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Abstract

Execution/Simulation of Context/Constraint-aware Composite Services

using GIPSY

Jyotsana Gupta

For fulfilling a complex requirement comprising of several sub-tasks, a composition of simple

web services, each of which is dedicated to performing a specific sub-task involved, proves to

be a more competent solution in comparison to an equivalent atomic web service. Owing to

advantages such as re-usability of components, broader options for composition requesters

and liberty to specialize for component providers, for over two decades now, composite

services have been extensively researched to the point of being perfected in many aspects.

Yet, most of the studies undertaken in this field fail to acknowledge that every web service has

a limited context in which it can successfully perform its tasks, the boundaries of which are

defined by the internal constraints placed on the service by its providers. When used as part

of a composition, the restricted context-spaces of all such component services together define

the contextual boundaries of the composite service as a unit, which makes internal constraints

an influential factor for composite service functionality. However, due to the limited exposure

received by them, no systems have yet been proposed to cater to the specific verification of

internal constraints imposed on components of a composite service. In an attempt to address

this gap in service composition research, in this thesis, we propose a multi-faceted solution

capable of not only automatically constructing context-aware composite web services with

their internal constraints positioned for optimum resource-utilization but also of validating

the generated compositions using the General Intensional Programming SYstem (GIPSY)

as a time- and cost-efficient simulation/execution environment.
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Chapter 1

Introduction

We begin this chapter with a detailed description of the problem domain and the specific

issues that we address in this thesis. Then, we discuss the contributions and define the scope

of our research. Finally, we provide a brief overview of our research methodology followed

by an introduction to the chapters that explore it elaborately.

1.1 Problem Analysis

Web services or, simply, services, are independent, self-describing, modular programs that

can be published, searched for, invoked and executed via the World Wide Web. These

programs are hosted on computers known as servers and are accessible for use from other

computers known as clients provided that both the server and the clients are connected to

the Internet. In order to make their services discoverable, service providers usually publish

them on some globally-available service registry, such as the one defined by the Universal

Description, Discovery and Integration (UDDI) specifications. Clients, also known as service

requesters or service users, looking for a ready-made application can search through such

registries for locating the web service that best suits their requirements. A registry entry

is responsible for providing introductory information about a service, such as, its name,

type, publisher, language, operating system and a link to its detailed description. A service
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description, on the other hand, aims to describe the service interface, i.e., the type of

inputs accepted and outputs produced by the service, protocols and messages to be used

for communicating with it, operations/functions that it can perform and its location. Using

the information from the registry and the description, a requester can make a well-informed

decision about service selection and make a remote call to the most suitable candidate over

the Web to perform the required task [1, 2]. The relationships between the various entities

involved in the global interpretation of the web service domain as discussed here have been

depicted in Figure 1.

Figure 1: Web Service Domain Model

In order to enhance their clarity and re-usability, web services are usually designed to

perform very simple and specific tasks. For instance, consider a web service that processes

credit card payments. Such a service would accept credit card details and payment amount

as inputs and produce payment status (complete/declined) as output. If such a service is

made available as an independent unit, it could be useful for several different domains, such

as online shopping stores, student fee payment portals and checkout counters in grocery

stores. However, if the same service provider was instead to offer a larger and more complex

atomic shopping service (as the one depicted in Figure 2) that could display a product
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catalog, accept a customer’s order, process credit card payment and initiate shipment of the

ordered goods, the scope of their potential clients would be significantly reduced because

such a shopping service would only be suitable for online shopping stores. Additionally,

this shopping service would be leased by a client only if all of its components – Catalog,

Order, Payment and Shipment – perfectly fit the client’s requirements. If even one of the

components would fail to fulfill the required task, the entire service would be rejected. For

example, if the service requester needs the service to be able to ship products across the

entire North American region, but the service is unable to process Mexican addresses, the

whole shopping service would be discarded as unsuitable. That is why it is often difficult to

find a ready-made monolithic service on the Web that could perfectly fulfill a complex set

of requirements. Therefore, to accomplish such complex tasks, simpler web services (called

component services) are selected for each sub-task and composed together in the form of a

workflow to build what is known as a composite web service. These are customized services

assembled and arranged according to each target user’s particular requirements. Not only

does this process of web service composition widen the client base for each service provider,

it also opens up a wide variety of service options to choose from for each sub-task for the

service users, thereby benefiting both the parties involved in the transaction.

Figure 2: Online Shopping Service Components

Besides providing clarity, re-usability and broader business options, “composable” web

services allow service providers to focus on refining the applications that they specialize

in while employing external services from other providers to assist with the supporting

activities, thereby aiding production of superior quality services in every field. For instance,

an online store can dedicate its resources to building a richer product catalog service if they

3



outsource the job of processing payments to an external service provider that specializes in

banking applications, thereby creating a superior composite shopping service (similar to the

one depicted in Figure 2) resulting in higher customer satisfaction.

Owing to such advantages, among others, the area of web service composition has been

extensively researched for over two decades now. Several aspects of the composition process

have been exhaustively explored and honed. Yet, there are certain facets of composite

web services that have not been granted equal consideration. For instance, almost all of

the existing research on web service composition tends to overlook the fact that no web

service has a universal aptitude. Every service has a limited context (albeit possibly wide)

in which it can successfully perform its tasks. Such limitations are defined by the service

providers and are termed as service constraints or internal constraints. For example, while

one credit card payment service (say, W1) might be able to process both Visa and Master

cards (internal constraint: CreditCardBrand ∈ {V isa,Master}), another service (say, W2)

might be capable of processing only Visa cards (internal constraint: CreditCardBrand =

V isa). Similarly, a shipment service (say, W3) might be capable of delivering products only

to addresses within Canada (internal constraint: ShippingAddress ∈ {Canada}). Also, it

would be nearly impossible to find a web service that could successfully process every existing

credit card brand or one that could deliver products to every country in the world. Now, if the

shipment service W3 and the Visa card payment service W2 mentioned here were to be used

as components of the composite online shopping service depicted in Figure 2, the shopping

service as a unit would be constrained to {CreditCardBrand = V isa∩ShippingAddress ∈

{Canada}}, i.e., it would be useful for only those customers who reside in Canada and use

a Visa card for online transactions. Clearly, this limits the customer-base of the online store

employing the shopping service. Due to such impact, it is important to take all the internal

constraints of atomic services into account while studying the behavior of composite services.

To the best of our knowledge, internal constraints in the context of web service composition

have only been discussed in elaborate detail by Wang, Ding, Jiang, and Zhou in [3], followed

by Laleh, Paquet, Mokhov, and Yan in [4, 5, 6, 7, 8].

4



Due to the limited exposure received by this aspect of web service composition,

no systems (as per our knowledge) have yet been proposed to cater to the specific

verification and validation of constraints imposed on component atomic services by their

developers/providers. Most of the existing research on verification/simulation/execution

of composite web services has been concerned with validating their Quality of Service

(QoS) constraints, functional requirements or Linear Temporal Logic (LTL) properties.

The focus of researchers working on QoS constraint verification has been on ensuring

that services maintain certain pre-defined levels of QoS standards, i.e., they offer optimum

values for one or more QoS features such as cost, availability, response-time and reliability

[9, 10, 11, 12, 13, 14, 15]. Meanwhile, the systems proposed for verification of functional

requirements have been dedicated to confirming that services properly perform the tasks

claimed by their description [9, 13, 14, 15, 16, 17, 18, 19]. For instance, while testing a

credit card payment service, such systems would aim to ensure that given the credit card

details and the amount to be paid, the service would generate a receipt if the card details

are valid and the payment amount fits within the credit limit. What these systems fail to

consider is that not every brand of credit cards can be processed by a single service even if

the card details might be valid and the credit limit might allow the payment, in which case,

given the details of a credit card that is not recognized by the service, the result should be

some appropriate error message. However, such scenarios are not taken into account by the

systems proposed so far. Similar is the case with LTL-validation solutions, whose primary

focus is on ensuring that the components of a composite service are executed in the correct

order [14, 20]. For example, in case of the online shopping service depicted in Figure 2, an

LTL-verification solution would mainly be concerned about confirming that the Shipment

service is executed only after the Payment service has successfully finished its processing.

The internal service constraints that we aim to verify in this thesis are different from

those discussed in the research works cited above. These are, as stated earlier, restrictions

imposed on the context in which a service can be executed. We borrow the concept of

the execution context of a web service from [4] and consider it to be an aggregation of all

5



the information that could affect the execution of the service. According to this definition,

each element of an execution context is a name-value pair. Based on that, the context of a

service is considered to be the set of all its input parameters and the values that are assigned

to them at the time of the service call. While for an atomic service these parameters are

specified by the service provider as part of its definition, for a composite service – created

in response to a composition request, the execution context is viewed as a set of the input

parameters specified as part of the request for execution of the entire composite service, i.e.,

the input parameters whose values can be supplied by the customer for whom the composite

service is intended (see Section 3.1 for details on composition request). For example, consider

the composite shopping service depicted in Figure 2 and its component details provided in

Table 1. In the table, we list the values that might get assigned to the component services’

input and output parameters for a sample run of the shopping service. For this sample run,

the context of the atomic services would be:

• Service W1: {ProductName : StudyTable}

• Service W2: {ProductNumber : ST1234, ProductPrice : 75.00}

• Service W3: {OrderNumber : ORD1234, PaymentAmount : 82.50, CreditCardBrand

: Visa, CreditCardNumber : CCVS56789}

• Service W4: {PaymentStatus : Complete, ProductWeight : 45, ShippingAddress :

Canada}

while the context of the composite shopping service would be: {ProductName : StudyTable,

CreditCardBrand : Visa, CreditCardNumber : CCVS56789, ShippingAddress : Canada}.

For any composite service, many of the context parameters/variables of its component

services could get their values assigned dynamically as the composite service is being

executed. Therefore, in order to check if the restrictions placed on such variables (i.e., the

internal constraints) are satisfied, we need to either actually execute the composite service

or else simulate its execution. For example, consider the online shopping service depicted

6



Table 1: Online Shopping Service Component Details

Service Type Input Parameters Sample Input Output Parameters Sample Output Internal Constraints

Values Values

W1 Catalog {ProductName} {StudyTable} {ProductNumber, {ST1234, C1 = ∅
ProductPrice, 75.00,

ProductWeight} 45}
W2 Order {ProductNumber, {ST1234, {OrderNumber, {ORD1234, C2 = ∅

ProductPrice} 75.00} PaymentAmount} 82.50}
W3 Payment {OrderNumber, {ORD1234, {PaymentStatus} {Complete} C3 = {CreditCardBrand = V isa}

PaymentAmount, 82.50,

CreditCardBrand Visa,

CreditCardNumber} CCVS56789}
W4 Shipment {PaymentStatus, {Complete, {ShipmentStatus} {Confirmed} C41 = {ProductWeight <= 50}

ProductWeight, 45, C42 = {ShippingAddress = Canada}
ShippingAddress} Canada}

in Figure 2 and detailed in Table 1. Suppose, the Shipment service provider imposes a 50-

pound weight-limit on each package that can be shipped by the service (internal constraint:

ProductWeight <= 50). In that case, the ProductWeight output parameter produced by

the Catalog service (which is an input to the Shipment service) would have to be inspected for

values exceeding 50 before the Shipment service could confirm acceptance of the shipment

job. To accomplish that, the composite service would have to be executed, which would

produce some value for the ProductWeight parameter to be compared with the shipment

weight-limit. Such verification demands a simulation or execution environment capable of

executing composite web services composed of either simulated or real-world, internally-

constrained atomic web services.

Moreover, according to the research conducted by Khodadadi in [21], many of the services

available on the web are just shell services; i.e. while their descriptions are listed on service

registries, the services themselves are either outdated or completely non-functional. Even for

functional services, descriptions are often found to be unsynchronized with the latest behavior

of their corresponding services. In order to protect potential clients from incorporating such

malfunctioning/misinforming services into their compositions, at least a basic execution

of each candidate composite service would be required before it could be approved for

deployment, which further necessitates building of an execution-based verification system

for constraint-aware composite web services.
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Additionally, since internal service constraints are, in essence, limitations placed on a

service’s execution context, a system meant for verifying such constraints must be able to

interpret the concept of execution context. However, despite being so closely related to each

other, the concepts of “service execution context” and “internal service constraints” seldom

appear together in any existing research work, as per our literature review. This exhibits a

significant gap in the research being conducted on web service composition.

In an attempt to address the gaps and problems related to web service composition

that have been discussed in this section, in this thesis, we propose the use of the General

Intensional Programming SYstem (GIPSY) [22, 23, 24] as a simulation/execution-based

environment for verification and validation of constraint- and context-aware composite web

services. A detailed discussion on GIPSY and its related background can be found in

Chapter 2.

1.2 Thesis Objectives and Motivation

An online store, such as Amazon, needs a shopping service that is capable of displaying

a product catalog to its customers, accepting the customers’ orders, processing their credit

card payments and initiating shipment of the ordered goods. Such a store effectively requires

a composition engine for such a service, specifying the inputs that its customers would be

able to provide and the outputs that they would expect in return. Based on the composition

request received and the set of atomic services available to perform the required tasks, the

composition engine composes an online shopping service same as the one depicted in Figure 2.

However, as discussed in Section 1.1, atomic services tend to have certain restrictions, known

as internal constraints, imposed on their execution context by their providers, which, in turn,

defines the contextual boundaries of any composite service of which they form a part. Table 1

specifies such internal constraints placed on the Payment and Shipment services that serve as

components of the shopping service. The combinatorial effect of these constraints transforms

the shopping service into a utility tailor-made for customers who use Visa credit cards for

online transactions, order products weighing upto 50 lbs and need to get their purchased
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goods delivered within Canada. Therefore, it is essential for the composition engine to take

the internal constraints of the Payment and Shipment services into account while assembling

the shopping service. At this point, we can deduce the first objective of our research: “To

have an operational service composition mechanism that takes into account the

execution context of services as well as the restrictions/constraints imposed

on them. Based on the requested inputs-outputs and available atomic services,

this mechanism should be able to generate one or more solutions, if possible,

to any valid composition request.” For the purpose of this thesis, we assume that

service requesters neither have any constraints of their own nor do they object to the

internal constraints placed on their requested composite services. We plan to incorporate

the requester/user constraints in future extensions of this research (see Section 6.2).

Once the composition engine assembles a suitable composite shopping service, it needs to

subject the service to some basic behavioral competency tests, such as the ones listed below,

before it can be proposed as a practicable solution to the service requester:

• Component services should accept inputs (whether provided by the user or produced by

other component services within the composition) and generate outputs in accordance

with their public interfaces.

• Component services should function cohesively as a single unit, i.e., for a valid set

of user inputs fed to the composite service, the requested outputs’ values should fall

within the expected range.

• Internal constraints, wherever applicable, should be enforced properly. As soon as

a contextual value is found to be in violation of a restriction, the execution of the

composite service should be halted and appropriate error messages generated.

• Irrespective of the kind of combination of component services – sequential, parallel,

split or join, the composite service should be able to complete its execution correctly

within a valid context space or halt appropriately in case of constraint-violation.
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• Each of the component services should be accessible and functional. If any inaccessible

or malfunctioning services are detected, the execution of the composite service should

be halted, appropriate error messages generated and the composition discarded.

However, as mentioned in Section 1.1, while there are systems available for testing composite

service behaviors in an unlimited context space, no existing research offers a solution for

verification and validation of internally-constrained composite web services. Therefore, in

this situation, the composition engine has no option other than to trust the component

services to function well within their bounded context space (as advertised in their

descriptions) and to present the composed shopping service to the service requester without

testing its contextual limits. Similarly, the service requester has no alternative but to trust

the composition engine to have performed all possible checks and to accept the solution as

a feasible one, following which it might even enter into a binding contract or lease with the

providers of each of the component services involved.

Now, let us suppose that the Payment component service, W3, has a faulty

implementation or its constraint description was mistakenly replaced by that of a different

Payment service. Because of one or more of such human-errors, W3 ends up being presented

as a Visa card processing service while actually having been programmed to process Master

cards. However (for example), the online shopping store may not be allowed to accept Master

cards because of an agreement with the Visa company. In this situation, if a customer of

the store attempts to make an online purchase with their Visa credit card, the Payment

service would fail and the order would be rejected. Meanwhile, another customer using a

Master card might succeed in placing their order because of the alternate behavior of the

Payment service. Not only would such an event prevent the store from making any valid

sale until the service is repaired or replaced, it could have an adverse effect on the store’s

reputation, which would further harm its business. Additionally, the store might have to

suffer monetary losses because of the contract signed with the provider of the Payment

service (W3), which no longer holds any utility for it, or even face legal consequences if

the Visa company chooses to view any orders placed using Master cards as a breach of
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agreement on the store’s part. Besides, the composition engine is also likely to get affected

by such occurrences and lose its credibility with its clients for supplying unreliable and

defective composite services. Clearly, it is of utmost significance that composite services

be tested thoroughly for correct behavior within, along, and outside the boundaries of their

defined execution context before being deployed for public use. This incentivizes the second

objective of this thesis: “To design and implement a verification and validation

system for context- and constraint-aware composite web services”.

As explained in Section 1.1, contextual elements of component services often get their

values assigned dynamically as their composite service is being executed, which implies that

any conditions placed on those elements need to be evaluated at run-time. Therefore, a

system meant for the verification of context- and constraint-aware composite web services

must be capable of either simulating execution of or actually executing those composite

services. Additionally, Section 1.1 tries to draw attention to the fact that many service

descriptions published on web registries are not linked to genuinely functional services,

which further necessitates execution-based testing of services before deployment in order

to avoid serious consequences as the ones discussed in the previous paragraph. Hence, the

third objective of our research is: “To make our verification system capable of

simulating as well as executing context- and constraint-aware composite web

services”. While with the execution system we aim to test the actual behavior of services

and weed out non-functional components or components that do not behave according to

their agreed constraints/specifications, our purpose for the simulation system is to be able to

test the suitability of composition solutions and implement quick fixes in case of issues with

minimal resources and time and without requiring access to any service’s code. Consequently,

and with the intent of adding more practical value to this verification system, we identify the

fourth objective of our research to be: “To make the simulation and execution of

context- and constraint-aware composite web services time- and cost-efficient”.

We recognize an enhancement in time-efficiency by a reduction in the average response-time

of a composite service both during simulation and execution. An increase in cost-efficiency,
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on the other hand, can have two aspects: a reduction in the average fee to be paid to

the component service providers for utilizing (i.e. executing) their services as part of a

composition or a decrease in the number of component service rollbacks to be borne due

to constraint-violation during composite service execution.

1.3 Thesis Contributions

In the process of accomplishing the goals identified in Section 1.2, we primarily endeavor to

make the following contributions to the research on web service composition and verification:

1 A generic, optimized, operational constraint-aware service composition

mechanism: The primary goal of this thesis is to provide a mechanism for the

simulation/execution of internally-constrained composition solutions generated in

response to a composition request in order to verify that their behavior is in accordance

with the requester’s expectations. However, before we can verify their behavior, we

need to be able to generate such compositions. As mentioned in Section 1.1, only a

few teams of researchers have studied composition of internally-constrained services in

sufficient detail so far. We base this thesis on the research work conducted by Laleh

et al. [4, 5, 6, 7, 8] because they not only provide a formal model for constraint-aware

composite services but also introduce a novel constraint-adjustment technique in their

service composition process that significantly reduces the number of rollbacks required

in case a composite service fails during execution due to a constraint-violation, which

enhances the time- and cost-efficiency of the simulation/execution process.

As our first contribution, we design the algorithm for composition plan construction

missing from Laleh’s set of composition algorithms and optimize their other algorithms

to increase the number of alternative solutions produced, to minimize the processing

effort spent on invalid or redundant components and unnecessary validation checks

and to prevent errors resulting from faulty compositions. All these optimizations

are reflected in our implementation of these algorithms, which we have designed
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as an independent and generic application, augmented with an extensible multi-

modal input system and capable of composing constraint-aware solutions for any valid

composition request and set of available atomic services. Complete details regarding

this contribution along with the necessary explanation on the relevant features of

Laleh’s research have been provided in Chapter 3.

2 An inherently-concurrent dataflow execution model for constraint-aware

composite services: As stated at the end of Section 1.1, we propose the use of GIPSY

as the simulation/execution environment for composite web services. Since GIPSY is

a system dedicated to the compilation and execution of Lucid programs, composite

services intended for execution on GIPSY need to be translated into Lucid programs.

Now, Lucid being a dataflow programming language, programs written in it are, at

their very core, formalized textual representations of dataflow networks. Therefore,

when executed, a Lucid program gets transformed into a virtual dataflow network

of parallely-processing components known as filters. Considering that, if a Lucid

program were to represent a constraint-aware composite service, its corresponding

dataflow network would be composed of concurrently-executing component service

filters enveloped in wrappers serving as internal-constraint-verification layers.

While, on the one hand, this parallel processing of component services would serve to

reduce the response-time of most composite services, on the other hand, the fact that

this concurrency is an inherent property of the Lucid execution model and does not

require the programmer to launch, synchronize or manage any threads would eliminate

the possibility of errors resulting from thread-mismanagement, thereby making the

Lucid/GIPSY solution for composite service verification more robust.

Therefore, as our second contribution, we study, formally define the elements of, and

propose the use of this dataflow model for the simulation/execution of constraint-aware

composite services in Chapter 2 while establishing its correspondence with the layered

model of service composition defined by Laleh et al. (see Contribution 1) in Chapters

2 and 4.
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3 GIPSY as an efficient, context- and constraint-aware, simulation- and

execution-based composite service verification system: There are several

benefits of using a Lucid/GIPSY combination solution for the simulation/execution

of composite web services. Being an intensional programming language, Lucid, unlike

other existing composition/verification systems, enables effortless incorporation of

contextual elements in its programs while its “whenever” construct allows for a clear

and easy definition of service constraints. Meanwhile, GIPSY, being an execution

environment for Lucid, conveniently transforms the programmatic version of a

composite service into a context- and constraint-aware dataflow network of component

services whose inherent concurrency and virtual nature result in a minimal and efficient

consumption of resources (see Contribution 2). In addition to that, GIPSY’s eductive,

demand-driven approach towards execution together with its warehouse unit capable

of storing and being queried for execution results paired with the specific context in

which they were achieved significantly reduce the overall time, effort and cost spent on

simulation/execution of composite services.

Additionally, in Section 1.1, we examine the need for both simulation and execution

capabilities in a verification system for composite web services and mention that none

of the existing research works offer such a dual-mode system for constraint-aware

services. However, Objective Lucid – a Lucid dialect composed of Java and Lucid

constructs – makes it possible to both simulate (by using Java methods to emulate

service definitions) as well as execute (by replacing mock definitions with links to real

service implementations) composite services effortlessly within the same system.

Consequently, as our third contribution, we put forth a proposal for the use of the

Lucid/GIPSY system as a composite service verification solution capable of testing

if the internal constraints placed on component services are correctly verified at their

optimal locations within a composition plan as defined by Laleh’s unique constraint-

adjustment technique (discussed in Chapter 3) and of providing the composite service

execution statistics required to ensure that no demands are generated for component
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services guarded by internal constraints that fail verification, make certain that

results for duplicate demands are fetched from the GIPSY warehouse instead of being

computed explicitly each time and, ultimately, assess the improvement in time- and

cost-efficiency achieved for simulation/execution of composite services. Additionally,

we examine those features of the GIPSY architecture that are relevant to its use as a

verification system, present an elaborate study of the solution background including

all related concepts and explore the benefits of using the proposed solution in greater

detail. Furthermore, we also introduce a more comprehensive version of “context” as

defined by the intensional branch of mathematical logic into the domain of composite

web services. Further and more dedicated discussions on this contribution together

with its applicable limitations and evaluation can be found in Chapters 2, 4 and 5.

4 An automated composite service model translation framework: We

briefly discuss our rationale behind using Laleh’s service composition technique,

Lucid’s dataflow execution model and GIPSY’s simulation/execution environment in

Contributions 1, 2 and 3. In order to exploit the complete potential of these tools and

techniques, we need a translator capable of translating the layered composite services

generated by our composition mechanism into Objective Lucid programs that could

be simulated/executed on GIPSY. However, an isolated translator with a single target

language would be a highly restrictive and rigid structure, which would require major

design changes for accommodating any future translators. Therefore, as a more flexible

and maintainable solution, we design and implement a translator framework capable

of allowing modular plugging-in and -out of different translator programs, as required.

This framework can accept a layered composite service as input through an extensible

multi-modal input system and translate it into any of the target models, such as,

Lucid’s dataflow execution model, for which a translator module is available, thereby

allowing us to leverage the unique qualities of each of the target models/languages

for enhancing the overall worth of our verification system. We explain the design,

implementation and other relevant features of the translator framework in Chapter 4.
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1.4 Thesis Scope

The primary objective of this thesis is to introduce a system that can be used for the

verification and validation of context- and internal-constraint-aware composite web services.

Since this issue has not been addressed in any research conducted so far, it was our

responsibility to examine all the intricacies of this problem and incorporate ways to handle

them in our proposed solution. With the limited time and resources available to us,

addressing a wide range of requirements in sufficient detail would have been difficult to

achieve and could have resulted in an inadequate overall solution. Therefore, for the purpose

of this thesis, we decided to focus our efforts on accomplishing a limited yet clearly defined

set of goals, as listed in Section 1.2, to the best of our abilities.

The issues or aspects related to web service composition and verification that are outside

the scope of this thesis have been briefly described below:

• While verification of the constraints imposed by service providers is the focal point

of our research, we do not take into consideration constraints imposed by composite

service requesters or restrictions from entities external to the web service domain,

such as, government policies. However, these constraint categories are planned to be

included into our system in future extensions to this research.

• Since we base our research on Laleh’s planning-graph approach to service composition,

its associated limitations are also inherited by our solution. Consequently, any

composite service that we generate or verify cannot contain loops or multiple

occurrences of the same component service. Also, there cannot be any uncertainty

in the execution of component services, i.e., each component of a composite service

must be executed for the composite service’s execution to be completed [4].

• Although Laleh’s research offers an algorithm for merging different alternative

solutions/plans generated for a given composition request into a package with

alternative plans to chose from in case one plan fails during execution [4, 5], we restrict

our system to the composition and verification of a single plan at a time in order to
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avoid complicating our prototype system at such an early stage. We plan to integrate

the solution package into our system as part of a future work.

1.5 Research Methodology

The general procedure that we follow for the verification of internally-constrained context-

aware composite web services has been depicted in Figure 3. According to the procedure:

Figure 3: Composite Web Service Verification Procedure

• A composition request, specifying the inputs provided by and the outputs required

by the service requester, along with a set of atomic services (with or without

internal constraints) available for being assembled into a workflow are fed to our
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service composition mechanism derived from Laleh’s composition approach (see

Contribution 1).

• Based on the given composition problem’s validity and solvability using the available

atomic services, the composition application generates one or more constraint-aware

layered composite services as potential solutions to the problem. Invalid or unsolvable

problems are reported back to the requester.

• Each of the layered composite services generated (if any) for the request can

then be fed to our service translator application, which transforms them into

equivalent Objective Lucid programs capable of being executed on GIPSY (see

Contribution 4).

• The Java definitions of component services constituting an Objective Lucid

program may either be generated by the translator to emulate the behavior described

by their corresponding descriptions or may utilize their actual implementation sourced

from their providers. Depending on whether its component definitions are simulated

or real, a composite service may be considered as either being simulated or executed

respectively by the GIPSY environment (see Contribution 3).

In order to evaluate our verification system and prove the accomplishment of the goals

defined in Section 1.2, we experiment with a range of composition requests and atomic

service sets (see Chapter 5), resulting in the construction of a variety of compositions

with diverse counts and combinations of component services. All these compositions are

translated into Objective Lucid programs by our translator framework so that they could

be simulated or executed on GIPSY and their functional and non-functional characteristics

could be observed and recorded in different contexts restricted by each of their specific set

of internal constraints as part of future extensions to this research. Such observations would

help us in performing statistical analysis of composite service behavior – both positive and

negative – and estimating the time and cost benefits of using our system for composite service

simulation and execution.

18



1.6 Thesis Outline

We summarize the purpose of each of the following chapters below:

• Chapter 2 offers an elaborate discussion on all the relevant aspects of the

Lucid/GIPSY verification system essential to obtaining a complete understanding

of the proposed solution. It also provides a review of other related research conducted

in the field, contrasting it with the approach described in this thesis.

• Chapter 3 explains Laleh’s service composition model and method, on which we have

based this thesis, along with the improvements made to their composition approach

as part of our research. It also describes the architecture, usage and other defining

features of our composition application.

• Chapter 4 is responsible for reinforcing the correspondence between Laleh’s layered

model and Lucid’s dataflow model for composite services, defining the algorithms for

translation of a layered composite service into an Objective Lucid program and

presenting the architecture, usage and other characteristics of our service translation

framework.

• Chapter 5 describes the tests conducted to evaluate our proposed verification solution

(with particular emphasis on the service composition and translation units) along with

their results and the inferences drawn from them.

• Chapter 6 gives a conclusion on the thesis and lists the solution limitations and

improvements that need to be addressed in the future works.

1.7 Summary

Despite the extensive research conducted up to now in the field of web service composition,

we still find a gap when it comes to verification and validation of context- and internal-

constraint-aware composite web services. In an attempt to fill this gap, we propose
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the use of a Lucid/GIPSY combination as a simulation/execution-based solution to the

verification problem. Having identified our specific research goals and the methodology to

achieve them in this chapter, in the next chapter, we explore the unique characteristics

of the Lucid/GIPSY system and compare it with other related research works in order

to facilitate a better understanding of our proposed solution and to support our rationale

behind employing it for context- and internal-constraint-aware composite service validation.
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Chapter 2

Solution Background

In Chapter 1, we propose using a Lucid/GIPSY combination as a simulation/execution-

based verification system for context- and internal-constraint-aware composite web services.

In this chapter, we explain those fundamental concepts, characteristics and architectural

features related to the Lucid programming language and the GIPSY environment that are

not only essential to gaining a comprehensive understanding of our proposed solution but

are also responsible for giving the solution an edge over the other studies conducted up to

date in the field of composite web service verification, simulation and execution, which we

examine specifically in our review of the related works later in this chapter.

2.1 Lucid Programming Language

Lucid is an intensional [25] and dataflow [26] programming language whose distinctive

program structure, programming constructs and execution model together make it an ideal

solution for efficient representation and execution of constraint- and context-aware composite

web services. We begin this section with definitions of the fundamental concepts behind

these distinguishing features of Lucid, which are followed by an explanation of the features

themselves along with the reasons that prove them to be advantageous to the composite web

service domain.
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2.1.1 Intensional Logic

At the root of intensional programming is intensional logic – a branch of mathematical

logic that aims at describing context-dependent entities [27, 28]. It originated as a means

to formally describe the meaning of natural languages, keeping under consideration that

a sentence may be interpreted differently when used in different situations, at different

locations, by different people and so on. In other words, the meaning of a sentence may

vary according to the context in which it is used, thereby making it a context-dependent

entity. As an example, consider the following expression:

E: The temperature is below the freezing point.

The meaning of the above expression remains uncertain and may attain arbitrarily

different values unless we specify the exact date on and the particular city for which the

temperature being referred to in the expression is recorded. In other words, an unambiguous

interpretation of expression E is conditional upon the knowledge of factors Date and City.

Such factors that influence the interpretation/evaluation of an expression are termed as

dimensions in the intensional branch of mathematical logic. A range of different values

may be attained by a dimension depending on the type of information that it represents (see

Table 3 for sample dimension values). When each of the dimension names associated with an

expression is paired with one of its applicable values, the set of dimension name-value pairs

so obtained is said to be one context or possible world for that expression to be evaluated in.

A collection of all such possible worlds in which the expression can be evaluated (potentially,

to a unique result in each world) is known as the context-space for the expression. Depending

on the number of dimensions that a context-space is composed of, it can be termed as being

one-dimensional or multi-dimensional, and, conceptually, it is possible for a context-space to

even be infinitely multi-dimensional. The relationship between the contexts of an expression

and its calculated values is called the intension of the expression whereas the set of all

specific value of its intension corresponding to any particular context is called the extension

of the expression.

Applying the concepts defined in the previous paragraph to expression E, the intension
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Table 2: Extension for Temperature in Expression E

Date

City
Montreal Toronto Ottawa ...

01/01/2018 −10 −5 0 ...

02/01/2018 −9 −5 −1 ...

03/01/2018 −7 −4 −2 ...

... ... ... ... ...

Table 3: Intension of Expression E

Date

City
Montreal Toronto Ottawa ...

01/01/2018 true true false ...

02/01/2018 true true true ...

03/01/2018 true true true ...

... ... ... ... ...

of E would be a function in (D × C) → B, where D and C are the sets of values

that can be assigned to the Date and City dimensions respectively and B is the set of

boolean values that can be attained for each combination of Date-City values. A sample

mapping of this function (i.e. E ’s extension) has been presented in Table 3. E ’s extension

is based on the extension of the temperature records of each given city on each given

date (presented in Table 2). Here, the context for the first recorded temperature would

be: {Date : 01/01/2018, City : Montreal} whereas the extension of temperature in that

context would be −10, and the extension of expression E would be true. All such contexts

listed in the two tables would together constitute the two-dimensional context-space for both

temperature as well as expression E.

2.1.2 Dataflow Networks

The generally accepted semantic model used to describe Lucid programs relies on a dataflow

execution model, i.e. upon execution, a Lucid program is interpreted as a dataflow network.

Therefore, in order to gain an insight into this execution model, it is essential to first obtain
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a clear understanding of dataflow networks in general.

A dataflow network is a network of components known as filters interconnected through

links known as channels. Each filter in the network is a processing unit representing a

function that can transform the data elements flowing through the network from one form

to another, i.e. from input to output. Each channel or transition in the network refers to

a stream connecting two filters via which data elements are transmitted from one filter to

another. The distinguishing characteristic of a dataflow network, which is also its primary

advantage, is its inherent concurrency – the ability of its components to carry out their

computations in parallel. Furthermore, each of these components is a black box and,

therefore, does not interact with any of the other components in the network other than

while receiving inputs from or sending outputs to them. The inner processing of each filter

is completely hidden and shielded from the side effects of other filters, thereby allowing the

functions to maintain referential transparency, i.e. to ensure that the values of their outputs

depend entirely on the values of their inputs, which, in turn, implies that for a given set

of inputs, a filter produces the same output each time they are processed irrespective of its

past results and of the state of the other filters in the network [26, 29].

As an example, consider the dataflow network depicted in Figure 4. The goal of this

network is to calculate the range (i.e. the difference between the maximum and the minimum)

of the three numbers, num1, num2 and num3, provided as input. The maximum and

minimum filters in the network have three entry points (one for receiving tokens from each

of the three input nodes) and one exit point (for placing the calculated output in the data

stream directed towards the difference filter) each. The difference filter, on the other hand,

has only two entry points (one for receiving the output of each of the other filters) and one

exit point, which supplies the final result to the output node of the network. As soon as data

elements are available at all the input points of a filter, it begins computing the result. Since

all required inputs for the maximum and minimum filters are available simultaneously,

being black boxes, the two filters can operate concurrently and completely decoupled from

each other. Depending on the rate at which these filters compute their respective results,
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Figure 4: Dataflow Graph for the range Program Shown in Listing 2.1

the difference filter may receive tokens at its input points at the same or different times.

However, owing to the referential transparency property, the results are guaranteed to be the

same irrespective of the order in which the two filters complete their processing. Once both

inputs are received by the difference filter, difference between the maximum and minimum

numbers is computed and the result is supplied to the output node [29]. Clearly, it can be

seen that a dataflow network, while allowing its constituent filters to operate in a concurrent

and asynchronous fashion, manages to exhibit the same consistency of results for any given

set of inputs that would be expected of its sequential equivalent, i.e. it combines the benefits

of both sequential and concurrent computations.

