the original

meaning clearer.

Restating and rephrasing a given sentence as the target or output sentence keeping

its overall meaning preserved is known as paraphrase generation. Take, for example,

the following two sentences:

Sentence 1 The price of a resort vacation typically includes meals, tips and equipment

rentals, which makes your trip more cost-effective.

Sentence 2 All-inclusive resort vacations can make for an economical trip.

The two sentences above are paraphrases of each other because both of them have

the same meaning, but are written differently. Understanding paraphrases has shown

to be a beneficial task for many additional natural language processing (NLP) jobs,

such as the expansion of questions and answers for better understanding, simplifi-

cation of sentences, summarizing paragraphs, information retrieval, information ex-

traction, restating utterances generated by a conversational agent ChatBots to map

student vocabulary. It could also be very beneficial in sentiment analysis or to in-

crease the amount of data for supervised learning [13], [47].

Chapter 1. Introduction 2

The criteria of semantical equivalence (i.e., the same or almost the same meaning)

are challenging to define precisely and can vary from task to task. Paraphrase gener-

ation is a task in which we try to generate these similar pair of sentences. Although

there are many kinds of research done in the production of paraphrases using dif-

ferent techniques, the study of paraphrase generation is far from enough. It is not

always possible to use the same alignment table or vocabulary set for generating

paraphrases in different contexts. For example, in the English literature context, we

can convert increase to expand, but that might not be possible in the deep learning

domain. Example of it could be The model complexity expands with a more significant

number of parameters, which might not be a correct paraphrase in the deep learning

context.

1.2 Applications

As mentioned earlier, the generation of paraphrases can be useful in a variety of

tasks. For example, in the information extraction system paraphrases can be used to

extract information which connects to specific events. Interpretations can be used in

this type of system to generate or augment equivalence extraction pattern semanti-

cally.

The paraphrase is also used in text summarizing task to summarize sentences which

are more critical than other sentences in a text while preserving the central meaning

of the text [34], [37].

In conversational agent systems also known as chat-bots, paraphrases are used to

convey the message which could be easily understood by the user or student by

mapping the student vocabulary on the target sentence or by rephrasing the utter-

ance generated by the agent.

Sentence compression is also one kind of an application where paraphrase can be

very helpful. In sentence compression, the condition is, that output sentence must

be shorter than source sentence and should have same meaning [14], [18].

Chapter 1. Introduction 3

In question answering systems, rephrasing the questions may lead to the generation

of more questions and with answers that cannot be directly mapped to previous

questions. This type of technique is also beneficial to improve the system’s perfor-

mance. To obtain most frequent questions (FAQs) we often uses paraphrases [2],

[14], [45].

Machine translation problem can also be related to paraphrasing but across language

when we try to generate similar text in a different language than source language.

1.3 Goal of the Thesis

In this work we try to assess classical based on attention network [3] and pointer

network [17], [16], which yielded good results in neural machine translation (NMT)

and text simplifications tasks using the sequence-to-sequence model. We investigate

how well these models perform in generating paraphrases under supervision of the

paraphrase database (PPDB). We further assess the use of these paraphrases in the

downstream task, i.e., by producing similar sentences for training dataset of IMDb

movie dataset and evaluate algorithms’ performance on an original test dataset of

IMDb and compare the results with baseline model. We show how downstream

tasks can be used to assess the performance of these paraphrase generation models.

Furthermore, we investigate different models to create a stable baseline for IMDb

movie dataset.

1.4 Contributions

Four main contributions of this work are:

• Evaluation of seq2seq model with attention and different variants of pointer

network on the PPDB dataset.

• Trying out different classification models in NLP, to create a stable baseline on

IMDb movie review dataset for classification tasks.

Chapter 1. Introduction 4

• Evaluation of generated paraphrases in the downstream task by augmenting

IMDb movie training dataset and comparing with solid baseline created with-

out augmenting the dataset.

• Evaluation of the PPDB dataset for generating paraphrases.

1.5 Thesis Structure

The first chapter is a brief introduction to paraphrase generation task and points out

how important it is to generate paraphrases. This chapter also explains the over-

all goal of the thesis and contributions of this work in natural language processing

(NLP) field.

Chapter 2 presents the essential background and significant related work done in

paraphrase generation. This chapter explains different kind of models used in gen-

erating paraphrases in the past, metrics used to evaluate these models, meaning of

having similar descriptions and dataset used in this work.

Chapter 3, presents the explanation and training procedure for our paraphrase gen-

eration model on the paraphrase database (PPDB), the comments about different

pointer network and attention model we are going to assess in this work.

Chapter 4, presents the training procedure of sentiment classifier on IMDb movie

review dataset, performance of different models on sentiment classification task and

creating a solid baseline for further comparison.

Chapter 5, presents augmentation of IMDb training data set with different para-

phrase model trained on PPDB data set with the help of attention and pointer net-

work. Furthermore, the chapter presents training of text classifier with this newly

generated paraphrases and comparing results with baseline.

Chapter 6, presents the summary of the main results of this thesis and future work,

which aims at the improvement of the evaluation of paraphrase generation in natu-

ral language processing (NLP).

5

Chapter 2

Related Work

2.1 Paraphrase Theory

A typical normal for human language is the ability to communicate the equivalent

information in multiple ways. These dialects are known paraphrases, which in the

literature have additionally been referred to as reformulations, restating and other

diversity of phenomena.

There can be many variations of paraphrases, but in this work, we try to limit

the generation of paraphrases, which can be carried out by linguistic and seman-

tic knowledge to produce similar sentences. Here are some examples1

1. S: The couple wants to purchase a home.

P: The couple wants to buy a home.

2. S: It was a Honda that John sold to Aman.

P: John sold a Honda to Aman.

3. S: Aman bought a house from John.

P: John sold a house to Aman.

4. S: The flood last year was a terrible catastrophe in which many people died.

P: The flood in 2006 was a terrible catastrophe in which many people died.

5. S: I want some fresh air.
1Here ’S’ represents the original sentence, and ’P’ represents paraphrase of it. Furthermore,

bold words are the primary information used in generating paraphrase..

Chapter 2. Related Work 6

P: Could you open the window?

In all the examples mentioned above, we only require linguistic, lexical, referen-

tial and structural knowledge to generate paraphrases. Example (1), is generated

using knowledge of synonyms words which comes under the lexical category. (2)

An example is generated using structural information, which comes under syntac-

tic knowledge. This type of transformation is described in the theory of transfor-

mational grammar [19]. Example (3), is an illustration of alternation which can be

carried out by syntactic transformation. Example (4), is an instance of referential

paraphrase. Example (5), focuses more on pragmatic paraphrase because we can re-

fer that from both the original sentence and paraphrase sentence, "the speaker wants

to convey a message to the hearer to open window."

One thing common about all the above-generated paraphrases is that we do not need

any domain knowledge or domain is common in both the original sentence and in its

paraphrase sentence, i.e., ’English literature.’ The things become more tricky when

we try to generate paraphrases where the original sentence is in one domain, and

we want to generate paraphrase in a domain other than the original domain. Let us

see examples of this kind of paraphrases.

6. S : Nearest neighbor is good.

P (Literature Domain) : The closest neighbor is good.

P (Machine learning Domain) : The closest neighbor is good.

7. S : Martel Foresterie Urbaine provides tree cutting and stump removal services

for trees in the Montreal area

P (Literature Domain) : Martel Foresterie Urbaine provides tree pruning and

stump removal services for trees in the Montréal area

P (Machine learning Domain) : Martel Foresterie Urbaine provides tree prun-

ing and stump removal services for trees in the Montréal area

As we can see from the above example when generating paraphrase in one domain

for example in ’English literature’ (described in sample 6) ’Nearest neighbour’ is a

synonym of the ’closest neighbour.’ However, while generating paraphrase in ma-

chine learning domain, it might not be a good idea to convert ’Nearest neighbour’

Chapter 2. Related Work 7

to ’closest neighbour’ as ’Nearest neighbour’ holds an individual or reserved mean-

ing in a machine learning context. This means context or domain knowledge is also

required in generating paraphrases. Sample 7 also describes one more kind of this

paraphrase where ’tree cutting’ is converted to ’tree pruning,’ which has a special

meaning in machine learning domain and hence it is not a correct paraphrase.

In this work, we attempt to focus on evaluating past methods on generating similar

sentences using linguistic, lexical, referential and structural knowledge.

2.2 Similarity Measures

Before evaluating the existing methods first, we should clarify the conditions which

should be fulfilled by the constructed sentence to be considered as a paraphrase.

Here are a few criteria for assessing paraphrases.

1. Syntax Level: The first minimal requirement for generating paraphrase from

the source sentence is to have a valid syntax in the given language. In other

words, it should follow all the syntax rules defined by the given language

while generating a paraphrase in natural language generation.

2. Semantics Level: The second minimal requirement which must be followed

by the generated paraphrase in natural language generation is its meaning and

interpretation of output or target sentence. The output sentence must be mean-

ingful.

3. Lexical Level: Lexical level is a way to convert characters or words into to-

kens, which can be identified by machines (numbers). These tokens dimen-

sions capture the several likeness measures of a word, a context of a word and

other things. There can be many ways to convert these characters or words

into these tokens, for example, n-grams, similarity coefficients, alter remove,

etc. This type of measure is useful to find the similarity or to generate more

interpretations from a given source sentence. However, in our case, while gen-

erating similar sentences, it should also be checked for contextual meaning of

source sentence.

Chapter 2. Related Work 8

4. Same Meaning: This main property of paraphrase sentences is to have the

same meaning in a given context. To better understand how two sentences

can have the same meaning, let us describe two key terms Connotation and

Denotation

Connotation is the emotional and imaginative association surrounding a word." The

connotations for the word snake could include evil or danger.

"Denotation is the strict dictionary meaning of word. For example, if we look

up the word snake in a dictionary, we will discover that one of its denota-

tive meanings is "any of numerous scaly, legless, sometimes venomous rep-

tiles having a long, tapering, cylindrical body and found in most tropical and

temperate regions." For example,

• Connotation That man is a cold-blooded snake

• Denotation There are a plethora of snake species living in Louisiana.

In other words, the description of the notion in the world is known as denota-

tion, while the absolute meaning, such as nuance and style, is called connota-

tion [15], [22].

To understand these key terms better, let us consider an example:

(a) S Your cat looks slim.

P Your cat looks skinny.

Sentences (S) and a (P) are instances of sentences having different connota-

tions. Both (S) and (P) are well-structured sentences, but (P) is less desirable.

This kind of sentences is accepted as a paraphrase throughout our evaluation

only if, the word vector of the original and generated word have similar em-

beddings in a given reference.

The similarity between two sentences can also be measured on these two con-

stituents.

Chapter 2. Related Work 9

(a) Corpus Based Measuring the sentence similarity using information gain

from the large corpus for examples features like Explicit Semantic Analy-

sis (ESA), Latent Semantic Analysis (LSA), Pointwise Mutual Information

(PMI) [7], [1], [36].

(b) Knowledge-based This measure sentence or word similarity using se-

mantic nature of word for example WordNet, Wikipedia, DBPedia etc.

Normally this knowledge is useful for general sentence [5], [6].

In this work, we assess some of the existing methods which have performed

well on NMT and text simplification by generating paraphrases in the given

context.

2.3 Paraphrase Generation

Paraphrase generation task is substantially similar or is a particular case of neu-

ral machine translation (NMT) task in a way, given the source sentence we need to

generate an output sentence which has the same meaning. The only anomaly in a

paraphrase generation and NMT is that in the former case, output sentence is also

in the same language as the source sentence.

Paraphrase generator models are given an input interpretation as a source sentence,

and they produce more than one (depending on the beam size) similar interpreta-

tions which are then given a score based on some criteria. In general, there are two

techniques to generate paraphrases.

2.3.1 Approaches to Paraphrase Generation

In this subsection, we go through the various strategies which are used for para-

phrase generation.

Chapter 2. Related Work 10

Bootstrapping

This method does not need any machine translation. We generate paraphrases using

templates. This technique can only be used when the input and output sentences are

templates and by applying it on a large monolingual corpus. We start with retrieving

the sentences in the corpus that contains seed pairs which match to the template we

wish to generate. Filtering techniques are used to filter out candidate paraphrases,

which are not useful enough. Next, after obtaining these templates, we look into

the corpus again for the sentences which match these new templates. More seed

values are extracted from new sentences, and more iterations are used to generate

more templates and more seeds. This process is repeated until no new seed can be

obtained or limitation on iteration is reached.

FIGURE 2.1: Generating paraphrases of ”X is a city in Y” by boot-
strapping [2], [33]

In this method, if the slot values can be identified reliably, then one can obtain initial

seed slot values automatically by retrieving direct sentences that match the original

templates. There are many well-known methods for bootstrapping; one of them

is template extraction anchor set extraction (TEAS). TEAS has been used in many

information extraction patterns [2], [27], [52]. There are some other methods which

Chapter 2. Related Work 11

require corpora annotated with instances of particular types of events to be extracted

[21], [48], [8]. One model of this approach is shown in Figure 2.2, [4].