2.1.3 Lucid Program Structure and Execution

Lucid is a functional programming language, and, therefore, each Lucid program is

an expression composed of one or more literals, variables, operators and/or functions,

accompanied by definitions of each of the constituent variables and functions themselves
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as expressions whose components are further defined in the same manner. The purpose of

executing these programs is to evaluate the main expression defined in them, which requires

evaluation of all its constituent identifiers, which, in turn, depends on the evaluation of their

own constituents and so on. Unlike other functional programming languages, however, every

expression in Lucid is evaluated in a certain context, which may be comprised of one to

infinitely-many dimensions, and can potentially result in a different value in every possible

context (as explained in Section 2.1.1). While most mainstream imperative languages need

to rely on cumbersome extensional branching to evaluate such expressions in all possible

contexts, Lucid, being an intensional language, allows each of the contextual dimensions to

be defined as any of its regular variables in a concise and precise manner besides providing

operators # and @ for directly extracting values from and specifying values for them

respectively. In addition to that, the whenever operator supplied by Lucid enables context-

dependent conditions to be placed on variable and function definitions, allowing them to be

computed only if the conditions evaluate to true [26, 25, 28].

As an example, consider the Lucid program shown in Listing 2.1. The objective of the

program is to calculate the range of three numbers. Consequently, its main expression is a

variable called range (defined later in the program) whose value depends on the values of the

three numbers in concern, and, therefore, is evaluated in a three-dimensional context where

each dimension – g num1, g num2 and g num3 – represents one of the three numbers. At

each point of reference in this context space, the range expression can potentially evaluate

to a different value. In order for it to be computed at a specific point of reference, i.e. to

calculate the range of a specific set of numbers, the @ operator must be used. The job of the

@ operator is to return the value of its first argument, i.e. the expression, at the position,

in the appropriate dimension(s), specified by its second argument, i.e. the specific point of

context [25]. For the given example, line 1 serves to return the value of range based on

its definition at a point of reference where the three numbers/dimensions are 10, 12 and 14

respectively. All the definitions related to an expression in a Lucid program are specified

as part of the where clause associated with it, beginning with the dimensions that define its
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Listing 2.1: Lucid Program to Calculate Range of Three Numbers

1 range @.g num1 10 @.g num2 12 @.g num3 14
2 where
3 dimension g num1, g num2, g num3;
4

5 range = difference (#.l max, #.l min)
6 @.l max max
7 @.l min min
8 where
9 dimension l max, l min;
10 difference (x, y) = x − y;
11 end;
12

13 max = maximum (#.l num1, #.l num2, #.l num3)
14 wvr c max
15 @.l num1 #.g num1
16 @.l num2 #.g num2
17 @.l num3 #.g num3
18 where
19 dimension l num1, l num2, l num3;
20 c max = #.l num1 >= 0 and #.l num2 >= 0 and #.l num3 >= 0;
21 maximum(x, y, z) = greater(x, greater(y, z ));
22 greater(a, b) = if a > b then a else b fi ;
23 end;
24

25 min = minimum (#.l num1, #.l num2, #.l num3)
26 wvr c min
27 @.l num1 #.g num1
28 @.l num2 #.g num2
29 @.l num3 #.g num3
30 where
31 dimension l num1, l num2, l num3;
32 c min = #.l num1 >= 0 and #.l num2 >= 0 and #.l num3 >= 0;
33 minimum(x, y, z) = lesser(x, lesser (y, z ));
34 lesser (a, b) = if a < b then a else b fi ;
35 end;
36 end

context. Each of these dimensions is declared using a dimension clause at the top of the body

of the where clause, indicating that the dimension is new and will be used only inside the

enclosing where clause [25]. Depending on the location at which it is declared, a dimension

may have a global or a local scope in which it can be used. For instance, dimensions g num1,

g num2 and g num3 are declared in the outermost where clause (line 3) and, therefore, have
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a global scope, which we indicate by prefixing there names with ’g ’. On the other hand,

dimensions l max and l min (line 9) can be used only within the local scope of the difference

function and not outside it, which is indicated by their prefix ’l ’. Dimensions declaration

in an expression’s where clause is followed by definitions of its related constraints, variables

and functions. The range variable, for instance, is defined as a function called difference

that accepts two input parameters (line 5) and is, therefore, evaluated in a two-dimensional

context (lines 6 - 7) defined by dimensions l max and l min. The input parameters of the

function extract their values from its contextual dimensions using the # operator, which is

responsible for returning the current value of the dimension specified as its argument [25].

The dimensions of the function, in turn, receive their values from other variables (max and

min) defined later (lines 13 - 23 and 25 - 35) in the program. The computation to be carried

out by the difference function is defined in its where clause (line 10) after its dimensions

declaration. The max and min variables referred to in this definition are defined in a similar

manner as the range variable except for two major differences. Firstly, values of the local

dimensions, l num1, l num2 and l num3, of the maximum and minimum functions are

not computed by executing another function but are retrieved from the global dimensions,

g num1 (10), g num2 (12) and g num3 (14) respectively (lines 15 - 17 and 27 - 29). Secondly,

these functions have certain constraints placed on them, which are specified using the wvr

operator – alternate form of whenever. Such functions, which form the first argument to the

operator, are computed only if the constraints, which form the second argument, evaluate

to true (lines 14 and 26) [25]. In the given example, all the constraints placed on a function

(maximum or minimum) have been specified as part of its where clause (lines 20 and 32)

and their result represented as a variable (c max or c min) to serve as the second argument

to the wvr operator in order to maintain a clear and uniform program structure. Although

this example makes use of only the and logical operator for combining multiple conditions,

Lucid also provides the or operator to represent optionality in conditional expressions. Same

as the functions which they constrain, these conditional expressions are also evaluated in a

specific context, which may be defined as part of a where clause associated with them. In the
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Figure 5: Range Composite Service

given example, however, the constraints and their corresponding functions share the same

context, which eliminates the need of a separate where clause for the conditions.

Having explained the general functionality, syntax and structure of the program presented

in Listing 2.1, we now describe the unique characteristics that the program demonstrates.

In the program, contextual values of functions difference, maximum and minimum are

also used as inputs/arguments to the respective functions, i.e. inputs to these functions

derive their values from the context in which the function is evaluated. The contextual

dimensions, in turn, receive as their values the results of certain computations. In other

words, in the given program, contextual dimension of a function is the entity that not

only serves as context and input to the function but also the data that gets computed,

which is not the usual practice. Nevertheless, we present this particular example here

because this is the concept that we follow for representing composite web services as Lucid

programs – one of the objectives of this thesis. Although this program is not an exact Lucid

translation of a composite service, which we discuss in Chapter 4, it still successfully depicts

the major features of a composition. It is an approximate representation of a composite

service responsible for calculating the range of three numbers, as depicted in Figure 5. The

three numbers in concern serve as the inputs that can be provided by the customers of the
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composite service whereas the range computed by the program acts as the output expected

by them. Meanwhile, each of the functions, difference, maximum and minimum, defined

in the where clause of the program’s main expression serve as components of the composite

service (depicted as circles in Figure 5) while the conditions placed on them using the wvr

operator act as internal service constraints (depicted as diamonds in Figure 5). Although

we do not make use of Petri nets for representing composite web services in this research,

it is still interesting to note here that the constraint diamonds and service circles shown in

Figure 5 perform tasks similar to those performed by the input/pre-condition place circles and

transition bars that usually constitute Petri net graphs [12, 19, 30, 31, 32, 33]. As explained

in Section 1.1, we define the contextual dimensions of a service, be it atomic or composite,

to be the set of all its input parameters. Applying the same definition to the Range

composite service, the three numbers, which are inputs to not only the composite service itself

but also to its maximum and minimum components, serve as the contextual dimensions

for the range variable, maximum function and minimum function in the corresponding

Lucid program while their values are used as arguments to the maximum and minimum

functions. Same is the case with the difference function as well whose dimensions are the

same as the inputs to the difference service and their values are used as arguments to the

function. However, inputs to the difference service are actually the outputs produced by

other component services unlike the maximum and minimum services, which receive their

input values directly from the customer. Therefore, in order to compute the input values

for the difference service, its predecessors, i.e. services that supply its inputs, must first

be executed and their outputs computed. This predecessor-successor relationship between

component services is represented in the given Lucid program in lines 6 - 7, where the

contextual values for the difference function are variables that evaluate to the result of

computations performed by the maximum and minimum functions.

For performing the computations required during program execution, Lucid employs a

lazy demand-driven approach, known as eduction. As already explained, a Lucid program is

an expression accompanied by definitions of the identifiers that constitute that expression. In
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Figure 6: Demand Generation and Computation Tree for the range Program

order for this main expression to be evaluated, the values of each of its constituents must be

known. The same is true for the evaluation of the expressions that define these constituents

as well as for those that define their constituents and so on. According to the eductive model

of computation, whenever such an expression needs to be evaluated, a demand or request for

the value of each of its constituent identifiers in the current context is generated. For each

of these demands, the eduction engine inspects the defining expression for its corresponding

identifier and generates demands for the constituents of that expression, which, in turn, may

lead to generation of further demands and so on. In essence, for each identifier appearing

in the main expression of a Lucid program, a tree-like structure (as shown in Figure 6) is

incrementally constructed where each node is an identifier-demand whose children are the

demands generated for evaluating the identifier’s defining expression. Every branch in this

tree keeps growing from top to bottom (indicated in red in Figure 6) until its bottom-most

node/demand evaluates to a literal value. This value is then propagated upwards to the

node’s parent in the branch (indicated in green in Figure 6). Once an identifier-demand
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node receives the values of all its child nodes in a similar fashion, the identifier’s definition

is applied on them and its value is computed and propagated further upwards in the tree.

This process of generation, propagation and consumption of demands and their computed

values continues until all the identifiers for the main expression are evaluated and its value

can be computed, thereby achieving the goal of the program. A significant advantage of

the eduction model is its frugal approach towards computation, which generates a demand

for a value only if and when it is required for the computation of another demanded value.

Values that are not needed to compute a result are never computed. Such an approach

not only saves execution resources but also optimizes the time taken for executing a Lucid

program [24, 25].

Another aspect of Lucid that improves its run-time efficiency is its dataflow execution

model. As discussed in Section 2.1.2, a Lucid program is a textual representation of a

dataflow network and it transforms into that network upon execution. Each definition

in a Lucid program can be represented as a filter in its corresponding dataflow network,

performing the same computation as specified by the definition itself. The external inputs

provided to and the outputs produced by the program serve as the respective inputs and

outputs of the network whereas the internal input-output relationships among defining

expressions take the form of the network’s channels. As an example, consider the range

program shown in Listing 2.1 and its corresponding dataflow network depicted in Figure 4.

For the sake of clarity and simplicity, only the three major defining functions – maximum,

minimum and difference – of the program have been represented as filters in the dataflow

graph. However, similar graphs can be drawn separately for each of these functions

composed of filters representing their constituent definitions in order to elaborately depict

their individual operations. For the current example, taking into account the structure

of the range program, its equivalent dataflow graph and the composite service (shown in

Figure 5) that it approximately represents, it can be clearly seen that while the dataflow

graph represents the range composite service as a whole, each of its constituent filters

represents one of its components. Furthermore, as we already know, each filter in a dataflow
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network is capable of functioning in parallel with the other filters. Therefore, it can be

concluded that by translating a composite service into a Lucid program, parallel operation of

its component services can be achieved, which can reduce the time required by the service for

completing its processing. Moreover, this concurrency of operation is available as an inherent

property of Lucid that does not demand any additional programming effort for launching or

managing of multiple threads, which, in turn, eliminates the risk of complex errors commonly

known to originate from thread mismanagement. In other words, Lucid provides the means

of improving the efficiency of composite service execution through inherent concurrency

without exposing it to the risks of faulty multi-threading [26, 29].

2.1.4 Objective Lucid

Since the origin of Lucid in 1974 [26], several different dialects of the language have been

developed each one with its own distinguishing characteristics. Of these variants, GLU

(Granular Lucid) was the first one to pair Lucid with a non-intensional programming

language, employing Lucid – the intensional language – for specifying the parallel structure

of an application and C – the imperative language – for specifying the application’s functions,

thereby combining the ease of programming in mainstream languages with the efficiency of

intensional dataflow languages [34, 35]. From a dataflow perspective, this hybrid language

uses Lucid to specify the filters and connecting channels that constitute the dataflow network

equivalent of a program while using C to define the operations performed by each of these

filters. Another Lucid dialect based on the same hybrid concept is Objective Lucid,

which replaces C with Java as its imperative component, allowing its intensional segment

to not only manipulate Java objects as first class values but also use Java’s dot-notation

for manipulating the members of those objects [36, 37]. In our research, we use Objective

Lucid for representing composite web services so as to allow them to be simulated/executed

on GIPSY (the rationale for which is discussed later in this section).

Each program written inObjective Lucid comprises of two code segments: one written

in Java whose beginning is marked by a #JAVA tag and the other in Lucid marked by a
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Listing 2.2: Objective Lucid Program to Calculate Range of Three Numbers

1 #JAVA
2 public class ReqComp
3 {
4 private int diff ;
5

6 public ReqComp(int diff)
7 {
8 this . diff = diff ;
9 }
10 }
11

12 public class Difference
13 {
14 private int x;
15 private int y;
16 private int diff ;
17

18 public Difference( int x, int y)
19 {
20 this .x = x;
21 this .y = y;
22 diff = 0;
23 }
24

25 public void process()
26 {
27 diff = x − y;
28 }
29 }
30

31 public Difference calcDiff (int x, int y)
32 {
33 Difference oDifference = new Difference(x, y);
34 oDifference .process() ;
35 return oDifference ;
36 }
37

38 public class Maximum
39 {
40 private int x;
41 private int y;
42 private int z;
43 private int max;
44

45 public Maximum(int x, int y, int z)
46 {
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47 this .x = x;
48 this .y = y;
49 this .z = z;
50 max = 0;
51 }
52

53 public void process()
54 {
55 max = x;
56 if (max < y)
57 max = y;
58 if (max < z)
59 max = z;
60 }
61 }
62

63 public Maximum calcMax(int x, int y, int z)
64 {
65 Maximum oMaximum = new Maximum(x, y, z);
66 oMaximum.process();
67 return oMaximum;
68 }
69

70 public class Minimum
71 {
72 private int x;
73 private int y;
74 private int z;
75 private int min;
76

77 public Minimum(int x, int y, int z)
78 {
79 this .x = x;
80 this .y = y;
81 this .z = z;
82 min = 0;
83 }
84

85 public void process()
86 {
87 min = x;
88 if (min > y)
89 min = y;
90 if (min > z)
91 min = z;
92 }
93 }
94
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95 public Minimum calcMin(int x, int y, int z)
96 {
97 Minimum oMinimum = new Minimum(x, y, z);
98 oMinimum.process();
99 return oMinimum;

100 }
101

102 #OBJECTIVELUCID
103 oRange @.g num1 10 @.g num2 12 @.g num3 14
104 where
105 dimension g num1, g num2, g num3;
106

107 oRange = ReqComp(#.l diff)
108 @. l diff oDifference . diff
109 where
110 dimension l diff ;
111

112 oDifference = calcDiff(#.l max, #.l min)
113 @.l max oMaximum.max
114 @.l min oMinimum.min
115 where
116 dimension l max, l min;
117 end;
118

119 oMaximum = calcMax (#.l num1, #.l num2, #.l num3)
120 wvr c max
121 @.l num1 #.g num1
122 @.l num2 #.g num2
123 @.l num3 #.g num3
124 where
125 dimension l num1, l num2, l num3;
126 c max = #.l num1 >= 0 and #.l num2 >= 0 and

#.l num3 >= 0;
127 end;
128

129 oMinimum = calcMin (#.l num1, #.l num2, #.l num3)
130 wvr c min
131 @.l num1 #.g num1
132 @.l num2 #.g num2
133 @.l num3 #.g num3
134 where
135 dimension l num1, l num2, l num3;
136 c min = #.l num1 >= 0 and #.l num2 >= 0 and

#.l num3 >= 0;
137 end;
138 end;
139 end
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#OBJECTIVELUCID tag. For example, consider the program shown in Listing 2.2, which

is an Objective Lucid translation of the pure (Indexical) Lucid program to calculate

the range of three numbers shown in Listing 2.1. Comparing the Lucid segment of this

Objective Lucid program with its Indexical Lucid equivalent, three major differences

between them can be noticed. Firstly, Objective Lucid replaces the declarative definitions

of functions difference, maximum and minimum with procedural definitions of Java

methods calcDiff (lines 31 - 36), calcMax (lines 63 - 68) and calcMin (lines 95 - 100)

respectively (specified in the Java segment), which can be invoked from the Lucid segment

through regular method call statements (lines 112, 119 and 129). Secondly, unlike their

declarative counterparts, which return only simple variables, these procedural functions may

also return Java objects (such as oDifference, oMaximum, oMinimum), which could be

composed of one or more data members and/or member functions of different data/return

types. Each of these members can be accessed within the Lucid segment using the dot

operator on the object in concern. For instance, in the givenObjective Lucid example, the

function calcDiff creates an object oDifference of class Difference (line 33), calls its member

function process (line 34) for computing the difference between its two arguments and storing

the result in oDifference’s data member diff (lines 25 - 28) and finally returns the object

(line 35). The computed difference value is then accessed in the Lucid segment using the dot

operator on object oDifference (line 108) returned by calcDiff (line 112). The same is the

case with the computation and access of the maximum and minimum values in the program.

Thirdly, while the final output of the Indexical Lucid program is a simple variable called

range, which stores the return value of the difference function, the output of the Objective

Lucid program is an object called oRange created by invoking the ReqComp constructor and

comprising of a single data member diff, which, in this program, is responsible for holding

the return value of the difference function. Moreover, as can be inferred from the program,

the value of oRange is directly dependent only on ReqComp, which, in turn, depends on

the functions that compute the difference, maximum and minimum values. Therefore, these

functions have been moved from the global scope (such as in the Indexical Lucid program)
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to the local scope defined by ReqComp’s where clause in the Objective Lucid program.

Our purpose behind using Objective Lucid and the particular language constructs

discussed in the previous paragraph is to build a complete and clear representation of

context- and constraint-aware composite services that can be simulated/executed on GIPSY.

Since GIPSY is dedicated to the compilation and execution of Lucid programs, it becomes

necessary for composite services intended to be executed on it to first be translated into some

Lucid dialect. In order for this dialect to be able to represent all the required features of the

composite service model that we use (discussed in Chapter 3), it must exhibit certain specific

properties, which, based on our knowledge of Lucid variants, is accomplished (without

introducing any superfluous characteristics) only byObjective Lucid. As rationale behind

this selection, we present a discussion on all such requirements as well as the Objective

Lucid constructs that help fulfill them below:

1 Requirement: Parameters that act as inputs to a service (whether atomic or

composite) or on which constraints are placed should be allowed to serve as contextual

dimensions while retaining the capability of being defined, computed and used as

regular variables.

Solution: As explained in Section 2.1.3, Indexical Lucid allows service inputs and

constraint features to be defined as contextual dimensions using the dimension clause

and the @ operator. The same holds true for the Lucid segment of an equivalent

Objective Lucid program. Furthermore, in the Java segment of the program,

service inputs can be passed and processed as regular function arguments and objects’

data members within their corresponding service definitions. Meanwhile, constraint

features can be used as regular variables in those Lucid conditional statements that

define these service constraints. For instance, inputs max and min to the difference

component of the range composite service (depicted in Figure 5) are defined both as

inputs as well as dimensions, l max and l min, for its corresponding function calcDiff

in Listing 2.2 (lines 112 - 117) while being processed as regular variables as part of

their service definition in the Java segment (lines 12 - 36). Similarly, values of l num1,
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l num2 and l num3, which serve as shared contextual dimensions for function calcMax

and constraint c max (lines 121 - 123 and 125), are conveniently used as regular parts

of the constraint’s definition (line 126) in the Lucid segment of the program.

2 Requirement: Services (whether atomic or composite) should be allowed to accept

multiple input and produce multiple output parameters. Additionally, the outputs

produced by a component service should be allowed to be passed as inputs to the other

components of the same composition.

Solution: As discussed in Section 2.1.3, each component service of a composition

is represented as a function in an Indexical Lucid program and, therefore, in the

Lucid segment of an Objective Lucid program. In case a service generates multiple

outputs, Objective Lucid allows them to be composed into a Java object and

returned from the service’s definition in the Java segment to the Lucid segment.

Individual output parameters (or data members) from these objects can then be

accessed and passed as inputs/arguments to other service definitions/functions in the

Lucid segment using the dot operator (as explained earlier in this section). For

instance, consider the call to the ReqComp constructor in Listing 2.2 (line 107).

Although it may appear to be superfluous in the given example where the range

composite service is expected to produce only one output parameter, in case of

composite services that produce multiple output parameters, outputs (potentially

generated by different component services) can be passed as arguments to this

constructor, assembled as data members of a Java object (such as oRange) and

returned as the program output.

3 Requirement: A service should be allowed to execute only if all the constraints placed

on it evaluate to true.

Solution: As discussed in Section 2.1.3, the wvr (or whenever) operator supplied by

Lucid enables restrictions to be placed on expressions, including those that represent

web services. Such expressions are computed, i.e., the services are executed, only if the

39



conditions imposed on them are first evaluated to true. For instance, in order for the

function calcMax in Listing 2.2 (line 119) to be computed, the conditions (line 126)

that define its constraint variable c max (line 120) must first evaluate to true.

4 Requirement: In a program representing a composition, simulated implementation

of its component services should be allowed to be easily embedded as well as

replaced, when required, with links to real services in order to facilitate an effortless

transformation of service simulation into execution.

Solution: Declarative definitions of functions representing component services in

an Indexical Lucid equivalent of a composite service are replaced in Objective

Lucid with procedural function definitions written in Java – a mainstream imperative

language. Better familiarity with Java as compared to Lucid enables programmers

to write placeholder implementation of component services and even reuse code that

might already be available for simulation purposes much more conveniently. Moreover,

swapping the simulation code of a service with an implementation that invokes the real

online service itself can be easily accomplished in Java [38], thereby minimizing the

effort involved in switching between simulation and execution of service compositions.

2.2 GIPSY

The General Intensional Programming SYstem (GIPSY) is a multi-language programming

platform and demand-driven distributed execution environment for all Lucid dialects [24].

It is an ongoing project aimed at investigating the potential of the intensional programming

model as realized by the latest versions of Lucid in varied domains. The architecture of

GIPSY consists of three tiers or independent computational units – Demand Generator Tier

(DGT), Demand Worker Tier (DWT) and Demand Store Tier (DST) – each of which is

responsible for performing a specific set of tasks that form part of a program’s execution

process. In order for this process to be completed, all these tiers (whether deployed on

the same or different computers) need to communicate and collaborate with each other,
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working as a group to achieve a common goal. The computers that register for hosting

one or more of these tiers are known as GIPSY nodes whereas a set of interconnected

GIPSY tiers deployed on these nodes executing GIPSY programs is known as a GIPSY

instance. Communication between the tiers that together constitute a GIPSY instance is

achieved through the generation, propagation and consumption of demands, thereby making

the GIPSY Multi-Tier Architecture operational mode fully demand-driven. As discussed

in Section 2.1.3, a demand in the eductive computation model is a request for the value of

a program identifier in a specific context of evaluation. While the demands generated for

the evaluation of Lucid identifiers are known as intensional demands, those generated for

procedure identifiers, i.e., procedural function calls, embedded in a hybrid Lucid program

are known as procedural demands.

Generation of demands, whether intensional or procedural, for a program begins at the

Demand Generator Tier. This tier is responsible for traversing the abstract syntax tree (AST)

representation generated by the GIPSY compiler, the General Intensional Programming

Compiler (GIPC), for the declarative definition of each of the Lucid identifiers appearing

in a program. For each of these identifiers, the DGT generates an intensional demand and

sends it to the Demand Store Tier. The DST, also known as the warehouse, is tasked

with persistently storing already computed demands along with their resulting values. It

also acts as an asynchronous communication middleware between tiers in order to migrate

demands and computed values between them. Upon receiving a new demand from a tier, the

DST searches its records for the value of the demand in case it has already been computed.

If found, the value is propagated back to the tier that requested it, otherwise the demand

waits in the warehouse until a tier capable of computing it becomes available. An intensional

demand whose value is not already available in the DST can be picked up for computation

by the same DGT that generated it in the first place or by a different DGT, if available.

Once computed, the resulting value of the demand is communicated to the warehouse so that

it can be stored for future reference, thus achieving better processing performances by not

having to re-compute the value of every demand every time it is eventually re-generated after
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having been processed. In case the demand was processed remotely by a DGT other than

the one that generated it, the DST sends its computed value (after it has been recorded)

to the original tier. As illustrated in Figure 6, the computation of a demand might depend

on the values of other identifiers. In such a scenario, the DGT processing this demand

generates further demands for these constituent identifiers and sends them to the DST for

computation following the same process as followed for the evaluation of the original demand.

Once computed, all these constituent values are communicated to this DGT, which then uses

them to evaluate the original demand and returns the resulting value to the warehouse for

storage.

Figure 7: Processing of New and Previously-Computed Procedural Demand on GIPSY
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A procedural demand is generated by a DGT when it encounters a procedural functional

call node while traversing the AST of a Lucid identifier. Unlike intensional demands, a

procedural demand can only be processed by a Demand Worker Tier, i.e., only a DWT can

pick it for computation as it waits in the DST (in case its resulting value is not already

available in the warehouse), execute the corresponding procedure written in an imperative

language and send the resulting value back to the DST. The DST first stores this procedural

demand and its computed value in the same way as intensional demands for future reference

and then migrates the value back to the DGT that originally generated the demand. Figure 7

shows the sequence of actions taken by the DGT, DST and DWT for the computation of

a new (i.e., not previously-computed) procedural demand D as well as the steps followed

when the same demand is generated again and its resulting value is already available in the

warehouse, thereby eliminating the need for re-computation.

2.3 Related Work

The primary goal of this thesis is to present a simulation/execution-based verification solution

for context- and internal-constraint-aware composite web services. Therefore, our review of

the existing literature on composite web services was focused on answering the following two

questions:

Q1 Are there any studies that propose an approach for the verification of internal

constraints imposed on composite web services? If there are, do they have any

weaknesses that we overcome in our approach?

Q2 What kind of simulation/execution-based solutions exist, in general, for the verification

and validation of composite web services? What similarities or differences do they

present when compared to our solution?

In this section, we examine the findings of our review process that help us answer the above

questions.
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We begin the answer to Q1 with a discussion on the research works conducted so far

on composition of internally-constrained web services. In [3], Wang et al. acknowledge

the fact that most web services can function correctly only within a specific context whose

boundaries are defined by the constraints imposed on them by their providers, which we

call internal service constraints, and that these constraints have a direct impact on the

compositions that use them as components. They explain how a composite service can

fail during execution if one or more constraints imposed on its component services are

not satisfied despite all the input values being in perfect compliance with the input types

required by the services. In order to avoid such failures, the authors propose a graph-

search-based algorithm augmented with novel preprocessing techniques for constraint-aware

composition of web services. Every component service in these compositions can potentially

be replaced with a branched combination of services each of which can perform the same task

but under different constraints (i.e. in different contexts). Which service from each group

gets invoked at run-time depends on which service’s constraints get completely satisfied in

the given execution context. Although this approach, undoubtedly, widens the contextual

range of a composite service, it does not guarantee exhaustive coverage of the context space,

which is completely dependent on the combined contextual range of the services available

for composition. Therefore, it is still possible for these composite services to fail during

execution because of a constraint violation in case the input values do not fall within the

combined contextual scope of their component service alternatives. Similar is the case with

the research conducted by Laleh et al. [4, 5, 6, 7, 8]. The study proposes planning-

graph-based algorithms for automated composition of internally-constrained web services

driven by their input-output relationships. In order to reduce the number of component

service rollbacks resulting from a constraint-verification failure during the execution of a

composite service, the study offers a novel technique for adjusting the constraints in each

composition plan to the earliest possible location at which they can be verified correctly.

According to the study, once all constraint-aware composition plans are generated for a

given composition request, they can be combined to form a larger package containing several
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alternative solutions for the same composition request. In case the internal constraints of

one plan fail verification in a given execution context, it can be rolled back and the next

plan in the package can be selected for execution. Although this approach serves to broaden

the contextual scope of the composition solution while reducing the chance of failure due

to constraint violation (similar to [3]), it does not completely eliminate the risk of run-time

failures. Consequently, a verification system becomes necessary for detecting the scenarios or

regions of execution context space in which a composite service could fail and for validating

that it behaves as expected within its applicable contextual boundaries so that unexpected

post-deployment failures along with their resulting damages (as discussed in Section 1.1)

could be avoided or, at least, prepared for.

Using Petri nets for composition of internally-constrained web services allows for such

a verification to a certain extent by means of simulation. For instance, in [30], Cheng,

Liu, Zhou, Zeng, and Yla-Jaaski introduce an automatic composition method for internally-

constrained fuzzy semantic web services using Fuzzy Predicate Petri Nets (FPPN’s), where

fuzzy semantics (or fuzziness) means syntactic and semantic representations involving fuzzy

variables and fuzzy membership functions. In this method, a composition request is accepted

from the user and its elements are modeled as a set of facts (user-provided inputs), rules (user-

imposed behavioral constraints) and a goal statement (user-expected outputs) in the form of

Horn clauses. Then, these Horn clauses are subjected to a T-invariant analysis technique to

assemble a set of internally-constrained component services that can fulfill the user’s fuzzy

input/output and behavioral constraint requirements by ensuring that the services’ internal

constraints do not conflict with the requester constraints. The T-invariants are then modeled

as an FPPN (a fuzzy extension to the standard predicate/transition nets) and analyzed to

ensure complete absence of deadlocks in the composite service. Finally, reachability graph of

Petri nets is used to determine the execution sequence for the components of the composite

service. Depending on this sequence and the QoS parameter of each component service,

the QoS value of the composite service can be calculated and used to select the optimal

composition among all the ones generated for a given request. A similar approach towards
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constraint-aware web service composition is proposed by Zhu and Du in [12], which uses

Logical Petri Nets (LPN’s) – a high-level abstraction of Petri nets with inhibitor arcs – for

modeling composite services. According to this approach, the input/output requirements

obtained from a composition request are transformed into input parameters required by and

output parameters produced by the services available for composition. Meanwhile, the user’s

behavioral and qualitative constraint requirements are formalized as logical expressions to

guard the inputs and outputs of the resultant Petri net’s transitions. During composition,

those atomic services that not only satisfy the input/output requirements of the user but

also exhibit internal behavioral constraints that match with the requester’s constraints are

selected while the others are rejected. Although the above two studies mainly focus on

composition and not verification of services, it is common knowledge that Petri nets are

capable of simulating the behavior of the systems that they represent and there are several

tools available online that help users observe that simulated behavior [31, 32]. Therefore, it

might be possible to use the above models for simulation-based verification of internal- and

user-constraint-aware composite services. However, Petri nets do not have the capability

to execute real services and, therefore, cannot be used for execution-based verification of

composite services, which is essential to ensure that there are no discrepancies between a

service’s actual behavior and its description.

Another simulation-based verification technique for composite web services is introduced

by Wang and Yu in [18]. As per this technique, the OWL-S process specification of the

composite service to be verified is first translated into a finite state program written in the

executable temporal logic language, called object-oriented MSVL, which is an executable

subset of Projection Temporal Logic (PTL). The properties against which the service needs to

be validated are expressed as formulas of Propositional Projection Temporal Logic (PPTL) –

a specification language for describing desirable properties. The composite service program is

then executed with the desirable property-formulas by the object-oriented MSVL interpreter

to confirm if the service satisfies the properties. Being an object-oriented language, MSVL

enables construction of better structured and understandable programs, thereby reducing
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potential errors. Moreover, it allows for a wide variety of composition constructs to be

represented, including Split, Join, Any-Order, If-Then-Else and Iterate. However, this

technique (same as Petri nets) lacks the ability to execute real services for analyzing their

actual behavior. Moreover, other than stating that the components of a composite service

may have certain pre-conditions placed on them, the authors do not discuss verification of

internal service constraints, which leaves the relevance of this system to our research open

to speculation.

A different approach towards constraint-driven composition of web services is proposed

by Aggarwal, Verma, Miller, and Milnor in [9]. Using a composition framework known as

METEOR-S (Managing End-To-End OpeRations for Semantic Web Services), this approach

allows the components of an abstract process (composite service) to be bound to concrete web

services selected based on business and process constraints, thereby generating an executable

process. For creating the abstract process, this research uses BPEL4WS (Business Process

Execution Language for Web Services) and augments the process activities with service

templates, defining functional semantics and QoS specifications, that assist the constraint

analyzer and execution engine modules of METEOR-S in matching concrete services to

abstract placeholders. To enable METEOR-S to discover suitable concrete services for

matching, this study proposes the use of semantically annotated WSDL service descriptions

stored in an enhanced UDDI registry that has the METEOR-S discovery engine module as

an interface. Selection of the optimal service from a set of potential candidates discovered

for a process is based on their QoS specifications. Once the development, annotation,

discovery and composition phases are complete, the resultant web process represented in

BPEL4WS can be executed on the BPWS4J engine. Unlike the approaches discussed

previously, this approach results in constraint-aware composite services that can be executed

for testing actual behavior of real services. However, it first requires an abstract process to

be constructed manually, which would grow increasingly impractical as the complexity of the

composite service increases. Also, this solution can only support execution-based verification

of composite services; it does not allow for simulation-based testing.
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Table 4: Comparison of Research Works Concerning Internal Constraints (Q1)

Authors & Year Approach/Model/ Automated Internal Constraint Simulation-based Execution-based

Citations Tool Composition Modeling Verification Verification

Aggarwal et al. 2004 METEOR-S framework + + − +

[9]

Zhu and Du 2010 Logical Petri Net + + + −
[12]

Wang et al. 2014 Graph-search-based

[3] internal-constraint-aware + + − −
composition

Cheng et al. 2015 Fuzzy Predicate Petri + + + −
[30] Net

Wang and Yu 2015 MSVL-PPTL − + + −
[18] verification

Laleh et al. 2016-18 Planning-graph-based

[4, 5, 6, 7, 8] internal-constraint-aware + + − −
composition

(+) Support, (-) No Support.

Based on the research works discussed so far, it can be concluded that the existing

solutions for verification of internal constraints imposed on composite services rely either

on simulation or execution but never support both. In contrast, the Lucid/GIPSY

combination that we propose in this thesis has the capability of utilizing either technique

with equal ease, which enhances the scope and, consequently, the reliability of the

verification process. Additionally, part of our solution is an optimized version of the

automated composition method defined by Laleh et al. [4, 5, 6, 7, 8], which incorporates

a unique constraint-adjustment feature for reducing the rollback effort resulting from run-

time constraint-verification failures, which, in turn, improves the overall efficiency of our

simulation/execution process.

For answering Q2, we examine several of the simulation- and execution-based solutions

proposed up to now for the validation of some or the other aspects of composite web services.

Although these solutions are not concerned with verifying internal service constraints,

drawing a contrast against them aids in effective examination of the strengths and limitations

of our validation system. We begin this discussion with simulation-based approaches. Siala,

Ait-Sadoune, and Ghedira [39] propose translating composite service descriptions written

using WS-BPEL and WSDL into Multi-Agent Systems (MAS), which can simulate service
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behavior for observation and detection of undesired properties, such as, live-lock, deadlock,

incorrect transformation of data and faulty ordering or termination of interactions, which, in

turn, can be used for correcting the original composition descriptions, thereby enhancing the

composite service’s reliability. The authors define several rules for transforming WS-BPEL

constructs into corresponding agent code and simulating them using the JADE (Java Agent

DEvelopment) framework. However, their translation process itself is conducted manually,

which would make it a cumbersome task for real-world compositions, which are usually

large and complex in structure. Our translation framework, on the other hand, not only

automates the transformation of composite services but also allows modular plugging-in

and -out of modules for accommodating several different target models, including but not

restricted to Lucid, XML and DOT [40, 41]. Additionally, parallel execution of activities in

MAS is achieved through multi-threading, which demands a significant management effort of

its own and is known to be a common source of complicated run-time errors. Lucid, however,

being a dataflow programming langauge, is immune to such errors because of its inherently-

concurrent nature, which eliminates the need for and, therefore, the risk involved in manual

launching, synchronization and management of multiple threads (see Section 2.1.3).

Another similar approach to verification and validation of composite services is proposed

by Narayanan and McIlraith in [16, 17]. They implement an interpreter for translating

DAML-S composite processes into Petri nets that can be simulated on the KarmaSIM

simulation and modeling environment. The Petri net based KarmaSIM tool allows them to

achieve interactive and visual simulation of service compositions, model component service

concurrencies and check for reachability, liveness and existence of deadlocks in composite

services. A clear advantage of this system over ours is its graphical representation of the

service networks being simulated, which aids in enhanced visualization, particularly in case of

unfamiliar or complex processes. In order to compensate for the lack of a graphical interface

in our simulation tool, we exploit the capabilities of our modular translation framework and

implement a module for generating DOT graph representations of layered composite services,

which enables them to be visualized graphically.
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The use of Petri nets for simulation and analysis of composite web services is also proposed

by Juan and Hao in [33]. Their approach makes use of QPME - a performance modeling

and analysis tool based on Queuing Petri Net (QPN) modeling formalism. According to this

approach, the QPN Editor (QPE) component of QPME is first used to transform WS-BPEL

processes into QPN’s. Then, the SimQPN (Simulator for QPN’s) component of the tool is

used to simulate the QPN’s so constructed for quantitative performance analysis. Results

of this analysis as presented in [33] reveal that the performance of web service compositions

can be improved by adjusting the queuing parameter values. Yet another variant of Petri

nets, known as Colored Petri Net (CPN), is suggested for formal modeling of WS-BPEL

processes by Dechsupa, Vatanawood, and Thongtak in [19]. This study defines a set of

simple rules for transforming WS-BPEL descriptions of composition processes into Colored

Petri nets – classical Petri nets augmented with data, hierarchy and time. It then uses

the CPN Tool for editing, simulation and analysis of the transformed CPN’s. Unlike many

other Petri net-based solutions, this system not only checks for deadlocks and reachability

in composite services but also validates their behavior in response to valid and invalid input

values. To perform such behavioral tests, this approach generates dummy definitions/stubs

for each component service, which are then used in conjunction with the equivalence class

partitioning technique for preparing equivalence classes of service input/output parameters

and determining their range of values – both valid and invalid. The drawback, however, is

that this approach does not allow more than two parameters per service operation, which

places a major restriction on the variety of compositions that can be validated using this

system. Meanwhile, no such restriction exists in the verification solution that we propose.

Another analysis technique involving translation of WS-BPEL processes into a

verification language is discussed by Fu, Bultan, and Su in [20] and by Nagamouttou,

Egambaram, Krishnan, and Narasingam in [42]. Both of these research works propose

translation of composite services written using WS-BPEL into an automata model serving

as an intermediate representation, which, in turn, is translated into the Promela language.

The Simple ProMeLa Interpreter (SPIN) tool is then used for analyzing these Promela
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translations of service compositions for various desirable and undesirable properties. The

system presented by Fu et al. is mainly concerned with analyzing and synchronizing the

asynchronous XML messages exchanged among component services to ensure that the

services get executed in the correct order. This system uses guarded automata augmented

with unbounded queues for incoming messages as the intermediate representation for its

modular and extensible translation framework (similar to ours), which can support multiple

web service specification languages at the front-end and various model checking tools at the

back-end. On the other hand, Nagamouttou et al. are more concerned with checking their

Promela translations for deadlocks, dead transitions, reachability and liveness properties.

This approach first collects the user request for composition, uses it for invoking the related

atomic services, requires them to be composed into a WS-BPEL process manually (as

opposed to our automated composition methodology) and then feeds the composed process

as input to the verification unit where it is translated into the Enhanced Stacked Automata

Model (ESAM), which is the intermediate representation of this system.

A different approach to analyzing composite services described using WS-BPEL is

presented by Chen, Tan, Sun, Liu, and Dong in [13]. Instead of translating a WS-BPEL

process into an intermediate modeling language for verification, which, according to them

opens the system to concurrency bugs that accompany multi-threading techniques used to

represent parallel activities, the authors present a tool called VeriWS that can directly

analyze the semantics of a WS-BPEL process to check for deadlock-freeness, reachability

and QoS constraint-satisfaction. Additionally, the tool also provides a simulator that helps

observe the behavior of a WS-BPEL composition, which, in turn, helps detect anomalies in

its functionality. The simulator also aids in visualizing the WS-BPEL counterexample that

gets generated by the verifier component of the tool in case any non-functional requirement

violations are detected. A significant similarity between this solution and ours is their

modular and extensible software architectures that allow new verifiers to be plugged-in to

VeriWS and new translators to our translation framework, thereby making them more flexible

and versatile. Also, it should be noted that the concurrency bugs that this system avoids
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by omitting translation to a formal language pose no threat to our system either, owing to

the inherent concurrency of Lucid’s dataflow execution model, which eliminates the need

for manual multi-threading altogether (see Section 2.1.3).

A two-stage process for validating composite web services described using WS-BPEL is

proposed by Shkarupylo in [15]. The first step of the process is to synthesize formal TLA+

(Temporal Logic of Actions) specification for a composite service, defining the functional

properties required of the service. Once formulated, this TLA+ specification is used by

the TLC model checker for testing if the WS-BPEL description of its corresponding service

exhibits all the required functional properties. If the WS-BPEL description is found to be

consistent with the requirement specification at this stage, DEVS (Discrete Event System

Specification) simulation models for the composite and component services are designed

based on the TLA+ specification. These models are then provided to the DEVS Suite

toolkit to enable simulation and visualization of the service behavior and validation of its

functional and non-functional properties.

Adadi, Berrada, Chenouni, and Bounabat [43] propose translation of a service

composition constructed using a multi-agent system into a WS-BPEL process for simulation,

which is the inverse of the approach presented by Siala et al. in [39] (discussed earlier in

this section). In this approach, a special type of multi-agent system, known as MARDS

(Multi-Agent Reactive Decisional System), is used for composing web services each of which

is represented by a DRA (Decisional Reactive Agent). Although ultimately intended for use

as a verification system for composite services, this solution has the drawback of not being

mature enough (by the time [43] was published) to be able to use its simulation technique for

verification purposes. Same is the case with the end-to-end response-time analysis system

proposed by Youcef, Bhatti, Mokdad, and Monfort [11] for synchronous and asynchronous

composite web services invoked over the Internet. Although this system successfully uses a

discrete event queuing network model for simulating the execution time of web services, an

emulator capable of validating the results of that simulation is still part of its future work.

Having discussed several verification systems that are purely based on simulation, we now
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examine the Triana framework, which relies on execution for validating composite services.

As described by Majithia, Shields, Taylor, and Wang in [44], Triana is an open source,

distributed, platform-independent Problem Solving Environment (PSE) written in Java

that allows users to discover web services either by querying UDDI registries or by specifying

their WSDL locations, compose the discovered services into workflows through a graphical

interface, export the composed services as a BPEL4WS graph or as a service that can

be registered with UDDI, execute the compositions for analysis by invoking component

services using SOAP over HTTP and, if required, alter the compositions by re-arranging

their workflows on the canvas. When compared to our proposed solution, Triana exhibits

several similarities such as support for composing web services, ability to export composed

services for reuse and an extensible framework that enables easy inclusion of additional export

formats. On the other hand, Triana’s graphical interface makes it more user-friendly in

comparison to our system, which we compensate for to some extent through our DOT graph

translator module. Meanwhile, the factor that provides an edge to our system over Triana

is its ability to compose services automatically as opposed to Triana’s manual discovery

and composition process, which would prove to be an unwieldy task while handling large

repositories and complex compositions.

Moving on to solutions that can exploit the capabilities of both simulation and

execution techniques for verification purposes, we begin by examining the CRESS (Chisel

Representation Employing Systematic Specification) representation and toolset proposed

for automated translation and analysis of composite services by Turner [45]. This toolset

transforms a composite service diagram drawn using a graphical editor into a CRESS directed

graph, which, in turn, is translated into the target language whose framework details are

also provided as input to it. To facilitate automated analysis, CRESS supports translation

of composite services to formal specification languages, such as, LOTOS and SDL (which

can be validated on their specific simulation-based analyzers), whereas to facilitate service

execution, it supports their translation to BPEL and WSDL (which can be deployed using

ActiveBPEL and other similar BPEL environments). Verification checks supported for
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CRESS translations include those for deadlocks, live-locks, liveness and consistency of high

level descriptions with their detailed designs. In addition to these, use-case scenarios can also

be defined and translated into target language test processes using CRESS, which can then

validate the translated composite service’s behavior in specific usage situations. MUSTARD

is one of the independent yet related tools that can be used for defining use-case scenarios for

such validation checks. Features shared by CRESS and our solution include their support for

graphical representation of composite services to aid visualization, automated and extensible

translation framework, ability to simulate as well as execute composite services and facility

to manually implement component services in case their actual definitions are unavailable.

A slight drawback of CRESS is the effort it demands for representing parallel execution of

services, which is not required in our solution as it is handled automatically in Lucid.

Yet another system that can use both execution and simulation techniques for analysis

of composite web services is the JSIM-SCET tool set proposed by Chandrasekaran et al.

and Silver et al. in [46, 47, 48, 49]. The Service Composition and Execution Tool (SCET)

provides a graphical designer, known as Web Process Design Tool (WPDT), which allows

service compositions to be visualized and manually constructed (as opposed to our automated

composition technique) as digraphs. Descriptions of the web processes so constructed can

be stored as Web Service Flow Language (WSFL) based specifications within the designer

or as XML documents in a repository. In order to facilitate execution of the composed

services, their WSFL specifications can be automatically transformed into Perl code by the

Perl Execution Code Generator sub-module of SCET. Execution of this code for functionality

and performance analysis is handled by the Perl execution controller module. Alternatively,

the WSFL specifications can be used by the Simulation Model Generator unit of SCET

for generating Java-based specifications that can be simulated on the JSIM simulator.

Simulation is used as an alternative to execution in this system when the component services

being analyzed are either world-altering or involve an invocation cost, which makes their

execution impractical and expensive. Based on the results of the analysis (whether simulated

or executed), the compositions being analyzed can be tuned so as to improve their efficiency
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Table 5: Comparison of Simulation/Execution-based Verification Approaches (Q2)

Authors & Year Approach/Model/ Automated Internal Constraint Simulation-based Execution-based

Citations Tool Composition Modeling Verification Verification

Chandrasekaran et al. 2002-03 JSIM-SCET tool set

& Silver et al. − − + +

[46, 47, 48, 49]

Narayanan and 2002-03 DAML-S to Petri Net

McIlraith translation + − + −
[16, 17]

Fu et al. & 2004 & WS-BPEL to Promela

Nagamouttou et al. 2015 translation − − + −
[20, 42]

Majithia et al. 2004 Triana Problem Solving − − − +

[44] Environment

Youcef et al. 2006 Discrete event queuing − − − −
[11] network

Turner 2007 CRESS representation & − − + +

[45] tool set

Juan and Hao 2012 WS-BPEL to Queuing − − + −
[33] Petri Net translation

Chen et al. 2014 WS-BPEL analysis on − − + −
[13] VeriWS

Siala et al. 2014 WS-BPEL to Multi-Agent − − + −
[39] System translation

Adadi et al. 2015 Multi-Agent System − − − −
[43] to WS-BPEL translation

Dechsupa et al. 2016 WS-BPEL to Colored − − + −
[19] Petri Net translation

Shkarupylo 2016 TLA- & DEVS-based − − + −
[15] verification of WS-BPEL

(+) Support, (-) No Support.

measured in terms of their execution time. Features that this system has in common with our

proposed solution include its graphical representation of web processes, ability to store them

after composition for further processing, automated translation methodology and support

for simulation as well as execution of service compositions.

Based on the research works discussed in response to Q2, it can be concluded that none

of these systems other than CRESS and JSIM-SCET have the capability to employ both

simulation and execution for composite service verification. Most of these systems use WS-

BPEL processes as their input, which they first translate into a verification language or a

formal simulation/execution model and then validate using a simulator, execution controller

or model checker tool. Although several of these approaches succeed in incorporating

automation and extensibility features in their translation processes, none of them supports
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completely automated composition of services, which limits their practicality while handling

complex compositions or large repositories of component services. Even widely-used open-

source and commercial web service testing tools, such as SoapUI [50], while exhibiting

simulation and execution capabilities, fail to support examination of internally-constrained

and composite web services. In contrast, the solution that we propose in this thesis not only

enables automated composition of services but also includes a unique constraint-adjustment

feature (introduced by Laleh et al. [4, 5, 6, 7, 8]) for improving the efficiency of the process.

Additionally, the inherent concurrency of Lucid’s dataflow execution model, unlike most of

the other systems, exempts our approach from the effort and risk involved in handling parallel

execution of services and multiple thread management. Another factor that differentiates

other existing systems from ours is their purpose of verification. While most of these studies

concern themselves with checking for component-ordering, deadlock, live-lock, reachability

and QoS properties, we are focused on validating internal constraints placed on services

by their providers. Based on the above discussion, the factors that we found our system

to be lacking in when compared to other existing systems include an interactive graphical

interface for service composition and verification and the ability to represent if-else and

looping constructs in composite services. In order to compensate for the lack of a graphical

interface and aid visualization, we incorporate a module in our translator for generating DOT

graph representations of service compositions. However, being based on Laleh’s planning-

graph approach to service composition, it is not possible for our system to model uncertainties

or repetition in execution of components (as mentioned in Section 1.4). The only conditions

that are allowed during execution, at present, are those resulting from internal service

constraints. In the future, however, we plan to extend our current system to merge all

compositions generated for a request into a single package (as proposed by Laleh et al.),

containing alternative sub-plans to choose from based on runtime constraint-satisfaction in

order to help recover from execution failures (see Section 6.2).
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2.4 Summary

The inherent concurrency of Lucid’s dataflow execution model, the ability of GIPSY to store

execution results with respect to their context in its warehouse for future reference and the

ability of the Lucid/GIPSY system to both simulate and execute composite services with

equal ease, together with an automated composition methodology with its unique constraint-

adjustment technique (designed by Laleh et al.) and an extensible and modular translation

framework, are all characteristics that distinguish the system presented in this thesis from

other composite service verification solutions. In this chapter, we examined such distinctive

features of Lucid and GIPSY in detail and compared our proposed solution with other

related research works conducted in the field to this date to gain a clear understanding of

its strengths and limitations. With this understanding as the base, from the next chapter

onwards, we start exploring our research methodology (outlined in Section 1.5) in greater

detail, beginning with a discussion on Laleh’s unique automated composition technique, the

steps that we take to complete and optimize it as well as its reimplementation as a more

flexible, modular and maintainable application.
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Chapter 3

Service Composition

As mentioned in Contribution 1 (Section 1.3), while simulating and executing composite

web services with internal constraints is the primary goal of this thesis, constructing such

services based on a composition request and a set of services available for composition is an

essential prerequisite to the simulation/execution process (see Section 1.5). The automated

service composition technique that we employ in this thesis has been borrowed from the

research conducted by Laleh et al. [4, 5, 6, 7, 8]. In this chapter, we discuss this unique

composition methodology, the layered structure of the composite services that it generates,

the additions and modifications that we make to complete and optimize this technique and

the specific features that we introduce during its re-implementation to transform it into an

independent, flexible and maintainable application.

3.1 Composite Service Model

In order to understand the service composition methodology devised by Laleh et al., it is

essential to have a clear understanding of the fundamental entities and concepts involved in

it. In this section, we present the formal definitions of such entities and concepts as provided

by Laleh in [4].

Definition 1. A Service is a tuple S = ⟨I, O, C,E,QoS⟩ where:
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• I is the set of ontology types representing the input parameters of the service.

• O is the set of ontology types representing the output parameters of the service.

• C is the set of constraint expressions representing limitations on service features.

• E is the set of ontology types representing parameters whose values are affected as a

result of the execution of the service.

• QoS is the set of quality parameters of the service.

For instance, elements of the Payment service W3 listed in Table 6 would be expressed as:

• I = {OrderNumber, PaymentAmount, CreditCardBrand, CreditCardNumber}

• O = {PaymentStatus}

• C = {CreditCardBrand = V isa}

• E = {PaymentStatus}

• QoS = {}

In this thesis, we do not take QoS features or their related constraints into consideration.

Therefore, although we incorporate a placeholder for QoS parameters in our implementation

of the Service entity, its sole purpose is to complete the Service structure, which would be

required for verification of QoS constraints in the future. At present, we focus only on the

constraints imposed on services by their providers, which are known as internal constraints.

Although we have already defined these constraints in Section 1.1, here, we present a more

formal definition for them derived from the generic definition of constraints provided by

Laleh.

Definition 2. An Internal Constraint is an expression that can be evaluated to either

true or false. For simplicity, we restrict ourselves to expressions of the form:

⟨feature⟩ ⟨operator⟩ ⟨literalValue⟩, where:
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• ⟨feature⟩ represents an input parameter of a service, which is an ontology type.

• ⟨operator⟩ represents operators such as =, <,>,≤,≥.

• ⟨literalValue⟩ represents a value or a set of values of the same data type as the

expression feature.

For instance, the internal constraint placed on the CreditCardBrand input parameter of

Payment service W3 listed in Table 6 would be expressed as CreditCardBrand = V isa.

As explained in the research methodology section (1.5), in order to initiate automated

composition of services, besides a set of services available to be used as components, a

composition request, specifying the user’s requirements, is also required. This composition

request is defined as follows:

Definition 3. A Service Composition Request is a tuple R = ⟨I, O,QoS,C⟩ where:

• I is the set of ontology types representing the input the customer can provide.

• O is the set of ontology types representing the output expected by the customer.

• QoS is the set of quality parameters expected from the service by the customer.

• C is the set of constraints representing limitations of service requester.

For instance, elements of the request for composing the services listed in Table 6 to construct

an online shopping service similar to the one depicted in Figure 2 would be expressed as:

• I = {ProductName,CreditCardBrand, CreditCardNumber, ShippingAddress}

• O = {ShipmentStatus}

• QoS = {}

• C = {}
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Since, in this thesis, we take only internal constraints into consideration, our current

implementation of a composition request models but does not process the requester’s QoS and

constraint requirements. At present, they are included only for the sake of completeness of

the composition model. In response to a composition request, Laleh’s composition approach

generates a set of one or more solution plans, i.e., workflows of component services capable

of producing the requested output by processing the given input while verifying the internal

constraints placed on their components. These plans are termed as constraint-aware plans

and are defined as:

Definition 4. A Constraint-Aware Plan is a directed graph extracted from the search

graph in which each node is a service-node ⟨CS, service⟩, using initial parameters (R.I),

whose successive application of services of nodes is eventually generating the goal parameters

(R.O).

The search graph referred to in the above definition is the graph of search nodes that gets

generated as a result of the forward expansion stage of the composition process and represents

a collection of all the solution plans that can be constructed for the given composition request

(explained further in Section 3.2, depicted in Figure 9). For each service-node ⟨CS, service⟩

in a constraint-aware plan, CS refers to the set of all service constraints that must be verified

before service can be executed as part of the plan. The term R.I refers to the input

parameters specified as part of the given composition request R while R.O refers to the

requested output parameters. Each service-node in a constraint-aware plan has a set of

predecessors and a set of successors associated with it, which are defined as follows:

Definition 5. The predecessor set of a service-node in a constraint-aware plan represents

the set of all services-nodes that must be executed before the execution of the service-node,

and the successor set represents the set of all services-nodes that will be executed only after

the execution of the service-node in the constraint-aware plan.

For instance, predecessor and successor sets for Shipment service W7 depicted in Figure 13

would be: predecessors(W7) = {W1,W4} and successors(W7) = ∅.
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3.2 Service Composition Algorithms

Laleh et al. present their service composition methodology as a set of algorithms,

which transform a given composition request and set of available services into a set of

constraint-aware composition plans or composite services. However, while they completely

design the other algorithms (ServiceComposition, ForwardExpansion, AddService,

BackwardSearch and AdjustConstraint) participating in the process, only a brief

description is provided for the ConstructP lan algorithm referred to in line 7 of the

ServiceComposition algorithm (1). Since, the ConstructP lan algorithm is an integral part

of and is essential for completing the implementation of the service composition process, we

design it (Algorithm 5) as part of this thesis based on its description provided in [5]. In

this section, we present and explain this algorithm along with the others (as presented in

[5]) that together constitute the planning-based constraint-aware composition methodology

(summarized in Figure 8).

Algorithm 1 drives the service composition process, invoking the other algorithms as

and when required. It consists of four major steps: (1) forward expansion (Algorithm 2)

responsible for constructing a search graph based on the given composition request and

available services (line 2), (2) backward search (Algorithm 4) for extracting solution plan

sets from the search graph (line 6), (3) plan construction (Algorithm 5) tasked with

discarding extraneous services from the solution plan sets and arranging the remaining

ones into workflows or solution plans (line 7) and (4) constraint-aware plan construction

for transforming the solution plans into constraint-aware plans (lines 13 - 18) with their

constraint verification points adjusted to optimum locations (Algorithm 6). The algorithm

results in failure if no constraint-aware plans can be generated for the given composition

request.

Algorithm 2 is responsible for generating a search graph for the given composition

request (R). A search graph is a directed graph composed of ordered layers, each of which

is assigned certain specific services selected from the given repository (SR). Assignment

of services to layers depends upon their input-output relationship with each other. The
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Figure 8: Planning-based Constraint-aware Service Composition Methodology

services that generate output parameters that serve as inputs to other services are placed in

earlier layers while the services that consume their outputs are placed in later ones. In order

to find services that fulfill the user’s requirements and determine the relationship between

them, prdSet (i.e. the predecessor set) is used. Its job is to keep track of the parameters

produced by each successive layer of services as it gets added to the search graph. As forward

expansion begins, prdSet is initialized with the input parameters of the composition request

(R.I), following which the repository is searched for services all of whose input parameters

can be found in prdSet. Each of the suitable services discovered during the search must

be able to generate an output parameter that is not already included in prdSet (lines 2 -

5) and must not violate any of the constraints (R.C) specified in the composition request

(line 7). Services that match all these criteria are added to the next layer in the search
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Algorithm 1 ServiceComposition

Input: R (composition request), SR (set of available services).
Output: plans (a set of constraint-aware plans, or failure).
1: serviceSet = ∅; plans = ∅
2: searchGraph = ForwardExpansion(R, SR)
3: repeat
4: l = maximum layer index in the search graph
5: ServiceSet = all services in layer l of the search graph
6: serviceSet = BackwardSearch(searchGraph, ServiceSet, ∅, l)
7: plan = constructP lan(serviceSet)
8: if (plan /∈ plans) then
9: plans = plans ∪ plan
10: end if
11: until (No more plan can be added to the plans)
12: if (plans ̸= ∅) then
13: for (each plan ∈ plans) do
14: for (each service ∈ plan) do
15: serviceNode.service = service
16: serviceNode.Cs = service.C
17: cnstrAwareP lan = cnstrAwareP lan ∪ serviceNode
18: end for
19: cnstrAwareP lan = adjustConstraint(cnstrAwareP lan)
20: cnstr plans = cnstr plans ∪ cnstrAwareP lan
21: end for
22: return cnstr plans
23: else
24: return failure
25: end if

graph. The output parameters produced by all the services included in the layer are then

added to prdSet and the repository is searched again for services that can be added to the

following layer based on the updated set of parameters. In this way, the search graph grows

layer by layer until no more services from the repository can be added to it. If the prdSet

obtained at the end of the expansion is found to contain all the requested output parameters

(R.O), the problem is considered solvable and the search graph is returned to Algorithm 1

for further processing (lines 15 - 17), otherwise, the problem cannot be solved by the given

set of services and forward expansion ends in failure.

Algorithm 3 is invoked by the forward expansion process for determining the location
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Algorithm 2 ForwardExpansion

Input: R (composition request), SR (set of available services)
Output: searchGraph (search graph generated by forward expansion).
1: searchGraph = null; prdSet = R.I
2: repeat
3: layerSet = ∅
4: for each service in SR do
5: if (service.I ⊆ prdSet) and (service.O − prdSet ̸= ∅) then
6: l = AddService(searchGraph, service)
7: if (CheckRequesterConstraints(l, R.C)) then
8: searchGraph = l
9: layerSet = layerSet ∪ service.O
10: end if
11: end if
12: end for
13: prdSet = prdSet ∪ layerSet
14: until (No service could be added to the search graph)
15: if (R.O ⊂ prdSet) then
16: return searchGraph
17: end if
18: return failure

at which a newly selected service (newService) should be inserted in the search graph.

To accomplish that, Algorithm 3 scans the search graph constructed until the discovery of

newService from the first to the last layer (maximum layer index) sequentially and finds

the services one or more of whose output parameters serve as inputs to newService. All such

services are added to the predecessor set of newService (lines 4 - 8). Once all predecessors are

found, newService is inserted into the layer after the one that contains its latest predecessor.

This approach allows services to be composed in sequence or in parallel.

Algorithm 4 recursively extracts a sequence of service sets from the search graph using

a backward-chaining strategy, which can reach the goal parameters (R.O) from the initial

parameters (R.I). Each service set in this sequence belongs to a different layer of the graph.

Starting from the last layer, each time the algorithm backtracks, it selects a subset of services

(serviceSet) from the power set of predecessor services (preSrvSet) from the previous layer

of the services selected in the last recursion (lines 1 - 4). In case the selected subset does
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Algorithm 3 AddService

Input: searchGraph (a search graph), newService (A new service)
Output: searchGraph (a search graph includes newService)
1: lyr = 0;newIn = newService.I
2: while (lyr ≤ maximum layer index in searchGraph) do
3: serviceLayerSet = all services in layer lyr of searchGraph
4: for (each service ∈ serviceLayerSet) do
5: prdSet = service.O ∩ newIn
6: if (prdSet ̸= ∅) then
7: newService.predecessor = newService.predecessor ∪ service
8: newIn = newIn− prdSet
9: Searchgprah.serviceSet = Searchgprah.serviceSet ∪ newService
10: else
11: return searchGraph
12: end if
13: end for
14: lyr = lyr + 1
15: end while

not include any of the predecessor services (lines 5 - 7), it is ignored and the algorithm

continues with another subset from the same predecessor power set. If the backtracking

reaches the first layer of the search graph, the set of input parameters of all the services

selected from the first layer is inspected to ensure that they all are available in the set of

initial parameters (lines 10 - 15), otherwise, this planSet is ignored and backward search

continues with another subset from the first layer (lines 13 - 15). If the input parameters of

initial services are found to be satisfactory, the set of output parameters of all the services

belonging to this planSet is checked to ensure that it includes all the goal parameters (lines

16 - 21). If successfully verified, the planSet is returned to Algorithm 1 to be transformed

into a solution plan (plan).

The function constructP lan (Algorithm 1, line 7) has been described in [5] as being

responsible for discarding all the unnecessary services from the serviceSet (or planSet from

Algorithm 4) in order to minimize the number of component services in the final solution and

then arranging the remaining services in the serviceSet in proper sequence to form a solution

plan. Based on this description, we have designed Algorithm 5 to first organize the services
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Algorithm 4 BackwardSearch

Input: searchGraph (a search graph on which the BackwardSearch is applied), preSrvSet (set
of predecessor services), planSet (the set of services in the solution plan), l (the layer number
from which to start the search)

Output: planSet or failure
1: S = all services in layer l of the search graph
2: serviceSet = preSrvSet ∩ S
3: planPowerSet = powerSet(S)
4: for (each set ∈ planPowerSet) do
5: if ((serviceSet ∩ set) = ∅) then
6: Continue
7: end if
8: planSet = planSet ∪ set
9: if (l = 1) then
10: for (each service ∈ set) do
11: inputSet = inputSet ∪ service.I
12: end for
13: if (inputSet ̸⊂ R.I) then
14: Continue
15: end if
16: for (each service ∈ planSet) do
17: outputSet = outputSet ∪ service.O
18: end for
19: if (R.O ⊂ outputSet) then
20: return planSet
21: end if
22: else
23: for (each service ∈ set) do
24: preSet = preSet ∪ service.predecessors
25: end for
26: if (preSet ̸= ∅) then
27: return BackwardSearch(searchGraph, preSrvSet ∪ preSet, planSet, l − 1)
28: else
29: return Failure
30: end if
31: end if
32: end for
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Algorithm 5 ConstructPlan

Input: R (composition request), serviceSet (a set of services generated by BackwardSearch)
Output: plan (a solution plan)
1: m = maximum layer index of services in serviceSet
2: for (l = 0 to m) do
3: lIndexedSvcSet = all services in serviceSet with layer index l
4: plan = plan ∪ lIndexedSvcSet
5: end for
6: repeat
7: for (l = 0 to m− 1) do
8: layerSet = all services in layer l of plan
9: for (each service ∈ layerSet) do
10: for (each predSvc ∈ service.predecessors) do
11: if (predSvc ∈ plan) then
12: predOutpSet = predOutpSet ∪ predSvc.O
13: end if
14: end for
15: if (service.I ̸⊂ predOutpSet ∪R.I) then
16: plan = plan− service
17: end if
18: end for
19: end for
20: for (l = m− 1 to 0) do
21: layerSet = all services in layer l of plan
22: for (each service ∈ layerSet) do
23: if (service.successors ∩ plan = ∅) then
24: if (service.O ∩R.O = ∅) then
25: plan = plan− service
26: end if
27: end if
28: end for
29: end for
30: until (No more services can be removed from plan)
31: if (|plan| > 1) then
32: for (each service ∈ plan) do
33: planOutpSet = planOutpSet ∪ service.O
34: end for
35: if (R.O ̸⊂ planOutpSet) then
36: return ∅
37: else
38: return plan
39: end if
40: else
41: return ∅
42: end if
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in serviceSet in order of their layer indexes (lines 1 - 5), resulting in the creation of a layered

directed graph (plan), which can be viewed as a part of the original search graph. Then, for

each service in the plan (iterating from first to last layer), the set of output parameters of

all its predecessors that are included in the plan together with the initial parameters (R.I)

is checked to ensure that it includes all the input parameters of the service, otherwise, the

service is removed from the plan (lines 7 - 19). Each of the remaining services in the plan

(iterating from last to first layer) that neither have a successor in the plan nor produce any

of the goal parameters (R.O) as output are also discarded (lines 20 - 29). This verification

and removal process continues until no more services can be removed from the plan. For the

resultant plan to qualify as a composition of services, it must contain at least two services

(line 31). Additionally, the set of output parameters of all its remaining services must include

all the goal parameters (lines 32 - 35). If the plan satisfies these conditions, it is returned to

Algorithm 1 as a solution plan (line 38), otherwise, it is discarded as invalid (lines 36 and

41).

Algorithm 6 adjusts the constraint verification points within a constraint-aware plan

(generated by Algorithm 1, lines 13 - 18) to optimal locations. From the second layer

onwards, each constraint of each service-node (serviceNode) in constraintP lan is moved to

as early a layer as feasible (lines 9 - 28). To accomplish that, a service-node (preNode) that

belongs to the set of predecessors (preSet) of serviceNode and affects the value of the feature

to which the constraint applies is selected (lines 15 - 16). The constraint is then moved to

verification points immediately before the execution of all successor service-nodes of preNode

(lines 17 - 19). This process is repeated with all the predecessors of serviceNode as well as

their predecessors until the constraint is moved to the earliest and most efficient verification

point in constraintP lan. In case no predecessors are found to affect the constrained feature’s

value, the constraint is moved to the beginning of constraintP lan (lines 11 - 13). Once all

the constraints in constraintP lan are similarly adjusted to optimal verification points, it is

returned to Algorithm 1 as one of the constraint-aware solutions to the given composition

problem.
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Algorithm 6 AdjustConstraint

Input: constraintP lan (a constraint-aware plan)
Output: constraintP lan (a constraint-aware plan with adjusted constraints)
1: l1 = 2
2: while (l1 ≤ maximum layer index in constraintP lan) do
3: layerSet = all service-nodes in layer l1 of constraintPlan
4: l2 = l1 − 1
5: preLayerSet = all service-nodes in layer l2 of constraintPlan
6: for (each serviceNode ∈ layerSet) do
7: preSet = serviceNode.predecessors ∩ preLayerSet
8: constraintSet = serviceNode.service.C
9: for (each constraint ∈ constraintSet) do
10: repeat
11: if (preSet = ∅) then
12: Add the constraint to the beginning of the constraintPlan
13: break
14: end if
15: preNode = a node of preSet with the highest layer
16: if ( constraint.feature ∈ preNode.service.E) then
17: for (each sNode ∈ serviceNode.successors) do
18: sNode.Cs = sNode.Cs ∪ constraint
19: end for
20: constraintSet = constraintSet− constraint
21: break
22: else
23: preSet = preSet− preNode
24: preSet = preSet ∪ preNode.predecessors
25: end if
26: until (preSet ̸= ∅)
27: end for
28: end for
29: l1 = l1 + 1
30: end while
31: return constraintPlan
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3.3 Service Composition Example

In this section, we present an example to demonstrate the step-by-step construction of

constraint-aware plans for a given composition request and repository of available services.

Consider a composition request (R) for constructing an online shopping service similar to

the one depicted in Figure 2, such that:

• R.I = {ProductName,CreditCardBrand, CreditCardNumber, ShippingAddress}

• R.O = {ShipmentStatus}

• R.QoS = {}

• R.C = {}

Details of the services available for the composition (i.e., the repository SR) are provided in

Table 6 – an extended version of Table 1. Based on these R and SR, the forward expansion

stage of the composition process constructs a search graph as depicted in Figure 9. The

prdSet is initialized with the initial parameters (R.I), gets incrementally augmented with

the new parameters produced by services of each new layer added to the graph and, finally,

reaches the state where it contains all the goal parameters (R.O). The services that get

added to each layer of the graph and the inputs they consume and outputs they produce

are also shown in Figure 9. Shipment service W8 cannot be included in this search graph

because all its required input parameters get added to prdSet only after the addition of

Layer 2, which also adds parameter ShipmentStatus – the only output parameter of W8 –

to prdSet. Since, W8 is not able to produce any parameters that do not already exist in

prdSet after Layer 2, it is rejected by the forward expansion process (Algorithm 2, line 5; see

Section 3.4 for more details). Meanwhile, the services that get selected by the process form

predecessor-successor relationships among themselves based on their shared input-output

parameters. For instance, W7 (in Layer 2 ) accepts ProductWeight (produced by W1) and

PaymentNumber (produced by W4 and W5) as input. Therefore, within the search graph,
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Table 6: Services Available for Composition of Shopping Application

Service Type Input Parameters Sample Input Output Parameters Sample Output Internal Constraints

Values Values

W1 Catalog {ProductName} {StudyTable} {ProductNumber, {ST1234, C1 = ∅
ProductPrice, 75.00,

ProductWeight} 45}
W2 Order {ProductNumber, {ST1234, {OrderNumber, {ORD1234, C2 = ∅

ProductPrice} 75.00} PaymentAmount} 82.50}
W3 Payment {OrderNumber, {ORD1234, {PaymentStatus} {Complete} C3 = {CreditCardBrand = V isa}

PaymentAmount, 82.50,

CreditCardBrand, Visa,

CreditCardNumber} CCVS56789}
W4 Order/ {ProductNumber, {ST1234, {PaymentNumber} {PAY1234} C4 = {CreditCardBrand = V isa}

Payment ProductPrice, 75.00,

CreditCardBrand, Visa,

CreditCardNumber} CCVS56789}
W5 Order/ {ProductNumber, {ST1234, {PaymentNumber} {PAY1234} C5 = {CreditCardBrand = Master}

Payment ProductPrice, 75.00,

CreditCardBrand, Master,

CreditCardNumber} CCMS56789}
W6 Shipment {PaymentNumber, {PAY1234, {ShipmentStatus} {Confirmed} C61 = {ProductWeight <= 50}

ProductWeight, 45, C62 = {ShippingAddress = Montreal}
ShippingAddress} Montreal}

W7 Shipment {PaymentNumber, {PAY1234, {ShipmentStatus} {Confirmed} C71 = {ProductWeight <= 50}
ProductWeight, 45, C72 = {ShippingAddress = Quebec}
ShippingAddress} Quebec}

W8 Shipment {PaymentStatus, {Complete, {ShipmentStatus} {Confirmed} C81 = {ProductWeight <= 50}
ProductWeight, 45, C82 = {ShippingAddress = Canada}
ShippingAddress} Canada}

predecessors(W7) = {W1,W4,W5}. Figure 10 depicts all such relationships existing within

the Shopping application’s search graph.