FIGURE 2.2: An example of bootstrapping approach used by Barzi-
lay and Lee [4]. They proposed a strategy to produce paraphrases
through the utilization of monolingual parallel corpora, particularly
from the news articles covering a similar occasion around the same
time. The training comprises of utilizing multi arrangement to create

sentence-level rewords from an un-annotated corpus

Statistical Machine Translation (SMT)

As mentioned earlier, the paraphrase generation can be seen as a particular case of

the machine translation problem. In general, most of the generation tasks drew an

idea from statistical machine translation (SMT), which are based on a large corpus.

In SMT, we can define this problem as follows.

Let’s take S as a input sentence, whose words are w1, w2, w3 w|S| and N is an in-

stance of one candidate translation or in our case it is candidate for good paraphrase

which has words a1, a2, a3 ai. If we have more than one instance of such N, our

aim is to find the best N* from the list of N, which has maximum probability of being

a translation or paraphrase of S (Source) sentence. This can be represented in form

of equation as follows

N∗ = argmaxP(N|S) = argmax
P(N)P(S|N)

P(S)
= argmaxP(N)P(S|N) (2.1)

In Equation (2.1), using the conditional probability formula argmaxP(N|S) can be

further expanded as shown below. The source sentence, i.e., S is fixed, so, P(S)

Chapter 2. Related Work 12

is fixed across all the translations N, hence can be removed from the denominator.

P(N|S) is the probability of translation given source sentence. P(N) is the language

model which is used to find out the probability of being a correct sentence of output

sentences. Also, P(S|N) is probability of translation or paraphrase model [12].

In the candidate sentence, each word probability is dependent on its precedence

word. So, the total probability of P(N) becomes:

P(N) = P(a1) ∗ P(a2|a3) ∗ P(a3|a1, 12).....P(aN |aN−2, aN−1) (2.2)

FIGURE 2.3: SMT model

This language model has a smoothing mechanism. Smoothing mechanism is needed

to handle cases, where n-grams that are unique or does not exist in the corpus, which

can lead the language model where the probability of the whole sentence is 0, i.e.,

P(N)=0. A diagram of the SMT model is shown in 2.3. There is some progress seen

in utilizing long transient memory (LSTM) models to produce paraphrases in this

approach [43]. The model consists of encoder and decoder, both utilizing varieties

of the stacked remaining LSTM.

To begin with, the encoding LSTM takes a one-hot encoding of all the number of

words in a sentence as info and produces a final hidden vector, which can be seen as

a portrayal or representation of the full input sentence. The second part of the model,

i.e. Decoder LSTM then accepts the concealed vector as initial input and produces

new sentence by generating word by word, ending in a finish of-sentence token

(generally <EOS>). The encoder and decoder are prepared to take an expression

and replicate the one-hot conveyance of a comparing word by limiting perplexity

Chapter 2. Related Work 13

utilizing straightforward stochastic angle drop. New paraphrases are created by

contributing another expression to the encoder and passing the yield to the decoder.

More about LSTM is given in section 2.5

These models are ubiquitous and are very generic for a wide variety of different

generation tasks in natural language processing, for example, in question answer-

ing, paraphrase generation, text summarizing. Also, this is the state-of-the-art in

most of the generation task. In this work, we have used these models for generating

paraphrases of the input sentence.

Parsing

FIGURE 2.4: An example of parsing based approach for generation of
paraphrase

Syntactic transfer in machine translation may also be used [35] to generate para-

phrases. In this approach, we first need to parse the input expression. Then to

generate output paraphrase sentence, these parse tree or expression are modified in

a way which preserves the meaning of the syntax. There are some errors induced

while parsing the input sentence. An example of this approach is shown in 2.4.

Phrase-based Machine Translation

One more way to generate paraphrases is to convert source sentence to a different

language, also known as the pivot language and then translate back to the original

Chapter 2. Related Work 14

FIGURE 2.5: An example of Phrase-based Machine Translation for
generation of paraphrase

language. The target sentence usually is very different from the source sentence,

primarily when different translation models are used [14]. The main advantage of

this approach is that there are many research advancements done in this translation

systems whose model can be directly used as a black box. It also has one main

disadvantage, namely cumulative error for both the translations. An example of this

approach is shown in 2.5.

2.3.2 Creation of Paraphrase Dataset

As stated earlier in section 2.3, SMT models need a large amount of corpus data to

train the model before generating output candidate sentences. To make this large

corpus, we need a tremendous amount of data. This data is fetched from a different

news article, social media sites, newspapers, and other text sources. Next, from this

data, we create sentence pairs which then get annotated by a human being manually

or by models which are good at paraphrase identification task. These sentences are

then used to create word alignment table for generation task as in phrase-based SMT

system [25]. This alignment table includes synonyms which could be in the same

language or a different language depending on the generation task. Phrase pairs

that frequently occur in the aligned sentences may be assigned higher probabilities

[44].

Chapter 2. Related Work 15

2.4 DataSet

2.4.1 The paraphrase database

In this work, we have used the paraphrase database (PPDB) [40], [41] for training

the paraphrase generation model. PPDB is a database containing millions of para-

phrases in 16 unique languages. The objective of PPDB is language enhancement

by making frameworks increasingly sensitive to language inconstancy and obscure

words. The total PPDB asset is openly accessible under the Creative Commons At-

tribution 3.0 United States License. The paraphrases are generated by extracting

lexical, phrasal, and syntactic approaches from large bilingual parallel corpora and

computing the similarity scores for the pair of paraphrases using Google n-grams

and the Annotated Gigaword corpus. This data set is created following basic idea,

that if two English strings e1 and e2 translate to the same foreign string f known as

a pivot language, they should have the same meaning and should be a paraphrase

of one another. It collects many different features between sentence pair like n-gram

based features for words (to the left and right of the given phrase), Lexical, lemma-

based, part of speech (POS) and named entity unigrams and bigrams; Dependency

link features and Syntactic features. Then all these are aggregated, over all the oc-

currences of e, to obtain distributional signature se,i. Then the cosine similarity score

is calculated between two paraphrases by the formula:

sim(e1, e2) =
se,1, se,2

|se,1||se,2|

here, −→sei , is The PPDB dataset comes in a plain text file in the following format.

LHS|||PHRASE|||PARAPHRASE|||(FEATURE = VALUE) ∗ |||ALIGNMENT|||ENTAILMENT

Here PHRASE is an expression which is considered as a source sentence, PARA-

PHRASE is a paraphrase of PHRASE and considered as a target sentence, LHS is the

constituent or CCG-style slashed constituent label for the paraphrase pair. ENTAIL-

MENT is an automatically assigned entailment relation (e.g., Equivalence for pairs

Chapter 2. Related Work 16

like couch/sofa, or forward entailment for pairs like dog/animal) [39]. This dataset

consists of 169.9 million sentence pairs.

2.4.2 IMDb Dataset

We use IMDb dataset [32] for augmenting its training samples and then we do the

sentiment analysis on the sentences generated by our different paraphrase genera-

tion models. The IMDb dataset is a dataset for binary sentiment classification con-

taining substantially more data than previous benchmark datasets. This dataset pro-

vides a set of 25,000 highly polar movie reviews for training and 25,000 for testing.

This dataset consists of movies URL, reviews, and labels, whether it is positive or

negative. In the entire collection, no more than 30 reviews are allowed for any given

movie because reviews for the same movie tend to have correlated ratings. In the

labelled train/test sets, a negative review has a score <= 4 out of 10, and a positive

review has a score >= 7 out of 10. Thus reviews with more neutral ratings are not

included in the train/test sets.

2.5 Recurrent Neural Networks

Recurrent neural networks (RNN) has shown lots of extraordinary feats of deep

learning in the last couple of years. In many generation tasks, RNN is the state

of the art model. Many examples can be seen which are built using RNN like Ap-

ple’s Siri, Google voice search, Google translators, etc. The main difference which

makes RNN suitable to machine learning issues that include sequential tasks is its

internal memory, which can store results from the last precedent stage and can use

it at later stages for inference. In this section, we discuss its functionality, how it

works, advantages and disadvantages.

Recurrent Neural Networks (RNN) are incredible and powerful neural-like systems

and have a place with the most promising algorithm out there right now since these

models contain internal memory.

Chapter 2. Related Work 17

Initially, at the time when RNN’s were developed in the 1980s, they did not get

immediate notoriety because of limited data and limited computational power at

that time. They got popularity late with the expansion of computational power and

a vast amount of information that we have these days and the development of LSTM

in the 1990s.

RNN internal memory is responsible for storing valuable things about all the prece-

dent inputs they have received, which helps or enables them to be very accurate

while predicting the next step. This helped RNN to become state of the art algo-

rithm in most of the sequential data problems in machine learning like audio, video,

text, speech as they were better in capturing the context and deep understanding of

sequential data.

Now the question is when to use RNN? According to Lex Fridman (MIT):

"Whenever there is a sequence of data, and that temporal dynamics that connects the data is

more important than the spatial content of each frame."

So the question is what leads to RNN when we have a feedforward neural network

and how RNN works?

In a feed-forward network, information flows from the input layer to the hidden

layer through activation units and then the output is given. Every node in the feed-

forward network is only visited once for every data, and information moves straight

through the network. There was no feedback (loops), due to which, there is no way

for the accountability of previous information while predicting the next step. To

solve this, RNN was developed.

As quoted earlier, the main difference in RNN is that they have internal memory,

which can store the results from last precedence state. In RNN the information cy-

cles through the loop as seen in Fig 2.6. So while deciding step yt+1, it also takes

the accountability of whatever the model has learned until the current step that is

still yt. For example, in the feed-forward network if we try to send the sentence ’My

name is John’ word by word, when the model is processing word ’name’ the model

has already forgotten about the word ’My’ and same for other next words in a sen-

tence. However, in case of RNN while processing word ’name’ it will still have the

Chapter 2. Related Work 18

FIGURE 2.6: Here in left hand side is the diagram of RNN unit and
on right hand side is RNN in unrolled state. The weight vector Wh
, Wy and Uh are shared across all the time and are fine tuned using
backpropogation and hi is the the last output that is yt−1. In this graph

we are trying to predict yt which will be equal to xt+1

embeddings from the last word that is ’My’ and the output at this time will be the

combination of embeddings of both ’My’ and ’name’.

Looking at the Fig 2.6 we can see at every time step t RNN takes two inputs the

current input and the past output from last precedence state, which makes it suit-

able for sequential data processing because sequence contains essential information

which must be used by the model for predicting next output. RNN has two weight

vectors which are applied to input vector and previous output vector respectively.

Both these weight vectors are tweaked at training time using gradient descent and

backpropagation.

Feedforward neural network is only able to map one input to one output. However,

RNN can map one-to-one, one-to-many, many-to-one (voice recognition) and many

to many (Translation), as shown in Fig 2.7.

There are many different variations of RNN, and in the purest form, RNN is known

as Vanilla RNN. All the variations have there own advantages and disadvantages.

The original RNN which was introduced in NLP has this form [46].

ht = fh(Whxt + Uhht−1 + bh) (2.3)

Chapter 2. Related Work 19

FIGURE 2.7: Different types of configuration in RNN.

yt = fy(Wyht + by). (2.4)

Here xt is the input vector, ht is the hidden state, yt is the output vector, W, U are

trainable parameter matrices, and b is a bias which is also a trainable vector. Func-

tions fh and fy are non-linear activation functions such as sigmoid or softmax. The

corresponding structure is shown in Fig 2.6.

In RNN the total output is generally equal to the total number of words assuming

we give input word by word. Which means the target sentence length must be the

same as of source sentence. In reality, this constraint doesn’t work for example in

paraphrase generation most of the time the target sentence has different length as

of source sentence. So for these sorts of generation task Encoder-Decoder neural

network approach works best.

Although RNN works well for this kind of task, there are two main issues with

vanilla RNN.

1. Exploding Gradients when the calculation relegates a moronically high sig-

nificance to the weights, without any good reason. Because of this, the value

of weights become very high, and the network becomes unstable.

2. Vanishing Gradients when the value of gradient becomes too small that model

stops learning or takes too much time. This was the major problem in the early

’90s, which was later solved by long short term memory (LSTM) [20]

Chapter 2. Related Work 20

The main idea for Long short term memory (LSTM) network was to store relevant

information from past experiences, unlike storing everything like in Vanilla RNN.

LSTM only needs to remember essential experiences from the past, which also makes

LSTM remember longer sentences than Vanilla RNN. The LSTM unit is used to build

RNN for better performance.

FIGURE 2.8: LSTM

As seen in Fig 2.8 LSTM has three gates input gate, output gate and forget gate,

which helps LSTM to remember only the necessary information and forget whatever

is not relevant to the task. The gates in LSTM are analog, in the form of sigmoids,

meaning that they range from 0 to 1. The fact that they are analog enables them to

do backpropagation with it.

Another unit, i.e., Gated Recurrent Unit (GRU) which was introduced in [11], also

aims to solve the problem of vanishing gradient problem. This varies from LSTM

network in the way, how different gates were implemented in this unit. It only has

two gate update and reset gate in comparison to LSTM, which has three gates.