The backward search stage of the composition process uses this search graph to generate

service sets that can later be transformed into solution plans. Figure 11 shows the generation

of such plan sets when the backtracking begins from Layer 2. The parent node of each of the

tree-like structures shown in the diagram is an element of the power set of the Layer 2 service

set, i.e., powerset({W3,W6,W7}). The middle tier of each tree is composed of the elements

of the power set of its parent node’s predecessor set belonging to Layer 1. For example,

Figure 10 shows that predecessors(W6) = {W1,W4,W5}, out of which W4 and W5 belong

to Layer 1. Therefore, the second tree in Figure 11 (with {W6} as its parent) has its middle

tier composed of powerset({W4,W5}). Similarly, the lowest tier of each tree is composed of

the predecessors of the middle tier services from Layer 0 (i.e., elements of powerset({W1})).
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Figure 9: Shopping Service Search Graph Construction

Figure 10: Predecessor-Successor Relationships in Shopping Service Search Graph

The directed edges of each structure follow the backtracking process for each service set

from Layer 2 to Layer 0. The sets that are actually constructed are illustrated in green

whereas the sets that get discarded during backward search are depicted in red. Set (1)

is a special case because it would get generated if backward search would be carried out

exactly according to Algorithm 4. However, the set would have to be discarded later as it
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Figure 11: Shopping Service Solution Plan Set Construction

does not produce the goal parameter (ShipmentStatus). In order to save the effort spent

on generating and later discarding such sets, one of our optimizations introduced during

re-implementation of backward search prevents such sets from being generated in the first

place (explained further in Section 3.5.3.2). That is why, set (1) is depicted entirely in red

in the diagram. In order to avoid redundancy and maintaining clarity in the diagram, sets

(12) - (21) and (25) - (31) have not been extended beyond Layer 1. Once all the valid sets

illustrated in the figure are generated, the procedure is repeated with Layer 1 and Layer 0

as starting layers. However, no valid sets can be extracted from them because, like set (1),

they do not produce the goal parameter. Therefore, the procedure has not been depicted

here.

The plan sets generated by backward search are validated and pruned by the plan

construction stage for generating solution plans for the given composition request. Figure 12
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Figure 12: Shopping Service Solution Plan Construction

shows the plan construction for some of the plan sets depicted in Figure 11 (plans are

numbered same as their corresponding sets). As an example, consider plan set (2), containing

services {W6,W4,W1}, where, predecessors(W6) = {W1,W4,W5}, predecessors(W4) =

{W1} and predecessors(W1) = ∅. The services in the set, when arranged in a workflow

according to their predecessor-successor relationships, produce solution plan (2), which

passes all the validation checks performed by the plan construction stage. Similarly, sets

(3) - (7) and (22) - (24) also result in generation of valid solution plans for the shopping

composition request. However, while plans (2), (3), (5) and (6) use the minimum number
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of services necessary for the composition, the other valid plans still contain one or more

extraneous services. This limitation of the plan construction process is discussed in detail in

Section 6.2.2. Plan sets other than (2) - (7) and (22) - (24) either get discarded as invalid or

pruning transforms them into duplicates of other valid plans. For example, Figure 12 depicts

the sequence in which each service in plan (8) fails some validation check during construction,

eventually resulting in the plan being rejected for containing no services at all. Meanwhile,

plans (9) and (11) get some of their services removed because of validation failures (shown

in figure), which transforms them into plan (2) and causes them to be rejected as duplicates

by the service composition algorithm (Algorithm 1, lines 8 - 10).

All the valid solution plans generated for the shopping composition request are

transformed into constraint-aware plans in which the constraint segment of each service-

node comprises of the internal constraints placed on the node’s service. For instance, consider

the constraint-aware version of solution plan (5) shown in Figure 13. Each diamond-circle

pair enclosed in a rectangle in the diagram represents a service-node with the diamond

standing for constraints and the circle for service. In this plan, the diamonds for W4 and

W7 hold their respective internal constraints whereas the one for W1 is blank because the

service does not have any internal constraints of its own. Once a constraint-aware plan

is constructed, the constraint-adjustment mechanism moves all its constraints to optimal

verification points. For instance, considering plan (5), constraints C4 and C72 are imposed

on parameters CreditCardBrand and ShippingAddress respectively, which are available as

initial parameters from the customer and, therefore, their constraints can be verified before

any services in the plan are executed. Consequently, in case any of these constraints fail the

run-time verification, no component services would have to be rolled back and no execution

effort would be wasted. Therefore, during constraint-adjustment, C4 and C72 are moved to

the constraint segment ofW1’s service-node (as shown in Figure 14). Similarly, C71 constrains

ProductWeight parameter whose value is last affected by W1 and can be verified immediately

after W1 completes execution. Therefore, C71 has been moved to the constraint segments of

W1’s successor service-nodes. In case it fails, neither W4 nor W7 would be executed and only
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Figure 13: Shopping Service Constraint-Aware Plan before Constraint Adjustment

Figure 14: Shopping Service Constraint-Aware Plan after Constraint Adjustment

W1 would have to be rolled back. In contrast, verification failure of C71 in plan (5) before

adjustment would have forced roll-back of both W1 and W4.

In this way, given the shopping composition request and a repository of services as

described in Table 6, the service composition process automatically generates nine constraint-

aware composition plans with optimally placed internal service constraints.

3.4 Restriction on Service Composition

The planning-graph-based approach to service composition adopted by Laleh et al. [4, 5, 6,

7, 8] places a restriction on the addition of repository services to a search graph, which has

a significant impact on the resultant graph and, consequently, on the final constraint-aware

composition plans. In this section, we explain this restriction, the rationale behind it and

its side-effect.
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According to the restriction, a service can be added to a search graph during forward

expansion (Algorithm 2) only if it produces at least one parameter as output that does not

already exist in the prdSet at the time that the service has to be added (lines 5 - 6). The

reasons that support this restriction have been listed below:

• Preventing multiple service occurrences to save execution effort: Considering

a hypothetical search graph, without this restriction, it is possible that the same service,

say, W1, gets added first in, say, Layer 5, and then during a later iteration in, say, Layer

8 of the graph. This can happen if some services in Layer 7 produce some parameters

that can act as inputs to W1. In case this scenario eventually results in a solution plan

that contains both instances of W1, resources will be unnecessarily spent on executing

W1 twice for computing the same set of parameters.

To avoid redundant execution of the service, an alternative could be to move W1

from Layer 5 to Layer 8. However, such a change would affect all the predecessor

and successor services of W1 (even requiring the successors to be moved to Layer 9 or

later). Changes to these services would, in turn, trigger a cascade of service adjustments

throughout the graph and ultimately result in a huge and complicated change in its

structure, which makes this alternative highly infeasible.

• Preventing redundant layer construction: Without this restriction, every time

the repository is searched to find services for a new layer, the services that were

included in the search graph in an earlier iteration will also be validated again and

found eligible to be assigned to the same layers to which they already belong. This is

purely redundant processing of services for layers that have already been built, which

accounts for a significant amount of processing effort that results in no net growth of

the graph.

• Preventing infinite continuation of forward expansion: In the absence of this

restriction, every eligible service in the service repository, irrespective of whether it is

already present in the search graph or not, will be validated and added to the search
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graph in every iteration. In other words, every iteration will add one or more services

to the graph, as a consequence of which the termination condition of forward expansion

process – “until no service could be added to the search graph” (Algorithm 2, line 14)

– will never be satisfied, causing the process to enter an infinite loop once all possible

component services for a composition request have been added.

Despite its usefulness, this restriction has a side-effect. It can prevent some of the longer

(i.e., containing more layers) yet completely valid solutions to a composition problem from

being generated, thereby reducing the final alternative solution count. For instance, consider

the search graph depicted in Figure 9. Services in Layer 2 of the graph generate the requested

output parameter ShipmentStatus, which then gets included in prdSet. Because of this

restriction, Shipment service W8, despite producing ShipmentStatus as output and having

all its predecessors already present in the graph, cannot be added to Layer 3, which prevents

construction of the alternative solution plan composed of W1, W2, W3 and W8. Nevertheless,

the aim of these composition algorithms or this thesis is not to obtain all possible solutions

or the most optimum solution to a composition problem but to be able to generate several

alternative constraint-aware solutions within a reasonable amount of time, which can then

be translated into Lucid programs for simulation. Therefore, we accept the effects of this

restriction as a trade-off between the time complexity of and the solution diversity offered

by the planning-graph-based composition methodology.

3.5 Service Composition Implementation

This section discusses the implementation of the service composition algorithms presented in

Section 3.2. As already mentioned, these composition algorithms (other than Algorithm 5)

as well as the composite service model (discussed in Section 3.1) have been designed by

Laleh et al. The primary focus of their research [4, 5, 6, 7, 8] is on effectively introducing

the fundamental concepts involved in their composition approach, such as, constraints,

context and the co-relation between them. Therefore, their implementation that supports
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their conceptual model is also specifically focused on and dedicated to simulation of results

required for analyzing and evaluating their novel methodologies. Our research, on the other

hand, is more concerned with the operational aspects of the service composition process,

which serves as a prerequisite for the service translation and simulation process – the primary

goal of this thesis. Consequently, we need the composition application to operate as a generic

(and not scenario-specific) tool that can accept any valid composition request and service

repository and generate a set of possible constraint-aware solution plans in a format that is

acceptable as input to the composite service translation framework (discussed in Chapter 4).

Additionally, the application also needs to interact with a service repository framework

[51] (discussed further with implementation details) that not only provides the readers and

writers required to communicate with service repositories written in various formats but also

implements some of the fundamental entities of the composition model, including, Service

and Constraint. In order to fulfill these requirements, which cannot be served by Laleh’s

implementation, we re-implement the composite service model and composition process in

Java based on Laleh’s conceptual design.

Apart from making the application more generic and enabling it to interact easily with

other processing units, our re-implementation also serves to complete the sequence of steps

involved in the composition process by implementing the ConstructP lan algorithm not

defined in Laleh’s publications (see Section 3.2, Algorithm 5). Furthermore, there are several

significant optimizations that we introduce at almost every stage of the composition process

to improve the quality of its results, reduce the processing effort involved and enhance

its reliability and efficiency, all of which are incorporated into our re-implementation. We

explore these optimizations elaborately in Section 3.5.3. Finally, to improve the quality of

the composition application from a software engineering point of view, measures, including

validation checks, error logging and handling, extensible framework for accepting user input

in multiple formats and storage and reuse of composed services, have been taken that make

the application more robust, reliable, flexible and maintainable. Sections 3.5.2 and 3.5.4

cover the details of these additional features.

80



3.5.1 Assumptions

Before we can discuss the characteristics that distinguish our implementation of the service

composition approach from the original approach, it is important to clearly state the

assumptions upon which we base this implementation. They have been listed below:

• Any intermediate (search graph, plan set etc.) or final (constraint-aware plan) solution

generated for a composition problem that comprises of only one service from the service

repository is considered invalid since such a solution does not qualify as a composition

of (multiple) services.

• Constraints requested by the user, if any, are assumed to be completely satisfied by the

composite service(s) generated in response to the request. In order to fully represent the

composite service model in our implementation, we allow users to specify constraints

as part of their request that the resultant compositions must satisfy. However, user

constraints are not the focus of this thesis and, therefore, our current implementation

does not verify them. Instead, they are assumed to be satisfied by default for now.

Consequently, the CheckRequesterConstraints statement (Algorithm 2, line 7) meant

as a placeholder for invoking an algorithm to verify requester constraints is not included

in our current implementation (discussed further in Section 6.2.4).

• Services with different names are considered to be different irrespective of their other

characteristics, i.e., service name is the unique identifier for services in our implemented

system. Two services with the same name cannot be stored in the service repository

that we use [51] even if all their other properties – inputs, outputs, constraints and

effects – are completely different. Similarly, two services with the same name cannot be

included in one search graph, solution plan or constraint-aware plan. This assumption

applies to the service repository framework [51], the composition process as well as the

composite service translation process.

• During constraint-aware plan construction, all service constraints are assumed to be

unique. Even if the constraints represented by two different Constraint (Java class
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defined in [51]) objects are exactly the same, they are considered to be different and

will be verified separately during composite service simulation/execution. However,

multiple copies of the same Constraint object are not allowed to be attached to a

single service-node in order to reduce redundancy. Therefore, duplicate Constraint

objects are eliminated during solution plan construction (explored further in Sections

3.5.3.4 and 6.2.3).

3.5.2 Validation Checks

As part of our implementation, we introduce certain validation checks at specific points in

the composition process in order to detect erroneous situations as early as possible and save

the effort spent on processing entities that would inevitably be discarded at a later stage.

Since a composition request received from a user marks the starting point of a composition

process, we perform several checks on it to ensure that it provides all the required information

in the expected format before allowing any services to be composed to resolve it. If any of

these checks fail, the process is aborted immediately. A composition request is represented

as a class (CompositionRequest) in our implementation with its objects composed of the

same elements as defined in Definition 3. Significant design features of this class followed by

the validation checks placed on them have been listed below:

• Each of the requested inputs and outputs is a Java String consisting of two parts –

data type and name – separated by a colon. For instance, “string : ProductName”.

The data types currently handled by the implementation are int, float, char, boolean

and string.

• Although QoS features are not processed by the current implementation, users are

allowed to specify them as part of a composition request to ensure completeness of

the composition model. Users may provide a list of the names of those QoS features

on which they mean to place certain constraints. Acceptable feature names include

COST, RESPONSE TIME, RELIABILITY and AVAILABILITY [5].
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• All parameter names – input, output, QoS – are case-sensitive. For instance, while

“COST” is an acceptable QoS parameter, “Cost” and “cost” are not.

• Same as the QoS features, although user constraints are not processed by our

current implementation, they may be specified as part of a composition request for

completeness. A user constraint is composed of exactly three elements in the sequence:

feature, operator, literal value [5], each separated from the next one by a pipe symbol.

For instance, “int : ProductWeight | <= | 50”. Each constraint is represented as

an object of the Constraint Java class defined in the service repository framework

[51].

• The feature in a user constraint is either a requested input, output or QoS parameter

[5], and it follows the same format and naming convention as specified for the parameter

used. For instance, while “string : CreditCardBrand | = | V isa” is a valid user

constraint, “CreditCardBrand | = | V isa” is not because of the missing data type.

• Acceptable operators for a user constraint include <, >, =, <= and >= (listed in the

Operator enumeration in [51]).

The validation checks performed on a composition request serve to ensure the following:

• The composition request includes at least one input and at least one output.

• User-requested QoS features follow the expected format as mentioned above.

• User-requested constraints comply with the specifications listed for them above.

Listed below are some additional validation checks that are performed after a valid

composition request is successfully created:

• A service repository specified by a user must not be empty, otherwise, the composition

process is aborted immediately.

• A composition problem must be solvable based on the given request, repository and

algorithms. In other words, at least one solution must be obtained for it at each step of
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the composition process, i.e., a search graph at the end of forward expansion, at least

one plan set at the end of backward search, at least one solution plan at the end of plan

construction and so on, otherwise, the composition process is aborted immediately.

• Any intermediate (search graph, plan set etc.) or final (constraint-aware plan) solution

generated for a composition problem that comprises of only one service must be

discarded as invalid since such a solution does not qualify as a composition of services.

3.5.3 Optimizations

During our re-implementation of the service composition algorithms, we introduce several

modifications that can optimize the process by improving the quality of its results, reducing

the processing effort involved and enhancing its reliability and efficiency. In this section,

we describe these optimizations introduced at every stage of the process together with the

rationale behind them or, in other words, the effect that they have on the process.

3.5.3.1 Forward Expansion

Differences between the ForwardExpansion (Algorithm 2) and AddService (Algorithm 3)

algorithms and their implementation that serve to optimize the implemented process are as

follows:

• In the AddService algorithm, all the inputs of a new service are placed in a newIn set

(line 1). While checking if an existing service in the search graph can be a predecessor

to this new service, the parameters in newIn are matched with the outputs of the

existing service (line 5). The parameters that match (if any) are then removed from

newIn (line 8). However, such a removal is not done in the implementation.

The reason behind this modification is to allow more alternative composition

solutions to be generated. The algorithm approach discards some of the possible

alternative solutions to the problem. For instance, consider the Order/Payment

services W4 and W5 used in the shopping service example in Section 3.3. Both of these
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services produce the same output parameter PaymentNumber. During the shopping

service’s search graph construction, newService W6 is found to accept PaymentNumber

as an input, which should allow both W4 and W5 to serve as its predecessor, thereby

creating two alternative solution branches in the search graph – one containing W4

and W6 and the other containing W5 and W6. However, with the algorithm approach,

after adding W4 as a predecessor to W6, PaymentNumber is removed from newIn

(line 8) because of which W5 is never added to its predecessor set and the W5 − W6

branch is never created. The modified implementation, on the other hand, never

removes PaymentNumber from newIn and, therefore, allows both W4 and W5 to serve

as predecessors to W6 and both solution branches to be constructed.

• A search graph generated by forward expansion re-implementation is considered to be

valid only if it contains more than one service. No such check is performed in the

ForwardExpansion algorithm.

This additional check helps in early elimination of invalid service composi-

tions . A search graph comprising of only one service (and, consequently, any solution

plan extracted from it) does not qualify as a composition of services; it is merely

an individual service, which can be retrieved by performing a search on the service

repository. Therefore, our implementation discards it as invalid at this early stage and

prevents any further effort from being spent on it unnecessarily.

3.5.3.2 Backward Search

Differences between the BackwardSearch algorithm (Algorithm 4) and its implementation

that serve to optimize the implemented process are as follows:

• In the BackwardSearch algorithm, every element of every power set of services is

processed without any restrictions (lines 3 - 4). However, in the implementation, for a

starting layer (i.e., the layer from which backward tracking starts), an element of the

power set of the layer’s services is processed only if the services in the element produce

at least one output parameter requested in the composition request. For instance,
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consider set (1) depicted in Figure 11, which starts with power set element {W3} from

Layer 2. However, since {W3} does not produce the goal parameter (ShipmentStatus),

the element is discarded immediately and plan set (1) is never constructed. In contrast,

the algorithm approach constructs plan set (1) as illustrated in the figure only to reject

it later for not producing the goal parameter (lines 16 - 21), thereby wasting the effort

spent on the set construction. Same is the case for each element of the power sets of

services in Layer 1 and Layer 0. While the implemented version of backward search

refrains from constructing any plan sets for them, the algorithm version constructs

each of them only to discard them all later.

Clearly, this additional restriction introduced in our implementation helps save the

effort spent on processing such invalid branches. Since, for every set of

services in the starting layer, an exponentially-growing branching and backtracking

process is triggered, eliminating unnecessary service sets at the very beginning saves

a considerable amount of processing effort during backward search. Additionally,

preventing such sets from proceeding to the later stages in the process saves the effort

involved in pruning the plans constructed from them and discarding duplicate plans

that are most likely to result from the pruning, thereby improving the efficiency of the

entire service composition process.

It should be noted that this restriction is placed only on the starting layer of a backward

search iteration because it represents the last layer of services in a resultant composition

plan. If these services do not produce even one of the requested output parameters,

they are not serving any requirements and must be discarded as extraneous. However,

this logic does not apply to the other layers in the iteration as their service output

parameters (even if they are not the goal parameters) might serve as inputs to their

successor services in the later layers.

• A plan set generated by backward search re-implementation is considered to be

valid only if it contains more than one service. No such check is performed in the

BackwardSearch algorithm.
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This additional check enables early elimination of invalid service compositions .

A plan set comprising of only one service (and, consequently, any solution plan

extracted from it) does not qualify as a composition of services; it is merely an

individual service, which can be retrieved by performing a search on the service

repository. Therefore, our implementation discards it as invalid at this early stage

and prevents any further effort from being spent on it unnecessarily.

• In the BackwardSearch algorithm, a check is performed to ensure that all the inputs

of a set of services from the first layer of the given search graph are available as initial

parameters in the composition request (lines 9 - 15). However, in our implementation,

no such check is performed.

The purpose of this modification is to remove redundant/inapplicable validation

checks . The forward expansion process places only those services in the first layer

of a search graph for which all the inputs are available in the composition request.

Therefore, another check for the same condition is not required in the backward

search process. For the services in other layers, this check is not applicable because

they receive their inputs partially or completely from their predecessor services in the

preceding layers.

3.5.3.3 Plan Construction

Since the ConstructP lan algorithm (Algorithm 5) has been designed as part of this thesis,

unlike the other composition algorithms, it does not differ much from our implementation.

However, the entire purpose of this algorithm is to optimize solution plans as they are

constructed by removing unnecessary services from them and rejecting the plans that are

found to be invalid or duplicates of other plans already constructed (as discussed in Sections

3.2 and 3.3 and depicted in Figure 12). Therefore, in this section, we list the optimization

operations performed during this stage along with the rationale behind each of them:

• During the construction of a solution plan, we remove two kinds of undesirable services

from it: (1) those whose inputs are not completely satisfied by the collection of initial
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parameters and output parameters of their predecessors present in the plan and (2)

those that neither have any successors in the plan nor produce any goal parameters.

No such pruning activities are performed explicitly in Laleh’s composition approach.

These pruning operations help save the processing effort and execution time

spent on extraneous component services . Since these services do not fulfill

any requirements, removing them from solution plans at this stage prevents them

from being unnecessarily processed during the later stages or executed as part of the

resultant composite services.

Pruning also helps detect other faults in solution plans . It shreds the plans

down to their minimalistic form, which reveals problems such as being a duplicate of

an existing plan, containing less than two component services or not being able to

generate all the goal parameters when the plans are subjected to further validation

checks during the plan construction phase.

Removal of undesirable services also assists with optimized constraint

verification . Along with the unnecessary services, constraints attached to them are

also removed from solution plans, thereby saving the effort of adjusting and verifying

them in future. Moreover, the chances of constraint verification failure at run-time due

to conflicting constraints is also reduced. For instance, consider plan set (10) illustrated

in Figure 11. The solution plan generated from this set would contain both W3 and W5

services, which have CreditCardBrand = V isa and CreditCardBrand = Master

as constraints respectively. In the absence of pruning activities, W3 would not be

removed from solution plan (10). Consequently, its resultant constraint-adjusted

composite service would require both constraints, C3 and C5, to be verified successfully

before any of its component services could be executed, which would never be possible

and always cause the composition to fail at run-time despite being totally valid.

• A solution plan created during plan construction is considered to be valid only if it

contains more than one service. No such check is performed in Laleh’s composition

approach.
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This check enables early elimination of invalid service compositions. A

solution plan comprising of only one service does not qualify as a composition of

services; it is merely an individual service, which can be retrieved by performing a

search on the service repository. Therefore, our implementation (as well as algorithm)

discards it as invalid at this stage itself and prevents any further effort from being

spent on it unnecessarily.

• For a solution plan to be valid, all its component services must collectively be able to

generate all the goal (i.e., requested output) parameters as output. No such restriction

is explicitly imposed on solution plans in Laleh’s composition approach.

The purpose of this restriction is to ensure complete fulfillment of composition

requests by the solutions generated for them. Solution plans that do not generate

all of the requested output parameters result in composite services that are unable to

fulfill user requirements, which defeats the entire purpose of the composition process.

Hence, such plans are discarded at this stage so that no effort is spent on further

processing them unnecessarily.

3.5.3.4 Constraint-aware Plan Construction

Differences between our implementation and the algorithms (and, by extension, the original

implementation) for constraint-aware plan construction (Algorithm 1, lines 13 - 21) and

constraint adjustment (Algorithm 6) that serve to optimize the re-implemented process are

as follows:

• During the plan construction stage (Algorithm 5), plans are subjected to certain

pruning activities. Because of this, in the resultant plans, some service-node objects

end up containing predecessor and successor lists with pointers to service-nodes that

no longer exist in the said plans. For instance, consider solution plan (11) depicted

in Figure 12, in which W2 – a successor of W1 – gets removed from the plan during

construction, leaving an unnecessary pointer to W2 in the successor list of W1. In our

implementation, during transformation of a solution plan into a constraint-aware plan,
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such pointers, if found, are removed from the predecessor and successor lists of its

constituent service-nodes.

This measure prevents errors from occurring due to missing service-nodes.

If pointers to the service-nodes that have been eliminated during pruning are not

removed from plans during this transformation, the later stages of service composition

could result in errors while attempting to process such missing nodes as part of a plan’s

predecessor and successor lists.

Additionally, it helps reduce the effort spent on processing deleted service-

nodes . Retaining pointers to service-nodes that have been eliminated during pruning

could still trigger node-level iterations, if not throw errors, at every upcoming stage

in service composition. Since these service-nodes would not be relevant to the plan

in question, the processing involved in even traversing through these nodes (without

further action) would be unnecessary and could accumulate to a substantial wastage

of processing effort for larger plans.

• Due to the pruning performed in the plan construction stage (Algorithm 5), some

resultant solution plans might contain empty service layers. In our implementation,

during transformation of a solution plan into a constraint-aware plan, empty layers are

removed from the plan and layer indexes of all the service-nodes in the resultant plan

are adjusted according to the updated layer sequence.

This pruning activity facilitates removal of unnecessary information from

and clearer representation of constraint-aware plans . Since an empty layer

does not contain any service-nodes, it carries no relevant information about a plan

that would need to be processed. Therefore, in order to optimize the plan, this

extraneous information is removed from it. Additionally, removal of unnecessary

empty layers enables a constraint-aware plan (i.e., composite service) to be represented

more clearly and efficiently when it is translated into other formats during the

translation/simulation phase (discussed in Chapter 4).
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This optimization also saves the effort spent on processing empty service

layers. Although an empty service layer would not trigger any intensive processing,

its presence still invokes a layer-level iteration at every stage of service composition. For

large composition plans that could easily contain several empty layers, these iterations

could consume a considerable processing effort in an already expensive process.

• As part of our constraint-adjustment implementation, a Constraint object is assigned

to a service-node only once. This decision is based on the assumption that distinction

between constraints is made based on their Java objects and not on their constituting

elements – feature, operator and literal value (discussed further in Sections 3.5.1 and

6.2.3).

This approach helps reduce the effort spent on processing duplicate

constraints to some extent. Designing a solution for completely eliminating duplicate

constraints from a service-node is a complex problem in itself and is not the focus of

this thesis. However, at the very basic level, in an effort to avoid processing the same

constraint multiple times for the same service-node, we prevent duplicate Constraint

objects from being assigned to any service-node of a constraint-aware plan.

3.5.3.5 Service Composition

Differences between our implementation and the algorithm (and, by extension, the original

implementation) for ServiceComposition (Algorithm 1) that serve to optimize the re-

implemented process are as follows:

• According to the ServiceComposition algorithm, a composition request and a set of

available services are provided as input to the process. However, in our implementation,

a composition request configuration object (explained in Section 3.5.4.2) and a logger

object (discussed in Section 3.5.4.3) are provided as arguments to the composition

method.

This modification facilitates storage and re-use of composite services. The
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request configuration object contains the inputs, outputs, QoS features and constraints

requested by the user, which are used to create a CompositionRequest object

(described in Section 3.5.2) before triggering the various composition stages. It also

holds the location of a service repository file which can be parsed to extract the available

services. Besides these, the configuration contains a flag, which, when set to “Y” by

the user, causes the constraint-aware plans constructed to resolve the given request to

be stored as composite services in the given repository. This is an additional feature

of our implementation, which allows composite services to be stored and re-used as

components for future compositions (detailed in Sections 3.5.4.2 and 3.5.4.6).

Furthermore, creation of a configuration object allows our application to use

different sources for user input without affecting the composition process.

The object is not only essential for supplying any additional information, such as, the

storage flag, required by the composition process but also acts as a generic source

of information for the core process that hides the actual medium through which the

information is gathered from the user, be it the console or a file or any other sources

that might be added to the existing architecture in future (explained in Section 3.5.4.4),

thereby promoting lower coupling between the user-input and service composition

units.

Meanwhile, the logger object enables logging of error/status messages generated

throughout our application in a text file for reference (discussed in Section 3.5.4.3).

• The ServiceComposition algorithm does not include any specific validation checks.

However, in our implementation, several checks are performed on the composition

request, service repository and results of the various stages of the service composition

process (described in Section 3.5.2).

These validation checks help minimize the processing effort wasted in case of

failures . They ensure that the composition process continues after completing each

step only if all the prerequisites for the next step are satisfied and if it is worth triggering

the next step so as to minimize the effort already spent in case a failure occurs.

92



• The ServiceComposition algorithm includes transformation of solution plans into

constraint-aware plans (lines 13 - 21). However, in our implementation, constraint-

aware plan construction and constraint-adjustment are written as a single separate

unit that is invoked by the service composition unit whenever required just like the

other composition stages. Similarly, the check for adding only unique plans to the list of

valid solution plans (lines 8 - 10) is incorporated in the plan construction stage (not the

service composition unit) of our implementation. Additionally, our implementation of

the ServiceComposition algorithm does not include the loops (lines 3 - 11 and 13 - 21)

placed around statements that invoke the BackwardSearch, AdjustConstraint and

ConstructP lan algorithms. These loops are instead included in the implementation of

the invoked algorithms themselves.

The purpose of these structural modifications is to improve modularity and

maintainability of and reduce inter-unit coupling within our application .

Since the complete implementation of each algorithm is now contained within its own

class, any future modifications in these sub-processes (if required) would not affect the

implementation of the other units.

3.5.4 Additional Features

In order to make our service composition implementation more flexible and to enable its

use as a tool/application, we introduce some additional functionality into it that is not

found in the original implementation (by Laleh) of the composition algorithms presented in

Section 3.2. In this section, we describe those additional features and the related architecture.

3.5.4.1 Service Composition Driver

The service composition driver is responsible for prompting the user to provide the

inputs required for executing the service composition process, for triggering the various

stages involved in the process in the proper sequence and for displaying the final status

(success/failure) of the process on the console. More specifically, the driver performs the
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following tasks:

1. Prompt the user on the console to select a mode of input for providing details of the

composition request configuration. At present, the user can select from console and

XML file modes, although the architecture in place allows these options to be extended

to other modes as well (discussed in Section 3.5.4.2).

2. If XML file mode is selected, prompt the user to provide XML configuration file path.

3. Depending on the selected mode of input, invoke the corresponding request

configuration reader to fetch the composition request and other necessary information

from the user and use it to create a request configuration object (described in

Section 3.5.4.2).

4. Create a logger object (described in Section 3.5.4.3), which would be passed across

methods to allow error messages generated throughout the process to be recorded in a

log file.

5. Trigger the service composition process, passing it the request configuration and logger

objects created.

6. If the composition process is successful, write the constraint-aware plans generated into

a text-based plans file. However, if the composition process fails at any point, display

a failure message and invite the user to check the log file for error details.

For example, Listing 3.1 shows the contents of the XML configuration file representing the

composition request for constructing the online shopping service discussed in Section 3.3. Its

corresponding set of available services, as described in Table 6, can be represented as an XML

repository file part of whose contents are displayed in Listing 3.2. The nine constraint-aware

plans that get generated based on these request configuration and repository files are written

to a plans file titled plans.txt (depicted partly in Listing 3.3). In an alternate scenario, if the

given service repository file does not contain any component services, a log file same as the

one depicted in Listing 3.4 gets generated instead of a plans file.
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Listing 3.1: Shopping Service Request Configuration (in XML File Format)

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <requestconfig>
3 <inputs value=‘‘string : ProductName, string : CreditCardBrand,
4 string : CreditCardNumber, string : ShippingAddress’’/>
5 <outputs value=‘‘string : ShipmentStatus’’/>
6 <qos value=‘‘’’/>
7 <constraints value=‘‘’ ’/>
8 <repofilename value=‘‘testinput/servicerepos/Services Repo Shopping.xml’’/>
9 <storecsflag value=‘‘N’’/>
10 </requestconfig>

Listing 3.2: Available Services for Shopping Composition (in XML File Format)

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <services>
3 <service name=‘‘W1’’>
4 <inputs>
5 <instance name=‘‘string : ProductName’’/>
6 </inputs>
7 <outputs>
8 <instance name=‘‘string : ProductNumber’’/>
9 <instance name=‘‘float : ProductPrice’’/>
10 <instance name=‘‘int : ProductWeight’’/>
11 </outputs>
12 <constraints>
13 </constraints>
14 <effects>
15 <instance name=‘‘string : ProductNumber’’/>
16 <instance name=‘‘float : ProductPrice’’/>
17 <instance name=‘‘int : ProductWeight’’/>
18 </effects>
19 </service>
20 <service name=‘‘W2’’>
21 ...
22 </service>
23 <service name=‘‘W3’’>
24 <inputs>
25 <instance name=‘‘string : OrderNumber’’/>
26 <instance name=‘‘float : PaymentAmount’’/>
27 <instance name=‘‘string : CreditCardBrand’’/>
28 <instance name=‘‘string : CreditCardNumber’’/>
29 </inputs>
30 <outputs>
31 <instance name=‘‘string : PaymentStatus’’/>
32 </outputs>
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33 <constraints>
34 <instance>
35 <servicename name=‘‘W3’’/>
36 < literalvalue name=‘‘Visa’’/>
37 <type name=‘‘string : CreditCardBrand’’/>
38 <operator name=‘‘=’’/>
39 </instance>
40 </constraints>
41 <effects>
42 <instance name=‘‘string : PaymentStatus’’/>
43 </effects>
44 </service>
45 ...
46 </services>

Listing 3.3: Shopping Service Constraint-aware Plans (in Text File Format)

1 Plan 1:
2 ...
3

4 Plan 2:
5 Layer 0: {} [ string : CreditCardBrand EQUALS Master, string : ShippingAddress
6 EQUALS Quebec] W1 {W5, W7}
7 Layer 1: {W1} [int : ProductWeight LESS THAN OR EQUAL TO 50] W5 {W7}
8 Layer 2: {W1, W5} [int : ProductWeight LESS THAN OR EQUAL TO 50] W7 {}
9

10 Plan 3:
11 Layer 0: {} [ string : CreditCardBrand EQUALS Visa, string : ShippingAddress
12 EQUALS Quebec] W1 {W4, W7}
13 Layer 1: {W1} [int : ProductWeight LESS THAN OR EQUAL TO 50] W4 {W7}
14 Layer 2: {W1, W4} [int : ProductWeight LESS THAN OR EQUAL TO 50] W7 {}
15

16 Plan 4:
17 ...
18

19 Plan 5:
20 Layer 0: {} [ string : CreditCardBrand EQUALS Visa, string : ShippingAddress
21 EQUALS Montreal] W1 {W4, W6}
22 Layer 1: {W1} [int : ProductWeight LESS THAN OR EQUAL TO 50] W4 {W6}
23 Layer 2: {W1, W4} [int : ProductWeight LESS THAN OR EQUAL TO 50] W6 {}
24

25 Plan 6:
26 Layer 0: {} [ string : CreditCardBrand EQUALS Master, string : ShippingAddress
27 EQUALS Montreal] W1 {W5, W6}
28 Layer 1: {W1} [int : ProductWeight LESS THAN OR EQUAL TO 50] W5 {W6}
29 Layer 2: {W1, W5} [int : ProductWeight LESS THAN OR EQUAL TO 50] W6 {}
30
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31 Plan 7:
32 ...
33

34 Plan 8:
35 ...
36

37 Plan 9:
38 ...

Listing 3.4: Shopping Composition Empty Repository Log (in Text File Format)

1 Service repository is empty.
2 Aborting service composition process.

3.5.4.2 Composition Request Configuration and Readers

A RequestConfiguration object contains all the information provided by the user that is

required to execute the service composition process. It consists of the following elements:

• Inputs: Comma-separated list of inputs that the customer can provide

• Outputs: Comma-separated list of outputs expected by the customer

• QoS: Comma-separated list of QoS features expected from the service by the customer

• Constraints: Comma-separated list of constraints imposed by the user/requester

• Repository Filename: Complete path of the file that contains the available services

• Composite Service (CS) Storage Flag: Single-character flag, which, when set to

“Y”, causes the constraint-aware plans constructed as solutions to the given request

to be transformed into layered composite service objects (described in Section 3.5.4.6)

and stored back in the given service repository file. When set to “N”, this flag prevents

the composition solutions from being stored in the given repository. At present, this

flag works only for serialized Java object repositories.

Once created and passed to the service composition triggering procedure, the inputs,

outputs, QoS and constraints from the RequestConfiguration object are used to create a
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CompositionRequest object (described in Section 3.5.2) while the repository file path is

used to locate and parse the file and extract a list of services (or Service objects) available

for composition. These objects are then used for executing the composition process. If any

solutions to the composition problem are successfully constructed, value of the CS storage

flag is inspected to decide whether or not to store the solutions in the given repository.

As mentioned in Section 3.5.4.1, a user can opt for different modes for supplying

the composition request configuration details. We have designed and implemented an

architecture (as depicted in Figure 15) that allows modular addition and removal of readers

for each of these modes. At present, this implementation can support console and XML

file readers. Major design and implementation specifications of this architecture have been

listed below:

Figure 15: Composition Request Configuration Reader Architecture

• RequestConfigReader is the interface to be implemented by all concrete composition

request configuration readers. It declares the readReqConfig method, which should be

defined to accept request configuration details from the user based on the mode of

input being handled by each concrete reader.
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• ConsoleReqConfigReader is the concrete composition request configuration reader

for interacting with the user through the console to obtain request configuration

details. It implements the RequestConfigReader interface and defines the readReqConfig

method. After reading all the required information, the method creates a

RequestConfiguration object to be used for service composition.

• FileReqConfigReader is the abstract class to be extended by all concrete

composition request configuration file readers. It implements the RequestConfigReader

interface but does not define the readReqConfig method; the method is expected to be

defined by the concrete file readers.

This class contains a configFileName data member and a mutator method for assigning

a value to it. The configFileName member is inherited by all concrete file readers and

stores the complete path of the file to be read by them.

• XMLFileReqConfigReader is the concrete composition request configuration reader

for extracting request configuration details from a user-specified XML file. It extends

the FileReqConfigReader class and defines the readReqConfig method. After reading

all the required information, the method creates a RequestConfiguration object to be

used for service composition.

Readers for other file formats (depicted as OtherFileReqConfigReader in Figure 15) can

be easily added to the existing architecture by extending the FileReqConfigReader class and

defining the readReqConfig method to do the file-specific parsing. To include readers for other

modes of input, such as, databases, a new class (depicted as OtherRequestConfigReader in

Figure 15) can be added to this hierarchy and made to implement the RequestConfigReader

interface while defining the required behavior in the readReqConfig method.

The readReqConfig method for the console reader consecutively prompts the user to

provide the value for each element of a request configuration according to the following

rules:
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• Values for the inputs, outputs, QoS and constraints must follow the same formats as

those defined for the elements of a composition request in Section 3.5.2.

• A repository filename must include the complete name (with extension) and path of the

repository file. For now, only .txt and .xml are recognized as acceptable file extensions.

• Acceptable values for the CS storage flag are “Y” or “y” to allow storage and “N” or

“n” to prevent storage.

When there are no values to be provided for an element, such as, for the optional QoS

element, pressing the Return key when prompted for the element’s value allows the user to

skip to the next element directly.

The readReqConfig method for the XML file reader, on the other hand, parses an XML

configuration file, which must comprise of the following elements:

• requestconfig: It is the root element of the XML file.

• inputs, outputs, qos, constraints: Each of these elements appear once in the XML

file, as a sub-element of the root. The value assigned to their “value” attribute is

a comma-separated list of requested inputs, outputs, QoS features and constraints

respectively.

• repofilename: It appears once in the XML file, as a sub-element of the root. The

value assigned to its “value” attribute is the complete name (with extension) and path

of the repository file.

• storecsflag: It appears once in the XML file, as a sub-element of the root. Acceptable

values for its “value” attribute are “Y” or “y” to allow storage and “N” or “n” to

prevent storage.

The same format and rules apply to request configuration’s XML elements as defined for the

console mode. If there are no values to be provided for an element, such as, for the optional

constraints element, the double quotes for that element’s value may be left empty.
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3.5.4.3 Logger

We have included a simple message logging utility in our implementation, which is shared

by the service composition and translation (discussed in Chapter 4) processes. It allows all

the error and status messages generated during a process to be recorded in a text file. Each

time a new process is launched, a new logger object is created by the process driver (see

Section 3.5.4.1). Each logger object is associated with a specific text file, which is opened for

writing in “append” mode so that passing the same logger object across the methods that

get called during a process records all generated messages in the same text file. This helps

in generating a persistent error record of a composition/translation run and also assists in

performing automated unit testing by eliminating the need for console interaction.

3.5.4.4 Service Repository Parser Alternatives

Depending on the type (file extension) of the service repository file whose details are

provided in the composition request configuration (described in Section 3.5.4.2) by the user,

a suitable constrained service parser (borrowed from [51]) can be employed by our service

composition process to extract component service specifications from the given constrained

service repository. Currently, a serialized Java object parser is used to parse .txt files

holding serialized Service objects and an XML parser is used to parse .xml files listing

service definitions in a custom format (defined in [51]). This functionality can be easily

extended to include as many repository file types as there are parsers available in the service

repository framework [51], thereby making the composition application more versatile.

3.5.4.5 Plans File

For a composition request that can be successfully served based on the information provided

by the user, our service composition implementation generates a text file containing

descriptions of all constraint-aware plans that can serve the given request. Contents of

this plans file have been described below:

• All constraint-aware plans generated for a composition request are numbered and listed
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in the file in sequence.

• Each plan consists of layers, with their indexes starting from 0 and increasing by 1

for each consecutive layer. A plan description (listed in the file) comprises of a list of

descriptions of all its layers, each on a new line, in increasing order of their layer index.

• A layer description describes the service-nodes that constitute that layer. Each node

description is separated from the next by a comma. The order of service-nodes (or

their description) within a layer is not important.

• A service-node description consists of four parts: predecessor names, constraints,

service name and successor names. It is formatted as:

“{predecessor names} [constraints] service name {successor names}”

• predecessor names for a service-node are a comma-separated list of service names

of the service-nodes that act as predecessors to the given service-node. The order of

names in the list is not important.

• constraints for a service-node are a comma-separated list of constraints that must be

satisfied before the service contained within the service-node can be executed. These

may include the internal constraints placed on the enclosed service itself and/or the

constraints that are transferred to the service-node from other nodes in the plan during

constraint adjustment (Algorithm 6). The order of constraint descriptions in the list

is not important. Each constraint description is formatted as:

“featuredatatype : featurename operatorname literalvalue”, where:

– featuredatatype is the data type of a component service input parameter and may

be int, float, char, boolean or string.

– featurename is the name of the input parameter.

– operatorname may be LESS THAN, GREATER THAN, EQUALS,

LESS THAN OR EQUAL TO or GREATER THAN OR EQUAL TO.
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– literalvalue is the value to which the feature’s value will be compared during

constraint verification.

• service name for a service-node is the name of the service encapsulated within the

node.

• successor names for a service-node are a comma-separated list of service names of the

service-nodes that act as successors to the given service-node. The order of names in

the list is not important.

• Service-nodes in the first layer do not have any predecessors while those in the last

layer do not have any successors. In such cases, the curly braces that enclose the

predecessor/successor list are left empty ({}). Similarly, service-nodes that do not

have any constraints have their enclosing square brackets empty ([ ]).

• Since every service-node must have a service, and every service must have a name,

therefore, a service-node description always has a service name.

3.5.4.6 Layered Composite Service Storage and Reuse

We have added a layered composite service decorator (called LayeredCompositeService) to

the existing service repository framework [51]. A utility class has also been defined within

our service composition implementation that uses the decorator to create a layered composite

service object for each of the constraint-aware plans created as a solution to a composition

request. This utility also enables appending this composite service object to the service

repository from which the component services for its construction are extracted. The stored

composite service can then be used as a component service for future compositions. The

limitation to this feature is that, at present, the storage and reuse of composite services is

restricted to serialized Java object repositories only. However, it can be extended to other

repository formats by designing proper representations, parsers and writers for them.

Elements of the composite service object created by this utility are listed below:
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• Composite Service Name: “CompSvc ” concatenated with the system time (in

nanoseconds) at which the object is created.

• Composite Service Inputs: List of composition request inputs.

• Composite Service Outputs: List of composition request outputs.

• Composite Service Effects: Set of all the effects of all the services contained within

the service-nodes that constitute the constraint-aware plan.

• Composite Service Constraints: Set of all the constraints of all the service-

nodes that constitute the constraint-aware plan. This information enables optimum

constraint adjustment in the plan (if any) that uses this composite service as a

component.

• Constraint-aware Plan: The constraint-aware solution plan that the composite

service object represents.

In order to create a composite service object, the utility class first invokes the constrained

service decorator from the service repository framework to create a simple constrained service

with the composite service’s name, inputs, outputs, effects and constraints as data members.

Then, it invokes our layered composite service decorator to decorate this constrained service

with the constraint-aware plan (instance of ConstraintAwareP lan class) to form a layered

composite service object.

3.6 Summary

In this chapter, we explained the unique planning-graph-based service composition and

constraint-adjustment approach devised by Laleh et al. along with the improvements that we

introduce into it. This improved approach is used in our research for generating constraint-

aware composite services that can be translated into Objective Lucid programs intended

for execution on GIPSY. Having examined the process of constructing composite services
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in elaborate detail in this chapter, in the next chapter, we present a similar discussion on

the translation of these services into various useful formats, including Objective Lucid

programs capable of being simulated/executed on GIPSY, which forms the penultimate stage

in our composite service verification process (as outlined in Section 1.5).
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Chapter 4

Composite Service Translation

In Chapter 3, we present a detailed discussion on the process of generation of constraint-aware

composite web services for a given composition request. In order for these services to be

simulated/executed on GIPSY, as per the composite service verification procedure described

in Section 1.5, they must first be translated into some dialect of Lucid – the only language

that can be interpreted by GIPSY. Based on the reasoning presented in Section 2.1.4,

Objective Lucid proves to be the best candidate for this task. Therefore, continuing

with the explanation of the service verification procedure, in this chapter, we describe the

extensible framework that we have designed for translating constraint-aware composite web

services (as defined in Chapter 3) into various different formats, elaborating specifically on

the translation to Objective Lucid. Additionally, we also present a comparatively brief

discussion on the other translation modules that we have already designed and plugged-in

to the framework together with the implementation features that make the application more

flexible and maintainable.

4.1 Composite Service Translator Framework

For translating the layered composite services generated by the service composition approach

discussed in Chapter 3, we have designed and implemented an extensible translator
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framework capable of allowing modular plugging-in and -out of different translator programs,

as required. Each of these modules can translate a layered composite service into a

specific target language/model, thereby making it possible for us to utilize their unique

qualities not only for enhancing the visualization, readability and, hence, understandability of

complex compositions (such as, through DOT graph and XML) but also for augmenting our

verification system with specialized analysis and validation capabilities (such as those offered

by Petri nets) in future. At present, our translator framework consists of modules that can

support translation of layered composite services into Objective Lucid programs, XML

files and DOT graphs. Major design and implementation specifications of its architecture

(as depicted in Figure 16) have been listed below:

Figure 16: Composite Service Translator Architecture

• CompositeServiceTranslator is the interface to be implemented by all concrete

composite service translators. It declares the generateFormalLangCode method,

which should be defined to translate a given LayeredCompositeService object

(described in Section 3.5.4.6) into a specific formal language based on the target

language of each concrete translator.

A CSConfiguration object (described in Section 4.3.2) containing all the information

required for performing a composite service translation and a logger object (described
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in Section 3.5.4.3) for recording any error messages generated during the translation

are provided as input parameters to the generateFormalLangCode method.

• LucidCSTranslator is the concrete translator for generating the Objective Lucid

program equivalent of a given LayeredCompositeService object (following the

procedure detailed in Section 4.2). It implements the CompositeServiceTranslator

interface and defines the generateFormalLangCode method, making it responsible for

performing the following tasks:

– Since theObjective Lucid programs generated by this translator are ultimately

meant to be executed on GIPSY for composite service verification, they need

to be provided with values for the inputs required by the composite service.

These values are fetched from the user during creation of the CSConfiguration

object that is supplied as input to the generateFormalLangCode method. Before

triggering the translation, the method performs some basic validation checks on

the given input values to ensure compliance of data types and other specifications

(described in Section 4.2). Only if all the validation checks are successful, the

translation process is allowed to proceed further, otherwise, it is immediately

terminated in error, recording details of the failure in a log file using the given

logger object.

– Once all the validation checks are cleared, the LayeredCompositeService object

to be translated and the composite service’s input details are extracted from the

given CSConfiguration object and used to generate the Java and Objective

Lucid code segments for the given composite service, which are then merged

together to form its equivalent Objective Lucid program.

– The generated program is written into a .ipl file with the composite service’s

name preceded by “CSLucid ” as its title and stored in the destination location

obtained from the given CSConfiguration object. For successful translations, the

generateFormalLangCode method terminates by returning the complete name
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(with extension) and location of the file to which the program is written. In case

any failure occurs during the translation process, null is returned by the method

and relevant error messages are recorded in the log file associated with the given

logger object.

As an example, consider the layered composite service depicted in Figure 17 and its

equivalent Objective Lucid program shown in Listing 4.1 (explained in Section 4.2).

It should be noted here that this is the same composite service designed for calculating

the range of three numbers that is used as an example in Section 2.1.

Figure 17: Range Layered Composite Service

Listing 4.1: Objective Lucid Translation of Range Composite Service

1 #JAVA
2 public class CAWSReqComp
3 {
4 private int diff ;
5

6 public CAWSReqComp(int diff)
7 {
8 this . diff = diff ;
9 }
10 }
11
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12 public class CAWSdifference
13 {
14 private int max;
15 private int min;
16 private int diff ;
17

18 public CAWSdifference(int max, int min)
19 {
20 this .max = max;
21 this .min = min;
22 diff = 0;
23 }
24

25 public void process()
26 {
27 diff = 10;
28 }
29 }
30

31 public CAWSdifference difference(int max, int min)
32 {
33 CAWSdifference oCAWSdifference = new CAWSdifference(max, min);
34 oCAWSdifference.process();
35 return oCAWSdifference;
36 }
37

38 public class CAWSmaximum
39 {
40 private int num1;
41 private int num2;
42 private int num3;
43 private int max;
44

45 public CAWSmaximum(int num1, int num2, int num3)
46 {
47 this .num1 = num1;
48 this .num2 = num2;
49 this .num3 = num3;
50 max = 0;
51 }
52

53 public void process()
54 {
55 max = 10;
56 }
57 }
58

59 public CAWSmaximum maximum(int num1, int num2, int num3)
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60 {
61 CAWSmaximum oCAWSmaximum =new CAWSmaximum(num1, num2, num3);
62 oCAWSmaximum.process();
63 return oCAWSmaximum;
64 }
65

66 public class CAWSminimum
67 {
68 private int num1;
69 private int num2;
70 private int num3;
71 private int min;
72

73 public CAWSminimum(int num1, int num2, int num3)
74 {
75 this .num1 = num1;
76 this .num2 = num2;
77 this .num3 = num3;
78 min = 0;
79 }
80

81 public void process()
82 {
83 min = 10;
84 }
85 }
86

87 public CAWSminimum minimum(int num1, int num2, int num3)
88 {
89 CAWSminimum oCAWSminimum = new CAWSminimum(num1, num2, num3);
90 oCAWSminimum.process();
91 return oCAWSminimum;
92 }
93

94 #OBJECTIVELUCID
95 oCAWSMain @.g num1 10 @.g num2 12 @.g num3 14
96 where
97 dimension g num1, g num2, g num3;
98

99 oCAWSMain = CAWSReqComp(#.l diff)
100 wvr CAWSReqCnstr
101 @. l diff oCAWSdifference.diff
102 where
103 dimension l diff ;
104 CAWSReqCnstr = true;
105

106 oCAWSdifference = difference (#.l max, #.l min)
107 wvr c difference
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108 @.l max oCAWSmaximum.max
109 @.l min oCAWSminimum.min
110 where
111 dimension l max, l min;
112 c difference = true;
113 end;
114

115 oCAWSmaximum = maximum (#.l num1, #.l num2,
#.l num3)

116 wvr c maximum
117 @.l num1 #.g num1
118 @.l num2 #.g num2
119 @.l num3 #.g num3
120 where
121 dimension l num1, l num2, l num3;
122 c maximum = #.l num1 >= 0 and

#.l num2 >= 0 and
#.l num3 >= 0;

123 end;
124

125 oCAWSminimum = minimum (#.l num1, #.l num2,
#.l num3)

126 wvr c minimum
127 @.l num1 #.g num1
128 @.l num2 #.g num2
129 @.l num3 #.g num3
130 where
131 dimension l num1, l num2, l num3;
132 c minimum = #.l num1 >= 0 and

#.l num2 >= 0 and
#.l num3 >= 0;

133 end;
134 end;
135 end

• XMLCSTranslator is the concrete translator for generating a custom XML

representation of a given LayeredCompositeService object. It implements the

CompositeServiceTranslator interface and defines the generateFormalLangCode

method. Once the translation is complete, the method returns the complete name

(with extension) and location of the XML file to which the translation is written. In

case any failure occurs during the translation process, null is returned by the method

and relevant error messages are recorded in the log file associated with the given logger
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object.

Similar to the Lucid translation, the XML representation is also written to a file with

the translated composite service’s name as its title, although the name is preceded by

“CSXML ” and the file extension is .xml. This file too is stored in the destination

location obtained from the given CSConfiguration object.

The format of the XML translation, i.e., the XML elements and their arrangement

within the resultant file, is exactly the same as that of the composite service XML file

repository described in Section 4.3.3. The only difference is that while the repository

may hold more than one composite service descriptions, the translation will always

describe exactly one composite service, and, therefore, the translation will always have

only one “compositeservice” sub-element under the root “compositeservices” element.

As an example, consider Listing 4.2, depicting the XML representation of the Range

composite service illustrated in Figure 17.

The purpose of having this translator module as part of our framework is to be able

to generate a simple and clear, albeit custom, human-readable representation of a

LayeredCompositeService object in order to aid better understanding of the service’s

structure. For a more standardized solution, a translator to an extended form of WS-

BPEL capable of representing all the features of a layered composite service could be

designed and plugged into the framework.

Listing 4.2: XML Translation of Range Composite Service

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <compositeservices>
3 <compositeservice>
4 <csname value=‘‘range’’/>
5 <csinputs>
6 <instance name=‘‘int : num1’’/>
7 <instance name=‘‘int : num2’’/>
8 <instance name=‘‘int : num3’’/>
9 </csinputs>
10 <csoutputs>
11 <instance name=‘‘int : diff ’ ’/>
12 </csoutputs>
13 <cseffects>
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14 <instance name=‘‘int : max’’/>
15 <instance name=‘‘int : min’’/>
16 <instance name=‘‘int : diff ’ ’/>
17 </cseffects>
18 <csconstraints>
19 <instance>
20 <servicename name=‘‘maximum’’/>
21 < literalvalue name=‘‘0’’/>
22 <type name=‘‘num1’’/>
23 <operator name=‘‘&gt;=’’/>
24 </instance>
25 <instance>
26 <servicename name=‘‘maximum’’/>
27 < literalvalue name=‘‘0’’/>
28 <type name=‘‘num2’’/>
29 <operator name=‘‘&gt;=’’/>
30 </instance>
31 <instance>
32 <servicename name=‘‘maximum’’/>
33 < literalvalue name=‘‘0’’/>
34 <type name=‘‘num3’’/>
35 <operator name=‘‘&gt;=’’/>
36 </instance>
37 <instance>
38 <servicename name=‘‘minimum’’/>
39 < literalvalue name=‘‘0’’/>
40 <type name=‘‘num1’’/>
41 <operator name=‘‘&gt;=’’/>
42 </instance>
43 <instance>
44 <servicename name=‘‘minimum’’/>
45 < literalvalue name=‘‘0’’/>
46 <type name=‘‘num2’’/>
47 <operator name=‘‘&gt;=’’/>
48 </instance>
49 <instance>
50 <servicename name=‘‘minimum’’/>
51 < literalvalue name=‘‘0’’/>
52 <type name=‘‘num3’’/>
53 <operator name=‘‘&gt;=’’/>
54 </instance>
55 </csconstraints>
56 <csplan>
57 <servicelayer index=‘‘0’ ’>
58 <servicenode>
59 <service name=‘‘maximum’’/>
60 <constraints>
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61 <instance>
62 <servicename name=‘‘maximum’’/>
63 < literalvalue name=‘‘0’’/>
64 <type name=‘‘num1’’/>
65 <operator name=‘‘&gt;=’’/>
66 </instance>
67 <instance>
68 <servicename name=‘‘maximum’’/>
69 < literalvalue name=‘‘0’’/>
70 <type name=‘‘num2’’/>
71 <operator name=‘‘&gt;=’’/>
72 </instance>
73 <instance>
74 <servicename name=‘‘maximum’’/>
75 < literalvalue name=‘‘0’’/>
76 <type name=‘‘num3’’/>
77 <operator name=‘‘&gt;=’’/>
78 </instance>
79 </constraints>
80 <predecessors/>
81 </servicenode>
82 <servicenode>
83 <service name=‘‘minimum’’/>
84 <constraints>
85 <instance>
86 <servicename name=‘‘minimum’’/>
87 < literalvalue name=‘‘0’’/>
88 <type name=‘‘num1’’/>
89 <operator name=‘‘&gt;=’’/>
90 </instance>
91 <instance>
92 <servicename name=‘‘minimum’’/>
93 < literalvalue name=‘‘0’’/>
94 <type name=‘‘num2’’/>
95 <operator name=‘‘&gt;=’’/>
96 </instance>
97 <instance>
98 <servicename name=‘‘minimum’’/>
99 < literalvalue name=‘‘0’’/>

100 <type name=‘‘num3’’/>
101 <operator name=‘‘&gt;=’’/>
102 </instance>
103 </constraints>
104 <predecessors/>
105 </servicenode>
106 </servicelayer>
107 <servicelayer index=‘‘1’ ’>
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108 <servicenode>
109 <service name=‘‘difference’’/>
110 <constraints/>
111 <predecessors>
112 <instance layerindex=‘‘0’ ’ name=‘‘maximum’’/>
113 <instance layerindex=‘‘0’ ’ name=‘‘minimum’’/>
114 </predecessors>
115 </servicenode>
116 </servicelayer>
117 </csplan>
118 <csatomicservices>
119 <service name=‘‘maximum’’>
120 <inputs>
121 <instance name=‘‘int : num1’’/>
122 <instance name=‘‘int : num2’’/>
123 <instance name=‘‘int : num3’’/>
124 </inputs>
125 <outputs>
126 <instance name=‘‘int : max’’/>
127 </outputs>
128 <constraints>
129 <instance>
130 <servicename name=‘‘maximum’’/>
131 < literalvalue name=‘‘0’’/>
132 <type name=‘‘num1’’/>
133 <operator name=‘‘&gt;=’’/>
134 </instance>
135 <instance>
136 <servicename name=‘‘maximum’’/>
137 < literalvalue name=‘‘0’’/>
138 <type name=‘‘num2’’/>
139 <operator name=‘‘&gt;=’’/>
140 </instance>
141 <instance>
142 <servicename name=‘‘maximum’’/>
143 < literalvalue name=‘‘0’’/>
144 <type name=‘‘num3’’/>
145 <operator name=‘‘&gt;=’’/>
146 </instance>
147 </constraints>
148 <effects>
149 <instance name=‘‘int : max’’/>
150 </effects>
151 </service>
152 <service name=‘‘minimum’’>
153 <inputs>
154 <instance name=‘‘int : num1’’/>
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155 <instance name=‘‘int : num2’’/>
156 <instance name=‘‘int : num3’’/>
157 </inputs>
158 <outputs>
159 <instance name=‘‘int : min’’/>
160 </outputs>
161 <constraints>
162 <instance>
163 <servicename name=‘‘minimum’’/>
164 < literalvalue name=‘‘0’’/>
165 <type name=‘‘num1’’/>
166 <operator name=‘‘&gt;=’’/>
167 </instance>
168 <instance>
169 <servicename name=‘‘minimum’’/>
170 < literalvalue name=‘‘0’’/>
171 <type name=‘‘num2’’/>
172 <operator name=‘‘&gt;=’’/>
173 </instance>
174 <instance>
175 <servicename name=‘‘minimum’’/>
176 < literalvalue name=‘‘0’’/>
177 <type name=‘‘num3’’/>
178 <operator name=‘‘&gt;=’’/>
179 </instance>
180 </constraints>
181 <effects>
182 <instance name=‘‘int : min’’/>
183 </effects>
184 </service>
185 <service name=‘‘difference’’>
186 <inputs>
187 <instance name=‘‘int : max’’/>
188 <instance name=‘‘int : min’’/>
189 </inputs>
190 <outputs>
191 <instance name=‘‘int : diff ’ ’/>
192 </outputs>
193 <constraints/>
194 <effects>
195 <instance name=‘‘int : diff ’ ’/>
196 </effects>
197 </service>
198 </csatomicservices>
199 </compositeservice>
200 </compositeservices>
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• DotGraphCSTranslator is the concrete translator for generating a DOT graph

representation of a given LayeredCompositeService object. It implements the

CompositeServiceTranslator interface and defines the generateFormalLangCode

method, making it responsible for performing the following tasks:

– Translating the composite service extracted from the CSConfiguration object

supplied as input to the generateFormalLangCode method into a DOT program,

which, when executed, would generate a graphical representation of the composite

service.

– Writing the generated program into a .dot file with the composite service’s name

preceded by “CSDot ” as its title and storing it in the destination location

obtained from the given CSConfiguration object.

– Using the DOT executable file details from the composite service configuration

for executing the generated DOT program to produce a .png image file (with

the same name and location as the source DOT program file) containing the

graphical representation of the composite service. For successful translations, the

generateFormalLangCode method terminates by returning the complete name

(with extension) and location of the DOT program file. In case any failure occurs

during the translation process, null is returned by the method and relevant error

messages are recorded in the log file associated with the given logger object.

The purpose of having this translator module as part of our framework is to

aid visualization of composite services, particularly those with large and complex

structures, with which the user might be completely unfamiliar. While our

XML representation is concerned with providing detailed information about a

composite service and its structure, our DOT graph equivalent serves to enhance the

understanding of that information through visual diagrammatic means.

As an example, consider Figure 18, depicting the DOT graph representation of the

Range composite service illustrated in Figure 17. Each service-node belonging to the
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constraint-aware plan of the composition is depicted as a different colored rectangle

containing a diamond (labeled as ’C’) representing the node’s constraints and a

circle (labeled as ’W’) representing the node’s web service. Each of these nodes is

enclosed in a gray-colored rectangle representing the service layer to which it belongs.

The inputs accepted and outputs generated by each component service are depicted

through directed arcs labeled with the parameter names and data types. Finally, the

Output Accumulator unit illustrated in gray in the graph is the node responsible for

forming a collection of those output parameters generated by component services that

are expected as output from the composite service as a whole (explained in Section 2.1.4

and discussed further in Section 4.2).

Figure 18: DOT Translation of Range Composite Service

Translators to other target languages/models (depicted as OtherCSTranslator in

Figure 16) can also be easily added to the existing architecture in future by implementing the

CompositeServiceTranslator interface and defining the generateFormalLangCode method

to do the language-specific translation.

4.2 Composite Service to Objective Lucid Translation

The implementation and operation of our module for translating constraint-aware composite

services (generated by the service composition mechanism discussed in Chapter 3) into their

equivalent Objective Lucid programs capable of being simulated/executed on GIPSY for
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Figure 19: Composite Service to Objective Lucid Translation Methodology

verification purposes is based on a set of algorithms that together define our translation

methodology (depicted in Figure 19). In this section, we present and explain all these

constituent algorithms using the Range composite service depicted in Figure 17 and its

Objective Lucid translation shown in Listing 4.1 as an example in order to facilitate a

clear understanding of our translation process.

Algorithm 7 drives the translation process, invoking the other algorithms involved in the

procedure as and when required. It consists of four major steps: (1) ValidateInpValues (line

1) responsible for ensuring that, for each input required by the given composite service, a

value that matches the respective input’s data type is available, failing which the translation

process is immediately aborted, (2) GenerateJavaSegment (line 2) for producing the Java
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Algorithm 7 TranslateCSToOLucid

Input: CS (composite service), inputs (set of CS input names, data types and values)

Output: oLucidProg (Objective Lucid program), or ∅ (in case of failure)

1: if (V alidateInpV alues(inputs)) then

2: javaSeg = GenerateJavaSegment(CS)

3: oLucidSeg = GenerateOLucidSegment(CS, inputs)

4: oLucidProg = javaSeg ∪ oLucidSeg

5: return oLucidProg

6: else

7: return ∅
8: end if

segment (e.g., Listing 4.1, lines 1 - 92) of the composite service’s Objective Lucid

representation, (3)GenerateOLucidSegment (line 3) tasked with generating theObjective

Lucid segment (e.g., Listing 4.1, lines 94 - 135) of the resultant Lucid program and (4)

appending the generated Java segment with theObjective Lucid segment for constituting

the complete Objective Lucid translation of the given composite service (lines 4 - 5). As

already mentioned, steps 2 - 4 of this algorithm are performed only if all the given input

values are successfully validated by ValidateInpValues, otherwise the algorithm results in

failure (line 7).

Algorithm 8 is responsible for generating the Java segment of the Objective Lucid

translation of a layered composite service. This segment, beginning with a #JAVA tag,

comprises of a collection of Java class and method definitions representing two types of

nodes: the output accumulator node and all the component service nodes (depicted in

Figure 18). As explained in Section 2.1.4, in Lucid, a composite service is represented

as an expression, which can, in a given context, evaluate to only a single value, thereby

implying that a composite service, if represented in Lucid, could produce only one output

(with potentially different values in different contexts), which would form a highly restrictive

service model. However, Objective Lucid offers a solution to this restriction in the form

of Java objects, allowing multiple composite service outputs to be assembled together as

data members of a single object, which can then be returned as the computed value of the
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Algorithm 8 GenerateJavaSegment

Input: CS (composite service)

Output: javaSeg (Java segment of CS translation to Objective Lucid)

1: accmrDataMembs = CS.O

2: accmrCtorParams = CS.O

3: accmrCtorBody = initializing accmrDataMembs with respective accmrCtorParams

4: accmrCtorDef = DefineCtor(accmrCtorParams, accmrCtorBody)

5: accmrClassDef = DefineClass(accmrDataMembs, accmrCtorDef )

6: for (each serviceNode ∈ CS.plan) do

7: atomSvcDef = GenerateAtomSvcJavaDef (serviceNode)

8: atomSvcDefs = atomSvcDefs ∪ atomSvcDef

9: end for

10: javaSeg = accmrClassDef ∪ atomSvcDefs

11: return javaSeg

composite service expression. This task of accumulating composite service outputs in order

to construct a Java object is performed by the output accumulator node represented as Java

class CAWSReqComp (Listing 4.1, lines 2 - 10, where CAWS stands for Constraint-Aware

Web Service) in the resultant Objective Lucid program. The composite service output

parameters serve as the private data members of this class. Once all the component services

complete their processing, values for each of these parameters are passed as arguments while

calling the accumulator class constructor from the Objective Lucid segment (Listing 4.1,

line 99). These arguments are then used within the CAWSReqComp constructor to initialize

the data members, i.e., the composite service outputs, thereby constructing the intended

Java object.

Lines 1 - 5 of Algorithm 8 are dedicated to stepwise generating the Java class definition

of the output accumulator node, beginning with defining the composite service outputs

as its data members (line 1) and constructor parameters (line 2), creating initialization

statements that form the constructor’s body (line 3), using the constructed parameter list

and body to build the complete constructor definition (line 4) and, finally, using the data

members and constructor to build the CAWSReqComp class definition (line 5). Lines 6

- 9 of the algorithm are responsible for generating the entire collection of Java class and
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method definitions representing the component services that together constitute the given

composite service CS. For each service-node belonging to the composite service’s constraint-

aware plan (line 6), GenerateAtomSvcJavaDef (Algorithm 9) constructs a pair of Java

class and method definitions – atomSvcDef (line 7), which is then appended to the set

of definitions generated until that point (line 8). Once all component service definitions

have been produced, construction of the resultant program’s Java segment is completed by

appending the output accumulator definition with the component service definition collection

(line 10).

Algorithm 9 is invoked by Algorithm 8 (line 7) for generating the pair of Java class

and free function definitions that together define and provide the means of triggering the

operation of a component service. While the Java class is tasked with processing the inputs

provided to the component service in order to produce the desired outputs and assembling

them into a single unit as data members, the method is responsible for creating an object

of this class by supplying the inputs required by the service, triggering its processing using

the object created and, finally, returning the object updated with the outputs obtained to

the Objective Lucid segment from where this method is called. As an example, consider

the call to the difference method in Listing 4.1 (line 106). This is the free function that

forms part of the Java definition of the difference component service (lines 12 - 36). The

outputs produced by the maximum and minimum services, which serve as inputs to the

difference service, are supplied as arguments to this function call to be used by the function

as arguments while calling the corresponding service class (CAWSdifference) constructor.

This constructor then uses these arguments for initializing the service’s input parameters

acting as its class data members. The output data members, in the meantime, are initialized

with dummy values based on their data type: 0 for int, 0.0 for double, false for boolean

and a whitespace character for char and String. Once the service object oCAWSdifference

is created, the difference function uses it to invoke the process member function of the

service class, which is responsible for processing the given inputs and updating the output

data members with the results obtained, following which the difference function returns the
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Algorithm 9 GenerateAtomSvcJavaDef

Input: serviceNode (service-node from composite service constraint-aware plan)

Output: atomSvcDef (Java code representing serviceNode)

1: inpDataMembs = serviceNode.service.I

2: outpDataMembs = serviceNode.service.O

3: svcDataMembs = inpDataMembs ∪ outpDataMembs

4: svcCtorParams = serviceNode.service.I

5: inpInitStmts = initializing inpDataMembs with respective svcCtorParams

6: outpInitStmts = initializing outpDataMembs based on data type

7: svcCtorBody = inpInitStmts ∪ outpInitStmts

8: svcCtorDef = DefineCtor(svcCtorParams, svcCtorBody)

9: procFnBody = operations performed by serviceNode.service

10: procFnDef = DefineFunc(∅, ∅, procFnBody)

11: svcMembFns = svcCtorDef ∪ procFnDef

12: svcClassDef = DefineClass(svcDataMembs, svcMembFns)

13: freeFnParams = serviceNode.service.I

14: freeFnBody = creating svcClass object and using it to invoke procFn

15: freeFnDef = DefineFunc(svcClass, freeFnParams, freeFnBody)

16: atomSvcDef = svcClassDef ∪ freeFnDef

17: return atomSvcDef

updated oCAWSdifference object and, hence, the service outputs to the Objective Lucid

segment.