An example of GRU is shown in Fig 2.9. Here, the update gate (Equation 2.5) and the

reset gate (Equation 2.6) are calculated at each time step to store only the necessary

information and forget whatever is not relevant to the task.

zt = σ(WZxt + UZht−1) (2.5)

rt = σ(Wrxt + Urht−1) (2.6)

Chapter 2. Related Work 21

FIGURE 2.9: GRU

Here, xt is a input vector, UZ, WZ, Ur, Wr are weight vectors learned by doing back-

propogation at training time, ht−1 is a output from the last step and t denotes the

time at current step and σ represents sigmoid activation function.

h′t = tanh(Wxt + rt �Uht−1) (2.7)

The equation 2.7 refers to the current memory content (h′t) where rt value is for re-

setting the information and represents how much we should reset from the past

information. In equation 2.7, the symbol � represents the Hadamard element-wise

product.

ht = zt � ht−1 + (1− zt)� h′t (2.8)

The last, equation 2.8 refers to the final memory content after applying update gate.

Here, zt is value for update gate, and the rest is the same as before.

Uses of these gates LSTM, GRU helps solve vanishing gradients in RNN because

they always keep the gradients high enough and therefore the training is relatively

short and the accuracy high.

Chapter 2. Related Work 22

2.6 Convolutional Neural Networks

Convolutional Neural network (CNN) is a deep neural network which is most com-

monly used in computer vision for images recognition, images classification. Objects

detection, recognize faces. The idea of CNN was inspired by the study done on the

visual cortex of mammals and how they perceive the world using a layered architec-

ture of neurons in the brain. These models can be thought of as a group of neurons

which specialize in the detection of different objects. Yann leCun [29] was first to

take this idea to develop CNN. The model diagram is shown in Fig 2.10. Usually,

ConvNets are used to look for features in an image. Thus we do not need to provide

features implicitly. CNN understands the right features by itself as it goes deep.

The ConvNets are made up of three main elements.

1. Convolution layer This layer is normally responsible for capturing low-level

features of object or image. A filter of height ’h’ and width ’w’ is taken (in

general filter is just a matrix or vector.), and, this filter is rolled over the matrix

of the given image. More concretely, at a given position of the convolution

filter, we take the element-wise multiplication of each filter cell value with the

corresponding image pixel value that overlaps the filter cell, and then take the

sum of that. The formula is shown below:

hi,j =
m

∑
k=1

m

∑
l=1

wk,lxi+k−1,j+l−1

2. Pooling layer This layer makes CNN little bit translation invariant in terms of

the convolution output. There can be many different techniques for pooling,

but the most common is max-pooling. We apply max pooling layer to every

vector we got by applying a convolutional layer only to consider the features

which are important for the task and avoid the extra computational cost by

neglecting features which are not useful. This can be calculated using the fol-

lowing formula.

hi,j = max xi+k−1,j+l−1,∀1 ≤ k ≤ m and 1 ≤ l ≤ m

Chapter 2. Related Work 23

3. Fully-connected layer This layer learns the features learned by different con-

volutional filters in the model to build a global representation of the holistic

image. The neurons units in the fully connected layer get activated based on

whether various entities represented by convolution features are present in

the inputs. As the fully connected neurons get activated for this, it produces

different activation patterns based on what features were present in the input

images.

FIGURE 2.10: CNN model for image processing. [28]

In this work, we use a convolutional neural network for the classification of sen-

tences generated by paraphrase generation model on IMDb movie dataset.

2.7 Evaluation Metrics

In this work, we evaluate the performance of our paraphrase generation models

with measures like perplexity, accuracy, Bilingual Evaluation Understudy (BLEU)

and Metric for Evaluation of Translation with Explicit Ordering (METEOR) [38],

[26]. Accuracy is merely a measure of the number of correctly classified instances

in a given epoch, irrespective of their relevancy, giving equal importance to positive

samples and negative samples. As in paraphrase generation model, it is a difficult

task to decide when a target sentence is an accurate paraphrase of the given source

sentence without individual evaluation who have expertise in this domain. How-

ever, individual evaluation sometimes causes a delay in the evaluation process, and

it has its disadvantages like biases, is time-consuming and also needs experts in the

same domain.

Chapter 2. Related Work 24

Perplexity measures the cross-entropy between the empirical distribution (the dis-

tribution of things that appear) and the predicted distribution (what your model

likes) and then divides by the number of words and exponentiates after throwing

out obscure words. The perplexity of a discrete probability distribution p is defined

as,

2H(p) = 2−∑x p(x) log2 p(x) (2.9)

Here, H(p) is the entropy (in bits) of the distribution and x ranges over events.

In our instance, the paraphrase generation model of an unknown probability dis-

tribution p will be proposed based on the training samples that are drawn from p.

Given a proposed probability model q, one may evaluate q by asking how well it

performs in predicting test samples x1, x2, ..., xN , drawn from probability distribu-

tion p. The perplexity of the model q is defined as,

b−
1
N ∑N

i=1 log q(xi) (2.10)

Here, b is customarily 2. Better models q of the unknown distribution p tend to

assign higher probabilities q(xi) to the test events. Thus, they will have lower per-

plexity. Which means they are less surprised by seeing the test sample.

The exponent above may be regarded as the average number of bits needed to rep-

resent a test event xi if one uses an optimal code based on q. Low-perplexity models

do better job of compressing the test sample, requiring few bits per test element on

average because q(xi) tends to be high. The above exponent can be treated as cross-

entropy.

H(p̄, q) = −∑
x

p̄(x) log2 q(x) (2.11)

Here, p̄ denotes the empirical distribution of the test sample.

Bilingual Evaluation Understudy (BLEU) is a metric used for comparing the output

translation with a given candidate reference sentences. Its score varies from 0.0 to

1.0, depending on the quality of the translation. If the translation is perfect, then it is

Chapter 2. Related Work 25

given a score of 1.0, and when a translation is not relevant, then it is given a score of

0.0. This metric is not limited to only translation task but can also be used in other

natural language processing tasks like paraphrase generation, text summarization

and other language generation tasks.

BLEU was proposed in [38]. Some of the benefits of using BLEU as a metric are as

follows: it is easy to calculate, highly correlated to human evaluation, independent

of language and easy to understand. It is adopted widely as a metric in different

NLP tasks.

The BLEU score is calculated by summing up all the matching n-grams in candidate

sentence and n-grams in references sentences where n-gram (where n represent the

number of words considered at a time) can be unigram (1-gram), bigram (2-gram)

and so on. The main thing to note here is that this comparison is made regardless of

word order.

As stated in [38]:

"The primary programming task for a BLEU implementor is to compare n-grams of the

candidate with the n-grams of the reference translation and count the number of matches.

These matches are position-independent. The more the matches, the better the candidate

translation is."

To show how to calculate BLEU score, let us take one reference sentence and one

paraphrase sentence, where we are evaluating the BLEU score of paraphrase sen-

tence given the reference sentence.

1. Reference Sentence: Brad came to dinner with us.

2. Paraphrase Sentence: Brad ate dinner with us.

The one gram-BLEU score of the candidate solution in the above example will be

0.667 as we have four unigrams in paraphrase sentence which are also present in the

reference sentence, i.e. Brad, dinner, with, us. Moreover, we have six total number

of words in the reference sentence.

Chapter 2. Related Work 26

Metric for Evaluation of Translation with Explicit Ordering, or in short METEOR,

is also a viral measurement for evaluating machine translation output. It was first

proposed in [26].

The METEOR is calculated by taking harmonic mean of unigram recall and preci-

sion, with recall weighted higher than precision. It first creates the alignment table

of unigram words in the candidate sentence and reference sentence with constraint,

every unigram in candidate sentence must map to zero of one unigram in reference

sentence. This process is repeated consecutively to create a final alignment table by

removing unigrams formed at the previous step.

The problem with BLEU measurement is that it does not take account of orders of

the words in the sentence. However, METEOR considers the order of words and

features like stemming and synonyms matching. It internally uses wordnet. ME-

TEOR has shown a better correlation with human judgment than BLEU metrics on

the same dataset. The correlation of METEOR with human judgment went up to

0.964 on some dataset in comparison to 0.817 with BLEU measurement.

While performing a binary classification task, we measure the performance of our

classifier with measures like accuracy 2.12, F1-Score 2.15, sensitivity or recall 2.14,

and precision 2.13.

AC =
TP + TN

TP + FP + TN + FN
(2.12)

PR =
TP

TP + FP
(2.13)

RC =
TP

TP + FN
(2.14)

FS =
2 ∗ PR ∗ RC

PR + RC
(2.15)

Where,

Chapter 2. Related Work 27

• True Positives (TP):- Examples which are positive and correctly classified by

the classifier.

• True Negative (TN):- Examples which are negative and correctly classified by

the classifier.

• False Positive (FP):- Examples which are negative and wrongly classified as

positive by the classifier.

• False Negative (FN):- Examples which are positive and wrongly classified as

negative by the classifier.

In this work, we use perplexity as a measure on test data set to compare different

paraphrase generation models and to use the best one to generate paraphrase for

IMDb movie data set.

2.8 Summary

In this chapter first, we reviewed the literature of paraphrase theory, what para-

phrase is, and different type of paraphrases. Then we look at some of the different

types of similarity measures we can use to detect paraphrases, i.e., similarity mea-

sures like syntax, semantics and lexical. After that, we discussed the previous and

current approaches for generating paraphrases in natural language processing like

bootstrapping, statistical machine translation, phrase base, and parsing methods.

We also looked at how neural approaches later become the standard way of gener-

ating the paraphrases because of their advantages.

One of the most notable disadvantages of a neural approach for generating para-

phrases was the requirement of a large corpus. Then we studied how these large

corpora are made for training these big neural models. Lastly, we went through

the basic theory of RNN’s and CNN’s, how they work, and what are the evaluation

metrics we use to evaluate different models.

28

Chapter 3

Encoder-Decoder models for

Paraphrase Generation

3.1 Encoder-Decoder RNNs for NLP

Encoder-decoders are the neural network approaches, which are genuinely ongoing

models for deep learning in NLP. These models in some cases outperform classical

statistical machine translation methods. The Encoder-Decoder architecture has be-

come an effective and standard approach for both neural machine translation (NMT)

and sequence-to-sequence (seq2seq) prediction tasks which involve task like para-

phrase generation, question answering and language modeling. Encoder-decoder

mainly consists of two parts. First, encoder to encode input sentence into a context

vector and second, decoder which decodes the context vector to output sequence.

The key advantage of seq2seq model is the capacity to train a solitary end-to-end

model right on the source and target sentences, and the capacity to deal with sen-

tences of variable length to yield sequence of content. They were first presented

autonomously as RNN encoder-decoder [11] and sequence-to-sequence [49] for ma-

chine interpretation. This group of encoder-decoder models are regularly alluded

as seq2seq, regardless of their particular execution. The seq2seq model tries to learn

the conditional distribution given as:

p(y1, y2,, yT′ |x1, x2,, xT) (3.1)

Chapter 3. Encoder-Decoder models for Paraphrase Generation 29

where, y is the output sequence conditioned on the input sequence x or source se-

quence. yT′ denotes the word generated by the model at time step T′, T′ is the length

of the output sentence and T is the length of the input sentence. T′ and sequence

length T are not necessarily same. A seq2seq model first encodes the entire variable

x input with its encoder RNN into a fixed size vector c known as context vector.

Then, a decoder RNN generates output y1, ...; y′T conditioned on previous predic-

tions and context vector c:

p(y1, y2, ..., yT′ |x1, x2, ..., xT) =
T′

∏
t=1

p(yt|y1, y2, ..., yt−1, c) (3.2)

There are two different ways to define dependency of output sequence y on context

vector c. [49] proposes to condition y on c at the first output from the decoder. And

[11] proposes to condition every generation of yT′ on the same context vector c, thus

forming the basis to our model. For the simplicity, we modify equation for vanilla

RNN version to get the hidden state s at time step t, denoted by st. Modifying 2.3

leads to:

st = fh(Wsxd
t + Usst−1 + Cc + bs) (3.3)

Here and elsewhere C is a parameter matrix.

By modifying fig 2.6 we obtained 3.1 with encoder and decoder functionality, and

the full setup is known as encoder-decoder or seq2seq model.

Work was done in [49] shows that performance of seq2seq model while generating

text can be improved by giving the input sentence in reverse order. The framework

accomplished a bilingual evaluation understudy (BLEU) score of 34.81, which is a

decent score contrasted with the standard score achieved with a statistical machine

translation system of 33.30. This is the first case of a neural machine interpretation

framework that defeated a phrase-based statistical machine translation baseline on

a large scale problem. However, this work has not accounted for reverse order of

sentences.

The encoder-decoder framework has one disadvantage, which is as the length of a

sentence increases the performance of seq2seq model decreases [11], [10].

Chapter 3. Encoder-Decoder models for Paraphrase Generation 30

FIGURE 3.1: seq2seq model with xe as a input and ht as a hidden
state of encoder RNN. And for the decoder xd as a input, st as a hid-
den state and yt as a output. Note that xd

t will be equal to yt−1. The
ht represents the context vector which will be last hidden unit from
encoder and given as a output to decoder. This context vector will be

used while generating the first word in decoder network.

Fig 3.2 shows, how the performance of seq2seq model decreases with an increase

in the total number of words in a sentence. Here, we can see how the BLEU score

decreases as the length of the input sentence increases. We present attention mech-

anism in next section 3.2, which helps the decoder network only to focus particular

part of the source sentence while generating output. This method significantly im-

proves the performance of seq2seq network on long sentences [3], [31].

We also use other variations of RNN like long short term memory (LSTM) or Gated

Recurrent unit (GRU) for better performance on long sentences.