It should be noted here that the process method in a service’s Java class is a container

for holding the simulated or actual implementation of or a link to a real online component

service. However, as part of our current implementation, its body comprises of nothing but

simple placeholder statements that assign dummy values (different from those used by the

constructor) to output data members based on their data type: 10 for int, 20.0 for double,

true for boolean, ′a′ for char and “test” for String. The purpose of these statements, at

this point, is to indicate if each component service gets triggered correctly during execution

on GIPSY (provided all its constraints are met) and whether a final output compliant with

the expected data type is obtained, i.e., to ensure that our current solution passes the basic
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sanity checks. For more advanced testing and verification, as part of future extensions, we

plan to include an additional component in the atomic service model described by Laleh

et al. (Definition 1) that would specify the implementation (whether simulated, actual or

linked) of the service and could be extracted by the Objective Lucid translator module so

as to replace the current placeholder implementation of the corresponding service’s process

method.

For generating the currently presented Java class and method definitions of a component

service, Algorithm 9 uses a stepwise approach similar to the one employed by Algorithm 8.

While lines 1 - 3 of the algorithm define the service’s input and output parameters as its

class data members, lines 4 - 8 create a constructor for this class, using a parameter list

composed of the service’s inputs (line 4) and a body consisting of data member initialization

statements (lines 5 - 7). The process member function of this class is defined by lines 9 - 10

of the algorithm, where its void return type and empty parameter list are indicated by using

∅ as the first two arguments to the DefineFunc procedure. All these elements generated –

data members, constructor and process method – are then used for building the component

service’s class definition (lines 11 - 12). Definition of the component service’s free function

is also constructed in a similar fashion, using the same DefineFunc procedure (line 15) that

assembles the process method’s elements. The difference here, however, is that the free

function accepts its corresponding service’s inputs as parameters (line 13), uses them to

create an object of the service class, invokes the process member function through it (line

14), and, finally, returns the object created (indicated using return type svcClass as first

argument to DefineFunc on line 15) to the Objective Lucid segment. When appended to

the service class definition, this method completes the Java representation of a component

service in the Objective Lucid translation of its corresponding composite service.

Algorithm 10, similar to Algorithms 8 and 9, incrementally builds the Lucid segment

of the Objective Lucid translation of a layered composite service, sequentially generating

its various logical sections and finally assembling them together for producing the complete

segment. As explained in Sections 2.1.3 and 2.1.4, the inputs of a composite service also
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Algorithm 10 GenerateOLucidSegment

Input: CS (composite service), inputs (set of CS input names, data types and values)

Output: oLucidSeg (Lucid segment of CS translation to Objective Lucid)

1: globalDims = CS.I

2: globalContext = set of respective CS.I : inputs.value pairs

3: mainExpr = single-variable expression evaluated in globalContext

4: accmrInps = accmrDims = CS.O

5: for (each serviceNode ∈ CS.plan) do

6: csOutps = serviceNode.service.O ∩ CS.O

7: for (each output ∈ csOutps) do

8: accmrContext = accmrContext ∪ output : oSvcClass.output

9: end for

10: end for

11: accmrConstrs = ∅

12: for (each serviceNode ∈ CS.plan) do

13: atomSvcDef = GenerateAtomSvcLucidDef (serviceNode, globalDims)

14: atomSvcDefs = atomSvcDefs ∪ atomSvcDef

15: end for

16: accmrDef = DefineSvc(“CAWSReqComp”, accmrInps, accmrDims, accmrContext,

accmrConstrs, atomSvcDefs)

17: oLucidSeg = mainExpr ∪ globalDims ∪ accmrDef

18: return oLucidSeg

act as its contextual dimensions. Therefore, in order to generate the main Lucid expression

representing the outcome of the composite service, line 1 of the algorithm constructs a global

dimension list comprising of the composite service input parameters, which are then paired

with their respective values provided by the user (through inputs) for defining the context

in which the main expression needs to be evaluated (lines 2 - 3).

For constructing the Lucid expression and associated where clause that together

represent the output accumulator node of the composition, the algorithm uses the DefineSvc

procedure (line 16), which is responsible for building a service-node’s Lucid representation

once all its elements – service name, service inputs, service dimensions, service evaluation

context, service constraints and other component service definitions that may influence its
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outcome – have been determined. Since the output accumulator node performs the task of

collecting the component service outputs that together constitute the outputs expected from

the composite service as a unit, its inputs and dimensions are the same as the composite

service output parameters (line 4). In order to define the accumulator’s evaluation context,

we need to pair its contextual dimensions with their respective values generated by the

various component services. Therefore, lines 5 - 10 of the algorithm iterate through the entire

constraint-aware plan of the composition, determining which component service generates

which composite service output(s) (lines 6 - 9) and pairing each accumulator dimension with

the matched output parameter, i.e., the appropriate output data member of the component

service’s Java class object (line 8). Since, in this thesis, we do not take requester or

external constraints into consideration (discussed in Section 1.2), the composite service

and, hence, the output accumulator node do not have any separate constraints placed on

them (line 11); the only constraints that apply to the composite service are the internal

constraints imposed on its component services by their providers. Lucid representation

of each of these component services, which also forms part of the accumulator node’s

where clause, is generated by Algorithm 11 invoked iteratively from Algorithm 10 (lines

12 - 15) for each service-node in the composition’s constraint-aware plan. Once all these

constituent definitions get generated, the DefineSvc procedure organizes them into the

Lucid representation of the accumulator node, using its corresponding Java class name

(CAWSReqComp) for producing the statement that makes a call to its constructor from the

Lucid segment (line 16). Finally, the generated accumulator definition together with the

main expression and global dimension list constructed earlier in the algorithm are assembled

to produce the complete Objective Lucid segment of the translation (line 17).

Algorithm 11 is iteratively invoked by Algorithm 10 (line 13) for generating the

Objective Lucid representation of each component service belonging to a composition.

This algorithm follows the same approach for building these representations as adopted by its

preceding algorithm for constructing the output accumulator node representation. It begins

by defining the set of the given service-node’s input parameters and constraint-features as the
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contextual dimensions for its Lucid expression (lines 1 - 4). As explained in Section 2.1.3,

computation of a Lucid expression is triggered only after all the constraints placed on

it get evaluated to true, which, in turn, requires values of the constraint-features to be

computed and compared with their corresponding literal values. As discussed in Section 3.2,

optimization of constraint verification points within a constraint-aware plan can result in a

component service-node being imposed with constraints placed on the inputs of its enclosed

service itself and/or those transferred to it from other nodes in the plan during constraint

adjustment. Since, in order to compute a component service expression in Lucid, all its

attached constraints – whether applicable on its own inputs or on those of other component

services – must be evaluated, it becomes necessary to include these additional constraint-

features (if any) in the component service’s dimension list as well as its evaluation context,

which specifies the source of their values (whether user or other component service) – required

for their computation.

Once the contextual dimensions for the given component service’s Lucid expression have

been defined, the algorithm proceeds to building its evaluation context, pairing its dimensions

with values either received from the user or generated as outputs by other component

services (lines 5 - 15). Any dimension that is found to match with an output parameter

of a predecessor of the given service (line 6) is paired with the appropriate data member of

the predecessor service’s Java class object (line 9). Since the validation checks and pruning

activities performed during the construction of a composite service (in Algorithm 5) ensure

that all the inputs of component services are available within the composition, it can be

concluded that those dimensions that do not receive their values from another component

must be receiving them from the user as part of the composition request. Therefore, the

remaining unpaired local dimensions of the given component service (line 12) are paired with

their global counterparts (lines 13 - 15) to which the user-provided values are assigned in

Algorithm 10 during global context definition (line 2), thereby completing the component

service’s local context definition. Finally, the inputs and constraints attached to the given

service-node are extracted (lines 16 - 17) to be used as the second and fifth arguments
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Algorithm 11 GenerateAtomSvcLucidDef

Input: serviceNode (service-node from composite service constraint-aware plan),

globalDims (set of composite service’s global dimensions)

Output: atomSvcDef (Objective Lucid code representing serviceNode)

1: for (each constraint ∈ serviceNode.C) do

2: cnstrFeatures = cnstrFeatures ∪ constraint.feature

3: end for

4: localDims = serviceNode.service.I ∪ cnstrFeatures

5: for (each predNode ∈ serviceNode.predecessors) do

6: paramsFromCurrPred = predNode.service.O ∩ localDims

7: paramsFromPreds = paramsFromPreds ∪ paramsFromCurrPred

8: for (each parameter ∈ paramsFromCurrPred) do

9: localContext = set of respective parameter : oPredSvcClass.parameter

10: end for

11: end for

12: paramsFromUser = localDims − paramsFromPreds

13: for (each parameter ∈ paramsFromUser) do

14: localContext = localContext ∪ set of respective parameter : globalDims.parameter

15: end for

16: svcInps = serviceNode.service.I

17: svcCnstrs = serviceNode.C

18: atomSvcDef = DefineSvc(serviceNode.service.name, svcInps, localDims,

localContext, svcCnstrs, ∅)
19: return atomSvcDef

respectively to the DefineSvc procedure (line 18) while its last argument is left blank

(depicted as ∅) since there are no component service definitions to be included in the given

service’s where clause. Using these arguments together with the local dimension list and

evaluation context defined earlier in addition to the component service name required for

producing the Lucid expression that makes a call to its corresponding free function in the

Java segment, DefineSvc builds the complete Objective Lucid representation of the given

component service.
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4.3 Additional Features

In order to add more flexibility to our service translator framework and to enable its use as a

tool/application, we introduce some additional functionalities similar to those added to the

service composition implementation (described in Section 3.5.4) into it. In this section, we

discuss these additional features and the related architecture.

4.3.1 Service Translation Driver

The service translation driver, similar to the composition driver (discussed in Section 3.5.4.1),

is responsible for prompting the user to provide the inputs required for executing the service

translation process, for triggering the various phases involved in the process in the proper

sequence and for displaying the final status (success/failure) of the process on the console.

More specifically, the driver performs the following tasks:

1. Prompt the user on the console to select a mode of input for providing details of the

composite service configuration. At present, the user can select from console and XML

file modes, although the architecture in place allows these options to be extended to

other modes as well (discussed in Section 4.3.2).

2. Create a logger object (described in Section 3.5.4.3), which would be passed across

methods to allow error messages generated throughout the process to be recorded in a

log file.

3. If XML file is selected as the mode of input in step 1, prompt the user to provide XML

configuration file path.

4. Depending on the selected mode of input, invoke the corresponding composite service

configuration reader, passing it the logger object created, to fetch the composite service

to be translated, the target language of the translation and other necessary information

from the user and use it to create a composite service configuration object (described

in Section 4.3.2).
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5. If the configuration building process fails at any point, display a failure message and

invite the user to check the log file for error details. However, if a valid configuration

is successfully constructed, depending on the target language indicated by the user

in the configuration, trigger the translation process, passing it the configuration and

logger objects created. At present, the user can select from Lucid (more specifically,

Objective Lucid), XML and DOT languages, although the architecture in place

allows these options to be extended to other target languages as well (discussed

Section 4.1).

6. If the translation process is successful, invite the user to check the file to which the

translation has been written. However, if the translation process fails at any point,

display a failure message and invite the user to check the log file for error details.

For example, Listing 4.1, Listing 4.2 and Figure 18 respectively show the contents

of the Objective Lucid (CSLucid range.ipl), XML (CSXML range.xml) and DOT

(CSDot range.png) translation files generated for the Range composite service depicted in

Figure 17. In an alternate scenario, if the user-specified repository from which the composite

service to be translated needs to be extracted does not exhibit an acceptable file format, a

log file same as the one depicted in Listing 4.3 gets generated instead of a translation file.

Listing 4.3: Invalid Repository File Type Log (in Text File Format)

1 Invalid repository file type in the given composite service configuration .
2 Only serialized Java object file or XML file can be parsed.

4.3.2 Composite Service Configuration and Readers

A CSConfiguration object contains all the information provided by the user that is required

to execute the service translation process. It consists of the following elements:

• Composite Service: The layered composite service object to be translated (discussed

in Section 4.3.3).
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• Composite Service Input Details: A list of records, each of which is composed of

the name, data type and value of a specific input parameter of the composite service

to be translated.

• Target Language: The language to which the composite service needs to be

translated. At present, our implementation supports Objective Lucid, XML and

DOT languages (discussed in Section 4.1).

• Destination Folder: Complete path of the folder where the translation file is placed

once generated.

• DOT Executable Name: Complete path of the DOT executable file (dot.exe)

required for executing the DOT program generated by the DOT translator module

in order to produce a .png image file containing the graphical representation of the

translated composite service.

Once a CSConfiguration object is created, its target language component is used to determine

the appropriate translator module to be invoked, which accepts the configuration object as an

argument. While the XML translator module makes use of only the composite service object

contained within the configuration object for generating its target language representation,

the Objective Lucid and DOT translators also require the input details and the DOT

executable file location respectively in order to complete the translation. The destination

folder component of the configuration is used by all of the currently available translator

modules as the location for placing the translation files that each of them generates.

As mentioned in Section 4.3.1, a user can opt for different modes for supplying the

composite service configuration details. We have designed and implemented an architecture

(as depicted in Figure 20) that allows modular addition and removal of readers for each of

these modes. At present, this implementation can support console and XML file readers.

Major design and implementation specifications of this architecture have been listed below:

• CSConfigReader is the interface to be implemented by all concrete composite service

configuration readers. It declares the readCSConfig method, which should be defined
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Figure 20: Composite Service Configuration Reader Architecture

to accept composite service configuration details from the user based on the mode of

input being handled by each concrete reader.

The logger object created by the translation driver (described in Section 4.3.1) is

provided as an argument to the readCSConfig method in order to allow any error

messages generated during the construction of the CSConfiguration object to be

recorded in a log file.

• ConsoleCSConfigReader is the concrete composite service configuration reader for

interacting with the user through the console to obtain composite service configuration

details. It implements the CSConfigReader interface and defines the readCSConfig

method. After reading and processing all the required information, the method creates

a CSConfiguration object to be used for service translation.

• FileCSConfigReader is the abstract class to be extended by all concrete composite

service configuration file readers. It implements the CSConfigReader interface but

does not define the readCSConfig method; the method is expected to be defined by

the concrete file readers.
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This class contains a configFileName data member and a mutator method for assigning

a value to it. The configFileName member is inherited by all concrete file readers and

stores the complete path of the file to be read by them.

• XMLFileCSConfigReader is the concrete composite service configuration reader

for extracting composite service configuration details from a user-specified XML

file. It extends the FileCSConfigReader class and defines the readCSConfig method.

After reading and processing all the required information, the method creates a

CSConfiguration object to be used for service translation.

Readers for other file formats (depicted as OtherFileCSConfigReader in Figure 20) can be

easily added to the existing architecture by extending the FileCSConfigReader class and

defining the readCSConfig method to do the file-specific parsing. To include readers for

other modes of input, such as, databases, a new class (depicted as OtherCSConfigReader

in Figure 20) can be added to this hierarchy and made to implement the CSConfigReader

interface while defining the required behavior in the readCSConfig method.

The readCSConfig method for the console reader is responsible for performing the

following tasks:

1. Consecutively prompting the user on the console to provide the value for each element

of a composite service configuration according to the following rules:

• CS Repository Filename must include the complete name (with extension)

and path of the repository file containing description of the composite service

to be translated. For now, only .txt and .xml are recognized as acceptable file

extensions.

• Composite Service Name must be the name of the composite service to be

extracted from the given repository for translation.

• Target Language Name must be the name of the formal language to which the

specified composite service needs to be translated. For now, only Lucid, XML

and DOT are recognized as acceptable target languages.
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• CS Input Valuesmust be in accordance with the name and data type mentioned

in the prompt for each specific composite service input. User will be prompted

for input values only if the chosen target language is Lucid.

• DOT Executable Filename must include the complete name (with extension)

and path of the DOT executable file (dot.exe). User will be prompted for this file

location only if the chosen target language is DOT.

2. Depending on the type of the specified repository, invoking the corresponding

composite service reader (discussed in Section 4.3.3) in order to fetch the

specified service’s description from the repository and using it to create the

LayeredCompositeService object to be translated into the target language.

3. If the chosen target language is Lucid, creating a list of input records using the input

name and data type from the LayeredCompositeService object and their respective

values received from the user.

4. Creating a CSConfiguration object using the specified repository file location as the

destination folder for the translation file to be generated together with all the other

information collected in the preceding steps.

5. In case of any failures during the creation of the CSConfiguration object, recording

proper error messages in the log file associated with the logger object accepted as an

argument and aborting the translation process immediately.

The readCSConfig method for the XML file reader performs the same tasks as those

performed by its console counterpart with the only distinction being that, instead of reading

the configuration details from the console, this method obtains them by parsing a user-

specified XML configuration file, which comprises of the following elements:

• csconfig: It is the root element of the XML file.

• csrepofilename: It appears once in the XML file, as a sub-element of the root. The
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value assigned to its “value” attribute is the complete name (with extension) and path

of the composite service repository file.

• csname: It appears once in the XML file, as a sub-element of the root. The value

assigned to its “value” attribute is the name of the composite service to be extracted

from the given repository for translation.

• targetlang: It appears once in the XML file, as a sub-element of the root. The

value assigned to its “value” attribute is the name of the formal language to which the

specified composite service needs to be translated.

• input: It appears once for each composite service input, as a sub-element of the root.

It has three sub-elements called “name”, “type” and “value”. The values assigned to

the “value” attributes of these sub-elements are, respectively, the corresponding input’s

name, data type and value. This element is required only for translation to Lucid.

• dotexename: It appears once in the XML file, as a sub-element of the root. The

value assigned to its “value” attribute is the complete name (with extension) and path

of the DOT executable file (dot.exe). This element is required only for translation to

DOT.

The same format and rules apply to composite service configuration’s XML elements as

defined for the console mode. As examples, consider Listings 4.4, 4.5 and 4.6, depicting the

contents of the XML configuration files for translating the Range composite service (depicted

in Figure 17) into XML, DOT and Objective Lucid respectively.

Listing 4.4: Range CS Configuration for XML Translation (in XML File Format)

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <csconfig>
3 <csrepofilename value=‘‘testinput/xmltranslatortests/Serialized Repository .txt ’ ’/>
4 <csname value=‘‘range’’/>
5 <targetlang value=‘‘XML’’/>
6 </csconfig>

136



Listing 4.5: Range CS Configuration for DOT Translation (in XML File Format)

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <csconfig>
3 <csrepofilename value=‘‘testinput/dottranslatortests/XML Repository.xml’’/>
4 <csname value=‘‘range’’/>
5 <targetlang value=‘‘Dot’’/>
6 <dotexename value=‘‘D:\Graphviz\graphviz−2.38\release\bin\dot.exe’’/>
7 </csconfig>

Listing 4.6: Range CS Configuration for Lucid Translation (in XML File Format)

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <csconfig>
3 <csrepofilename value=‘‘testinput/ lucidtranslatortests /Serialized Repository .txt ’ ’/>
4 <csname value=‘‘range’’/>
5 <targetlang value=‘‘Lucid’’/>
6 <input>
7 <name value=‘‘num1’’/>
8 <type value=‘‘int’ ’/>
9 <value value=‘‘10’’/>
10 </input>
11 <input>
12 <name value=‘‘num2’’/>
13 <type value=‘‘int’ ’/>
14 <value value=‘‘12’’/>
15 </input>
16 <input>
17 <name value=‘‘num3’’/>
18 <type value=‘‘int’ ’/>
19 <value value=‘‘14’’/>
20 </input>
21 </csconfig>

4.3.3 Composite Service Readers

As mentioned in Section 4.3.2, a user can specify different types of composite service

repositories as part of composite service configurations. Based on the repository type

specified in a configuration, the operating composite service configuration reader invokes

a particular composite service reader for parsing the given repository, using the composite

service name from the configuration for locating the service in the repository and
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transforming the service details so obtained into a LayeredCompositeService object (as

described in Section 3.5.4.6), which is eventually translated into the target language selected

by the user. The architecture that we have designed and implemented for the composite

service readers (as depicted in Figure 21) allows modular addition and removal of reader

modules for each of the possible repository types. At present, this implementation can

parse serialized Java object and XML file repositories. Major design and implementation

specifications of this architecture have been listed below:

Figure 21: Composite Service Reader Architecture

• CompositeServiceReader is the interface to be implemented by all concrete

composite service readers. It declares the readCompositeService method, which

should be defined to parse and search through a composite service repository based on

the repository type being handled by each concrete reader.

• SerializedCSReader is the concrete reader for extracting a specific composite

service from a .txt repository file containing serialized composite service Java

objects. It implements the CompositeServiceReader interface and defines the

readCompositeService method.

• XMLCSReader is the concrete reader for extracting a specific composite service from

an XML composite service repository file. It implements the CompositeServiceReader

interface and defines the readCompositeService method.
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Readers for other repository formats (depicted as OtherCSReader in Figure 21) can also

be easily added to the existing architecture by implementing the CompositeServiceReader

interface and defining the readCompositeService method to do the format-specific parsing.

The readCompositeService method for the serialized composite service reader has been

designed to parse a text file containing a serialized Java ArrayList of one or more

LayeredCompositeService objects type-cast to their superclass Service (defined in the

service repository framework [51]). The method accepts the complete name (with extension)

and path of this serialized repository file, the name of the composite service to be translated

and the logger object created by the translator driver (described in Section 4.3.1) as

arguments and uses them to perform the following tasks:

1. Using the ServiceSerializedParser defined in the service repository framework [51]

to read the list of services contained within the given repository.

2. Searching the extracted ArrayList of Service objects for the intended composite

service by its name and returning its Service object, if found.

3. In case the intended composite service is not found in the given repository, using the

logger object to record a suitable error message in its associated log file and returning

null as a trigger for immediate termination of the translation process.

In contrast, the readCompositeService method for the XML composite service reader

follows a slightly different approach towards creating the LayeredCompositeService object

required for translation as described below:

1. This method first fetches a list of all the “compositeservice” XML nodes from the

user-specified repository file (described later in this section).

2. The list is then searched for the intended composite service by its name. If

found, its corresponding “compositeservice” node is completely parsed to extract

the composite service name, inputs, outputs, effects and constraints for creating a

simple ConstrainedService object (defined in the service repository framework [51]),
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which is then decorated with the extracted constraint-aware plan element in order to

form the required LayeredCompositeService object (as described in Section 3.5.4.6).

Meanwhile, the other “compositeservice” nodes in the list are discarded as irrelevant.

3. In case the intended composite service is not found in the given repository, the method

uses the given logger object to record a suitable error message in its associated log file

and returns null as a trigger for immediate termination of the translation process.

Any XML composite service repository file to be parsed successfully by this

readCompositeService method should comprise of the following elements:

• compositeservices: It is the root element of the XML file.

• compositeservice: It appears as a sub-element of the root, once for every composite

service that resides in the repository. All the information about a composite service is

stored within the sub-elements of its corresponding “compositeservice” element.

• csname: It appears as a sub-element of every “compositeservice” element. The value

assigned to its “value” attribute is the corresponding composite service’s name.

• csinputs, csoutputs, cseffects: Each of these elements appears as a sub-element

of every “compositeservice” element. For each composite service input, output and

effect, an “instance” sub-element is added to its corresponding element. The value

assigned to the “name” attribute of the “instance” element is “datatype : name” of

the input/output/effect parameter.

• csconstraints: It appears as a sub-element of every “compositeservice” element. For

each composite service constraint, an “instance” sub-element is added to it, which must

comprise of four sub-elements (listed below) with the following values assigned to their

respective “name” attributes:

– servicename: Name of the component service on which the constraint is placed.
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– literalvalue: Literal value to which the constrained feature’s value has to be

compared for constraint verification.

– type: Constrained feature, which should be one of the component service input

parameters specified as “featuredatatype : featurename”.

– operator: Relational operator, which defines the type of comparison between

the constrained feature and literal value and could be <, >, =, <= or >=.

• csplan: It appears as a sub-element of every “compositeservice” element and describes

its constituent service-nodes and the relationships between them. It comprises of the

following sub-elements:

– servicelayer: It appears as a sub-element of a “csplan” element, once for each

service layer in the plan. The value assigned to its “index” attribute is an integer

indicating the index of the layer, starting from 0 and increasing by 1 for each

subsequent layer.

– servicenode: It appears as a sub-element of a “servicelayer” element, once for

each service-node belonging to that layer.

– service: It appears as a sub-element of each “servicenode” element. The value

assigned to its “name” attribute is the name of the component service that it

represents.

– constraints: It appears as a sub-element of each “servicenode” element. It

describes the constraints attached to the service-node, following the same format

as that of the “csconstraints” element discussed above.

– predecessors: It appears as a sub-element of each “servicenode” element. For

each predecessor of the given service-node, an “instance” sub-element is added

to it. The values assigned to the “name” and “layerindex” attributes of the

“instance” element are the predecessor’s service name and container layer index

respectively.
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• csatomicservices: It appears as a sub-element of every “compositeservice” element

and lists the descriptions of all the component services that together constitute the

composite service. It contains the following sub-elements:

– service: It appears as a sub-element of a “csatomicservices” element, once

for each component service. The value assigned to its “name” attribute is the

component service name.

– inputs, outputs, effects, constraints: Each of these elements appears as a

sub-element of each “service” element and follows the same format as that of the

“csinputs”, “csoutputs”, “cseffects” and “csconstraints” elements respectively.

If there are no values to be provided for an optional service property, such as, constraints

or predecessors, the main element of the property should be included in the XML file

without any sub-elements. For instance, for a composite service that is not restricted by

any constraints, the opening and closing “csconstraints” tags should be included in the

XML file without any “instance” sub-elements between them (as shown in Listing 4.7, lines

25 - 26). Listing 4.7 shows the contents of a sample XML composite service repository file

containing three composite services (lines 3 - 11, 12 - 74 and 75 - 77).

Listing 4.7: Sample XML Composite Service Repository

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ standalone=‘‘no’’?>
2 <compositeservices>
3 <compositeservice>
4 <csname value=‘‘range’’/>
5 <csinputs>
6 <instance name=‘‘int : num1’’/>
7 <instance name=‘‘int : num2’’/>
8 <instance name=‘‘int : num3’’/>
9 </csinputs>
10 ...
11 </compositeservice>
12 <compositeservice>
13 <csname value=‘‘CalcPercent’’/>
14 <csinputs>
15 <instance name=‘‘string : StudentID’’/>
16 </csinputs>
17 <csoutputs>
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18 <instance name=‘‘float : MarksPercentage’’/>
19 </csoutputs>
20 <cseffects>
21 <instance name=‘‘float : TotalMarks’’/>
22 <instance name=‘‘int : NumberOfCourses’’/>
23 <instance name=‘‘float : MarksPercentage’’/>
24 </cseffects>
25 <csconstraints>
26 </csconstraints>
27 <csplan>
28 <servicelayer index=‘‘0’ ’>
29 <servicenode>
30 <service name=‘‘W8’’/>
31 <constraints/>
32 <predecessors/>
33 </servicenode>
34 </servicelayer>
35 <servicelayer index=‘‘1’ ’>
36 <servicenode>
37 <service name=‘‘W9’’/>
38 <constraints/>
39 <predecessors>
40 <instance name=‘‘W8’’ layerindex=‘‘0’’/>
41 </predecessors>
42 </servicenode>
43 </servicelayer>
44 </csplan>
45 <csatomicservices>
46 <service name=‘‘W8’’>
47 <inputs>
48 <instance name=‘‘string : StudentID’’/>
49 </inputs>
50 <outputs>
51 <instance name=‘‘float : TotalMarks’’/>
52 <instance name=‘‘int : NumberOfCourses’’/>
53 </outputs>
54 <constraints/>
55 <effects>
56 <instance name=‘‘float : TotalMarks’’/>
57 <instance name=‘‘int : NumberOfCourses’’/>
58 </effects>
59 </service>
60 <service name=‘‘W9’’>
61 <inputs>
62 <instance name=‘‘float : TotalMarks’’/>
63 <instance name=‘‘int : NumberOfCourses’’/>
64 </inputs>
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65 <outputs>
66 <instance name=‘‘float : MarksPercentage’’/>
67 </outputs>
68 <constraints/>
69 <effects>
70 <instance name=‘‘float : MarksPercentage’’/>
71 </effects>
72 </service>
73 </csatomicservices>
74 </compositeservice>
75 <compositeservice>
76 ...
77 </compositeservice>
78 </compositeservices>

4.4 Summary

In this chapter, we presented our methodology for translating the constraint-aware composite

services generated by the composition technique described in Chapter 3 into Objective

Lucid programs that can be simulated/executed on GIPSY for verification and analysis.

Although designed primarily for translation to Objective Lucid, our translator framework

allows easy addition and removal of modules for other target languages/models as well while

also allowing some flexibility in modes of input and user-interaction. This concludes our

discussion on the service verification procedure depicted in Figure 3. In the next chapter,

we present the strategy that we employ for evaluating our solution, the analysis performed

and the results obtained together with the conclusions that can be drawn on the extent to

which the solution fulfills its design goals.
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Chapter 5

Solution Evaluation

In Chapters 3 and 4, we explain the process of composing constraint- and context-aware

services in response to a given composition request and translating them into a variety of

useful formats, including Objective Lucid programs that can be simulated/executed on

GIPSY for verification and testing purposes. In other words, the chapters elaborate on

the verification procedure outlined as part of our research methodology in Section 1.5. An

evaluation of this verification procedure is presented in this chapter. Here, we examine

the tests and analysis conducted on the proposed solution and the inferences that can be

drawn from them in order to determine whether or not the solution completely fulfills the

requirements for which it has been designed.

5.1 Service Composition Process Evaluation

As stated in Section 1.2, the first objective of this thesis is to design an operational

service composition mechanism that can generate one or more constraint- and context-aware

composite services as solutions to a valid composition problem, depending on the services

available for use as components during composition. We describe the planning-graph-based

composition approach designed by Laleh et al. [4, 5, 6, 7, 8] upon which we base our

implementation of this mechanism in Chapter 3 together with the various modifications
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that we introduce into the original technique in order to complete and optimize it while

transforming it into a generic, flexible and maintainable application, as intended. In this

section, we explain the evaluation technique employed to ensure that this application fulfills

all its functional requirements, i.e., it achieves our first thesis objective.

As explained in Chapter 3, our service composition method is divided into several stages

– forward expansion, backward search, solution plan construction, constraint-aware plan

construction with optimally adjusted constraints and service composition. Each of these

stages has a specific goal; for instance, the forward expansion stage aims at generating

a valid search graph whereas the backward search stage is focused on extracting valid

solution plan sets from that search graph. In order to achieve its goal effectively, each

of these stages needs to fulfill a set of specific conditions and exhibit certain properties

during its processing. As part of our evaluation technique, we prepare exhaustive lists of

all such defining characteristics and perform tests on each stage individually as well as all

stages combined as a process to ensure that all the required conditions are met. While we

understand that such a scenario-based testing technique is not an absolute proof of absence

of faulty behavior and its effectiveness is contingent upon the thoroughness with which the

test cases are designed, the intricacies of our composition process and time restrictions place

preparation of a full-fledged mathematical proof, evaluating each constituent operation and

possible scenario, outside the scope of this thesis. Nevertheless, we attempt to ensure to

the best of our abilities that all essential features of the composition process are thoroughly

tested by adopting a meticulous and systematic approach towards the design and execution

of the test cases.

The essential properties tested for the forward expansion stage along with the significance

of each property, the inputs used for testing it and the expected/actual output obtained

that proves that the property has been correctly incorporated in the composition process

implementation have been listed in Table 7. Tables 8, 9, 10 and 11 summarize similar tests

conducted and results obtained for each of the other stages involved in the process.
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Table 7: Forward Expansion Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposition Service Input

Request (R) Repository Characteristics*

1 A service from the repository should be added to a Algorithm 2, lines 4 - 6 R.I = {int : input11, Table 12 sname2, 3, 7 : all inputs Valid search graph

search graph only if all its input parameters are boolean : input21, int : input22, sname1, 4, 6, 8, 10, 11 : partial composed of services

available in prdSet (either as initial parameters R.I string : input31, boolean : input32} sname5 : no inputs available sname2, sname3

or as outputs of services present in the already- R.O = {char : output32, sname9 : other failure and sname7 created

constructed layers of the graph). string : output71}
2 A service from the repository should be added to a Algorithm 2, lines 4 - 6 R.I = {int : input11, char : input12, Table 12 sname1, 2, 3, 7 : new output Valid search graph

search graph only if it produces at least one output Also, see Section 3.4 boolean : input21, int : input22, sname8, 9 : no new output composed of services

parameter that does not already exist in prdSet at string : input31, boolean : input32} sname4, 5, 6, 10, 11 : failure sname1, sname2,

the time of its addition. R.O = {char : output32, sname3 and sname7

string : output71} created

3 The same service should not be added multiple Result of Property #2 R.I = {int : input11, char : input12, Table 12 sname1 can be added to Valid search graph

times to a search graph. Detailed in Section 3.4 boolean : input21, int : input22, Layer 0 and Layer 2 (as with sname1 only in

string : input31, boolean : input32} successor to sname7 in Layer 0 and sname7

R.O = {char : output32, Layer 1) in Layer 1 created

string : output71}
4 Component services with different names but same Allows alternative R.I = {int : input11, Table 12 sname6, 10 : same I/O specs Valid search graph

input-output specifications should be allowed to be solution plans to be boolean : input21, int : input22, sname2, 4, 6, 10 : valid composed of services

added to the same search graph. constructed for a given string : input42, char : input61} other services : some failure sname2, sname4,

composition request R.O = {int : output42, sname6 and sname10

char : output61} created

5 If there are no services in the repository whose Shows unavailability of R.I = {int : inputXX, Table 12 No service in the repository No search graph

inputs are completely available in the set of initial required component char : inputY Y } accepts inputXX or created. Forward

parameters R.I, forward expansion should fail. services R.O = {int : output42, inputY Y as input expansion fails.

string : output71}
6 If the component services of a search graph cannot Shows that the given R.I = {int : input11, char : input12, Table 12 No service in the repository No search graph

collectively produce all the goal parameters R.O, composition request boolean : input21, int : input22, produces outputXX or created. Forward

forward expansion should fail. cannot be served by string : input31, boolean : input32} outputY Y as output expansion fails.

the available services R.O = {string : outputXX,

boolean : outputY Y }
7 If a search graph composed of only one service gets Implies that request R.I = {boolean : input21, Table 12 sname2 serves the given Search graph

created successfully, forward expansion should fail. can be served by one int : input22} composition request composed of only

service only. No comp- R.O = {char : output21, completely. No composition sname2 rejected.

osition can be created float : output22} of available services fulfills Forward expansion

from available services. the request. fails.

* Only characteristics relevant to each test case have been specified in their corresponding entry, for simplicity and lack of space.
Nevertheless, services that get added to a search graph fulfill all required conditions (whether explicitly listed in the entry or not).
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Table 8: Backward Search Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposition Service Input

Request (R) Repository Characteristics*

1 Each layer of a search graph should be successively Algorithm 1, lines 3 - 11 R.I = {int : input11, char : input12, Table 12 SG Layer 0 : sname1, 4, 8 Valid plan sets created

processed as the starting layer for a backward Allows all possible plan string : input31, string : input42, SG Layer 1 : sname3, 6, 7 starting from Layer 0

search iteration. sets to be generated char : input61, f loat : output22} ({sname1, 8}, {1, 4, 8})
R.O = {float : output11, and from Layer 1

boolean : input32} ({sname8, 3, 7})
2 A service set from a starting layer in a search Prevents generation of a R.I = {char : input12, Table 12 SG Layer 0 : sname3 Service set {sname8}

graph that does not produce any requested output solution plan whose last string : input31, boolean : input32} SG Layer 1 : sname7 from starting layer 2

should immediately be discarded as invalid and layer does not produce R.O = {float : output11} SG Layer 2 : sname1, 8 discarded. Valid sets

not be allowed to proceed any further with the any goal parameter and, output11 /∈ sname8.O {sname3, 7}, {3, 7, 1},
backward search. hence, must be pruned. {3, 7, 1, 8} created.

3 Power sets of all services in each layer of a search Algorithm 1, lines 3 - 11 R.I = {int : input11, char : input12, Table 12 SG Layer 0 : sname1, 2, 8 All 12 valid plan sets

graph should be created and each element of those Algorithm 4, lines 3 - 4 boolean : input21, int : input22, SG Layer 1 : sname3, 4 created, containing 2

power sets should be processed. Allows all possible plan string : input31, string : input42, SG Layer 2 : sname6, 7, 10 to 7 services each and

sets to be generated char : input61, f loat : output22} covering all power

R.O = {float : output11, set combinations

boolean : input32}
4 A plan set extracted from a search graph should Algorithm 4, lines 16 - 21 R.I = {string : input31, Table 12 SG Layer 0 : sname3 {sname3, 9, 4} created

be considered valid only if it produces all the goal Allows early rejection of boolean : input32, string : input42, SG Layer 1 : sname7, 9 as valid plan set.

parameters (R.O). Invalid plan sets should be service sets incapable of char : output21} SG Layer 2 : sname4 {sname3, 9}, {3, 7, 9}
discarded. serving the given R.O = {float : output22, discarded for not

composition request char : output32, int : output42} producing output42.

5 A plan set comprising of only one service should Such a plan set does not R.I = {char : input12, Table 12 SG Layer 0 : sname7 {sname7, 1}, {7, 1, 8}
be discarded as invalid. qualify as a composition int : output31} SG Layer 1 : sname1, 8 created as valid plan

of services. R.O = {float : output11} sets. {sname7} discar-

ded for containing

only one service.

6 A plan set may be composed of services all of Unique yet completely R.I = {int : input11, char : input12, Table 12 SG Layer 0 : sname1, 4, 8 Valid plan sets

which belong to the same layer, which may valid case that must be string : input31, string : input42, SG Layer 1 : sname3, 6, 7 {sname1, 8}, {1, 4, 8}
eventually result in a solution plan comprising of allowed char : input61, f loat : output22} created with services

just one layer containing multiple component R.O = {float : output11, just from Layer 0

services. boolean : input32}
7 Multiple plan sets may be generated from a search Maximizes the number R.I = {char : input12, Table 12 SG Layer 0 : sname3 Partially different yet

graph, including those that are just partially of alternative solutions string : input31, boolean : input32} SG Layer 1 : sname7 completely valid plan

different from each other. generated for a R.O = {float : output11} SG Layer 2 : sname1, 8 sets {sname3, 7},
composition request {3, 7, 1}, {3, 7, 1, 8}

created

* SG stands for “Search Graph”.

148



Table 9: Plan Construction Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test Output*Composition Service Input

Request (R) Repository Characteristics

1 A service whose inputs are not completely Algorithm 5, lines 10 - 17 R.I = {int : input11, Table 13 15 plan sets created, sname9, 10, 11, 12, 13 removed

available in a given solution plan (possibly due Also, see Section 3.5.3.3 string : input21} comprising of various from 14 plan sets for failing

to removal of its predecessors from the plan as R.O = {int : output131} combinations of all 13 this condition. Valid solution

invalid nodes) should be removed from the services in the repository plan created:

plan. [0 : 1, 2; 1 : 9, 10; 2 : 11, 12; 3 : 13]

2 A service with no successors in a given solution Algorithm 5, lines 23 - 27 R.I = {int : input11, char : input12, Table 12 12 plan sets created, sname2, 4, 6, 10 removed from

plan should produce at least one goal Also, see Section 3.5.3.3 boolean : input21, int : input22, including {sname1, 2, 8}, these plan sets for failing this

parameter or else be removed from the plan. string : input31, string : input42, {2, 8, 3, 4, 6, 7}, condition. Valid solution plans

char : input61, f loat : output22} {2, 8, 3, 4, 7, 10}, created: [0 : sname1, 8],

R.O = {float : output11, {2, 8, 3, 4, 6, 7, 10} [0 : sname8; 1 : 3; 2 : 7].

boolean : input32}
3 A solution plan should be validated Algorithm 5, lines 6 - 30 Same as Property #2 Table 12 12 plan sets created, 10 resultant solution plans

repetitively until no more invalid services could Ensures complete removal comprising of various pruned in first iteration, found

be found and removed from it. of unnecessary services combinations of valid in second, later discarded

sname1, 2, 3, 4, 6, 7, 8, 10 as duplicates.

4 A solution plan that does not produce all the Algorithm 5, lines 32 - 39 R.I = {int : input11, f loat : input12, Table 13 368 valid plan sets All resultant plans other than

goal parameters (R.O) after pruning is Ensures that the given string : input21, boolean : input22} created. sname7, 8 [0 : sname1; 1 : 3, 4; 2 : 7, 8],

complete should be discarded as invalid. composition request can R.O = {int : output71, produce output71 and [0 : 1, 2; 1 : 3, 4; 2 : 7, 8] and

be served by the plan float : output81} output81 respectively. [0 : 2; 1 : 3, 4; 2 : 7, 8] discarded.

5 A solution plan comprising of only one service Such a solution plan does R.I = {int : input11, f loat : input12, Table 13 20 plan sets created. 6 plan sets result in solution

should be discarded as invalid. not qualify as a string : input21, boolean : input22} sname4 takes input21, 22 plan [0 : ∅; 1 : sname4], discard-

composition of services R.O = {char : output41} and produces output41. ed for containing only 1 service.

6 Duplicate solution plans constructed for a Algorithm 1, lines 7 - 10 Same as Property #2 Table 12 12 plan sets created, Valid plans [0 : sname1, 8],

composition request should be discarded. Prevents redundant comprising of various [0 : sname8; 1 : 3; 2 : 7] created.

processing of same plan combinations of Other 10 resultant plans discar-

sname1, 2, 3, 4, 6, 7, 8, 10 ded as duplicates after pruning.

7 A solution plan may be composed of two or Unique yet completely R.I = {int : input11, f loat : input12, Table 13 884 valid plan sets Out of the 7 resultant plans, 3

more parallel branches that share no services valid case that must be string : input21, boolean : input22} created. sname5, 6 have parallel branches composed

among themselves. allowed R.O = {string : output51, produce output51 and of {sname1, 3, 5} & {2, 4, 6},
boolean : output52} output52. {1, 3, 5} & {4, 6} and

{3, 5} & {2, 4, 6}.
8 A solution plan, at this stage, may contain an Unique yet completely R.I = {int : input11, f loat : input12, Table 13 884 valid plan sets Out of the 7 resultant solution

empty service layer as a result of pruning. Such possible scenario that string : input21, boolean : input22} created. sname5, 6 plans, Layer 0 is empty for

layers should be removed in the next stage. must be handled R.O = {string : output51, produce output51 and [0 : ∅; 1 : sname3; 2 : 5] and

boolean : output52} output52. [0 : ∅; 1 : 4; 2 : 6].

* Solution plans are represented as [list of layer index : services in that layer].
Due to lack of space, service names are shortened to their indexes. For instance, [0 : 1, 2] in test case 1 represents [Layer 0 : sname1, sname2].
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Table 10: Constraint-aware Plan Construction Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test Output*Composition Service Input

Request (R) Repository Characteristics*

1 Predecessor and successor lists of a Optimization operation R.I = {int : input11, f loat : input12, Table 13 2 of the 7 plans created: sname2 removed from sname4’s

service-node in a constraint-aware plan Detailed in Section 3.5.3.4 string : input21, boolean : input22} P1: [0 : 2; 1 : 4; 2 : 6], predecessor list for plan P2 but

should have pointers to only those nodes R.O = {string : output51, P2: [0 : 1; 1 : 3, 4; 2 : 5, 6] not P1. Also, sname8 (successor

that exist in the plan. Other irrelevant boolean : output52} to sname4 in the search graph)

predecessors and successors should be removed from sname4’s

removed from their lists for that plan. successor lists.

2 Empty service layers (irrespective of Optimization operation Not used Not used Manually generated plan: All 6 empty layers removed and

their count or location) should be Detailed in Section 3.5.3.4 [2 : 1; 4 : 2, 3; 7 : 4, 5, 6; remaining layer indexes rearran-

removed from constraint-aware plans. 8 : 7; 10 : 8, 9]. Layers 0, ged. Resultant plan: [0 : 1;

1, 3, 5, 6, 9 are empty. 1 : 2, 3; 2 : 4, 5, 6; 3 : 7; 4 : 8, 9].

3 Constraint adjustment should be Algorithm 6, lines 1 - 9 R.I = {int : input111} Table 14 Solution plan created: Each constraint on each service-

performed for every constraint of every Ensures optimum internal R.O = {char : output151} [0 : 11; 1 : 12, 13; 2 : 14; node in the plan, which is not

service-node (other than those in the constraint placement 3 : 15] optimally located, is adjusted.

first layer) in a constraint-aware plan.

4 Constraint adjustment should not be Algorithm 6, lines 1 - 2 R.I = {int : input111, Table 14 Plan created: [0 : 11, 17; Constraints placed on W11 (on

performed for the constraints placed on No predecessors to these boolean : input171} [1 : 12, 20; 2 : 19, 21, 22; i111) and W17 (on i111, i171)

service-nodes belonging to the first layer nodes, which could affect R.O = {boolean : output241, 3 : 23, 24] not affected during adjustment.

of a constraint-aware plan. these constraint-features string : output231}
5 An adjusted constraint should be added Algorithm 6, lines 15 - 19 Same as Property #3 Table 14 Same plan as #3. After adjustment, W12’s constr-

to all the successors of the service-node Minimizes rollback effort W11 produces o111, o112, aint on o111 is attached to

that last affects the constraint feature in in case of run-time W12 accepts o111, W13 W13 as well. Similar adjustment

the plan, irrespective of whether the constraint violation accepts o112. W12, 13 done for constraints on other

successor uses the feature or not. are successors to W11. service-nodes as well.

6 If a service-node whose constraint needs Algorithm 6, lines 15 - 19 R.I = {int : input111, Table 14 Plan created: [0 : 17; 1 : After adjustment, W23’s

to be adjusted has multiple predecessors, boolean : input171} 20; 2 : 21, 22; 3 : 23, 25, constraint on o221 is attached

the constraint should be attached to the R.O = {string : output231, 26]. W21 produces o211. to W25 as well but not to W26.

successors of only that predecessor that int : output251, f loat : output261} W22 produces o221. W23

affects the constraint feature. accepts o211, o221. W21

is predecessor to W23, 26

and W22 is to W23, 25.

7 A constraint on a feature that is not Algorithm 6, lines 10 - 26 R.I = {string : DeliveryAddress, Table 14 15 valid plans created. After adjustment, constraints

affected by any service in a constraint- string : ProductName} Each contains W3, 4, 7, on DeliveryAddress are moved

aware plan should be moved to the R.O = {string : ShipmentConfirm} which have constraints on and attached only to W1 – the

beginning of the plan. DeliveryAddress – not only service in Layer 0 of the

affected by any service. plans.
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8 A constraint moved to the beginning of a Algorithm 6, lines 10 - 26 R.I = {int : input111, Table 14 Plan created: [0 : 11, 17; After adjustment, W19’s

plan during adjustment should be Minimizes rollback effort boolean : input171} 1 : 12, 20; 2 : 19, 21, 22; constraint on i181 is moved and

attached to all the service-nodes in the in case of run-time R.O = {boolean : output241, 3 : 23, 24]. input181 not attached to both W11 and W17

first layer of the plan. constraint violation string : output231} affected by any service. in Layer 0 of the plan.

9 The number of layers between a Ensure optimum internal R.I = {string : DeliveryAddress, Table 14 15 valid plans created. After adjustment, W3’s

predecessor and its successor node should constraint placement string : ProductName} e.g.: [0 : 1; 1 : 2; 2 : 3, 4]. constraint on ProductAddress

not affect the constraint adjustment R.O = {string : ShipmentConfirm} ProductAddress is last is attached to W2 and W4

process. produced/affected by W1 as well irrespective of the layers

(predecessor to W2, 3, 4). to which they belong.

10 Multiple copies of a constraint (i.e., Optimization operation Same as Property #9 Table 14 Same as Property #9. Before adjustment, W3 has 1

Constraint Java object) should not be Detailed in Section 3.5.3.4 Also, W3 has a constraint C31 object. During adjustment,

attached to a service-node in a plan. (represented as C31) on another C31 is meant to be att-

ProductAddress. ached to W3 (successor of W1),

but it is not, being a duplicate.

11 In case all service constraints in a plan Unique yet completely R.I = {int : input111} Table 14 Plan created: [0 : 11; All constraints in the plan –

are already optimally located, no valid case that must be R.O = {string : output161} 1 : 12; 2 : 16]. i111: initial W11’s constraint on i111,

adjustment would be required for them. allowed parameter, accepted by W12’s constraints on o111,

W11. o111: produced by W16’s constraints on o121 – are

W11, accepted by W12. optimally located to begin with.

o121 produced by W12, No constraint adjustment made.

accepted by W16.

12 In case no service-node in a constraint- Unique yet completely R.I = {string : StudentID} Table 14 Solution plan created: Optimized constraint-aware

aware plan has any constraint imposed valid case that must be R.O = {float : MarksPercentage} [0 : W8, 1 : W9; 2 : W10]. plan created with empty

on it, the constraint segment of each allowed W8, 9, 10 do not have constraint segments for all its

service-node in the plan should be any constraints. service-nodes

blank/empty.

* Solution plans are represented as [list of layer index : services in that layer].
Due to lack of space, service names are abbreviated to their indexes. For instance, [0 : 2] in test case 1 represents [Layer 0 : sname2] while [0 : 11] in test case 3 represents [Layer 0 : W11].
Similarly, parameter names have also been shortened from input and output to i and o respectively. For instance, o111, o112 in test case 4 represent output111, output112 respectively.
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Table 11: Service Composition Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test Output*Composition Service Input

Request (R) Repository Characteristics*

1 A composition request that does not Planning-graph service R.I = ∅ Irrelevant User request specifies no Request discarded as invalid.

specify any input/initial parameters composition is based on R.O = {string : ShipmentConfirm, input parameters. Other “No initial parameter” error

(R.I) should be considered invalid. input-output relationship string : Invoice} request elements are logged. Composition process

between services irrelevant in this case. aborted.

2 A composition request that does not Planning-graph service R.I = {string : DeliveryAddress, Irrelevant User request specifies Request discarded as invalid.

specify any output/goal parameters composition is based on string : ProductName, string : valid input but no output “No goal parameter” error

(R.O) should be considered invalid. input-output relationship CustomerName, float : Price} parameters. Other req- logged. Composition process

between services R.O = ∅ uest elements irrelevant. aborted.

3 A composition request that specifies a Ensures compliance with R.I = Same as Property #2 Irrelevant User request specifies Request discarded as invalid.

QoS feature other than COST, Laleh’s composition R.O = Same as Property #1 valid inputs and outputs “Unidentified QoS feature”

RESPONSE TIME, RELIABILITY, model [5] R.QoS = {COST, but invalid QoS features. error logged. Composition

AVAILABILITY should be considered THROUGHPUT, response time} Other request elements process aborted.

invalid. are irrelevant in this case.

4 A composition request that specifies a Ensures compliance with R.I = Same as Property #2 Irrelevant User request specifies Request discarded as invalid.

constraint placed on a feature other Laleh’s composition R.O = Same as Property #1 valid inputs, outputs and “Invalid constraint feature”

than the inputs, outputs and QoS model [4] R.QoS = {COST} QoS features but invalid error logged. Composition

features specified in the request should R.C = {AV AILABILITY = 60, feature in first constraint. process aborted.

be considered invalid. string : DeliveryAddress = Quebec, Other request elements

string : Invoice = true} are irrelevant in this case.

5 A composition request that specifies a Ensures compliance with R.I = Same as Property #2 Irrelevant User request specifies Request discarded as invalid.

constraint composed of less than or Laleh’s composition R.O = Same as Property #1 valid inputs, outputs and “Invalid constraint format”

more than 3 elements (feature, operator, model [4] R.QoS = Same as Property #4 QoS features but 2 eleme- errors logged. Composition

literal value) should be considered R.C = {COST <, nts for first and 4 elemen- process aborted.

invalid. string : DeliveryAddress = Quebec ts for second constraint.

City} Other elements irrelevant.

6 A composition request that specifies a Ensures compliance with R.I = Same as Property #2 Irrelevant User request specifies Request discarded as invalid.

constraint with an operator other than Laleh’s composition R.O = Same as Property #1 valid inputs, outputs and “Invalid constraint operator”

<,>,=, <=, >= should be considered model [4] and service R.QoS = Same as Property #4 QoS features but invalid error logged. Composition

invalid. repository framework [51] R.C = {string : Invoice <> false} operator for constraint. process aborted.

Other request elements

are irrelevant in this case.

7 Service composition process should be Valid composition request Same as any of Properties #1 - #6 Irrelevant One or the other issue Request discarded as invalid.

aborted immediately in case the is mandatory trigger with composition request Appropriate error messages

composition request is found invalid. condition for composition as listed for Properties logged. Composition

process #1 - #6. process aborted immediately.
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8 Service composition process should be Service availability is R.I = {string : DeliveryAddress, Empty User composition request “Empty service repository”

aborted immediately in case the service mandatory requirement string : ProductName} XML service is valid but user-specified error logged. Composition

repository specified by the user is for composition process R.O = {string : ShipmentConfirm} repository service repository is process aborted immediately.

empty, i.e., no services are available. R.QoS = {COST} empty.

R.C = {COST < 100,

string : DeliveryAddress = Canada}
9 Service composition process should fail Ensures that composition R.I = {string : DeliveryAddress, Table 14 None of the services in “Unsolvable composition

in case the given composition request process as a whole string : ProductName} the given repository problem” error logged. No

cannot be served by the services in the functions as expected in R.O = {string : Invoice} produce Invoice as an constraint-aware plans

given service repository. case of failure output parameter. generated.

10 Service composition process should fail Ensures that composition R.I = {string : DeliveryAddress, Table 14 Only 1 valid plan set can “Solvable by atomic service”

in case the given composition request process as a whole string : ProductName} be created: {W1}. error logged. No constraint-

can be served by a single service from functions as expected in R.O = {string : ProductNumber} aware plans generated.

the given repository and no composition case of failure

can be constructed to serve it.

11 A composite service may contain Ensures all acceptable R.I = {int : input111, Table 14 Constraint-aware plan Plan has sequential arrange-

sequential, parallel, split or join type of arrangements of boolean : input171} created: [0 : 11, 17; ment of W11, 12, 19, 24; par-

component service arrangement. These component services can R.O = {boolean : output241, 1 : 12, 20; 2 : 19, 21, 22; allel of 11, 12, 19, 24 and 17,

arrangements may exist individually or be generated string : output231} 3 : 23, 24] 20, 21, 22, 23; split from 20

in combination with each other within to 21, 22; join from 21, 22 to

the composite service. 23.

12 If required for storage, a constraint- Allows storage and re-use R.I = {string : StudentID} Table 14 Constraint-aware plan Layered composite service

aware plan should first be correctly of generated compositions R.O = {float : MarksPercentage} created: {0 : W8; 1 : 9; name starts with

transformed into a layered composite 2 : 10}. “CompSvc ”; its inputs and

service object. outputs are same as those of

the given request; its effects

and constraints are sets of

those of W8, 9, 10; its plan is

same as the source plan.

13 If so requested by the user, all the Allows storage and re-use Request #1: Table 15 Given XML repository is Plan created for Request #1:

constraint-aware plans generated for a of generated compositions R.I = {string : StudentID} in serialized first translated into a {0 : W8; 1 : 9; 2 : 10}, which
composition request should be stored in R.O = {float : MarksPercentage} Java object serialized format, which is stored as composite service

the given service repository as layered CS Storage Flag = Y format is then used as input for (represented as CS8910) in

composite service objects and be Request #2: Request #1. This given serialized repository.

available for use as components for any R.I = {string : StudentID} repository appended with Plan created for Request #2:

future compositions. R.O = {char : Grade} CS8910 is used as input {0 : CS8910, 1 : 11} instead

for Request #2. of {0 : 8; 1 : 9; 2 : 10; 3 : 11}.
* Solution plans are represented as [list of layer index : services in that layer].
Due to lack of space, service names are abbreviated to their indexes. For instance, [0 : 11, 17] in test case 11 represents [Layer 0 : W11, W17].
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Table 12: Services Available for Composition in Test Repository 1

# Service Name Service Inputs Service Outputs Internal Service Constraints Service Effects

1 sname1 int : input11, f loat : output11, int : input11 < 11, f loat : output11,

char : input12 string : output12 char : input12 = a string : output12

2 sname2 boolean : input21, char : output21, boolean : input21 = true, char : output21,

int : input22 float : output22 int : input22 < 22 float : output22

3 sname3 string : input31, int : output31, string : input31 = lit31, int : output31,

boolean : input32 char : output32 boolean : input32 = false char : output32

4 sname4 float : output22, boolean : output41, f loat : output22 > 41.0, boolean : output41,

string : input42 int : output42 string : input42 = lit42 int : output42

5 sname5 char : input51, string : output51, char : input51 = b, string : output51,

f loat : input52 boolean : output52 float : input52 < 5.2 boolean : output52

6 sname6 boolean : output41, string : output51, boolean : output41 = true, string : output51,

char : input61, int : output42, char : input61 = c int : output42,

f loat : output22, char : output61 char : output61

int : input11

7 sname7 int : output31 string : output71, int : output31 > 71, string : output71,

f loat : output11, int : output31 < 72 float : output11,

int : input11 int : input11

8 sname8 int : input11, boolean : input21, int : input11 = 81, boolean : input21,

char : input12 boolean : input32 char : input12 = f boolean : input32

9 sname9 char : output21, f loat : output22 char : output21 = g, float : output22

int : output31 int : output31 <= 92

10 sname10 boolean : output41, string : output51, boolean : output41 = false, string : output51,

char : input61, int : output42, char : input61 = h int : output42,

f loat : output22, char : output61 char : output61

int : input11

11 sname11 char : output61, int : output42, char : output61 = i, int : output42,

int : input11 char : output61 int : input11 = 112 char : output61
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Table 13: Services Available for Composition in Test Repository 2

# Service Name Service Inputs Service Outputs Internal Service Constraints Service Effects

1 sname1 int : input11 float : input12, int : input11 <= 11, f loat : input12,

char : output11 int : input11 >= 5 char : output11

2 sname2 string : input21 boolean : input22, string : input21 = lit21 boolean : input22,

int : output21 int : output21

3 sname3 int : input11, f loat : output31 int : input11 = 31, f loat : output31

float : input12 float : input12 < 32.2

4 sname4 string : input21, char : output41 string : input21 = lit41, char : output41

boolean : input22 boolean : input22 = false

5 sname5 float : output31 string : output51, f loat : output31 > 51.1, string : output51,

boolean : output52 float : output31 < 52.2 boolean : output52

6 sname6 char : output41 string : output51, char : output41 = x string : output51,

boolean : output52 boolean : output52

7 sname7 float : output31 int : output71 float : output31 >= 71.0, int : output71

float : output31 < 72.0

8 sname8 char : output41 float : output81 char : output41 = y float : output81

9 sname9 char : output11, char : output91 char : output11 = z, char : output91

int : output21 int : output21 < 92

10 sname10 int : output21 string : output101 int : output21 > 101, string : output101

int : output21 < 102

11 sname11 char : output91, char : output111 char : output91 = w, char : output111

string : output101 string : output101 = lit112

12 sname12 string : output101 boolean : output121 string : output101 = lit121 boolean : output121

13 sname13 char : output111, int : output131 char : output111 = u, int : output131

boolean : output121 boolean : output121 = true
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Table 14: Services Available for Composition in Test Repository 3

# Service Name Service Inputs Service Outputs Internal Service Constraints Service Effects

1 W1 string : ProductName, int : ProductNumber, ∅ int : ProductNumber,

string : DeliveryAddress string : ProductAddress string : ProductAddress

2 W2 int : ProductNumber int : PaymentNumber, ∅ int : PaymentNumber,

int : OrderNumber int : OrderNumber

3 W3 int : PaymentNumber, string : ShipmentConfirm string : DeliveryAddress = Montreal, string : ShipmentConfirm

string : DeliveryAddress, string : ProductAddress = Montreal

string : ProductAddress,

int : OrderNumber

4 W4 int : PaymentNumber, string : ShipmentConfirm string : DeliveryAddress = Quebec, string : ShipmentConfirm

string : DeliveryAddress, string : ProductAddress = Quebec

string : ProductAddress,

int : OrderNumber

5 W5 int : ProductNumber int : OrderNumber ∅ int : OrderNumber

6 W6 int : ProductNumber string : PaymentConfirm ∅ string : PaymentConfirm

7 W7 string : PaymentConfirm, string : ShipmentConfirm string : DeliveryAddress = Canada, string : ShipmentConfirm

string : DeliveryAddress, string : ProductAddress = Canada

string : ProductAddress,

int : OrderNumber

8 W8 string : StudentID float : TotalMarks, ∅ float : TotalMarks,

int : NumberOfCourses int : NumberOfCourses

9 W9 float : TotalMarks, float : AverageMarks ∅ float : AverageMarks

int : NumberOfCourses

10 W10 float : AverageMarks float : MarksPercentage ∅ float : MarksPercentage

11 W11 int : input111 float : output111, int : input111 <= 111 float : output111,

char : output112 char : output112

12 W12 float : output111 string : output121 float : output111 > 121.0, string : output121

float : output111 < 122.0

13 W13 char : output112 boolean : output131, ∅ boolean : output131,

int : output132 int : output132

14 W14 string : output121, f loat : output141 string : output121 = lit141, f loat : output141

boolean : output131 boolean : output131 = true
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15 W15 float : output141, char : output151 float : output141 = 15.1, char : output151

int : output132 int : output132 < 152

16 W16 string : output121 string : output161 string : output121 = lit161, string : output161

string : output121 = lit162

17 W17 int : input111, int : output171 int : input111 = 171, int : output171

boolean : input171 boolean : input171 = false

18 W18 int : input111, char : output181 int : input111 = 181, char : output181

float : input181 float : input181 < 18.2

19 W19 string : output121 string : output191 string : output121 = lit191 string : output191

20 W20 int : output171 boolean : output201, ∅ boolean : output201,

int : output202 int : output202

21 W21 boolean : output201 float : output211 ∅ float : output211

22 W22 int : output202 char : output221 ∅ char : output221

23 W23 char : output221, string : output231 char : output221 = l string : output231

float : output211

24 W24 string : output191 boolean : output241 ∅ boolean : output241

25 W25 char : output221 int : output251 ∅ int : output251

26 W26 float : output211 float : output261 ∅ float : output261

27 W27 char : input271 string : output271, ∅ string : output271,

boolean : output272 boolean : output272

28 W28 string : output271 int : output281, ∅ int : output281,

boolean : output272 boolean : output272

29 W29 int : output281 float : output291, ∅ float : output291,

boolean : output272 boolean : output272

30 W30 float : output291 char : output301 ∅ char : output301

31 W31 char : output301 string : output311 ∅ string : output311
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Table 15: Services Available for Composition in Test Repository 4

# Service Name Service Inputs Service Outputs Internal Service Constraints Service Effects

1 W1 string : ProductName, int : ProductNumber, ∅ int : ProductNumber,

string : DeliveryAddress string : ProductAddress string : ProductAddress

2 W2 int : ProductNumber int : PaymentNumber, ∅ int : PaymentNumber,

int : OrderNumber int : OrderNumber

3 W3 int : PaymentNumber, string : ShipmentConfirm string : DeliveryAddress = Montreal, string : ShipmentConfirm

string : DeliveryAddress, string : ProductAddress = Montreal

string : ProductAddress,

int : OrderNumber

4 W4 int : PaymentNumber, string : ShipmentConfirm string : DeliveryAddress = Quebec, string : ShipmentConfirm

string : DeliveryAddress, string : ProductAddress = Quebec

string : ProductAddress,

int : OrderNumber

5 W5 int : ProductNumber int : OrderNumber ∅ int : OrderNumber

6 W6 int : ProductNumber string : PaymentConfirm ∅ string : PaymentConfirm

7 W7 string : PaymentConfirm, string : ShipmentConfirm string : DeliveryAddress = Canada, string : ShipmentConfirm

string : DeliveryAddress, string : ProductAddress = Canada

string : ProductAddress,

int : OrderNumber

8 W8 string : StudentID float : TotalMarks, ∅ float : TotalMarks,

int : NumberOfCourses int : NumberOfCourses

9 W9 float : TotalMarks, float : AverageMarks ∅ float : AverageMarks

int : NumberOfCourses

10 W10 float : AverageMarks float : MarksPercentage ∅ float : MarksPercentage

11 W11 float : MarksPercentage char : Grade ∅ char : Grade

12 W12 float : output111 string : output121 float : output111 > 121.0, string : output121

float : output111 < 122.0

13 W13 char : output112 boolean : output131, ∅ boolean : output131,

int : output132 int : output132

14 W14 string : output121, f loat : output141 string : output121 = lit141, f loat : output141

boolean : output131 boolean : output131 = true
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15 W15 float : output141, char : output151 float : output141 = 15.1, char : output151

int : output132 int : output132 < 152

16 W16 string : output121 string : output161 string : output121 = lit161, string : output161

string : output121 = lit162

17 W17 int : input111, int : output171 int : input111 = 171, int : output171

boolean : input171 boolean : input171 = false

18 W18 int : input111, char : output181 int : input111 = 181, char : output181

float : input181 float : input181 < 18.2

19 W19 string : output121 string : output191 string : output121 = lit191 string : output191

20 W20 int : output171 boolean : output201, ∅ boolean : output201,

int : output202 int : output202

21 W21 boolean : output201 float : output211 ∅ float : output211

22 W22 int : output202 char : output221 ∅ char : output221

23 W23 char : output221, string : output231 char : output221 = l string : output231

float : output211

24 W24 string : output191 boolean : output241 ∅ boolean : output241

25 W25 char : output221 int : output251 ∅ int : output251

26 W26 float : output211 float : output261 ∅ float : output261

27 W27 char : input271 string : output271, ∅ string : output271,

boolean : output272 boolean : output272

28 W28 string : output271 int : output281, ∅ int : output281,

boolean : output272 boolean : output272

29 W29 int : output281 float : output291, ∅ float : output291,

boolean : output272 boolean : output272

30 W30 float : output291 char : output301 ∅ char : output301

31 W31 char : output301 string : output311 ∅ string : output311
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The tests listed in tables 7 - 11 for the evaluation of our service composition solution

have been designed based on a detailed analysis of the planning-graph-based composition

technique devised by Laleh et al. [4, 5, 6, 7, 8]. The process of completing, optimizing

and transforming their original composition methodology into a flexible and maintainable

software application (as described in Chapter 3) has helped us gain valuable insight into

its behavioral intricacies and, consequently, a comprehensive knowledge of the essential

properties to be exhibited, the exceptional cases to be allowed as well as the pitfalls to

be avoided by the composition solution, each of which has been tested thoroughly as part of

our evaluation process. While we understand that such a scenario-based testing technique

does not prove the solution to be absolutely devoid of faulty behavior, the meticulous study

that we have conducted on the composition methodology, the systematic approach that we

have adopted towards designing the test cases and the successful execution of all the tests

so performed allow us to conclude that, considering our scope and time restrictions, we have

been able to effectively evaluate our implemented solution to the best of our capabilities.

5.2 Service Translation Process Evaluation

The primary goal of this thesis is to provide a solution (as described in Contribution 3) for

the verification and validation of constraint- and context-aware composite web services. As

discussed in Section 1.2, for this goal to be achieved effectively and efficiently, our proposed

solution must fulfill certain specific requirements, which we identify as the objectives of this

thesis. In order to fulfill these objectives and, ultimately, accomplish the primary goal of

this research, we follow a systematic procedure comprising of a series of clearly-defined tasks

to be performed as depicted in Figure 3 and explained in Section 1.5. The first two steps

of this procedure (as listed in Section 1.5) are concerned with the construction of service

compositions, which forms the first objective of this thesis and is evaluated in Section 5.1.

The remaining two steps of the verification procedure – service translation and program

execution – need to be performed in order to fulfill the other three objectives of this thesis.

An elaborate discussion on the design and implementation of our proposed solution for
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translating layered composite web services (described in Section 3.5.4.6) into Objective

Lucid programs besides other formats is presented in Chapter 4. In this section, we discuss

the evaluation technique employed for ensuring that this proposed translation mechanism

performs all its functions in accordance with its design goals and specifications. Evaluation

of the extent to which the final task in the verification procedure – execution of Objective

Lucid representations of service compositions on GIPSY – has been accomplished as part

of this research is addressed in brief in Section 5.3.

For evaluating the process of translating layered composite services into Objective

Lucid programs, we follow the same strategy as the one adopted for evaluating the service

composition process (discussed in Section 5.1). Similar to the composition methodology, we

describe our translation process as a set of algorithms in Chapter 4, each of which has a

specific goal to be achieved by performing a clearly-defined series of tasks. As part of our

evaluation technique, we prepare exhaustive lists of all such constituent operations together

with the other required conditions to be met by each of these algorithms and perform tests

on each of them individually as well as all of them combined as a process to ensure that the

translation solution exhibits all the desired properties. Most of the properties examined as

part of this evaluation aim at defining the specific Objective Lucid program construct

into which a particular element of a constraint-aware composition plan transforms during

the translation process such that when combined and incorporated into a unified procedure,

these properties help build a complete and correct Objective Lucid representation of a

given layered composite service.

The essential properties tested for Algorithm 8 along with the significance of each

property, the inputs used for testing it and the expected/actual output obtained that proves

that the property has been correctly incorporated in the translation process implementation

have been listed in Table 16. Tables 17, 18, 19 and 20 summarize similar tests conducted

and results obtained for Algorithms 9, 10, 11 and 7 respectively.
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Table 16: Java Segment Generation Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposite Composite Input

Service Service Inputs Characteristics

1 Java segment of a composite service’s Algorithm 8, line 10 Figure 22 Not required Composite service comprising Valid Java segment composed

Objective Lucid translation should begin with Ensures all constituent of 2 component services: W1 of 1 output accumulator class

a #JAVA tag and be composed of Java class nodes get represented and W2 and 2 sets of component class

and free function definitions representing its in Java. Also, see and free function definitions

output accumulator and component service nodes. Sections 2.1.4 and 4.2.