3.2 Encoder-Decoder with Attention

In this section, we present the attention mechanism to improve the poor performance

of seq2seq model on longer sentences [3], [31].

Chapter 3. Encoder-Decoder models for Paraphrase Generation 31

FIGURE 3.2: Performance of encoder-decoder network as the sen-
tence length increases.

The problem occurs while generating the word in decoder network. It looks at the

entire input sentence every time while generating a new word. The basic concept of

attention is to only focus on a particular part of the sentence. Each time the model

predicts an output word, It only uses parts of an input where the most relevant

information is concentrated instead of an entire sentence. In other words, it only

pays attention to some input words.

In Fig 3.3, we can see that the basic structure of the model is the same as shown

earlier in fig 3.1. However, the main difference after adding attention mechanism

in seq2seq model comes when generating the next word in the decoder network.

In seq2seq model with attention mechanism, we determine the hidden state of the

decoder at the current time by taking the previous output, previous hidden state and

context vector. Further, note that here we are not using the single context vector c

for generating all the words in the decoder network, but a separate context vector ci

for each target word yT′ .

The encoder first encodes input sentence represented by its word embedding se-

quence x, into a single context vector c (which is a combination of all the hidden units

in encoder and represented by c = q(h1, ..., hTx)) and a hidden state ht = f (xt, ht−1).

Typically decoder network predicts the sequence by predicting one word at a time

denoted by yt, where each yt output is conditioned on previous outputs y1, ..., yt−1

Chapter 3. Encoder-Decoder models for Paraphrase Generation 32

FIGURE 3.3: An illustration of the attention mechanism (RNNSearch)
proposed by Bahdanau, 2014. Instead of converting the entire input
sequence into a single context vector, we create a separate context
vector for each output (target) word. These vectors consist of the

weighted sums of encoder’s hidden states.

and the context vector c, maximizing the following joint probability:

p(y) =
T′

∏
t=1

p(yt|y1, ..., yt−1, c) (3.4)

In the context of RNNs, the conditional probability of each yt in the joint probability

of Equation 3.4 is modeled as a nonlinear function g with input yt−1 context vector c

and hidden state st−1:

p(yt|y1, ..., yt−1, c) = g(yt−1, st−1, c) (3.5)

Then [3] proposes to use unique vector ct for each decoding time step, redefining the

decoder conditional probability for each word yt as:

p(yt|y1, ..., yt−1, x) = g(yt−1, st−1, ct) (3.6)

Chapter 3. Encoder-Decoder models for Paraphrase Generation 33

where the context vector ct is a weighted sum over all input hidden states (h1, ..., hT):

ct =
T

∑
j=1

atjhj (3.7)

Here, attention weights atj are calculated as:

atj =
exp(etj)

∑Tx
k=1 exp(etk)

(3.8)

etj = a(st−1, hj) (3.9)

Here the scoring function 3.9, is a pair-wise scoring function which is used for scor-

ing the relation between decoder hidden state st−1 and encoder’s hidden state hj.

This scoring is learned jointly while training the whole seq2seq model with the help

of a feedforward network.

There are many different kinds of attention mechanism, out of which in this work

we have tried two different variations proposed in [31] and [3]. Moreover, we have

used seq2seq model with an attention mechanism to compare with seq2seq model

with pointer network in generating similar sentences.

3.3 Encoder-Decoder with Pointer network

Encoder-Decoder network also suffers from two other problems, which are repro-

ducing factual details or unknown words or rare word inaccurately, and also they

tend to repeat themselves by generating the same words again and again. The sec-

ond problem can be taken care of by attention and coverage mechanism [50].

Typically, when we create a seq2seq model when we have to define the maximum

number of vocabulary length, which is represented by their word embedding. Usu-

ally, this vocabulary length varies from 10,000 - 50,000, containing the top maximum

number of most frequent words. Further, note that an increase in the maximum

length of vocabulary also increases the computation of seq2seq model and make the

training process slower. All the other words or token which are not incorporated

under vocabulary are marked as ’<UNK>’ which means unknown words, all these

Chapter 3. Encoder-Decoder models for Paraphrase Generation 34

tokens have the same word embedding. Therefore whenever decoder is generating

an output word of embedding <UNK> token, then decoder outputs <UNK> as a

token. This is known as unknown words problem and can be very problematic in

the case of paraphrase generation. To solve this unknown words problem, we use

pointer network in seq2seq model.

There are many variations of implementation of these pointer network and copy

mechanism which can be implemented in seq2seq model for better performance,

some of them are discussed in [51], [17], [47], [9], [16]. However, In this work, we

have evaluated [16] and [17] under the supervision of PPDB dataset. The reason for

using these two model is because of there capability of competing between a word

from common vocabulary and input sentence vocabulary based on some variables

which makes them suitable for generating better similar sentences according to the

given context.

In this work, we have compared attention model described in previous section 3.2

with the pointer network implementation specifically purposed in [17] and in [16]

on generating similar sentences task.

3.3.1 COPYNET Network

CopyNet was proposed in [16] to incorporate copying mechanism in seq2seq model.

This mechanism has shown good results on text summarization tasks on different

datasets. The model architecture is shown in Fig 3.4.

The model uses bidirectional RNN as an encoder which transforms or encodes the

variable length of the sentence into a fixed size of context vector. It has the same

setup as proposed in [3]. The difference comes how model copies words from the

input sentence in a decoder network.

As mentioned in work, the model uses the same canonical RNN decoder, which was

earlier proposed in [3] with the following differences.

1. Prediction It has two modes, namely generate mode and copy mode. Generate

mode generates a word from fixed sized model vocabulary and copy mode

Chapter 3. Encoder-Decoder models for Paraphrase Generation 35

FIGURE 3.4: Architecture of COPYMET network.

generates a word from the vocabulary of the input sentence. While predicting

the next word, it uses mixed probabilities from both the mode.

2. State Update It uses word embedding of the previously generated word by the

decoder network and also the corresponding location specific hidden state in

a series of hidden state of the encoder.

3. Reading Also, besides of attentive read to the combination of hidden layers

of encoder network, It also has "selective read" to the combination of hidden

layers of encoder network.

The model has two sets of vocabulary V = V1,, Vn which also includes <UNK> for

out of vocabulary (OOV) words and source vocabulary A = a1, ..aN which includes

unique vocabulary from input sentence. Source vocabulary makes COPYNET to

copy OOV words in the output sentence.

At time t, the decoder RNN state is represented by st. The probability of a generated

word yt is given by

p(yt|st, yt−1, ct, H) = p(yt, g|st, yt−1, ct, H) + p(yt, c|st, yt−1, ct, H) (3.10)

where H is a combination of hidden states of the encoder network, ct is a context vec-

tor at t. g stands for generative mode and c stands for copy mode, these probabilities

Chapter 3. Encoder-Decoder models for Paraphrase Generation 36

are calculated as follow:

p(yt, g|.) =



1
F eΨg(yt) yt ∈ V

0 yt ∈ A ∩ V̄

1
F eΨg(UNK) yt /∈ V ∩ A

p(yt, c|.) =


1
F ∑

j:xj=yt

eΨc(xj) yt ∈ A

0 otherwise

Where F is a normalization term, and eΨc(.) and eΨg(.) are scoring functions for copy

mode and generate mode respectively. Because of the shared normalization term

both generate mode and copy mode probabilities are competing through softmax

function 3.10. The scoring functions are calculated as follow:

Ψg(yt = vi) = vT
i Wost, vi ∈ V ∩UNK (3.11)

and,

Ψc(yt = xj) = σ(hT
j Wc), xj ∈ X (3.12)

where X is an input sentence, xj is a word at j position, vi and W0 are one-hot indi-

cator vector for word vi from the vocabulary. σ is a nonlinear activation function.

COPYNET updates decoder RNN state at every time step t, using previous hidden

state st−1, predicted word yt−1 and context vector c as follows:

st = f (yt−1, st−1, c) (3.13)

However, if yt−1 is copied over to the output sentence then the decoder RNN states

are updated by changing yt−1 to [w(yt−1); S(yt−1)]
T. Where w(yt−1) is the word

embeddings of yt−1 and S(yt−1) is the weighted sum of hidden states in H or in

encoder RNN network corresponding to yt.

Chapter 3. Encoder-Decoder models for Paraphrase Generation 37

S(yt−1) =
T

∑
r=1

ptrhr (3.14)

ptr =


1
K p(xi, c|st−1, H) xi = yt−1

0 otherwise

Here k is a normalizing term. Pointer network (ptr) is only concentrated on one

location from source sentence. Although, S(yt−1) helps decoder to copy over subse-

quence from source sentence and is named as "selective read."

The COPYNET network is fully differentiable and can be trained end to end, exactly

like seq2seq model. It minimizes the negative log-likelihood as an objective loss

function, as shown below.

J = − 1
N

N

∑
k=1

T

∑
t=1

log[p(yt|y1, y2, ...yt−1, X)] (3.15)

3.3.2 Pointer Softmax Network

The Pointer Softmax Network (PS) was proposed in [51]. The idea is to use attention

mechanism and attention weights to select a word or token from the input sequence

as the output instead of using it to blend hidden units of an encoder to a context vec-

tor at each decoder step. This setup was able to copy a word from the input sentence

to the output sentence, which is not present in seq2seq model vocabulary or is not

seen by the model in the training process. This approach shows the improvement in

two tasks, i.e., neural machine translation on the Europarl English to French parallel

corpora and text summarization on the Gigaword dataset.

Fig 3.5 shows the architecture of PS. The model learns two main things 1) To predict

whether the pointing mechanism is required at each time step ’t’ 2) To point to the

correct location of the word in source sentence which needs to be copied over to tar-

get sentence. The model uses two different softmax output layers, first, is shortlist

softmax layer, and the second one is the location softmax layer. The first one is the

softmax layer, which is used in the attention mechanism over all the vocabulary to

Chapter 3. Encoder-Decoder models for Paraphrase Generation 38

FIGURE 3.5: Illustrations of the PS architecture. At each timestep, lt,ct
and wt for the words over the limited vocabulary (shortlist)is gener-
ated. zt is a switching variable that will decides whether to use vo-

cabulary word or to copy a word from the source sequence.

generate a word from the model vocabulary. The second softmax is a location soft-

max, is an output layer which gives the location of the word from source sentence

which needs to be copied over. Location softmax is a pointer network in seq2seq

model where each of the output dimension corresponds to the location of a word in

the context sequence. Consequently, the output dimension of the location softmax

varies according to the length of the given source sequence. The decision of whether

the pointer word should be used or shortlist word, a switching network is used. The

switching network is a multilayer perceptron network which takes the representa-

tion of source sequence and previous hidden state from decoder RNN as a input

and outputs the value of binary variable zt which will indicate whether to shortlist

softmax layer(when zt == 1) or location softmax layer(when zt == 0). When the

word is not in shortlist softmax and not even in location softmax layer, this switching

network chooses to shortlist softmax and gives <UNK> as a next token.

pθ(y, z|x) =
T′

∏
t=1

pθ(yt, zt|y<t, z<t, x) (3.16)

Here, x is a source sequence, z is a binary variable to indicate which softmax layers

probabilities we should use, and y is an output sequence. yt can be a word either

Chapter 3. Encoder-Decoder models for Paraphrase Generation 39

from location softmax layer or shortlist softmax layer. The probability of yt from

being in shortlist softmax layer is given by:-

p(wt, zt|(y, z)<t) = p(wt|zt = 1, (y, z)<t) ∗ p(zt = 1|(y, z)<t) (3.17)

Accordingly, the probability of yt from being in location softmax layer.

p(lt, zt|(y, z)<t) = p(lt|zt = 0, (y, z)<t) ∗ p(zt = 0|(y, z)<t) (3.18)

In both the above equation 3.17, and 3.18 we have removed the conditioning of x,

which is a source sequence while predicting y.

The probability of switching network is given by following equations.

p(zt = 1|(y, z)<t, x) = σ(f (x, ht−1; θ)) (3.19)

p(zt = 0|(y, z)<t, x) = 1− σ(f (x, ht−1; θ)) (3.20)

Using 3.17 and 3.18, 3.16 can be rewritten as following:

p(y|z, x) = ∏
t∈T′

p(wt, zt|(y, z)<t, x) ∗∏
t∈T′

p(lt, zt|(y, z)<t, x) (3.21)

At training time, the switching network is trained along with the full network. To

train the network and to calculate loss, we use standard cross entropy error. Fur-

thermore, while testing the model equations, 3.17 and 3.18 choose a word from the

shortlist and a location softmax layer.

3.4 Experiments

3.4.1 Dataset

In the first part of the experiment, we compared seq2seq with attention model,

pointer softmax model (PS) and COPYNET network, described in 3.2 and 3.3 for

paraphrase generation. We train our model on the PPDB dataset described in 2.4.

Chapter 3. Encoder-Decoder models for Paraphrase Generation 40

Note that for higher precision, we have used medium size of PPDB dataset which

has almost 9,103,492 pair sentences, which means their score for being a paraphrase

is high. Before training the model, we preprocessed the PPDB dataset. We only took

the sentence pair where the maximum number of words in a sentence is 50. We

also removed all the punctuation signs from the source and target sentences. Af-

ter removing the punctuation signs, the words like "I’m" becomes "I m," "I haven’t"

becomes "I havent" and we consider them as two different words. After doing the

preprocessing, we partition the dataset into three different categories with 80 per-

cent of samples in the training set and 10-10 percentage of samples in testing and

validation set. This same dataset was used for both models for training, testing and

at validation time.