2 All composite service outputs should be Algorithm 8, line 1 Figure 22 Not required Composite service with 1 Valid CAWSReqComp class

represented as data members of the output Allows a composite output of char data type with 1 char type data member

accumulator Java class irrespective of their count, service to have Figure 24 Not required Composite service with Valid CAWSReqComp class

data type and source component service. multiple outputs. multiple (3) outputs of string, with 3 data members of types

Explained in Section int and boolean data types String, int and boolean

2.1.4. generated by 1 component

service

Figure 26 Not required Composite service with Valid CAWSReqComp class

multiple (4) outputs of string, with 2 data members of type

int and float data types String and 2 of types double

generated by multiple and int

component services from

different service layers

3 Parameter list of the output accumulator’s Java Algorithm 8, line 2 Figure 22 Not required Composite service with 1 Valid CAWSReqComp construc-

class constructor should comprise of all composite Allows a composite output of char data type tor with 1 char type parameter

service output parameters irrespective of their service to have Figure 24 Not required Composite service with Valid CAWSReqComp construc-

count, data type and source component service. multiple outputs. multiple (3) outputs of string, tor with 3 parameters of types

Explained in Section int and boolean data types String, int and boolean

2.1.4. generated by 1 component

service

Figure 26 Not required Composite service with Valid CAWSReqComp construc-

multiple (4) outputs of string, tor with 2 parameters of type

int and float data types String and 2 of types double

generated by multiple and int

component services from

different service layers

4 Output accumulator’s data members should be Algorithm 8, line 3 Same as Not required Same as Properties #2 and Valid CAWSReqComp construc-

initialized with the values of their respective Allows a composite Properties #3 tor that initializes all its class

parameters accepted by the class constructor service to have #2 and #3 data members with their

irrespective of their count, data type and source multiple outputs. respective parameters

component service. Explained in Section

2.1.4.
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Table 17: Component Service Java Definition Generation Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposite Composite Input

Service Service Inputs Characteristics

1 All component service inputs and outputs should Algorithm 9, lines 1 - 3 Figure 22 Not required W1 has 1 char type input Valid CAWSW1 class with 2

be represented as data members of the Supplies required inputs and 1 char type output char type data members

component’s Java class irrespective of their count for service processing in Figure 24 Not required W3 has multiple (2) inputs of Valid CAWSW3 class with 5

and data type. Java. Allows service to types char and boolean and data members of types char,

have multiple outputs. multiple (3) outputs of types boolean, String and int

Explained in Sections string, int and boolean

2.1.4 and 4.2. Figure 26 Not required W7 has 1 int type input and Valid CAWSW7 class with 2

1 float type output data members of types int and

double

Figure 23 Not required W3 has multiple (4) inputs Valid CAWSW3 class with 4

and outputs of types string data members of types String

and float and double

2 Parameter list of a component service’s Java class Algorithm 9, line 4 Figure 22 Not required W1 has 1 char type input Valid CAWSW1 constructor

constructor should comprise of all of the Supplies required inputs from the user with 1 char type parameter

component’s input parameters irrespective of for service processing in Figure 26 Not required W7 has 1 int type input from Valid CAWSW7 constructor

their count, data type and source – user or other Java. Explained in 1 component service with 1 int type parameter

component service(s). Sections 2.1.4 and 4.2. Figure 25 Not required W1 has multiple (2) user Valid CAWSW1 constructor

inputs of types boolean and with 2 parameters of types

string boolean and String

Figure 23 Not required W3 has multiple (2) inputs of Valid CAWSW3 constructor

types string and float from with 2 parameters of types

multiple component services String and double

of different service layers

3 Component service’s input data members should Algorithm 9, line 5 Same as Not required Same as Properties #1 and Valid component service constr-

be initialized with the values of their respective Supplies required inputs Properties #2 uctor that initializes all the

parameters accepted by the class constructor for service processing in #1 and #2 input data members of its class

irrespective of their count, data type and source – Java. Explained in with their respective

user or other component service(s). Sections 2.1.4 and 4.2. parameters

4 Component service’s output data members should Algorithm 9, line 6 Same as Not required Same as Property #1 Valid component service constr-

be initialized with default values based on their Aids clarity of the Property uctor that initializes all the

data type by the class constructor irrespective of generated program #1 output data members of its

their count and data type. class based on their data type –

int : 0, double : 0.0,

char : ′ ′, String : “ ” and

boolean : false
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5 Component service’s output data members should Algorithm 9, line 9 Same as Not required Same as Property #1 Valid component service process

be assigned dummy post-processing values based Placeholder processing. Property method that assigns dummy

on their data type by its process member method Explained in Section #1 values to all the output data

irrespective of their count and data type. 4.2. members of its class based on

their data type – double : 20.0,

char : ′a′, String : “test”,

int : 10 and boolean : true

6 Parameter list of a component service’s Java free Algorithm 9, line 13 Same as Not required Same as Property #2 Valid component service free

function should comprise of all of the Supplies required inputs Property functions with parameters same

component’s input parameters irrespective of for service processing in #2 as those of the constructors

their count, data type and source – user or other Java. Explained in generated for Property #2

component service(s). Sections 2.1.4 and 4.2.

7 Component service’s Java free function should Algorithm 9, lines 14 - 15 Same as Not required Same as Property #2 Valid component service free

call the service class constructor, passing all its Enables Lucid segment Property functions that invoke their

parameters as arguments in the call, to create an to trigger Java service #2 respective service constructors

object of the service, invoke process member processing and receive with correct arguments, invoke

method using the object and, finally, return the processed results. process method and return

updated object. Explained in Sections processed object.

2.1.4 and 4.2.
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Table 18: Objective Lucid Segment Generation Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposite Composite Input

Service Service Inputs Characteristics

1 Lucid segment of a composite service’s Algorithm 10, line 17 Figure 22 char : input11 = ′x′ Composite service comprises Valid Lucid segment composed

Objective Lucid translation should begin Drives composite service of 2 component services: W1 of a main expression evaluated

with a #OBJECTIVELUCID tag and be execution. Ensures all and W2, has 1 char type in a 1-D input context, a list of

composed of a main expression (representing constituent nodes get input: input11 and 1 output: 1 global dimension and Lucid

the service outcome), a global dimension list represented in Lucid. output21 produced by W2 definition of output accumulator

and output accumulator definition, including Explained in Sections evaluated in a 1-D output

all component service definitions. 2.1.4 and 4.2. context, including 2 component

service Lucid definitions

2 Global dimension list should comprise of all Algorithm 10, line 1 Figure 22 char : input11 = ′x′ Composite service has 1 Valid list of 1 global dimension

composite service input parameters Specifies inputs of input of char data type

irrespective of their count and data type. composite service as its Figure 24 int : input11 = 100 Composite service has Valid list of 2 global dimensions

contextual dimensions. float : input21 = 200.2 multiple (2) inputs of int and

Explained in Sections float data types

2.1.4 and 4.2. Figure 25 boolean : input11 = true Composite service has Valid list of 2 global dimensions

string : input12 = “xyz” multiple (2) inputs of boolean

and string data types

3 Global evaluation context should comprise Algorithm 10, line 2 Same as Same as Property #2 Same as Property #2 Valid global context

of all global dimensions paired with their Supplies user input to Property specification with appropriate

respective values (enclosed in single quotes composite service. #2 dimensions and their respective

if char and double quotes if string typed) Enables storage and values (enclosed in proper

provided by the user irrespective of their querying of execution quotes, if required) as provided

count and data type. results through GIPSY by the user

warehouse.

4 List of local dimensions and Algorithm 10, line 4 Figure 22 char : input11 = ′x′ Composite service with 1 Valid accumulator Lucid defin-

CAWSReqComp arguments used in output Allows a composite output of char data type ition with 1 dimension and 1

accumulator’s Lucid definition should service to have multiple CAWSReqComp argument

comprise of all composite service output outputs. Explained in Figure 24 int : input11 = 100 Composite service with multi- Valid accumulator Lucid defin-

parameters irrespective of their count, data Section 2.1.4. float : input21 = 200.2 ple (3) outputs of string, int ition with 3 dimensions and 3

type and source component service. and boolean data types gener- CAWSReqComp arguments

ated by 1 component service

Figure 26 int : input11 = 100 Composite service with multi- Valid accumulator Lucid defin-

float : input21 = 200.2 ple (4) outputs of string, int ition with 4 dimensions and 4

and float data types generated CAWSReqComp arguments

by multiple component servic-

es from different service layers
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5 Output accumulator’s evaluation context Algorithm 10, lines 5 - 10 Figure 22 char : input11 = ′x′ Composite service with 1 Valid context specification with

should comprise of all its local dimensions Allows a composite output of char data type dimension l output21 paired

paired with their corresponding output data service to have multiple with W2’s output data member

members belonging to the Java class of outputs. Enables storage Figure 24 int : input11 = 100 Composite service with multi- Valid context specification with

their source component services irrespective and querying of float : input21 = 200.2 ple (3) outputs of string, int dimensions l output31,

of their count, data type and source execution results through boolean data types generated l output32 and l output33 paired

component service. GIPSY warehouse. by 1 component service with W3’s output data members

Explained in Section Figure 26 int : input11 = 100 Composite service with multi- Valid context specification with

2.1.4. float : input21 = 200.2 ple (4) outputs of string, int dimensions l output31, l output51,

and float data types generated l output61 and l output71 paired

by multiple component servic- with output data members of W3,

es from different service layers W5, W6 and W7 respectively

6 Output accumulator’s Lucid definition Algorithm 10, line 11 Figure 22 char : input11 = ′x′ Composite service with no Valid Lucid definition of output

should include a whenever clause that Placeholder for potential internal, external or user accumulator with a whenever

always evaluates to true. user/external service con- constraints clause that always evaluates to

straints to be introduced true

in future extensions
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Table 19: Component Service Lucid Definition Generation Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposite Composite Input

Service Service Inputs Characteristics

1 List of arguments passed from a component Algorithm 11, line 16 Figure 22 char : input11 = ′x′ W1 has 1 char type input Valid Lucid definition of W1

service’s Lucid definition while calling its Java Supplies required inputs from the user with 1 free function argument

free function should comprise of all its input for service processing in Figure 26 int : input11 = 100 W7 has 1 int type input from Valid Lucid definition of W7

parameters irrespective of their count, data type Java. Explained in float : input21 = 200.2 1 component service with 1 free function argument

and source – user or other component service(s). Sections 2.1.4 and 4.2. Figure 25 boolean : input11 = true W1 has multiple (2) user Valid Lucid definition of W1

string : input12 = “xyz” inputs of types boolean and with 2 free function arguments

string

Figure 23 float : input11 = 200.2 W3 has multiple (2) inputs of Valid Lucid definition of W3

float : input41 = 300.3 types string and float from with 2 free function arguments

char : input61 = ′x′ multiple component services

of different service layers

2 List of local dimensions specified in a component Algorithm 11, lines 1 - 4 Figure 23 float : input11 = 200.2 W3 has multiple (2) inputs of Valid Lucid definition of W3

service’s Lucid definition should comprise of all Defines a component float : input41 = 300.3 types string and float from with 2 local dimensions

its input parameters and features of all the service’s dimensionality. char : input61 = ′x′ multiple component services

constraints attached to its service-node Explained in Section 4.2. of different service layers

irrespective of their count, data type, source – but no constraints

user or other component service(s) and of whether Figure 27 char : input11 = ′x′ W1 and W2 each has 1 char Valid Lucid definitions of W1

their corresponding constraint was added to the type input respectively from and W2 with 1 local dimension

service-node during constraint adjustment. the user and 1 component each

service. Each service also has

1 constraint on its input.

Figure 28 float : input11 = 200.2 W2 has multiple (2) inputs Valid Lucid definition of W2

int : input12 = 300 of types string and boolean with 2 local dimensions

int : input31 = 400 from 1 component service and

2 of its own constraints and 1

adjusted constraint on its

inputs

W1 has multiple (2) user Valid Lucid definition of W1

inputs of types float and int, with 3 local dimensions

3 of its own constraints on its

inputs and 1 adjusted

constraint on W3’s user input
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3 Evaluation context of a component service should Algorithm 11, lines 5 - 15 Figure 23 float : input11 = 200.2 W3 has multiple (2) inputs Valid context specification with

comprise of all its local dimensions paired with Computes required float : input41 = 300.3 from multiple component ser- dimensions l output11 and

either their corresponding output data members inputs for service char : input61 = ′x′ vices of different service l output21 paired with output

belonging to the Java class of their source processing in Java and layers but no constraints data members of W1 and W2

component services or their corresponding global constraint evaluation in respectively

dimensions (if their values are provided by the Lucid. Enables storage Figure 28 float : input11 = 200.2 W1 has multiple (2) user Valid context specification with

user) irrespective of whether they are inputs to and querying of int : input12 = 300 inputs and 1 adjusted dimensions l input11, l input12

the given component service or features of execution results through int : input31 = 400 constraint on W3’s user input and l input31 paired with their

adjusted constraints attached to its service-node. GIPSY warehouse. respective global dimensions

Explained in Sections W3 has 1 user input, multiple Valid context specification with

2.1.4 and 4.2. (2) inputs from multiple com- dimension l output21 paired

ponent services and 1 adjust- with W2’s and l output11 and

ed constraint each on its own l output12 with W1’s output

input and W2’s input from data members and l input31

another component service with dimension g input31

4 List of constraints specified in a component Algorithm 11, line 17 Figure 27 char : input11 = ′x′ W1 has 1 constraint with == Valid constraint specification

service’s Lucid definition should comprise of all Enables evaluation of operator on its own char type with literal value enclosed in

the constraints attached to its service-node constraints at optimum input single quotes

irrespective of their count, feature – own or other locations Figure 28 float : input11 = 200.2 W1 has multiple (3) constrai- Valid constraint specification

component service’s input, data type of literal int : input12 = 300 nts with >, < and <= opera- with 4 constraints

value (enclosed in single quotes if char and double int : input31 = 400 tors on its own float and int

quotes if string typed) and relational operator. type inputs and 1 with >=

operator on W3’s int input

W2 has multiple (3) constrai- Valid constraint specification

nts with == operator on its with 3 constraints and string

own boolean and string type type literal values enclosed in

inputs double quotes

168



Table 20: Composite Service Objective Lucid Translation Evaluation Summary

# Property Significance

Test Input
Expected/Actual

Test OutputComposite Composite Input

Service Service Inputs Characteristics

1 A composite service with its component services One of the possible org- Figure 22 char : input11 = ′x′ W1 and W2 are arranged in Valid Objective Lucid program

organized in a sequential structure should be anizational structures sequence in the composition representing the composite service

correctly represented in Objective Lucid. for composition plans plan correctly and completely

2 A composite service with its component services One of the possible org- Figure 23 float : input11 = 200.2 W1−W2−W3 are arranged Valid Objective Lucid program

organized in a parallel structure should be anizational structures float : input41 = 300.3 in parallel to W4−W5−W6 representing the composite service

correctly represented in Objective Lucid. for composition plans char : input61 = ′x′ in the composition plan correctly and completely

3 A composite service with its component services One of the possible org- Figure 24 int : input11 = 100 Parallel component services Valid Objective Lucid program

organized in a joined structure should be anizational structures float : input21 = 200.2 W1 and W2 join their outputs representing the composite service

correctly represented in Objective Lucid. for composition plans at W3 in the composition plan correctly and completely

4 A composite service with its component services One of the possible org- Figure 25 boolean : input11 = true W1 splits its outputs between Valid Objective Lucid program

organized in a split structure should be correctly anizational structures string : input12 = “xyz” parallel component services representing the composite service

represented in Objective Lucid. for composition plans W2 and W3 in the correctly and completely

composition plan

5 A composite service with its component services One of the possible org- Figure 26 int : input11 = 100 Sequence: W1/W2−W3− Valid Objective Lucid program

organized in a combination of sequential, anizational structures float : input21 = 200.2 W4/W5−W6/W7 representing the composite service

parallel, joined and split structures should be for composition plans Parallel: W1/W2, W4/W5, correctly and completely

correctly represented in Objective Lucid. W6/W7

Joined: W1/W2−W3

Split: W3−W4/W5

6 Translation of a composite service to Algorithm 7, line 1 Irrelevant char : inputC1 = ∅ No value provided for Inputs discarded as invalid.

Objective Lucid should be aborted Valid input values are a char : inputC2 = “abc” inputC1, inputI1, inputF1, Appropriate error messages

immediately in case its input values provided by mandatory trigger int : inputI1 = ∅ inputB1 and inputS1. Too logged. Service translation process

the user are found to be invalid. condition for translation int : inputI2 = “abc” many characters for inputC2. aborted immediately.

process int : inputI3 = ′−′ Data type mismatch for

int : inputI4 = 12.34 inputI2, inputI3, inputI4,

float : inputF1 = ∅ inputF2, inputF3, inputB2,

float : inputF2 = “abc” and inputB3.

float : inputF3 = ′−′

boolean : inputB1 = ∅
boolean : inputB2 = “ ”

boolean : inputB3 =

“TRUE”

string : inputS1 = ∅

169



7 Translation process should fail in case the Repository types for Irrelevant Irrelevant Composite service repository “Invalid repository file type” error

composite service repository specified by the which reader module is specified by the user is in logged. Service translation process

user is not of an acceptable type (serialized unavailable cannot be JSON format aborted immediately.

Java or XML). parsed

8 Translation process should fail in case the Composite service avail- SplitCS Irrelevant Composite service repository “Missing composite service” error

composite service repository (whether serialized ability is mandatory specified by the user does not logged. Service translation process

Java or XML) specified by the user does not requirement for transla- contain SplitCS aborted immediately.

contain the composite service to be translated. tion process
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Figure 22: Unconstrained Sequentially-Organized Composite Service

Figure 23: Unconstrained Parallelly-Organized Composite Service

The design and implementation of the translation mechanism (as described in Chapter 4)

has been based upon a detailed study and analysis of both its source (i.e., layered composite

services) as well as destination (i.e., Objective Lucid) sides. Working on the service

composition application has helped us gain extensive knowledge of the various possible

arrangements of component services in a constraint-aware plan, the relationships between

them and the different adjustments in constraint locations that can occur during optimization

of their evaluation points. Meanwhile, a thorough study of Objective Lucid’s grammar

[36, 37], program structure and execution model together with an examination of GIPSY’s

architecture and eductive execution approach (as presented in Sections 2.1 and 2.2) has
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Figure 24: Unconstrained Composite Service with Joined Component-Organization

Figure 25: Unconstrained Composite Service with Split Component-Organization

significantly aided construction of clear and effective Objective Lucid representations of

constraint- and context-aware composite services. The information and insights gained as

a result of this entire study and analysis has been employed in designing our translation

mechanism and implementing it as a flexible and maintainable software application, which,

in turn, has provided us in-depth knowledge of the essential properties to be exhibited by the

application, the transformations to be applied on each major and minor element of a source

composite service, the exceptional scenarios to be allowed as well as the ones to be discarded
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Figure 26: Unconstrained Composite Service with All Organization Structures

Figure 27: Constrained Sequentially-Organized Composite Service

or flagged as errors, each of which has been tested thoroughly as part of our evaluation

process.

As already stated in Section 5.1, we completely understand that such a scenario-based

testing technique is not an absolute proof of absence of unexpected or faulty behavior

in a software application. However, designing a formal model of the Objective Lucid

translation as well as its input and output entities followed by development of a proof to show

that the programs generated by the translator would produce correct output for each set of

composite service inputs, if and when executed, falls beyond the scope of this thesis. Taking

our scope and time restrictions into consideration, our meticulous study of the composition

methodology and the Lucid/GIPSY model, the comprehensive knowledge of the translator’s

functionalities that we gained during its design and implementation, the systematic approach
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Figure 28: Sequentially-Organized Composite Service with Adjusted Constraints

that we have adopted towards designing the test cases and the successful execution of all the

tests so performed allow us to conclude that we have been able to effectively evaluate our

implemented solution to the best of our capabilities.

5.3 Summary

As discussed in Section 5.2, the tasks to be performed in order to fulfill the objectives

of this thesis (as defined in Section 1.2) are organized as a systematic process (described

in Section 1.5) aimed at verifying and validating context- and constraint-aware composite

services. The first three steps of this procedure, which are concerned with the construction

of layered composite services and their translation into Objective Lucid programs, have

been completed successfully as part of this research. Components of our overall verification

solution that are responsible for these tasks have been designed and implemented, described

in elaborate detail in Chapters 3 and 4 and thoroughly evaluated in Sections 5.1 and 5.2 to be

found capable of fulfilling all their design objectives (See https://github.com/GIPSY-dev/

ServiceCompositionRepo for the solution implementation and the tests conducted).

Unfortunately, due to unavailability of the GIPSY compiler for Objective Lucid,
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the last step of the verification process concerned with the execution of the Objective

Lucid representations of composite services generated by the translator framework could

not be accomplished during the course of this thesis, thereby preventing us from practically

demonstrating the capabilities of our verification solution as a completed system. However,

we attempt to present a conceptual demonstration of the same in Sections 2.1, 2.2 and 4.2

by providing detailed explanations of Lucid’s program structure, representation of context-

and constraint-aware composite services as Lucid programs, means of incorporating both

simulated as well as actual service functionalities in those programs, interpretation of all

applicable Lucid program constructs and statements, demand generation and eductive

program execution in GIPSY together with the role that Lucid’s dataflow execution model

and GIPSY’s warehouse (owing to its demand storage and querying capabilities) play towards

making the simulation and execution of context- and constraint-aware service compositions

in our verification system not only possible but also time- and cost-efficient – as is intended

in our thesis objectives.

To summarize, based on all the discussions presented so far and considering our time,

scope and resource restrictions, in this thesis, we propose a valid simulation- and execution-

based solution for the verification of context- and constraint-aware composite services,

effectively describe the development of all the necessary building blocks that together

constitute it and demonstrate through a meticulous evaluation approach that they satisfy

all their functional requirements, thereby fulfilling the objectives of this thesis to the best of

our present capabilities.
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Chapter 6

Conclusion and Future Work

In this final chapter, we provide a summary of all the discussions presented so far in this

thesis followed by descriptions of the limitations that we discovered in our proposed solution

during the course of this research as well as the future work in which we plan to address

each of them.

6.1 Conclusion

Owing to advantages such as clarity of structure, re-usability of components, broader options

for users and liberty to specialize for providers, composite web services have been extensively

researched over the past two decades. Yet, from a thorough review of the literature available

on the studies undertaken in the field so far (as presented in Section 2.3), we gather that

the fact that no web service has a universal aptitude has been mostly overlooked in all

existing research. Most of these studies fail to acknowledge that every service has a limited

context in which it can successfully perform its tasks, the boundaries of which are defined

by the internal constraints placed on the service by its providers. When used as part of a

composition, the restricted context-spaces of all such component services together define the

contextual boundaries of the composite service as a unit, which makes internal constraints an

influential factor for composite service functionality. However, due to the limited exposure
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received by this aspect of web service composition, no systems (as per our knowledge) have

yet been proposed to cater to the specific verification and validation of internal constraints

imposed on components of a composite service (discussed elaborately in Sections 1.1 and

2.3).

Based on the concept of context found in the intensional branch of mathematical logic

(as defined in Section 2.1.1) together with the definition borrowed from [4], the execution

context of a web service (whether atomic or composite) can be considered as the set of all its

input parameters and the values that are assigned to them at the time of the service call. In

case of composite services, many of these contextual parameters for component services

could get their values assigned dynamically as the composite service is being executed.

Therefore, in order to check if the restrictions placed on such variables (i.e., the internal

constraints) are satisfied, any verification solution proposed would need to either actually

execute the composite service or else simulate its execution. Additionally, since internal

service constraints are, in essence, limitations placed on a service’s execution context, a

system meant for verifying such constraints must be able to interpret the concept of execution

context. However, despite being so closely related to each other, the concepts of “service

execution context” and “internal service constraints” seldom appear together in any existing

research work, as per our literature review, which exhibits a significant gap in the research

being conducted on web service composition (see Section 1.1 for more details).

In an attempt to address these gaps and problems related to web service composition, in

this thesis, we propose the use of GIPSY (described in Section 2.2) as a simulation/execution-

based environment for verification and validation of constraint- and context-aware composite

web services. Since, GIPSY is a system dedicated to the compilation and execution of

Lucid programs, it requires the composite services under examination to be translated

into programs written in some Lucid dialect (described in Section 2.1). Therefore, as part

of our proposed solution, we design and implement in Java an automated and extensible

translator framework (described in Chapter 4) that allows modules for translating composite

services into different models/languages, particularly Objective Lucid, to be plugged-in
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and -out as and when required. However, before we can translate any internally-constrained

compositions into Objective Lucid and simulate/execute them on GIPSY, we need to

be able to generate them. To accomplish this task, we use the research conducted by

Laleh et al. on composition of internally-constrained services as the base, design the plan

construction algorithm missing from their composition methodology, optimize the other

algorithms that they have designed and re-implement the whole process in Java as an

independent, flexible and extensible software application capable of generating context- and

constraint-aware composition solutions with optimally-positioned constraints for any valid

composition request and set of available component services (explained in Chapter 3).

The service composition and translation methodologies employed in this thesis have

been described as sets of algorithms, each of which has a specific goal to be achieved by

performing a clearly-defined series of tasks. In order to assess the extent to which these

two processes fulfill their design goals, we prepare exhaustive lists of all their constituent

operations together with the other required conditions to be met by each of their algorithms

and perform tests on them individually as well as all of them combined as a composition

or translation process. All these tests have been designed based on a detailed analysis of

the concepts, models and techniques involved in addition to the insights gained into the

processes’ behavioral intricacies while building and improving them, which has provided us

with a comprehensive knowledge of the essential properties to be exhibited, each major and

minor operation to be performed, the exceptional scenarios to be allowed as well as the

pitfalls to be avoided by these solutions. Although we understand that such a scenario-

based testing technique is not an absolute proof of absence of faulty behavior from a

software application and its effectiveness is contingent upon the thoroughness with which

the test cases are designed, constructing formal models of our fairly complex composition

and translation solutions followed by development of mathematical proofs that establish

correctness of their behavior falls beyond the scope of this thesis. Taking our scope and

time restrictions under consideration, the meticulous study that we have conducted on the

composition methodology and the Lucid/GIPSY model, the extensive knowledge that we
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have acquired on the processes’ functionalities, the systematic approach that we have adopted

towards designing the test cases and the successful execution of all the tests so performed

allow us to conclude that we have been able to effectively evaluate our composition and

translation solutions to the best of our abilities and have found them to be capable of

fulfilling all their design objectives (refer to Chapter 5 for complete details of the assessment

conducted).

Unfortunately, due to unavailability of the GIPSY compiler for Objective Lucid,

execution of the Objective Lucid representations of composite services generated by our

translator framework could not be accomplished during the course of this thesis, thereby

preventing us from practically demonstrating the capabilities of our verification solution as

a completed system. However, we attempt to present a conceptual demonstration of the

same (in Sections 2.1, 2.2 and 4.2) by providing detailed explanations of representation of

context- and constraint-aware composite services as Lucid programs, means of incorporating

both simulated as well as actual service functionalities in those programs, interpretation of

all applicable Lucid program constructs and statements and eductive program execution

in GIPSY together with the role that Lucid’s dataflow execution model and GIPSY’s

warehouse play towards making the simulation and execution of context- and constraint-

aware service compositions in our verification system time- and cost-efficient – as is intended

in our thesis objectives (explained further in Section 5.3).

Based on all these discussions, we conclude that, given our time, scope and resource

restrictions, in this thesis, we propose a valid simulation- and execution-based solution for

the verification of context- and constraint-aware composite services, effectively describe the

development of all its constituent building blocks and successfully demonstrate that they

satisfy all their functional requirements, thereby fulfilling the objectives of this thesis (as

defined in Section 1.2) to the best of our present capabilities.
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6.2 Limitations and Future Work

During the course of this research, we discovered several features that can be incorporated

into our current verification solution in order to make it more comprehensive, maintainable,

efficient, robust, reliable and versatile while improving the quality of the compositions that

it generates and validates but have not been included, at present, due to our time and

scope restrictions. Additionally, due to unavailability of the GIPSY compiler for Objective

Lucid, some of the tasks planned at the beginning of this research could not be accomplished

as part of this thesis. In this section, we describe all such features, enhancements and

incomplete tasks that can be or are planned to be integrated into the various units of our

proposed solution in the future extensions to this research.

6.2.1 Forward Expansion

The limitations found in and the future work to be undertaken for the forward expansion

stage (Algorithms 2 and 3) of the service composition process have been listed below:

• The current user interface for the service composition application can be enhanced to

assist the user in applying customized termination conditions on the forward expansion

process for increased control over the processing duration. For instance, growth of a

search graph can be stopped once a certain number of possible solutions are likely to

have been obtained, a certain number of layers have been constructed or a certain

amount of time has been consumed. To further regulate the processing effort, similar

conditions can be applied on other stages of the composition process as well.

• Advanced optimization techniques, such as genetic algorithms, can be integrated into

the search graph construction stage for improving the quality of the composition

solutions extracted from it in later stages of the process.

• According to Algorithm 3, if a service, say, W1, produces an output parameter,

output1, which is an input parameter for another service, say, W2, then, W1 will
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be added as a predecessor to W2 (lines 5 - 7). This is done even if output1 is provided

as an input parameter in the composition request (i.e., output1 ∈ R.I). However, this

process, when followed in the above scenario, could result in generation of different

search graphs depending on the order in which the services in the source service

repository are read by the forward expansion process. For instance, considering the

above example, if, instead of W2 being read after W1, W2 is read before W1 by the

forward expansion algorithm, then, W1 would not be added as a predecessor to W2.

In this case, W2 would receive output1 as an input from the user, and a different

set of composition plans (possibly excluding W1) would be generated for the same

composition request.

Possible Future Solution: Although this problem is out of scope and not aligned

with the primary focus of this thesis, some techniques could be applied to improve the

consistency of the solutions obtained in such scenarios as part of the future work. One

such alternative could be to allow a service, say, W1, to be a predecessor to another

service, say, W2, only if W1 produces an output parameter output1 that W2 takes as

input and output1 is not included in the initial parameters (R.I).

6.2.2 Plan Construction

Even after the pruning and validation operations performed by the plan construction process

(Algorithm 5), some of the resultant solution plans might still contain superfluous services,

which could result in unnecessary expenditure of processing effort during the later stages of

the verification process. For instance, consider the composition request R defined below and

the set of services available for this composition listed in Table 21:

• R.I: {I11, I21, O11, O21}

• R.O: {O51, O52}

• R.QoS: ∅

• R.C: ∅
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Table 21: Component Services Available for Resolving R

Service Input Parameters Output Parameters

W1 {I11} {O11}
W2 {I21} {O21}
W3 {I11, O11} {O31}
W4 {I21, O21} {O41}
W5 {O31} {O51, O52}
W6 {O41} {O51, O52}

When the plan construction process is executed for the given request and services, seven

composition plans, as depicted in Figure 29, are generated as possible solutions. Since, our

current model does not take into account the Quality of Service features, strictly in terms of

the number of component services, plans 1 and 2 are the optimum solutions. However, five

other plans are also generated besides them, which contain more component services and are

likely to consume more resources for further processing as well as for simulation/execution.

Possible Future Solution: Although such additional plans offer alternative solutions

in case the optimum ones fail at any point and could even turn out to be better solutions if all

quality features are considered, further optimization might still be desirable. To accomplish

that, another stage dedicated to optimizing the services composed into a solution plan can

be added to the service composition process as part of future updates to the existing design.

6.2.3 Constraint-aware Plan Construction

More complex solutions can be employed in future to differentiate between internal

constraints and eliminate the duplicates from a service-node as part of the constraint-aware

plan construction stage (Algorithm 6). This would reduce the number of constraints to

be evaluated within and, consequently, the execution-time required for resultant constraint-

aware composition plans.

Intuitively, a simple differentiation technique could be to respectively compare the

features, operators and literal values of the constraints in question and discard the ones

that match another constraint in all three elements. However, this approach does not always
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Figure 29: Solution Plans Generated for R

recognize the duplicates. For example, by this technique, constraint “int : Price < 100”

is different from “int : Price <= 99” whereas mathematically both the constraints denote

the same range of values for Price. Due to such complexities involved and considering the

scope of the present solution, no technique for differentiating between constraints (other than

eliminating duplicate Java objects) could be proposed in this thesis.
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6.2.4 Service Composition

The limitations found in and the future work to be undertaken for the service composition

process in general have been listed below:

• Although we allow service requesters to specify their constraints and expected QoS

features as part of a composition request for the sake of completeness (see Definition

3), we do not implement any mechanisms as of now that would enable requester

constraints or QoS features to be included in a solution plan (see Section 3.5). Also,

while Algorithm 2 (forward expansion) does include a CheckRequesterConstraints

statement (line 7) that should trigger verification of requester constraints, currently,

it acts only as a placeholder for a more elaborate solution, designing which is out of

scope of this thesis. However, we plan to incorporate QoS features and verify requester

constraints placed on service compositions in the future works extending from this

thesis.

• In our current implementation, the operators that can be used in constraints include

only <, >, =, <= and >= while the QoS features that can be specified in

composition requests include only COST, RESPONSE TIME, RELIABILITY and

AVAILABILITY [5]. Additionally, int, char, float, string and boolean are the only

data types being handled for service input and output parameters by our present

solution (see Section 3.5.2). In future extensions, more operators and QoS features

can be added to the Operator [51] and QualityOfService enumerations respectively

and means to validate and process them can be added to our implementation while

extending it to handle additional data types for service inputs and outputs.

• Currently, a service parameter is represented as a String Java object with two parts –

data type and name – separated by a colon in our implementation (see Section 3.5.2).

This makes the parsing of service parameters untidy. To make the process cleaner, a

new data structure, such as a Parameter class with paramDataType and paramName

data members, can be defined to better represent and process service inputs, outputs,
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effects and constraint features in the future.

• The storage and reuse of layered composite services (described in Section 3.5.4.6) is,

at present, restricted to serialized Java object repositories in our solution. This

functionality can be extended in future to other repository formats, such as, XML,

JSON, WSDL, etc., by designing proper representations and developing relevant

parsers and writers for them.

• The research conducted by Laleh et al. includes an algorithm for merging all the

solutions generated for a given composition request into a single package so that, in

case one solution plan fails during run-time constraint verification, other alternative

plans from the package can be used for obtaining the desired output, thus broadening

the contextual range over which the generated solution can operate [4, 5]. While we

have restricted our current implementation to the composition and verification of a

single plan at a time in order to avoid complicating our prototype system at such an

early stage, we plan to incorporate construction of solution packages into our system

as part of a future work.

6.2.5 Composite Service Translation/Simulation/Execution

The limitations found in and the future work to be undertaken for the translation of

composite services intoObjective Lucid followed by their simulation/execution on GIPSY

have been listed below:

• As per the current design of the Objective Lucid translator, body of the process

member method of a component service’s Java class representation comprises of

nothing but simple placeholder statements that assign dummy values to output data

members based on their data type to ensure that our current solution passes the

basic sanity checks. For more advanced testing and verification, as part of future

extensions, we plan to include an additional component in the atomic service model

described by Laleh et al. (Definition 1) that would specify the implementation (whether
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simulated, actual or linked) of the service and could be extracted by the Objective

Lucid translator module so as to replace the current placeholder implementation of

the corresponding service’s process method.

• While our composition application allows layered composite services to be used

as components in other compositions, our translator framework still assumes the

components of its source composite services to be atomic in nature. As future work,

we plan to improve the design of our existing translator modules so as to be able to

represent composite component services in the translations generated.

• As mentioned in Section 6.2.4, we plan to incorporate construction of solution packages

into our composition application in future. Once this construction is accomplished,

the translator framework can also be updated to allow translation of the packages so

generated into various target models/languages.

• Due to unavailability of the GIPSY compiler for Objective Lucid, we have not been

able to provide a practical demonstration of the capabilities of our verification solution

as a completed system as part of this thesis. Moreover, due to our time and scope

limitations, we have been unable to provide a formal/mathematical proof to establish

the correctness of our composition and translation solutions. However, future research

works based on this thesis can be and are planned to be dedicated to accomplishing

these evaluation tasks.
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