3.4.2 Models

In this analysis we compared three different models described in 3.2 and 3.3 for

paraphrase generation.

The first model described in 3.2 only uses attention to generate paraphrases. The

model is trained on the preprocessed PPDB dataset, where preprocessing steps are

described in section 3.4.1. We have used word-level embedding in the model to rep-

resent the whole sentence. We first created a vocab of most 30,000 frequent words in

training samples and represented them with a unique index. This vocab is also aug-

mented with four extra tokens that are <UNK> for representing unknown words or

the words which are not covered in the vocabulary of the model. <PAD> this is used

to add extra spacing to a sentence to make it equal to the length of source sentence if

the target or source sentence is smaller than length 50, <SOS> and <EOS> represent-

ing the start of sentence and end of sentence, respectively. Both <SOS> and <EOS>

were added before the sentence starts and at the end of the sentence respectively.

Using these unique indices, the words in source text sentence is converted into the

list of an integer, which is then fed as an input to the seq2seq model described in 3.2.

Furthermore, the weights and bias parameters are learned by the model by back-

propagating the error at training time. This model was then tested and validated

Chapter 3. Encoder-Decoder models for Paraphrase Generation 41

using test samples and validation dataset with different hyper-parameters like the

number of hidden units, type of RNN cell used in the encoder-decoder model, batch

size, a different type of attention. The output from the decoder is an index value of a

generated token which is then converted back to a word by matching it from the vo-

cabulary of the model and then combined to form one complete sentence. We have

used the beam size of 3, which means we pick the top 3 sentences with the highest

probability.

We followed the same preprocessing in the COPYNET and the pointer softmax

model described in 3.3 with a different variation of coping mechanism in seq2seq

model. These model further had different hyper-parameters, which were described

in section 3.3. Therefore while training the PS model with the encoder-decoder net-

work, a separate multi-layer perceptron model was also trained and was used for

binary classification. We used standard binary cross-entropy as a loss function for

backpropagating the error in the model. We have also tried this model with different

hyper-parameters of the model described in the previous section.

All three models were fine-tuned on hyperparameters and then compared against

each other for paraphrase generation by finding the loss in dev dataset, BLEU and

METEOR scores. To save time in training we have fixed some parameters like we

used teacher forcing while training encoder-decoder model, dropout ratio was fixed

to 0.2, Vocab size was used for most 30000 frequent words in training time, and batch

size is also set to 250. Note that to our best knowledge, these models were compared

only on summarizing of paragraphs previously and not on paraphrase generation

of sentences.

As the code for all these model were not made publicly available, we have imple-

mented all these models in Pytorch. We trained our model on GPU provided by

Helios Calcul Quebec, which has 15 compute nodes, each of which has eight K20

GPU’s from Nvidia, and 6 compute nodes and eight nVidia K80 boards each. Each

K80 board contains two GPU, for a total of 216 GPUs for the cluster.

Chapter 3. Encoder-Decoder models for Paraphrase Generation 42

Seq2Seq Model with Attention
Hidden Layer Number of

Layers in RNN
Type of RNN

Cell
Valid Perplexity

128 1 GRU 27.1790
128 1 LSTM 27.3762
256 1 GRU 28.1144
512 1 GRU 26.5589
128 2 GRU 26.5401
128 2 LSTM 26.7232

TABLE 3.1: Results of seq2seq with Attention model with different
hyper parameters on PPDB test dataset. Smaller perplexity indicates

better performance

Seq2Seq Model with Pointer softmax network
Hidden Layer Number of

Layers in RNN
Type of RNN

Cell
Valid Perplexity

128 1 LSTM 29.9218
128 1 GRU 26.5936
256 1 GRU 27.4747
512 1 GRU 26.8019
128 2 GRU 28.2140

TABLE 3.2: Results of seq2seq with Pointer softmax model with dif-
ferent hyper parameters on PPDB test dataset. Smaller perplexity in-

dicates better performance

3.5 Results and Analysis

It took us about one day to train one model with only the attention mechanism and

one epoch. This time increases while training the model for pointer softmax model

as this model also consist of training of the separate model, i.e., switching network.

The complexity was also high to create pointer vocabulary and calculating the prob-

abilities of both source and model vocabulary. Due to limited time we had, to com-

pare models, we first tried out the attention model, PS and COPYNET model with

only one epoch and with different hyper-parameters. It was done to find out the

best configuration for the model to proceed with based on the first iteration. We

trained every model for 15 epochs, and after looking at the training and validation

perplexity, we can conclude that the model converges after 15 iterations.

Tables 3.1, 3.2 and 3.3 exhibit the validation perplexity on the PPDB dataset. Fur-

thermore, figures 3.8, 3.7 and 3.9 reveal the curve of train and valid perplexity. Look-

ing at the results, COPYNET outperforms the other two models by a small margin.

Chapter 3. Encoder-Decoder models for Paraphrase Generation 43

Seq2Seq Model with COPYNET network
Hidden Layer Layers in RNN Type of RNN

Cell
Valid Perplexity

128 1 LSTM 26.6721
128 1 GRU 26.7842
256 1 GRU 26.9701
512 1 GRU 26.6891
128 2 GRU 25.9625
128 2 GRU 26.3713

TABLE 3.3: Results of seq2seq with COPYNET Pointer network with
different hyper parameters on PPDB test dataset. Smaller perplexity

indicates better performance

Model Comparison
Model BLEU-Score METEOR-Score
Seq2Seqattn 0.4538 0.3035
Seq2Seqattn+COPYNET 0.4547 0.3464
Seq2Seqattn+PS 0.2922 0.3219

TABLE 3.4: BLEU and METEOR score on test dataset of PPDB dataset
with attention, COPYNET and Pointer softmax. The higher the scores

indicate better performance.

Switching layer in the pointer softmax model did not help much in the generation

of paraphrases. In the table, 3.4 we show the performance of all different models

on test dataset consisting of 25,000 examples. The BLEU and METEOR score was

slightly better for COPYNET network as compared to other models.

FIGURE 3.6: Plot showing perplexity of seq2seq model with attention
model on PPDB training and test data set.

Seq2seq model with attention mechanism and with COPYNET network model both

shows the best performance at iteration 3, and they have minimum validation per-

plexity at this point, i.e., 23.9142 and 23.6172 respectively. On the other hand, the

Chapter 3. Encoder-Decoder models for Paraphrase Generation 44

FIGURE 3.7: Plot showing perplexity of seq2seq model with pointer
softmax (PS) network model on PPDB training and validation data

set.

FIGURE 3.8: Plot showing perplexity of seq2seq model with COPY-
NET pointer network model on PPDB training and validation data

set.

pointer softmax model gave the best result at one iteration, where we got minimum

validation perplexity as 26.6837. The final hyper-parameter we chose for attention

and COPYNET network were dropout ratio=0.2, teacher forcing ratio=1.0, vocab

size=30,000, batch size=250, number of hidden layers=128, number of layers in

RNN = 2, RNN cell type=GRU, attention type = Luong attention. Also, the hyper-

parameter of pointer softmax network model was dropout ratio=0.2, teacher forcing

ratio=1.0, vocab size=30,000, batch size=250, number of hidden layers=128, num-

ber of layers in RNN = 1, RNN cell type=GRU, attention type = Luong attention.

We show some of the examples of paraphrases generated by different models below.

Note, that these source sentences were picked randomly and were not in the PPDB

Chapter 3. Encoder-Decoder models for Paraphrase Generation 45

FIGURE 3.9: Plot showing perplexity of seq2seq model with pointer
softmax network model on PPDB training and validation data set.

test dataset Below, ’sentence’ represents the original sentence which was given as

an input to the model. ’Paraphrase(Attn)’ represents the paraphrase generated by

seq2seq model with attention model. ’Paraphrase(COPYNET)’ presents the para-

phrase generated by COPYNET network and ’Paraphrase(PS)’ shows the paraphrase

generated by pointer softmax network.

1. Sentence: Niagara Falls is viewed by thousands of tourists every year.

Paraphrase(Attn): Ontario is recognized by 1000 <UNK> <EOS>

Paraphrase(COPYNET): Niagara Falls is recognized by 1000 tourists <EOS>

Paraphrase(PS): Ontario is recognized by 1000 visitors <EOS>

2. Sentence: Economy is a big problem for the Bush administration

Paraphrase(Attn): <UNK> government problem is <UNK> <EOS>

Paraphrase(COPYNET): Bush government problem is economy <EOS>

Paraphrase(PS): George’s government problem is big <EOS>

3. Sentence: Language is complex and the process of reading and understanding

language is difficult for many groups of people

Paraphrase(Attn): Language is difficult for <UNK> and <UNK> <eos>

Paraphrase(COPYNET): Language is difficult for reading and understanding

<eos>

Paraphrase(PS): Speech is complex for understanding for many people<eos>

4. Sentence: I don’t know.

Chapter 3. Encoder-Decoder models for Paraphrase Generation 46

Paraphrase(Attn): I m not aware of <EOS>

Paraphrase(COPYNET): I m not aware of <EOS>

Paraphrase(PS): I m not aware of <EOS>

Glancing at the examples above, we can conclude that seq2seq model with COPY-

NET generated better paraphrases given the original sentence, which goes aligned

with our results shown earlier.

3.6 Summary

In this chapter, initially, we show how encoder-decoder networks become popu-

lar in natural language processing generation tasks. We show that what were the

significant disadvantages of these model and how these issues were solved using

attention and different variation of pointer network. Then we talk about COPYNET

and pointer softmax (PS) model.

We performed experiments on seq2seq model with attention and two different varia-

tions of pointer network under the supervision of PPDB dataset and compared their

results using metrics like BLEU and METEOR score. In this experiment, COPYNET

outperforms pointer softmax pointer network by a little margin. Then we show

some examples of paraphrases generated by these models. From these examples

and results, it can be concluded that COPYNET pointer network yields best para-

phrases among compared models.

47

Chapter 4

Convolutional neural network for

text classification

4.1 Convolution neural network for NLP

Recurrent neural networks are efficacious at predicting sequential data, as described

in section 2.5. However, it also involves a lot of complex calculations for predicting

the sequence. That is why it might be an overkill to use RNN in text classification,

which can also be solved by considering only the symbolic words in the text. Convo-

lutional neural networks (CNN) are viral, particularly in computer vision problems

like object recognition, classification of objects. Since these models also became fa-

miliar and widely used in natural language processing for text classification, Implicit

discourse relation recognition [24], [30], and other tasks. CNN has been successful

in numerous text classification tasks. As discussed in the [24], the author shows that

even with a little tuning of hyperparameters the CNN becomes state of the art in

4 out of 7 tasks by showing outstanding results on multiple benchmarks. As an il-

lustration of the text classification task, the architecture of the convolutional neural

network which explains how CNN can be applied in text classification is shown in

fig 4.1.

In fig 4.1, we show an example of a convolutional network on a 7-word sentence and

with word embedding of 5 dimensions. CNN consists of 3 main components which

are listed below other than feature map (Input vector of a given sentence, generally

it is in a matrix form of word length in sentence X dimension of word embedding).

Chapter 4. Convolutional neural network for text classification 48

FIGURE 4.1: An architecture of CNN model for text classification task.

1. Filters The first step after getting the feature map as an input to the model

is applying filters on the feature map. Filters are used to capture some fixed

kind of patterns which might be helpful for the classification task. Usually,

in the field of computer vision, they have 2D spatial orientation like in image

processing. However, in the text, we have the only dimension, which is the

single order of words in a sentence. We use filters to capture essential words

like ’good,’ ’bad,’ which might be helpful to classify the text. Filters can be

vector or matrix depending on the region size h, which is the product of how

many words or n-grams we want to see at time step t and the width of filters is

the same as of dimension of word embeddings. Note that each filter is scrolled

through the whole sentence until it reaches the end, and a new output vector

is calculated by applying bias term and activation function. Fig 4.2, pictures

this method.

2. Pooling Layer Second step is to take out only the important features from the

vectors or matrices we received after applying filters on the input feature map.

Chapter 4. Convolutional neural network for text classification 49

FIGURE 4.2: Applying filter on feature map in CNN. Feature map
is a matrix created by converting words into word embedding, the
length of this feature map is equal to the number of total words in a
sentence and width of feature map is the length of word embedding
of a single word in a sentence. In pooling layer, we apply filter matrix
of length h (h=2 in image above) and width equal to the size of word
embedding to extract important features from the feature map. This

step is required to reduce computation later.

For this, we apply 1-max pooling layer. As the filter vector have words equal

to the h length, and to decrease the calculations we only might want to extract

the important word for instance if filter captures ’like the’ then we only want

to extract ’like’ by applying the max-pooling layer.

3. ConcatMax Layer Third step is to a concatenate all the words embedding of

words which are extracted out by applying max pooling layer.

The output from the concatmax layer is then a fixed length vector which is passed

either through a softmax layer or other model like neural network, support vec-

tor machine for classification of text. The error from the classification is than back-

propagated through the model and in length of filter and bias term used while ap-

plying the filter to feature map.

In this work, we also use a convolutional network for classification of text generated

by different paraphrase generation models, discussed in 3 under the supervision of

Chapter 4. Convolutional neural network for text classification 50

PPDB dataset.

4.2 Experiments

4.2.1 Dataset

For training the binary classifier for text classification, we used IMDb movie dataset

described in section 2.4. The only preprocessing practiced while training the model

is to remove punctuations and to make every word lowercase. Furthermore, we

divide the training dataset into train data and validation dataset, and we kept the

test dataset untouched. These three datasets are then used to train, validate and test

the models, respectively.

4.2.2 Model

For the selection of a model for this experiment, we tried different varieties of models

for text classification to select the best model for this task. We also implemented [23]

and [24], in this section. Some of the steps were universal to all the models like

creating a vocabulary list of most frequent 25000 words, and then map them with a

unique index, preprocessing of sentences. The source sentence is then converted to

these index values and given as an input to a model. Also preprocessing were the

same in all models.

Recurrent Neural Network (RNN)

We first examined a single layer recurrent neural network (RNN) for the classifica-

tion task. The model take a sequence of words S = s1, s2, s3, , , sn as an input one at

a time t along with the previous hidden state ht−1, and produces a hidden state ht

for every word in a sequence. This process is repeated until all the words are passed

into the model, and the model produces a final hidden state, hT.

ht = f (st, ht−1) (4.1)

Chapter 4. Convolutional neural network for text classification 51

The final hidden state hT is passed to a linear layer l, also known as a fully connected

layer, to predict the final classification of the text.

ȳ = l(hT) (4.2)

Please note that in this model, we use one-hot vector encoding to represent a word

in a model. Furthermore, we used binary cross-entropy as a loss function with logits

to bound output between 0 and 1. Fig 4.3, shows the architecture of this model.

FIGURE 4.3: Single layer RNN model architecture for classification
task. Here, hi is the hidden state from previous encoding t − 1 step

and si is the input at time t.

Bi-directional Long Short Term Memory (LSTM)

Next, we improvised the vanilla RNN model used in the previous setup by using

bidirectional LSTM model, as LSTM has shown better results when compared with

vanilla RNN version. In this model, instead of using one hot vector encoding for

word embeddings, we used pre-trained word embeddings obtained from Global

Vectors for Word Representation (GLOVE) [42]. In the previous model, the hidden

state ht obtained from previous RNN unit is passed to the next RNN unit, only in

the forward direction. In this model, we used bi-directional LSTM where the hidden

state is passed from the first word to the last word ht, and from the last word to

the first word h̄t. Furthermore, we also added regularization in the model, called

dropout. In dropout, we randomly set any neuron to zero in forwarding pass.

The sentiment of the text is predicted by passing the concatenation of final hidden

state from both the forward hidden layer ht, and backward hidden layer h̄t. The

concatenation of both the hidden states is further passed through a linear layer as

before.

Chapter 4. Convolutional neural network for text classification 52

ȳ = l(ht, h̄t) (4.3)

We used the same binary cross-entropy as a loss function with logits as before. Fig

4.4 shows the architecture of the bidirectional model.

FIGURE 4.4: Bi-directional LSTM model architecture for classification
task

FastText Model

We also tried fasttext model proposed in work [23]. Fasttext has shown promising

results on different classification tasks, as shown in work. This model has very fewer

hyperparameters as compared with previous models. We have also used pre-trained

word embedding GLOVE. In this model, the text is first converted using word em-

beddings and then passed as an input to the model. Then the average of all these

word embeddings (using average pooling filter) is calculated and passed through

a linear layer for the prediction of sentence classification. Furthermore, we use the

same loss function as before, i.e., binary cross entropy with logits. Fig 4.5 shows the

architecture of the fasttext model.

Then we examine the convolutional neural network model for classification task as

described in section 4.1. We used the same pre-trained word embeddings obtained

from GLOVE and the same loss function to train and backpropagate error through

the model.

Finally, all the models were first fine-tuned on validation dataset, and then their

performance was evaluated on test dataset while choosing the best model for further

classification experiment.

Chapter 4. Convolutional neural network for text classification 53

FIGURE 4.5: Fasttext model architecture for classification task

4.3 Result and Analysis

This experiment is significant to this work, and we needed to get the stable and high-

grade model for the text classification because if we cannot manage to get reasonably

higher accuracy on IMDb movie dataset, then it becomes useless to us to estimate the

quality of generated paraphrases from seq2seq model. That is why, in this segment,

we examined different methods to get reasonably high accuracy.

We made all the models in Pytorch, and as the models were less complex as com-

pared to paraphrase generation model, we trained our models on 10 CPU on a

google compute engine instance. We train every model for ten epochs.

Firstly, we train a single layer RNN model 4.2.2 using stochastic gradient descent

(SGD) as an optimizer, and we were able to get the accuracy of 57.98% with the

hyperparameters Batch size = 64, Most frequent words vocabulary = 25000, word

embedding dimensionality = 100, hidden dimensionality = 100, learning rate = 1e-

3, input dimensionality = 25000, output dimensionality = 1. We were able to reduce

the training loss up to 0.6930. The confusion matrix of this model is shown in 4.1.

The F1-Score, precision, sensitivity, and specificity were evaluated as 0.0554, 0.4881,

0.6421, 0.3267 respectively. The confusion matrix of this model is shown below.

Next, we train bi-directional LSTM model 4.2.2. We again use adam as an optimizer,

with pre-trained GLOVE word embeddings, and with hyperparameters learning

Chapter 4. Convolutional neural network for text classification 54

TABLE 4.1: Confusion matrix for single layer RNN model.

Actual value
Positive Negative Total

Predicted outcome
Positive 8027 (64.20%) 8416 (67.32%) 16443
Negative 4473 (35.80%) 4084 (32.68%) 8557

Total 12500 12500 N

TABLE 4.2: Confusion matrix for bi-directional LSTM model.

Actual value
Positive Negative Total

Predicted outcome
Positive 10378 (83.02%) 4384 (35.092%) 14762
Negative 2122 (16.97%) 8116 (64.92%) 10238

Total 12500 12500 N

rate = 1e-3, batch size = 64, most frequent words vocabulary = 25000, input dimen-

sionality = 25000, output dimensionality = 1, word embedding dimensionality =

100, hidden dimensionality = 100, bidirectional RNN = true, number of layers

in RNN =2 and dropout = 0.5 . This time we were able to achieve an accuracy of

82.74% with F1-score 0.7610, precision as 0.7030, sensitivity as 0.8030 and specificity

as 0.6490. Glove pre-trained word embeddings have shown much improvments in

this model due to which we use same word embeddings in next models. The confu-

sion matrix of this model is shown in 4.2.

Then we train fasttext model 4.2.2 which was the fastest model to train as it only av-

erage word embeddings without any complicated calculations as compared to other

models. The accuracy on IMDb dataset improved by 5% and we were managed to

get the 86.27% accuracy on the test dataset. The training loss also reduces to 0.386.

The parameter used for this model were batch size = 64, input dimensionality =

25000, word embedding dimensionality = 100, output dimensionality = 1. We also

used pre-trained GLOVE word embeddings to convert the input text to dense vec-

tor. The values of other performance metrics like F1-score, precision, sensitivity and

specificity were 0.6432, 0.5954, 0.6992 and 0.5249, respectively. Table 4.3 shows the

confusion matrix of this model.

Finally, we train the CNN model using the Adam optimizer and GLOVE pre-trained

word embeddings. The hyperparameter of this model were imput dimensionality

= 25000, output dimensionality = 1, dropout = 0.5, number of filters = 100, filter

Chapter 4. Convolutional neural network for text classification 55

TABLE 4.3: Confusion matrix for FastText model.

Actual value
Positive Negative Total

Predicted outcome
Positive 8741 (69.92%) 5938 (47.50%) 14679
Negative 3759 (30.07%) 6562 (52.49%) 10321

Total 12500 12500 N

TABLE 4.4: Confusion matrix for CNN model.

Actual value
Positive Negative Total

Predicted outcome
Positive 10081 (80.64%) 2249 (17.99%) 12330
Negative 2419 (19.35%) 10251 (82.00%) 12670

Total 12500 12500 N

sizes = [3,4,5], word embeddings =100. This model improved the test accuracy, and

we managed to get 88.6600%. Furthermore, we see a decrement in the training

error from 0.6930 to 0.3070. The F1-score, precision, sensitivity, and specificity were

0.8120, 0.8175, 0.8064 and 0.8200, respectively. This model shows improvement in all

performance metrics as compared to other evaluated models. The confusion matrix

of this model is shown in table 4.4.

Table 4.5, 4.6 summarizes the performance of examined models in terms of different

performance metrics. Then we plot validation and training loss curve for the CNN

model in graph 4.7 w.r.t number of epochs. The receiver operating characteristic

curve (ROC) of examined models is shown in fig 4.7.

This experiment also proves that ConvNets works better on text classification than

RNN, which goes with the results found in [24].

Sentiment classification with different models
Model Test Loss Test Accuracy
RNN 0.6930 47.8400
Bidirectional
Multilayer RNN

0.3740 85.3500

FastText 0.3870 85.1600
CNN 0.3070 88.6600

TABLE 4.5: Results of different models on sentence classification in
NLP.

Chapter 4. Convolutional neural network for text classification 56

FIGURE 4.6: Training and validation accuracy wrt to number of
epochs while training text classifier

FIGURE 4.7: Receiver operating characteristic curve(ROC) of sen-
tence classifier

4.4 Summary

In this chapter we initially show how CNN started to become popular in natural

language processing (NLP) field after showing promising results in computer vision

field. CNN shows promising and significant improved results of classification tasks

when compared to RNN and become state-of-the art for classification tasks. CNN is

also faster to train due to less complicated calculations when compared with RNN.

We compared different models for text classification to identify the one with reason-

ably high accuracy on IMDb sentiment classification. It was a crucial experiment

and was also significant to our next set of an experiment which is to evaluate the

performance of paraphrase generations models. The results of these experiments

align with the results mentioned in paper [24]. Then we show the results of our

Chapter 4. Convolutional neural network for text classification 57

Sentiment classification with different models
Model F1-Score Precision Sensitivity Specificity
RNN 0.5546 0.4881 0.6421 0.3267
Bidirectional
Multilayer RNN

0.7610 0.7030 0.8030 0.6490

FastText 0.6432 0.5954 0.6992 0.5249
CNN 0.8120 0.8175 0.8064 0.8200

TABLE 4.6: F1-score, Precision, Sensitivity and Specificity of different
models on sentence classification in NLP.

experiments on IMDb dataset by doing text classification on it.

58

Chapter 5

Evaluation of generated

paraphrases in downstream task

In this chapter, we investigate the use of paraphrases generated by the different

models under the supervision of PPDB dataset, described in chapter 3. The pri-

mary motive of this analysis is to see how much these generated paraphrases can

help in downstream tasks like improving classifier to perform better on the original

test dataset by augmenting the training dataset. Furthermore, we perceive which

configuration of pointer and attention network in seq2seq model can produce bet-

ter similar sentences which can help in the classification task performed on IMDb

dataset.

5.1 Experiments

5.1.1 Dataset and Model

As suggested earlier in this chapter, to asses the use of generated paraphrases by

the different seq2seq model under the supervision of PPDB dataset in a downstream

task, we augment the original training dataset of IMDb movie dataset by gener-

ating one paraphrase of each sample in the dataset. Then we use the generated

paraphrases along with original training dataset of IMDb movie review dataset to

re-train the best classifier model we found in 4, i.e., convolutional neural network

(CNN). Initially, we had 25,000 samples of a movie review in training dataset, but

Chapter 5. Evaluation of generated paraphrases in downstream task 59

after generating paraphrase of each movie review, we were able to augment the

training dataset from 25,000 movie reviews to 50,000 movie reviews. Note that, we

kept the original test dataset untouched for making these models performance com-

parable. So, test dataset had 25,000 movie reviews and was not used to generate

paraphrases. Also, it is worth pointing out that we generated these paraphrases by

trained models which we examined in chapter 3 result’s section. We kept all the

preprocessing steps same as before. We repeated the same process with all three dif-

ferent models examined in chapter 3 to get three preprocessed training dataset and

only 1 test dataset.

While generating the paraphrases we used beam (n=3) to find the top 3 sentences

and picked the one sentence which has a better language model score.

To avoid the correlation between the samples already present in the training dataset

and generated paraphrases of IMDb movie reviews, we use a sample reweighting

technique where we sample each of the correlated samples to make them equal to

one.

5.2 Result and Analysis

First, we train the CNN model with paraphrases generated by seq2seq model with

an only attention mechanism. We train the model for 30 iterations with hyperparam-

eters batch size=100, word embedding dimensionality = 100, length of vocabulary

= 25000, number of filters = 100, filter size = [3,4,5], dropout =0.5 and Adam as an

optimizer. We used pre-train glove word embeddings to convert input sentence to

dense vector. With this configuration, we were able to get an accuracy of 77.8079%

with F1-score = 0.7856, sensitivity = 0.8132, specificity = 0.74296, precision = 0.7598.

We received best model at 5 iteration as shown in Fig 5.1. The confusion matrix of

this model is shown in table 5.1.

Then we train the CNN model with paraphrases generated by seq2seq model with

COPYNET pointer network illustrated in 3.3.1. We tried it with the same hyper-

parameters which we used in the original CNN classifier in chapter 4, i.e., batch

Chapter 5. Evaluation of generated paraphrases in downstream task 60

TABLE 5.1: Confusion matrix of CNN Model trained on paraphrases
generated by seq2seq model using only attention mechanism.

Actual value
Positive Negative Total

Prediction outcome
Positive 10165 (81.32%) 3213 (25.70%) 13378
Negative 2335 (18.68%) 9287 (74.29%) 11622

Total 12500 12500 N

FIGURE 5.1: Training and validation loss error curve for seq2seq
model with attention mechanism only and trained under the super-

vision of PPDB.

size=100, word embedding dimensionality = 100, length of vocabulary = 25000,

number of filters = 100, filter size = [3,4,5], dropout =0.5 with Adam algorithms as

an optimizer and binary cross-entropy as a loss function. Using this hyper-parameters,

we got an accuracy of 78.3%. The other performance metrics were f1-score = 0.79064562

, sensitivity= 0.81952, specificity=0.74648 and precision=0.763736. The training and

validation error curve is shown in fig 5.2, where it can be seen that we get minimum

validation error at iteration=3. The confusion matrix of this model is shown in table

5.2.

Next, we trained the CNN model with the paraphrases generated by the pre-trained

seq2seq model with pointer softmax pointer network 3.3.2, and then we evaluated its

TABLE 5.2: Confusion matrix of CNN Model trained on paraphrases
generated by seq2seq model with COPYNET pointer network.

Actual value
Positive Negative Total

Prediction outcome
Positive 10244 (81.95%) 3169 (25.35%) 13413
Negative 2256 (18.04%) 9331 (74.64%) 11587

Total 12500 12500 N

Chapter 5. Evaluation of generated paraphrases in downstream task 61

FIGURE 5.2: Training and validation loss error curve for seq2seq
model with COPYNET as a pointer network trained under the su-

pervision of PPDB.

TABLE 5.3: Confusion matrix of CNN Model trained on paraphrases
generated by seq2seq model with Pointer Softmax pointer network.

Actual value
Positive Negative Total

Prediction outcome
Positive 9888 (79.10%) 2884 (23.07%) 12772
Negative 2612 (20.89%) 9616 (76.92%) 12228

Total 12500 12500 N

performance on the original test dataset of IMDb dataset. We were able to get the test

accuracy of 78.0159% with f1-score, precision, sensitivity, and specificity as 0.7825,

0.7741, 0.7741, 0.79104, 0.76298 respectively. Fig 5.3 shows the training and valida-

tion loss error curve of this model. We trained this model for 30 epochs, and we

got the best model at the fourth iteration. The parameters of this model were batch

size=100, word embedding dimensionality = 100, length of vocabulary = 25000,

number of filters = 100, filter size = [3,4,5], dropout =0.5. We use the same Adam al-

gorithm as an optimizer and binary cross-entropy as a loss function. The accuracy of

the model decreases from 88.66% to 78.0159% after adding the paraphrases, which

shows the paraphrases generated by this model did not help in improving the test

accuracy on IMDb movie review dataset. Table 5.3 shows the confusion matrix of

this model.

Fig 5.4 abstracts all the performance metrics of each model and compare this with

the CNN model where we did not add paraphrases while training the model.

Chapter 5. Evaluation of generated paraphrases in downstream task 62

FIGURE 5.3: Training and validation loss error curve for seq2seq
model with pointer-softmax as a pointer network trained under the

supervision of PPDB.

FIGURE 5.4: Receiver operating characteristic curve (ROC) for model
having different training dataset. Here, original training dataset is
the original training dataset which comes in IMDb movie review and
consist of 25,000 samples, and consider as a baseline model for our

experiment.

Fig 5.4 shows the receiver operating characteristic curve (ROC) of the analyzed mod-

els. Looking at the curve, we can infer that paraphrases generated using three dis-

tinct configurations in the Encoder- Decoder network did not help in improving the

test accuracy on IMDb movie review test dataset. Moreover, all the performance

metrics value decreases, which are summarized in table 5.4. These models have

shown significant improvements in other NLP tasks but did not help in generating

paraphrases under the supervision of PPDB dataset. The poor performance of these

models can be either because of training them on PPDB dataset or model itself. Most

Chapter 5. Evaluation of generated paraphrases in downstream task 63

Text Classification
Train Dataset Test Accuracy F1-Score Precision Sensitivity Specificity
IMDb Original Train
dataset 88.6600 0.8120 0.8170 0.8060 0.8200

IMDb Original Train
dataset + para-
phrases generated by
seq2seq model with
attention mechanism

77.8079 0.7856 0.7598 0.8132 0.7429

IMDb Original Train
dataset + para-
phrases generated by
seq2seq model with
COPYNET pointer
network

78.3000 0.7906 0.7637 0.8195 0.7464

IMDb Original Train
dataset + para-
phrases generated
by seq2seq model
with pointer softmax
pointer network

78.0100 0.7825 0.7741 0.7910 0.7629

TABLE 5.4: Evaluation of performance of paraphrases generated by
Encoder-Decoder network in downstream task.

of the paraphrases in the test dataset were not at all complete sentence and not use-

ful at all. Below we show one example of paraphrase generated by these models for

the training dataset of IMDb movie review dataset.

1. Sentence Hello . This movie is well okay . Just kidding ! ITS AWE-

SOME ! It’s NOT a Block Buster smash hit . It’s not meant to be . But its a big

hit in my world . And my sisters . We are rockin’ Rollers . GO RAMONES ! ! !

! This is a great movie For ME !

2. Attention mechanism hey guys . this s all right . just kidding . it’s great . it is

not a little <unk> . it’s not only possible . but it s a big deal . and my <UNK> .

we’re <unk> . get going . that s a good idea .

3. COPYNET hey guys . this s all right . just kidding . it’s great . it is not a little

block buster . it’s not only meant . but it s a big hit . and my dear . we re rockin

. get going . that s a good movie .

4. Pointer Softmax hello this film s okay . kidding . awesome . it s not a stop .

but a great deal s big . and my . we re rockin Rollers . ramones . this is a great

deal for me .

Chapter 5. Evaluation of generated paraphrases in downstream task 64

After examining the full training dataset’s paraphrases, generated by these mod-

els, we concluded that the main reasons for the unsatisfactory performance of these

models are as follows:

1. The PPDB dataset does not have the complete sentences and only consists of

lexical (single word to single word), phrasal (multiword to single/multiword),

and syntactic (paraphrase rules containing non-terminal symbols) paraphrases,

which in practice does not help Encoder-Decoder network to perform better on

bigger or complete sentences. Furthermore, the IMDb movie review dataset in-

cludes reviews with more than 250 words where the performance of Encoder-

Decoder network reduces to a great extent.

2. The PPDB dataset is an automatically extracted database, due to which it has

many words which even does not make sense like ’rrb,’ ’br,’ ’<html>’ and oth-

ers. In the dataset, we also notice most of the time, the word ’film’ is getting

converted into ’idea’ or ’way,’ which is not useful at all.

3. In Encoder-Decoder with pointer softmax pointer network, we observed that

the same word is getting repeated many times in the same sentence. Further-

more, it generates many <UNK> tokens when the switching network chooses

a word from attention mechanism, and the highest probability is given to a

<UNK> token.

4. Encoder-Decoder with COPYNET pointer network performed a little bit better

than other models, but the sentences generated by the model were not gram-

matically correct, which can be because of supervision of PPDB dataset.

5.3 Summary

In this chapter, we conducted experiments related to the evaluation of paraphrases

generated by the different pointer network in encoder-decoder models described in

chapter 3 in the downstream task, i.e., in text classification. We did this by augment-

ing the training dataset of IMDb movie review dataset and evaluating its perfor-

mance on the original test dataset.

Chapter 5. Evaluation of generated paraphrases in downstream task 65

The results were not stimulating enough, and we observed a 10-11% decrease in

test accuracy of IMDb movie review dataset. We further analyze these generated

paraphrases and mention our analysis in result and analysis section of chapter 5.

66

Chapter 6

Conclusions and Future Work

6.1 Summary

In this work, we examined the performance of the encoder-decoder (also recognized

as seq2seq model) model with attention and pointer network on generating para-

phrases under the supervision of the medium size PPDB dataset. Furthermore, we

evaluated the quality of generated paraphrases by using generated paraphrases for

IMDb movie dataset in the classification task. In chapter 3, we first discussed the dif-

ferent variety of pointer network which performed significantly better in text sum-

marization and text simplification tasks. We trained these model under the supervi-

sion of the PPDB dataset and analyze its performance of test dataset from the PPDB

dataset. We summarize all results in section 3.5, here we use BLEU and METEOR

as performance metrics to evaluate these models performance. Then in chapter 4,

we investigated and trained different models for text classification on IMDb movie

review dataset to create a stable and robust baseline on text classification. Here we

also present, how convolution neural network outperforms other models for the text

classification on IMDb movie review dataset.

As BLEU and METEOR have their limitations for evaluating the similarity between

two sentences, we further generated paraphrases of the training dataset of IMDb

movie dataset in chapter 5. We use these generated paraphrases to augment the

training dataset of IMDb movie review dataset and retrain convolutional neural net-

work with augmented training dataset to analyze the quality and how useful are

these paraphrases in downstream tasks. We present our results in section 5.2. The

Chapter 6. Conclusions and Future Work 67

results were not promising enough, and we saw a decrement of 10-11% in test accu-

racy on IMDb movie test dataset after adding these paraphrases, which states that

these paraphrases were not significant at all.

After analyzing the dataset of paraphrases generated by these models, we inferred

that the unsatisfactory performance of these models could be due to the following

reasons:

1. Wrong generalization of relevant terms in IMDb movie review dataset. For

instance, pre-trained seq2seq on the PPDB database learns to map from ’best’

to ’highest,’ which caused to generate paraphrase for the sentence ’It was the

best movie I have ever seen’ to ’Highest movie so far,’ which further classi-

fied by the CNN as a negative review. It can be because of the generation of

paraphrases for the different domain.

2. The switching network in pointer softmax did not help much and most of the

time, end up by repeating the same words again and again. The model also

produces many <UNK> token when the probability of generating word us-

ing attention vocabulary was higher than pointer vocabulary. For example for

movie review "This is a great horror film for people who do not want all that

vomit-retching gore and sensationalism’ the generated paraphrase was ’That is

a great <unk> movie <eos>.’ The second example which shows the repetitive

generation of the same word is ’it’s a lot of course <eos> this film on course

of course <eos> it’s time of course <eos> <unk> of <unk> <unk> <eos> so the

house s right there of course <eos> i have seen a lot <unk> <eos> this film

while much to <eos>’.

3. The problem also comes from the supervision of the PPDB dataset as it only

consists of lexical (single word to single word), phrasal (multiword to sin-

gle/multiword), and syntactic (paraphrase rules containing non-terminal sym-

bols) paraphrases, due to which most of the time the generated sentences are

not grammatically correct. Furthermore, the IMDb movie review dataset con-

sists of very long sentences, which further decreases the quality of these para-

phrases significantly.

Chapter 6. Conclusions and Future Work 68

4. As mentioned before, COPYNET pointer network performed a little bit better

compared to other models, but because of the supervision of the PPDB dataset,

the generated sentences were not well structured and complete.

6.2 Contributions

This thesis presented the following contributions:

1. Implementing and evaluation of seq2seq model with attention and different

variants of pointer network under the supervision of PPDB dataset.

2. Implementing different classification models in NLP like single layer RNN,

bidirectional RNN, Fasttext and CNN, to create a stable baseline on IMDb

movie review dataset for classification tasks.

3. Evaluation of generated paraphrases in the downstream task by augmenting

IMDb movie training dataset and comparing with solid baseline. We also show

how the performance of downstream tasks is highly correlated with higher

METEOR score or quality of generated paraphrases.

4. Evaluation of the PPDB dataset for generating paraphrases by looking at the

examples generated by the encoder-decoder model.

6.3 Future Work

In chapter 3, we examined the different configurations of the encoder-decoder model

with attention mechanism and the different pointer network. The results are shown

in section 3.5 are not satisfactory enough, but due to lack of time and no availability

of code online, we were not able to try out all the different variations of implemen-

tation of pointer network in seq2seq model. The max number of epocs we examined

for each model was 15 in which we were able to see the convergence of the model,

but it can be carried out till 50-100 to see further improvement in obtaining the best

model. We believe these results can be improved if one can try other implementation

Chapter 6. Conclusions and Future Work 69

of copy decoder and with the tuning of all other hyper-parameters in the encoder-

decoder network. The future work might also include trying PPDB dataset with a

smaller version or removing short lexical or phrase sentences due to which we were

not able to get complete sentences., which we think can improve the quality of gener-

ated paraphrase. One can also try other paraphrases dataset to see the improvement

in the quality of generated paraphrases. One could also try coverage with atten-

tion to not repeat words which were already used to generate paraphrases, which

can further improve the quality of generated paraphrases in COPYNET and Pointer

softmax pointer network.

In chapter 4, we examined many different variations of a text classifier, and we

achieved significant improvement in test accuracy with CNN. The results were con-

sistent with other papers and results. Here we attempted to put our genuine efforts

to get reasonable high accuracy for creating a strong and stable baseline. The results

are represented in section 4.3. Here, one can try other datasets or another down-

stream task which we can further use to evaluate the quality of generated para-

phrases.

In chapter 5, we evaluate the quality of generated paraphrases in the downstream

task, i.e., in text classification. According to our analysis, the best way of evaluating

the generated paraphrases is to evaluate their performance in the downstream task.

All the metrics we have till now, such as BLEU, TER, METEOR have their limita-

tions, which can give wrong indications about the performance of the model and

the quality of generated paraphrase. So one should always try to do analysis us-

ing the downstream task. As shown in the chapter 3, the model performance is not

very bad, but after using paraphrases in the downstream task, the quality of these

paraphrases decreases to a greater extent. We show how the performance of down-

stream tasks is highly correlated with higher BLEU and METEOR score or quality of

generated paraphrases. However, in the future, these results can also be tested on

different downstream task with the different dataset for supervision. Our analysis

can also be used further to improve the quality of generating paraphrases in new

models.

To our best knowledge, this evaluation of generating paraphrases in downstream

Chapter 6. Conclusions and Future Work 70

task with COPYNET and pointer softmax network in seq2seq model is performed

for the first time. Our results can be used as the baseline to further improve the

quality of test accuracy on IMDb movie review dataset by augmenting the training

dataset. Our analysis can also be used to the future development of paraphrase

generation model and to improve the attention and pointer network configuration.

71

Bibliography

[1] N. Aggarwal, K. Asooja, and P. Buitelaar, “Pushing corpus based relatedness

to similarity: Shared task system description”, in Proceedings of the First Joint

Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the

Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth In-

ternational Workshop on Semantic Evaluation, ser. SemEval ’12, Association for

Computational Linguistics, 2012, pp. 643–647.

[2] I. Androutsopoulos and P. Malakasiotis, “A survey of paraphrasing and tex-

tual entailment methods”, Journal of Artificial Intelligence Research, vol. 38, pp. 135–

187, 2010.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate”, in Proceedings of The International Conference on

Learning Representations, 2015, pp. 1–15.

[4] R. Barzilay and L. Lee, “Learning to paraphrase: An unsupervised approach

using multiple-sequence alignment”, in Proceedings of North American Chap-

ter of the Association for Computational Linguistics: Human Language Technologies,

2003, pp. 16–23.

[5] S. Biggins, S. Mohammed, S. Oakley, L. Stringer, M. Stevenson, and J. Priess,

“Two approaches to semantic text similarity”, in Proceedings of the First Joint

Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the

Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth In-

ternational Workshop on Semantic Evaluation, ser. 12, Association for Computa-

tional Linguistics, 2012, pp. 655–661.

[6] D. Buscaldi, R. Tournier, N. Aussenac-Gilles, and J. Mothe, “Irit: Textual sim-

ilarity combining conceptual similarity with an n-gram comparison method”,

in The First Joint Conference on Lexical and Computational Semantics – Volume 1:

BIBLIOGRAPHY 72

Proceedings of the main conference and the shared task, and Volume 2: Proceedings

of the Sixth International Workshop on Semantic Evaluation, Association for Com-

putational Linguistics, 2012, pp. 552–556.

[7] D. Bär, C. Biemann, I. Gurevych, and T. Zesch, “Ukp: Computing semantic tex-

tual similarity by combining multiple content similarity measures”, in Proceed-

ings of the First Joint Conference on Lexical and Computational Semantics-Volume 1:

Proceedings of the main conference and the shared task, and Volume 2: Proceedings

of the Sixth International Workshop on Semantic Evaluation, Association for Com-

putational Linguistics, 2012, pp. 435–440.

[8] M. E. Califf and R. J. Mooney, “Bottom-up relational learning of pattern match-

ing rules for information extraction”, Journal of Machine Learning Research, vol. 4,

pp. 177–210, 2003.

[9] Z. Cao, C. Luo, W. Li, and S. Li, “Joint copying and restricted generation for

paraphrase”, vol. Proceedings of the Thirty-First Association for the Advancement

of Artificial Intelligence conference on Artificial Intelligence, 2017, pp. 3152–3158.

[10] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of

neural machine translation: Encoder-decoder approaches”, in, vol. Proceedings

of Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,

Association for Computational Linguistics, 2014, pp. 103–115.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Ben-

gio, “Learning phrase representations using RNN encoder-decoder for statis-

tical machine translation”, vol. Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, Association for Computational Lin-

guistics, 2014, pp. 1724–1734.

[12] A. Chorianopoulou, “Investigation paraphrasing algorithms with application

to spoken dialogue systems”, Diploma thesis, Technical University of Crete Cha-

nia, Greece, 2013.

[13] L. Dong, J. Mallinson, S. Reddy, and M. Lapata, “Learning to paraphrase for

question answering”, Association for Computational Linguistics, 2017, pp. 886–

897.

[14] P. A. Duboue and J. Chu-Carroll, “Answering the question you wish they had

asked: The impact of paraphrasing for question answering”, in Proceedings of

BIBLIOGRAPHY 73

the Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics , Companion Volume: Short Papers, As-

sociation for Computational Linguistics, 2006, pp. 33–36.

[15] P. G. Edmonds, “Semantic representations of near-synonyms for automatic

lexical choice”, PhD thesis, 1999.

[16] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying mechanism in sequence-

to-sequence learning”, in Proceedings of the 54th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers), Association for Com-

putational Linguistics, 2016, pp. 1631–1640.

[17] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the un-

known words”, in Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), Association for Computa-

tional Linguistics, 2016, pp. 140–149.

[18] Z. S. Harris, “Distributional structure”, Word, vol. 10, pp. 146–162, 1954.

[19] Z. S. Harris, Transformational Theory. Springer Netherlands, 1970, pp. 533–577.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural Compu-

tation, vol. 9, pp. 1735–80, Dec. 1997.

[21] S. B. Huffman, “Learning information extraction patterns from examples”, in

Connectionist, Statistical and Symbolic Approaches to Learning for Natural Lan-

guage Processing, S. Wermter, E. Riloff, and G. Scheler, Eds., Springer, 1996,

pp. 246–260.

[22] D. Inkpen, “Building a lexical knowledge-base of near-synonym differences”,

Computational Linguistics, vol. 32, pp. 223–262, 2004.

[23] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient text

classification, 2016.

[24] Y. Kim, “Convolutional neural networks for sentence classification”, in Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language Process-

ing, Association for Computational Linguistics, 2014, pp. 1746–1751.

[25] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-based translation”, in

Proceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology - Volume 1, ser. 03,

Association for Computational Linguistics, 2003, pp. 48–54.

BIBLIOGRAPHY 74

[26] A. Lavie and A. Agarwal, “Meteor: An automatic metric for mt evaluation

with high levels of correlation with human judgments”, in Proceedings of the

Second Workshop on Statistical Machine Translation, ser. 07, Association for Com-

putational Linguistics, 2007, pp. 228–231.

[27] “Learning dictionaries for information extraction by multi-level bootstrapping”,

English, in Proceedings of the National Conference on Artificial Intelligence. Asso-

ciation for the Advancement of Artificial Intelligence, 1999, pp. 474–479.

[28] Y. LeCun and Y. Bengio, The Handbook of Brain Theory and Neural Networks,

M. A. Arbib, Ed. Massachusetts Institute of Technology Press, 1998, ch. Con-

volutional Networks for Images, Speech, and Time Series, pp. 255–258.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition”, in Intelligent Signal Processing, S. Haykin and

B. Kosko, Eds., Institute of Electrical and Electronics Engineers Press, 2001,

pp. 306–351.

[30] Z. Lin, H. T. Ng, and M.-Y. Kan, “Automatically evaluating text coherence

using discourse relations”, in Proceedings of the 49th Annual Meeting of the As-

sociation for Computational Linguistics: Human Language Technologies - Volume 1,

Association for Computational Linguistics, 2011, pp. 997–1006.

[31] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-

based neural machine translation”, vol. Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, Association for Computa-

tional Linguistics, 2015, pp. 1412–1421.

[32] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning

word vectors for sentiment analysis”, in Proceedings of the 49th Annual Meet-

ing of the Association for Computational Linguistics: Human Language Technologies,

Association for Computational Linguistics, 2011, pp. 142–150.

[33] P. Malakasiotis, “Paraphrase and textual entailment recognition and genera-

tion”, PhD thesis, Department of Informatics, Athens University of Economics and

Business, 2011.

[34] I. Mani, Automatic Summarization. John Benjamins Publishing Company, Jan.

2001, vol. 3, pp. 29–36.

BIBLIOGRAPHY 75

[35] K. R. McKeown, “Paraphrasing questions using given and new information”,

Computational Linguistic, vol. 9, no. 1, pp. 1–10, 1983.

[36] R. Mihalcea, C. Corley, C. Strapparava, et al., “Corpus-based and knowledge-

based measures of text semantic similarity”, in The Association for the Advance-

ment of Artificial Intelligence, vol. 6, 2006, pp. 775–780.

[37] R. Mitkov and E. Hovy, Text Summarization. Oxford University Press, Sep.

2012, ch. 32, pp. 583–598.

[38] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic

evaluation of machine translation”, in Proceedings of the 40th annual meeting on

Association for Computational Linguistics, Association for Computational Lin-

guistics, 2002, pp. 311–318.

[39] E. Pavlick, J. Bos, M. Nissim, C. Beller, B. Van Durme, and C. Callison-Burch,

“Adding semantics to data-driven paraphrasing”, in Proceedings of the 53rd An-

nual Meeting of the Association for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),

Association for Computational Linguistics, 2015, pp. 1512–1522.

[40] E. Pavlick and C. Callison-Burch, “Simple ppdb: A paraphrase database for

simplification”, in Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), Association for Computa-

tional Linguistics, 2016, pp. 143–148.

[41] E. Pavlick, P. Rastogi, J. Ganitkevitch, B. Van Durme, and C. Callison-Burch,

“Ppdb 2.0: Better paraphrase ranking, fine-grained entailment relations, word

embeddings, and style classification”, in Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (Volume 2: Short Papers), Association for

Computational Linguistics, 2015, pp. 425–430.

[42] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word

representation”, vol. Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, Association for Computational Linguistics, 2014,

pp. 1532–1543.

[43] A. Prakash, S. A. Hasan, K. Lee, V. V. Datla, A. Qadir, J. Liu, and O. Farri,

“Neural paraphrase generation with stacked residual LSTM networks”, in

BIBLIOGRAPHY 76

Proceedings of COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers, The COLING 2016 Organizing Committee, 2016,

pp. 2923–2934.

[44] C. Quirk, C. Brockett, and W. Dolan, “Monolingual machine translation for

paraphrase generation”, in Proceedings of the 2004 Conference on Empirical Meth-

ods in Natural Language Processing, 2004, pp. 142–149.

[45] S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and Y. Liu, “Statistical

machine translation for query expansion in answer retrieval”, in Proceedings of

the 45th Annual Meeting of the Association for Computational Linguistics, ser. 07,

2007, pp. 464–471.

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing: Foun-

dations of research”, Nature, vol. 323, J. A. Anderson and E. Rosenfeld, Eds.,

pp. 696–699, 1988.

[47] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with

pointer-generator networks”, vol. Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), Association for

Computational Linguistics, 2017, pp. 1073–1083.

[48] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert, “Crystal: Inducing a con-

ceptual dictionary”, Proceeding 14th International Joint Conference on Artificial

Intelligence, pp. 1314–1319, Jun. 1995.

[49] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks”, Advances in Neural Information Processing Systems, pp. 3104–

3112, 2014.

[50] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Coverage-based neural machine transla-

tion”, Computing Research Repository, vol. Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 76–

85–430, 2016.

[51] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks”, in Neural Infor-

mation Processing Systems, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,

and R. Garnett, Eds., Curran Associates, Inc., 2015, pp. 2692–2700.

[52] F. Xu, H. Uszkoreit, and H. Li, “A seed-driven bottom-up machine learning

framework for extracting relations of various complexity”, in Proceedings 45th

BIBLIOGRAPHY 77

Annual Meeting of the Association for Computational Linguistics 2007, Association

for Computational Linguistics, Jun. 2007, pp. 584–591.

	Acknowledgements
	Contents
	Introduction
	Motivation
	Applications
	Goal of the Thesis
	Contributions
	Thesis Structure

	Related Work
	Paraphrase Theory
	Similarity Measures
	Paraphrase Generation
	Approaches to Paraphrase Generation
	Bootstrapping
	Statistical Machine Translation (SMT)
	Parsing
	Phrase-based Machine Translation

	Creation of Paraphrase Dataset

	DataSet
	The paraphrase database
	IMDb Dataset

	Recurrent Neural Networks
	Convolutional Neural Networks
	Evaluation Metrics
	Summary

	Encoder-Decoder models for Paraphrase Generation
	Encoder-Decoder RNNs for NLP
	Encoder-Decoder with Attention
	Encoder-Decoder with Pointer network
	COPYNET Network
	Pointer Softmax Network

	Experiments
	Dataset
	Models

	Results and Analysis
	Summary

	Convolutional neural network for text classification
	Convolution neural network for NLP
	Experiments
	Dataset
	Model
	Recurrent Neural Network (RNN)
	Bi-directional Long Short Term Memory (LSTM)
	FastText Model

	Result and Analysis
	Summary

	Evaluation of generated paraphrases in downstream task
	Experiments
	Dataset and Model

	Result and Analysis
	Summary

	Conclusions and Future Work
	Summary
	Contributions
	Future Work

	Bibliography

